WO2023032531A1 - セラミックス製品および装飾用組成物 - Google Patents

セラミックス製品および装飾用組成物 Download PDF

Info

Publication number
WO2023032531A1
WO2023032531A1 PCT/JP2022/028995 JP2022028995W WO2023032531A1 WO 2023032531 A1 WO2023032531 A1 WO 2023032531A1 JP 2022028995 W JP2022028995 W JP 2022028995W WO 2023032531 A1 WO2023032531 A1 WO 2023032531A1
Authority
WO
WIPO (PCT)
Prior art keywords
forming
matrix
mol
decorative
organic compound
Prior art date
Application number
PCT/JP2022/028995
Other languages
English (en)
French (fr)
Inventor
結希子 菊川
吉秀 前野
祥浩 鈴木
Original Assignee
株式会社ノリタケカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノリタケカンパニーリミテド filed Critical 株式会社ノリタケカンパニーリミテド
Priority to JP2023545162A priority Critical patent/JPWO2023032531A1/ja
Publication of WO2023032531A1 publication Critical patent/WO2023032531A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J36/00Parts, details or accessories of cooking-vessels
    • A47J36/02Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay
    • A47J36/04Selection of specific materials, e.g. heavy bottoms with copper inlay or with insulating inlay the materials being non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • C04B33/34Burning methods combined with glazing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • C04B41/90Coating or impregnation for obtaining at least two superposed coatings having different compositions at least one coating being a metal

Definitions

  • the present invention relates to ceramic products and decorative compositions. More specifically, the present invention relates to a ceramic product having a decorative film formed on the surface of a ceramic substrate, and a decorative composition for forming the decorative film on the ceramic product.
  • This application claims priority based on Japanese Patent Application No. 2021-140390 filed on August 30, 2021, and the entire contents of that application are incorporated herein by reference. there is
  • a decorative film is sometimes formed on the surface of ceramic products such as ceramics, glassware, and enamelware to give an elegant or luxurious impression.
  • a decorative film of this kind comprises, for example, a noble metal region containing a noble metal element and an amorphous region for fixing the noble metal region.
  • Such an amorphous region has, for example, an amorphous matrix (typically a glass matrix) whose skeleton is an oxide of a predetermined metal element or metalloid element (matrix-forming element).
  • a decorative film having such a configuration is formed by firing a pasty decorative composition.
  • Such decorative compositions include, for example, a compound of a noble metal element and an organic substance (hereinafter also referred to as a "noble metal organic compound”) and a compound of a matrix-forming element and an organic substance (hereinafter also referred to as a “matrix-forming metal organic compound”).
  • a noble metal organic compound a compound of a noble metal element and an organic substance
  • a matrix-forming element and an organic substance hereinafter also referred to as a “matrix-forming metal organic compound”
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a ceramic product capable of suppressing breakage of the decorative film during alkaline cleaning.
  • the ceramic product disclosed here has a decorative film formed on the surface of a ceramic substrate.
  • the decorative film of the ceramic product includes a noble metal region containing a noble metal element as a main component and an amorphous region containing a matrix forming element containing at least Si as a main component.
  • crystalline particles containing, as a main component, a crystalline oxide of at least one metal element selected from matrix-forming elements are dispersed in the amorphous region.
  • crystalline particles containing crystalline oxide as a main component are dispersed in the amorphous region. Since such crystalline particles are structurally difficult for alkali components to permeate, penetration of alkali components into amorphous regions can be suppressed. As a result, damage to the decorative film during alkaline cleaning can be suppressed.
  • the matrix-forming element is Al, Ti, Zr, Bi, Sm, Y, La, Ce, Pr, Nd, Sm, Dy, Sn, Zn, Be, Mg , Ca, Sr, Ba, Li, Na, K, Rb, B, V, Fe, Cu, P, Sc, Pm, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu, Ni, In, Co , Cr.
  • the crystalline particles contain, as a main component, crystalline oxides of metal cations having an ionic potential (ionic charge divided by ionic radius) of 2.5 or more and 12 or less.
  • Crystalline oxides of metal cations having an ionic potential of 2.5 or more are characterized by strong bonds with oxygen atoms and high water resistance.
  • crystalline oxides of metal cations having an ionic potential of 12 or less have low reactivity with alkalis, and therefore have high alkali resistance.
  • the noble metal element is at least one selected from the group consisting of Pt, Au, Pd, Rh, Ir and Ag. These noble metal elements can contribute to the formation of decorative films with excellent appearance.
  • the decorative film is formed by interspersing a plurality of noble metal regions in the amorphous region.
  • each noble metal region is insulated by the amorphous region, so damage due to sparks during use of the microwave oven can be prevented.
  • the ceramic product for microwave ovens having such a structure the amount of the amorphous region having poor alkali resistance is exposed, so that the decorative film tends to be easily peeled off during washing with alkali.
  • the crystalline particles can suppress the penetration of the alkaline component into the amorphous region, so even in this type of microwave oven-compatible ceramic product, the peeling of the decorative film can be suitably prevented. can.
  • a decorative composition for forming a decorative film on the ceramic product having the above-described configuration.
  • a decorative composition contains a noble metal organic compound, which is a compound of a noble metal element and an organic substance, and a matrix-forming metal organic compound, which is a compound of a matrix forming element and an organic substance.
  • the matrix-forming metal organic compound is composed of at least an Si organic compound, which is a compound of Si and an organic substance, and a compound of a crystal-forming element having a single bond strength of less than 339 kJ/mol when forming an oxide and an organic substance. and certain crystal-forming organic compounds.
  • the relationship between the combustion temperature TSi of the Si organic compound and the combustion temperature Tx of the crystal-forming organic compound satisfies the following formula (1).
  • the combustion temperature T X of the organic compound for crystal formation is lower than the combustion temperature T Si of the Si organic compound (T X ⁇ T Si ).
  • the crystal-forming organic compound is preferentially decomposed and fired. Since the single bond strength of the oxide of the crystal-forming element produced by this firing treatment is less than 339 kJ/mol, it cannot form the framework of the amorphous matrix by itself and becomes crystalline particles.
  • the Si organic compound is decomposed and fired to form the skeleton of the amorphous matrix in the amorphous region, so that the decorative film in which the crystalline particles are dispersed in the amorphous region can be formed.
  • the matrix-forming metal organic compound further contains an Al organic compound, which is a compound of Al and an organic substance.
  • an amorphous region containing an aluminosilicate glass containing a composite oxide containing Si and Al as a skeleton of an amorphous matrix is formed. According to the technology disclosed herein, even when such an amorphous region containing aluminosilicate glass is formed, peeling of the decorative film during alkaline cleaning can be prevented.
  • the total content of Si and Al is 5 mol% or more when the total number of moles of the noble metal element and the matrix-forming element is 100 mol%. 60 mol % or less is preferable. Furthermore, the Si content is preferably 40 mol % or more and 99.5 mol % or less when the total number of moles of Si and Al is 100 mol %.
  • the content of the noble metal element is 25 mol % or more and 85 mol % or less when the total number of moles of the noble metal element and the matrix-forming element is 100 mol %. This makes it possible to form a decorative film that achieves both high levels of color development and gloss.
  • the matrix-forming metal organic compound further comprises a Bi organic compound, which is a compound of Bi and an organic substance.
  • a Bi organic compound which is a compound of Bi and an organic substance.
  • the Bi content is preferably 5 mol % or more and 30 mol % or less when the total number of moles of the matrix-forming elements is 100 mol %.
  • the content of the crystal-forming element is 3 mol % or more and 60 mol % or less when the total number of moles of the matrix-forming elements is 100 mol %.
  • the crystal-forming element is at least one selected from the group consisting of Zr and Ti.
  • the crystalline particles containing Zr and Ti have the property of being difficult to dissolve in an alkaline solution, so that peeling of the decorative film during alkaline cleaning can be more preferably suppressed.
  • the decorative film of the ceramic product disclosed herein can also be formed using a decorative composition having a configuration different from that described above.
  • a decorative composition contains a noble metal organic compound that is a compound of a noble metal element and an organic substance, and a matrix-forming metal organic compound that is a compound of a matrix-forming element and an organic substance, and the matrix-forming metal organic compound contains at least: It contains a Si organic compound, which is a compound of Si and an organic substance. Crystalline particles containing, as a main component, a crystalline oxide of at least one metal element selected from matrix-forming elements are dispersed in this decorative composition.
  • the decorative composition having the above configuration pre-formed crystalline particles are dispersed in the decorative composition.
  • the organic Si compound is decomposed and fired in the presence of crystalline particles, and an amorphous matrix skeleton is formed. can form a decorative film in which is dispersed.
  • FIG. 1 is a diagram schematically showing a cross-sectional structure of a ceramic product according to one embodiment.
  • 2 is a cross-sectional TEM photograph of the decorative film of Example 4.
  • FIG. 3 is an XRD chart of the decorative film of Example 1.
  • FIG. 4 is an XRD chart of the decorative film of Example 2.
  • FIG. 5 is an XRD chart of the decorative film of Example 3.
  • FIG. 6 is an XRD chart of the decorative film of Example 4.
  • FIG. 7 is an XRD chart of the decorative film of Example 5.
  • FIG. 8 is an XRD chart of the decorative film of Example 6.
  • FIG. 9 is an XRD chart of the decorative film of Example 7.
  • FIG. 10 is an XRD chart of the decorative film of Example 8.
  • FIG. 11 is an XRD chart of the decorative film of Example 9.
  • FIG. 10 is an XRD chart of the decorative film of Example 8.
  • FIG. 12 is an XRD chart of the decorative film of Example 10.
  • FIG. 13 is an XRD chart of the decorative film of Example 11.
  • FIG. 14 is an XRD chart of the decorative film of Example 12.
  • FIG. 15 is an XRD chart of the decorative film of Example 13.
  • FIG. 16 is an XRD chart of the decorative film of Example 14.
  • FIG. 17 is an XRD chart of the decorative film of Example 15.
  • FIG. 18 is an XRD chart of the decorative film of Example 16.
  • FIG. 19 is an XRD chart of the decorative film of Example 17.
  • FIG. 20 is an XRD chart of the decorative film of Example 18.
  • FIG. 21 is an XRD chart of the decorative film of Example 19.
  • FIG. 22 is an XRD chart of the decorative film of Example 20.
  • FIG. 23 is an XRD chart of the decorative film of Example 21.
  • FIG. 24 is an XRD chart of the decorative film of Example 22.
  • FIG. FIG. 25 is an example of a histogram in which the horizontal axis is the brightness value of the secondary electron image of the cut surface of the ceramic product and the vertical axis is the count number.
  • FIG. 1 is a diagram schematically showing a cross-sectional structure of a ceramic product according to this embodiment. Note that the dimensional relationships (length, width, thickness, etc.) in FIG. 1 do not reflect the actual dimensional relationships.
  • this ceramic product 1 comprises a substrate 10, a coat layer 20, and a decorative film 30. As shown in FIG. Each will be described below.
  • the substrate 10 is a molded body containing ceramics as a main component. Ceramics for such substrate 10 include silica, alumina, zirconia, ceria, yttria, boronia, magnesia, calcia, and the like. Note that the thickness, shape, color, hardness, etc. of the base material 10 can be appropriately changed according to the application of the ceramic product 1, and the technology disclosed herein is not limited, so detailed description is omitted. omitted.
  • the coat layer 20 is formed on the surface of the substrate 10 .
  • the coat layer 20 is a layer containing glass as a main component, and is formed for the purpose of protecting the base material 10 and improving the appearance (especially gloss).
  • the coating layer 20 is formed by applying a chemical (glaze) containing a matrix-forming element, which will be described later, to the surface of the substrate 10 and then firing the coating.
  • the composition of the coat layer 20 is not particularly limited as long as it does not significantly impair the effects of the technology disclosed herein, and conventionally known components that can be used for the protective layer of ceramic substrates can be appropriately selected. .
  • the coat layer 20 can be substantially composed of Si, Al, Fe, Mg, Na, Zn, K, Ca, Sn, and the like. These constituent elements can then build a matrix in the form of amorphous oxides. That is, the coat layer 20 contains silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), iron oxide (Fe 2 O 3 ), magnesium oxide (MgO), potassium oxide (Na 2 O), zinc oxide ( ZnO), potassium oxide ( K2O ), calcium oxide (CaO), tin oxide ( SnO2 ), etc. can be constructed. In addition, since the existence ratio of each element in the coat layer 20 does not limit the technique disclosed here, detailed description thereof is omitted.
  • the ceramic product 1 has a decorative film 30 .
  • This decorative film 30 is formed on the surface of the coat layer 20 .
  • the decorative film 30 is usually formed to have a desired pattern (including letters and pictures) in plan view in order to improve the appearance of the ceramic product 1 .
  • the thickness of the decoration film 30 is preferably 30 nm or more and 250 nm or less.
  • the ceramic product 1 having such a thin decorative film 30 formed thereon is low in cost and has an excellent appearance, even a slight peeling of the decorative film 30 may greatly impair the appearance.
  • the technique disclosed herein can suppress peeling of the decorative film 30 during alkaline cleaning, and therefore can be particularly suitably applied to the ceramic product 1 having the thin decorative film 30 as described above.
  • the decorative film 30 in this embodiment includes a noble metal region 32, an amorphous region 34, and crystalline particles 35. As shown in FIG. 1, the decorative film 30 in this embodiment includes a noble metal region 32, an amorphous region 34, and crystalline particles 35. As shown in FIG.
  • the noble metal region 32 is a region containing a noble metal element as a main component. This noble metal region 32 mainly contributes to coloring of the decorative film 30 .
  • the noble metal elements contained in the noble metal region 32 include platinum (Pt), gold (Au), palladium (Pd), rhodium (Rh), iridium (Ir), silver (Ag), ruthenium (Ru), and osmium (Os). etc.
  • the noble metal region 32 may contain an element other than the noble metal element.
  • the noble metal region 32 may contain part of the matrix-forming elements described later, or non-metal elements such as carbon (C) and oxygen (O).
  • the "noble metal region containing a noble metal element as a main component" in this specification is the region with the highest brightness in the peak of the histogram obtained by image analysis of the cross section of the ceramic product.
  • image analysis first, the ceramic product is cut along the thickness direction of the decorative film, and the cut surface is fixed by resin embedding treatment and then polished by ion milling. Next, while the polished surface was fixed to the sample table with carbon tape so that the polished surface faced upward, it was coated using an osmium plasma coater (manufactured by Nippon Laser Electronics Co., Ltd.: OPC80N), and the cut surface was coated with osmium for measurement.
  • OPC80N osmium plasma coater
  • the discharge voltage is set to 1.2 kV
  • the degree of vacuum is set to 6 to 8 Pa
  • the coating time is set to 10 seconds.
  • a field emission scanning electron microscope manufactured by Hitachi High-Tech Co., Ltd.: SU8230
  • a secondary electron image of the cut surface of the decorative film is obtained.
  • the acceleration voltage for acquiring the secondary electron image is 2.0 kV
  • the emission current is 10 ⁇ 0.5 ⁇ A
  • the field of view is 50,000 to 100,000 times.
  • a region having a brightness value of 125 or more in the noise-removed image is regarded as "a noble metal region containing a noble metal element as a main component". If a histogram is created with the luminance value of the image after the noise removal on the horizontal axis and the count number on the vertical axis, four peaks with different luminances are confirmed (see FIG. 25). These four peaks correspond to the embedding resin, the base material, the amorphous region, and the noble metal region in ascending order of brightness, and the region with the highest brightness corresponds to the noble metal region. .
  • the threshold in FIG. 25, the luminance is 125 or more) for determining whether or not the region is the noble metal region is set based on such histogram analysis.
  • the mass concentration CN of the noble metal element measured in the FESEM-EDS analysis of the surface of the decoration film 30 is preferably 11% or more, preferably 11.5% or more, more preferably 12% or more, and 13%. % or more is particularly preferred.
  • the chemical resistance (especially acid resistance) of the decoration film 30 can be improved.
  • the upper limit of the mass concentration CN of the noble metal element is preferably 70% or less, more preferably 69.5% or less, still more preferably 69% or less, and particularly preferably 68% or less. This can contribute to a reduction in manufacturing costs and prevention of breakage of the decorative film 30 during use of the microwave oven.
  • oversintering can also prevent the grain size of the noble metal particles from becoming too large, thereby preventing the decorative film from becoming cloudy.
  • the “mass concentration” in this specification refers to the "metal element and It is the relative mass of any metal element (or metalloid element) when the “total mass of metalloid elements” is taken as 100%.
  • the amorphous regions 34 are interspersed with a plurality of noble metal regions 32 .
  • each noble metal region 32 is insulated by the amorphous region 34, so that the decorative film 30 can be prevented from being damaged by sparks during use of the microwave oven.
  • the amount of exposed amorphous regions 34 having poor alkali resistance is large, so the decorating film 30 tends to peel off during alkali cleaning.
  • the crystalline particles 35 which will be described later, can suppress the penetration of the alkaline component into the amorphous region 34. Therefore, even if the amount of exposure of the amorphous region 34 increases, Detachment of the decorative film 30 during alkaline cleaning can be appropriately suppressed.
  • the amorphous region 34 is a region that contributes to fixation and protection of the noble metal region 32, and has an amorphous matrix having an oxide skeleton of a predetermined metal element (matrix-forming element). are doing.
  • matrix-forming element is a concept that includes metal elements and semi-metal elements capable of constructing an amorphous matrix in the state of oxide.
  • amorphous matrix means a skeleton of amorphous oxides (amorphous structure oxides) of predetermined metal elements and metalloid elements, and various metal elements (or metalloid elements) is present in the skeleton as an oxide or in the form of a cation.
  • amorphous material is glass.
  • amorphous region containing a matrix-forming element as a main component refers to a region where the second highest brightness is confirmed in the above-described image analysis of the cut surface of the ceramic product. Specific examples of matrix-forming elements are described below.
  • the matrix-forming element in this embodiment contains at least silicon (Si).
  • Si constitutes the skeleton of the amorphous matrix in the state of silicon oxide (SiO 2 ), so it is an essential constituent element of the amorphous region 34 .
  • the mass concentration C Si of Si in the FESEM-EDS analysis of the surface of the decoration film 30 is preferably 10% or more, more preferably 15% or more, still more preferably 17.5% or more, and 20% or more. Especially preferred. This forms a strong amorphous matrix with a suitable framework.
  • the amorphous region 34 preferably contains at least a certain amount of matrix-forming elements other than Si.
  • the upper limit of the Si mass concentration CSi is preferably 60% or less, more preferably 59.5% or less, further preferably 59% or less, and 58.5%. % or less is particularly preferred.
  • Matrix forming elements other than Si include Al, Ti, Zr, Bi, Sm, Y, La, Ce, Pr, Nd, Sm, Dy, Sn, Zn, Be, Mg, Ca, Sr, Ba, Li , Na, K, Rb, B, V, Fe, Cu, P, Sc, Pm, Eu, Gd, Tb, Ho, Er, Tm, Yb, Lu, Ni, In, Co, Cr and the like. These matrix-forming elements other than Si are preferably included in the amorphous region 34 as appropriate in consideration of various properties.
  • Al is a suitable example of a matrix-forming element other than Si.
  • Al has the function of forming a composite oxide with other matrix-forming elements (such as Si) and improving the chemical resistance (alkali resistance and/or acid resistance) of the amorphous region 34 .
  • the mass concentration C Al is preferably 1% or more, more preferably 1.5% or more, still more preferably 2% or more, and particularly preferably 2.5% or more.
  • the upper limit of the Al mass concentration C Al is preferably 15% or less, more preferably 14% or less, further preferably 13.5% or less, and 13% or less. is particularly preferred.
  • matrix-forming elements other than Si include zirconium (Zr) and titanium (Ti). These can also contribute to improving the chemical resistance of the amorphous region 34 .
  • Zr and Ti can be combined with an amorphous matrix skeleton (for example, SiO 2 ) in the form of amorphous oxides (ZrO 2 , TiO 2 ). Since ZrO 2 and TiO 2 have very high chemical resistance, they remain to form a film even after other components are eluted from the amorphous matrix due to exposure to chemicals. As a result, progress of damage to the amorphous region 34 can be suppressed.
  • the sum of the mass concentration C Zr of Zr and the mass concentration C Ti of Ti in the FESEM-EDS analysis of the surface of the decorative film 30 is preferably 0.01% or more, more preferably 0.02% or more, and particularly preferably 0.03% or more.
  • the sum of the mass concentration C Zr of Zr and the mass concentration C Ti of Ti is preferably 5% or less, more preferably 4% or less, and further 3% or less.
  • 2% or less is particularly preferable.
  • the matrix-forming element may contain bismuth (Bi).
  • Bi diffuses into the underlying layer as Bi ions and acts as a network modifier ion on the framework of the amorphous matrix.
  • Bi 2 O 3 has the effect of softening the amorphous region 34 , and thus can improve fixability of the decorative film 30 on the ceramic product 1 .
  • the Bi 2 O 3 diffuses toward the coat layer 20 to obtain even higher fixability. That is, Bi can contribute to suppressing damage (peeling) of the decorative film 30 by improving fixability.
  • the mass concentration C Bi of Bi in the FESEM-EDS analysis of the surface of the decoration film 30 is preferably 0.01% or more, and 0.015. % or more is more preferable, and 0.05% or more is particularly preferable.
  • the mass concentration of Bi, CBi is preferably 5% or less, more preferably 4.7% or less, even more preferably 4.5% or less, and 4% or less. is particularly preferred.
  • rare earth elements include scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium. (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu) can be selected without particular limitation.
  • the mass concentration CR of the rare earth element is preferably 0.3% or more, more preferably 0.4% or more. , 0.5% or more is particularly preferred.
  • the mass concentration CR of the rare earth element is preferably 7.5% or less, more preferably 6.0% or less, and particularly preferably 5.5% or less.
  • Co cobalt
  • This Co can also be composited with the skeleton of the amorphous matrix (for example, SiO 2 ) in the form of an amorphous oxide (at least one of CoO, Co 3 O 4 and Co 2 O 3 ).
  • Cobalt oxide can contribute to improving the chemical resistance of the decoration film 30 by enhancing the adhesion between the noble metal region 32 and the amorphous region 34 .
  • the amorphous region 34 in this embodiment may contain elements other than the matrix-forming element.
  • the amorphous region 34 may contain the noble metal elements described above, or non-metal elements such as carbon (C) and oxygen (O).
  • the noble metal elements that form the noble metal region 32 there is an element (such as Ag) that partially becomes an amorphous oxide in the firing process and constitutes a part of the amorphous matrix.
  • the elements listed above as noble metal elements are not regarded as matrix-forming elements.
  • Crystalline Particles As shown in FIG. 1 , crystalline particles 35 are dispersed in the amorphous region 34 of the decorative film 30 in the ceramic product 1 according to this embodiment.
  • the crystalline particles 35 contain, as a main component, a crystalline oxide of at least one metal element selected from the matrix-forming elements described above. Since the crystalline particles 35 are made of crystalline oxide, they have a structural feature that alkali components are less permeable than the amorphous regions 34 . Therefore, by dispersing the crystalline particles 35 in the amorphous regions 34, it is possible to prevent the alkaline component from entering the amorphous regions 34 and suppress the damage of the decorative film 30 during alkaline cleaning.
  • the term "crystalline particles containing crystalline oxide as a main component" refers to a region where a peak indicating crystalline oxide is confirmed in X-ray diffraction measurement (XRD) of the decorative film. say.
  • the crystalline particles 35 suppress breakage of the decorative film 30 during alkaline cleaning due to the structural feature that the alkali component does not permeate easily. Therefore, the crystalline particles 35 may be made of a crystalline oxide of a matrix-forming element that can be dispersed in the amorphous region 34 . That is, the specific constituent metal elements of the crystalline particles 35 are not particularly limited as long as they are the matrix-forming elements described above. However, from the viewpoint of more preferably suppressing breakage of the decorative film 30, the crystalline particles 35 preferably contain a crystalline oxide of a metal cation having an ion potential of 2.5 or more and 12 or less as a main component.
  • the ionic potential is a parameter obtained by dividing the ionic charge by the ionic radius, and is an index of the strength of binding of cations to anions.
  • Crystalline oxides of metal cations having an ionic potential of 2.5 or more are characterized by strong bonds with oxygen atoms and high water resistance.
  • crystalline oxides of metal cations having an ionic potential of 12 or less have low reactivity with alkalis, and therefore have high alkali resistance. That is, by forming the crystalline particles 35 from the crystalline oxide having the ion potential described above, it is possible to obtain a decorative film having both high levels of alkali resistance and water resistance.
  • the ion potential is more preferably 3 or more, and even more preferably 3.5 or more.
  • the ion potential is more preferably 10 or less, and even more preferably 8 or less.
  • An example of a crystalline oxide having such ion potential is a crystalline oxide containing Zr and/or Ti. As described above, among oxides of various matrix-forming elements, oxides of Zr and Ti have extremely high chemical resistance as single materials. Therefore, by dispersing the crystalline oxide of Zr or Ti in the amorphous region 34, peeling of the decorative film 30 during alkaline cleaning can be suppressed particularly favorably.
  • the crystalline oxides of Zr and Ti may be not only ZrO 2 and TiO 2 but also composite oxides such as ZrTiO 4 and Ti 2 Bi 2 O 7 . It has been confirmed that these composite oxides also have suitable chemical resistance (alkali resistance).
  • the matrix-forming element forming the crystalline particles 35 may or may not be contained in the amorphous matrix of the amorphous region 34 .
  • the amorphous matrix of the amorphous region 34 may or may not contain ZrO 2 . This point does not greatly affect the effect produced by the technology disclosed herein.
  • a plurality of types of crystalline particles 35 having different main components may be dispersed in the amorphous region 34 of the decorative film 30 in this embodiment.
  • the shape of the crystalline particles 35 is not a factor that limits the technology disclosed here.
  • the crystalline particles 35 may be dispersed in the amorphous region 34 in the state of independent primary particles, or may be in the state of secondary particles in which necks are formed between a plurality of primary particles. It may be dispersed in the crystalline region 34 .
  • the crystallite diameter (particle diameter of primary particles) of the crystalline particles 35 is preferably 1 nm or more, more preferably 2 nm or more, and even more preferably 2.5 nm or more.
  • the crystallite diameter of the crystalline particles 35 is preferably 20 nm or less, more preferably 15 nm or less, and even more preferably 10 nm or less.
  • the crystallite diameter of the crystalline particles 35 is calculated based on the peak half width in the XRD analysis of the decorative film 30 .
  • a desired base material 10 is prepared.
  • the substrate 10 can be produced by molding and firing a substrate material obtained by kneading a predetermined ceramic material.
  • the base material 10 with the coat layer 20 shown in FIG. 1 can be produced by applying a glaze to the surface of the base material 10 after firing and then firing again.
  • this step is not particularly limited as long as the base material 10 can be prepared.
  • a separately manufactured base material 10 may be purchased and prepared.
  • the decorative film 30 is formed on the substrate 10 .
  • a desired pattern is drawn on the surface of the base material 10 using a paste-like decorative composition (paint) containing a predetermined component, and then a baking treatment is performed.
  • the firing treatment in this step it is preferable to set the firing temperature T F in the range of 700°C to 1000°C. Thereby, each component contained in the decorative composition can be sufficiently baked to form the decorative film 30 .
  • the components of the decorative composition used in this step are described below.
  • the decorative composition in this embodiment contains a noble metal organic compound as a precursor of the noble metal region 32 .
  • a noble metal organic compound is a compound of a noble metal element and an organic substance. When such a noble metal organic compound is fired, the noble metal region 32 is formed by sintering the noble metal after burning the organic matter.
  • the noble metal organic compound can take the form of a metal resinate, a complex, a polymer, or the like.
  • the description of the elements that can be used as the noble metal element is omitted to avoid redundant description.
  • the organic substance is not particularly limited as long as it does not significantly impede the effects of the technology disclosed herein, and conventionally known resin materials that can be used for producing metal organic compounds can be used without particular limitation.
  • resin materials include carboxylic acids having a high carbon number (for example, 8 or more carbon atoms) such as octylic acid (2-ethylhexanoic acid), abietic acid, naphthenic acid, stearic acid, oleic acid, linolenic acid, and neodecanoic acid; Acid; resin acid contained in rosin; resin containing essential oil components such as turpentine oil and lavender oil; be done.
  • carboxylic acids having a high carbon number for example, 8 or more carbon atoms
  • octylic acid (2-ethylhexanoic acid
  • abietic acid naphthenic acid
  • stearic acid oleic acid
  • oleic acid linolenic acid
  • neodecanoic acid neodecanoic acid
  • Acid resin acid contained in rosin
  • resin containing essential oil components such as turpentine oil and lavender oil
  • the content of the noble metal element is preferably 25 mol % or more, more preferably 30 mol % or more, and 35 mol % or more. is more preferable, and 40 mol % or more is particularly preferable. In this way, by firing a decorative composition containing a certain amount of noble metal element or more, a sufficient noble metal region 32 is generated, so that a decorative film 30 with excellent color development and chemical resistance can be formed.
  • the upper limit of the noble metal element content is preferably 85 mol % or less, more preferably 80 mol % or less, even more preferably 75 mol % or less, and particularly preferably 70 mol % or less.
  • the content of the matrix-forming metallo-organic compound, which is the precursor of the amorphous region 34 can be ensured to be above a certain level, so that the decorative film 30 having sufficient fixability to the base material can be easily formed.
  • the decoration film 30 that is less likely to generate sparks during use of the microwave oven is likely to be formed.
  • the decorative composition in the present embodiment contains a matrix-forming metal organic compound.
  • the matrix-forming metal organic compound is a compound of the aforementioned matrix-forming element and an organic substance.
  • the organic substance used for such a matrix-forming metal organic compound is not particularly limited as long as it does not significantly hinder the effects of the technology disclosed herein, and the same organic substance used for the noble metal organic compound described above can be used.
  • the matrix-forming metallo-organic compound is fired, the matrix-forming element is oxidized after the organic substance is burned, and the amorphous region 34 is formed.
  • the matrix-forming metal organic compound is prepared so that the crystalline particles 35 are dispersed in the amorphous regions 34 after firing.
  • the matrix-forming metal organic compound in this embodiment contains at least an Si organic compound and a crystal-forming organic compound.
  • a Si organic compound is a compound of silicon (Si) and an organic substance. When such a Si organic compound is calcined, the organic matter is burned off and Si is oxidized to form SiO 2 . Such SiO 2 forms the skeleton of the amorphous matrix and becomes the main component of the amorphous region 34 .
  • the crystal-forming organic compound is a compound of a crystal-forming element, which is the main component of the crystalline particles 35, and an organic substance.
  • crystal-forming element refers to a matrix-forming element having a single bond strength of less than 339 kJ/mol when forming an oxide. This kind of metal oxide with weak single bond strength has low covalent bond, so that it cannot form the framework of the amorphous matrix by itself and becomes crystalline particles.
  • the "single bond strength" in the present specification is defined in K.K. H. Sun. J. Am. Ceram Soc. , 30, 277 (1947).
  • the single bond strength is defined as the value of the dissociation energy of MO n/M to gaseous atoms in a single metal oxide (M m O n , M is a metal element), and the oxygen coordination of the metal element. It is a value divided by a number.
  • the decorative composition of the present embodiment is prepared so that the relationship between the combustion temperature T Si of the Si organic compound and the combustion temperature T X of the crystal-forming organic compound satisfies the following formula (1): .
  • the decorative composition having such a structure is fired, the crystal-forming organic compound having a relatively low combustion temperature is preferentially decomposed and fired to form an oxide of the crystal-forming element.
  • an oxide of a crystal-forming element having a single bond strength of less than 339 kJ/mol cannot form the skeleton of an amorphous matrix by itself, so it is produced in the form of crystalline particles 35 .
  • the Si organic compound is decomposed and fired to form the skeleton of the amorphous matrix of the amorphous region 34 .
  • the decorative film 30 in which the crystalline particles 35 are dispersed in the amorphous regions 34 can be formed.
  • the crystal-forming organic compound is configured such that its combustion temperature Tx is lower than the combustion temperature TSi of the Si organic compound.
  • the combustion temperature of the metallo-organic compound can be easily adjusted by changing the type of organic substance that bonds with the metal element. That is, the crystal-forming organic compound can be obtained by selecting a predetermined crystal-forming element and appropriately selecting the type of organic substance so that it burns at a temperature lower than the combustion temperature T Si of the Si organic compound.
  • the crystal-forming element is a metal element having a single bond strength of less than 339 kJ/mol when forming an oxide.
  • Such crystal - forming elements include Ga2O3 , Li2O , CaO, Sc2O3 , TiO2 , V2O5 , ZnO, Y2O3 , ZrO2 , In2O3 , SnO2 , TeO2 , La2O3 , Na2O , K2O , Rb2O, Cs2O , SrO, SrO , CdO and the like.
  • the single bond strengths of the oxides of these crystal-forming elements are shown in Table 1 below.
  • Ti and Zr are particularly suitable as crystal-forming elements.
  • the crystalline particles 35 containing Ti and Zr are difficult to dissolve in an alkaline solution, so that peeling of the decorative film 30 during alkaline cleaning can be suppressed more favorably.
  • the content of the crystal-forming element is preferably 3 mol % or more, preferably 4 mol % or more, and 4.5 mol % when the total number of moles of all matrix-forming elements contained in the decorative composition is 100 mol %.
  • the above is preferable, and 5 mol % or more is preferable.
  • the decorative film 30 in which a sufficient amount of crystalline particles 35 are dispersed can be formed.
  • the content of the crystal forming element in the matrix forming element is preferably 60 mol% or less, more preferably 55 mol% or less, further preferably 50 mol% or less, and 40 mol. % or less is particularly preferred.
  • the combustion temperature of each metal organic compound is not particularly limited as long as it satisfies the above formula (1).
  • the combustion temperature of each metal organic compound is preferably lower than the firing temperature TF described above.
  • the combustion temperature T Si of the Si organic compound is preferably 600° C. to 750° C., more preferably 625° C. to 725° C. or less, and more preferably 650° C. to 700° C. More preferred.
  • the combustion temperature T X of the crystal-forming organic compound is preferably 450° C. to 560° C., more preferably 460° C. to 550° C., from the viewpoint of satisfying the above formula (1) and appropriately forming the crystalline particles 35. is more preferred, and 470°C to 540°C is even more preferred.
  • matrix-forming metal organic compounds described above those that burn at a higher temperature than the Si organic compound form an amorphous matrix of the amorphous region 34 together with SiO 2 . That is, when forming an amorphous matrix containing an element other than Si, it is preferable to add a matrix-forming metal organic compound having a combustion temperature higher than that of the Si organic compound to the decorative composition.
  • a matrix-forming metal organic compound include an Al organic compound, which is a compound of Al and an organic substance.
  • the total content of Si and Al in the decorative composition is preferably 5 mol% or more, more preferably 10 mol% or more, and 15 mol% or more. is particularly preferred.
  • the upper limit of the total content of Si and Al is preferably 60 mol % or less, more preferably 55 mol % or less, and even more preferably 50 mol % or less.
  • the Si content is preferably 40 mol% or more, more preferably 50 mol% or more, more preferably 60 mol% when the total number of moles of Si and Al is 100 mol%. The above is more preferable, and 70 mol % or more is particularly preferable.
  • the matrix-forming element is bismuth (Bi).
  • the Bi may also be added to the decorative composition in the form of a Bi organic compound.
  • the content of Bi should be 5 mol % or more when the total number of moles of the matrix forming elements is 100 mol %.
  • it is 6 mol % or more, more preferably 7 mol % or more, and particularly preferably 8 mol % or more.
  • the upper limit of the Bi content in the matrix-forming element is preferably 30 mol % or less, more preferably 25 mol % or less, and even more preferably 20 mol % or less.
  • the decorative composition may contain other additional components as long as they do not significantly impair the effects of the technology disclosed herein.
  • An example of such additional ingredients is an organic solvent that disperses or dissolves the metal organic compound. By adding an organic solvent to adjust the viscosity of the decorative composition, it becomes easier to form the decorative film 30 having a desired pattern (including letters and pictures).
  • the organic solvent as long as the effects of the technology disclosed herein are not greatly impaired, any organic solvent used in conventionally known resinate pastes and liquid gold can be used without particular limitation.
  • organic solvents examples include 1,4-dioxane, 1,8-cineole, 2-pyrrolidone, 2-phenylethanol, N-methyl-2-pyrrolidone, p-tolualdehyde, benzyl benzoate , butyl benzoate, eugenol, caprolactone, geraniol, methyl salicylate, cyclohexanone, cyclohexanol, cyclopentyl methyl ether, citronellal, di(2-chloroethyl) ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, dihydrocarbon, dibromomethane, dimethyl sulfoxide, Dimethylformamide, nitrobenzene, pyrrolidone, propylene glycol monophenyl ether, pulegone, benzyl acetate, benzyl alcohol, benzaldehyde, turpentine oil
  • the decorative composition may contain additional components other than the organic solvent as long as they do not significantly impair the effects of the technology disclosed herein.
  • additional components include organic binders, protective agents, surfactants, thickeners, pH adjusters, preservatives, antifoaming agents, plasticizers, stabilizers and antioxidants.
  • the ceramic product 1 has a coat layer 20 between the base material 10 and the decorative film 30 .
  • the coating layer 20 is not an essential component in the ceramic product disclosed here. That is, the decorative film may be directly formed on the surface of the ceramic substrate. According to the technology disclosed herein, a decorative film having sufficient chemical resistance can be formed even in ceramic products in which a decorative film is directly formed on the substrate surface.
  • the ceramic product 1 is a microwave oven-compatible ceramic product in which a plurality of noble metal regions 32 are interspersed in the amorphous regions 34 .
  • the combustion temperature TX of the crystal-forming organic compound is set to that of the Si organic compound. (T X ⁇ T Si ) .
  • the technique disclosed herein only needs to be able to form a decorative film in which crystalline particles are dispersed in an amorphous region, and the means for forming the decorative film is the decorative composition in the above-described embodiment. Not limited. For example, even when pre-formed crystalline particles are dispersed in a decorative composition, a decorative film in which crystalline particles are dispersed in an amorphous region can be formed.
  • the framework of the amorphous matrix of the amorphous regions can be formed in the presence of the crystalline particles, thus forming an amorphous matrix.
  • the decorative film 30 in which the crystalline particles 35 are dispersed in the crystalline region 34 can be properly formed.
  • the decorative composition in which such crystalline particles are dispersed has the advantage that the Si organic compound can be selected without considering the combustion temperature TSi , unlike the decorative composition according to the above-described embodiment. ing.
  • Test examples relating to the technology disclosed here will be described below, but the technology disclosed here is not intended to be limited to such test examples.
  • Example 2 shows the composition of the decorative composition in each example.
  • Each numerical value in Table 2 is based on the total number of moles of the noble metal element and the matrix-forming element contained in the decorative composition (in other words, the total number of moles of the metal element and the metalloid element) is 100 mol%. It is the content (mol%) of each element.
  • various raw materials were mixed in an ointment pot, and a stirrer manufactured by Thinky Co., Ltd. (product name: Rotation Revolution Mixer) was used at a rotation speed of 1800 rpm for 2 minutes. was mixed.
  • Al, Si, Bi, Ti, and Zr were selected as matrix-forming elements to be contained in the decorative composition.
  • Ti and Zr have a single bond strength of less than 339 kJ/mol when forming an oxide, they can form crystalline particles as elements for forming crystals.
  • Al and Si have a single bond strength of 339 kJ/mol or more when forming an oxide, and can form an amorphous matrix by themselves, and therefore are not elements for crystal formation.
  • the single bond strength of Al 2 O 3 is 377 kJ/mol
  • the single bond strength of SiO 2 is 443 kJ/mol.
  • each element in Table 2 mentioned above is added to the decorative composition in the following conditions.
  • Si two types of Si organic compounds (Si-1 and Si-2) having different combustion temperatures T Si were used.
  • Ti two kinds of Ti organic compounds (Ti-1 and Ti-2) having different combustion temperatures T Ti and titanium oxide (TiO 2 ) nanoparticles (Ti-3) were used.
  • Zr a Zr organic compound (Zr-1) and zirconium oxide (ZrO 2 ) nanoparticles (Zr-2) were used.
  • the combustion temperatures of these components are also listed below.
  • Au Au resinate (Au resin sulfide balsam)
  • Pt Pt resinate (Pt resin sulfide balsam)
  • Rh Rh resinate (Rh resin sulfide balsam)
  • Pd Pd resinate (Pd resin sulfide balsam)
  • Al Al resinate (Al resinate, combustion temperature T Al : 583.1°C)
  • Si-1 Si resinate (Si resinate, combustion temperature T Si : 680.8° C.)
  • Si-2 Si resinate (Si resinate, combustion temperature T Si : 378.5° C.)
  • Bi Bi resinate (Bi resinate, combustion temperature T Bi : 561.2°C)
  • Ti-1 Ti resinate (Ti resinate, combustion temperature T Ti : 512.9°C)
  • Ti-2 Ti complex (a complex having an alkoxide ligand and a diketone ligand, combustion temperature T Ti : 501.5° C.)
  • Ti-3 TiO 2 nanoparticles (average
  • thermogravimetry device TG-DTA/H manufactured by Rigaku Corporation.
  • the target metal organic compound is placed in an environment with an air flow rate of 300 ml / min, and the temperature is raised from room temperature (20 ° C.) to 1000 ° C. at a heating rate of 10 ° C. / min.
  • the temperature at which no weight loss occurred was considered the combustion temperature. In this measurement, it was determined that the weight did not decrease when the weight when the heating temperature was raised by 3° C. was within ⁇ 0.03% of the weight before the temperature was raised.
  • a white porcelain plate (length: 15 mm, width: 15 mm) having a glaze applied to the surface is prepared, and a decorative composition (any of Examples 1 to 22) is applied (coated) to the entire surface of one side of the white porcelain plate. bottom.
  • the film thickness of the decorative film after firing was within the range of 30 nm to 250 nm. rice field.
  • XRD X-ray diffraction measurement
  • the gloss value of the decorative portion of each example was measured using a spectrophotometer. Specifically, using a spectrophotometer (CM-700d) manufactured by Konica Minolta Sensing Co., Ltd., L* value, a* value, b* value and 8° gloss value in SCI and SCE modes. was measured. In this evaluation, a decorative portion having a gloss value of 500 or more was evaluated as having a suitable gloss.
  • CM-700d spectrophotometer manufactured by Konica Minolta Sensing Co., Ltd.
  • Table 3 shows the results of each evaluation test in Examples 1 to 22.
  • Table 3 the "combustion temperature T Si of the Si organic compound” and the “combustion temperature Tx of the crystal-forming organic compound” are also shown.
  • T Si of the Si organic compound the "combustion temperature Tx of the crystal-forming organic compound”
  • Tx of the crystal-forming organic compound the "combustion temperature Tx of the crystal-forming organic compound”
  • Example 2 the crystal-forming element (Zr and/or Ti) having a single bond strength of less than 339 kJ/mol when forming an oxide and an organic crystal-forming compound is added to the decorative composition.
  • Example 22 contained a crystal-forming organic compound, no crystalline particle formation was observed. From this, in order to properly form crystalline particles dispersed in the amorphous region, the combustion temperature TX of the organic compound for crystal formation should be lower than the combustion temperature TSi of the Si organic compound, and the crystals should be formed at the initial stage of firing. It has been found that there is a need to produce metal oxides for fine particles alone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)

Abstract

本発明により、アルカリ洗浄時の装飾膜の破損を抑制できるセラミックス製品が提供される。ここに開示されるセラミックス製品1は、セラミックス製の基材10の表面に装飾膜30が形成されている。そして、当該セラミックス製品の装飾膜30は、貴金属元素を主成分として含む貴金属領域32と、少なくともSiを含むマトリクス形成元素を主成分として含む非晶質領域34とを備えている。そして、ここに開示されるセラミックス製品1では、非晶質領域34に、マトリクス形成元素から選択される少なくとも一種の金属元素の結晶質酸化物を主成分として含む結晶質粒子35が分散している。かかる結晶質粒子35は、アルカリ成分が浸透し難いため、非晶質領域35へのアルカリ成分の侵入を抑制し、アルカリ洗浄時の装飾膜30の破損を抑制できる。

Description

セラミックス製品および装飾用組成物
 本発明は、セラミックス製品および装飾用組成物に関する。詳しくは、セラミックス製の基材の表面に装飾膜が形成されたセラミックス製品と、当該セラミックス製品の装飾膜を形成する装飾用組成物に関する。なお、本出願は、2021年8月30日に出願された日本国特許出願2021-140390号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 陶磁器、ガラス器、琺瑯器等のセラミックス製品の表面には、優美又は豪華な印象を与えるための装飾膜が形成されることがある。この種の装飾膜は、例えば、貴金属元素を含む貴金属領域と、当該貴金属領域を定着させるための非晶質領域とを備えている。かかる非晶質領域は、例えば、所定の金属元素又は半金属元素(マトリクス形成元素)の酸化物を骨格とした非晶質マトリクス(典型的にはガラスマトリクス)を有している。そして、かかる構成の装飾膜は、ペースト状の装飾用組成物を焼成することによって形成される。かかる装飾用組成物には、例えば、貴金属元素と有機物との化合物(以下「貴金属有機化合物」ともいう)と、マトリクス形成元素と有機物との化合物(以下「マトリクス形成金属有機化合物」ともいう)が含まれている。
 ところで、上記構成の装飾膜を有するセラミックス製品では、洗浄時の装飾膜の損傷(剥離や亀裂等)を抑制する技術が求められている。具体的には、装飾膜の非晶質領域を形成する非晶質マトリクスは、耐化学性に乏しいため、強アルカリ性洗剤を使用した高温環境下での洗浄(例えば、自動食器洗浄機による洗浄)などにおいて損傷するおそれがある。このようなアルカリ洗浄時の装飾膜の破損を抑制するために、従来から種々の技術が提案されている。例えば、金属有機化合物を含む装飾用組成物(耐アルカリ性装飾金被膜形成用金液)にインジウムの金属有機化合物を添加することによって、焼成後の装飾膜の耐アルカリ性を改善できることが特許文献1において報告されている。
日本国特許出願公開第平11-6072号
 しかしながら、近年では、アルカリ洗浄時の装飾膜の損傷をより好適に抑制できる技術の開発が求められている。例えば、近年のセラミックス製品では、コスト低下や電子レンジ対応などの観点から、貴金属元素の含有量を低減させた装飾膜が形成されることがある。この種の貴金属元素が少ない装飾膜は、耐アルカリ性が低い非晶質領域の露出量が増加するため、アルカリ洗浄時の剥離が生じやすくなる傾向がある。
 本発明は、上述の事情に鑑みてなされたものであり、アルカリ洗浄時の装飾膜の破損を抑制できるセラミックス製品を提供することを目的とする。
 上述の課題を解決するために、下記の構成のセラミックス製品が提供される。
 ここに開示されるセラミックス製品は、セラミックス製の基材の表面に装飾膜が形成されている。そして、当該セラミックス製品の装飾膜は、貴金属元素を主成分として含む貴金属領域と、少なくともSiを含むマトリクス形成元素を主成分として含む非晶質領域とを備えている。そして、ここに開示されるセラミックス製品では、非晶質領域に、マトリクス形成元素から選択される少なくとも一種の金属元素の結晶質酸化物を主成分として含む結晶質粒子が分散している。
 上記構成のセラミックス製品の装飾膜では、結晶質酸化物を主成分として含む結晶質粒子が非晶質領域に分散している。かかる結晶質粒子は、構造上、アルカリ成分が浸透し難いため、非晶質領域へのアルカリ成分の侵入を抑制できる。これによって、アルカリ洗浄時の装飾膜の破損を抑制することができる。
 ここに開示されるセラミックス製品の好適な一態様では、マトリクス形成元素は、Al、Ti、Zr、Bi、Sm、Y、La、Ce、Pr、Nd、Sm、Dy、Sn、Zn、Be、Mg、Ca、Sr、Ba、Li、Na、K、Rb、B、V、Fe、Cu、P、Sc、Pm、Eu、Gd、Tb、Ho、Er、Tm、Yb、Lu、Ni、In、Co、Crからなる群から選択される少なくとも一種を含む。これによって、耐化学性や定着性に優れた非晶質領域を有する装飾膜を形成できる。
 ここに開示されるセラミックス製品の好適な一態様では、結晶質粒子は、イオン電荷をイオン半径で除したイオンポテンシャルが2.5以上12以下である金属カチオンの結晶質酸化物を主成分として含む。イオンポテンシャルが2.5以上の金属カチオンの結晶質酸化物は、酸素原子との結合が強く、耐水性が高いという特徴を有している。一方、イオンポテンシャルが12以下の金属カチオンの結晶質酸化物は、アルカリとの反応性が低いため、高い耐アルカリ性を有している。この種の結晶質酸化物で結晶質粒子を構成することによって、耐アルカリ性と耐水性とが高いレベルで両立した装飾膜を得ることができる。なお、この種の結晶質酸化物の一例として、Zrおよび/またはTiを含む結晶質酸化物が挙げられる。
 ここに開示されるセラミックス製品の好適な一態様では、貴金属元素は、Pt、Au、Pd、Rh、Ir、Agからなる群から選択される少なくとも一種である。これらの貴金属元素は、美観に優れた装飾膜の形成に貢献できる。
 ここに開示されるセラミックス製品の好適な一態様では、装飾膜は、非晶質領域に複数の貴金属領域が点在することによって形成されている。かかる構成の装飾膜は、各々の貴金属領域が非晶質領域によって絶縁されているため、電子レンジ使用時のスパークによる損傷を防止できる。一方で、かかる構成の電子レンジ対応セラミックス製品では、耐アルカリ性に乏しい非晶質領域の露出量が多くなるため、アルカリ洗浄時の装飾膜の剥離が生じやすくなる傾向がある。しかし、ここに開示されるセラミックス製品では、結晶質粒子によって非晶質領域へのアルカリ成分の侵入を抑制できるため、この種の電子レンジ対応セラミックス製品であっても装飾膜の剥離を好適に防止できる。
 また、ここに開示される技術の他の側面として、上記構成のセラミックス製品の装飾膜を形成する装飾用組成物が提供される。かかる装飾用組成物は、貴金属元素と有機物との化合物である貴金属有機化合物と、マトリクス形成元素と有機物との化合物であるマトリクス形成金属有機化合物とを含有している。このマトリクス形成金属有機化合物は、少なくとも、Siと有機物との化合物であるSi有機化合物と、酸化物を形成した際の単結合強度が339kJ/mol未満である結晶形成用元素と有機物との化合物である結晶形成用有機化合物とを含んでいる。そして、ここに開示される装飾用組成物では、Si有機化合物の燃焼温度TSiと、結晶形成用有機化合物の燃焼温度Tとの関係が下記の式(1)を満たす。
   T<TSi     (1)
 ここに開示される装飾用組成物では、Si有機化合物の燃焼温度TSiよりも結晶形成用有機化合物の燃焼温度Tが低温である(T<TSi)。かかる装飾用組成物を焼成すると、結晶形成用有機化合物が優先的に分解・焼成される。そして、この焼成処理によって生じる結晶形成用元素の酸化物は、単結合強度が339kJ/mol未満であるため、単独で非晶質マトリクスの骨格を形成することができずに結晶質粒子となる。そして、その後に、Si有機化合物が分解・焼成されて非晶質領域の非晶質マトリクスの骨格が形成されるため、非晶質領域に結晶質粒子が分散した装飾膜を形成できる。
 ここに開示される装飾用組成物の好適な一態様では、マトリクス形成金属有機化合物は、Alと有機物との化合物であるAl有機化合物をさらに含む。かかる装飾用組成物を焼成すると、SiとAlを含む複合酸化物を非晶質マトリクスの骨格として含むアルミノケイ酸ガラスを含む非晶質領域が形成される。ここに開示される技術によると、かかるアルミノケイ酸ガラスを含む非晶質領域が形成された場合でも、アルカリ洗浄時の装飾膜の剥離を防止できる。なお、アルミノケイ酸ガラスを含む非晶質領域をより適切に形成するという観点から、貴金属元素とマトリクス形成元素の合計モル数を100mol%としたときのSiとAlの合計含有量は、5mol%以上60mol%以下が好ましい。さらに、SiとAlの合計モル数を100mol%としたときのSiの含有量は、40mol%以上99.5mol%以下が好ましい。
 ここに開示される装飾用組成物の好適な一態様では、貴金属元素とマトリクス形成元素の合計モル数を100mol%としたときの貴金属元素の含有量が25mol%以上85mol%以下である。これによって、発色と光沢とが高いレベルで両立した装飾膜を形成できる。
 ここに開示される装飾用組成物の好適な一態様では、マトリクス形成金属有機化合物は、Biと有機物との化合物であるBi有機化合物をさらに含む。かかる装飾用組成物を焼成すると、非晶質領域のマトリクス骨格の一部に酸化ビスマス(Bi)が含まれる。これによって、基材に対する装飾膜の定着性が向上するため、アルカリ洗浄時の装飾膜の破損(特に剥離)をより好適に防止できる。なお、Biを含む非晶質領域を適切に形成するという観点から、マトリクス形成元素の合計モル数を100mol%としたときのBiの含有量は、5mol%以上30mol%以下が好ましい。
 ここに開示される装飾用組成物の好適な一態様では、マトリクス形成元素の合計モル数を100mol%としたときの結晶形成用元素の含有量が3mol%以上60mol%以下である。これによって、非晶質領域と結晶質粒子とがバランス良く形成されるため、耐アルカリ性と光沢とが高いレベルで両立した装飾膜を得ることができる。
 ここに開示される装飾用組成物の好適な一態様では、結晶形成用元素は、ZrおよびTiからなる群から選択される少なくとも一種である。上述した通り、ZrやTiを含む結晶質粒子は、アルカリ液に溶解し難いという性質を有しているため、アルカリ洗浄時の装飾膜の剥離をさらに好適に抑制できる。
 また、ここに開示されるセラミックス製品の装飾膜は、上述とは異なる構成の装飾用組成物を用いて形成することもできる。かかる装飾用組成物は、貴金属元素と有機物との化合物である貴金属有機化合物と、マトリクス形成元素と有機物との化合物であるマトリクス形成金属有機化合物とを含有し、マトリクス形成金属有機化合物は、少なくとも、Siと有機物との化合物であるSi有機化合物を含んでいる。そして、この装飾用組成物には、マトリクス形成元素から選択される少なくとも一種の金属元素の結晶質酸化物を主成分として含む結晶質粒子が分散している。
 上記構成の装飾用組成物では、予め形成した結晶質粒子を装飾用組成物に分散させている。かかる装飾用組成物を焼成すると、結晶質粒子が存在している状態で、Si有機化合物の分解・焼成が進んで非晶質マトリクスの骨格が形成されるため、非晶質領域に結晶質粒子が分散した装飾膜を形成することができる。
図1は、一実施形態に係るセラミックス製品の断面構造を模式的に示す図である。 図2は、例4の装飾膜の断面TEM写真である。 図3は、例1の装飾膜のXRDチャートである。 図4は、例2の装飾膜のXRDチャートである。 図5は、例3の装飾膜のXRDチャートである。 図6は、例4の装飾膜のXRDチャートである。 図7は、例5の装飾膜のXRDチャートである。 図8は、例6の装飾膜のXRDチャートである。 図9は、例7の装飾膜のXRDチャートである。 図10は、例8の装飾膜のXRDチャートである。 図11は、例9の装飾膜のXRDチャートである。 図12は、例10の装飾膜のXRDチャートである。 図13は、例11の装飾膜のXRDチャートである。 図14は、例12の装飾膜のXRDチャートである。 図15は、例13の装飾膜のXRDチャートである。 図16は、例14の装飾膜のXRDチャートである。 図17は、例15の装飾膜のXRDチャートである。 図18は、例16の装飾膜のXRDチャートである。 図19は、例17の装飾膜のXRDチャートである。 図20は、例18の装飾膜のXRDチャートである。 図21は、例19の装飾膜のXRDチャートである。 図22は、例20の装飾膜のXRDチャートである。 図23は、例21の装飾膜のXRDチャートである。 図24は、例22の装飾膜のXRDチャートである。 図25は、セラミックス製品の切断面の二次電子像の輝度値を横軸とし、カウント数を縦軸と知ったヒストグラムの一例である。
 以下、ここで開示される技術の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄(例えば、装飾用組成物の詳細な調製手段やセラミックス基材の製造手順等)は、本明細書により教示されている技術内容と、当該分野における当業者の一般的な技術常識とに基づいて理解することができる。ここで開示される技術の内容は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、本明細書において範囲を示す「A~B」との表記は、A以上B以下を意味する。したがって、Aを上回り且つBを下回る場合を包含する。
<セラミックス製品>
 以下、ここに開示されるセラミックス製品の一実施形態について説明する。図1は、本実施形態に係るセラミックス製品の断面構造を模式的に示す図である。なお、図1における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。この図1に示すように、このセラミックス製品1は、基材10と、コート層20と、装飾膜30とを備えている。以下、各々について説明する。
1.基材
 基材10は、セラミックスを主成分とする成形体である。かかる基材10用のセラミックスとしては、シリカ、アルミナ、ジルコニア、セリア、イットリア、ボロニア、マグネシア、カルシアなどが挙げられる。なお、基材10の厚み、形状、色、硬さ等は、セラミックス製品1の用途に応じて適宜変更することができ、ここに開示される技術を限定するものではないため、詳細な説明を省略する。
2.コート層
 本実施形態に係るセラミックス製品1では、基材10の表面にコート層20が形成されている。コート層20は、ガラスを主成分とした層であり、基材10の保護や美観(特に光沢)の向上などを目的として形成される。このコート層20は、後述するマトリクス形成元素を含有する薬剤(釉薬)を基材10の表面に塗布した後に焼成することによって形成される。なお、コート層20の組成は、ここに開示される技術の効果を著しく阻害しない限り特に限定されず、セラミックス製の基材の保護層に使用され得る従来公知の成分を適宜選択することができる。一例として、コート層20は、Si、Al、Fe、Mg、Na、Zn、K、Ca、Snなどを実質的な構成元素とすることができる。そして、これらの構成元素は、非晶質酸化物の形態でマトリクスを構築し得る。すなわち、コート層20には、酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化鉄(Fe)、酸化マグネシウム(MgO)、酸化カリウム(NaO)、酸化亜鉛(ZnO)、酸化カリウム(KO)、酸化カルシウム(CaO)、酸化スズ(SnO)などを含む非晶質マトリクスが構築され得る。なお、コート層20における各元素の存在比率は、ここに開示される技術を限定するものではないため、詳細な説明を省略する。
3.装飾膜
 図1に示すように、本実施形態に係るセラミックス製品1は、装飾膜30を有している。かかる装飾膜30は、コート層20の表面に形成されている。図示は省略するが、装飾膜30は、通常、セラミックス製品1の美観を向上させるために、平面視において所望の模様(文字、絵を含む)を呈するように形成される。なお、装飾膜30の厚みは、30nm以上250nm以下が好適である。このような薄い装飾膜30が形成されたセラミックス製品1は、低コストで優れた美観を奏する一方で、装飾膜30が僅かに剥離しただけで美観が大きく損なわれるおそれがある。詳しくは後述するが、ここに開示される技術は、アルカリ洗浄時の装飾膜30の剥離を抑制できるため、上述のような薄い装飾膜30を有するセラミックス製品1に特に好適に適用できる。
 そして、図1に示すように、本実施形態における装飾膜30には、貴金属領域32と、非晶質領域34と、結晶質粒子35とが形成されている。
(1)貴金属領域
 貴金属領域32は、貴金属元素を主成分として含む領域である。この貴金属領域32は、主に装飾膜30の着色に寄与する。貴金属領域32に含まれる貴金属元素としては、白金(Pt)、金(Au)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、銀(Ag)、ルテニウム(Ru)、オスミウム(Os)などが挙げられる。なお、貴金属領域32は、貴金属元素以外の元素を含有していてもよい。例えば、貴金属領域32は、後述するマトリクス形成元素の一部や、炭素(C)や酸素(O)等の非金属元素を含有していてもよい。
 なお、本明細書における「貴金属元素を主成分として含む貴金属領域」とは、セラミックス製品の断面の画像解析で得られたヒストグラムのピークにおいて、最も輝度が高い領域である。かかる画像分析では、先ず、装飾膜の厚み方向に沿ってセラミックス製品を切断し、当該切断面を樹脂包埋処理で固定した後にイオンミリングで研磨する。次に、研磨面が上向きになるようにカーボンテープで試料台に固定した状態で、オスミウムプラズマコーター(日本レーザー電子株式会社製:OPC80N)を用いてコーティングし、切断面がオスミウムで被覆された測定用試料を作製する。なお、オスミウムのコーティングにおける放電電圧は1.2kVとし、真空度は6~8Paとし、コーティング時間は10秒とする。次に、電界放出型走査型電子顕微鏡(株式会社日立ハイテク製:SU8230)を用いて、装飾膜の切断面の二次電子像を取得する。なお、二次電子像の取得における加速電圧は2.0kVとし、エミッション電流は10±0.5μAとし、視野は5万倍~10万倍とする。次に、取得した二次電子像に対して、画像処理ソフトimage J(ver.1.53e)を用いて、ガウシアンフィルタでシグマ=2~5に設定するノイズ除去を行う。本明細書では、このノイズ除去後の画像における輝度値が125以上となった領域を「貴金属元素を主成分として含む貴金属領域」とみなしている。なお、上記ノイズ除去後の画像の輝度値を横軸、カウント数を縦軸にヒストグラム化すると、輝度の異なる4つのピークが確認される(図25参照)。そして、これらの4つのピークは、輝度の低い順から、包埋樹脂、基材、非晶質領域、貴金属領域の4つの領域に対応しており、最も高輝度の領域が貴金属領域と対応する。上記貴金属領域であるか否かを判定する閾値(図25では輝度が125以上)は、かかるヒストグラム解析に基づいて設定されたものである。
 また、装飾膜30の表面を対象としたFESEM-EDS分析において測定された貴金属元素の質量濃度Cは、11%以上が好ましく、11.5%以上が好ましく、12%以上がより好ましく、13%以上が特に好ましい。これによって、装飾膜30の耐化学性(特に耐酸性)を改善できる。一方、上記貴金属元素の質量濃度Cの上限値は、70%以下が好ましく、69.5%以下がより好ましく、69%以下がさらに好ましく、68%以下が特に好ましい。これによって、製造コストの低減や電子レンジ使用時の装飾膜30の破損防止などに貢献できる。また、過焼結によって貴金属粒子の粒径が大きくなりすぎて装飾膜に曇りが生じることも抑制できる。なお、本明細書における「質量濃度」は、装飾膜の表面に対してFESEM-EDS(電界放出型走査型電子顕微鏡-エネルギー分散型X線分析)を実施することによって取得される「金属元素および半金属元素の総質量」を100%としたときの任意の金属元素(又は半金属元素)の相対質量である。
 なお、図1に示すように、本実施形態における装飾膜30では、非晶質領域34に複数の貴金属領域32が点在している。これによって、各々の貴金属領域32が非晶質領域34で絶縁されるため、電子レンジ使用時のスパークによって装飾膜30が破損することを防止できる。一方で、この種の電子レンジ対応のセラミックス製品1では、耐アルカリ性に乏しい非晶質領域34の露出量が多くなるため、アルカリ洗浄時の装飾膜30の剥離が生じやすくなる傾向がある。しかしながら、本実施形態に係るセラミックス製品1では、後述の結晶質粒子35によって非晶質領域34へのアルカリ成分の侵入を抑制できるため、非晶質領域34の露出量が多くなった場合でも、アルカリ洗浄時の装飾膜30の剥離を適切に抑制することができる。
(2)非晶質領域
 非晶質領域34は、貴金属領域32の定着や保護に寄与する領域であり、所定の金属元素(マトリクス形成元素)の酸化物を骨格とした非晶質マトリクスを有している。なお、本明細書において「マトリクス形成元素」とは、酸化物の状態で非晶質マトリクスを構築し得る金属元素と半金属元素を包含する概念である。また、「非晶質マトリクス」とは、所定の金属元素および半金属元素の非晶質酸化物(アモルファス構造の酸化物)が骨格となった上で、種々の金属元素(又は半金属元素)が酸化物として、または陽イオンの形態で骨格内に存在している構造のことをいう。かかる非晶質マトリクスを有する材料(非晶質材料)の一例として、ガラスが挙げられる。なお、本明細書における「マトリクス形成元素を主成分として含む非晶質領域」とは、上述したセラミックス製品の切断面の画像解析において、2番目に高い輝度が確認される領域である。以下、マトリクス形成元素の具体例について説明する。
 まず、本実施形態におけるマトリクス形成元素は、少なくともケイ素(Si)を含む。Siは、酸化ケイ素(SiO)の状態で非晶質マトリクスの骨格を構成するため、非晶質領域34の必須構成元素となる。また、装飾膜30の表面を対象としたFESEM-EDS分析におけるSiの質量濃度CSiは、10%以上が好ましく、15%以上がより好ましく、17.5%以上がさらに好ましく、20%以上が特に好ましい。これによって、適切な骨格を有した強固な非晶質マトリクスが形成される。一方で、耐化学性や定着性等の観点から、非晶質領域34は、Si以外のマトリクス形成元素を一定以上含んでいることが好ましい。かかるSi以外のマトリクス形成元素が含まれる余地を考慮すると、Siの質量濃度CSiの上限は、60%以下が好ましく、59.5%以下がより好ましく、59%以下がさらに好ましく、58.5%以下が特に好ましい。
 また、Si以外のマトリクス形成元素としては、Al、Ti、Zr、Bi、Sm、Y、La、Ce、Pr、Nd、Sm、Dy、Sn、Zn、Be、Mg、Ca、Sr、Ba、Li、Na、K、Rb、B、V、Fe、Cu、P、Sc、Pm、Eu、Gd、Tb、Ho、Er、Tm、Yb、Lu、Ni、In、Co、Crなどが挙げられる。これらのSi以外のマトリクス形成元素は、種々の性質を考慮して非晶質領域34に適宜含まれていることが好ましい。
 例えば、Si以外のマトリクス形成元素の好適な一例として、アルミニウム(Al)が挙げられる。Alは、他のマトリクス形成元素(Si等)との複合酸化物を形成し、非晶質領域34の耐化学性(耐アルカリ性及び/又は耐酸性)を向上させるという機能を有している。なお、ここに開示される技術を限定するものではないが、非晶質領域34の耐化学性を好適に向上させるという観点から、装飾膜30の表面を対象としたFESEM-EDS分析におけるAlの質量濃度CAlは、1%以上が好ましく、1.5%以上がより好ましく、2%以上がさらに好ましく、2.5%以上が特に好ましい。一方、他のマトリクス形成元素を含有させる余地を考慮すると、Alの質量濃度CAlの上限は、15%以下が好ましく、14%以下がより好ましく、13.5%以下がさらに好ましく、13%以下が特に好ましい。
 また、Si以外のマトリクス形成元素の他の好適例として、ジルコニウム(Zr)、チタン(Ti)が挙げられる。これらも非晶質領域34の耐化学性の向上に貢献し得る。ここに開示される技術を限定する意図はないが、かかる効果が得られる理由は、以下のように推測される。まず、ZrやTiは、非晶質酸化物(ZrO、TiO)の状態で非晶質マトリクスの骨格(例えばSiO)と複合化し得る。そして、これらのZrOやTiOは、耐化学性が非常に高いため、化学薬品の曝露によって他の成分が非晶質マトリクスから溶出した後も残留して被膜を形成する。これによって、非晶質領域34の損傷が進行することを抑制できる。なお、ZrやTiによる耐化学性向上効果を適切に発揮させるという観点から、装飾膜30の表面を対象としたFESEM-EDS分析におけるZrの質量濃度CZrとTiの質量濃度CTiの合計は、0.01%以上が好ましく、0.02%以上がより好ましく、0.03%以上が特に好ましい。一方、他のマトリクス形成元素を含有させる余地を考慮すると、Zrの質量濃度CZrとTiの質量濃度CTiの合計は、5%以下が好ましく、4%以下がより好ましく、3%以下がさらに好ましく、2%以下が特に好ましい。
 また、マトリクス形成元素は、ビスマス(Bi)を含有していてもよい。Biは、Biイオンとして下地層へ拡散して非晶質マトリクスの骨格へ網目修飾イオンとして作用する。かかるBiは、非晶質領域34を軟化させる効果があるため、セラミックス製品1における装飾膜30の定着性を向上できる。特に、本実施形態のように、コート層20の表面に装飾膜30を形成している場合には、Biがコート層20側に拡散することによって、さらに高い定着性が得られる。すなわち、Biは、定着性の向上という作用によって、装飾膜30の損傷(剥離)の抑制に貢献できる。また、Biは、上述の通り、目修飾イオンとして拡散するため、後述する結晶質粒子35を形成しにくい傾向がある。なお、Biによる定着性向上効果を適切に発揮させるという観点から、装飾膜30の表面を対象としたFESEM-EDS分析におけるBiの質量濃度CBiは、0.01%以上が好ましく、0.015%以上がより好ましく、0.05%以上が特に好ましい。また、他のマトリクス形成元素を含有させる余地を考慮すると、Biの質量濃度CBiは、5%以下が好ましく、4.7%以下がより好ましく、4.5%以下がさらに好ましく、4%以下が特に好ましい。
 また、Si以外のマトリクス形成元素の他の好適例として、希土類元素が挙げられる。希土類元素は、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)のなかから特に制限なく選択できる。これらの希土類元素は、酸素親和性が高いため、非晶質マトリクスを引き締めて、アルカリ成分の侵入を抑制できる。また、上述したTiやZrと同様に、希土類元素の酸化物も他の成分が溶出した後に残留して被膜化するため、化学薬品の曝露による非晶質領域34の損傷の進行を防止できる。なお、希土類元素による耐化学性(特に耐アルカリ性)の向上効果を適切に発揮させるという観点から、希土類元素の質量濃度Cは、0.3%以上が好ましく、0.4%以上がより好ましく、0.5%以上が特に好ましい。一方、他のマトリクス形成元素を含有させる余地を考慮すると、希土類元素の質量濃度Cは、7.5%以下が好ましく、6.0%以下がより好ましく、5.5%以下が特に好ましい。
 マトリクス形成元素の他の好適例として、コバルト(Co)が挙げられる。このCoも、非晶質酸化物(CoO、Co、Coの少なくとも何れか)の状態で非晶質マトリクスの骨格(例えばSiO)と複合化し得る。そして、この酸化コバルトは、貴金属領域32と非晶質領域34との密着性を強化するという作用によって、装飾膜30の耐化学性の向上に貢献し得る。
 なお、本実施形態における非晶質領域34は、マトリクス形成元素以外の元素を含有していてもよい。例えば、非晶質領域34は、上述した貴金属元素や、炭素(C)や酸素(O)等の非金属元素を含有していてもよい。なお、貴金属領域32を形成する貴金属元素の中には、その一部が焼成処理において非晶質酸化物となって非晶質マトリクスの一部を構成する元素(Agなど)がある。しかし、本明細書では、説明の便宜上、上述の貴金属元素として挙げた元素はマトリクス形成元素とみなさないものとする。
(3)結晶質粒子
 図1に示すように、本実施形態に係るセラミックス製品1では、装飾膜30の非晶質領域34に結晶質粒子35が分散している。かかる結晶質粒子35は、上述したマトリクス形成元素から選択される少なくとも一種の金属元素の結晶質酸化物を主成分として含む。この結晶質粒子35は、結晶質酸化物によって形成されているため、非晶質領域34と比べてアルカリ成分が浸透しにくいという構造上の特徴を有している。このため、非晶質領域34に結晶質粒子35を分散させることによって、非晶質領域34へのアルカリ成分の侵入を防止し、アルカリ洗浄時の装飾膜30の破損を抑制することができる。なお、本明細書における「結晶質酸化物を主成分として含む結晶質粒子」とは、装飾膜に対するX線回折測定(XRD)において、結晶質酸化物を示すピークが確認された領域のことをいう。
 なお、上述した通り、結晶質粒子35は、アルカリ成分が浸透しにくいという構造上の特徴によって、アルカリ洗浄時の装飾膜30の破損を抑制する。このため、結晶質粒子35は、非晶質領域34に分散し得るマトリクス形成元素の結晶質酸化物で形成されていればよい。すなわち、結晶質粒子35の具体的な構成金属元素は、上述したマトリクス形成元素であれば特に限定されない。但し、装飾膜30の破損をさらに好適に抑制する観点から、結晶質粒子35は、イオンポテンシャルが2.5以上12以下である金属カチオンの結晶質酸化物を主成分として含有することが好ましい。かかるイオンポテンシャルは、イオン電荷をイオン半径で除したパラメータであり、カチオンのアニオンへの結合強さの指標である。イオンポテンシャルが2.5以上の金属カチオンの結晶質酸化物は、酸素原子との結合が強く、耐水性が高いという特徴を有している。一方、イオンポテンシャルが12以下の金属カチオンの結晶質酸化物は、アルカリとの反応性が低いため、高い耐アルカリ性を有している。すなわち、上述のイオンポテンシャルを有する結晶質酸化物で結晶質粒子35を構成することによって、耐アルカリ性と耐水性とが高いレベルで両立した装飾膜を得ることができる。なお、より高い耐水性を得るという観点から、上記イオンポテンシャルは、3以上がより好ましく、3.5以上がさらに好ましい。一方、より高い耐アルカリ性を得るという観点から、上記イオンポテンシャルは、10以下がより好ましく、8以下がさらに好ましい。なお、このようなイオンポテンシャルを有する結晶質酸化物の一例として、Zrおよび/またはTiを含む結晶質酸化物が挙げられる。上述した通り、種々のマトリクス形成元素の酸化物の中でも、ZrやTiの酸化物は、単独材料としての耐化学性が非常に高い。このため、ZrやTiの結晶性酸化物を非晶質領域34に分散させることによって、アルカリ洗浄時の装飾膜30の剥離を特に好適に抑制できる。なお、ZrやTiの結晶質酸化物は、ZrOやTiOだけでなく、ZrTiOやTiBiなどの複合酸化物であってもよい。これらの複合酸化物も好適な耐化学性(耐アルカリ性)を有していることが確認されている。
 なお、結晶質粒子35を形成するマトリクス形成元素は、非晶質領域34の非晶質マトリクスに含まれていてもよいし、含まれていなくてもよい。例えば、ZrOを含む結晶質粒子35が形成されている場合、非晶質領域34の非晶質マトリクスにもZrOが含まれていてもよいし、含まれていなくてもよい。かかる点は、ここに開示される技術によって生じる効果に大きく影響しない。また、本実施形態における装飾膜30の非晶質領域34には、主成分が異なる複数種類の結晶質粒子35が分散していてもよい。例えば、ZrOを含む結晶質粒子35と、ZrTiOを含む結晶質粒子35の2種類が非晶質領域34に分散している場合でも、装飾膜30の剥離を好適に抑制できることが確認されている。
 また、結晶質粒子35の形状も、ここに開示される技術を限定する要素ではない。例えば、結晶質粒子35は、各々が独立した一次粒子の状態で非晶質領域34に分散していてもよいし、複数の一次粒子の間でネックが形成された二次粒子の状態で非晶質領域34に分散していてもよい。なお、結晶質粒子35の結晶子径(一次粒子の粒子径)は、1nm以上が好ましく、2nm以上がより好ましく、2.5nm以上がさらに好ましい。このような充分な大きさの結晶質粒子35を非晶質領域34に分散させることによって、非晶質領域34へのアルカリ成分の侵入をより好適に抑制できる。一方で、結晶質粒子35が大きくなりすぎると、非晶質領域34内に侵入した光が結晶質粒子35によって散乱し、装飾膜30の発色に悪影響を与える可能性がある。かかる観点から、結晶質粒子35の結晶子径は、20nm以下が好ましく、15nm以下がより好ましく、10nm以下がさらに好ましい。なお、上記結晶質粒子35の結晶子径は、装飾膜30を対象としたXRD解析におけるピーク半値幅に基づいて算出されたものである。
<セラミックス製品の製造方法>
 次に、本実施形態に係るセラミックス製品1を製造する方法の一例について説明する。なお、ここに開示されるセラミックス製品は、以下の製造方法によって製造されたものに限定されない。
1.基材の準備
 本実施形態に係るセラミックス製品1を製造する際には、まず、所望の基材10を準備する。例えば、所定のセラミックス材料を混練した基材用材料を成形・焼成することによって基材10を作製できる。また、図1に示されるコート層20付きの基材10は、焼成後の基材10の表面に釉薬を塗布した後に再度焼成することによって作製できる。但し、本工程は、基材10を準備できれば特に限定されない。例えば、別途作製された基材10を購入して準備してもよい。
2.装飾膜の形成
 次に、本実施形態に係るセラミックス製品1の製造では、基材10上に装飾膜30を形成する。この装飾膜30の形成では、所定の成分を含有するペースト状の装飾用組成物(絵具)を用いて、基材10表面に所望の模様を描画した後に焼成処理を実施する。本工程における焼成処理では、焼成温度Tを700℃~1000℃の範囲に設定することが好ましい。これによって、装飾用組成物に含まれる各成分を充分に焼成して装飾膜30を形成できる。以下、本工程において用いられる装飾用組成物の成分について説明する。
(1)貴金属有機化合物
 本実施形態における装飾用組成物は、貴金属領域32の前駆物質として貴金属有機化合物を含有する。貴金属有機化合物は、貴金属元素と有機物との化合物である。かかる貴金属有機化合物を焼成すると、有機物が燃焼した後に貴金属が焼結して貴金属領域32が形成される。なお、貴金属有機化合物は、金属レジネート、錯体、重合体などの形態をとり得る。また、貴金属元素として使用され得る元素については、重複した説明となるため記載を省略する。一方、有機物は、ここに開示される技術の効果を著しく妨げない限りにおいて特に限定されず、金属有機化合物の生成に用いられ得る従来公知の樹脂材料を特に制限なく使用できる。かかる樹脂材料としては、オクチル酸(2-エチルヘキサン酸)、アビエチン酸、ナフテン酸、ステアリン酸、オレイン酸、リノレン酸、ネオデカン酸などの高炭素数(例えば炭素数8以上)のカルボン酸;スルホン酸;ロジン等に含まれる樹脂酸;テレピン油、ラベンダー油等の精油成分を含む樹脂硫化バルサム、アルキルメルカプチド(アルキルチオラート)、アリールメルカプチド(アリールチオラート)、メルカプトカルボン酸エステル、アルコキシド等が挙げられる。
 なお、焼成前の装飾用組成物における貴金属元素とマトリクス形成元素の合計モル数を100mol%とした場合、貴金属元素の含有量は、25mol%以上が好ましく、30mol%以上がより好ましく、35mol%以上がさらに好ましく、40mol%以上が特に好ましい。このように、一定以上の貴金属元素を含む装飾用組成物を焼成することによって充分な貴金属領域32が生成されるため、発色と耐科学性に優れた装飾膜30を形成できる。一方、貴金属元素の含有量の上限は、85mol%以下が好ましく、80mol%以下がより好ましく、75mol%以下がさらに好ましく、70mol%以下が特に好ましい。これによって、非晶質領域34の前駆物質となるマトリクス形成金属有機化合物の含有量を一定以上確保できるため、基材への定着性を充分に有した装飾膜30が形成されやすくなる。また、貴金属元素の含有量を低減させるにつれて、電子レンジ使用時にスパークが生じにくい装飾膜30を形成しやすくなる傾向もある。
(2)マトリクス形成金属有機化合物
 次に、本実施形態における装飾用組成物は、マトリクス形成金属有機化合物を含有する。マトリクス形成金属有機化合物は、上述したマトリクス形成元素と有機物との化合物である。かかるマトリクス形成金属有機化合物に使用される有機物は、ここに開示される技術の効果を著しく妨げない限りにおいて特に限定されず、上述した貴金属有機化合物に使用される有機物と同じものを使用できる。かかるマトリクス形成金属有機化合物を焼成すると、有機物が燃焼した後にマトリクス形成元素が酸化して非晶質領域34が形成される。
 ここで、本実施形態に係る装飾用組成物は、焼成後の非晶質領域34に結晶質粒子35が分散するように、マトリクス形成金属有機化合物が調製されている。
 具体的には、本実施形態におけるマトリクス形成金属有機化合物は、少なくとも、Si有機化合物と、結晶形成用有機化合物を含んでいる。Si有機化合物は、ケイ素(Si)と有機物との化合物である。かかるSi有機化合物を焼成すると、有機物が焼失すると共にSiが酸化されてSiOが形成される。そして、かかるSiOは、非晶質マトリクスの骨格を構築して非晶質領域34の主成分となる。一方、結晶形成用有機化合物は、結晶質粒子35の主成分となる結晶形成用元素と有機物との化合物である。本明細書における「結晶形成用元素」とは、酸化物を形成した際の単結合強度が339kJ/mol未満であるマトリクス形成元素のことをいう。この種の単結合強度が弱い金属酸化物は、共有結合性が低いため、単独では非晶質マトリクスの骨格を形成することができずに結晶質粒子となる。なお、本明細書における「単結合強度」は、K.H.Sun.J.Am.Ceram Soc.,30,277(1947)に開示された測定方法に従って測定される値である。具体的には、上記単結合強度は、単一金属酸化物(M、Mは金属元素)におけるMOn/Mのガス状原子への解離エネルギーの値を、金属元素の酸素配位数で割った値である。
 そして、本実施形態における装飾用組成物は、Si有機化合物の燃焼温度TSiと、結晶形成用有機化合物の燃焼温度Tとの関係が下記の式(1)を満たすように調製されている。かかる構成の装飾用組成物を焼成すると、燃焼温度が相対的に低い結晶形成用有機化合物が優先的に分解・焼成されて結晶形成用元素の酸化物が生成される。上述の通り、単結合強度が339kJ/mol未満である結晶形成用元素の酸化物は、単独で非晶質マトリクスの骨格を形成することができないため、結晶質粒子35の状態で生成される。そして、結晶質粒子35の形成後に、Si有機化合物が分解・焼成されて非晶質領域34の非晶質マトリクスの骨格が形成される。このように、結晶質粒子35が存在している状態で非晶質マトリクスを形成することによって、非晶質領域34に結晶質粒子35が分散した装飾膜30を形成することができる。
   T<TSi     (1)
 なお、上記式(1)に示すように、結晶形成用有機化合物は、その燃焼温度TがSi有機化合物の燃焼温度TSiよりも低温となるように構成されている。ここで、金属有機化合物の燃焼温度は、金属元素と結合する有機物の種類を変更することによって容易に調節できる。すなわち、結晶形成用有機化合物は、所定の結晶形成用元素を選択し、Si有機化合物の燃焼温度TSiよりも低温で燃焼するように有機物の種類を適宜選択することによって得ることができる。また、結晶形成用元素は、上述した通り、酸化物を形成した際の単結合強度が339kJ/mol未満である金属元素である。かかる結晶形成用元素としては、Ga、LiO、CaO、Sc、TiO、V、ZnO、Y、ZrO、In、SnO、TeO、La、NaO、KO、RbO、CsO、SrO、SrO、CdOなどが挙げられる。これらの結晶形成用元素の酸化物の単結合強度を以下の表1に示す。なお、上述した元素の中でも、Ti、Zrは、結晶形成用元素として特に好適である。上述した通り、TiやZrを含む結晶質粒子35は、アルカリ液に溶解し難いため、アルカリ洗浄時の装飾膜30の剥離をより好適に抑制できる。
Figure JPOXMLDOC01-appb-T000001
 なお、装飾用組成物に含まれる全てのマトリクス形成元素の合計モル数を100mol%とした場合の結晶形成用元素の含有量は、3mol%以上が好ましく、4mol%以上が好ましく、4.5mol%以上が好ましく、5mol%以上が好ましい。これによって、充分な量の結晶質粒子35が分散した装飾膜30を形成できる。一方、非晶質領域34を充分に形成するという観点から、マトリクス形成元素における結晶形成用元素の含有量は、60mol%以下が好ましく、55mol%以下がより好ましく、50mol%以下がさらに好ましく、40mol%以下が特に好ましい。
 また、各々の金属有機化合物の燃焼温度は、上述の式(1)を満たしていれば特に限定されない。但し、有機物の残留による品質低下を抑制するという観点から、各々の金属有機化合物の燃焼温度は、上述した焼成温度Tよりも低温であることが好ましい。例えば、焼成温度Tを800℃に設定した場合、Si有機化合物の燃焼温度TSiは、600℃~750℃が好ましく、625℃~725℃以下がより好ましく、650℃以上~700℃以下がさらに好ましい。このとき、結晶形成用有機化合物の燃焼温度Tは、上述の式(1)を満たして結晶質粒子35を適切に形成するという観点から、450℃~560℃が好ましく、460℃~550℃がより好ましく、470℃~540℃がさらに好ましい。
 なお、上述したマトリクス形成金属有機化合物のうち、Si有機化合物よりも高温で燃焼するものは、SiOと共に非晶質領域34の非晶質マトリクスを形成する。すなわち、Si以外の元素を含む非晶質マトリクスを形成する場合には、Si有機化合物よりも燃焼温度が高いマトリクス形成金属有機化合物を装飾用組成物に添加することが好ましい。このようなマトリクス形成金属有機化合物としては、例えば、Alと有機物との化合物であるAl有機化合物が挙げられる。Si有機化合物とAl有機化合物を同時に焼成すると、SiとAlの複合酸化物を非晶質マトリクスとして有するアルミノケイ酸ガラスを含む非晶質領域34が形成される。ここに開示される技術によると、かかるアルミノケイ酸ガラスを含む非晶質領域34が形成された場合でも、当該非晶質領域34に結晶質粒子35を分散させることによって、アルカリ洗浄時の装飾膜の剥離を防止することができる。なお、アルミノケイ酸ガラスを含む非晶質領域を適切に形成するという観点から、装飾用組成物におけるSiとAlの合計含有量は、5mol%以上が好ましく、10mol%以上がより好ましく、15mol%以上が特に好ましい。一方、他の成分が添加される余地を考慮すると、SiとAlの合計含有量の上限は、60mol%以下が好ましく、55mol%以下がより好ましく、50mol%以下がさらに好ましい。また、アルミノケイ酸ガラスをより適切に形成するという観点から、SiとAlの合計モル数を100mol%とした場合のSiの含有量は、40mol%以上が好ましく、50mol%以上がより好ましく、60mol%以上がさらに好ましく、70mol%以上が特に好ましい。一方で、上記SiとAlの合計モル数に対するSiの含有量が99.5mol%以下(すなわち、Alの含有量が0.5mol%以上)であれば、充分なAlが存在しているため、アルミノケイ酸ガラスを含む非晶質領域を形成できる。
 また、上述した通り、マトリクス形成元素の他の好適例としてビスマス(Bi)が挙げられる。当該BiもBi有機化合物の形態で装飾用組成物に添加され得る。なお、Biによる定着性向上効果が適切に発揮された装飾膜30を適切に形成するという観点から、マトリクス形成元素の合計モル数を100mol%としたときのBiの含有量は、5mol%以上が好ましく、6mol%以上がより好ましく、7mol%以上がさらに好ましく、8mol%以上が特に好ましい。一方、他の成分が添加される余地を考慮すると、マトリクス形成元素におけるBiの含有量の上限は、30mol%以下が好ましく、25mol%以下がより好ましく、20mol%以下がさらに好ましい。
(3)他の成分
 また、装飾用組成物は、ここで開示される技術の効果を著しく損なわない限りにおいて、他の付加的成分を含有していてもよい。かかる付加的成分の一例として、金属有機化合物を分散または溶解する有機溶媒が挙げられる。有機溶媒を添加して装飾用組成物の粘度を調節することによって、所望の模様(文字、絵を含む)を呈する装飾膜30の形成が容易になる。なお、有機溶媒は、ここに開示される技術の効果を大きく阻害しない限りにおいて、従来公知のレジネートペーストや水金液に使用されている有機溶媒を特に制限なく使用できる。本実施形態において使用され得る有機溶媒の一例として、1,4-ジオキサン、1,8-シネオール、2-ピロリドン、2-フェニルエタノール、N-メチル-2-ピロリドン、p-トルアルデヒド、安息香酸ベンジル、安息香酸ブチル、オイゲノール、カプロラクトン、ゲラニオール、サリチル酸メチル、シクロヘキサノン、シクロヘキサノール、シクロペンチルメチルエーテル、シトロネラール、ジ(2-クロロエチル)エーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジヒドロカルボン、ジブロモメタン、ジメチルスルホキシド、ジメチルホルムアミド、ニトロベンゼン、ピロリドン、プロピレングリコールモノフェニルエーテル、プレゴン、ベンジルアセテート、ベンジルアルコール、ベンズアルデヒド、テレピン油、ラベンダー油等が挙げられる。なお、これらの有機溶剤は、1種または2種以上を用いてもよい。また、金属有機化合物は、例えば、ペースト状に調製された状態で市販されているため、各種のペーストをそのまま混合して装飾用組成物を調製することもできる。
 また、装飾用組成物は、ここで開示される技術の効果を著しく損なわない限りにおいて、有機溶媒以外の付加的成分を含有していてもよい。かかる付加的成分としては、例えば、有機バインダ、保護材、界面活性剤、増粘剤、pH調整剤、防腐剤、消泡剤、可塑剤、安定剤、酸化防止剤などが例示される。
<他の実施形態>
 以上、ここに開示される技術の一実施形態について説明した。なお、上述の実施形態は、ここに開示される技術が適用される一例を示したものであり、ここに開示される技術を限定するものではない。
 例えば、図1に示すように、上述の実施形態に係るセラミックス製品1は、基材10と装飾膜30との間に、コート層20を備えている。しかし、ここに開示されるセラミックス製品において、コート層20は必須の構成ではない。すなわち、装飾膜は、セラミックス製の基材の表面に直接形成されていてもよい。ここに開示される技術によると、基材表面に装飾膜が直接形成されたセラミックス製品においても、充分な耐化学性を有する装飾膜を形成できる。
 また、図1に示すように、上述の実施形態に係るセラミックス製品1は、複数の貴金属領域32が非晶質領域34に点在した電子レンジ対応セラミックス製品である。しかし、ここに開示される技術によると、電子レンジ対応以外のセラミックス製品においても、アルカリ洗浄時の装飾膜の剥離を好適に抑制することができる。
 また、上述の実施形態に係る装飾用組成物では、非晶質領域34に結晶質粒子35が分散した装飾膜30を形成するために、結晶形成用有機化合物の燃焼温度TをSi有機化合物の燃焼温度TSiよりも低温に調節している(T<TSi)。しかし、ここに開示される技術は、非晶質領域に結晶質粒子が分散した装飾膜を形成することができればよく、当該装飾膜を形成する手段は、上述した実施形態における装飾用組成物に限定されない。例えば、予め形成した結晶質粒子を装飾用組成物に分散させた場合でも、非晶質領域に結晶質粒子が分散した装飾膜を形成できる。具体的には、予め形成した結晶質粒子を装飾用組成物に分散させることによって、結晶質粒子が存在している状態で非晶質領域の非晶質マトリクスの骨格を形成できるため、非晶質領域34に結晶質粒子35が分散した装飾膜30を適切に形成できる。このような結晶質粒子を分散させた装飾用組成物は、上述の実施形態に係る装飾用組成物と異なり、燃焼温度TSiを考慮することなく、Si有機化合物を選択できるという利点を有している。加えて、本実施形態によると、単結合強度が高く、非晶質マトリクスを形成しやすい元素(例えばSi、Alなど)を含む結晶質粒子35を形成することもできる。
[試験例]
 以下、ここで開示される技術に関する試験例を説明するが、ここに開示される技術をかかる試験例に限定することを意図したものではない。
<装飾用組成物の調製>
 本試験では、組成が異なる22種類の装飾用組成物を調製した(例1~例22)。各例における装飾用組成物の組成を表2に示す。なお、表2中の各数値は、装飾用組成物に含まれる貴金属元素とマトリクス形成元素との合計モル数(換言すると、金属元素と半金属元素の合計モル数)を100mol%としたときの各元素の含有量(mol%)である。また、各例の装飾用組成物の調製では、軟膏壺に各種原料を調合し、株式会社シンキー製の撹拌機(製品名:自転公転あわとり練太郎)を用いて、回転数1800rpmで2分間の混合を行った。
Figure JPOXMLDOC01-appb-T000002
 なお、上記表2に示す通り、本試験では、装飾用組成物に含有させるマトリクス形成元素として、Al、Si、Bi、Ti、Zrを選択している。上述した通り、TiとZrは、酸化物を形成した際の単結合強度が339kJ/mol未満であるため、結晶形成用元素として結晶質粒子し得る。一方で、Al、Siは、酸化物を形成した際の単結合強度が339kJ/mol以上であり、単独で非晶質マトリクスを形成し得るため、結晶形成用元素ではない。具体的には、Alの単結合強度は377kJ/molであり、SiOの単結合強度は443kJ/molである。
 また、上述した表2における各元素は以下の状態で装飾用組成物に添加している。ここで、Siについては、燃焼温度TSiが異なる2種類のSi有機化合物(Si-1およびSi-2)を使用した。また、Tiについては、燃焼温度TTiが異なる2種類のTi有機化合物(Ti-1およびTi-2)と、酸化チタン(TiO)のナノ粒子(Ti-3)を使用した。そして、Zrについては、Zr有機化合物(Zr-1)と、酸化ジルコニウム(ZrO)のナノ粒子(Zr-2)を使用した。以下、これらの成分の燃焼温度も併記する。
 Au  :Auレジネート(Au樹脂硫化バルサム)
 Pt  :Ptレジネート(Pt樹脂硫化バルサム)
 Rh  :Rhレジネート(Rh樹脂硫化バルサム)
 Pd  :Pdレジネート(Pd樹脂硫化バルサム)
 Al  :Alレジネート(Al樹脂酸塩、燃焼温度TAl:583.1℃)
 Si-1:Siレジネート(Si樹脂酸塩、燃焼温度TSi:680.8℃)
 Si-2:Siレジネート(Si樹脂酸塩、燃焼温度TSi:378.5℃)
 Bi  :Biレジネート(Bi樹脂酸塩、燃焼温度TBi:561.2℃)
 Ti-1:Tiレジネート(Ti樹脂酸塩、燃焼温度TTi:512.9℃)
 Ti-2:Ti錯体(アルコキシド配位子およびジケトン系配位子を有する錯体、燃焼温度TTi:501.5℃)
 Ti-3:TiOナノ粒子(平均粒子径:15.8nm)
 Zr-1:Zrレジネート(Zr樹脂酸塩、燃焼温度TZr:532.9℃)
 Zr-2:ZrOナノ粒子(平均粒子径:6.8nm)
 なお、上述の燃焼温度は、何れも、株式会社リガク社製の熱重量測定装置(TG-DTA/H)を用いたTG-DTA測定に基づいたものである。具体的には、対象となる金属有機化合物を空気流量が300ml/分の環境に配置し、10℃/分の昇温速度で室温(20℃)から1000℃まで昇温させ、有機物の燃焼による重量減少が生じなくなった温度を燃焼温度とみなした。なお、本測定では、加熱温度を3℃昇温させた際の重量が、昇温前の重量の±0.03%以内の範囲となった時点で、重量減少が生じなくなったと判断した。
<セラミックス製品の作製>
 釉薬が表面に付与された白磁平板(縦:15mm、横:15mm)を準備し、この白磁平板の片側の表面全体に装飾用組成物(例1~例22の何れか)を付与(塗布)した。この装飾用組成物の付与には、ミカサ株式会社製のスピンコーター:Opticoat MS-A-150を使用し、スピン条件を5000rpm、10秒間に設定した。そして、装飾用組成物が付与された白磁平板を60℃のホットプレートで1時間乾燥させた後、800℃で10分間焼成した。これにより、表面に装飾膜が形成された23種類のセラミックス製品を試験片として作製した。なお、FE―SEM(株式会社日立ハイテクノロジーズ製、SU-8200)を用いて焼成後の装飾膜の断面を観察した結果、焼成後の装飾膜の膜厚は、30nm~250nmの範囲内であった。
2.評価試験
<焼成後の装飾膜の分析>
 本評価では、各例のセラミックス製品に対してTEM観察を行い、装飾膜の構造を調べた。かかるTEM観察の結果の一例として、例4の装飾膜のTEM写真(800000倍)を図2に示す。
 また、本試験では、各例の装飾膜に対してXRD(X線回折測定)を実施し、装飾膜の組成について調べた。例1~例22の装飾膜のXRDチャートを図3~図24に示す。なお、本試験におけるX線回折測定の条件は以下の通りである。但し、下記のXRDの測定条件は、ここに開示される技術を限定するものではない。XRDの測定条件は、粒子状成分の組成を適切に検出できる条件に適宜変更することができる。
 [XRDの条件]
  測定機器:全自動多目的X線回折装置 SmartLab(株式会社リガク社製)
  スキャン速度:<5.00°/min
  ステップ幅 :0.01°
  スキャン範囲:2θ(5°~80°)
  入射角   :ω=0.2°~1.5°
<耐アルカリ性評価>
 本試験では、100℃まで加熱して沸騰させた0.5wt%のNaCO水溶液(3L)に各例の試験片を30分間浸漬した。そして、浸漬後の試験片を水洗し、ジルコンペーパーを10往復擦り付ける擦過試験を実施し、装飾膜に損傷が生じているか否かを観察した。そして、かかる擦過試験において30%以上の装飾膜が残存した場合を好適な耐アルカリ性を有している(○)と評価した。
<光沢評価>
 分光測色計を用いて、各例の装飾部のグロス値を測定した。具体的には、コニカミノルタセンシング株式会社製の分光測色計(CM―700d)を使用し、SCI、SCEモードにおけるL*値、a*値、b*値および8°光沢度を表すグロス値を測定した。そして、本評価では、グロス値が500以上である装飾部を好適な光沢を有していると評価した。
3.評価結果
 例1~例22における各評価試験の結果を表3に示す。また、表3では、「Si有機化合物の燃焼温度TSi」と、「結晶形成用有機化合物の燃焼温度T」も併記する。なお、例1、例4、例13の装飾用組成物には、結晶形成用有機化合物の代わりに、生成済みの結晶質酸化物のナノ粒子が添加されているため、上記「T」の欄に「(ナノ粒子)」と記載した。また、例20および例21では、結晶形成用元素、および生成済みの結晶質粒子の何れも含まれていないため、上記「T」の欄を空欄としている。
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、例1~例19では、好適な耐アルカリ性を有する装飾膜が形成されていた。そして、これらの例1~例19の装飾膜では、結晶質粒子が分散していることが確認された。具体的には、図2に示すように、例4の装飾膜では、非晶質領域Mに、貴金属領域Nとは異なる非常に微小な粒子Pが分散していることが確認された。これは、例1~例3および例5~例19でも同様であった。そして、図3~図24に示すXRDチャートでは、貴金属領域を示す非常に高強度なピークの他に、結晶質粒子を示す微小なピークが確認された。このことから、例1~例19の装飾膜には、ZrO、ZrTiO、TiBiなどの結晶質酸化物が存在していることが確認された。以上の点から、非晶質領域に結晶質粒子を分散させることによって、アルカリ洗浄時の装飾膜の剥離を好適に抑制できることが分かった。また、表2に示すように、例1~例19における装飾膜は、優れた光沢を有していることも確認された。
 また、例2、3、5~12、14~18、22では、何れにおいても、酸化物を形成した際の単結合強度が339kJ/mol未満となる結晶形成用元素(Zrおよび/又はTi)と有機物との化合物である結晶形成用有機化合物が装飾用組成物に添加されている。しかしながら、例22は、結晶形成用有機化合物を含んでいるにもかかわらず、結晶質粒子の形成が確認されなかった。このことから、非晶質領域に分散した結晶質粒子を適切に形成するには、結晶形成用有機化合物の燃焼温度TをSi有機化合物の燃焼温度TSiよりも低温にし、焼成初期に結晶質粒子用の金属酸化物を単独で生成する必要があることが分かった。一方で、例1、4、13に示すように、微小な結晶質粒子を分散させた装飾用組成物を使用した場合でも、非晶質領域に結晶質粒子が分散した装飾膜を形成できることが分かった。これらの点から、結晶質粒子が存在している状態で非晶質領域の非晶質マトリクスの骨格が形成されるような条件を整えることによって、非晶質領域に結晶質粒子が分散した装飾膜を形成できることが分かった。
 以上、ここで開示される技術の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
 1  セラミックス製品
 10 基材
 20 コート層
 30 装飾膜
 32 貴金属領域
 34 非晶質領域
 35 結晶質粒子

Claims (16)

  1.  セラミックス製の基材の表面に装飾膜が形成されたセラミックス製品であって、
     前記装飾膜は、
     貴金属元素を主成分として含む貴金属領域と、
     少なくともSiを含むマトリクス形成元素の非晶質酸化物を主成分として含む非晶質領域と
    を備えており、
     前記非晶質領域に、前記マトリクス形成元素から選択される少なくとも一種の金属元素の結晶質酸化物を主成分として含む結晶質粒子が分散している、セラミックス製品。
  2.  前記マトリクス形成元素は、Al、Ti、Zr、Bi、Sm、Y、La、Ce、Pr、Nd、Sm、Dy、Sn、Zn、Be、Mg、Ca、Sr、Ba、Li、Na、K、Rb、B、V、Fe、Cu、P、Sc、Pm、Eu、Gd、Tb、Ho、Er、Tm、Yb、Lu、Ni、In、Co、Crからなる群から選択される少なくとも一種を含む、請求項1に記載のセラミックス製品。
  3.  前記結晶質粒子は、イオン電荷をイオン半径で除したイオンポテンシャルが2.5以上12以下である金属カチオンの結晶質酸化物を主成分として含む、請求項1または2に記載のセラミックス製品。
  4.  前記結晶質粒子は、Zrおよび/またはTiを含む結晶質酸化物を主成分として含む、請求項3に記載のセラミックス製品。
  5.  前記貴金属元素は、Pt、Au、Pd、Rh、Ir、Agからなる群から選択される少なくとも一種である、請求項1~4のいずれか一項に記載のセラミックス製品。
  6.  前記装飾膜は、前記非晶質領域に複数の前記貴金属領域が点在することによって形成されている、請求項1~5のいずれか一項に記載のセラミックス製品。
  7.  請求項1~6のいずれか一項に記載のセラミックス製品の装飾膜を形成する装飾用組成物であって、
     前記貴金属元素と有機物との化合物である貴金属有機化合物と、
     前記マトリクス形成元素と有機物との化合物であるマトリクス形成金属有機化合物と
    を含有し、
     前記マトリクス形成金属有機化合物は、少なくとも、
     Siと有機物との化合物であるSi有機化合物と、
     酸化物を形成した際の単結合強度が339kJ/mol未満である結晶形成用元素と有機物との化合物である結晶形成用有機化合物とを含んでおり、
     前記Si有機化合物の燃焼温度TSiと、前記結晶形成用有機化合物の燃焼温度Tとの関係が下記の式(1)を満たす、装飾用組成物。
       T<TSi     (1)
  8.  前記マトリクス形成金属有機化合物は、Alと有機物との化合物であるAl有機化合物をさらに含む、請求項7に記載の装飾用組成物。
  9.  前記貴金属元素と前記マトリクス形成元素の合計モル数を100mol%としたときの前記Siと前記Alの合計含有量が5mol%以上60mol%以下である、請求項8に記載の装飾用組成物。
  10.  前記Siと前記Alの合計モル数を100mol%としたときの前記Siの含有量が40mol%以上99.5mol%以下である、請求項8または9に記載の装飾用組成物。
  11.  前記貴金属元素と前記マトリクス形成元素の合計モル数を100mol%としたときの前記貴金属元素の含有量が25mol%以上85mol%以下である、請求項7~10のいずれか一項に記載の装飾用組成物。
  12.  前記マトリクス形成金属有機化合物は、Biと有機物との化合物であるBi有機化合物をさらに含む、請求項7~11のいずれか一項に記載の装飾用組成物。
  13.  前記マトリクス形成元素の合計モル数を100mol%としたときの前記Biの含有量が5mol%以上30mol%以下である、請求項12に記載の装飾用組成物。
  14.  前記マトリクス形成元素の合計モル数を100mol%としたときの前記結晶形成用元素の含有量が3mol%以上60mol%以下である、請求項7~13のいずれか一項に記載の装飾用組成物。
  15.  前記結晶形成用元素は、ZrおよびTiからなる群から選択される少なくとも一種である、請求項7~14のいずれか一項に記載の装飾用組成物。
  16.  請求項1~6のいずれか一項に記載のセラミックス製品の装飾膜を形成する装飾用組成物であって、
     前記貴金属元素と有機物との化合物である貴金属有機化合物と、
     前記マトリクス形成元素と有機物との化合物であるマトリクス形成金属有機化合物と
    を含有し、
     前記マトリクス形成金属有機化合物は、少なくとも、Siと有機物との化合物であるSi有機化合物を含んでおり、かつ、
     金属元素の結晶質酸化物を主成分として含む結晶質粒子が分散している、装飾用組成物。
PCT/JP2022/028995 2021-08-30 2022-07-27 セラミックス製品および装飾用組成物 WO2023032531A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023545162A JPWO2023032531A1 (ja) 2021-08-30 2022-07-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-140390 2021-08-30
JP2021140390 2021-08-30

Publications (1)

Publication Number Publication Date
WO2023032531A1 true WO2023032531A1 (ja) 2023-03-09

Family

ID=85412174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028995 WO2023032531A1 (ja) 2021-08-30 2022-07-27 セラミックス製品および装飾用組成物

Country Status (3)

Country Link
JP (1) JPWO2023032531A1 (ja)
TW (1) TW202319368A (ja)
WO (1) WO2023032531A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556079A (en) * 1978-10-13 1980-04-24 Terutsune Momose Rare metal painting transfer paper for ceramics or the like
JPS58135156A (ja) * 1982-02-05 1983-08-11 エンゲルハ−ド・コ−ポレ−シヨン ガラスおよび陶器基質用の非光沢性貴金属組成物
JPS6415338A (en) * 1987-07-09 1989-01-19 Nippon Kineki Kk Liquid or pasty noble metal composition for decorative firing having microwave oven resistance
JPH0898876A (ja) * 1994-09-29 1996-04-16 Toto Ltd 抗菌性を有する多機能材及びその製造方法
JPH09235169A (ja) * 1995-12-27 1997-09-09 Noritake Co Ltd 電子レンジで使用可能な貴金属による表面装飾器物及びその製造方法
JPH116072A (ja) * 1997-06-18 1999-01-12 N E Chemcat Corp 耐アルカリ性装飾金被膜形成用金液
JP2004515346A (ja) * 2000-12-04 2004-05-27 ファーロ・コーポレーション セラミック品の装飾方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5556079A (en) * 1978-10-13 1980-04-24 Terutsune Momose Rare metal painting transfer paper for ceramics or the like
JPS58135156A (ja) * 1982-02-05 1983-08-11 エンゲルハ−ド・コ−ポレ−シヨン ガラスおよび陶器基質用の非光沢性貴金属組成物
JPS6415338A (en) * 1987-07-09 1989-01-19 Nippon Kineki Kk Liquid or pasty noble metal composition for decorative firing having microwave oven resistance
JPH0898876A (ja) * 1994-09-29 1996-04-16 Toto Ltd 抗菌性を有する多機能材及びその製造方法
JPH09235169A (ja) * 1995-12-27 1997-09-09 Noritake Co Ltd 電子レンジで使用可能な貴金属による表面装飾器物及びその製造方法
JPH116072A (ja) * 1997-06-18 1999-01-12 N E Chemcat Corp 耐アルカリ性装飾金被膜形成用金液
JP2004515346A (ja) * 2000-12-04 2004-05-27 ファーロ・コーポレーション セラミック品の装飾方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Glass handbook. 1st edition. ", 30 September 1975, ASAKURA PUBLISHING CO., LTD., JP, article SAMAO SAKKA, TERUO SAKAINO, KATSUAKI TAKAHASHI: "Passage; Glass handbook", pages: 774, XP009544041 *

Also Published As

Publication number Publication date
JPWO2023032531A1 (ja) 2023-03-09
TW202319368A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
TWI428473B (zh) 白金材料用被覆材料及被覆有該被覆材料之白金材料以及玻璃製造裝置
JP2505828B2 (ja) 無鉛ガラスフリツト組成物
CN110337470B (zh) 包含金属颗粒的涂料组合物
CN100357228C (zh) 一种具有自洁釉面的卫生洁具
JP6635610B2 (ja) 上絵加飾材料、陶磁器製品、陶磁器製品の製造方法
JP2009001458A (ja) グラスライニング用上ぐすり組成物
JP2008273808A (ja) 加飾セラミック体、その製造方法及びインクジェット用インク
JP5792943B2 (ja) ガラスフリット、該ガラスフリットを用いた顔料入りガラス成形品及び顔料入りガラス層を有する陶磁器質製品
JP6585502B2 (ja) テンパー処理可能な塗装ガラス
WO2023032531A1 (ja) セラミックス製品および装飾用組成物
WO2005063645A1 (de) Substrate mit einer transparenten, spiegelnden metalloxid-teilbeschichtung, deren herstellung und anwendung
JPH07109119A (ja) 金属酸化物膜形成用組成物及びその製造法並びに金属酸化物膜の形成法
JPH1180596A (ja) マスキング剤及びパターン膜の形成法
WO2023032532A1 (ja) セラミックス製品
US6773498B1 (en) Bright precious metals preparation for baking in at high temperatures and uses thereof for producing decorative bright precious metal elements
JP2011121809A (ja) マスキングインク用ガラス組成物、マスキングインク、フィルタ基板とその製造方法、及びディスプレイ装置
JP2023073046A (ja) ガラス形成剤およびその利用
CN1042698A (zh) 低温陶瓷釉上颜料及其制备方法
WO2022209817A1 (ja) 装飾用組成物およびその利用
JP2023073047A (ja) ガラス形成剤およびその利用
JP7216167B1 (ja) 装飾用組成物
JP2023096853A (ja) セラミックス製品および装飾用組成物
JP5719518B2 (ja) 低温焼成可能な高耐酸性コーティング用ガラス組成物、および同ガラス組成物ペースト
JP2023108414A (ja) 装飾用組成物およびその利用
CZ266094A3 (en) Pigment material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545162

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE