WO2023032483A1 - イオン液体のカチオン成分の回収方法およびイオン液体の再生方法 - Google Patents

イオン液体のカチオン成分の回収方法およびイオン液体の再生方法 Download PDF

Info

Publication number
WO2023032483A1
WO2023032483A1 PCT/JP2022/027789 JP2022027789W WO2023032483A1 WO 2023032483 A1 WO2023032483 A1 WO 2023032483A1 JP 2022027789 W JP2022027789 W JP 2022027789W WO 2023032483 A1 WO2023032483 A1 WO 2023032483A1
Authority
WO
WIPO (PCT)
Prior art keywords
ionic liquid
liquid
neutralized salt
type ionic
recovery method
Prior art date
Application number
PCT/JP2022/027789
Other languages
English (en)
French (fr)
Inventor
現 増田
Original Assignee
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社 filed Critical 日清紡ホールディングス株式会社
Priority to CN202280059015.8A priority Critical patent/CN117940428A/zh
Publication of WO2023032483A1 publication Critical patent/WO2023032483A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/35Preparation of halogenated hydrocarbons by reactions not affecting the number of carbon or of halogen atoms in the reaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B16/00Regeneration of cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/20Pulping cellulose-containing materials with organic solvents or in solvent environment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for recovering a cationic component of an ionic liquid and a method for regenerating the ionic liquid.
  • Cellulose which is expected to be used as a biofuel, is difficult to dissolve or extract using water or organic solvents, and the existing technology of processing with strong acid under high temperature and high pressure requires a large amount of energy. There is a problem of needing Therefore, in recent years, attention has been focused on techniques for dissolving, isolating/purifying, decomposing, and modifying reactions of cellulose using ionic liquids capable of dissolving cellulose under mild conditions.
  • Non-Patent Document 1 a neutralized salt-type ionic liquid solution of cellulose is put into water to recover cellulose, and then the neutralized salt-type ionic liquid aqueous solution is heated to distill off the water, and the residual discloses a technique for recovering a neutralized salt-type ionic liquid.
  • the cation component is partially decomposed when the water is distilled off by heating, which lowers the recovery rate.
  • the amount of ionic liquid is small and the energy efficiency is very poor.
  • the present invention has been made in view of such circumstances, and a method for recovering the cation component of an ionic liquid that can recover the cation component of an expensive ionic liquid by a method that is cheaper and simpler than the conventional method, and the recovered To provide a method for regenerating an ionic liquid capable of regenerating an ionic liquid simply by adding an anion component to a cation component.
  • the present inventors have found that the following method using a two-layer separation liquid prepared by mixing an aqueous solution of a neutralized salt-type ionic liquid and a water-insoluble organic solvent , found that the above object can be achieved, and completed the present invention.
  • the present invention 1. a first step of mixing an aqueous solution of a neutralized salt-type ionic liquid and an organic solvent immiscible with water to prepare a two-layer separated liquid of an aqueous layer and an organic layer;
  • the two-layer separation liquid and a water-soluble strong alkali are mixed in an amount such that the mass ratio of the strong alkali to water in the aqueous layer is 20% or more, and the neutralized salt-type ions present in the aqueous layer are a second step of regenerating liquid cations into neutral substances and migrating from the aqueous layer to the organic layer;
  • a method for recovering a cation component of a neutralized salt-type ionic liquid comprising a third step of recovering an organic layer containing the neutral substance by a liquid separation operation; 2.
  • a fourth step of mixing the organic layer recovered in the third step with a new aqueous solution of the neutralized salt-type ionic liquid After the fourth step, the recovery method of 1 comprising a fifth step of repeating the second step and the third step again to recover an organic layer having an increased content of neutral substances; 3.
  • the recovery method of 1 or 2 wherein in the second step, the two-layer separation liquid and the strong alkali are mixed in an amount such that the mass ratio of the strong alkali to the water is 25% or more; 4.
  • the recovery method of 4 wherein the reaction liquid temperature is 10° C.
  • a method for isolating a neutral substance comprising distilling the organic layer containing the neutral substance recovered by the recovery method of any one of 1 to 13 to remove the organic solvent and isolating the neutral substance; 16.
  • Neutralized salt type by mixing the neutral substance obtained by the isolation method of 15 and an acid that gives an anion component constituting the original neutralized salt type ionic liquid to regenerate the neutralized salt type ionic liquid.
  • a method for regenerating an ionic liquid is provided.
  • the cation component of an expensive ionic liquid can be collect
  • This method is environmentally friendly because it does not consume a lot of energy.
  • the ionic liquid can be regenerated simply by adding an anion component to the recovered cation component.
  • a method for recovering a cation component of a neutralized salt-type ionic liquid comprises mixing an aqueous solution of a neutralized salt-type ionic liquid with an organic solvent immiscible with water to separate an aqueous layer and an organic layer.
  • water-immiscible organic solvent of “water-immiscible organic solvent” means that two layers are separated when water and an organic solvent are mixed at a volume ratio of 1:1.
  • a strong alkali means one having a degree of ionization close to 1 in an aqueous solution and a base dissociation constant of about pK b ⁇ 0 (K b >1).
  • a neutralized salt-type ionic liquid is an ionic liquid composed of a salt obtained by a neutralization reaction between an acid and a base (ionic liquids - the front line of development and the future -, pp. 19-21, CMC Publishing Co., Ltd. (2003 )) and has a cation with a proton added.
  • the neutralized salt-type ionic liquid to be recovered in the present invention may be an ionic liquid composed of a salt obtained by a neutralization reaction between an acid and a base, and there are no particular restrictions on the cations and anions that constitute the ionic liquid.
  • An ionic liquid having cellulose dissolving ability is preferred, and one having a cation represented by the following formula (1) or (2) is more preferred.
  • the anion is preferably an anion of an organic acid.
  • organic acid include carboxylic acids such as formic acid and acetic acid; sulfonic acids such as methanesulfonic acid and p-toluenesulfonic acid; carboxylic acids are preferable; more preferred.
  • an aqueous solution of a neutralized salt-type ionic liquid (hereinafter sometimes simply referred to as "aqueous solution”) and an organic solvent immiscible with water (hereinafter sometimes simply referred to as “organic solvent”) are mixed. is mixed to prepare a two-layer separated liquid of an aqueous layer and an organic layer.
  • the method of mixing the aqueous solution of the neutralized salt-type ionic liquid and the organic solvent is not particularly limited. A technique of adding an organic solvent is preferred. In addition, you may separate into two layers after stirring at the time of mixing and/or after mixing.
  • the temperature during mixing may be the boiling point or lower of water, preferably 30° C. or lower, more preferably 20° C. or lower, and even more preferably 10° C. or lower.
  • the amount of the organic solvent to be used is not particularly limited as long as a two-layer separated liquid can be prepared. More preferably, 2:1 to 1:2 is even more preferred.
  • the organic solvent used in the first step has at least the ability to dissolve the neutral substances generated in the second step, and furthermore does not have the ability to dissolve the neutralized salt-type ionic liquid regenerated from the recovered neutral substances. is preferred. Specific examples thereof include aliphatic hydrocarbon solvents (pentane, n-hexane, n-octane, n-decane, decalin etc.), aromatic hydrocarbon solvents (benzene, nitrobenzene, toluene, o-xylene, m-xylene, p-xylene, mesitylene, etc.), halogenated aromatic hydrocarbon solvents (chlorobenzene, bromobenzene, o-dichlorobenzene , m-dichlorobenzene, p-dichlorobenzene, etc.), ether solvents (diethyl ether, diisopropyl ether, t-butyl methyl ether, tetrahydro
  • aliphatic hydrocarbon solvents and aromatic hydrocarbon solvents are preferable, and toluene is more preferable.
  • the aqueous solution of the neutralized salt-type ionic liquid used in the first step it is possible to use the coagulation liquid after the cellulose regeneration from the neutralized salt-type ionic liquid solution of cellulose.
  • the ionic liquid can be recovered, regenerated and reused.
  • the two-layer separated liquid obtained in the first step is mixed with a water-soluble strong alkali to regenerate the cations of the neutralized salt-type ionic liquid present in the water layer into neutral substances and It is a process of moving from a layer to an organic layer.
  • the water-soluble strong alkali used in the second step includes alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, and cesium hydroxide; Hydroxides of tetraalkylammonium such as tetraethylammonium can be used, but sodium hydroxide and potassium hydroxide are preferred, and sodium hydroxide is more preferred, in consideration of cost.
  • the method of mixing the two-layer separated liquid and the strong alkali is not particularly limited, and the strong alkali may be added to the two-layer separated liquid, or the aqueous solution may be added to the strong alkali.
  • a method of adding a strong alkali to the is preferred.
  • the strong alkali may be used as it is in a solid (pellet) form or as an aqueous solution.
  • the temperature of the reaction solution during mixing is preferably 20°C or lower, more preferably 15°C or lower, and even more preferably 10°C or lower, in consideration of suppressing the formation of decomposition products and improving the recovery rate of the target product. In order to maintain this temperature range, external cooling may be provided using an ice bath, coolant, or the like.
  • the amount of strong alkali used is preferably 20% or more by mass relative to the water of the aqueous layer constituting the two-layer separation liquid, from the viewpoint of suppressing the decomposition of neutral substances and further increasing the recovery rate, and 25 to 25%. 50% is more preferred.
  • the third step is a step of recovering the organic layer containing neutral substances after the second step by a liquid separation operation.
  • the liquid separation method is not particularly limited, and a known method may be used.
  • the liquid separation is preferably carried out as soon as possible after the second step, and in particular, the recovery of the organic layer should be started within one hour from the end of the mixing of the two-layer separation liquid and the water-soluble strong alkali in the second step. is more preferred, and starting within 30 minutes is even more preferred.
  • an organic solvent may be added to the aqueous layer after liquid separation, and the liquid separation/extraction operation may be repeated multiple times.
  • the neutralized salt-type ionic liquid is regenerated by mixing the recovered organic layer with an acid that gives an anion component constituting the original neutralized salt-type ionic liquid, and then removing the organic solvent. can do.
  • the acid may be added to the organic layer, or the organic layer may be added to the acid, but it is preferable to add the acid to the organic layer, and the temperature during mixing is preferably 30°C or less, and 20°C. The following is more preferable, and 10° C. or less is even more preferable. In order to maintain this temperature range, it may be cooled from the outside using an ice bath, refrigerant, or the like.
  • the organic solvent is removed by distillation to temporarily isolate a neutral substance, and this neutral substance is combined with an acid that gives an anion component constituting the original neutralized salt-type ionic liquid.
  • the neutralized salt-type ionic liquid can also be regenerated by mixing.
  • the acid may be added to the neutral substance, or the neutral substance may be added to the acid.
  • the recovery method of the present invention includes a fourth step of mixing the organic layer recovered in the third step with a new aqueous solution of the neutralized salt-type ionic liquid, and after the fourth step, the above-described second After increasing the content of the neutral substance in the organic layer by repeating the steps and the third step, a fifth step of recovering this may be provided.
  • the aqueous solution may be added to the organic layer or the organic layer may be added to the aqueous solution, but it is preferable to add the aqueous solution to the collected organic layer.
  • an organic solvent may be added at the time of mixing, if necessary.
  • the temperature during mixing is preferably 40° C. or lower, more preferably 30° C. or lower, and even more preferably 25° C. or lower.
  • the method of recovering the cationic component of the ionic liquid of the present invention is a cheap and simple method that uses an organic solvent and a strong alkali, and is a method that does not consume a large amount of energy.
  • the ionic liquid can be regenerated by a simple method of adding an anion component to the recovered cation component.
  • the two-layer separated liquid after the second step was placed in a separating funnel, and after confirming the two-layer separation, the liquid was quickly separated to recover the organic layer (third step).
  • Recovery was started immediately after mixing the two-layer separated liquid and sodium hydroxide and stirring for 20 minutes.
  • Toluene was distilled off from the recovered organic layer under reduced pressure to recover DBU (recovery amount: 1.48 g, recovery rate: 99%).
  • DBU hydrolyzate N-(3-aminopropyl)caprolactam the same shall apply hereinafter
  • Example 1-2 Add 100 mL of ion-exchanged water to 2.15 g of the neutralized salt-type ionic liquid DBUH ⁇ AcO, stir, and dissolve completely. Add 100 mL of toluene to the aqueous solution of the neutralized salt-type ionic liquid to prepare a two-layer separated liquid. (first step). 10.05 g of sodium hydroxide (pellets) was added to the prepared two-layer separated liquid at room temperature, and the mixture was stirred for 20 minutes after the pellets were added (second step). Note that sodium hydroxide was completely dissolved in the aqueous layer within 10 minutes after the addition. At this time, the temperature of the reaction solution had risen to 50°C or higher.
  • the two-layer separated liquid after the second step was placed in a separating funnel, and the liquid was quickly separated after confirming the two-layer separation, and the organic layer was recovered (third step). Recovery was started immediately after mixing the two-layer separated liquid and sodium hydroxide and stirring for 20 minutes. Toluene was distilled off from the recovered organic layer under reduced pressure to recover DBU (recovery amount: 0.81 g, recovery rate: 53%). As a result of 1 H-NMR measurement, this DBU was found to contain several percent of decomposition products.
  • DBU can be efficiently recovered by adding toluene in advance to form a two-layer system and by increasing the concentration of strong alkali. I know you can do it.
  • sodium hydroxide when sodium hydroxide is added at a low temperature, the decomposition of DBU is further suppressed and DBU can be almost quantitatively recovered.
  • the two-layer separated liquid after the second step was placed in a separating funnel, and the liquid was quickly separated after confirming the two-layer separation, and the organic layer was recovered (third step). Recovery was started immediately after mixing the two-layer separation liquid and sodium hydroxide and stirring for 20 minutes. When 1.16 g of acetic acid, which is equivalent to the recycled DBU, was added to the collected organic layer, it became cloudy instantly, and transparent droplets adhered to the wall of the container. It could be confirmed. Hexane was removed from the two-layer separated liquid using an evaporator and then a vacuum pump, and DBUH ⁇ AcO was recovered (recovery amount: 3.83 g, recovery rate: 93%).
  • Example 2-2 Add 100 mL of ion-exchanged water to 2.00 g of the neutralized salt-type ionic liquid DBUH ⁇ AcO and stir to completely dissolve the neutralized salt-type ionic liquid.
  • first step To the prepared two-layer separated liquid, 30.06 g of potassium hydroxide (pellets) was added under ice-cooling (reaction liquid temperature of 10° C. or lower), and the mixture was stirred for 10 minutes after adding the pellets (second step). Note that potassium hydroxide was completely dissolved in the water layer within 5 minutes after the addition.
  • the two-layer separated liquid after the second step was placed in a separating funnel, and the liquid was quickly separated after confirming the two-layer separation, and the organic layer was recovered (third step).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Extraction Or Liquid Replacement (AREA)

Abstract

中和塩型イオン液体の水溶液と、水と非相溶の有機溶媒とを混合して水層および有機層の2層分離液体を調製する第1工程と、前記2層分離液体と水溶性の強アルカリとを強アルカリが前記水層中の水に対して質量比20%以上となる量で混合し、前記水層中に存在する前記中和塩型イオン液体のカチオンを中性物質に再生させるとともに前記水層から前記有機層へと移動させる第2工程と、分液操作により前記中性物質を含む有機層を回収する第3工程とを備えることを特徴とする中和塩型イオン液体のカチオン成分の回収方法によれば、従来法に比べて安価かつ簡便な方法で高価なイオン液体のカチオン成分を回収できる。

Description

イオン液体のカチオン成分の回収方法およびイオン液体の再生方法
 本発明は、イオン液体のカチオン成分の回収方法およびイオン液体の再生方法に関する。
 バイオ燃料として期待されるセルロースは、水や有機溶剤を用いて溶解したり、抽出したりすることは困難であり、また、強酸とともに高温・高圧下で処理する既存の技術は、多大なエネルギーを必要とするという問題がある。
 そこで、近年、温和な条件下でセルロースを溶解できるイオン液体を用いてセルロースの溶解、単離・精製、分解、修飾反応を行うなどの技術が注目されている。
 一方で、イオン液体は高価な物質であるため、セルロース溶解等に使用した後のイオン液体を回収する技術の開発も重要である。
 この点、非特許文献1には、セルロースの中和塩型イオン液体溶液を水中に投入してセルロースを回収した後の中和塩型イオン液体水溶液を加熱して水を留去し、残留分として中和塩型イオン液体を回収する手法が開示されている。
 この手法では、加熱による水の留去時にカチオン成分の一部分解が生じ、回収率が低下するという問題があるうえに、大量の水の留去に多大なエネルギーを消費する割には、回収できるイオン液体量が少なくエネルギー効率が非常に悪いという問題もある。
RCS Advance, 2015, Vol. 5, page 69728
 本発明は、このような事情に鑑みてなされたものであり、従来法に比べて安価かつ簡便な方法で高価なイオン液体のカチオン成分を回収できるイオン液体のカチオン成分の回収方法、および回収したカチオン成分にアニオン成分を加えるだけでイオン液体に再生できるイオン液体の再生方法を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意検討を重ねた結果、中和塩型イオン液体の水溶液と、水不溶性の有機溶媒とを混合して調製した2層分離液体を用いる下記手法により、上記目的を達成し得ることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 中和塩型イオン液体の水溶液と、水と非相溶の有機溶媒とを混合して水層および有機層の2層分離液体を調製する第1工程と、
 前記2層分離液体と水溶性の強アルカリとを強アルカリが前記水層中の水に対して質量比20%以上となる量で混合し、前記水層中に存在する前記中和塩型イオン液体のカチオンを中性物質に再生させるとともに前記水層から前記有機層へと移動させる第2工程と、
 分液操作により前記中性物質を含む有機層を回収する第3工程とを備えることを特徴とする中和塩型イオン液体のカチオン成分の回収方法、
2. 前記第3工程で回収した有機層と、新たな中和塩型イオン液体の水溶液とを混合する第4工程を備え、
 この第4工程後に、前記第2工程および第3工程を再度繰り返し、前記中性物質の含有量を増大させた有機層を回収する第5工程を備える1の回収方法、
3. 前記第2工程において、前記2層分離液体と前記強アルカリとを、強アルカリが前記水に対して質量比25%以上となる量で混合する1または2の回収方法、
4. 前記第2工程において、前記2層分離液体と強アルカリとの混合時の反応液温度が、20℃以下である1~3のいずれかの回収方法、
5. 前記反応液温度が、10℃以下である4の回収方法、
6. 前記第3工程において、前記有機層の回収を前記第2工程の混合終了時から1時間以内に開始する1~5のいずれかの回収方法、
7. 前記第3工程において、前記有機層の回収を前記第2工程の混合終了時から30分以内に開始する6の回収方法、
8. 前記強アルカリが、水酸化ナトリウムまたは水酸化カリウムである1~7のいずれかの回収方法、
9. 前記中和塩型イオン液体のカチオンが、下記式(1)または(2)で示される1~8のいずれかの回収方法、
Figure JPOXMLDOC01-appb-C000002
10. 前記中和塩型イオン液体のアニオンが、有機酸のアニオンである1~9のいずれかの回収方法、
11. 前記有機酸が、酢酸である10の回収方法、
12. 前記中和塩型イオン液体が、セルロース溶解能を有する1~11のいずれかの回収方法、
13. 前記第1工程で用いる中和塩型イオン液体の水溶液が、セルロースの中和塩型イオン液体溶液からセルロース再生後の凝固液である12の回収方法、
14. 1~13のいずれかの回収方法で回収された、前記中性物質を含む有機層と、もとの中和塩型イオン液体を構成するアニオン成分を与える酸とを混合した後に有機溶媒を除去し、中和塩型イオン液体を再生させる中和塩型イオン液体の再生方法、
15. 1~13のいずれかの回収方法で回収された、前記中性物質を含む有機層を蒸留して有機溶媒を除去し、前記中性物質を単離する中性物質の単離方法、
16. 15の単離方法で得られた前記中性物質と、もとの中和塩型イオン液体を構成するアニオン成分を与える酸とを混合して中和塩型イオン液体を再生させる中和塩型イオン液体の再生方法
を提供する。
 本発明によれば、従来法に比べて安価かつ簡便な方法で高価なイオン液体のカチオン成分を回収できる。この方法は、多大なエネルギーを消費しないため環境にやさしい方法である。また、回収したカチオン成分にアニオン成分を加えるだけでイオン液体を再生できる。
 本発明の回収方法を、セルロース紡糸後のイオン液体回収に用いることで、イオン液体のリサイクルによるコストダウンが可能である。
 以下、本発明についてさらに詳しく説明する。
 本発明に係る中和塩型イオン液体のカチオン成分の回収方法は、中和塩型イオン液体の水溶液と、水と非相溶の有機溶媒とを混合して水層および有機層の2層分離液体を調製する第1工程と、第1工程で得られた2層分離液体と水溶性の強アルカリとを混合し、水層中に存在する中和塩型イオン液体のカチオンを中性物質に再生させるとともに水層から有機層へと移動させる第2工程と、分液操作により中性物質を含む有機層を回収する第3工程とを備えるものである。
 なお、本発明において「水と非相溶の有機溶媒」の「水と非相溶」とは、水と有機溶媒を容積比1:1で混合した際に2層分離するものを意味し、強アルカリとは、水溶液中において電離度が1に近く、塩基解離定数がpKb<0(Kb>1)程度のものを意味する。
〔中和塩型イオン液体〕
 中和塩型イオン液体とは、酸-塩基の中和反応により得られる塩からなるイオン液体(イオン性液体-開発の最前線と未来-、19~21頁、(株)シーエムシー出版(2003)参照)であり、プロトンが付加してなるカチオンを有するものをいう。
 本発明で回収対象となる中和塩型イオン液体は、酸-塩基の中和反応により得られる塩からなるイオン液体であればよく、イオン液体を構成するカチオンおよびアニオンに特に制限はないが、セルロース溶解能を有するイオン液体が好ましく、下記式(1)または(2)で示されるカチオンを有するものがより好ましい。
Figure JPOXMLDOC01-appb-C000003
 アニオンとしては、有機酸のアニオンが好ましく、有機酸としては、蟻酸、酢酸等のカルボン酸;メタンスルホン酸、p-トルエンスルホン酸等のスルホン酸などが挙げられるが、カルボン酸が好ましく、酢酸がより好ましい。
〔第1工程〕
 第1工程は、中和塩型イオン液体の水溶液(以下、単に「水溶液」という場合もある。)と、水と非相溶の有機溶媒(以下、単に「有機溶媒」という場合もある。)とを混合して水層および有機層の2層分離液体を調製する工程である。
 第1工程において、中和塩型イオン液体の水溶液と、有機溶媒とを混合する手法に特に制限はなく、水溶液に有機溶媒を加えても、有機溶媒に水溶液を加えてもよいが、水溶液に有機溶媒を加える手法が好ましい。なお、混合時および/または混合後に撹拌してから2層分離させてもよい。
 混合時の温度は、水の沸点以下であればよいが、30℃以下が好ましく、20℃以下がより好ましく、10℃以下がより一層好ましい。
 有機溶媒の使用量としては、2層分離液体を調製できる限り特に限定されるものではないが、水溶液に対し、体積比で10:1~1:10が好ましく、5:1~1:5がより好ましく、2:1~1:2がより一層好ましい。
 第1工程で用いられる有機溶媒は、第2工程で生じる中性物質の溶解能を少なくとも有し、さらには、回収した中性物質から再生した中和塩型イオン液体の溶解能を有しないものが好適である。
 その具体例としては、中和塩型イオン液体(中性物質)の種類によるため一概には規定できないが、脂肪族炭化水素系溶媒(ペンタン、n-ヘキサン、n-オクタン、n-デカン、デカリン等)、芳香族炭化水素系溶媒(ベンゼン、ニトロベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、メシチレン等)、ハロゲン化芳香族炭化水素系溶媒(クロロベンゼン、ブロモベンゼン、o-ジクロロベンゼン、m-ジクロロベンゼン、p-ジクロロベンゼン等)、エーテル系溶媒(ジエチルエーテル、ジイソプロピルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、1,2-ジエトキシエタン等)、エステル系溶媒(酢酸エチル、酢酸ブチル等)などが挙げられ、これらの溶媒は単独で用いても、2種以上組み合わせて用いてもよい。
 これらの中でも、上述した式(1)または式(2)で表されるカチオンを有する中和塩型イオン液体の場合、脂肪族炭化水素系溶媒、芳香族炭化水素溶媒が好ましく、トルエンがより好ましい。
 また、第1工程で用いる中和塩型イオン液体の水溶液としては、セルロースの中和塩型イオン液体溶液からセルロース再生後の凝固液を用いることが可能であり、これにより、セルロース再生に用いたイオン液体の回収、再生および再利用が可能となる。
〔第2工程〕
 第2工程は、第1工程で得られた2層分離液体と水溶性の強アルカリとを混合し、水層中に存在する中和塩型イオン液体のカチオンを中性物質に再生させるとともに水層から有機層へと移動させる工程である。
 第2工程で使用する水溶性の強アルカリとしては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム等のアルカリ金属の水酸化物;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等のテトラアルキルアンモニウムの水酸化物などが挙げられるが、コスト面を考慮すると、水酸化ナトリウム、水酸化カリウムが好ましく、水酸化ナトリウムがより好ましい。
 2層分離液体と、強アルカリとを混合する手法にも特に制限はなく、2層分離液体に強アルカリを加えても、強アルカリに水溶液を加えてもよいが、発熱を伴うことから、水溶液に強アルカリを加える手法が好ましい。この場合、強アルカリは、固体(ペレット)状のものをそのまま用いても、水溶液として用いてもよい。また、混合時および/または混合後に撹拌してもよい。
 混合の際の反応液温度は、分解物の生成を抑制して目的物の回収率を向上させることを考慮すると、20℃以下が好ましく、15℃以下がより好ましく、10℃以下がより一層好ましく、この温度範囲を保つため、氷浴、冷媒等を用いて外部から冷却してもよい。
 強アルカリの使用量は、中性物質の分解を抑制して回収率をより高めるという点から、2層分離液体を構成する水層の水に対し、質量比で20%以上が好ましく、25~50%がより好ましい。
〔第3工程〕
 第3工程は、第2工程後の中性物質を含む有機層を分液操作により回収する工程である。
 分液の手法は、特に制限はなく、公知の手法により行えばよい。
 分液は第2工程後なるべく速やかに実施することが好ましく、特に、有機層の回収を第2工程の2層分離液体と水溶性の強アルカリとの混合終了時から1時間以内に開始することがより好ましく、30分以内に開始することがより一層好ましい。
 また、分液後の水層に有機溶媒を加えて分液・抽出操作を複数回繰り返してもよい。
 第3工程後、回収された有機層と、もとの中和塩型イオン液体を構成するアニオン成分を与える酸とを混合した後に有機溶媒を除去することで、中和塩型イオン液体を再生することができる。この場合も、有機層に酸を添加しても、酸に有機層を添加してもよいが、有機層に酸を添加することが好ましく、混合時の温度は30℃以下が好ましく、20℃以下がより好ましく、10℃以下がより一層好ましく、この温度範囲を保つため、氷浴、冷媒等を用いて外部から冷却してもよい。
 また、回収された有機層から、蒸留により有機溶媒を除去して中性物質を一旦単離し、この中性物質と、もとの中和塩型イオン液体を構成するアニオン成分を与える酸とを混合することでも、中和塩型イオン液体を再生することができる。この場合も、中性物質に酸を添加しても、酸に中性物質を添加してもよい。
〔第4および第5工程〕
 また、本発明の回収方法では、第3工程で回収した有機層と、新たな中和塩型イオン液体の水溶液とを混合する第4工程を備えるとともに、この第4工程後に、上述した第2工程および第3工程を再度繰り返して有機層中の中性物質の含有量を増大させた後、これを回収する第5工程を備えていてもよい。
 第4工程における混合は、有機層に水溶液を加えても、水溶液に有機層を加えてもよいが、回収した有機層に水溶液を加えることが好ましい。また、混合時に必要に応じて有機溶媒を加えてもよい。混合時の温度は、40℃以下が好ましく、30℃以下がより好ましく、25℃以下がより一層好ましい。
 以上説明したとおり、本発明のイオン液体のカチオン成分の回収方法は、有機溶媒と強アルカリとを用いる安価かつ簡便な方法であるうえ、多大なエネルギーを消費しない方法である。また、回収したカチオン成分にアニオン成分を加えるという簡便な手法でイオン液体を再生できる。
 以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
[1]DBU(中性物質)の回収
[実施例1-1]
 下記式で示される中和塩型イオン液体DBUH・AcO2.00gに、イオン交換水100mLを加えて撹拌し、完全に溶解させて調製した中和塩型イオン液体の水溶液に、トルエン100mLを加えて2層分離液体を調製した(第1工程)。
 調製した2層分離液体に、氷冷下(反応液温度10℃以下)で水酸化ナトリウム(ペレット)30.00gを加え、ペレット投入から20分間撹拌した(第2工程)。なお、水酸化ナトリウムは投入後10分以内に水層に完全溶解していた。
 第2工程後の2層分離液体を分液ロートに入れ、2層分離確認後、速やかに分液し、有機層を回収した(第3工程)。なお、回収は2層分離液体と水酸化ナトリウムとを混合し、20分撹拌後すぐに開始した。
 回収した有機層から減圧下でトルエンを留去し、DBUを回収した(回収量1.48g、回収率99%)。なお、このDBUは、1H-NMR測定の結果、分解物(DBUの加水分解物 N-(3-アミノプロピル)カプロラクタム、以下同じ。)の含有はほとんどなく、痕跡量以下であることを確認した。
Figure JPOXMLDOC01-appb-C000004
(式中、Acはアセチル基を表す。)
[実施例1-2]
 中和塩型イオン液体DBUH・AcO2.15gにイオン交換水100mLを加えて撹拌し、完全に溶解させて調製した中和塩型イオン液体の水溶液に、トルエン100mLを加えて2層分離液体を調製した(第1工程)。
 調製した2層分離液体に、室温下、水酸化ナトリウム(ペレット)10.05gを加え、ペレット投入から20分間撹拌した(第2工程)。なお、水酸化ナトリウムは投入後10分以内に水層に完全溶解していた。この時反応液の温度は50℃以上まで上昇していた。
 第2工程後の2層分離液体を分液ロートに入れて2層分離確認後速やかに分液し、有機層を回収した(第3工程)。なお、回収は2層分離液体と水酸化ナトリウムとを混合し、20分撹拌後すぐに開始した。
 回収した有機層から減圧下でトルエンを留去し、DBUを回収した(回収量0.81g、回収率53%)。なお、このDBUは1H-NMR測定の結果、分解物を数%程度含有することが認められた。
[比較例1-1]
 中和塩型イオン液体DBUH・AcO2.10gに、イオン交換水100mLを加えて撹拌し、完全に溶解させた。その後、水酸化ナトリウム(ペレット)30.03gを加え、ペレットが溶解するまで撹拌した。
 水酸化ナトリウム投入から20分後にトルエン100mLを加えて20秒程度激しく撹拌した後、この反応液を分液ロートに入れ、2層分離確認後、速やかに分液し、有機層を回収した。なお、水酸化ナトリウムは投入後10分以内に水層に完全溶解していた。
 回収した有機層から減圧下でトルエンを留去し、残渣を回収した(回収量1.47g、残渣が全てDBUとして計算すると回収率98%)。なお、この残渣は、1H-NMR測定の結果、DBUの加水分解物をDBU:分解物との比が約1:0.38(積分値からの概算値)で含む混合物であった。
 実施例1-1,1-2および比較例1-1の結果から、あらかじめトルエンを加えて2層系にすること、強アルカリの濃度を高濃度にすることでDBUを効率的に回収することができることがわかる。特に、実施例1-1のように、低温で水酸化ナトリウムを加えた場合に、DBUの分解がより抑制されてDBUをほぼ定量的に回収できることがわかる。
[2]DBUH・AcOの再生
[実施例2-1]
 中和塩型イオン液体DBUH・AcO4.11gに、イオン交換水100mLを加えて撹拌し、完全に溶解させて調製した中和塩型イオン液体の水溶液に、ヘキサン100mLを加えて2層分離液体を調製した(第1工程)。
 調製した2層分離液体に、氷冷下(反応液温度10℃以下)で水酸化ナトリウム(ペレット)35.00gを加え、ペレット投入から20分間撹拌した(第2工程)。なお、水酸化ナトリウムは投入後10分以内に水層に完全溶解していた。
 第2工程後の2層分離液体を分液ロートに入れて2層分離確認後速やかに分液し、有機層を回収した(第3工程)。なお、回収は2層分離液体と水酸化ナトリウムとの混合後、20分撹拌後すぐに開始した。
 回収した有機層に再生したDBUと当モルの酢酸1.16gを投入したところ、瞬時に白濁して容器の壁面に透明液滴が付着し、下部にもヘキサンから2層分離したDBUH・AcOが確認できた。この2層分離液をそのままエバポレータ、続いて真空ポンプを用いてヘキサンを除去し、DBUH・AcOを回収した(回収量3.83g、回収率93%)。なお、このDBUH・AcOは、1H-NMR測定の結果、不純物の含有はほとんどなく、痕跡量以下であることを確認した。
 また、今回は小スケールでロス分を考慮すると収率低下の恐れがあったため実施しなかったが、2層分離の様子からスケールアップ時には分液操作でヘキサンからDBUH・AcOを充分に回収できることがわかった。
[実施例2-2]
 中和塩型イオン液体DBUH・AcO2.00gに、イオン交換水100mLを加えて撹拌し、完全に溶解させて調製した中和塩型イオン液体の水溶液に、トルエン100mLを加えて2層分離液体を調製した(第1工程)。
 調製した2層分離液体に、氷冷下(反応液温度10℃以下)で水酸化カリウム(ペレット)30.06gを加え、ペレット投入から10分間撹拌した(第2工程)。なお、水酸化カリウムは投入後5分以内に水層に完全溶解していた。
 第2工程後の2層分離液体を分液ロートに入れて2層分離確認後速やかに分液し、有機層を回収した(第3工程)。なお、回収は2層分離液体と水酸化カリウムとを混合し、10分撹拌後すぐに開始した。
 回収した有機層に再生したDBUと当モルの酢酸0.54gを投入したところ、一瞬白濁した後、ヘイズが掛かったもやもやした溶液となった。この反応液をそのままエバポレータ、続いて真空ポンプを用いてヘキサンを除去し、DBUH・AcOを回収した(回収量1.96g、回収率98%)。なお、このDBUH・AcOは、1H-NMR測定の結果、不純物の含有はほとんどなく、痕跡量以下であることを確認した。
 実施例2-1,2-2の結果から、本発明の回収方法および再生方法を用いることで中和塩型イオン液体を高収率で再生可能なことがわかる。また、使用する有機溶剤とアミンの組み合わせにより2層分離し、溶媒留去よりも簡便な分液操作で再生分を回収可能なことがわかる。

Claims (16)

  1.  中和塩型イオン液体の水溶液と、水と非相溶の有機溶媒とを混合して水層および有機層の2層分離液体を調製する第1工程と、
     前記2層分離液体と水溶性の強アルカリとを強アルカリが前記水層中の水に対して質量比20%以上となる量で混合し、前記水層中に存在する前記中和塩型イオン液体のカチオンを中性物質に再生させるとともに前記水層から前記有機層へと移動させる第2工程と、
     分液操作により前記中性物質を含む有機層を回収する第3工程とを備えることを特徴とする中和塩型イオン液体のカチオン成分の回収方法。
  2.  前記第3工程で回収した有機層と、新たな中和塩型イオン液体の水溶液とを混合する第4工程を備え、
     この第4工程後に、前記第2工程および第3工程を再度繰り返し、前記中性物質の含有量を増大させた有機層を回収する第5工程を備える請求項1記載の回収方法。
  3.  前記第2工程において、前記2層分離液体と前記強アルカリとを、強アルカリが前記水に対して質量比25%以上となる量で混合する請求項1または2記載の回収方法。
  4.  前記第2工程において、前記2層分離液体と強アルカリとの混合時の反応液温度が、20℃以下である請求項1~3のいずれか1項記載の回収方法。
  5.  前記反応液温度が、10℃以下である請求項4記載の回収方法。
  6.  前記第3工程において、前記有機層の回収を前記第2工程の混合終了時から1時間以内に開始する請求項1~5のいずれか1項記載の回収方法。
  7.  前記第3工程において、前記有機層の回収を前記第2工程の混合終了時から30分以内に開始する6の回収方法。
  8.  前記強アルカリが、水酸化ナトリウムまたは水酸化カリウムである請求項1~7のいずれか1項記載の回収方法。
  9.  前記中和塩型イオン液体のカチオンが、下記式(1)または(2)で示される請求項1~8のいずれか1項記載の回収方法。
    Figure JPOXMLDOC01-appb-C000001
  10.  前記中和塩型イオン液体のアニオンが、有機酸のアニオンである請求項1~9のいずれか1項記載の回収方法。
  11.  前記有機酸が、酢酸である請求項10記載の回収方法。
  12.  前記中和塩型イオン液体が、セルロース溶解能を有する請求項1~11のいずれか1項記載の回収方法。
  13.  前記第1工程で用いる中和塩型イオン液体の水溶液が、セルロースの中和塩型イオン液体溶液からセルロース再生後の凝固液である請求項12記載の回収方法。
  14.  請求項1~13のいずれか1項記載の回収方法で回収された、前記中性物質を含む有機層と、もとの中和塩型イオン液体を構成するアニオン成分を与える酸とを混合した後に有機溶媒を除去し、中和塩型イオン液体を再生させる中和塩型イオン液体の再生方法。
  15.  請求項1~13のいずれか1項記載の回収方法で回収された、前記中性物質を含む有機層を蒸留して有機溶媒を除去し、前記中性物質を単離する中性物質の単離方法。
  16.  請求項15記載の単離方法で得られた前記中性物質と、もとの中和塩型イオン液体を構成するアニオン成分を与える酸とを混合して中和塩型イオン液体を再生させる中和塩型イオン液体の再生方法。
PCT/JP2022/027789 2021-09-01 2022-07-15 イオン液体のカチオン成分の回収方法およびイオン液体の再生方法 WO2023032483A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280059015.8A CN117940428A (zh) 2021-09-01 2022-07-15 离子液体的阳离子成分的回收方法及离子液体的再生方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021142173A JP7060152B1 (ja) 2021-09-01 2021-09-01 イオン液体のカチオン成分の回収方法およびイオン液体の再生方法
JP2021-142173 2021-09-01

Publications (1)

Publication Number Publication Date
WO2023032483A1 true WO2023032483A1 (ja) 2023-03-09

Family

ID=81387420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027789 WO2023032483A1 (ja) 2021-09-01 2022-07-15 イオン液体のカチオン成分の回収方法およびイオン液体の再生方法

Country Status (3)

Country Link
JP (1) JP7060152B1 (ja)
CN (1) CN117940428A (ja)
WO (1) WO2023032483A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008043837A1 (en) * 2006-10-13 2008-04-17 Basf Se Ionic liquids for solubilizing polymers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008043837A1 (en) * 2006-10-13 2008-04-17 Basf Se Ionic liquids for solubilizing polymers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Ionic liquids-The Front and Future of Material Development", 2003, CMC PUBLISHING CO., LTD., pages: 19 - 21
DIBBLE DEAN C., LI CHENLIN, SUN LAN, GEORGE ANTHE, CHENG AURELIA, ÇETINKOL ÖZGÜL PERSIL, BENKE PETER, HOLMES BRADLEY M., SINGH SEE: "A facile method for the recovery of ionic liquid and lignin from biomass pretreatment", GREEN CHEMISTRY, vol. 13, no. 11, 1 January 2011 (2011-01-01), GB , pages 3255 - 3264, XP093041404, ISSN: 1463-9262, DOI: 10.1039/c1gc15111h *
ELSAYED SHERIF; HELLSTEN SANNA; GUIZANI CHAMSEDDINE; WITOS JOANNA; RISSANEN MARJA; RANTAMÄKI ANTTI H; VARIS PAULIINA; WIEDMER SUSA: "Recycling of Superbase-Based Ionic Liquid Solvents for the Production of Textile-Grade Regenerated Cellulose Fibers in the Lyocell Process", ACS SUSTAINABLE CHEMISTRY & ENGINEERING, vol. 8, no. 37, 21 September 2020 (2020-09-21), US , pages 14217 - 14227, XP055826448, ISSN: 2168-0485, DOI: 10.1021/acssuschemeng.0c05330 *
HANABUSA HIDEKI, IZGORODINA EKATERINA I., SUZUKI SHIORI, TAKEOKA YUKO, RIKUKAWA MASAHIRO, YOSHIZAWA-FUJITA MASAHIRO: "Cellulose-dissolving protic ionic liquids as low cost catalysts for direct transesterification reactions of cellulose", GREEN CHEMISTRY, vol. 20, no. 6, 1 January 2018 (2018-01-01), GB , pages 1412 - 1422, XP093041392, ISSN: 1463-9262, DOI: 10.1039/C7GC03603E *
RCS ADVANCE, vol. 5, 2015, pages 69728

Also Published As

Publication number Publication date
JP7060152B1 (ja) 2022-04-26
CN117940428A (zh) 2024-04-26
JP2023035371A (ja) 2023-03-13

Similar Documents

Publication Publication Date Title
JP2007519798A5 (ja)
US9126917B2 (en) Method for purifying vanillin by liquid-liquid extraction
CN105531245A (zh) 用于纯化包含2-甲酰基-呋喃-5-羧酸和2,5-呋喃二羧酸的酸组合物的方法
JP6395812B2 (ja) リグニンの脱重合方法
CN103827072A (zh) 用于回收乙酸的方法
EP1311468B1 (en) Fluorinated alkanoic acid purification process
CN108586206B (zh) 一锅法制备4,4′-亚丁基双(6-特丁基间甲酚)的方法
JP4918751B2 (ja) ガンマブチロラクトンの製造において副生する高沸点化合物の処理方法及びガンマブチロラクトンの製造方法
JP7060152B1 (ja) イオン液体のカチオン成分の回収方法およびイオン液体の再生方法
CN102911018B (zh) 一种从间苯二胺酸性水解液中分离含酚有机物的方法
JP2012510450A (ja) 有機カーボナート流からアルカノール不純物を除去する方法
JPH11302208A (ja) ポリエチレンテレフタレートからテレフタル酸およびエチレングリコールを回収する方法
CN105712841A (zh) 一种从发酵液中分离提取1,3-丙二醇的方法
JP2007001896A (ja) グリコールの分離方法
CN105712842A (zh) 一种发酵液中1,3-丙二醇的分离提取方法
CN104870417A (zh) 制备己二酸的方法
CN109678668B (zh) 一种乙醇-叔丁醇-水精馏分离方法
KR101180341B1 (ko) 폴리올 생산과정에서 발생되는 폐기물의 분리 재생방법
KR102252883B1 (ko) 유기산의 정제방법
JP2005029715A (ja) バイオディーゼルフューエルの製造方法
JP6720512B2 (ja) トランス−シクロヘキサンカルボン酸の製造方法
JP3780703B2 (ja) 2−ブチルオクタン二酸の製造法
CN111499494A (zh) 一种有机醇盐的回收再生方法
JP4661157B2 (ja) ルテニウム含有廃液の減量化方法
JP2004346009A (ja) パラヒドロキシ安息香酸類またはその塩の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864071

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2401000788

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 202280059015.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022864071

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022864071

Country of ref document: EP

Effective date: 20240402