WO2023029863A1 - 一种多功能生物干化调理剂及其制备方法 - Google Patents

一种多功能生物干化调理剂及其制备方法 Download PDF

Info

Publication number
WO2023029863A1
WO2023029863A1 PCT/CN2022/109970 CN2022109970W WO2023029863A1 WO 2023029863 A1 WO2023029863 A1 WO 2023029863A1 CN 2022109970 W CN2022109970 W CN 2022109970W WO 2023029863 A1 WO2023029863 A1 WO 2023029863A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous carbon
carbon spheres
polyethylene glycol
conditioner
biological drying
Prior art date
Application number
PCT/CN2022/109970
Other languages
English (en)
French (fr)
Inventor
黄婷
李宁
朱兵
张山
谢姗姗
陈磊
Original Assignee
合肥水泥研究设计院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥水泥研究设计院有限公司 filed Critical 合肥水泥研究设计院有限公司
Priority to DE112022001354.0T priority Critical patent/DE112022001354T5/de
Publication of WO2023029863A1 publication Critical patent/WO2023029863A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock

Definitions

  • the invention belongs to the technical field of sludge resource utilization, in particular to a multifunctional biological drying conditioner and a preparation method thereof.
  • Sludge biological drying technology is a treatment process that utilizes the biological heat generated by microbial aerobic respiration to degrade organic matter in sludge, cooperates with forced ventilation to promote water evaporation, and quickly and effectively dries sludge without adding external heat energy.
  • the loss of organic matter and calorific value is small, and it has the advantages of low energy consumption, stable equipment operation and flexible product application.
  • the current sludge biological drying technology still has bottleneck problems such as low microbial oxygen utilization rate and short duration of high temperature section, which lead to long time consumption and large land occupation, so it has not been well promoted and applied.
  • the high temperature period is the most important part of biological drying, and a large amount of water can be removed during the high temperature period.
  • the purpose of maintaining the high temperature period is not only to remove water better, but also to provide a good growth environment for thermophilic microorganisms and maintain the activity of thermophilic microorganisms.
  • Biochar provides a better environment for thermal storage materials and thermophilic microorganisms.
  • Biochar is divided into micropores (pore diameter ⁇ 2nm), mesopores (pore diameter between 2-50nm) and macropores (pore diameter above 50nm) according to the pore size.
  • Porous carbon materials generally contain micropores, mesopores and macropores at the same time. .
  • the micropores and mesopores used for adsorption can be loaded with polyethylene glycol by using their capillary action; the macropores can be used to provide an environment for microbial growth and metabolism.
  • Biochar itself has the characteristic of hydrophilicity. As a conditioner, it is added to the biological drying system, which is easily affected by the moisture in the system.
  • a large amount of water will block the pores, so that the biochar will lose the function of storing oxygen in the pores. Long-term soaking will also make the biochar The pores collapse, and a large amount of water enters the pores of the conditioner, which will also dissolve the polyethylene glycol carried in the pores and lose its heat storage capacity.
  • the purpose of the present invention is to overcome the deficiencies in the prior art and provide a method for preparing a multifunctional biological drying conditioner.
  • the biological drying conditioner prepared by the method provided by the present invention has the characteristics of surface hydrophobic and internal hydrophilic , the internal hydrophilicity can provide a suitable growth environment for thermophilic microorganisms, and the surface hydrophobicity is to prevent the structure of the conditioner from being damaged, preventing a large amount of water in the biological drying system from entering the conditioner, blocking the pores of the conditioner, and occupying oxygen space; by using
  • the conditioner has a porous structure, is loaded with polyethylene glycol heat storage material, maintains a micro-zone high temperature environment, and provides a good living environment for heat storage microorganisms, thereby effectively prolonging the duration of the high temperature section of sludge biological drying, and realizing sludge biological drying. Drying regulation.
  • the present invention adopts the following technical solutions to achieve:
  • a method for preparing a multifunctional biological drying conditioner comprising granulating biomass and activating it with micro-oxygen to obtain porous carbon spheres;
  • the surface of the porous carbon spheres is hydrophobically modified to obtain the multifunctional biological drying conditioner.
  • the preparation method of the porous carbon spheres is as follows: take a certain amount of biomass and dry it to a constant weight under constant temperature conditions, mix and granulate the dried biomass with a certain proportion of coal tar, and granulate The final biomass is placed in a pyrolysis furnace and subjected to pyrolysis treatment under micro-aerobic conditions to obtain the porous carbon spheres;
  • the conditions of the pyrolysis treatment are at least satisfied, the pyrolysis temperature is 700-900° C., and the pyrolysis time is 2-4 hours.
  • the biomass is selected from at least one of sludge, straw, rice husk and corncob;
  • the biomass is uniformly ground after drying.
  • the micro-oxygen condition means that the oxygen concentration is 2-8vt%, and the rest is nitrogen.
  • the particle size of the porous carbon spheres is 0.5-3 cm.
  • the method of loading polyethylene glycol on the porous carbon spheres is: place the porous carbon spheres in absolute ethanol dissolved with a certain proportion of polyethylene glycol, and blend them for at least 12 hours, and then vacuum Suction filtration, drying at low temperature to obtain porous carbon spheres loaded with polyethylene glycol;
  • the blend after static blending is placed in a suction filter bottle, the vacuum pump is started, and the vacuum is 0.09-0.1MPa for suction filtration;
  • porous carbon spheres after suction filtration are placed on filter paper and dried in an oven at 50°C at low temperature.
  • the polyethylene glycol has a molecular weight of 5,000-20,000.
  • the method for surface hydrophobic modification is: use 1,2-dichloroethane as a solvent and a silane coupling agent as a modifier, and mix to form a modified solution; Add the porous carbon spheres of diol into the water bath together, control the temperature of the water bath to 50°C for modification, and then filter and take it out;
  • the silane coupling agent is selected from ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane or ⁇ -propyltrimethoxysilane.
  • the key to the surface hydrophobic modification is to strictly control the modification time to ensure that the surface modification is completed and the interior of the pores of the porous carbon spheres is avoided.
  • the heating time in the water bath is 0.5-2 hours.
  • the present invention also provides a multifunctional biological drying conditioner prepared by the above method.
  • the present invention has the following technical effects:
  • the multifunctional biological drying conditioner provided by the present invention its initial raw material is biomass, specifically such as sludge, straw, rice husk and corncob, which is equivalent to a kind of reuse of solid waste, and the cost of raw materials low;
  • the multifunctional biological drying conditioner uses the internal pore structure of porous carbon spheres to encapsulate polyethylene glycol in the micropores and mesopores of porous carbon spheres to prevent leakage; while microorganisms adhere to the macroporous structure , that is, it can maintain contact with the outside world and have a suitable growth environment;
  • the multifunctional biological drying conditioner utilizes a silane coupling agent to carry out surface hydrophobic modification to change the original hydrophilicity of the porous carbon to obtain a porous carbon sphere structure with a hydrophobic surface and a hydrophilic interior.
  • Thermophilic microorganisms provide a suitable growth environment.
  • the hydrophobic surface does not destroy the conditioner structure, prevents water from clogging pores, retains the moist and oxygen environment required for microbial growth, and maintains heat through heat storage materials to extend the high temperature period of the biological drying system. .
  • the multifunctional biological drying conditioner prepared by the method provided by the present invention effectively prolongs the duration of the high temperature stage of sludge biological drying, realizes the control of sludge biological drying, and improves the sludge biological drying. efficiency.
  • Fig. 1 shows the structural representation of the multifunctional biological drying conditioner in the present invention
  • the present invention provides a method for preparing a multifunctional biological drying conditioner, the method comprising granulating biomass and obtaining porous carbon spheres after micro-oxygen activation; on the porous carbon spheres The polyethylene glycol is attached, and the surface of the porous carbon sphere is hydrophobically modified to obtain the multifunctional biological drying conditioner.
  • What is prepared based on the above method is a biological drying conditioner with a hydrophobic surface and a hydrophilic interior.
  • the porous carbon sphere 1 includes a structure of micropores 101, mesopores 102 and macropores 103.
  • a layer of hydrophobic layer is formed on the surface of the porous carbon sphere 1.
  • Thermophilic microorganisms 4 degrade the biological heat generated by aerobic respiration to degrade the organic matter, and dry the moisture in the sludge.
  • the microorganisms generally attach to the large pores 103 of the porous carbon spheres 1; the polyethylene glycol (PEG) 3 is an organic phase change material with high phase change enthalpy and adjustable molecular weight.
  • the thermal performance parameters can be adjusted to make the melting temperature of the crystal region It moves with the crystal temperature and is in the desired phase transition temperature range.
  • polyethylene glycol can be loaded on micropores and mesopores through porous carbon capillary action.
  • its surface hydrophobic and internal hydrophilic structure can be used to provide a suitable growth environment for microorganisms through the internal hydrophilic environment, and the external hydrophobicity can prevent excessive water from entering the porous carbon , to block the pores and retain oxygen.
  • thermophilic microorganisms by using the heat storage property of polyethylene glycol, it can maintain a micro-zone high-temperature environment inside the conditioner, maintain the activity of thermophilic microorganisms, and also preserve the high temperature of the biological drying system to prolong the high-temperature period of biological drying.
  • the preparation method of the porous carbon spheres is: take a certain amount of biomass and dry it to a constant weight under constant temperature conditions, mix and granulate the dried biomass with a certain proportion of coal tar , placing the granulated biomass in a pyrolysis furnace, and performing pyrolysis treatment under micro-oxygen conditions to obtain the porous carbon spheres; further preferably, in the present invention, the conditions for the pyrolysis treatment at least meet, The pyrolysis temperature is 700-900°C, and the pyrolysis time is 2-4 hours.
  • the biomass is selected from at least one of sludge, straw, rice husk and corn cob; further, the biomass is evenly ground after drying.
  • pyrolysis under micro-oxygen conditions is conducive to the formation of pores in carbon materials, and the polyethylene glycol The components are evenly adsorbed in the micropores, leaving macropores to attach thermophilic microorganisms.
  • the micro-oxygen condition means that the oxygen concentration is 2-8vt%, and the rest is nitrogen.
  • the particle size range of the porous carbon spheres can be selected within a relatively wide range.
  • the particle size of the porous carbon spheres is 0.5-3 cm.
  • the method for attaching polyethylene glycol on the porous carbon spheres is: placing the porous carbon spheres in dehydrated alcohol dissolved with a certain proportion of polyethylene glycol, standing and blending for at least 12h, then vacuum filtration, dry at low temperature, promptly get the porous carbon spheres that are attached to the polyethylene glycol; Further preferably, the blend after static blending is placed in the suction filter bottle, start the vacuum pump, at a vacuum degree of Suction filtration under the condition of 0.09-0.1MPa; further preferably, the porous carbon spheres after suction filtration are placed on filter paper, and then dried in an oven at 50°C at low temperature.
  • the polyethylene glycol has a molecular weight of 5,000-20,000.
  • the method for surface hydrophobic modification is: using 1,2-dichloroethane as a solvent and a silane coupling agent as a modifier, mixing to form a modified solution; and then mixing with Add the porous carbon spheres loaded with polyethylene glycol into the water bath, control the temperature of the water bath to 50°C for modification, and then filter and take it out;
  • the silane coupling agent is selected from ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane or ⁇ -propyltrimethoxysilane.
  • the key to the surface hydrophobic modification is to strictly control the modification time to ensure that the surface modification is completed and the interior of the pores of the porous carbon spheres is prevented from being affected, and the heating time in the water bath is 0.5-2 hours.
  • the multifunctional biological drying conditioner provided by the present invention and the preparation method thereof are further described below through specific examples.
  • a preparation method of a multifunctional biological drying conditioner :
  • the granulated sludge into a rotary tubular pyrolysis furnace pass in a mixed gas (8vt% oxygen, 92vt% nitrogen), rotate at a speed of 10r/min, and pyrolyze at 900°C for 2h, and place the prepared porous carbon spheres in a dissolved 10g
  • a mixed gas 8vt% oxygen, 92vt% nitrogen
  • immerse porous carbon spheres put them in a suction filter bottle after standing and blending for 12 hours, start the vacuum pump, and filter for 30 minutes under the condition of a vacuum degree of 0.1MPa Then take out the sample and place it on the filter paper, and put it into an oven to dry at 50°C.
  • the external surface material and internal material of the porous carbon sphere were measured respectively by a contact angle measuring instrument, and the water contact angle of the external surface of the porous carbon sphere was measured to be 115°, and the internal water contact angle was 69°, indicating that the prepared porous carbon sphere has a good surface hydrophobic interior.
  • the sludge after granulation is put into a rotary tube type pyrolysis furnace, and a mixed gas (8vt% oxygen, 92vt% nitrogen) is introduced, and the rotating speed is 10r/min, and it is pyrolyzed at 900°C for 2h, and polyethylene glycol with a molecular weight of 6000 and Polyethylene glycol with a molecular weight of 10,000 was mixed according to a weight ratio of 1:1, and 10 g of the mixed polyethylene glycol was accurately weighed and dissolved in absolute ethanol, and the porous carbon spheres were immersed in it, and placed in a pump after standing and blending for 12 hours.
  • a mixed gas 8vt% oxygen, 92vt% nitrogen
  • the filter bottle start the vacuum pump, perform suction filtration for 30 minutes, and finally perform suction filtration for 30 minutes under the condition that the vacuum degree is 0.1 MPa. After the impregnation is completed, take out the sample and put it on the filter paper, and put it in an oven to dry at 50°C. During this period, the filter paper is changed regularly until no polyethylene glycol leakage is found in the sample.
  • the external surface material and internal material of the porous carbon sphere were measured respectively by a contact angle measuring instrument, and the water contact angle of the external surface of the porous carbon sphere was measured to be 119°, and the internal water contact angle was 65°, indicating that the prepared porous carbon sphere has a good surface hydrophobic interior. Hydrophilic properties;
  • the granulated sludge into a rotary tubular pyrolysis furnace pass in a mixed gas (8vt% oxygen, 92vt% nitrogen), rotate at a speed of 10r/min, and pyrolyze at 900°C for 2h, and place the prepared porous carbon spheres in a dissolved 10g
  • a mixed gas 8vt% oxygen, 92vt% nitrogen
  • submerge porous carbon spheres place in a suction filter bottle after standing and blending for 12 hours, start a vacuum pump, and perform suction filtration for 30 minutes, and finally suction filtration at a vacuum degree of Suction filtration for 30min under the condition of 0.1MPa.
  • the outer surface material and the inner material of the porous carbon sphere were measured respectively by a contact angle measuring instrument, and the water contact angle of the outer surface of the porous carbon sphere was 75°, and the inner water contact angle was 69°.
  • the modification time was too short, and the surface of the porous carbon sphere could not Successful hydrophobic modification.
  • the surface hydrophobic modification steps are as follows: Take 10ml of ⁇ -glycidyl etheroxypropyl trimethoxysilane (KH-560) and add it to a conical flask filled with 1,2-dichloroethane solvent, put it into dry porous carbon spheres , heated in a water bath at 50°C for 3h, took out the porous carbon spheres, and dried them in an oven at 50°C.
  • the outer surface material and inner material of the porous carbon sphere were measured respectively by a contact angle measuring instrument.
  • the water contact angle of the outer surface of the porous carbon sphere was measured to be 137°, and the inner water contact angle was 97°. If the modification time is too long, the inside of the porous carbon sphere will also change. Get hydrophobic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Sludge (AREA)

Abstract

提供了一种多功能生物干化调理剂及其制备方法,方法包括对生物质进行造粒、微氧活化后得到多孔碳球;在多孔碳球上附载聚乙二醇,再对多孔碳球进行表面疏水改性,得到多功能生物干化调理剂;将聚乙二醇封装在多孔碳球微孔、中孔内,防止泄露;而微生物附着在大孔结构内,既可以保持与外界的接触,也能有一个适宜生长的环境;利用硅烷偶联剂进行表面疏水改性,得到表面疏水内部亲水的多孔碳球结构,内部亲水给嗜热微生物提供一个适宜的生长环境,表面疏水不破坏调理剂结构,阻止水分堵塞孔洞,保留微生物生长所需的湿润、氧气环境,通过蓄热材料保持热量,延长生物干化系统的高温期。

Description

一种多功能生物干化调理剂及其制备方法 技术领域
本发明属于污泥资源化利用技术领域,特别涉及一种多功能生物干化调理剂及其制备方法。
背景技术
污泥生物干化技术是利用污泥中微生物好氧呼吸降解有机物过程产生的生物热,配合强制通风促进水分蒸发,在不添加外源热能的情况下使污泥快速有效干化的处理工艺。干化过程有机质及热值损耗小,具有能耗低、设备运行稳定和产品应用灵活等优点。但是目前污泥生物干化技术还存在着微生物氧气利用率低、高温段持续时间短等瓶颈问题,导致其耗时长、占地大,因而未能得到很好的推广应用。
高温期是生物干化最重要的部分,水分在高温期得以大量脱除。维持高温期的目的除了更好脱除水分,也是为了给嗜热微生物一个良好的生长环境,保持嗜热微生物的活性。
生物质炭的多孔结构为蓄热材料和嗜热微生物提供了较好的环境。生物质炭根据孔径大小分为微孔(孔径<2nm)、中孔(孔径在2-50nm之间)和大孔(孔径50nm以上),多孔碳材料一般同时含有微孔、中孔和大孔。而用于吸附作用的微孔和中孔,利用其毛细作用可以附载聚乙二醇;大孔可以用于提供微生物生长代谢环境。生物质炭本身具有亲水的特性,作为调理剂加入生物干化系统,容易受系统中水分影响,大量水分堵塞孔洞,使生物炭失去了孔隙中储氧的作用,长期浸泡还会使得生物炭孔洞塌陷,大量水分进入调理剂孔隙,也会使孔隙中附载的聚乙二醇溶解而失去蓄热性。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种多功能生物干化调理剂的制备方法,通过本发明提供的方法制备得到的生物干化调理剂具有表面疏水、内部亲水的特性,内部亲水可以给嗜热微生物提供一个适宜的生长环境, 表面疏水是为了不破坏调理剂结构,阻止生物干化系统中的水分大量进入调理剂,堵塞调理剂孔隙,占用氧气空间;通过利用该调理剂多孔结构,附载聚乙二醇蓄热材料,保持微区高温环境,为蓄热微生物提供良好生存环境,从而有效的延长污泥生物干化高温段的持续时间,实现对污泥生物干化的调控。
为了实现上述目的,本发明采用以下技术方案予以实现:
一种多功能生物干化调理剂的制备方法,所述的方法包括对生物质进行造粒、微氧活化后得到多孔碳球;
在所述多孔碳球上附载聚乙二醇,
再对所述多孔碳球进行表面疏水改性,得到所述多功能生物干化调理剂。
在进一步的技术方案中,所述多孔碳球的制备方法为:取一定量生物质在恒温条件下干燥至恒重,将干燥后的生物质与一定比例的煤焦油混合造粒,将造粒后的生物质置于热解炉中,在微氧条件下热解处理,即得所述多孔碳球;
在进一步的技术方案中,所述热解处理的条件至少满足,热解温度为700-900℃,热解时间为2-4小时。
在进一步的技术方案中,所述生物质选自污泥、秸秆、稻壳和玉米芯中的至少一种;
在进一步的技术方案中,所述生物质在干燥处理后粉磨均匀。
在进一步的技术方案中,所述微氧条件是指氧气浓度为2-8vt%,其余为氮气。
在进一步的技术方案中,所述多孔碳球的粒径为0.5-3cm。
在进一步的技术方案中,在多孔碳球上附载聚乙二醇的方法为:将多孔碳球置于溶解有一定比例聚乙二醇的无水乙醇中,静置共混至少12h,然后真空抽滤,低温烘干,即得附载有聚乙二醇的多孔碳球;
在进一步的技术方案中,静置共混后的共混物置于抽滤瓶中,启动真空泵,在真空度为0.09-0.1MPa的条件下抽滤;
在进一步的技术方案中,将抽滤后的多孔碳球置于滤纸上,放入50℃烘箱中低温烘干。
在进一步的技术方案中,所述聚乙二醇的分子量为5000-20000。
在进一步的技术方案中,所述表面疏水改性的方法为:以1,2-二氯乙烷为溶 剂,硅烷偶联剂为改性剂,混合形成改性溶液;然后与附载有聚乙二醇的多孔碳球一同加入到水浴锅中,控制水浴温度为50℃进行改性,再过滤取出即可;
在进一步的技术方案中,所述硅烷偶联剂选自γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷或γ-丙基三甲氧基硅烷。
在进一步的技术方案中,所述表面疏水改性的关键在于,严格控制改性时间,确保完成表面改性且避免多孔碳球孔洞内部受到影响,水浴加热的时间为0.5-2h。
本发明还提供了一种采用上述方法制备得到的多功能生物干化调理剂。
与现有技术相比,本发明具有以下技术效果:
1、本发明提供的多功能生物干化调理剂,其初始原料是生物质,具体如污泥、秸秆、稻壳和玉米芯等,相当于对固体废弃物的一种再利用,原料的成本低廉;
2、本发明提供的多功能生物干化调理剂,利用多孔碳球内部孔隙结构,将聚乙二醇封装在多孔碳球微孔、中孔内,防止泄露;而微生物附着在大孔结构内,即可以保持与外界的接触,也能有一个适宜生长的环境;
3、本发明提供的多功能生物干化调理剂,利用硅烷偶联剂进行表面疏水改性,改变多孔碳本来的亲水性,得到表面疏水内部亲水的多孔碳球结构,内部亲水给嗜热微生物提供一个适宜的生长环境,表面疏水不破坏调理剂结构,阻止水分堵塞孔洞,保留微生物生长所需的湿润、氧气环境,并且通过蓄热材料保持热量,延长生物干化系统的高温期。
4、通过本发明提供的方法制备得到的多功能生物干化调理剂,有效的延长了污泥生物干化高温段的持续时间,实现对污泥生物干化的调控,提高了污泥生物干化的效率。
本发明的其他特征和优点将在随后的具体实施方式中予以详细说明。
附图说明
图1示出为本发明中多功能生物干化调理剂的结构示意图;
图中标号说明:1-多孔碳球,101-微孔,102-中孔,103-大孔,2-疏水层,3-聚乙二醇,4-嗜热微生物。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体附图和实施例,进一步阐明本发明。
如前所述,本发明提供了一种多功能生物干化调理剂的制备方法,所述的方法包括对生物质进行造粒、微氧活化后得到多孔碳球;在所述多孔碳球上附载聚乙二醇,再对所述多孔碳球进行表面疏水改性,得到所述多功能生物干化调理剂。基于上述方法制备得到的是一种表面疏水、内部亲水的生物干化调理剂。
结合图1所示,本发明中,所述的多孔碳球1包含微孔101、中孔102和大孔103结构,通过本发明的制备方法,在多孔碳球1的表面形成一层疏水层2,嗜热微生物4通过好氧呼吸降解有机物过程产生的生物热,干化污泥中的水分,微生物一般附着在多孔碳球1的大孔103上;所述的聚乙二醇(PEG)3是一种有机相变材料,其相变焓较高,分子量可调节,且不同分子量的聚乙二醇(PEG)按一定比例混合后,可以对热性能参数进行调节,使晶区熔融温度与晶体温度产生移动,处在所需的相变温度范围内。与多孔碳球共混,可以通过多孔碳毛细作用使聚乙二醇附载在微孔、中孔上。利用本发明中提供的多功能生物干化调理剂,可以利用其表面疏水内部亲水的结构,通过内部亲水环境给微生物提供一个适宜生长的环境,外部疏水可以阻止水分过多进入多孔碳内,堵塞孔洞,保留氧气。另外,利用聚乙二醇的蓄热性,即可以维持调理剂内部一个微区高温环境,保持嗜热微生物活性,也可以保存生物干化系统高温,延长生物干化高温期时间。
结合图1所示的多功能生物干化调理剂,在本发明提供的技术方案中,通过利用多孔碳球内部孔径结构,将聚乙二醇(PEG)附载在多孔碳球微孔、中孔上,然后再对附载有聚乙二醇的多孔碳球进行疏水改性处理,使得多孔碳球获得表面疏水内部亲水结构,赋予该多孔材料新的应用潜力,在污泥生物干化处理过程中,有效的延长了高温段的时间,达到了更好的干化效果。
根据本发明提供的方法,本发明中,所述多孔碳球的制备方法为:取一定量生物质在恒温条件下干燥至恒重,将干燥后的生物质与一定比例的煤焦油混 合造粒,将造粒后的生物质置于热解炉中,在微氧条件下热解处理,即得所述多孔碳球;进一步优选的,本发明中,所述热解处理的条件至少满足,热解温度为700-900℃,热解时间为2-4小时。
本发明中,所述生物质选自污泥、秸秆、稻壳和玉米芯中的至少一种;进一步的,所述生物质在干燥处理后粉磨均匀。
根据本发明提供的方法,本发明中,微氧条件下的热解有利于碳材料的孔隙形成,利用多孔碳材料中的微孔结构的毛细作用力,通过共混的方法将聚乙二醇组分均匀的吸附在微孔中,并留有大孔附着嗜热微生物。本发明中,所述微氧条件是指氧气浓度为2-8vt%,其余为氮气。
本发明中,所述多孔碳球的粒径范围可以在较宽的范围内选择,作为优选的,本发明中,所述多孔碳球的粒径为0.5-3cm。
根据本发明提供的方法,本发明中,在多孔碳球上附载聚乙二醇的方法为:将多孔碳球置于溶解有一定比例聚乙二醇的无水乙醇中,静置共混至少12h,然后真空抽滤,低温烘干,即得附载有聚乙二醇的多孔碳球;进一步优选的,静置共混后的共混物置于抽滤瓶中,启动真空泵,在真空度为0.09-0.1MPa的条件下抽滤;进一步优选的,将抽滤后的多孔碳球置于滤纸上,放入50℃烘箱中低温烘干。
进一步的,本发明中,所述聚乙二醇的分子量为5000-20000。
根据本发明提供的方法,本发明中,所述表面疏水改性的方法为:以1,2-二氯乙烷为溶剂,硅烷偶联剂为改性剂,混合形成改性溶液;然后与附载有聚乙二醇的多孔碳球一同加入到水浴锅中,控制水浴温度为50℃进行改性,再过滤取出即可;
进一步优选的,所述硅烷偶联剂选自γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷或γ-丙基三甲氧基硅烷。
本发明中,所述表面疏水改性的关键在于,严格控制改性时间,确保完成表面改性且避免多孔碳球孔洞内部受到影响,水浴加热的时间为0.5-2h。
以下通过具体的实施例对本发明提供的多功能生物干化调理剂及其制备方法做出进一步的说明。
实施例1
一种多功能生物干化调理剂的制备方法:
取一定量脱水污泥,置于105℃烘箱中,干燥24h,多次称量,直至恒重。使用电子天平准确称取50g的干燥污泥样品,粉磨均匀,加入10ml煤焦油,放入造粒机进行造粒。造粒后的污泥放入旋转管式热解炉,通入混合气体(8vt%氧气、92vt%氮气),转速10r/min,900℃下热解2h,制备的多孔碳球置于溶解10g聚乙二醇(分析纯,分子量10000)的无水乙醇中,浸没多孔碳球,静置共混12h后置于抽滤瓶中,启动真空泵,在真空度为0.1MPa的条件下抽滤30min然后取出试样置于滤纸上,并将其放入烘箱50℃温度条件下干燥,在此期间定期更换滤纸,直到样品中未发现聚乙二醇泄漏。取10mlγ-缩水甘油醚氧丙基三甲氧基硅烷(KH-560)加入装有1,2-二氯乙烷溶剂的锥形瓶中,放入干燥的多孔碳球,50℃水浴加热1h,取出多孔碳球,放入烘箱50℃温度条件下干燥。
采用接触角测定仪对多孔碳球外表面材料及内部材料分别测定,测得多孔碳球外表面水接触角115°,内部水接触角69°,说明制备的多孔碳球具有良好的表面疏水内部亲水特性,另外采用差热扫描量热仪进行分析,得到多孔碳球相变温度60.18℃,相变焓157.2J/g,说明制备的多孔碳球具有良好的蓄热能力。
实施例2
取一定量脱水污泥,置于105℃烘箱中,干燥24h,多次称量,直至恒重。使用电子天平准确称取50g的干燥污泥样品,粉磨均匀,加入10ml煤焦油,放入造粒机进行造粒。造粒后的污泥放入旋转管式热解炉,通入混合气体(8vt%氧气、92vt%氮气),转速10r/min,900℃下热解2h,将分子量6000的聚乙二醇与分子量10000的聚乙二醇按照重量比1:1的比例混合,准确称取10g混合的聚乙二醇溶解于无水乙醇中,将多孔碳球浸没其中,静置共混12h后置于抽滤瓶中,启动真空泵,抽滤30分钟,最后抽滤在真空度为0.1MPa的条件下抽滤30min。浸渍完成后,然后取出试样置于滤纸上,并将其放入烘箱50℃温度条件下干燥,在此期间定期更换滤纸,直到样品中未发现聚乙二醇泄漏。取10mlγ-缩水甘油醚氧丙基三甲氧基硅烷(KH-560)加入装有1,2-二氯乙烷溶剂的锥形瓶中,放入干燥的多孔碳球,50℃水浴加热1h,取出多孔碳球,放入烘箱50℃温度条件下干燥。
采用接触角测定仪对多孔碳球外表面材料及内部材料分别测定,测得多孔碳球外表面水接触角119°,内部水接触角65°,说明制备的多孔碳球具有良好的表面疏水内部亲水特性;
另外采用差热扫描量热仪进行分析,得到多孔碳球相变温度56.25℃,相变焓148.2J/g,说明制备的多孔碳球具有良好的蓄热能力,并且通过调节不同分子量的聚乙二醇共混比例,可以调控热性能参数。
对比例1
取一定量脱水污泥,置于105℃烘箱中,干燥24h,多次称量,直至恒重。使用电子天平准确称取50g的干燥污泥样品,粉磨均匀,加入10ml煤焦油,放入造粒机进行造粒。造粒后的污泥放入旋转管式热解炉,通入混合气体(8vt%氧气、92vt%氮气),转速10r/min,900℃下热解2h,制备的多孔碳球置于溶解10g聚乙二醇(分析纯,分子量10000)的无水乙醇中,浸没多孔碳球,静置共混12h后置于抽滤瓶中,启动真空泵,抽滤30分钟,最后抽滤在真空度为0.1MPa的条件下抽滤30min。浸渍完成后,然后取出试样置于滤纸上,并将其放入烘箱50℃温度条件下干燥,在此期间定期更换滤纸,直到样品中未发现聚乙二醇泄漏。取10mlγ-缩水甘油醚氧丙基三甲氧基硅烷(KH-560)加入装有1,2-二氯乙烷溶剂的锥形瓶中,放入干燥的多孔碳球,50℃水浴加热10min,取出多孔碳球,放入烘箱50℃温度条件下干燥。
采用接触角测定仪对多孔碳球外表面材料及内部材料分别测定,测得多孔碳球外表面水接触角75°,内部水接触角69°,改性时间过短,多孔碳球表面未能成功疏水改性。
对比例2
取一定量脱水污泥,其他操作与对比例1一致。
表面疏水改性步骤如下:取10mlγ-缩水甘油醚氧丙基三甲氧基硅烷(KH-560)加入装有1,2-二氯乙烷溶剂的锥形瓶中,放入干燥的多孔碳球,50℃水浴加热3h,取出多孔碳球,放入烘箱50℃温度条件下干燥。
采用接触角测定仪对多孔碳球外表面材料及内部材料分别测定,测得多孔 碳球外表面水接触角137°,内部水接触角97°,改性时间过长,多孔碳球内部也变得疏水。
以上显示和描述了本发明的基本原理、主要特征和本发明的特点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求保护的范围由所附的权利要求书及其等效物界定。

Claims (10)

  1. 一种多功能生物干化调理剂的制备方法,其特征在于,所述的方法包括对生物质进行造粒、微氧活化后得到多孔碳球;
    在所述多孔碳球上附载聚乙二醇,
    再对所述多孔碳球进行表面疏水改性,得到所述多功能生物干化调理剂。
  2. 根据权利要求1所述的方法,其特征在于,所述多孔碳球的制备方法为:取一定量生物质在恒温条件下干燥至恒重,将干燥后的生物质与一定比例的煤焦油混合造粒,将造粒后的生物质置于热解炉中,在微氧条件下热解处理,即得所述多孔碳球;
    优选地,所述热解处理的条件至少满足,热解温度为700-900℃,热解时间为2-4小时。
  3. 根据权利要求2所述的方法,其特征在于,所述生物质选自污泥、秸秆、稻壳和玉米芯中的至少一种;
    优选地,所述生物质在干燥处理后粉磨均匀。
  4. 根据权利要求2所述的方法,其特征在于,所述微氧条件是指氧气浓度为2-8vt%,其余为氮气。
  5. 根据权利要求1所述的方法,其特征在于,所述多孔碳球的粒径为0.5-3cm。
  6. 根据权利要求1所述的方法,其特征在于,在多孔碳球上附载聚乙二醇的方法为:将多孔碳球置于溶解有一定比例聚乙二醇的无水乙醇中,静置共混至少12h,然后真空抽滤,低温烘干,即得附载有聚乙二醇的多孔碳球;
    优选地,静置共混后的共混物置于抽滤瓶中,启动真空泵,在真空度为0.09-0.1MPa的条件下抽滤;
    优选地,将抽滤后的多孔碳球置于滤纸上,放入50℃烘箱中低温烘干。
  7. 根据权利要求1所述的方法,其特征在于,所述聚乙二醇的分子量为5000-20000。
  8. 根据权利要求1所述的方法,其特征在于,所述表面疏水改性的方法为:以1,2-二氯乙烷为溶剂,硅烷偶联剂为改性剂,混合形成改性溶液;然后与附载有聚乙二醇的多孔碳球一同加入到水浴锅中,控制水浴温度为50℃进行改性,再过滤取出即可;
    优选地,所述硅烷偶联剂选自γ-氨丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷或γ-丙基三甲氧基硅烷。
  9. 根据权利要求8所述的方法,其特征在于,所述表面疏水改性的关键在于,严格控制改性时间,确保完成表面改性且避免多孔碳球孔洞内部受到影响,水浴加热的时间为0.5-2h。
  10. 根据权利要求1-9任意一项所述的方法制备得到的多功能生物干化调理剂。
PCT/CN2022/109970 2021-09-01 2022-08-03 一种多功能生物干化调理剂及其制备方法 WO2023029863A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022001354.0T DE112022001354T5 (de) 2021-09-01 2022-08-03 Multifunktionales konditionierungsmittel für biologische trocknung und herstellungsverfahren dafür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111021332.4 2021-09-01
CN202111021332.4A CN113620288B (zh) 2021-09-01 2021-09-01 一种多功能生物干化调理剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2023029863A1 true WO2023029863A1 (zh) 2023-03-09

Family

ID=78388792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109970 WO2023029863A1 (zh) 2021-09-01 2022-08-03 一种多功能生物干化调理剂及其制备方法

Country Status (3)

Country Link
CN (1) CN113620288B (zh)
DE (1) DE112022001354T5 (zh)
WO (1) WO2023029863A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113620288B (zh) * 2021-09-01 2022-10-11 合肥水泥研究设计院有限公司 一种多功能生物干化调理剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070253887A1 (en) * 2006-04-27 2007-11-01 Foley Henry C Method for the synthesis of porous carbon materials
CN109160503A (zh) * 2018-08-02 2019-01-08 上海市政工程设计研究总院(集团)有限公司 一种污泥炭调理剂及其在堆肥中的应用
CN111592050A (zh) * 2020-07-06 2020-08-28 李娟� 一种生物质基多孔碳原位生长纳米Fe3O4的吸波材料及其制法
CN113148977A (zh) * 2021-04-30 2021-07-23 山东利特纳米技术有限公司 一种多孔碳材料的疏水改性方法
CN113620288A (zh) * 2021-09-01 2021-11-09 合肥水泥研究设计院有限公司 一种多功能生物干化调理剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1211199C (zh) * 1996-05-15 2005-07-20 海珀里昂催化国际有限公司 刚性多孔碳结构材料、其制法、用法及含该结构材料的产品
EP1827681A4 (en) * 2004-11-17 2011-05-11 Hyperion Catalysis Int METHODS FOR PREPARING CATALYTIC CARRIERS AND SUPPORTED CATALYSTS FROM SINGLE-WALL CARBON NANOTUBES
CN103663450B (zh) * 2013-12-19 2016-03-16 中国科学院过程工程研究所 一种高比表面积碳微球及其制备方法
CN104163415B (zh) * 2014-07-24 2016-02-10 巨化集团技术中心 一种多孔碳材料的制备方法
PL3659590T3 (pl) * 2015-04-17 2022-04-04 The University Of Queensland Kompozycja, materiały cząsteczkowe i sposoby wytwarzania materiałów cząsteczkowych
CN109250716A (zh) * 2018-12-05 2019-01-22 宁波设会物联网科技有限公司 一种沥青基空心球形活性炭的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070253887A1 (en) * 2006-04-27 2007-11-01 Foley Henry C Method for the synthesis of porous carbon materials
CN109160503A (zh) * 2018-08-02 2019-01-08 上海市政工程设计研究总院(集团)有限公司 一种污泥炭调理剂及其在堆肥中的应用
CN111592050A (zh) * 2020-07-06 2020-08-28 李娟� 一种生物质基多孔碳原位生长纳米Fe3O4的吸波材料及其制法
CN113148977A (zh) * 2021-04-30 2021-07-23 山东利特纳米技术有限公司 一种多孔碳材料的疏水改性方法
CN113620288A (zh) * 2021-09-01 2021-11-09 合肥水泥研究设计院有限公司 一种多功能生物干化调理剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO YAJING, MIN XIN, HUANG ZHAOHUI, LIU YAN’GAI, WU XIAOWEN, FANG MINGHAO: "Honeycomb-like structured biological porous carbon encapsulating PEG: A shape-stable phase change material with enhanced thermal conductivity for thermal energy storage", ENERGY, ELSEVIER, AMSTERDAM, NL, vol. 158, 1 January 2018 (2018-01-01), AMSTERDAM, NL, pages 1049 - 1062, XP093041694, ISSN: 0378-7788, DOI: 10.1016/j.enbuild.2017.10.078 *

Also Published As

Publication number Publication date
CN113620288B (zh) 2022-10-11
DE112022001354T5 (de) 2023-12-14
CN113620288A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN110918061B (zh) 一种生物质废弃物活性炭及其制备方法和在处理废水中硝基苯酚类化合物的应用
WO2023029863A1 (zh) 一种多功能生物干化调理剂及其制备方法
CN109809403B (zh) 一种具有高吸附性能的沼渣基活性炭的制备方法和应用
CN104843670B (zh) 一种利用玉米芯制备大颗粒泡沫炭的方法
CN107364863A (zh) 改性稻壳基活性炭的制备方法
CN111333203A (zh) 一种生态型缓释碳源及其制备方法和应用
WO2022262305A1 (zh) 基于秸秆废弃物的复合相变储能材料的制备方法
CN111187103B (zh) 一种污泥堆肥重金属钝化菌剂、其生产方法及应用
CN107297198A (zh) 一种具有放射状多级孔结构的石墨烯复合小球及其制备方法和应用
CN107459042A (zh) 一种无模板法制备三维多级孔道活性炭的方法
CN108455603A (zh) 富含介孔生物炭及其制备方法
CN106315547A (zh) 一种多孔炭材料及其制备方法和应用
CN116144641A (zh) 一种固定化微生物菌剂水凝胶球及其制备方法和应用
CN104528919B (zh) 一种螺旋沟槽复合生物填料的制备方法
SE515085C2 (sv) Porös struktur innefattande svampcellväggar
CN111302825B (zh) 一种无机多层功能性蓄水陶粒及其制备方法
CN117003236A (zh) 一种果壳活性炭及其制备方法与应用
CN110204234B (zh) 一种双壳层中空大颗粒料的制备方法
CN112569899A (zh) 一种丙烯酸催化水热法制备生物炭的方法
CN106564872A (zh) 生物炭及其制备方法和应用
CN108862277A (zh) 稻壳-污泥基复合活性炭及其制备方法
Pannier et al. Long-term activity of biohybrid coatings of atrazine-degrading bacteria Pseudomonas sp. ADP
CN102631889A (zh) 凤眼莲吸附材料及其制备方法
CN111363284B (zh) 一种壳核结构高吸水树脂/高岭土复合球吸湿材料及其制备方法
CN103466782B (zh) 一种高亲和性生物载体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022001354

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22863004

Country of ref document: EP

Kind code of ref document: A1