WO2023029660A1 - Couche de chauffage par induction électromagnétique et son procédé de préparation, et noyau d'atomisation et son procédé de préparation - Google Patents

Couche de chauffage par induction électromagnétique et son procédé de préparation, et noyau d'atomisation et son procédé de préparation Download PDF

Info

Publication number
WO2023029660A1
WO2023029660A1 PCT/CN2022/099011 CN2022099011W WO2023029660A1 WO 2023029660 A1 WO2023029660 A1 WO 2023029660A1 CN 2022099011 W CN2022099011 W CN 2022099011W WO 2023029660 A1 WO2023029660 A1 WO 2023029660A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating layer
electromagnetic induction
induction heating
parts
sintering
Prior art date
Application number
PCT/CN2022/099011
Other languages
English (en)
Chinese (zh)
Inventor
陈平
Original Assignee
深圳市华诚达精密工业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华诚达精密工业有限公司 filed Critical 深圳市华诚达精密工业有限公司
Publication of WO2023029660A1 publication Critical patent/WO2023029660A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating

Definitions

  • the invention relates to the field of atomization technology, in particular to an electromagnetic induction heating layer and a preparation method thereof, an atomization core and a preparation method thereof.
  • ceramic atomizing cores Due to its high stability and high strength, ceramic atomizing cores are more and more widely used in the field of atomization.
  • the principle of the above-mentioned heating element is to realize the atomization of the atomization core by directly converting electric energy into heat energy.
  • the heating wire often affects the atomization effect due to unstable combination with ceramics or unstable contact resistance; thick film printing
  • the circuit will also have poor uniformity of the atomization effect due to the difficulty in controlling the cross-sectional area on the porous carrier.
  • the technical problem to be solved by the present invention is to provide an electromagnetic induction heating layer for an atomizing core that generates heat through electromagnetic induction and a preparation method thereof, an atomization core with the electromagnetic induction heating layer and a preparation method thereof.
  • the technical solution adopted by the present invention to solve the technical problem is: provide an electromagnetic induction heating layer for the atomizing core, including raw materials and their mass parts as follows: 50-100 parts of magnetically conductive metal powder, 0 parts of ceramic powder -30 parts, 0-40 parts of burning aid and 0-30 parts of paraffin;
  • the electromagnetic induction heating layer is a structural layer with pores formed by sintering the raw materials.
  • the magnetically conductive metal powder includes stainless iron, carbon steel, iron-aluminum alloy, iron-silicon alloy, iron-silicon-aluminum alloy, iron-cobalt alloy, soft magnetic ferrite, nickel, cobalt, amorphous At least one of state soft magnetic alloy and ultrafine crystal soft magnetic alloy.
  • the particle size of the magnetically conductive metal powder is 80 mesh to 1000 mesh.
  • the ceramic powder includes at least one of alumina, cordierite, silicon carbide, titanium diboride, barium titanate, and porcelain stone tailings.
  • the particle size of the ceramic powder is 100 mesh-2000 mesh.
  • the sintering aid includes at least one of low-temperature glaze, frit and low-melting glass powder.
  • the particle size of the sintering aid is 200 mesh-2000 mesh.
  • the present invention also provides a method for preparing an electromagnetic induction heating layer, comprising the following steps:
  • the compression molding method is dry compression molding, isostatic pressing molding or hot die casting molding.
  • the pressure of dry pressing is 1MPa-80MPa, and the pressure is maintained for 1-5min.
  • the pressure of isostatic pressing is 50MPa-200MPa, and the pressure is maintained for 2-10min.
  • the air pressure of hot die casting is 0.1MPa-2MPa, and the hot die casting time is 0.5s-3s.
  • the sintering temperature is 600°C-1300°C.
  • the present invention also provides an atomizing core, comprising a ceramic base and any one of the above electromagnetic induction heating layers, the electromagnetic induction heating layer is compounded on the ceramic base.
  • the present invention also provides a preparation method of the atomizing core, comprising the following steps:
  • the electromagnetic induction heating layer of the present invention is used in the atomizing core as the heating element of the atomizing core.
  • the electromagnetic induction heating layer is made by sintering raw materials such as magnetically conductive metal powder and has a porous structure; it is generated by electromagnetic effects when used.
  • the heat realizes the heating and atomization of the atomizing liquid, and the porous characteristics of the electromagnetic induction heating layer ensure the sufficient supply of the atomizing liquid and the atomizing steam can emerge from the holes smoothly, improving the atomization effect and uniformity.
  • Fig. 1 is the SEM picture of the electromagnetic induction heating layer surface of the present invention
  • Fig. 2 is a SEM image of the end face of the electromagnetic induction heating layer of the present invention.
  • the electromagnetic induction heating layer of the present invention is used in the atomizing core, and as the heating element of the atomizing core, heats and atomizes the atomizing liquid in the manner of electromagnetic induction heating.
  • the electromagnetic induction heating layer includes raw materials and their mass parts as follows: 50-100 parts of magnetically conductive metal powder, 0-30 parts of ceramic powder, 0-40 parts of sintering aid and 0-30 parts of paraffin.
  • the electromagnetic induction heating layer is a structural layer with pores formed by sintering raw materials.
  • the magnetically conductive metal powder is used as the main material of the electromagnetic induction heating layer, and is also a magnetically conductive material to realize electromagnetic induction heating, which can include stainless iron, carbon steel, iron-aluminum alloys, iron-silicon alloys, and iron-silicon-aluminum alloys. At least one of alloys, iron-cobalt alloys, soft ferrites, nickel, cobalt, amorphous soft magnetic alloys and ultrafine crystal soft magnetic alloys.
  • the particle size of the magnetically conductive metal powder can be 80 mesh to 1000 mesh.
  • Ceramic powder, sintering aid and paraffin can be added or not added as needed.
  • its mass fraction is preferably 5-30 parts; when the raw material comprises a sintering aid, its mass fraction is preferably 5-40 parts; when the raw material comprises paraffin, its mass fraction is preferably 10- 30 servings.
  • the ceramic powder may include at least one of alumina, cordierite, silicon carbide, titanium diboride, barium titanate, and porcelain stone tailings.
  • the particle size of the ceramic powder is preferably 100 mesh-2000 mesh.
  • the sintering aid may include at least one of low-temperature glaze, frit and low-melting glass powder.
  • the particle size of the sintering aid can be from 200 mesh to 2000 mesh.
  • the raw material of the electromagnetic induction heating layer of the present invention may also include a surfactant, and its mass fraction is 0.1-2 parts.
  • the surfactant is selected from at least one of oleic acid, Span, Tween and stearic acid.
  • the preparation method of the electromagnetic induction heating layer of the present invention may comprise the following steps:
  • Ceramic powder, sintering aid and paraffin can be added or not added as needed.
  • the press forming method is dry press forming, isostatic pressing or hot die casting.
  • the pressure of the dry pressing is 1MPa-80MPa, and the pressure is maintained for 1-5min.
  • the pressure is 50MPa-200MPa, and the pressure is maintained for 2-10min.
  • the air pressure is 0.1MPa-2MPa
  • the hot die casting time is 0.5s-3s.
  • the mixed raw materials also include a surfactant, and its mass fraction is 0.1-2 parts.
  • the surfactant is selected from at least one of oleic acid, Span, Tween and stearic acid.
  • the sintering temperature is 600°C-1300°C.
  • the magnetically conductive metal powder flows after melting, and the sintering neck formed by accumulation makes the electromagnetic induction heating layer have a porous feature.
  • the sintering temperature is 600°C-900°C
  • the sintering temperature is 900°C-1300°C .
  • the SEM figure of the electromagnetic induction heating layer of the present invention is as shown in Figures 1 and 2, wherein Figure 1 is an SEM figure showing the surface topography of the electromagnetic induction heating layer, and Figure 2 is a SEM figure showing the cross-sectional topography of the electromagnetic induction heating layer . It can be seen from Fig. 1 and Fig. 2 that the electromagnetic induction heating layer is distributed with pores, and the pores are evenly distributed.
  • the electromagnetic induction heating layer of the present invention is applied to an atomizing core, and the atomizing core may include an electromagnetic induction heating layer and a ceramic substrate, and the electromagnetic induction heating layer is compounded on the ceramic substrate.
  • the ceramic matrix of the atomizing core can be a polyhedron, cylinder, cylinder and other structures, and the electromagnetic induction heating layer can be compounded on one or more surfaces of the ceramic matrix, and the outer peripheral shape of the electromagnetic induction heating layer can be, but not limited to, polygonal, circular , oval and other shapes.
  • the ceramic substrate is used to absorb the atomizing liquid, and the electromagnetic induction heating layer generates heat due to the electromagnetic effect after being energized, and heats and atomizes the atomizing liquid.
  • the electromagnetic induction heating layer has the characteristics of porosity and porosity, which can ensure the sufficient supply of atomized liquid and the smooth escape of atomized steam from the holes.
  • the electromagnetic induction heating layer can achieve the effect of heating the entire surface, and the thermal efficiency of the same area is high.
  • the preparation method of the above-mentioned atomizing core may include the following steps:
  • the press forming method is dry press forming, isostatic pressing or hot die casting.
  • the pressure of the dry pressing is 1MPa-80MPa, and the pressure is maintained for 1-5min.
  • the pressure is 50MPa-200MPa, and the pressure is maintained for 2-10min.
  • the air pressure is 0.1MPa-2MPa
  • the hot die casting time is 0.5s-3s.
  • the mixed raw materials also include a surfactant, and its mass fraction is 0.1-2 parts.
  • the surfactant is selected from at least one of oleic acid, Span, Tween and stearic acid.
  • the ceramic slurry is molded on the heating layer body by hot die casting to form the atomizing core body.
  • the ceramic slurry is pre-prepared and made from the raw materials of the ceramic matrix of the atomizing core.
  • the raw material of the ceramic matrix can be selected from one or more of alumina, quartz sand, diatomite, cordierite, glass beads, zirconia, medical stone and the like.
  • the ceramic matrix is formed by molding the ceramic slurry and then sintering, and the heating layer body is sintered to form the electromagnetic induction heating layer.
  • the sintering temperature is 600°C-1300°C.
  • the magnetically conductive metal powder flows after melting, and the sintering neck formed by accumulation makes the electromagnetic induction heating layer have a porous feature.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Example 2 40 10.5368
  • Example 3 38 9.7346
  • Example 4 29 7.3256
  • Example 5 32 7.0326
  • Example 6 36 8.6953
  • Example 7 35 7.9632
  • Example 8 34 7.231
  • the electromagnetic induction heating layer prepared by the present invention has fine pores and uniform pore size, thereby ensuring sufficient liquid supply of the atomized liquid while heating and atomizing, fine atomization, and anti- Leakage effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • General Induction Heating (AREA)
  • Powder Metallurgy (AREA)

Abstract

La présente invention divulgue une couche de chauffage par induction électromagnétique et son procédé de préparation, ainsi qu'un noyau d'atomisation et son procédé de préparation. La couche de chauffage par induction électromagnétique comprend les matières premières suivantes, en parties en masse : 50 à 100 parties d'une poudre métallique conductrice magnétique, 0 à 30 parties d'une poudre céramique, 0 à 40 parties d'un auxiliaire de frittage, et 0 à 30 parties de paraffine. La couche de chauffage par induction électromagnétique est une couche structurale ayant des pores formés par frittage des matières premières. La couche de chauffage par induction électromagnétique selon la présente invention est utilisée pour un noyau d'atomisation et sert d'élément chauffant du noyau d'atomisation. La couche de chauffage par induction électromagnétique est formée par frittage de matières premières telles qu'une poudre métallique conductrice magnétique, et présente une structure poreuse. Lors de l'utilisation, le chauffage et l'atomisation d'un liquide d'atomisation sont obtenus au moyen de l'effet électromagnétique, et la caractéristique poreuse de la couche de chauffage par induction électromagnétique assure une alimentation suffisante du liquide d'atomisation et garantit que la vapeur d'atomisation peut s'écouler sans à-coups à partir des pores, ce qui améliore ainsi l'effet et l'uniformité de l'atomisation.
PCT/CN2022/099011 2021-09-03 2022-06-15 Couche de chauffage par induction électromagnétique et son procédé de préparation, et noyau d'atomisation et son procédé de préparation WO2023029660A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111031692.2 2021-09-03
CN202111031692.2A CN113941704A (zh) 2021-09-03 2021-09-03 电磁感应发热层及其制备方法、雾化芯及其制备方法

Publications (1)

Publication Number Publication Date
WO2023029660A1 true WO2023029660A1 (fr) 2023-03-09

Family

ID=79327811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099011 WO2023029660A1 (fr) 2021-09-03 2022-06-15 Couche de chauffage par induction électromagnétique et son procédé de préparation, et noyau d'atomisation et son procédé de préparation

Country Status (2)

Country Link
CN (1) CN113941704A (fr)
WO (1) WO2023029660A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116944493A (zh) * 2023-08-03 2023-10-27 广东奇砺新材料科技有限公司 一种金属浆料、具有凹凸表面的发热元件及气雾发生器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113941704A (zh) * 2021-09-03 2022-01-18 深圳市华诚达精密工业有限公司 电磁感应发热层及其制备方法、雾化芯及其制备方法
CN115104779A (zh) * 2022-05-25 2022-09-27 深圳市吉迩科技有限公司 一种雾化芯的制备方法及雾化器
CN115351280B (zh) * 2022-08-22 2024-01-19 西北有色金属研究院 一种环路热管用蒸发器的一体化制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205624467U (zh) * 2016-03-21 2016-10-12 深圳市合元科技有限公司 一种烟油加热组件及包括该烟油加热组件的电子烟和雾化器
CN207285198U (zh) * 2017-08-28 2018-05-01 云南中烟工业有限责任公司 一种带有金属纤维片的抽吸设备
CN108788127A (zh) * 2018-06-22 2018-11-13 深圳市新宜康科技股份有限公司 基于电磁感应的粉末导油雾化芯的制作方法
CN210158014U (zh) * 2019-05-29 2020-03-20 常州市派腾电子技术服务有限公司 雾化器及电子烟
CN210203364U (zh) * 2019-02-27 2020-03-31 深圳市合元科技有限公司 电子烟雾化器及电子烟
CN111053300A (zh) * 2020-01-10 2020-04-24 深圳市锐丽科技有限公司 电磁感应涡流加热的电子烟油雾化器及电子烟
CN111053301A (zh) * 2020-01-10 2020-04-24 深圳市锐丽科技有限公司 基于电磁感应涡流加热的电子烟雾化器及电子烟
CN111887499A (zh) * 2020-06-29 2020-11-06 阿特麦哲(东莞)科技有限公司 陶瓷复合雾化组件及其制造方法
CN112479712A (zh) * 2019-09-11 2021-03-12 深圳市合元科技有限公司 电子烟、多孔发热体及其制备方法
CN112931952A (zh) * 2021-03-04 2021-06-11 深圳市基克纳科技有限公司 一种雾化芯及电子雾化装置
WO2021163922A1 (fr) * 2020-02-19 2021-08-26 昂纳自动化技术(深圳)有限公司 Ensemble d'atomisation de cigarette électronique et son procédé de fabrication
CN113941704A (zh) * 2021-09-03 2022-01-18 深圳市华诚达精密工业有限公司 电磁感应发热层及其制备方法、雾化芯及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209376694U (zh) * 2018-11-27 2019-09-13 深圳市新宜康科技股份有限公司 基于多孔发热网的陶瓷雾化芯
CN111816345B (zh) * 2019-04-12 2023-03-24 湖北中烟工业有限责任公司 一种电子烟用可印刷和防干烧发热金属浆料及其制备方法
CN111792922A (zh) * 2020-07-10 2020-10-20 湖南云天雾化科技有限公司 一种高还原多孔陶瓷雾化芯及其制备方法
CN112408963A (zh) * 2020-10-27 2021-02-26 深圳市华诚达精密工业有限公司 具有吸附及离子溶出功能的多孔陶瓷材料及其制造方法
CN112888093B (zh) * 2021-01-13 2022-10-14 深圳麦克韦尔科技有限公司 发热组件、电子雾化装置及发热组件的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205624467U (zh) * 2016-03-21 2016-10-12 深圳市合元科技有限公司 一种烟油加热组件及包括该烟油加热组件的电子烟和雾化器
CN207285198U (zh) * 2017-08-28 2018-05-01 云南中烟工业有限责任公司 一种带有金属纤维片的抽吸设备
CN108788127A (zh) * 2018-06-22 2018-11-13 深圳市新宜康科技股份有限公司 基于电磁感应的粉末导油雾化芯的制作方法
CN210203364U (zh) * 2019-02-27 2020-03-31 深圳市合元科技有限公司 电子烟雾化器及电子烟
CN210158014U (zh) * 2019-05-29 2020-03-20 常州市派腾电子技术服务有限公司 雾化器及电子烟
CN112479712A (zh) * 2019-09-11 2021-03-12 深圳市合元科技有限公司 电子烟、多孔发热体及其制备方法
CN111053300A (zh) * 2020-01-10 2020-04-24 深圳市锐丽科技有限公司 电磁感应涡流加热的电子烟油雾化器及电子烟
CN111053301A (zh) * 2020-01-10 2020-04-24 深圳市锐丽科技有限公司 基于电磁感应涡流加热的电子烟雾化器及电子烟
WO2021163922A1 (fr) * 2020-02-19 2021-08-26 昂纳自动化技术(深圳)有限公司 Ensemble d'atomisation de cigarette électronique et son procédé de fabrication
CN111887499A (zh) * 2020-06-29 2020-11-06 阿特麦哲(东莞)科技有限公司 陶瓷复合雾化组件及其制造方法
CN112931952A (zh) * 2021-03-04 2021-06-11 深圳市基克纳科技有限公司 一种雾化芯及电子雾化装置
CN113941704A (zh) * 2021-09-03 2022-01-18 深圳市华诚达精密工业有限公司 电磁感应发热层及其制备方法、雾化芯及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116944493A (zh) * 2023-08-03 2023-10-27 广东奇砺新材料科技有限公司 一种金属浆料、具有凹凸表面的发热元件及气雾发生器
CN116944493B (zh) * 2023-08-03 2024-02-13 广东奇砺新材料科技有限公司 一种气雾发生器

Also Published As

Publication number Publication date
CN113941704A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
WO2023029660A1 (fr) Couche de chauffage par induction électromagnétique et son procédé de préparation, et noyau d'atomisation et son procédé de préparation
WO2021227818A1 (fr) Matériau poreux à gradient, procédé de préparation de celui-ci, atomiseur et dispositif d'atomisation électronique
WO2019119611A1 (fr) Procédé de préparation de corps chauffant en céramique à structure membranaire chauffante poreuse
WO2006028100A1 (fr) PROCÉDÉ DE FABRICATION DE POUDRE DE MÉTAL MAGNÉTIQUE SOUPLE REVÊTUE D’UN FILM OXYDÉ CONTENANT DU Mg ET PROCEDE DE FABRICATION DE MATÉRIAU MAGNETIQUE SOUPLE COMPOSITE UTILISANT LADITE POUDRE
CN107173849A (zh) 一种导电陶瓷膜多孔陶瓷发热体及其应用
JP4762208B2 (ja) 静電チャックヒータ
WO2023127361A1 (fr) Corps poreux en titane et procédé de fabrication de corps poreux en titane
JP3830382B2 (ja) セラミック焼結体およびその製造方法
JP2007251125A (ja) 軟磁性合金圧密体及びその製造方法
CN111009370B (zh) 一种金属磁粉芯的制备方法
JP2011181624A (ja) 高強度高比抵抗複合軟磁性材及び電磁気回路部品と高強度高比抵抗複合軟磁性材の製造方法
JP2006001834A (ja) 窒化アルミニウム質セラミックス、半導体製造部材及び窒化アルミニウム質セラミックスの製造方法
JPH03129294A (ja) トランスファーチューブ
JP2010236018A (ja) 高強度低損失複合軟磁性材とその製造方法及び電磁気回路部品
CN113712285A (zh) 一种低温卷烟用居里温度可控电磁加热材料及其制备方法
JP2007220876A (ja) 軟磁性合金圧密体及びその製造方法
TWI359473B (en) Electrostatic chuck heater
KR20110122275A (ko) 금속 다공체 및 그 제조방법
JP2006089791A (ja) 高密度、高強度、高比抵抗および高磁束密度を有する複合軟磁性焼結材の製造方法
WO2024108747A1 (fr) Dispositif d'atomisation en céramique poreuse, et noyau d'atomisation et procédé de préparation associés
WO2022193611A1 (fr) Matrice céramique poreuse de base et son procédé de préparation, noyau d'atomisation de cigarette électronique et cigarette électronique
CN109734432B (zh) 一种车载用宽温抗应力铁氧体材料和磁芯、及其制造方法
JP2018117059A (ja) 焼結磁石製造用モールド及び該モールドを用いた焼結磁石製造方法
CN111869938A (zh) 一种陶瓷加热体
CN107805071B (zh) 一种低玻璃润湿性钛三铝碳二/莫来石复合陶瓷的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22862802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22862802

Country of ref document: EP

Kind code of ref document: A1