WO2023029255A1 - 一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法 - Google Patents

一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法 Download PDF

Info

Publication number
WO2023029255A1
WO2023029255A1 PCT/CN2021/134488 CN2021134488W WO2023029255A1 WO 2023029255 A1 WO2023029255 A1 WO 2023029255A1 CN 2021134488 W CN2021134488 W CN 2021134488W WO 2023029255 A1 WO2023029255 A1 WO 2023029255A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
manganese
temperature
automotive electronics
wide temperature
Prior art date
Application number
PCT/CN2021/134488
Other languages
English (en)
French (fr)
Inventor
魏凌霄
邢冰冰
段金柱
王鸿健
金辉
缪思敏
Original Assignee
天通控股股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天通控股股份有限公司 filed Critical 天通控股股份有限公司
Priority to DE112021008179.9T priority Critical patent/DE112021008179T5/de
Publication of WO2023029255A1 publication Critical patent/WO2023029255A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2658Other ferrites containing manganese or zinc, e.g. Mn-Zn ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron

Definitions

  • the invention relates to manganese-zinc soft magnetic ferrite with wide temperature and high magnetic permeability for automotive electronics and a preparation method, belonging to the technical field of magnetic materials.
  • the working environment of automotive electronic products is very harsh, and temperature has a great impact on electronic products.
  • the car engine itself is a heat source. In a hot area, the car is running at full load. If the car is stopped immediately and the engine is turned off, the heat emitted by the exhaust pipe will cause the temperature of the engine room to rise above 100°C. In cold regions, if the vehicle is parked outdoors for a long time, the temperature in the engine room will drop below -40°C. Therefore, the automotive electronic products generally installed in the engine room are required to work normally within the temperature range of -40°C to +125°C, otherwise it will affect the driving of the car and even cause safety problems.
  • the patent with the publication number CN101620908A discloses a wide temperature and wide frequency high Curie point low loss manganese zinc ferrite material and its preparation method. The rate is higher, and the temperature stability of the magnetic permeability in the range of -40 to +125 ° C is better.
  • the patent with publication number CN112194480A discloses a manganese-zinc ferrite material with wide temperature, high Bs and low temperature coefficient and its preparation method.
  • the formula and doping system used in this patent are different from this material, and its initial magnetic permeability is 2500
  • the range of -3300 is far lower than the magnetic permeability performance of the material of the present invention, and the present invention adopts jet milling and low-temperature sintering, so that the material has higher magnetic permeability and better temperature stability.
  • the patent with the publication number CN103896567A discloses a preparation technology of a low temperature coefficient ferrite material, which is quite different from the present invention in the preparation process, and its working temperature range is only in the range of -10°C-55°C, and compared with The temperature coefficient is much lower than that of the material of the present invention.
  • the patent with the publication number CN106747396B discloses a high-permeability manganese-zinc ferrite material for automotive electronics and its preparation method, which is quite different from the doping system and process of this material, and does not use Co 2 O 3 and TiO 2 , without jet milling process, only has good temperature stability at 25°C to 80°C.
  • the patent with the publication number CN109626981A discloses a manganese-zinc ferrite with wide temperature, wide frequency and high magnetic permeability and its preparation method, but its working temperature range is only 2°C to 110°C, and there is no such thing as a negative temperature range. Magnetic permeability properties.
  • the material of the present invention has high magnetic permeability and temperature stability, excellent specific temperature coefficient, low specific loss factor, high Curie temperature and high Bs in the range of -40°C to +125°C, and can fully Meet the application of materials in the direction of automotive electronics.
  • the present invention provides a manganese-zinc soft magnetic ferrite with wide temperature and high magnetic permeability for automotive electronics and a preparation method thereof.
  • the formula content and process parameters do not have obvious regularity.
  • a manganese-zinc soft magnetic ferrite with wide temperature and high magnetic permeability for automotive electronics and its preparation method are disclosed.
  • the present invention is characterized in that the material comprises a main component and an auxiliary component, the main component includes Fe2O3 : 53mol%-55mol%, ZnO: 16mol% -19mol %, and the rest is Mn3O4 , based on the total weight of the main component, the
  • the above auxiliary components include: nano CaCO 3 : 400ppm-1000ppm, nano-TiO 2 : 4000ppm-6000ppm, nano-Co 2 O 3 : 500ppm-2000ppm, nano-Nb 2 O 5 : 100ppm-350ppm, nano-SiO 2 : 20ppm-150ppm, nanometer CuO: 0ppm ⁇ 600ppm.
  • the above-mentioned wide-temperature high-permeability manganese-zinc soft magnetic ferrite for automotive electronics and a preparation method thereof comprise the following steps:
  • Step 1 Ingredients: Fe 2 O 3 : 53mol% to 55mol%, ZnO: 16mol% to 19mol%, and the rest is Mn 3 O 4 , and then mixed by wet ball milling, and the mixing time is 10min to 40min;
  • Step 2 Pre-burning: Pre-burn the mixture obtained in step 1 after drying.
  • the pre-burning temperature is 700°C-1000°C
  • the heating rate is 3°C/min-5°C/min
  • the holding time is 1-3 hours ;
  • Step 3 Sanding: vibrate and grind the calcined material obtained in Step 2, and then add auxiliary components: nano-CaCO 3 : 400ppm-1000ppm, nano-TiO 2 : 2000ppm-6000ppm, nano-Nb 2 O 5 : 100ppm-350ppm, nano-SiO 2 : 20ppm ⁇ 150ppm, nano CuO: 0ppm ⁇ 600ppm.
  • Adopt the method of fluidized bed jet mill the air pressure is 0.6MPa ⁇ 1.0MPa, the speed of classifying wheel is 8000rpm, the time of jet mill is 30 ⁇ 60min, the particle size range of D50 after pulverization is 1.0 ⁇ m ⁇ 1.3 ⁇ m, and the particle size range of D90 is 2.1 ⁇ m ⁇ 2.6 ⁇ m ;
  • Step 4 Granulation: add 3wt% to 20wt% polyvinyl alcohol to the jet-milled powder according to the total weight of the obtained powder, grind and sieve into granules of a certain size;
  • Step 5 Press molding: press into a circular green body with a size of ⁇ 25mm* ⁇ 15mm*7.5mm, and a density of 3.15g/cm 3 to 3.35g/cm 3 ;
  • Step 6 Sintering: the sintering temperature is 1200°C-1280°C, the holding time is 4h-8h, the equilibrium oxygen content is 3.0%-8.0%, and the grain size is refined to 15 ⁇ m-20 ⁇ m after sintering.
  • the main components of a wide-temperature high-permeability manganese-zinc soft magnetic ferrite for automotive electronics include Fe 2 O 3 : 53.0 mol% to 54.0 mol%, ZnO: 16.0 mol% to 17.5 mol%, and the rest Mn 3 O 4 , based on the total weight of the main components, the auxiliary components include: nano CaCO 3 : 400ppm-800ppm, nano-TiO2: 4000ppm-6000ppm, nano-Co 2 O 3 : 500ppm-2000ppm, nano-Nb 2 O 5 : 100ppm-300ppm, nano-SiO 2 : 20ppm-100ppm, nano-CuO: 0ppm-600ppm.
  • step 6 the sintering temperature is 1200°C-1240°C, the holding time is 4h-8h, and the equilibrium oxygen content is 3.0%-8.0%.
  • the self-crushing of the particles is carried out by means of a fluidized bed jet mill, and compressed air is used as the working medium.
  • the particles enter the jet mill they mainly collide with other particles to be broken.
  • the particles in the jet mill gradually accumulate, and at the same time the particles are continuously crushed, and the small particles are classified by the classifying wheel to become products.
  • the crushing principle is mainly impact and collision. Compared with the traditional ball mill, on the one hand, it can get Powder with smaller particle size and more uniform distribution can effectively reduce D50 ⁇ D90; The effect of the air flow is used to make the particles self-crushing.
  • the traditional ball mill uses the ball material to collide with the particles.
  • the ball material will be worn during the friction process and unnecessary impurities will be generated. There are impurities in it.
  • the reduction of D50-D90 can improve the activity of the powder, and the low-temperature sintering conditions can make the grain growth more uniform, and obtain a ferrite material with high magnetic permeability and better temperature stability. At the same time, the reduction of introduced impurities can avoid unnecessary influence and prevent abnormal growth of crystal grains.
  • the wide-temperature high-permeability manganese-zinc soft magnetic ferrite for automotive electronics of the present invention has excellent ⁇ -T characteristics at -40°C to +125°C, the magnetic permeability is stable above 5000, and the temperature stability of the magnetic permeability High, while achieving technical performance, indicators and parameters as follows:
  • the high magnetic permeability of the manganese-zinc soft magnetic ferrite with wide temperature and high magnetic permeability for automotive electronics of the present invention can meet the requirements of device filtering and miniaturization, and its excellent temperature stability can ensure that the components can work normally under extreme temperature conditions. operation, ensuring the safety and stability of automotive electronic products.
  • Fig. 2 is a graph showing the variation of magnetic permeability of manganese-zinc soft ferrite with temperature in the embodiment and the comparative example.
  • Embodiment 1 A kind of manganese-zinc soft magnetic ferrite material with wide temperature and high magnetic permeability for automotive electronics is composed of main components and auxiliary components.
  • the preparation method is as follows:
  • Step 1 Ingredients: Fe 2 O 3 : 53.1mol%, ZnO: 17mol% and the rest of Mn 3 O 4 ingredients, and then mixed by wet ball milling, the mixing time is 20min;
  • Step 2 Pre-burning: Pre-burn the mixture obtained in step 1 after drying.
  • the pre-burning temperature is 900°C, the heating rate is 5°C/min, and the temperature is kept for 2h;
  • Step 3 Sanding: vibrating the obtained calcined material, and then adding auxiliary components: nano-CaCO 3 : 500ppm, nano-TiO 2 : 4000ppm, Co 2 O 3 : 1000ppm, nano-Nb 2 O 5 : 200ppm, nano-SiO 2 : 60ppm, nano-CuO: 200ppm, milled with a fluidized bed jet for 50min;
  • Step 4 Granulation: according to the total weight of the powder obtained after jet milling, add 15wt% polyvinyl alcohol, grind and sieve into particles of a certain size;
  • Step 5 Press forming: press into a circular green body with a size of ⁇ 25mm* ⁇ 15mm*7.5mm, and a density of 3.2g/cm 3 ;
  • Step 6 Sintering: the sintering temperature is 1220° C., the equilibrium oxygen content is 4%, and the temperature is kept for 5 hours.
  • Embodiment 2 a kind of manganese-zinc soft magnetic ferrite material with wide temperature and high magnetic permeability for automotive electronics is composed of main component and auxiliary component, and the preparation method is as follows:
  • Step 1 Ingredients: Fe 2 O 3 : 53.1mol%, ZnO: 17mol% and the rest of Mn 3 O 4 ingredients, and then mixed by wet ball milling, the mixing time is 20min;
  • Step 2 Pre-burning: pre-burn the mixture obtained in step 1 after drying, the pre-burning temperature is 950°C, the heating rate is 5°C/min, and the temperature is kept for 2h;
  • Step 3 Sanding: vibrating the obtained calcined material, and then adding auxiliary components: nano-CaCO3: 500ppm, nano-TiO 2 : 4000ppm, Co 2 O 3 : 1000ppm, nano-Nb 2 O 5 : 200ppm, nano-SiO 2 : 60ppm , Nano-CuO: 100ppm, use a fluidized bed jet mill for 50min;
  • Step 4 Granulation: according to the total weight of the powder obtained after jet milling, add 15wt% polyvinyl alcohol, grind and sieve into particles of a certain size;
  • Step 5 Press forming: press into a circular green body with a size of ⁇ 25mm* ⁇ 15mm*7.5mm and a density of 3.2g/cm3;
  • Step 6 Sintering: the sintering temperature is 1240° C., the equilibrium oxygen content is 4%, and the temperature is kept for 5 hours.
  • Embodiment 3 A manganese-zinc soft magnetic ferrite material with wide temperature and high magnetic permeability for automotive electronics is composed of main components and auxiliary components.
  • the preparation method is as follows:
  • Step 1 Ingredients: Fe 2 O 3 : 53.3mol%, ZnO: 16.9mol% and the rest of Mn 3 O 4 ingredients, and then mixed by wet ball milling, the mixing time is 20min;
  • Step 2 Pre-burning: Pre-burn the mixture obtained in step 1 after drying.
  • the pre-burning temperature is 900°C, the heating rate is 5°C/min, and the temperature is kept for 2h;
  • Step 3 Sanding: vibrating the obtained calcined material, and then adding auxiliary components: nano-CaCO 3 : 500ppm, nano-TiO 2 : 4800ppm, Co 2 O 3 : 1200ppm, nano-Nb 2 O 5 : 200ppm, nano-SiO 2 : 20ppm, nano-CuO: 200ppm, use a fluidized bed jet mill for 50min;
  • Step 4 Granulation: according to the total weight of the powder obtained after jet milling, add 15wt% polyvinyl alcohol, grind and sieve into particles of a certain size;
  • Step 5 Press forming: press into a circular green body with a size of ⁇ 25mm* ⁇ 15mm*7.5mm and a density of 3.2g/cm3;
  • Step 6 Sintering: the sintering temperature is 1240° C., the equilibrium oxygen content is 4%, and the temperature is kept for 5 hours.
  • Comparative Example 1 A manganese-zinc soft magnetic ferrite material with wide temperature and high magnetic permeability for automotive electronics is composed of main components and auxiliary components. The preparation method is as follows:
  • Step 1 Ingredients: Fe 2 O 3 : 53.1mol%, ZnO: 17mol% and the rest of Mn 3 O 4 ingredients, and then mixed by wet ball milling, the mixing time is 20min;
  • Step 2 Pre-burning: Pre-burn the mixture obtained in step 1 after drying.
  • the pre-burning temperature is 900°C, the heating rate is 5°C/min, and the temperature is kept for 2h;
  • Step 3 Sanding: vibrating the obtained calcined material, and then adding auxiliary components: nano-CaCO 3 : 500ppm, nano-TiO 2 : 4000ppm, Co 2 O 3 : 1000ppm, nano-Nb 2 O 5 : 200ppm, nano-SiO 2 : 60ppm, nano CuO: 200ppm, pulverized by ball mill for 80min;
  • Step 4 Granulation: according to the total weight of the powder obtained after ball milling, add 15wt% polyvinyl alcohol, grind and sieve into particles of a certain size;
  • Step 5 Press forming: press into a circular green body with a size of ⁇ 25mm* ⁇ 15mm*7.5mm and a density of 3.2g/cm3;
  • Step 6 Sintering: the sintering temperature is 1220° C., the equilibrium oxygen content is 4%, and the temperature is kept for 5 hours.
  • Comparative Example 2 A manganese-zinc soft magnetic ferrite material with wide temperature and high magnetic permeability for automotive electronics, which consists of main components and auxiliary components.
  • the preparation method is as follows:
  • Step 1 Ingredients: Fe 2 O 3 : 53.2mol%, ZnO: 16.6mol% and the rest of Mn 3 O 4 ingredients, and then mixed by wet ball milling, the mixing time is 20min;
  • Step 2 Pre-burning: Pre-burn the mixture obtained in step 1 after drying.
  • the pre-burning temperature is 900°C, the heating rate is 5°C/min, and the temperature is kept for 2h;
  • Step 3 Sanding: vibrating the obtained calcined material, and then adding auxiliary components: nano-CaCO 3 : 500ppm, nano-TiO 2 : 4800ppm, Co 2 O 3 : 1200ppm, nano-Nb 2 O 5 : 200ppm, nano-SiO 2 : 20ppm, nano-CuO: 200ppm, jet mill with fluidized bed for 50min;
  • Step 4 Granulation: according to the total weight of the powder obtained after jet milling, add 15wt% polyvinyl alcohol, grind and sieve into particles of a certain size;
  • Step 5 Press forming: press into a circular green body with a size of ⁇ 25mm* ⁇ 15mm*7.5mm and a density of 3.2g/cm3;
  • Step 6 Sintering: the sintering temperature is 1300° C., the equilibrium oxygen content is 4%, and the temperature is kept for 5 hours.
  • Comparative Example 3 A manganese-zinc soft magnetic ferrite material with wide temperature and high magnetic permeability for automotive electronics, which is composed of main components and auxiliary components.
  • the preparation method is as follows:
  • Step 1 Ingredients: Fe 2 O 3 : 53.1mol%, ZnO: 17mol% and the rest of Mn 3 O 4 ingredients, and then mixed by wet ball milling, the mixing time is 20min;
  • Step 2 Pre-burning: Pre-burn the mixture obtained in step 1 after drying.
  • the pre-burning temperature is 900°C, the heating rate is 5°C/min, and the temperature is kept for 2h;
  • Step 3 Sanding: vibrating the obtained calcined material, and then adding auxiliary components: nano-CaCO 3 : 500ppm, nano-TiO 2 : 4800ppm, Co 2 O 3 : 1200ppm, nano-Nb 2 O 5 : 200ppm, nano-SiO 2 : 20ppm, nano-CuO: 200ppm, use a fluidized bed jet mill for 20min;
  • Step 4 Granulation: according to the total weight of the powder obtained after jet milling, add 15wt% polyvinyl alcohol, grind and sieve into particles of a certain size;
  • Step 5 Press forming: press into a circular green body with a size of ⁇ 25mm* ⁇ 15mm*7.5mm and a density of 3.2g/cm3;
  • Step 6 Sintering: the sintering temperature is 1300° C., the equilibrium oxygen content is 4%, and the temperature is kept for 5 hours.
  • Comparative Example 4 A manganese-zinc soft magnetic ferrite material with wide temperature and high magnetic permeability for automotive electronics, which is composed of main components and auxiliary components.
  • the preparation method is as follows:
  • Step 1 Ingredients: Fe 2 O 3 : 53.6mol%, ZnO: 16.7mol% and the rest of Mn 3 O 4 ingredients, and then mixed by wet ball milling, the mixing time is 20min;
  • Step 2 Pre-burning: pre-burn the mixture obtained in step 1 after drying, the pre-burning temperature is 900°C, the heating rate is 5°C/min, and the temperature is kept for 2h;
  • Step 3 Sanding: vibrating the obtained calcined material, and then adding auxiliary components: nano-CaCO 3 : 500ppm, nano-TiO 2 : 6000ppm, Co 2 O 3 : 800ppm, nano-Nb 2 O 5 : 200ppm, nano-SiO 2 : 40ppm, nano-CuO: 200ppm, milled with a fluidized bed jet for 50min;
  • Step 4 Granulation: according to the total weight of the powder obtained after jet milling, add 15wt% polyvinyl alcohol, grind and sieve into particles of a certain size;
  • Step 5 Press forming: press into a circular green body with a size of ⁇ 25mm* ⁇ 15mm*7.5mm and a density of 3.2g/cm3;
  • Step 6 Sintering: the sintering temperature is 1220° C., the equilibrium oxygen content is 4%, and the temperature is kept for 5 hours.
  • the magnetic permeability and temperature characteristics of the material are greatly improved. has been greatly improved.
  • the example has high magnetic permeability and good temperature stability, while the initial magnetic permeability of Comparative Example 2 and Comparative Example 3 in the temperature range of -40°C to +125°C The stability is poor, and the temperature coefficient deviation of the comparative example is large.
  • the temperature stability of the magnetic permeability of the comparative example 1 and the comparative example 4 is good, the magnetic permeability is low.
  • the initial magnetic permeability is stable above 5000, the temperature stability is high, and the temperature coefficient is strictly controlled. At the same time, the magnetic permeability changes from -40°C to +125°C are very small.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明属于磁性材料技术领域,公开了一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法。该汽车电子用宽温高磁导率锰锌软磁铁氧体包含主成分和辅助成分,所述主成分包括Fe2O3:53mol%~55mol%,ZnO:16mol%~19mol%,其余为Mn3O4,按主成分总重量计,所述辅助成分包括:纳米CaCO3:400ppm~1000ppm、纳米TiO2:4000ppm~6000ppm、纳米Co2O3:500ppm~2000ppm,纳米Nb2O5:100ppm~350ppm、纳米SiO2:20ppm~150ppm、纳米CuO:0ppm~600ppm。本发明通过合适的主成分与纳米掺杂,采用气流磨和低温烧结的工艺,获得的锰锌铁氧体材料在-40~+125℃范围内具有宽温、高磁导率的特性,其综合磁性能更优,主要应用于汽车电子行业。

Description

一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法 技术领域
本发明涉及汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法,属于磁性材料技术领域。
背景技术
我国汽车电子市场规模持续快速增长,成为推动汽车电动化、智能化、网联化发展的重要引擎。在人工智能、云计算、无人驾驶、5G等技术的有力带动下、新能源汽车发展战略指导下,我国汽车电子进入新一轮技术迭代、产业升级,汽车电子在整车中的成本占比持续增长,车规级芯片与传感器有望成为产业发展的核心驱动力,我国汽车电子发展进入又一个黄金期。
汽车电子产品的工作环境非常恶劣,温度对电子产品的影响非常大。汽车发动机本身是热源,在炎热的地区,汽车在满负荷行驶,如立即停车将发动机熄火,这时排气管散出的热量会使发动机室的温度升到100℃以上。在寒冷地区,车辆长时间停放在室外,会使发动机室内的温度降低至-40℃以下。因此,一般安装在发动机室内的汽车电子产品,都要求在-40℃~+125℃温度范围内都能正常工作,否则将影响汽车行驶,甚至是出现安全问题。这就需要汽车电子产品中的元件在-40℃~+125℃温度范围内具有优异的温度稳定性,而现有的高磁导率材料往往在过高或过低的温度下,磁导率变化过大。在这样的极端温度下,汽车电子产品难以正常使用。研究表明,通过合理的配方及制备工艺研究,能够改善材料的温度特性,对制备汽车电子用宽温高磁导率锰锌软磁铁氧体具有重要的指导意义。
公开号为CN101620908A的专利公开了一种宽温宽频高居里点低损耗锰锌铁氧体材料及其制备方法,相较于该专利,本发明采用了气流磨和低温烧结的工艺,材料磁导率更高,-40~+125℃范围内磁导率的温度稳定性更好。公开号为CN112194480A的专利公开了一种宽温高Bs低温度系数锰锌铁氧体材料及其制备方法,该专利使用的配方及掺杂体系与本材料不 同,其起始磁导率在2500-3300范围间,远远低于本发明材料的磁导率性能,而且本发明采用了气流磨及低温烧结的方式,使得材料具有更高的磁导率和更好的温度稳定性。公开号为CN103896567A的专利公开了一种低温度系数铁氧体材料的制备技术,在制备工艺上与本发明有很大差异,其工作温度范围仅在-10℃—55℃范围内,且比温度系数远低于本发明材料。公开号为CN106747396B的专利公开了一种汽车电子用高磁导率锰锌铁氧体材料及其制备方法,与本材料的掺杂体系及工艺有较大差异,未用到Co 2O 3和TiO 2,未采用气流磨工艺,只在25℃~80℃具有较好的温度稳定性。公开号为CN109626981A的专利公开了一种宽温宽频高磁导率锰锌铁氧体及其制备方法,但是其工作温度范围仅是2℃~110℃,并未有其在负温度范围内的磁导率特性。
综上,目前现有技术中缺少一种在-40℃~+125℃范围内具有宽温高磁导率特性的锰锌软磁铁氧体材料,以便能够应用于汽车电子产品中,适用于极端温度条件下的正常运作。本发明材料在-40℃~+125℃范围内具有较高的磁导率及其温度稳定性、优异的比温度系数、较低的比损耗因子、高居里温度和较高的Bs,可以充分满足材料在汽车电子方向的应用。
发明内容
为了解决以上问题,本发明提供了一种汽车电子用宽温高磁导率锰锌软磁铁氧体及其制备方法。本发明通过对磁性材料配方(特别是辅助成分的配方)以及制备工艺(尤其是气流磨和烧结工艺)进行深入研究后,在调整配方含量以及工艺参数不具备明显规律性的情况下,摸索出了一种汽车电子用宽温高磁导率锰锌软磁铁氧体及其制备方法。
本发明特征在于,材料包含主成分和辅助成分,主成分包括Fe 2O 3:53mol%~55mol%,ZnO:16mol%~19mol%,其余为Mn 3O 4,按主成分总重量计,所述辅助成分包括:纳米CaCO 3:400ppm~1000ppm、纳米TiO 2:4000ppm~6000ppm、纳米Co 2O 3:500ppm~2000ppm,纳米Nb 2O 5:100ppm~350ppm、纳米SiO 2:20ppm~150ppm、纳米CuO:0ppm~600ppm。
上述汽车电子用宽温高磁导率锰锌软磁铁氧体及其制备方法,包括如下步骤:
步骤1:配料:Fe 2O 3:53mol%~55mol%,ZnO:16mol%~19mol%,其余为Mn 3O 4,然后进行湿法球磨混合,混合时间为10min~40min;
步骤2:预烧:对步骤1中所得混合料烘干后进行预烧,预烧温度为700℃~1000℃,升温速率为3℃/min~5℃/min,保温时间1小时-3小时;
步骤3:砂磨:对步骤2所得预烧料振磨,然后加入辅助成分:纳米CaCO 3:400ppm~1000ppm、纳米TiO 2:2000ppm~6000ppm、纳米Nb 2O 5:100ppm~350ppm、纳米SiO 2:20ppm~150ppm、纳米CuO:0ppm~600ppm。采用流化床气流磨的方式,气压0.6MPa~1.0MPa,分级轮转速8000rpm,气流磨时间30~60min,粉碎后的D50粒度范围为1.0μm~1.3μm,D90粒度范围为2.1μm~2.6μm;
步骤4:造粒:对气流磨后的粉料,根据得到粉料总重量,加入3wt%~20wt%聚乙烯醇,研磨过筛成一定尺寸的颗粒;
步骤5:压制成型:压制成尺寸为Φ25mm*Φ15mm*7.5mm环形生坯,密度为3.15g/cm 3~3.35g/cm 3
步骤6:烧结:烧结温度为1200℃~1280℃,保温时间为4h~8h,平衡氧含量为3.0%~8.0%,烧结后晶粒粒径细化至15μm~20μm。
作为一种优选,一种汽车电子用宽温高磁导率锰锌软磁铁氧体的主成分包括Fe 2O 3:53.0mol%~54.0mol%,ZnO:16.0mol%~17.5mol%,其余为Mn 3O 4,按主成分总重量计,所述辅助成分包括:纳米CaCO 3:400ppm~800ppm、纳米TiO2:4000ppm~6000ppm、纳米Co 2O 3:500ppm~2000ppm,纳米Nb 2O 5:100ppm~300ppm、纳米SiO 2:20ppm~100ppm、纳米CuO:0ppm~600ppm。
作为一种优选,步骤6中,烧结温度为1200℃~1240℃,保温时间为4h~8h,平衡氧含量为3.0%~8.0%。
通过TiO 2和Co 2O 3的联合作用,调控材料的磁晶各向异性常数K 1,使软磁铁氧体在 宽温条件下磁导率变化小,稳定性好,优化了材料整体μ-T曲线。另外,由于TiO 2与Co 2O 3的掺杂受烧结温度影响很大,为了避免烧结温度高使材料特性恶化,通过掺杂Nb 2O 5、SiO 2、CuO的方式降低烧结温度,同时细化晶粒粒径,使软磁铁氧体具有良好晶粒一致性,可以减小应力,使不同温度下磁导率的变化减小。
所述步骤3中,采用流化床气流磨的方式进行颗粒的自粉碎,使用压缩空气等作为工作介质,颗粒进入气流磨后主要与其他颗粒进行碰撞发生破碎。当开始进料后,气流磨中颗粒逐渐累积,同时颗粒不断被粉碎,小颗粒被分级轮分级出去成为产品,其粉碎原理主要是冲击和碰撞,相较于传统的球磨,一方面,可以得到粒度更小,分布更加均匀的粉料,有效缩小D50~D90;另一方面,这种气流磨方式不会在研磨过程中产生不必要的杂质,最终所得产品的纯度较高,这是因为其采用气流的作用使颗粒间产生自粉碎,而与传统球磨机不同,传统球磨机采用球体材料与颗粒发生摩擦碰撞,球体材料在摩擦过程中会出现磨损,产生不必要的杂质,从而在研磨的最终产品中存在杂质。D50~D90减小,可以使粉料活性提高,配合低温烧结条件可以使晶粒生长更均匀,得到具有高磁导率,更好温度稳定性的铁氧体材料。同时引入杂质的减少可以避免不必要的影响,防止晶粒异常长大。
与现有技术相比,本发明的有益效果为:
本发明的汽车电子用宽温高磁导率锰锌软磁铁氧体,在-40℃~+125℃具有优秀的μ-T特性,磁导率稳定在5000以上,磁导率的温度稳定性高,同时达到技术性能、指标和参数如下:
(1)起始磁导率μ i≥5000(T=25℃,B<0.25mT,10kHz);
(2)比损耗因子tanδ/μ i<3(T=25℃,B<0.25mT,100kHz);
(3)相对温度因数α F:(-0.5-0.5)×10 -6(f=10kHz,B<0.25mT,-40~+125℃);
(4)饱和磁感应强度B S≥460mT(25℃,H=1194A/m);
(5)居里温度T C≥180℃。
本发明的汽车电子用宽温高磁导率锰锌软磁铁氧体的高磁导率可以满足器件滤波和 小型化的需求,优异的温度稳定性可以保证元件在极端的温度条件下都可以正常运行,确保了汽车电子产品的安全稳定。
附图说明
图1实施例与比较例的αF(-40℃~+125℃)差异图;
图2实施例与比较例中锰锌软磁铁氧体的磁导率随温度变化曲线图。
具体实施方式
下面通过具体的实施案例,对本发明所制备的汽车电子用宽温高磁导率锰锌软磁铁氧体及制备工艺进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:一种汽车电子用宽温高磁导率锰锌软磁铁氧体材料,由主成分和辅助成分组成,制备方法如下:
步骤1:配料:Fe 2O 3:53.1mol%,ZnO:17mol%和其余的Mn 3O 4配料,然后进行湿法球磨混合,混合时间为20min;
步骤2:预烧:对步骤1中所得混合料烘干后在进行预烧,预烧温度为900℃,升温速率为5℃/min,保温2h;
步骤3:砂磨:对所得预烧料振磨,然后加入辅助成分:纳米CaCO 3:500ppm、纳米TiO 2:4000ppm、Co 2O 3:1000ppm,纳米Nb 2O 5:200ppm、纳米SiO 2:60ppm、纳米CuO:200ppm,用流化床气流磨50min;
步骤4:造粒:根据气流磨后得到粉料总重量,加入15wt%聚乙烯醇,研磨过筛成一定尺寸的颗粒;
步骤5:压制成型:压制成尺寸为Φ25mm*Φ15mm*7.5mm环形生坯,密度为3.2g/cm 3
步骤6:烧结:烧结温度为1220℃,平衡氧含量为4%,保温5h。
实施例2:一种汽车电子用宽温高磁导率锰锌软磁铁氧体材料,由主成分和辅助成分 组成,制备方法如下:
步骤1:配料:Fe 2O 3:53.1mol%,ZnO:17mol%和其余的Mn 3O 4配料,然后进行湿法球磨混合,混合时间为20min;
步骤2:预烧:对步骤1中所得混合料烘干后在进行预烧,预烧温度为950℃,升温速率为5℃/min,保温2h;
步骤3:砂磨:对所得预烧料振磨,然后加入辅助成分:纳米CaCO3:500ppm、纳米TiO 2:4000ppm、Co 2O 3:1000ppm,纳米Nb 2O 5:200ppm、纳米SiO 2:60ppm、纳米CuO:100ppm,用流化床气流磨50min;
步骤4:造粒:根据气流磨后得到粉料总重量,加入15wt%聚乙烯醇,研磨过筛成一定尺寸的颗粒;
步骤5:压制成型:压制成尺寸为Φ25mm*Φ15mm*7.5mm环形生坯,密度为3.2g/cm3;
步骤6:烧结:烧结温度为1240℃,平衡氧含量为4%,保温5h。
实施例3:一种汽车电子用宽温高磁导率锰锌软磁铁氧体材料,由主成分和辅助成分组成,制备方法如下:
步骤1:配料:Fe 2O 3:53.3mol%,ZnO:16.9mol%和其余的Mn 3O 4配料,然后进行湿法球磨混合,混合时间为20min;
步骤2:预烧:对步骤1中所得混合料烘干后在进行预烧,预烧温度为900℃,升温速率为5℃/min,保温2h;
步骤3:砂磨:对所得预烧料振磨,然后加入辅助成分:纳米CaCO 3:500ppm、纳米TiO 2:4800ppm、Co 2O 3:1200ppm,纳米Nb 2O 5:200ppm、纳米SiO 2:20ppm、纳米CuO:200ppm,用流化床气流磨50min;
步骤4:造粒:根据气流磨后得到粉料总重量,加入15wt%聚乙烯醇,研磨过筛成一定尺寸的颗粒;
步骤5:压制成型:压制成尺寸为Φ25mm*Φ15mm*7.5mm环形生坯,密度为3.2g/cm3;
步骤6:烧结:烧结温度为1240℃,平衡氧含量为4%,保温5h。
比较例1:一种汽车电子用宽温高磁导率锰锌软磁铁氧体材料,由主成分和辅助成分组成,制备方法如下:
步骤1:配料:Fe 2O 3:53.1mol%,ZnO:17mol%和其余的Mn 3O 4配料,然后进行湿法球磨混合,混合时间为20min;
步骤2:预烧:对步骤1中所得混合料烘干后在进行预烧,预烧温度为900℃,升温速率为5℃/min,保温2h;
步骤3:砂磨:对所得预烧料振磨,然后加入辅助成分:纳米CaCO 3:500ppm、纳米TiO 2:4000ppm、Co 2O 3:1000ppm,纳米Nb 2O 5:200ppm、纳米SiO 2:60ppm、纳米CuO:200ppm,球磨机粉碎80min;
步骤4:造粒:根据球磨后得到粉料总重量,加入15wt%聚乙烯醇,研磨过筛成一定尺寸的颗粒;
步骤5:压制成型:压制成尺寸为Φ25mm*Φ15mm*7.5mm环形生坯,密度为3.2g/cm3;
步骤6:烧结:烧结温度为1220℃,平衡氧含量为4%,保温5h。
比较例2:一种汽车电子用宽温高磁导率锰锌软磁铁氧体材料,由主成分和辅助成分组成,制备方法如下:
步骤1:配料:Fe 2O 3:53.2mol%,ZnO:16.6mol%和其余的Mn 3O 4配料,然后进行湿法球磨混合,混合时间为20min;
步骤2:预烧:对步骤1中所得混合料烘干后在进行预烧,预烧温度为900℃,升温速率为5℃/min,保温2h;
步骤3:砂磨:对所得预烧料振磨,然后加入辅助成分:纳米CaCO 3:500ppm、纳米TiO 2:4800ppm、Co 2O 3:1200ppm,纳米Nb 2O 5:200ppm、纳米SiO 2:20ppm、纳米CuO:200ppm, 用流化床气流磨50min;
步骤4:造粒:根据气流磨后得到粉料总重量,加入15wt%聚乙烯醇,研磨过筛成一定尺寸的颗粒;
步骤5:压制成型:压制成尺寸为Φ25mm*Φ15mm*7.5mm环形生坯,密度为3.2g/cm3;
步骤6:烧结:烧结温度为1300℃,平衡氧含量为4%,保温5h。
比较例3:一种汽车电子用宽温高磁导率锰锌软磁铁氧体材料,由主成分和辅助成分组成,制备方法如下:
步骤1:配料:Fe 2O 3:53.1mol%,ZnO:17mol%和其余的Mn 3O 4配料,然后进行湿法球磨混合,混合时间为20min;
步骤2:预烧:对步骤1中所得混合料烘干后在进行预烧,预烧温度为900℃,升温速率为5℃/min,保温2h;
步骤3:砂磨:对所得预烧料振磨,然后加入辅助成分:纳米CaCO 3:500ppm、纳米TiO 2:4800ppm、Co 2O 3:1200ppm,纳米Nb 2O 5:200ppm、纳米SiO 2:20ppm、纳米CuO:200ppm,用流化床气流磨20min;
步骤4:造粒:根据气流磨后得到粉料总重量,加入15wt%聚乙烯醇,研磨过筛成一定尺寸的颗粒;
步骤5:压制成型:压制成尺寸为Φ25mm*Φ15mm*7.5mm环形生坯,密度为3.2g/cm3;
步骤6:烧结:烧结温度为1300℃,平衡氧含量为4%,保温5h。
比较例4:一种汽车电子用宽温高磁导率锰锌软磁铁氧体材料,由主成分和辅助成分组成,制备方法如下:
步骤1:配料:Fe 2O 3:53.6mol%,ZnO:16.7mol%和其余的Mn 3O 4配料,然后进行湿法球磨混合,混合时间为20min;
步骤2:预烧:对步骤1中所得混合料烘干后在进行预烧,预烧温度为900℃,升温速率为5℃ /min,保温2h;
步骤3:砂磨:对所得预烧料振磨,然后加入辅助成分:纳米CaCO 3:500ppm、纳米TiO 2:6000ppm、Co 2O 3:800ppm,纳米Nb 2O 5:200ppm、纳米SiO 2:40ppm、纳米CuO:200ppm,用流化床气流磨50min;
步骤4:造粒:根据气流磨后得到粉料总重量,加入15wt%聚乙烯醇,研磨过筛成一定尺寸的颗粒;
步骤5:压制成型:压制成尺寸为Φ25mm*Φ15mm*7.5mm环形生坯,密度为3.2g/cm3;
步骤6:烧结:烧结温度为1220℃,平衡氧含量为4%,保温5h。
实施例与比较例温度磁导率测试结果如下表:
Figure PCTCN2021134488-appb-000001
通过对比实施例与比较例表明:通过采用合适的组成主成分和辅助成分,并对材料的工艺进行优化,尤其是采用了气流磨及低温烧结工艺,对材料的磁导率和温度特性都有得到了极大的改善。通过上表及图1、图2可以看出,实施例磁导率高,温度稳定性好,而比较例2和比较例3在-40℃~+125℃温度范围内的起始磁导率稳定性差,比较例温度系数偏差大,比较例1和比较例4磁导率虽然磁导率的温度稳定性较好,但磁导率偏低。实施例起始磁导率稳 定在5000以上,温度稳定性高,且对温度系数有严格的把控,同时-40℃~+125℃磁导率变化都很小。
以上所述仅为本发明的一些实施方式,但本发明的保护范围并不局限于此。

Claims (8)

  1. 一种汽车电子用宽温高磁导率锰锌软磁铁氧体,其特征在于,材料包含主成分和辅助成分,主成分包括Fe 2O 3:53mol%~55mol%,ZnO:16mol%~19mol%,其余为Mn 3O 4,按主成分总重量计,所述辅助成分包括:纳米CaCO 3:400ppm~1000ppm、纳米TiO 2:2000ppm~6000ppm、纳米Co 2O 3:500ppm~2000ppm,纳米Nb 2O 5:100ppm~350ppm、纳米SiO 2:20ppm~150ppm、纳米CuO:0ppm~600ppm,材料制备方法包括以下步骤:
    步骤1:配料:按照比例将主成分Fe 2O 3、ZnO、Mn 3O 4称取后进行湿法球磨混合,混合时间为10min~40min;
    步骤2:预烧:对步骤1中所得混合料进行烘干,并在700℃~1000℃预烧,保温时间为1小时~3小时;
    步骤3:砂磨:对步骤2所得预烧料进行振磨,按照比例加入辅助成分纳米CaCO 3、纳米TiO 2、纳米Co 2O 3、纳米Nb 2O 5、纳米SiO 2、纳米CuO,并采用流化床气流磨的方式对预烧料进行粉碎;
    步骤4:造粒:对气流磨后的粉料造粒;
    步骤5:压制成型:压制成尺寸为Φ25mm*Φ15mm*7.5mm环形生坯,密度为3.15g/cm 3~3.35g/cm 3
    步骤6:烧结,烧结温度为1200℃~1280℃,保温时间为4h~8h,平衡氧含量为3.0%~8.0%。
  2. 根据权利要求1所述的一种汽车电子用宽温高磁导率锰锌软磁铁氧体,其特征在于,所述主成分包括Fe 2O 3:53.0mol%~54.0mol%,ZnO:16.0mol%~17.5mol%,其余为Mn 3O 4,按主成分总重量计,所述辅助成分包括:纳米CaCO 3:400ppm~800ppm、纳米TiO2:4000ppm~6000ppm、纳米Co 2O 3:500ppm~2000ppm,纳米Nb 2O 5:100ppm~300ppm、纳米SiO 2:20ppm~100ppm、纳米CuO:0ppm~600ppm。
  3. 根据权利要求1所述的一种汽车电子用宽温高磁导率锰锌软磁铁氧体,其特征在于,所述步骤2中,在空气中进行预烧,预烧温度升温速率为3℃/min~5℃/min。
  4. 根据权利要求1所述的一种汽车电子用宽温高磁导率锰锌软磁铁氧体,其特征在于,所述步骤3中,粉碎时间是30min~60min,气压0.6~1.0MPa,分级轮转速8000rpm。
  5. 根据权利要求1所述的一种汽车电子用宽温高磁导率锰锌软磁铁氧体,其特征在于,所述步骤3中,粉碎后的D50粒度范围为1.0μm~1.3μm,D90粒度范围为2.1μm~2.6μm。
  6. 根据权利要求1所述的一种汽车电子用宽温高磁导率锰锌软磁铁氧体,所述步骤6中,烧结温度为1200℃~1240℃,保温时间为4h~8h,平衡氧含量为3.0%~8.0%。
  7. 根据权利要求1所述的一种汽车电子用宽温高磁导率锰锌软磁铁氧体,所述步骤6中,烧结后的晶粒粒径为15μm~20μm。
  8. 根据权利要求1-7任一所述的一种汽车电子用宽温高磁导率锰锌软磁铁氧体,其特征在于,所述汽车电子用宽温高磁导率锰锌软磁铁氧体在-40℃~+125℃范围内的比温度系数为-0.5~0.5,磁导率稳定在5000以上。
PCT/CN2021/134488 2021-09-03 2021-11-30 一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法 WO2023029255A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021008179.9T DE112021008179T5 (de) 2021-09-03 2021-11-30 Weichmagnetischer Mangan-Zink-Ferrit mit breitem Temperaturbereich und hoher magnetischer Permeabilität für Automobilelektronik und Herstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111032368.2A CN113480302B (zh) 2021-09-03 2021-09-03 一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法
CN202111032368.2 2021-09-03

Publications (1)

Publication Number Publication Date
WO2023029255A1 true WO2023029255A1 (zh) 2023-03-09

Family

ID=77947118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134488 WO2023029255A1 (zh) 2021-09-03 2021-11-30 一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法

Country Status (3)

Country Link
CN (1) CN113480302B (zh)
DE (1) DE112021008179T5 (zh)
WO (1) WO2023029255A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117383924A (zh) * 2023-12-11 2024-01-12 天通控股股份有限公司 一种宽频高阻抗高磁导率锰锌软磁铁氧体及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113480302B (zh) * 2021-09-03 2021-11-09 天通控股股份有限公司 一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法
CN115716745A (zh) * 2022-10-28 2023-02-28 重庆科技学院 一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法
CN117125970A (zh) * 2023-08-24 2023-11-28 山东凯通电子有限公司 一种宽温高直流低功耗的锰锌铁氧体磁芯及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160965A (ja) * 2000-11-22 2002-06-04 Nippon Ceramic Co Ltd Mn−Znフェライト
CN101419858A (zh) * 2007-10-23 2009-04-29 江苏省晶石磁性材料与器件工程技术研究有限公司 宽频高磁导率低损耗锰锌软磁铁氧体材料及其制备方法
CN101807463A (zh) * 2010-03-31 2010-08-18 苏州天铭磁业有限公司 一种兼有高起始磁导率和低损耗的MnZn铁氧体材料及其制备方法
CN106783123A (zh) * 2016-11-21 2017-05-31 京磁材料科技股份有限公司 钕铁硼材料的低温烧结制备方法
CN107473727A (zh) * 2017-09-21 2017-12-15 郴州市久隆旺高科电子有限公司 一种宽频宽温高功率密度低损耗锰锌软磁铁氧体材料及其制备方法
CN113024239A (zh) * 2021-04-26 2021-06-25 贵州正业龙腾新材料开发有限公司 一种宽温超低损耗锰锌铁氧体材料及其制备方法
CN113480302A (zh) * 2021-09-03 2021-10-08 天通控股股份有限公司 一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101256868A (zh) * 2007-04-06 2008-09-03 昆山尼赛拉电子器材有限公司 Mn-Zn系软磁铁氧体及生产方法
CN101256866B (zh) * 2007-12-29 2010-05-19 电子科技大学 宽温超低损耗MnZn软磁铁氧体材料及制备方法
CN101620908B (zh) 2009-06-05 2011-10-05 南京精研磁性技术有限公司 宽温宽频高居里点低损耗锰锌铁氧体材料及其制备方法
CN101996724A (zh) * 2009-08-27 2011-03-30 上海康顺磁性元件厂有限公司 一种软磁锰锌铁氧体材料及其制备方法
CN101863657B (zh) * 2010-06-23 2012-08-22 横店集团东磁股份有限公司 宽温高初始磁导率的Mn-Zn铁氧体材料及其制备方法
CN101894650A (zh) * 2010-07-07 2010-11-24 天通控股股份有限公司 一种宽温高磁导率低失真软磁铁氧体
CN103086705B (zh) * 2011-11-03 2014-07-30 上海宝钢磁业有限公司 一种具有宽温高直流叠加特性的锰锌软磁铁氧体材料
CN102693806B (zh) * 2012-01-19 2015-09-16 横店集团东磁股份有限公司 一种网络变压器用Mn-Zn高磁导率铁氧体及其制备方法
CN102964116A (zh) * 2012-10-12 2013-03-13 横店集团东磁股份有限公司 宽温高直流叠加软磁铁氧体
CN103896567A (zh) 2012-12-28 2014-07-02 天津昊高磁材有限公司 一种低温度系数铁氧体材料的制备方法
CN104761249A (zh) * 2015-01-29 2015-07-08 横店集团东磁股份有限公司 一种锰锌铁氧体材料及其制备方法
CN106747396B (zh) * 2016-12-29 2020-04-14 天通控股股份有限公司 一种汽车电子用高磁导率锰锌铁氧体材料及其制备方法
CN107089828B (zh) * 2017-03-21 2019-12-17 横店集团东磁股份有限公司 一种宽温宽频低比磁导率温度系数的锰锌高磁导率材料及其制备方法
CN106830913B (zh) * 2017-03-22 2020-01-10 天通控股股份有限公司 一种高频低损耗高饱和磁通密度软磁铁氧体材料及其制备方法
CN109485403A (zh) * 2018-10-26 2019-03-19 天通控股股份有限公司 一种高Bs低损耗软磁铁氧体材料及其制备方法
CN109626981A (zh) 2019-01-22 2019-04-16 苏州冠达磁业有限公司 一种宽温宽频高磁导率锰锌铁氧体及其制备方法
CN112194480A (zh) 2020-10-21 2021-01-08 广东泛瑞新材料有限公司 一种宽温高Bs低温度系数的锰锌铁氧体材料及其制备方法
CN112456994A (zh) * 2020-11-27 2021-03-09 天通控股股份有限公司 一种低温烧结高频低损耗MnZn软磁铁氧体及其制备方法
CN112723873B (zh) * 2021-02-05 2023-06-02 天通控股股份有限公司 一种宽频高阻抗高磁导率MnZn软磁铁氧体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160965A (ja) * 2000-11-22 2002-06-04 Nippon Ceramic Co Ltd Mn−Znフェライト
CN101419858A (zh) * 2007-10-23 2009-04-29 江苏省晶石磁性材料与器件工程技术研究有限公司 宽频高磁导率低损耗锰锌软磁铁氧体材料及其制备方法
CN101807463A (zh) * 2010-03-31 2010-08-18 苏州天铭磁业有限公司 一种兼有高起始磁导率和低损耗的MnZn铁氧体材料及其制备方法
CN106783123A (zh) * 2016-11-21 2017-05-31 京磁材料科技股份有限公司 钕铁硼材料的低温烧结制备方法
CN107473727A (zh) * 2017-09-21 2017-12-15 郴州市久隆旺高科电子有限公司 一种宽频宽温高功率密度低损耗锰锌软磁铁氧体材料及其制备方法
CN113024239A (zh) * 2021-04-26 2021-06-25 贵州正业龙腾新材料开发有限公司 一种宽温超低损耗锰锌铁氧体材料及其制备方法
CN113480302A (zh) * 2021-09-03 2021-10-08 天通控股股份有限公司 一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117383924A (zh) * 2023-12-11 2024-01-12 天通控股股份有限公司 一种宽频高阻抗高磁导率锰锌软磁铁氧体及其制备方法
CN117383924B (zh) * 2023-12-11 2024-04-26 天通控股股份有限公司 一种宽频高阻抗高磁导率锰锌软磁铁氧体及其制备方法

Also Published As

Publication number Publication date
DE112021008179T5 (de) 2024-06-27
CN113480302A (zh) 2021-10-08
CN113480302B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2023029255A1 (zh) 一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法
CN111943658B (zh) 一种宽温低损耗MnZn铁氧体材料及其制备方法
WO2023130731A1 (zh) 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法
CN112321293A (zh) 一种高磁导率高频高阻抗高居里温度锰锌铁氧体材料及其制备方法
CN106747396B (zh) 一种汽车电子用高磁导率锰锌铁氧体材料及其制备方法
CN108947513B (zh) 一种低压低温烧结制备的功率镍锌铁氧体及其制备方法
CN103058643A (zh) 宽温高叠加低功耗Mn-Zn软磁铁氧体材料及制备方法
CN113087516B (zh) 利用工业废弃物制备锰锌铁氧体的低温烧结方法
CN103626484A (zh) 一种宽温镍锌软磁铁氧体及其制备方法
CN113087515B (zh) 高饱和磁感应强度和宽温低磁芯损耗锰锌铁氧体及其制备方法和四氟铝酸钾的应用
CN110577400A (zh) 高磁导率锰锌铁氧体的制备方法
CN107021746A (zh) 一种锰锌铁氧体材料及其制备方法
CN104072120A (zh) 一种高磁感锰锌铁氧体材料
CN107089828B (zh) 一种宽温宽频低比磁导率温度系数的锰锌高磁导率材料及其制备方法
WO2023005782A1 (zh) 一种Mn-Zn铁氧体材料及其制备方法
CN112408969A (zh) 一种宽温低功耗的锰锌铁氧体材料及其制备方法
CN115073158A (zh) 一种锰锌铁氧体材料及其制备方法与应用
CN110818402A (zh) 一种超细铁氧体粉末的制备方法
CN109704749B (zh) 超高频低损耗软磁铁氧体材料及磁芯的制备方法和应用
CN116375462A (zh) 一种宽温低功耗锰锌软磁铁氧体材料及其制备方法
CN115677337B (zh) 一种功率铁氧体材料及其制备方法与应用
CN111039669A (zh) 高强度抗变形锰锌铁氧体及其制备方法
CN112645702B (zh) 一种宽频宽温高磁导率Mn-Zn铁氧体材料及其制备方法与应用
CN1564281A (zh) 通讯用磁芯的制备方法
CN108017382B (zh) MnZn铁氧体材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955783

Country of ref document: EP

Kind code of ref document: A1