CN113087516B - 利用工业废弃物制备锰锌铁氧体的低温烧结方法 - Google Patents

利用工业废弃物制备锰锌铁氧体的低温烧结方法 Download PDF

Info

Publication number
CN113087516B
CN113087516B CN202110353057.XA CN202110353057A CN113087516B CN 113087516 B CN113087516 B CN 113087516B CN 202110353057 A CN202110353057 A CN 202110353057A CN 113087516 B CN113087516 B CN 113087516B
Authority
CN
China
Prior art keywords
manganese
temperature
sintering
zinc ferrite
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110353057.XA
Other languages
English (en)
Other versions
CN113087516A (zh
Inventor
符靓
黎树春
谢华林
廖新仁
马俊才
赵飞
张伟鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Shangjia Electronics Co ltd
Chongqing University
Original Assignee
Chongqing Shangjia Electronics Co ltd
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Shangjia Electronics Co ltd, Chongqing University filed Critical Chongqing Shangjia Electronics Co ltd
Priority to CN202110353057.XA priority Critical patent/CN113087516B/zh
Publication of CN113087516A publication Critical patent/CN113087516A/zh
Application granted granted Critical
Publication of CN113087516B publication Critical patent/CN113087516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2616Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing lithium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/763Spinel structure AB2O4

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种利用工业废弃物制备锰锌铁氧体的低温烧结方法,其特征在于,按照如下方法制备:(1)一次砂磨:(2)预烧:采用二氧化碳气体保护,将一次砂磨后的粉料预烧,得到预烧料;(3)二次砂磨并掺杂:在上述预烧料中加入掺杂成分进行二次砂磨;(4)喷雾造粒和成型(5)烧结;烧结温度控制在1100℃~1200℃,从室温升温到1100℃~1200℃阶段仍然采用二氧化碳气体进行保护烧结,温度升至1100℃~1200℃后,在氧气气氛下保温烧结,然后冷却至室温过程中仍然采用二氧化碳气体保护。利用共沉淀碳酸盐煅烧分解产生的二氧化碳为保护气,在保证锰锌铁氧体磁学性能的前提下,降低锰锌铁氧体的烧结温度,从而降低生产能耗,减少锰锌铁氧体的制备成本。

Description

利用工业废弃物制备锰锌铁氧体的低温烧结方法
技术领域
本发明涉及一种利用工业废弃物制备锰锌铁氧体的低温烧结方法,属于软磁铁氧体材料领域。
背景技术
锰锌铁氧体作为在中低频段产量最大、应用最为广泛的软磁铁氧体材料,是由具有尖晶石结构的aMnFe2O4·bZnFe2O4立方晶系与少量的Fe3O4晶体混合组成的单相固溶体。锰锌铁氧体的晶体结构对称性非常高,具有矫顽力低、磁晶各向异性常数小、起始磁导率高、饱和磁感应强度高、截止频率高等诸多优异的磁性能和功率损耗低、温度稳定良好等特性,自研究开发以来,无论在计算机、通信技术、航空航天、电子电力技术、工业自动化技术、生物医用技术还是在日用生活产品等领域都成为非常重要的部分,在国民经济发展中占据极其重要的地位。
工业废弃物(如含锌废弃物、含铁废硫酸、钛白粉生产中所排放的钛白废酸和铁源等)通常含有大量金属元素锰、锌、铁,为工业废弃物资源化制备锰锌铁氧体提供了可能。利用富含锰、锌、铁的工业废弃物制备锰锌铁氧体,既能对工业废弃物中的锰、锌、铁进行回收利用,又能消除其对环境和人类健康构成的潜在危害,体现了正确处理生态环境保护和发展关系的要求。因此,不管从经济战略观点出发,还是从环境和安全方面考虑,对实现工业废弃物的资源化和减量化都具有重大意义。
从工业废弃物提取主量元素锰、锌、铁,碳酸盐共沉淀法具有独特的除杂优势,通常采用碳酸氢铵或碳酸氢铵与氨水为沉淀剂。将锰、锌、铁以碳酸盐的方式共沉淀下来,煅烧后碳酸盐分解为相应的氧化物,从而得到锰锌铁氧体复合料,在碳酸盐的煅烧过程中,会产生大量二氧化碳,二氧化碳直接排放在空气中,引起温室效应,不环保,成本高。ZL201410401285.X将碳酸盐分解的二氧化碳回收做沉淀剂,用于再次沉淀碳酸盐,仅实现了二氧化碳的简单循环利用。
在锰锌铁氧体的制备过程中,烧结温度直接影响材料的磁学性能,通常需要达到1300℃~1400℃,保温时间长达数小时,能耗巨大。ZL201510866846.8 对锰锌铁氧体烧结工艺进行了改进优化,采用氮气保护使锰锌铁氧体烧结温度降低100℃~200℃,降低了生产锰锌铁氧体的能耗,减少生产成本,但需要使用高纯氮气增加了额外成本。
发明内容
针对上述技术问题,本发明的目的在于提供一种利用工业废弃物制备锰锌铁氧体的低温烧结方法,利用共沉淀碳酸盐煅烧分解产生的二氧化碳为保护气,在保证锰锌铁氧体磁学性能的前提下,降低锰锌铁氧体的烧结温度,从而降低生产能耗,减少锰锌铁氧体的制备成本。
为了实现上述目的,本发明的技术方案为:一种利用工业废弃物制备锰锌铁氧体的低温烧结方法,其特征在于,按照如下方法制备:
(1)一次砂磨:将锰锌铁氧体复合粉料装入砂磨机充分搅拌后加入蒸馏水,进行湿法砂磨后干燥;
(2)预烧:采用二氧化碳气体保护,将一次砂磨后的粉料于750℃~950℃预烧1~6h后自然冷却至室温,得到预烧料;
(3)二次砂磨并掺杂:在上述预烧料中加入掺杂成分,装入砂磨机充分搅拌后加入蒸馏水,进行湿法二次砂磨后烘干;
(4)喷雾造粒和成型:将二次砂磨掺杂干燥后的粉料与润滑剂和粘结剂均匀搅拌混合后在喷雾塔中进行喷雾造粒,制成粒径为100~400μm的圆球形的颗粒料,烘干造粒料表面的水分后压制成型;
(5)烧结;将压制成型的坯件在钟罩式气氛烧结炉中进行烧结,烧结温度控制在1100℃~1200℃,从室温升温到1100℃~1200℃阶段仍然采用二氧化碳气体进行保护烧结,温度升至1100℃~1200℃后,在氧气气氛下保温烧结4~6h,然后冷却至室温过程中仍然采用二氧化碳气体进行保护,所述二氧化碳气体为生产中产生的废气。
优选:所述锰锌铁氧体复合粉料采用含锰、锌和铁的工业废弃物制成。
上述方案中:将含锰物料加入含铁废硫酸或含锰物料、硫酸亚铁或铁屑加入纯硫酸中反应,制得含铁和含锰的溶液,含锌物料加入另一含铁废硫酸或含锌物料、硫酸亚铁或铁屑加入纯硫酸中反应,制得含铁和锌的溶液,然后分别加入溶液重量1‰~3‰的双氧水与溶液中金属离子反应,调节pH3-6,过滤,得到净化液;在净化液中分别加入碳酸氢铵共沉淀,过滤洗涤得到共沉淀粉料,将共沉淀粉料在650-850℃下进行高温加热分解得到Fe2O3、Mn3O4和ZnO混合物,再加入纯的Fe2O3、Mn3O4和ZnO调节Fe2O3、Mn3O4和ZnO的比例得到锰锌铁氧体复合粉料,分解产生的二氧化碳废气作为预烧结和烧结时的保护气。共沉淀粉料的制备方法与申请人早期申请的专利ZL200910103167X中的方法一样。
上述方案中:从钟罩式气氛烧结炉和预烧结炉出来的二氧化碳保护气通入吸收塔内,加入氨水和液氨吸收后循环利用。回收利用方法与ZL201410401285X 中的方法一样。
上述方案中:一次砂磨时间为50~120min,二次砂磨时间3-8h。
上述方案中:一次砂磨后粉体的粒径为0.8~1.4μm,二次砂磨后,粉体的粒径为0.6~1.1μm。
上述方案中:在1100℃~1200℃烧结过程中控制平衡氧分压的范围为: 0.5~8%。
上述方案中:所述润滑剂为硬脂酸锌,所述粘接剂为聚乙烯醇溶液,它们的加入量占锰锌铁氧体复合粉料重量的百分比分别为润滑剂0.1~0.5wt%,粘结剂8~12wt%。
本发明在于采用高温加热分解共沉粉的尾气进行保护预烧,尾气成分为共沉淀碳酸盐分解产生的二氧化碳,浓度高达99%以上,并附带大量热量,在预烧阶段保护一次砂磨后的粉料时,能有效防止氧气进入预烧粉体内部,并在预烧阶段通过控制温度完成材料的尖晶石化过程,使后续的烧结过程中不释放氧气影响烧结速率,从而实现低温烧结,烧结温度可降低100-200℃。预烧完成后的二氧化碳通入吸收塔内进行反应,调pH控制在6.5左右,反应完成后,反应液流入沉淀反应釜中进行沉淀得到碳酸盐,不影响二氧化碳的循环使用。
提高锰锌铁氧体的密度可提高材料的饱和磁感应强度(Bs),在低温 (700℃左右)烧结阶段,材料的致密性非常接近理论值,然而,随着烧结温度的提高,材料的密度略有下降。当烧结温度接近传统的烧结温度1300℃时,获得样品的密度却只有理论密度的90%。因此,必须提高锰锌铁氧体的致密性以确保材料的高Bs。现有技术中的锰锌铁氧体其磁感应强度(Bs)也可以做到 600mT左右,但是存在功率损耗大(大于1000mW/cm3)的缺陷,从而使得这些锰锌铁氧体无法实现在工业上的应用。
为此,申请人在研发中还研究调节了掺杂成分,各掺杂成分以及它们的加入量占Fe2O3、Mn3O4和ZnO混合物重量的百分比分别为:CaCO30.01~0.09wt%、TiO20.01~0.09%、NiO 0.01~0.09wt%、Nb2O50.03~0.10wt%、Li2CO30.01~ 0.08wt%、Bi2O30.01~0.06wt%、Co2O30.01~0.07wt%、KAlF41~5wt%。
CaCO3作为第二相沉积在锰锌铁氧体晶界中。TiO2、NiO、Nb2O5、Li2CO3进入锰锌铁氧体尖晶石结构内取代金属离子位置。Bi2O3、Co2O3为在锰锌铁氧体烧结过程中形成液相促进烧结的低溶点氧化物。
众所周知,制备工艺对Bs的影响主要体现在对密度的影响上,当密度增高时,Bs也会随之增高。现有制备工艺基本都是从改善烧成制度着手,如提高成型密度、提高烧结温度、改善氧分压等等。本发明人通过长期对烧结过程的研究发现:在二次砂磨中添加KAlF4能显著提高后期烧结材料的致密性,KAlF4主要应用于钎焊,具有良好的流动性。二次砂磨粉料中,KAlF4以固体的形式均匀分布,在烧结过程中,由于KAlF4的熔点远低于烧结温度,高温使KAlF4熔融以液体的形式流动于烧结体中,由于KAlF4缺乏黏性,不会停留于晶粒之间的间隙里,在不停流动过程一方面带走残留气体,另一方面使晶粒的晶界之间阻力变小,提高了材料的致密性。并且KAlF4的特殊结构不会在熔融过程中电离,形成气态时仍然以KAlF4蒸气存在,因此,在烧结过程中,随着KAlF4的流动逐渐气化,以气体的形式从材料的表面逸出而没有残留,有提高材料致密性的同时不会影响材料的其他磁学性能,通过对比发现,添加KAlF4进行烧结后锰锌铁氧体的密度非常接近理论值。基于NiFe2O4和Li0.5Fe2.5O4的居里温度比FeFe2O4的高,通过加入NiO和Li2CO3改善材料的宽温特性,同时进行材料的配方优化和掺杂改性降低了功率损耗,最终制备了高Bs和宽温低Pcv的锰锌铁氧体。该高Bs和宽温低Pcv的锰锌铁氧体功耗谷点在90℃,在100kHz, 200mT时的功率损耗≤250mW/cm3,在1000A/m,50Hz的条件下25℃时Bs ≥550mT,在1000A/m,50Hz的条件下100℃时Bs≥440mT。获得了兼具高Bs 和宽温低Pcv的高叠加材料。
有益效果;本发明利用共沉淀碳酸盐分解产生的二氧化碳为预烧和烧结的保护气,无需额外购买其它保护气,降低了生产成本;在预烧阶段通过二氧化碳的保护,在不改变材料磁学性能的前提下,降低后续烧结的温度100~200℃,降低了能耗,降低了生产成本;二氧化碳作为保护气使用后,仍然能作为共沉淀的碳源循环使用,提高了二氧化碳的利用价值。
具体实施方式
下面通过实施例,对本发明作进一步说明:
实施例1
利用工业废弃物制备锰锌铁氧体的低温烧结方法,按照ZL200910103167X 中实施例1的步骤(1)-(3)的方法,制备得到锰锌铁氧体复合粉料。
(1)一次砂磨:将锰锌铁氧体复合粉料装入砂磨机充分搅拌后加入蒸馏水,进行湿法砂磨后干燥,一次砂磨时间为120min,砂磨后粉体的粒径为0.8~ 1.4μm。
(2)预烧:采用分解共沉淀粉体产生的二氧化碳废气作为保护气,将一次砂磨后的粉料于950℃预烧1h后自然冷却至室温,得到预烧料。
(3)二次砂磨并掺杂:在上述预烧料中加入掺杂成分,装入砂磨机充分搅拌后加入蒸馏水,进行湿法二次砂磨后于110℃烘干,二次砂磨时间3h,二次砂磨后,粉体的粒径为0.6~1.1μm。
各掺杂成分以及它们的加入量占锰锌铁氧体复合粉料的百分比分别为:CaCO30.01wt%、TiO20.01%、NiO 0.01wt%、Nb2O50.05wt%、Li2CO30.08wt%、Bi2O30.01wt%、Co2O30.01wt%、KAlF41wt%。
(4)喷雾造粒和成型:将二次砂磨掺杂干燥后的粉料与润滑剂和粘结剂均匀搅拌混合后在喷雾塔中进行喷雾造粒,制成粒径为100~400μm的圆球形的颗粒料,烘干造粒料表面的水分后压制成型。润滑剂硬脂酸锌0.6wt%和粘接剂聚乙烯醇溶液6wt%。
(5)烧结:将压制成型的坯件在钟罩式气氛烧结炉中进行烧结,烧结温度控制在1100℃~1200℃,从室温升温到1100℃~1200℃阶段仍然采用二氧化碳气体进行保护烧结。温度升至1100℃~1200℃后,在氧气气氛下保温烧结4~6h,其中平衡氧分压的范围为:0.5~8%。然后冷却至室温过程中仍然采用二氧化碳气体进行保护,二氧化碳还是为分解共沉淀粉体产生的二氧化碳废气。从钟罩式气氛烧结炉和预烧结炉出来的二氧化碳保护气通入吸收塔内,加入氨水和液氨吸收后循环利用。循环利用方法参见ZL201410401285X。制备的锰锌铁氧体功耗谷点在90℃,在100kHz,200mT时的功率损耗≤250 mW/cm3,在1000A/m,50Hz的条件下25℃时Bs 555mT,在1000A/m,50Hz 的条件下100℃时Bs 442mT。获得了兼具高Bs和宽温低Pcv的高叠加材料。
实施例2
利用工业废弃物制备锰锌铁氧体的低温烧结方法,按照ZL200910103167X 中实施例2的步骤(1)-(3)的方法,制备得到锰锌铁氧体复合粉料。
(1)一次砂磨:将锰锌铁氧体复合粉料装入砂磨机充分搅拌后加入蒸馏水,进行湿法砂磨后干燥,一次砂磨时间为80min,次砂磨后粉体的粒径为 0.8~1.4μm。
(2)预烧:采用分解共沉淀粉体产生的二氧化碳废气作为保护气,将一次砂磨后的粉料于750℃预烧6h后自然冷却至室温,得到预烧料。
(3)二次砂磨并掺杂:在上述预烧料中加入掺杂成分,装入砂磨机充分搅拌后加入蒸馏水,进行湿法二次砂磨后于110℃烘干,二次砂磨时间8h,二次砂磨后,粉体的粒径为0.6~1.1μm。
各掺杂成分以及它们的加入量占锰锌铁氧体复合粉料的百分比分别为:CaCO30.09wt%、TiO20.09%、NiO 0.09wt%、Nb2O50.03wt%、Li2CO30.01wt%、Bi2O30.06wt%、Co2O30.07wt%、KAlF45wt%。
(4)喷雾造粒和成型:将二次砂磨掺杂干燥后的粉料与润滑剂和粘结剂均匀搅拌混合后在喷雾塔中进行喷雾造粒,制成粒径为100~400μm的圆球形的颗粒料,烘干造粒料表面的水分后压制成型。润滑剂硬脂酸锌0.5wt%和粘接剂聚乙烯醇溶液12wt%。
(5)烧结:将压制成型的坯件在钟罩式气氛烧结炉中进行烧结,烧结温度控制在1100℃~1200℃,从室温升温到1100℃~1200℃阶段仍然采用二氧化碳气体进行保护烧结,温度升至1100℃~1200℃后,在氧气气氛下保温烧结4~6h,其中平衡氧分压的范围为:0.5~8%。然后冷却至室温过程中仍然采用二氧化碳气体进行保护,二氧化碳还是为分解共沉淀粉体产生的二氧化碳废气。从钟罩式气氛烧结炉和预烧结炉出来的二氧化碳保护气通入吸收塔内,加入氨水和液氨吸收后循环利用。循环利用方法参见ZL201410401285X。锰锌铁氧体功耗谷点在90℃,在100kHz,200mT时的功率损耗≤250mW/cm3,在1000A/m,50Hz的条件下25℃时Bs 562mT,在1000A/m,50Hz的条件下100℃时Bs 442mT。获得了兼具高Bs和宽温低Pcv的高叠加材料。
实施例3
利用工业废弃物制备锰锌铁氧体的低温烧结方法,按照ZL200910103167X 中实施例3的步骤(1)-(3)的方法,制备得到锰锌铁氧体复合粉料。
(1)一次砂磨:将锰锌铁氧体复合粉料装入砂磨机充分搅拌后加入蒸馏水,进行湿法砂磨后干燥,一次砂磨时间为100min,次砂磨后粉体的粒径为0.8~1.4μm。
(2)预烧:采用分解共沉淀粉体产生的二氧化碳废气作为保护气,将一次砂磨后的粉料于820℃预烧4h后自然冷却至室温,得到预烧料。
(3)二次砂磨并掺杂:在上述预烧料中加入掺杂成分,装入砂磨机充分搅拌后加入蒸馏水,进行湿法二次砂磨后于110℃烘干,二次砂磨时间5h,二次砂磨后,粉体的粒径为0.6~1.1μm。
各掺杂成分以及它们的加入量占锰锌铁氧体复合粉料的百分比分别为:CaCO30.06wt%、TiO20.06%、NiO 0.06wt%、Nb2O50.08wt%、Li2CO30.06wt%、Bi2O30.046wt%、Co2O30.05wt%、KAlF43wt%。
(4)喷雾造粒和成型:将二次砂磨掺杂干燥后的粉料与润滑剂和粘结剂均匀搅拌混合后在喷雾塔中进行喷雾造粒,制成粒径为100~400μm的圆球形的颗粒料,烘干造粒料表面的水分后压制成型。润滑剂硬脂酸锌0.3wt%和粘接剂聚乙烯醇溶液9wt%。
(5)烧结:将压制成型的坯件在钟罩式气氛烧结炉中进行烧结,烧结温度控制在1100℃~1200℃,从室温升温到1100℃~1200℃阶段仍然采用二氧化碳气体进行保护烧结,温度升至1100℃~1200℃后,在氧气气氛下保温烧结4~6h,其中平衡氧分压的范围为:0.5~8%。然后冷却至室温过程中仍然采用二氧化碳气体进行保护,二氧化碳还是为分解共沉淀粉体产生的二氧化碳废气。从钟罩式气氛烧结炉和预烧结炉出来的二氧化碳保护气通入吸收塔内,加入氨水和液氨吸收后循环利用。循环利用方法参见ZL201410401285X。锰锌铁氧体功耗谷点在90℃,在100kHz,200mT时的功率损耗≤250mW/cm3,在1000A/m,50Hz的条件下25℃时Bs 564mT,在1000A/m,50Hz的条件下100℃时Bs 462mT。获得了兼具高Bs和宽温低Pcv的高叠加材料。
实施例4
利用工业废弃物制备锰锌铁氧体的低温烧结方法,按照ZL200910103167X 中实施例4的步骤(1)-(3)的方法,制备得到锰锌铁氧体复合粉料。
(1)一次砂磨:将锰锌铁氧体复合粉料装入砂磨机充分搅拌后加入蒸馏水,进行湿法砂磨后干燥,一次砂磨时间为90min,次砂磨后粉体的粒径为 0.8~1.4μm。
(2)预烧:采用分解共沉淀粉体产生的二氧化碳废气作为保护气,将一次砂磨后的粉料于850℃预烧4h后自然冷却至室温,得到预烧料。
(3)二次砂磨并掺杂:在上述预烧料中加入掺杂成分,装入砂磨机充分搅拌后加入蒸馏水,进行湿法二次砂磨后于110℃烘干,二次砂磨时间5h,二次砂磨后,粉体的粒径为0.6~1.1μm。
各掺杂成分以及它们的加入量占锰锌铁氧体复合粉料的百分比分别为:CaCO30.05wt%、TiO20.05%、NiO 0.05wt%、Nb2O50.07wt%、Li2CO30.05wt%、Bi2O30.04wt%、Co2O30.06wt%、KAlF44wt%。
(4)喷雾造粒和成型:将二次砂磨掺杂干燥后的粉料与润滑剂和粘结剂均匀搅拌混合后在喷雾塔中进行喷雾造粒,制成粒径为100~400μm的圆球形的颗粒料,烘干造粒料表面的水分后压制成型。润滑剂硬脂酸锌0.3wt%和粘接剂聚乙烯醇溶液10wt%。
(5)烧结:将压制成型的坯件在钟罩式气氛烧结炉中进行烧结,烧结温度控制在1100℃~1200℃,从室温升温到1100℃~1200℃阶段仍然采用二氧化碳气体进行保护烧结,温度升至1100℃~1200℃后,在氧气气氛下保温烧结4~6h,其中平衡氧分压的范围为:0.5~8%。然后冷却至室温过程中仍然采用二氧化碳气体进行保护,二氧化碳还是为分解共沉淀粉体产生的二氧化碳废气。从钟罩式气氛烧结炉和预烧结炉出来的二氧化碳保护气通入吸收塔内,加入氨水和液氨吸收后循环利用。循环利用方法参见ZL201410401285X。锰锌铁氧体功耗谷点在90℃,在100kHz,200mT时的功率损耗≤250mW/cm3,在1000A/m,50Hz的条件下25℃时Bs 563mT,在1000A/m,50Hz的条件下100℃时Bs 449mT。获得了兼具高Bs和宽温低Pcv的高叠加材料。
实施例5
利用工业废弃物制备锰锌铁氧体的低温烧结方法,按照ZL200910103167X 中实施例5的步骤(1)-(3)的方法,制备得到锰锌铁氧体复合粉料。
(1)一次砂磨:将锰锌铁氧体复合粉料装入砂磨机充分搅拌后加入蒸馏水,进行湿法砂磨后干燥,一次砂磨时间为100min,次砂磨后粉体的粒径为 0.8~1.4μm。
(2)预烧:采用分解共沉淀粉体产生的二氧化碳废气作为保护气,将一次砂磨后的粉料于850℃预烧4h后自然冷却至室温,得到预烧料。
(3)二次砂磨并掺杂:在上述预烧料中加入掺杂成分,装入砂磨机充分搅拌后加入蒸馏水,进行湿法二次砂磨后于110℃烘干,二次砂磨时间6h,二次砂磨后,粉体的粒径为0.6~1.1μm。
各掺杂成分以及它们的加入量占锰锌铁氧体复合粉料的百分比分别为:CaCO30.02wt%、TiO20.03%、NiO 0.08wt%、Nb2O50.04wt%、Li2CO30.05wt%、Bi2O30.06wt%、Co2O30.07wt%、KAlF42wt%。
(4)喷雾造粒和成型:将二次砂磨掺杂干燥后的粉料与润滑剂和粘结剂均匀搅拌混合后在喷雾塔中进行喷雾造粒,制成粒径为100~400μm的圆球形的颗粒料,烘干造粒料表面的水分后压制成型。润滑剂硬脂酸锌0.2wt%和粘接剂聚乙烯醇溶液8wt%。
(5)烧结:将压制成型的坯件在钟罩式气氛烧结炉中进行烧结,烧结温度控制在1100℃~1200℃,从室温升温到1100℃~1200℃阶段仍然采用二氧化碳气体进行保护烧结,温度升至1100℃~1200℃后,在氧气气氛下保温烧结4~6h,其中平衡氧分压的范围为:0.5~8%。然后冷却至室温过程中仍然采用二氧化碳气体进行保护,二氧化碳还是为分解共沉淀粉体产生的二氧化碳废气。从钟罩式气氛烧结炉和预烧结炉出来的二氧化碳保护气通入吸收塔内,加入氨水和液氨吸收后循环利用。循环利用方法参见ZL201410401285X。锰锌铁氧体功耗谷点在90℃,在100kHz,200mT时的功率损耗≤250mW/cm3,在1000A/m,50Hz的条件下25℃时Bs 564mT,在1000A/m,50Hz的条件下100℃时Bs 446mT。获得了兼具高Bs和宽温低Pcv的高叠加材料。
本发明不局限于上述实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化,修改,替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (8)

1.一种利用工业废弃物制备锰锌铁氧体的低温烧结方法,其特征在于,按照如下方法制备:
(1)一次砂磨:将锰锌铁氧体复合粉料装入砂磨机充分搅拌后加入蒸馏水,进行湿法砂磨后干燥;
(2)预烧:采用二氧化碳气体保护,将一次砂磨后的粉料于750℃~950℃预烧1~6h后自然冷却至室温,得到预烧料;
(3)二次砂磨并掺杂:在上述预烧料中加入掺杂成分,装入砂磨机充分搅拌后加入蒸馏水,进行湿法二次砂磨后烘干;各掺杂成分以及它们的加入量占Fe2O3、Mn3O4和ZnO混合物重量的百分比分别为:CaCO30.01~0.09wt%、TiO20.01~0.09%、NiO 0.01~0.09wt%、Nb2O50.03~0.10wt%、Li2CO30.01~0.08wt%、Bi2O30.01~0.06wt%、Co2O30.01~0.07wt%、KAlF41~5wt%;
(4)喷雾造粒和成型:将二次砂磨掺杂干燥后的粉料与润滑剂和粘结剂均匀搅拌混合后在喷雾塔中进行喷雾造粒,制成粒径为100~400μm的圆球形的颗粒料,烘干造粒料表面的水分后压制成型;
(5)烧结;将压制成型的坯件在钟罩式气氛烧结炉中进行烧结,烧结温度控制在1100℃~1200℃,从室温升温到1100℃~1200℃阶段仍然采用二氧化碳气体进行保护烧结,温度升至1100℃~1200℃后,在氧气气氛下保温烧结4~6h,然后冷却至室温过程中仍然采用二氧化碳气体进行保护,所述二氧化碳气体为生产中产生的废气。
2.根据权利要求1所述利用工业废弃物制备锰锌铁氧体的低温烧结方法,其特征在于:所述锰锌铁氧体复合粉料采用含锰、锌和铁的工业废弃物制成。
3.根据权利要求2所述利用工业废弃物制备锰锌铁氧体的低温烧结方法,其特征在于:将含锰物料加入含铁废硫酸或含锰物料、硫酸亚铁或铁屑加入纯硫酸中反应,制得含铁和含锰的溶液,含锌物料加入另一含铁废硫酸或含锌物料、硫酸亚铁或铁屑加入纯硫酸中反应,制得含铁和锌的溶液,然后分别加入溶液重量1‰~3‰的双氧水与溶液中金属离子反应,调节pH3-6,过滤,得到净化液;在净化液中分别加入碳酸氢铵共沉淀,过滤洗涤得到共沉淀粉料,将共沉淀粉料在650-850℃下进行高温加热分解得到Fe2O3、Mn3O4和ZnO混合物,再加入纯的Fe2O3、Mn3O4和ZnO调节Fe2O3、Mn3O4和ZnO的比例得到锰锌铁氧体复合粉料,分解产生的二氧化碳废气作为预烧结和烧结时的保护气。
4.根据权利要求3所述利用工业废弃物制备锰锌铁氧体的低温烧结方法,其特征在于:从钟罩式气氛烧结炉和预烧结炉出来的二氧化碳保护气通入吸收塔内,加入氨水和液氨吸收后循环利用。
5.根据权利要求1-4任一项所述利用工业废弃物制备锰锌铁氧体的低温烧结方法,其特征在于:一次砂磨时间为50~120min,二次砂磨时间3-8h。
6.根据权利要求5所述利用工业废弃物制备锰锌铁氧体的低温烧结方法,其特征在于:一次砂磨后粉体的粒径为0.8~1.4μm,二次砂磨后,粉体的粒径为0.6~1.1μm。
7.根据权利要求5所述利用工业废弃物制备锰锌铁氧体的低温烧结方法,其特征在于:在1100℃~1200℃烧结过程中控制平衡氧分压的范围为:0.5~8%。
8.根据权利要求7所述利用工业废弃物制备锰锌铁氧体的低温烧结方法,其特征在于:所述润滑剂为硬脂酸锌,所述粘结 剂为聚乙烯醇溶液,它们的加入量占锰锌铁氧体复合粉料重量的百分比分别为润滑剂0.1~0.5wt%,粘结剂8~12wt%。
CN202110353057.XA 2021-03-31 2021-03-31 利用工业废弃物制备锰锌铁氧体的低温烧结方法 Active CN113087516B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110353057.XA CN113087516B (zh) 2021-03-31 2021-03-31 利用工业废弃物制备锰锌铁氧体的低温烧结方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110353057.XA CN113087516B (zh) 2021-03-31 2021-03-31 利用工业废弃物制备锰锌铁氧体的低温烧结方法

Publications (2)

Publication Number Publication Date
CN113087516A CN113087516A (zh) 2021-07-09
CN113087516B true CN113087516B (zh) 2022-07-22

Family

ID=76672217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110353057.XA Active CN113087516B (zh) 2021-03-31 2021-03-31 利用工业废弃物制备锰锌铁氧体的低温烧结方法

Country Status (1)

Country Link
CN (1) CN113087516B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788672B (zh) * 2021-10-09 2022-11-11 重庆上甲电子股份有限公司 一种锰锌铁氧体制备工艺
CN116003120A (zh) * 2022-12-30 2023-04-25 北京七星飞行电子有限公司 一种利用预烧设备提高产品性能的工艺方法
CN116864293B (zh) * 2023-08-02 2024-05-24 山东春光磁电科技有限公司 一种高频铁氧体材料制备工艺

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599320A (en) * 1982-12-30 1986-07-08 Alcan International Limited Refractory lining material for electrolytic reduction cell for aluminum production and method of making the same
US6309558B1 (en) * 1998-11-25 2001-10-30 Tdk Corporation Process of fabricating a manganese-zinc-ferrite core, and manganese zinc-base ferrite core
CN1812019A (zh) * 2004-12-29 2006-08-02 巨东英 磁性铁氧体及电感材料的低温烧结制备工艺
CN101531503A (zh) * 2009-02-10 2009-09-16 重庆上甲电子股份有限公司 一种制取软磁锰锌铁混合料的方法
CN104211122A (zh) * 2014-08-14 2014-12-17 重庆上甲电子股份有限公司 用硫酸锰溶液制备四氧化三锰的分解沉淀循环工艺
CN105330278A (zh) * 2015-11-27 2016-02-17 全椒君鸿软磁材料有限公司 一种高强度锰锌软磁铁氧体磁芯材料的制备方法
CN105399411A (zh) * 2015-12-01 2016-03-16 横店集团东磁股份有限公司 一种锰锌铁氧体低温烧结工艺
CN106365205A (zh) * 2016-08-18 2017-02-01 河北工业大学 一种锰锌铁氧体纳米粉体的制备方法
CN108046791A (zh) * 2018-01-12 2018-05-18 河北工业大学 一种以纳米MnZn铁氧体粉体制备铁氧体的方法
CN108129143A (zh) * 2018-01-18 2018-06-08 常熟市三佳磁业有限公司 高叠加特性宽温低功耗锰锌软磁铁氧体及其制备方法
CN108640669A (zh) * 2018-06-20 2018-10-12 陕西理工大学 一种高性能铁氧体磁性材料及其制备方法
CN110467188A (zh) * 2019-09-20 2019-11-19 长江师范学院 一种合成云母及其制备方法和应用
CN110550939A (zh) * 2019-09-09 2019-12-10 长江师范学院 用于制作矿物绝缘电缆的绝缘材料及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3192077A (en) * 1962-05-23 1965-06-29 Gen Dynamics Corp Welding flux
JPS5066513A (zh) * 1973-10-16 1975-06-04
JPS6140823A (ja) * 1984-07-31 1986-02-27 Dowa Mining Co Ltd マグネトプランバイト型フエライトの水熱合成法
JP2507754B2 (ja) * 1987-08-06 1996-06-19 古河電気工業株式会社 アルミ部材のろう付け用フラックス
CA1270863A (en) * 1987-11-26 1990-06-26 Claude Allaire Refractory material produced from red mud
US5096689A (en) * 1989-01-23 1992-03-17 Kennametal Inc. Process for producing tungsten monocarbide
JP3594191B2 (ja) * 1993-04-07 2004-11-24 富士写真フイルム株式会社 強磁性金属粉末の製造方法
JP3597633B2 (ja) * 1996-03-29 2004-12-08 Jfeケミカル株式会社 MnZnフェライトの製造方法
JP2000077224A (ja) * 1998-09-02 2000-03-14 Kawasaki Steel Corp Mn−Znフェライトの製造方法
JP2004091223A (ja) * 2002-08-29 2004-03-25 Hitachi Metals Ltd 磁性体の製造方法
JP4071783B2 (ja) * 2005-07-22 2008-04-02 株式会社タムラ製作所 Mn−Znフェライトの製造方法
US20070164088A1 (en) * 2006-01-18 2007-07-19 Kam Dianatkhah Brazing process for stainless steel heat exchangers
CN106715334B (zh) * 2014-09-19 2019-08-16 保德科技股份有限公司 纳米尺寸的圆球状铁氧体粒子以及其制造方法
CN105565790B (zh) * 2014-10-09 2020-06-26 桐乡市耀润电子有限公司 Yr950宽温高直流叠加低功耗锰锌铁氧体材料及其制备方法
CN111943662A (zh) * 2020-08-27 2020-11-17 中国平煤神马能源化工集团有限责任公司 一种吸收红外线热辐射的陶瓷黑料及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4599320A (en) * 1982-12-30 1986-07-08 Alcan International Limited Refractory lining material for electrolytic reduction cell for aluminum production and method of making the same
US6309558B1 (en) * 1998-11-25 2001-10-30 Tdk Corporation Process of fabricating a manganese-zinc-ferrite core, and manganese zinc-base ferrite core
CN1812019A (zh) * 2004-12-29 2006-08-02 巨东英 磁性铁氧体及电感材料的低温烧结制备工艺
CN101531503A (zh) * 2009-02-10 2009-09-16 重庆上甲电子股份有限公司 一种制取软磁锰锌铁混合料的方法
CN104211122A (zh) * 2014-08-14 2014-12-17 重庆上甲电子股份有限公司 用硫酸锰溶液制备四氧化三锰的分解沉淀循环工艺
CN105330278A (zh) * 2015-11-27 2016-02-17 全椒君鸿软磁材料有限公司 一种高强度锰锌软磁铁氧体磁芯材料的制备方法
CN105399411A (zh) * 2015-12-01 2016-03-16 横店集团东磁股份有限公司 一种锰锌铁氧体低温烧结工艺
CN106365205A (zh) * 2016-08-18 2017-02-01 河北工业大学 一种锰锌铁氧体纳米粉体的制备方法
CN108046791A (zh) * 2018-01-12 2018-05-18 河北工业大学 一种以纳米MnZn铁氧体粉体制备铁氧体的方法
CN108129143A (zh) * 2018-01-18 2018-06-08 常熟市三佳磁业有限公司 高叠加特性宽温低功耗锰锌软磁铁氧体及其制备方法
CN108640669A (zh) * 2018-06-20 2018-10-12 陕西理工大学 一种高性能铁氧体磁性材料及其制备方法
CN110550939A (zh) * 2019-09-09 2019-12-10 长江师范学院 用于制作矿物绝缘电缆的绝缘材料及其制备方法
CN110467188A (zh) * 2019-09-20 2019-11-19 长江师范学院 一种合成云母及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
anodic corrosion behavior of nife2o4-based cermet in na3alf6-k3alf6-alf3 for aluminum electrolysis;Tian ZL等;《metallurgical and materials transactions B》;20150630;第46卷(第3期);第1257-1261页 *

Also Published As

Publication number Publication date
CN113087516A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN113087516B (zh) 利用工业废弃物制备锰锌铁氧体的低温烧结方法
CN107602108B (zh) 一种利用低品位镍资源制备锰锌镍铁氧体磁性材料的方法
CN113087515B (zh) 高饱和磁感应强度和宽温低磁芯损耗锰锌铁氧体及其制备方法和四氟铝酸钾的应用
CN105565790A (zh) Yr950宽温高直流叠加低功耗锰锌铁氧体材料及其制备方法
CN113998999B (zh) 一种宽温低损耗高Bs锰锌铁氧体材料的制造方法
WO2023029255A1 (zh) 一种汽车电子用宽温高磁导率锰锌软磁铁氧体及制备方法
CN112694323A (zh) 一种宽温高Bs锰锌铁氧体磁性材料及其制备方法
CN103664154A (zh) 高频高电阻率Li-Ti-Zn软磁铁氧体材料配方及工艺
CN110818402B (zh) 一种超细铁氧体粉末的制备方法
CN111689770A (zh) 一种高温高Bs低损耗软磁铁氧体材料及其制备方法
CN115894050A (zh) 一种湿法生产锰锌铁氧体复合料的低温焙烧方法
CN103159469A (zh) 一种高磁导率锰锌铁氧体料粉的制备方法
CN105110784B (zh) 一种利用人造金红石母液制备锰锌铁氧体的方法
CN113788672B (zh) 一种锰锌铁氧体制备工艺
CN112624750A (zh) 一种z型六角铁氧体材料的制备方法
CN112028619A (zh) 一种高Bs低功耗锰锌软磁铁氧体材料及其制备方法
CN103956247A (zh) 高频低衰减磁性材料及其生产方法
CN116239377A (zh) 一种高性能锰锌铁氧体材料、铁氧体磁芯及其烧结方法
CN115677337B (zh) 一种功率铁氧体材料及其制备方法与应用
CN107555483B (zh) 一种锰铁尖晶石磁性材料前驱体的制备方法
CN108409316A (zh) 一种低磁损耗磁性材料的制备方法
CN109320230B (zh) 一种具有四高特性的锰锌软磁铁氧体材料的制备方法
CN106396658B (zh) 一种固相反应制备尖晶石型铁氧体材料前驱体的方法
CN115745592B (zh) 一种宽频高Tc高磁导率锰锌铁氧体材料及其制备方法
CN111370197B (zh) 一种铁硅软磁粉末的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant