WO2023029192A1 - 一种利用废弃生物质制备得到的Fe3C/C铁基催化剂及其制备方法和应用 - Google Patents

一种利用废弃生物质制备得到的Fe3C/C铁基催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023029192A1
WO2023029192A1 PCT/CN2021/127579 CN2021127579W WO2023029192A1 WO 2023029192 A1 WO2023029192 A1 WO 2023029192A1 CN 2021127579 W CN2021127579 W CN 2021127579W WO 2023029192 A1 WO2023029192 A1 WO 2023029192A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
preparation
based catalyst
biomass
catalyst
Prior art date
Application number
PCT/CN2021/127579
Other languages
English (en)
French (fr)
Inventor
张浅
陈建峰
仇松柏
王铁军
范宇健
黄瓒
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2023029192A1 publication Critical patent/WO2023029192A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group

Definitions

  • the invention belongs to the technical field of catalysts, and in particular relates to an Fe 3 C/C iron-based catalyst prepared from waste biomass, a preparation method and application thereof.
  • Fischer-Tropsch synthesis is a way to convert gaseous fuels into liquid fuels that has received attention in recent years. It catalyzes carbon monoxide and hydrogen, hydrogenation , Carbon-carbon coupling to produce hydrocarbons and other small amounts of oxygen-containing compounds.
  • Iron or its carbides is one of the active components of Fischer-Tropsch synthesis catalysts. Compared with other active components, it is cheaper and has higher catalytic activity. It is suitable for large-scale industrial applications; flexible Product distribution: It has high water-gas shift (WGS) activity and is suitable for carbon-rich coal-based synthesis gas, which is in line with China's national conditions. Due to the rapid development of C1 chemistry, the direct preparation of iron carbide as the active phase of iron-based Fischer-Tropsch catalysts is favored by scientists. It can be directly prepared by simple preparation process or in-situ carbonization of carbon-containing materials, or atmosphere control. Different iron carbide phases can be realized.
  • WGS water-gas shift
  • the prepared catalyst is used in Fischer-Tropsch synthesis reactions Among them, it has high activity and low methane selectivity, but after the catalyst is synthesized into a shaped precursor, it needs to be activated (that is, carburized) in a carbon-containing atmosphere (gas atmosphere such as carbon monoxide or methane), which consumes a large amount of carbon monoxide. Or methane and other resources;
  • a carbon-containing atmosphere gas atmosphere such as carbon monoxide or methane
  • methane and other resources Another example is that Chinese patent CN106861711A uses biomass materials as raw materials to prepare Fischer-Tropsch synthesis catalysts, but the catalyst uses iron as the active material, extracts trace elements from biomass materials as co-catalysts, and uses sugar as The carbon source adopts the hydrothermal method to prepare the catalyst. Although this method recycles the biomass material, it reduces the consumption of resources such as carbon monoxide or methane, and the extraction of trace elements and the post-treatment of the hydrothermal method are complicated. There
  • the present invention provides a preparation method of Fe 3 C/C iron-based catalyst with simple preparation process, low resource consumption and environmental protection.
  • Another object of the present invention is to provide the Fe 3 C/C iron-based catalyst prepared by the above preparation method.
  • Another object of the present invention is to provide the application of the above-mentioned Fe 3 C/C iron-based catalyst in Fischer-Tropsch synthesis reaction.
  • a preparation method of Fe3C /C iron-based catalyst comprising the steps of:
  • the catalyst precursor obtained in S1. is pyrolyzed at high temperature in an inert atmosphere to obtain a Fe 3 C/C iron-based catalyst;
  • the biomass carbon source mentioned in S1. is fruit peel biomass;
  • the high-temperature pyrolysis temperature mentioned in S2. is ⁇ 650°C.
  • biomass carbon materials as the catalyst carrier can turn waste biomass into treasure and get high-value utilization.
  • chemical (acid or alkali) activation of biomass materials is required.
  • acid or alkali activation and the timing of activation will affect the morphology and structure of the prepared material.
  • the composition has an important impact, which in turn affects the catalytic activity of the catalyst.
  • the inventor of the present invention finds through a large amount of studies: if select fruit skin biomass carbon material as carbon source, do not need to carry out chemical treatment (acid treatment or alkali treatment) to it, but mix it with iron source to prepare catalyst After the precursor, the precursor is directly subjected to high-temperature pyrolysis treatment in an inert atmosphere. Part of the biomass carbon is used as a carbon carrier, and a part of it is combined with iron to obtain Fe 3 C. Under the condition of carbon compound gas), a catalyst with a core-shell structure with iron-based active phase as the core and graphitized carbon obtained after carbonization of biomass carbon source as the shell was successfully prepared.
  • This preparation method not only simplifies the preparation process , can also use the in-situ reduction of raw biomass materials in the pyrolysis process, avoid the use of carburizing gas, reduce environmental pollution and energy consumption, and make large-scale industrial production of iron-based catalysts possible.
  • the active phase Fe 3 C with high catalytic activity can be prepared by selecting a suitable type of biomass carbon material and controlling the temperature at a suitable high temperature pyrolysis, such as selecting other types of biomass carbon materials Or if the high-temperature pyrolysis temperature is not suitable, the prepared active phase material is iron element or a mixed phase of iron element and Fe 3 C.
  • the Fe 3 C/C iron-based catalyst with a core-shell structure prepared by the invention exhibits excellent catalytic activity and long carbon chain selectivity in the Fischer-Tropsch reaction.
  • the biomass carbon source described in S1. is pretreated biomass powder, and the pretreatment includes washing with water, drying and crushing.
  • the drying method in the pretreatment is drying in the sun, normal pressure drying, vacuum drying or freeze drying, more preferably freeze drying.
  • the biomass carbon source is one or both of citrus fruit peels and watermelon fruit peels.
  • the citrus fruit peel is one or both of pomelo peel or orange peel; the watermelon fruit peel is watermelon peel.
  • the biomass carbon source is further preferably grapefruit peel, which may be because: on the one hand, grapefruit peel has a rich pore structure and excellent water absorption, so that it can load a high content of iron Precursor; on the other hand, grapefruit peel also contains more abundant trace inorganic salts, especially potassium salts and nitrogen salts.
  • grapefruit peel has a rich pore structure and excellent water absorption, so that it can load a high content of iron Precursor; on the other hand, grapefruit peel also contains more abundant trace inorganic salts, especially potassium salts and nitrogen salts.
  • the presence of potassium and nitrogen elements can further improve the catalytic activity of the catalyst, and at the same time make the carbon material have Porous structure improves catalytic efficiency.
  • the iron source is one or a combination of ferric chloride, ferric nitrate or ferric acetylacetonate.
  • the iron source is ferric nitrate.
  • the mixing method described in S1. is excess impregnation, equal volume impregnation or grinding, more preferably equal volume impregnation.
  • the mixing time described in S1. is 20-48 hours; more preferably 24 hours.
  • the weight ratio of the biomass carbon source to the iron source is 1:0.1-3; more preferably 1:1-2.
  • the drying described in S1. is drying at 25-105°C for 24-72 hours; more preferably drying at 80°C for 72 hours.
  • the inert atmosphere in S2. is an atmosphere composed of one or more of nitrogen, helium or argon.
  • the gas flow rate is 20-200 mL/min.
  • the high-temperature pyrolysis temperature in S2. is 650-900°C.
  • a small amount of iron carbide phase appears in the catalyst at 650°C, and the catalytic activity is significantly improved; as the temperature increases, the iron carbide phase gradually increases, and the catalytic activity is further significantly improved; but as the temperature increases, on the one hand , the particle size of the iron-based active phase gradually increases, which will form uneven large clusters, which will affect the catalytic effect;
  • the temperature of high-temperature pyrolysis is more preferably 700 to 800°C.
  • the heating rate of the high temperature pyrolysis described in S2. is 2-20°C, more preferably 3-10°C.
  • the high-temperature pyrolysis time described in S2. is 1-10 hours; more preferably 0.5-5 hours; still more preferably 2 hours.
  • the present invention also protects the Fe 3 C/C iron-based catalyst prepared by the above preparation method.
  • the Fe 3 C/C iron-based catalyst has a core-shell structure, wherein the core contains Fe 3 C, and the shell is graphitized carbon.
  • the preparation method of the present invention not only simplifies the preparation process, but also can utilize the in-situ reduction of fruit peel biomass carbon materials in the pyrolysis process, avoiding the use of carburizing gas, reducing environmental pollution and energy consumption, It makes it possible for iron-based catalysts to be used in large-scale industrial production.
  • the prepared Fe 3 C/C iron-based catalyst with a core-shell structure exhibits excellent catalytic activity and long carbon chain selectivity in the Fischer-Tropsch reaction.
  • Fig. 1 is the TEM figure of the catalyst that embodiment 1 prepares
  • Fig. 2 is the XRD spectrogram of the catalyst prepared by using different biomass materials in Examples 1-3 and Comparative Examples 1-9;
  • Fig. 3 is the XRD spectrogram of the catalyst prepared by different iron-based active phase loadings in Example 1 and Examples 5-8;
  • Fig. 4 is the XRD spectrogram of the catalyst that embodiment 1, embodiment 9, embodiment 11, embodiment 12 and comparative example 10 prepare under different pyrolysis temperatures;
  • Fig. 5 is the conversion rate of products (including CO, CO 2 and H 2 ) at various time points during the Fischer-Tropsch synthesis reaction process of the catalyst prepared in Example 9.
  • the present invention will be further described below in conjunction with specific embodiments and drawings, but the embodiments do not limit the present invention in any form.
  • the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in the technical field.
  • the reagents and materials used in the present invention are commercially available.
  • This embodiment provides a Fe 3 C/C iron-based catalyst, the preparation method of which comprises the following steps:
  • This example provides an Fe 3 C/C iron-based catalyst.
  • the difference between its preparation method and Example 1 is that grapefruit peels are replaced with orange peels in step S1.
  • This example provides an Fe 3 C/C iron-based catalyst.
  • the difference between its preparation method and Example 1 is that grapefruit rind is replaced by watermelon rind in step S1.
  • This example provides an Fe 3 C/C iron-based catalyst, the difference between its preparation method and Example 1 is that in step S1. ferric nitrate is replaced by ferric chloride.
  • This example provides a Fe 3 C/C iron-based catalyst, the difference between its preparation method and Example 1 is that the amount of iron nitrate in step S1. is 1 g; the obtained Fe 3 C/C iron-based catalyst, Recorded as 1-Fe@C-700.
  • This embodiment provides a Fe3C/C iron-based catalyst, the difference between its preparation method and Example 1 is that the amount of iron nitrate in step S1. is 4g; the obtained Fe3C /C iron-based catalyst is denoted as 4-Fe@C-700.
  • This example provides a Fe 3 C/C iron-based catalyst, the difference between its preparation method and Example 1 is that the amount of iron nitrate in step S1. is 6 g; the obtained Fe 3 C/C iron-based catalyst, It is recorded as 6-Fe@C-700.
  • This example provides an Fe 3 C/C iron-based catalyst, the difference between its preparation method and Example 1 is that the amount of iron nitrate in step S1. is 9 g; the obtained Fe 3 C/C iron-based catalyst, It is recorded as 9-Fe@C-700.
  • This example provides a Fe 3 C/C iron-based catalyst.
  • the difference between its preparation method and Example 7 is that the high temperature pyrolysis temperature in step S2. is replaced by 800°C; the obtained Fe 3 C/ The C iron-based catalyst is denoted as 6-Fe@C-800.
  • This example provides a Fe 3 C/C iron-based catalyst.
  • the difference between its preparation method and Example 7 is that the high temperature pyrolysis temperature in step S2. is replaced by 850°C; the obtained Fe 3 C/ The C iron-based catalyst is denoted as 6-Fe@C-850.
  • This example provides a Fe 3 C/C iron-based catalyst.
  • the difference between its preparation method and Example 7 is that the high temperature pyrolysis temperature in step S2. is replaced by 900°C; the obtained Fe 3 C/ The C iron-based catalyst is denoted as 6-Fe@C-900.
  • This comparative example provides a Fe 3 C/C iron-based catalyst.
  • the difference between its preparation method and Example 7 is that the temperature of high-temperature pyrolysis described in step S2. is replaced by 650°C; the obtained Fe 3 C/ The C iron-based catalyst is denoted as 6-Fe@C-650.
  • This comparative example provides a biomass iron-based catalyst whose preparation method is different from that of Example 1 in that in step S1. grapefruit peels are replaced with rapeseed stalks.
  • This comparative example provides a biomass iron-based catalyst whose preparation method is different from that of Example 1 in that in step S1., grapefruit peels are replaced with corncobs.
  • This comparative example provides a biomass iron-based catalyst, and its preparation method is different from that of Example 1 in that in step S1., grapefruit peels are replaced with peanut shells.
  • This comparative example provides a biomass iron-based catalyst, and its preparation method is different from that of Example 1 in that in step S1., pomelo peel is replaced with rice straw.
  • This comparative example provides a biomass iron-based catalyst whose preparation method is different from that of Example 1 in that in step S1., pomelo peel is replaced with bagasse.
  • This comparative example provides a biomass iron-based catalyst whose preparation method is different from that of Example 1 in that in step S1., pomelo peels are replaced with sphagnum moss.
  • This comparative example provides a biomass iron-based catalyst whose preparation method is different from that of Example 1 in that in step S1. grapefruit peel is replaced with aloe.
  • This comparative example provides a biomass iron-based catalyst whose preparation method is different from that of Example 1 in that in step S1., grapefruit peel is replaced with water hyacinth.
  • This comparative example provides a biomass iron-based catalyst, and its preparation method is different from that of Example 1 in that in step S1., the pomelo peel is replaced with vegetable wax gourd peel.
  • This comparative example provides a biomass iron-based catalyst.
  • the difference between its preparation method and Example 7 is that the temperature of the high-temperature pyrolysis described in step S2. It is 6-Fe@C-600. .
  • the morphology of the catalyst prepared in Example 1 was characterized by a transmission electron microscope (TEM), and the characterization results are shown in Figure 1 (A, B, C, and D are TEM images of different sizes, respectively).
  • TEM transmission electron microscope
  • compositions of the catalysts prepared in the above examples and comparative examples were analyzed by XRD, and the results are shown in FIGS. 2 to 4 .
  • Fig. 2 is the XRD spectra of the catalysts prepared by using different biomass materials in Examples 1-3 and Comparative Examples 1-9. It can be seen from Figure 2 that when straw biomass (rape straw, corn cob, peanut shell, rice straw, bagasse) is used as a carbon source, the iron source is reduced to elemental iron (20-22°) or A mixture of iron carbide (45°); and in the biomass of fruit peels (yuzu peel, orange peel, watermelon peel), a single iron carbide Fe 3 C can be formed, which is confirmed to be the Fischer-Tropsch active phase; aquatic plants (water Moss, aloe, water hyacinth) as carbon source, although iron carbide active components also appear, but also contain high content of inorganic salt impurities such as KCl and CaO substances, the existence of these impurities will affect the catalytic effect of Fischer-Tropsch reaction.
  • straw biomass rape straw, corn cob, peanut shell, rice straw, bagasse
  • the iron source is reduced to elemental iron (20-22°
  • Fig. 3 is the XRD spectrogram of the catalysts prepared in Example 1 and Examples 5-8 (with different loadings of iron elements). It can be seen from Fig. 3 that with the increase of Fe element loading in the Fe 3 C/C iron-based catalyst, the diffraction peak of Fe 3 C in XRD changes from diffuse to sharp, indicating that the size of Fe 3 C particles is small becomes larger; among them, the carbon peak appearing at 26° generally decreases with the increase of iron content.
  • Fig. 4 is the XRD spectra of the catalysts prepared in Example 1, Example 9, Example 11, Example 12 and Comparative Example 10 at different pyrolysis temperatures. It can be seen from Figure 4 that a reducing atmosphere is generated by the pyrolysis of pomelo peel, and the iron salt in the precursor is reduced and carburized to form an iron carbide active center whose main phase is Fe 3 C; while at 600°C Only FeO was formed, and a small amount of Fe 3 C phase appeared at 650°C. As the temperature increased, the iron carbide phase increased, and the nucleus was pure iron carbide phase at 700-850°C; After the temperature is further raised to 900 °C, the elemental iron phase will appear simultaneously, and the particles are larger, but it still has good catalytic activity.
  • the reaction product is as shown in Table 1:
  • Table 1 The product composition of the catalyst catalyzed Fischer-Tropsch synthesis reaction prepared by the examples and comparative examples
  • the present invention selects suitable biomass as a carbon source, and cooperates with a specific pyrolysis temperature to prepare an iron-based catalyst with iron carbide as an active phase with high catalytic activity.
  • the prepared catalyst is used in the Fischer-Tropsch synthesis reaction. It has good catalytic activity (the conversion rate of CO is as high as more than 50%) and the unique selectivity of the product, which effectively suppresses the production of low economic value products such as methane and low-carbon alkanes.
  • grapefruit peel as a natural carbon-nitrogen material, has the anchoring effect of nitrogen and the supply of lone pair electrons, and promotes the synergy of low-carbon olefins and olefins with potassium. Increased C 5+ selectivity.
  • Example 1 and Example 4 The iron sources selected in Example 1 and Example 4 are different, and the catalytic activity of the prepared catalysts has a small difference.
  • Example 1 From the comparison of Example 1 and Examples 5-8, it can be seen that with the increase of iron loading, the catalytic activity and the selectivity of long-carbon alkanes (C 5+ ) show a trend of rising first and then falling, which may be Because the increase of iron loading is conducive to improving the catalytic activity of the catalyst, but with the increase of iron loading, the particle size of active particles increases, and agglomeration begins to appear, resulting in a decrease in activity and specific selectivity.
  • biomass and iron sources When biomass and iron sources When the mass ratio of is 1:1 (as in Example 7), the loading capacity of iron is higher, and the active phase is uniformly dispersed, and the catalyst has optimal catalytic activity and higher long-carbon alkane selectivity.
  • Example 1 when the temperature is low, the prepared iron-based active phase is only FeO, and the catalytic activity is not high; when the temperature rises to 650 ° C, A small amount of iron carbide phase appeared, and the prepared catalyst began to have better catalytic activity, which may be due to the fact that FeO would not have a negative impact on the catalytic activity of iron carbide; as the heat treatment temperature increased, the iron carbide phase increased, Especially at 700-850°C, the nucleus is a pure iron carbide phase, and the catalytic activity of the prepared catalyst is significantly improved; when the temperature is further increased to 900°C, the elemental iron phase will also appear at the same time, and the particles are relatively small. Larger clusters are easily formed, and the particles are not uniform, which reduces the catalytic activity of the prepared catalyst, but it still has good catalytic activity due to the large amount of iron carbide phase.
  • Comparative Examples 1-9 different biomass carbon materials were selected, and the catalytic activity of the prepared catalyst was significantly lower than that of the catalyst using the biomass carbon material of the embodiment of the present invention. This may be because: When biomass (rape stalks, corn cobs, peanut shells, rice straw, bagasse) was used as carbon source, the iron source was reduced to elemental iron or a mixture of elemental iron and trace iron carbide, and the catalytic activity of elemental iron was significantly lower than that of iron carbide; While the vegetable wax gourd skin (comparative example 9) similar to the fruit skin is used as the active phase of the catalyst prepared by the biomass carbon material, although the same is the iron carbide phase, but because the wax gourd skin contains sulfur, it will affect the catalytic performance of the catalyst.
  • the catalytic activity of the catalyst prepared by using wax gourd rind as the biomass carbon material is poor; while aquatic plants (water moss, aloe, water hyacinth) are used as the carbon source, although there are also iron carbide active components, but at the same time It also contains high-content inorganic salt impurities such as KCl and CaO substances, and the existence of these impurities will affect the catalytic effect of the Fischer-Tropsch reaction.
  • Example 7 Taking the catalyst prepared in Example 7 as an example to test, according to the test conditions of 2.1, record the conversion rate of the product (including CO, CO 2 and H 2 ) at each time point in the Fischer-Tropsch synthesis reaction process, the results are shown in Figure 5 Show, the test result of other embodiment is similar to the result of embodiment 7.
  • the base catalyst has good catalytic stability, which is attributed to the anchoring effect of the catalyst's core-shell structure and nitrogen doping on the active components; the natural waste grapefruit peel material not only promotes the formation of the iron carbide active phase, but also During the reaction, the metal particles are protected from aggregation, which plays a vital role in the stability of the catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

提供一种利用废弃生物质制备得到的Fe 3C/C铁基催化剂及其制备方法和应用。所述制备方法,以水果皮类生物质碳材料作为碳源,不需要对其进行化学处理 (酸处理或碱处理),而是将其与铁源混合制备得到催化剂前驱体后,将该前驱体直接在惰性氛围中进行煅烧,可以在不使用渗碳气体(如一氧化碳或甲烷等含碳化合物气体)的条件下,成功制备出以铁基活性相为核、以生物质碳源碳化后得到的石墨化碳为壳的具有核壳结构的催化剂,这种制备方法不仅简化了制备工艺,而且还可以利用原生生物质材料在热解过程中的原位还原,避免渗碳气体的使用,减少了环境的污染和能耗的降低。

Description

一种利用废弃生物质制备得到的Fe 3C/C铁基催化剂及其制备方法和应用 技术领域
本发明属于催化剂技术领域,具体涉及一种利用废弃生物质制备得到的Fe 3C/C铁基催化剂及其制备方法和应用。
背景技术
我国富煤、少油、贫气的能源结构,决定了能源消费中煤炭消耗占绝大部分,费托合成是近年受到重视的气体燃料转化为液体燃料途径,其将一氧化碳和氢气催化,加氢、碳碳偶连制得烃类物质及其它少量含氧化合物。
铁或其碳化物(尤其是碳化铁Fe 3C)作为费托合成催化剂的活性组分之一,较之其他活性组分其价格廉价,且催化活性较高,适合大规模工业应用;灵活的产品分布;具有较高的变换反应(Water-Gas Shift,简称WGS)活性,适用富碳的煤基合成气,符合我国的国情。由于C1化学的高速发展,关于铁基费托催化剂活性相碳化铁的直接制备受到科学家们青睐,其通过简便的制备流程或者含碳材料的原位碳化,亦或是气氛控制,使得直接制备出不同碳化铁物相可以实现。
但是现有的费托合成铁基催化剂,仍然存在制备方法复杂、耗费大量一氧化碳或甲烷充当渗碳气体、使用环境不友好试剂等问题。如中国专利CN107754793A公开了一种多孔碳负载的具有核壳结构的费托合成催化剂,该催化剂以第VIIIB族金属活性元素为核,多孔碳材料为壳,制备出的催化剂应用于费托合成反应中,具有高活性、低甲烷选择性,但是该催化剂在合成成型的前驱体后,需要在含碳气氛(一氧化碳或甲烷等气体氛围)中进行活化(即渗碳处理),需要耗费大量的一氧化碳或甲烷等资源;又如中国专利CN106861711A选用生物质材料为原料进行制备费托合成催化剂,但是该催化剂是以铁元素为活性材料,从生物质材料中提取出微量元素作为助催化剂,以糖为碳源采用水热法制备催化剂,该方法虽然对生物质材料进行了回收利用,同时减少了一氧化碳或甲烷等资源的耗费,且微量元素的提取以及水热法后处理等工序复杂,存在制备方法复杂等问题。
因此,需要开发一种制备工艺简单、资源损耗小、环保的催化剂的制备方法,同时具有较高的费托合成催化活性、较高的长碳链选择性高、良好的低碳烯烷比 等优异的催化性能。
发明内容
本发明为克服上述缺陷,提供一种制备工艺简单、资源损耗小、环保的Fe 3C/C铁基催化剂的制备方法。
本发明的另一目的在于,提供由上述制备方法制备得到的Fe 3C/C铁基催化剂。
本发明的另一目的在于,提供上述Fe 3C/C铁基催化剂在费托合成反应中的应用。
为解决上述技术问题,本发明采用如下技术方案:
一种Fe 3C/C铁基催化剂的制备方法,包括如下步骤:
S1.生物质碳源与铁源溶液混合均匀,干燥后得到催化剂前驱体;
S2.将S1.得到的催化剂前驱体在惰性氛围中高温热解后得到Fe 3C/C铁基催化剂;
其中,S1.中所述生物质碳源为水果皮类生物质;S2.中所述高温热解的温度≥650℃。
以生物质碳材料作为催化剂的载体,可以让废弃的生物质变废为宝,得到高值化利用。而现有的应用生物质材料作为催化剂载体时,均需对生物质材料进行化学(酸或碱)活化,我们知道,酸或碱活化以及活化的时机均会对制备得到的材料的形貌结构以及组成产生重要的影响,进而影响催化剂的催化活性。
而本发明的发明人经过大量研究发现:如选用水果皮类生物质碳材料作为碳源,不需要对其进行化学处理(酸处理或碱处理),而是将其与铁源混合制备得到催化剂前驱体后,将该前驱体直接在惰性氛围中进行高温热解处理,生物质碳一部分作为碳载体,一部分与铁复合得到Fe 3C,可以在不使用渗碳气体(如一氧化碳或甲烷等含碳化合物气体)的条件下,成功制备出以铁基活性相为核、以生物质碳源碳化后得到的石墨化碳为壳的具有核壳结构的催化剂,这种制备方法不仅简化了制备工艺,还可以利用原生生物质材料在热解过程中的原位还原,避免渗碳气体的使用,减少了环境的污染和能耗的降低,使得铁基催化剂的大规模工业化生产成为可能。
本发明人进一步研究发现,选择合适种类的生物质碳材料,同时控制在合适的高温热解的温度,才能制备得到具有高催化活性的活性相Fe 3C,如选用其它 种类的生物质碳材料或者不合适的高温热解温度,则制备得到的活性相材料为铁单质或者铁单质与Fe 3C的混合相。本发明制备得到的具有核壳结构的Fe 3C/C铁基催化剂,在费托反应中表现出优异的催化活性以及长碳链选择性。
优选地,S1.中所述的生物质碳源为经过预处理后的生物质粉末,所述预处理为水洗、干燥和粉碎。
优选地,预处理中所述干燥的方式为晾晒、常压干燥、真空干燥或冷冻干燥,进一步优选为冷冻干燥。
优选地,所述生物质碳源为柑橘属类水果皮或西瓜属类水果皮中的一种或两种。
进一步优选地,所述柑橘属类水果皮为柚子皮或橘子皮中的一种或两种;所述西瓜属类水果皮为西瓜皮。
为了进一步提高催化剂的催化效果,所述生物质碳源更进一步优选为柚子皮,这可能是因为:一方面,柚子皮具有丰富的孔道结构和优异的吸水性,使其可以负载高含量的铁前驱体;另一方面,柚子皮中还含有种类更加丰富的微量无机盐,尤其是钾盐和氮盐,钾元素和氮元素的存在可以进一步提升催化剂的催化活性,同时还可以使碳材料具有多孔结构,提高催化效率。
优选地,所述铁源为氯化铁、硝酸铁或乙酰丙酮铁中的一种或几种的组合。
进一步优选地,所述铁源为硝酸铁。
优选地,S1.中所述混合的方式为过量浸渍法、等体积浸渍法或研磨,进一步优选为等体积浸渍法。
优选地,S1.中所述混合的时间为20~48h;进一步优选为24h。
优选地,所述生物质碳源与铁源的的重量比为1:0.1~3;进一步优选为1:1~2。
优选地,S1.中所述干燥为在25~105℃下干燥24~72h;进一步优选为在80℃下干燥72h。
优选地,S2.中所述惰性氛围为氮气、氦气或氩气中的一种或几种气体组成的氛围。
优选地,所述惰性氛围中,气体流量为20~200mL/min。
优选地,S2.中所述高温热解的温度为650~900℃。本发明中,催化剂在650℃时出现少量碳化铁相,催化活性显著提升;随着温度的升高,碳化铁相逐渐增多,催化活性得到进一步显著提升;但是随着温度的升高,一方面,铁基活性相粒径 逐渐增大,会形成不均匀的大团簇,影响催化效果;另一方面,温度升高对设备要求更加苛刻;因此,从催化效果和设备要求角度考虑,所述高温热解的温度进一步优选为700~800℃。
优选地,S2.中所述高温热解的升温速率为2~20℃,进一步优选为3~10℃。
优选地,S2.中所述高温热解的时间为1~10h;进一步优选为0.5~5h;更进一步优选为2h。
本发明还保护由上述制备方法制备得到的Fe 3C/C铁基催化剂。所述Fe 3C/C铁基催化剂具有核壳结构,其中核中含有Fe 3C,壳为石墨化碳。
上述Fe 3C/C铁基催化剂在费托合成反应中的应用也在本发明的保护范围之内。
与现有技术相比,本发明的有益效果是:
本发明的制备方法,不仅简化了制备工艺,而且可以利用水果皮类生物质碳材料在热解过程中的原位还原,避免渗碳气体的使用,减少了环境的污染和能耗的降低,使得铁基催化剂在大规模工业化生产中成为可能。制备得到的具有核壳结构的Fe 3C/C铁基催化剂,在费托反应中表现出优异的催化活性以及长碳链选择性。
附图说明
图1为实施例1制备得到的催化剂的TEM图;
图2为实施例1~3、对比例1~9使用不同生物质材料制备得到的催化剂的XRD谱图;
图3为实施例1、实施例5~8的不同铁基活性相负载量制备得到的催化剂的XRD谱图;
图4为实施例1、实施例9、实施例11、实施例12以及对比例10在不同的热解温度下制备得到的催化剂的XRD谱图;
图5为实施例9制备得到的催化剂在费托合成反应过程中各时间节点的产物(包括CO、CO 2和H 2)的转化率。
具体实施方式
以下结合具体实施例和附图来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。除非特别说明,本发明所用试剂和材料均为市购。
实施例1
本实施例提供一种Fe 3C/C铁基催化剂,其制备方法包括如下步骤:
S1.将柚子皮用水清洗干净后,冷冻干燥10h,然后粉碎得到柚子皮粉末;称取6g柚子皮粉末,浸入到42mL溶解有2g硝酸铁(Fe(NO 3) 3·9H 2O)的水溶液中搅拌均匀,进行等体积浸渍,在室温下静置24h后,在80℃下干燥72h后得到催化剂前驱体;
S2.将S1.得到的催化剂前驱体置于马弗炉中,通入氮气(氮气流速为50mL/min),以5℃/min的升温速率升温到700℃后保持2h后,得到Fe 3C/C铁基催化剂,记为2-Fe@C-700(其中2代表铁盐的加入量,700代表热处理的温度),冷却至室温后将其浸入乙醇中进行液封保存待用。
实施例2
本实施例提供一种Fe 3C/C铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为橘子皮。
实施例3
本实施例提供一种Fe 3C/C铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为西瓜皮。
实施例4
本实施例提供一种Fe 3C/C铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将硝酸铁替换为氯化铁。
实施例5
本实施例提供一种Fe 3C/C铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中硝酸铁的用量为1g;得到的Fe 3C/C铁基催化剂,记为1-Fe@C-700。
实施例6
本实施例提供一种Fe3C/C铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中硝酸铁的用量为4g;得到的Fe 3C/C铁基催化剂,记为4-Fe@C-700。
实施例7
本实施例提供一种Fe 3C/C铁基催化剂,其制备方法与实施例1的不同之处 在于,步骤S1.中硝酸铁的用量为6g;得到的Fe 3C/C铁基催化剂,记为6-Fe@C-700。
实施例8
本实施例提供一种Fe 3C/C铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中硝酸铁的用量为9g;得到的Fe 3C/C铁基催化剂,记为9-Fe@C-700。
实施例9
本实施例提供一种Fe 3C/C铁基催化剂,其制备方法与实施例7的不同之处在于,步骤S2.中所述高温热解的温度替换为800℃;得到的Fe 3C/C铁基催化剂,记为6-Fe@C-800。
实施例10
本实施例提供一种Fe 3C/C铁基催化剂,其制备方法与实施例7的不同之处在于,步骤S2.中所述高温热解的温度替换为850℃;得到的Fe 3C/C铁基催化剂,记为6-Fe@C-850。
实施例11
本实施例提供一种Fe 3C/C铁基催化剂,其制备方法与实施例7的不同之处在于,步骤S2.中所述高温热解的温度替换为900℃;得到的Fe 3C/C铁基催化剂,记为6-Fe@C-900。
实施例12
本对比例提供一种Fe 3C/C铁基催化剂,其制备方法与实施例7的不同之处在于,步骤S2.中所述高温热解的温度替换为650℃;得到的Fe 3C/C铁基催化剂,记为6-Fe@C-650。
对比例1
本对比例提供一种生物质铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为油菜秸秆。
对比例2
本对比例提供一种生物质铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为玉米芯。
对比例3
本对比例提供一种生物质铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为花生壳。
对比例4
本对比例提供一种生物质铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为稻草秸秆。
对比例5
本对比例提供一种生物质铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为甘蔗渣。
对比例6
本对比例提供一种生物质铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为水苔。
对比例7
本对比例提供一种生物质铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为芦荟。
对比例8
本对比例提供一种生物质铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为水葫芦。
对比例9
本对比例提供一种生物质铁基催化剂,其制备方法与实施例1的不同之处在于,步骤S1.中将柚子皮替换为蔬菜类冬瓜皮。
对比例10
本对比例提供一种生物质铁基催化剂,其制备方法与实施例7的不同之处在于,步骤S2.中所述高温热解的温度替换为600℃,得到的生物质铁基催化剂,记为6-Fe@C-600。。
性能测试
1.形貌和组成表征
1.1形貌表征-TEM
通过透射电镜(TEM)对实施例1制备得到的催化剂的形貌进行表征,表征结果见图1(A、B、C、D分别为不同尺寸下的TEM图)。
从图1中高倍率TEM的晶格条纹中可以看出,生物质(柚子皮)热解得到的碳层作为壳层,而铁基活性相颗粒作为核,形成了有效的包裹,为核壳结构,铁基活性相颗粒粒径小,分散均匀。其他实施例和对比例制备得到的催化剂的TEM结构与实施例1类似,同样均为生物质碳材料为壳,铁基活性材料为核的核壳结构。
1.2组成表征-XRD
通过XRD对上述实施例和对比例制备得到的催化剂的组成进行分析,结果如图2~图4所示。
图2为实施例1~3、对比例1~9使用不同生物质材料制备得到的催化剂的XRD谱图。从图2中可以看出:秸秆类的生物质(油菜秸秆、玉米芯、花生壳、稻草秸秆、甘蔗渣)作为碳源时铁源被还原为单质铁(20~22°)或单质铁与碳化铁(45°)的混合物;而在水果皮类(柚子皮、橘子皮、西瓜皮)生物质中则可形成单一的碳化铁Fe 3C,被证实为费托活性相;水生植物(水苔、芦荟、水葫芦)作为碳源时虽然也出现了碳化铁活性组分,但是同时也含有KCl和CaO物质等高含量无机盐杂质,这些杂质的存在会影响费托反应的催化效果。
图3为实施例1、实施例5~8(不同铁元素的负载量)制备得到的催化剂的XRD谱图。从图3中可以看出:随着Fe 3C/C铁基催化剂中负载的Fe元素负载量的增加,XRD中Fe 3C的衍射峰从弥散再尖锐,说明Fe 3C粒子的尺寸是从小变大;其中,在26°中出现的碳峰总体上也随着铁含量的增加而在减小。
图4为实施例1、实施例9、实施例11、实施例12以及对比例10在不同的热解温度下制备得到的催化剂的XRD谱图。从图4中可以看出:通过柚子皮高温分解产生还原性气氛,对前驱体中的铁盐进行还原和渗碳,形成了主相为Fe 3C的碳化铁活性中心;而在600℃下只形成了FeO,而在650℃下出现少量Fe 3C物相,随着温度的升高,碳化铁相随之增加,其中在700~850℃条件下,核为纯净的碳化铁相;当温度进一步升高到900℃后单质铁物相也会同时出现,且颗粒较大,但是仍然具有较好的催化活性。
2.费托合成催化应用
2.1催化活性测试
对上述实施例和对比例制备得到的铁基催化剂在费托合成反应中的催化活 性进行测试。
其中,费托合成反应的具体条件为:称取1.0g上述实施例和对比例制备得到的催化剂,装填到固定床反应器中,通入合成气(按照体积比为H 2:CO:N 2=47.5:47.5:5的混合气体),首先在300℃下常压(0.1MPa)还原12h,然后调节反应压力为2MPa,气体空速为3000mL·g cat -1·h -1,在300℃下继续反应24h,然后通过对反应产物的种类和含量进行表征,进而反应催化剂的催化活性,反应产物如表1所示:
表1 实施例和对比例制备得到的催化剂催化费托合成反应的产物组成
Figure PCTCN2021127579-appb-000001
注:表1中,烯烷质量比为“C 2-C 4 (C 2~C 4烯烃)”含量与“C 2-C 4 0(C 2~C 4烷烃)”含量的比值。
从上表中可以看出,本发明选用合适的生物质作为碳源,以及配合特定的热解温度,可以制备得到以具有高催化活性的碳化铁为活性相的铁基催化剂,本发明各实施例制备得到的催化剂用于费托合成反应中,具有很好的催化活性(CO的转化率高达50%以上)和产物独特的选择性,有效抑制了甲烷和低碳烷烃等低 经济价值产物的产生,其中,烯烷质量比均>4.5,与对比例相比,烯烷质量比提高了至少28.6%。
从实施例1~3可以看出,不同种类的水果皮类生物质作为碳源,制备得到的Fe 3C/C铁基催化剂的催化活性和选择性略有差异,但总体具有较好的催化活性(CO的转化率>50%)。其中,以柚子皮为碳源制备得到的催化剂的催化效果最好,这可能是由于天然柚子皮中存在的钾掺杂到催化剂中,为活性组分提供电子,促进了铁的还原和碳化,有利于抑制甲烷的产生,增加长碳链的选择性;与此同时,柚子皮作为天然的碳氮材料,氮的锚定作用和孤对电子的供给,与钾协同作用促进了低碳烯烃和C 5+选择性的增加。
实施例1和实施例4选用的铁源不同,制备得到的催化剂的催化活性相差较小。
从实施例1、实施例5~8的对比中可以看出,随着铁负载量的增加,催化活性和长碳烷烃(C 5+)的选择性呈现先上升后下降的趋势,这可能是因为铁负载量的增加有利于提高催化剂的催化活性,但是随着铁负载量的增加,活性粒子粒径增大,开始出现团聚现象,导致活性和特定的选择性下降,当生物质和铁源的质量比为1:1(如实施例7)时,铁的负载量较高,且活性相分散均匀,催化剂具有最优的催化活性和较高的长碳烷烃选择性。
实施例1、实施例9~12、对比例10的对比中可以看出:当温度较低时,制备得到的铁基活性相只有FeO,催化活性不高;当温度升高到650℃时,出现少量碳化铁相,制备得到的催化剂开始具有较好的催化活性,这可能是由于FeO对碳化铁的催化活性不会产生负面影响;随着热处理温度的升高,碳化铁相随之增加,尤其是在700~850℃条件下,核为纯净的碳化铁相,制备得到的催化剂的催化活性得到显著提升;当温度进一步升高到900℃后单质铁物相也会同时出现,且颗粒较大易生成较大的团簇,颗粒不均匀,进而使得制备得到的催化剂的催化活性有所降低,但是由于仍然存在大量的碳化铁相,其仍然具有较好的催化活性。
对比例1~9选用了不同的生物质碳材料,其制备得到的催化剂的催化活性显著低于选用本发明的实施例的生物质碳材料的催化剂的催化活性,这可能是因为:秸秆类的生物质(油菜秸秆、玉米芯、花生壳、稻草秸秆、甘蔗渣)作为碳源时铁源被还原为单质铁或单质铁与微量碳化铁的混合物,单质铁的催化活性显 著低于碳化铁;而与水果皮类似的蔬菜类冬瓜皮(对比例9)作为生物质碳材料制备得到的催化剂的活性相虽然同样为碳化铁相,但是由于冬瓜皮中含有硫元素,会对催化剂的催化性能产生抑制作用,因此选用冬瓜皮作为生物质碳材料制备得到的催化剂的催化活性较差;而水生植物(水苔、芦荟、水葫芦)作为碳源时虽然也出现了碳化铁活性组分,但是同时也含有KCl和CaO物质等高含量无机盐杂质,这些杂质的存在会影响费托反应的催化效果。
2.2催化剂寿命测试
以实施例7制备得到的催化剂为例进行测试,按照2.1的测试条件,记录费托合成反应过程中各时间节点的产物(包括CO、CO 2和H 2)的转化率,结果如图5所示,其它实施例的测试结果与实施例7的结果类似。
从图5中可以看出:在最初的6小时内,CO转化率迅速上升到85.06%,然后达到最高的98.12%转化率,并在较长的反应时间内保持稳定。在150h的流上一段时间后,CO转化率仅从最初的~98%略微下降到~95%,CO 2选择性稳定在~49%;上述结果清楚地表明本发明的Fe 3C/C铁基催化剂具有良好的催化稳定性,这归因于催化剂的核壳结构和氮掺杂对活性组分的锚定作用;天然废弃物柚子皮材料不仅促进了碳化铁活性相的形成,而且在热反应过程中保护了金属颗粒不聚集,对催化剂的稳定性起着至关重要的作用。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种Fe 3C/C铁基催化剂的制备方法,其特征在于,包括如下步骤:
    S1.生物质碳源与铁源溶液混合均匀,干燥后得到催化剂前驱体;
    S2.将S1.得到的催化剂前驱体在惰性氛围中高温热解后得到Fe 3C/C铁基催化剂;
    其中,S1.中所述生物质碳源为水果皮类生物质;S2.中所述高温热解的温度≥650℃。
  2. 根据权利要求1所述Fe 3C/C铁基催化剂的制备方法,其特征在于,所述生物质碳源为柑橘属类水果皮或西瓜属类水果皮中的一种或两种。
  3. 根据权利要求2所述Fe 3C/C铁基催化剂的制备方法,其特征在于,所述生物质碳源为柚子皮、橘子皮或西瓜皮中的一种或几种的组合。
  4. 根据权利要求3所述铁基催化剂的制备方法,其特征在于,所述生物质碳源为柚子皮。
  5. 根据权利要求1所述Fe 3C/C铁基催化剂的制备方法,其特征在于,所述铁源为氯化铁、硝酸铁或乙酰丙酮铁中的一种或几种的组合。
  6. 根据权利要求1所述Fe 3C/C铁基催化剂的制备方法,其特征在于,所述生物质碳源与铁源的的重量比为1:0.1~3。
  7. 根据权利要求1所述Fe 3C/C铁基催化剂的制备方法,其特征在于,所述高温热解的温度为650~900℃。
  8. 一种Fe 3C/C铁基催化剂,其特征在于,由权利要求1~7任一项所述制备方法制备得到。
  9. 根据权利要求8所述Fe 3C/C铁基催化剂,其特征在于,所述Fe 3C/C铁基催化剂具有核壳结构,其中核中含有Fe 3C,壳为石墨化碳。
  10. 权利要求8~9任一项所述Fe 3C/C铁基催化剂在费托合成反应中的应用。
PCT/CN2021/127579 2021-09-06 2021-10-29 一种利用废弃生物质制备得到的Fe3C/C铁基催化剂及其制备方法和应用 WO2023029192A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111040616.8A CN113751038B (zh) 2021-09-06 2021-09-06 一种利用废弃生物质制备得到的Fe3C/C铁基催化剂及其制备方法和应用
CN202111040616.8 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023029192A1 true WO2023029192A1 (zh) 2023-03-09

Family

ID=78793237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/127579 WO2023029192A1 (zh) 2021-09-06 2021-10-29 一种利用废弃生物质制备得到的Fe3C/C铁基催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN113751038B (zh)
WO (1) WO2023029192A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455699B (zh) * 2021-12-24 2023-03-14 清华大学 铁碳复合载体及其应用
CN114917909B (zh) * 2022-05-05 2024-05-14 东南大学 一种生物质碳负载纳米金属催化剂的应用
CN115709994B (zh) * 2022-11-14 2024-06-04 长春大学 一种用玉米秸秆液化法制备石墨化碳的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135089A1 (en) * 2011-03-26 2012-10-04 Honda Motor Co., Ltd. Fischer-tropsch catalysts containing iron or cobalt selective towards higher hydrocarbons
CN108404947A (zh) * 2018-03-23 2018-08-17 枣庄学院 一种非均相类Fenton催化剂Fe3C/C复合材料的制备方法
CN109433236A (zh) * 2018-11-27 2019-03-08 辽宁科技大学 多孔炭材料负载零价Fe-Fe3C的脱硝催化剂及其制备、使用方法
CN109603873A (zh) * 2018-11-08 2019-04-12 东莞理工学院 一种以废弃柚子皮为碳源的Fe-N-C催化剂及其制备方法和应用
CN109939680A (zh) * 2019-03-28 2019-06-28 南开大学 一种生物炭负载零价铁复合材料及其制备方法
CN110773214A (zh) * 2019-11-13 2020-02-11 广东工业大学 一种碳层嵌入式的碳化铁及其制备方法和碳层嵌入式的碳化铁作为费托合成催化剂的应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012135089A1 (en) * 2011-03-26 2012-10-04 Honda Motor Co., Ltd. Fischer-tropsch catalysts containing iron or cobalt selective towards higher hydrocarbons
CN108404947A (zh) * 2018-03-23 2018-08-17 枣庄学院 一种非均相类Fenton催化剂Fe3C/C复合材料的制备方法
CN109603873A (zh) * 2018-11-08 2019-04-12 东莞理工学院 一种以废弃柚子皮为碳源的Fe-N-C催化剂及其制备方法和应用
CN109433236A (zh) * 2018-11-27 2019-03-08 辽宁科技大学 多孔炭材料负载零价Fe-Fe3C的脱硝催化剂及其制备、使用方法
CN109939680A (zh) * 2019-03-28 2019-06-28 南开大学 一种生物炭负载零价铁复合材料及其制备方法
CN110773214A (zh) * 2019-11-13 2020-02-11 广东工业大学 一种碳层嵌入式的碳化铁及其制备方法和碳层嵌入式的碳化铁作为费托合成催化剂的应用

Also Published As

Publication number Publication date
CN113751038B (zh) 2022-11-11
CN113751038A (zh) 2021-12-07

Similar Documents

Publication Publication Date Title
WO2023029192A1 (zh) 一种利用废弃生物质制备得到的Fe3C/C铁基催化剂及其制备方法和应用
CN109759064B (zh) 一种Co@C/生物质催化剂及其制备方法和应用
CN108355668B (zh) 一种甲烷化催化剂及其制备方法和应用
CN108097255B (zh) 一种用于二氧化碳重整反应的多孔碳框架镍基催化剂及其制备方法和使用方法
Qingli et al. Ni supported on MgO modified attapulgite as catalysts for hydrogen production from glycerol steam reforming
CN112844476B (zh) 一种生物质基碳材料负载纳米镍催化剂及其制备方法和应用
CN104028270A (zh) 一种甲烷化催化剂及其制备方法
CN102500379A (zh) 一种用于甲烷化催化剂及其制备方法
CN105618061A (zh) 一种浆态床二氧化碳甲烷化双金属催化剂及其制法和应用
Yang et al. CO2 conversion via dry reforming of methane on a core-shell Ru@ SiO2 catalyst
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
Deng et al. High H2 selective performance of Ni-Fe-Ca/H-Al catalysts for steam reforming of biomass and plastic
CN104984769A (zh) 一种甲烷二氧化碳重整制合成气炭基催化剂的方法
CN104741125A (zh) 一种催化剂及其制备方法和应用
Tian et al. Advances in hydrogen production by aqueous phase reforming of biomass oxygenated derivatives
CN102658145B (zh) 一种MgO(111)负载镍基催化剂的制备方法和应用
WO2021037191A1 (zh) 沼气全组分转化生物甲醇催化剂LaNiO3/SiC-SiO2-Foam及其制备方法
Li et al. Alkaline earth metal oxide modification of Ni/Al 2 O 3 for hydrogen production from the partial oxidation and reforming of dimethyl ether
CN112642417A (zh) 一种脱氢催化剂载体的制备方法及其应用
CN112108138B (zh) 一种生物质水热碳载体催化剂及其制备方法与应用
CN111495384A (zh) 一种二氧化碳加氢甲烷化催化剂及制备方法和应用
CN106925281A (zh) Ni基双金属催化剂及其制备方法和应用
CN107952442B (zh) 一种生物质与煤制甲烷的催化剂及其制备方法和应用
CN111450834A (zh) 用于乙酸自热重整制氢的二氧化铈负载的钴基催化剂
CN112427041A (zh) 一种光热催化一氧化碳加氢制备低碳烯烃用镍基催化剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE