WO2023027382A1 - 리튬이차전지용 음극 소재 및 그 제조 방법 - Google Patents
리튬이차전지용 음극 소재 및 그 제조 방법 Download PDFInfo
- Publication number
- WO2023027382A1 WO2023027382A1 PCT/KR2022/011779 KR2022011779W WO2023027382A1 WO 2023027382 A1 WO2023027382 A1 WO 2023027382A1 KR 2022011779 W KR2022011779 W KR 2022011779W WO 2023027382 A1 WO2023027382 A1 WO 2023027382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base structure
- heat treatment
- secondary battery
- lithium secondary
- lithium
- Prior art date
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 92
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 92
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 49
- 239000007773 negative electrode material Substances 0.000 title claims abstract description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 54
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 54
- 239000001301 oxygen Substances 0.000 claims abstract description 54
- FDLZQPXZHIFURF-UHFFFAOYSA-N [O-2].[Ti+4].[Li+] Chemical compound [O-2].[Ti+4].[Li+] FDLZQPXZHIFURF-UHFFFAOYSA-N 0.000 claims abstract description 28
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 18
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 18
- 238000010438 heat treatment Methods 0.000 claims description 118
- 239000010405 anode material Substances 0.000 claims description 37
- 206010021143 Hypoxia Diseases 0.000 claims description 36
- 238000004458 analytical method Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 16
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910002986 Li4Ti5O12 Inorganic materials 0.000 abstract 1
- 230000003446 memory effect Effects 0.000 description 16
- 230000008569 process Effects 0.000 description 8
- 239000011148 porous material Substances 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- 238000001878 scanning electron micrograph Methods 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000001069 Raman spectroscopy Methods 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- 229910003077 Ti−O Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000011149 active material Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- -1 aluminum ions Chemical class 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000840 electrochemical analysis Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001453 impedance spectrum Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000001420 photoelectron spectroscopy Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/003—Titanates
- C01G23/005—Alkali titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/78—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/14—Pore volume
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/16—Pore diameter
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode material for a lithium secondary battery and a method for manufacturing the same, and more specifically, to a negative electrode material for a lithium secondary battery including lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO) and a method for manufacturing the same. .
- a negative electrode material for a lithium secondary battery including lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO) and a method for manufacturing the same.
- lithium secondary batteries do not exhibit a memory effect (an effect in which overall capacity decreases as charging and discharging are repeated), which is seen in conventionally used nickel-cadmium batteries and nickel-metal hydride batteries.
- lithium secondary batteries using specific materials such as lithium iron phosphate (LiFePO 4 ), anatase TiO 2 , aluminum (Al) doped lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO), etc. It has been found that a memory effect appears.
- lithium secondary batteries has been understood based on a thermodynamic point of view through a particle-by-particle model.
- aluminum-doped lithium-titanium-oxide Li 4 Ti 5 O 12 , LTO
- aluminum ions move similarly to lithium ions, but since it is an irreversible reaction, the behavior of lithium ions is disturbed, resulting in It turns out that there is a memory effect.
- Lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO) has the advantage of being very stable within the operating voltage and is in the limelight as an anode material for lithium secondary batteries, but its electric conductivity and lithium ion conductivity It has the disadvantage of low ion conductivity. Accordingly, attempts have been made to improve electrical conductivity and lithium ion conductivity through a method of doping aluminum (Al) into lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO), but as described above, the memory effect occurs. Another problem arises.
- One technical problem to be solved by the present invention is to provide an anode material for a lithium secondary battery with improved electrical conductivity and a manufacturing method thereof.
- Another technical problem to be solved by the present invention is to provide an anode material for a lithium secondary battery with improved lithium ion conductivity and a manufacturing method thereof.
- Another technical problem to be solved by the present invention is to provide an anode material for a lithium secondary battery using LTO, which is not doped with aluminum, and a manufacturing method thereof.
- Another technical problem to be solved by the present invention is to provide a negative electrode material for a lithium secondary battery with reduced memory effect and a manufacturing method thereof.
- the technical problem to be solved by the present invention is not limited to the above.
- the present invention provides a method for manufacturing an anode material for a lithium secondary battery.
- the manufacturing method of the negative electrode material for a lithium secondary battery includes preparing a base structure including lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO), first heat-treating the base structure, Improving electrical conductivity and lithium ion conductivity of the base structure, and removing oxygen vacancy present in the base structure subjected to the first heat treatment by performing a second heat treatment on the first heat treated base structure.
- a base structure including lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO) first heat-treating the base structure, Improving electrical conductivity and lithium ion conductivity of the base structure, and removing oxygen vacancy present in the base structure subjected to the first heat treatment by performing a second heat treatment on the first heat treated base structure.
- LTO lithium-titanium-oxide
- the primary heat treatment environment of the base structure and the secondary heat treatment environment of the base structure may include different ones.
- the primary heat treatment of the base structure is performed in an air atmosphere
- the secondary heat treatment of the base structure may include being performed in an oxygen (O 2 ) atmosphere.
- the oxygen deficiency content in the base structure subjected to the first heat treatment is greater than the oxygen deficiency content in the base structure before heat treatment
- the oxygen deficiency content in the base structure subjected to the second heat treatment is the base structure before heat treatment. It may contain less than the oxygen deficiency content in the structure.
- the temperature and time of the first heat treatment of the base structure and the temperature and time of the second heat treatment of the base structure may include the same.
- the first heat treatment and the second heat treatment of the base structure may include being performed at a temperature of 780 ° C. for 5 hours.
- the distance (d-spacing) between the lattices of the surface of the base structure before the heat treatment is shorter than the distance between the lattices of the surface of the base structure subjected to the first heat treatment, and between the lattices of the surface of the base structure subjected to the second heat treatment.
- the distance may include a shorter distance than the distance between lattices on the surface of the base structure before heat treatment.
- the secondary heat treatment of the base structure may include supplying oxygen (O 2 ) at a flow rate of 0.5 L/min and being performed.
- the present invention provides a negative electrode material for a lithium secondary battery.
- the anode material for a lithium secondary battery includes lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO), but as a result of XPS (X-ray Photoelectron Spectroscopy) analysis of the lithium-titanium-oxide, oxygen It may include those in which the area ratio (Area %) of oxygen vacancy is 9.38% or less.
- the lithium-titanium-oxide may include one not doped with a metal.
- the metal may include aluminum (Al).
- an average distance (d-spacing) between lattices of the lithium-titanium-oxide central portion and an average distance between lattices of the lithium-titanium-oxide surface portion may be the same.
- a method of manufacturing an anode material for a lithium secondary battery includes preparing a base structure including lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO), and placing the base structure in the air. Improving electrical conductivity and lithium ion conductivity of the base structure by performing a first heat treatment in an atmosphere, and performing a second heat treatment on the first heat treated base structure in an oxygen (O 2 ) atmosphere to be present in the first heat treated base structure. It may include the step of eliminating oxygen vacancy (oxygen vacancy) to do.
- lithium-titanium-oxide Li 4 Ti 5 O 12 , LTO
- electrical conductivity and lithium ion conductivity can be improved, as well as memory due to oxygen deficiency. effect can be reduced.
- FIG. 1 is a flowchart illustrating a method of manufacturing an anode material for a lithium secondary battery according to an embodiment of the present invention.
- FIG. 2 is a SEM image of an anode material for a lithium secondary battery according to an experimental example of the present invention.
- 3 to 5 are XRD analysis results of negative electrode materials for lithium secondary batteries according to experimental examples of the present invention.
- FIG. 6 is a Raman analysis result of an anode material for a lithium secondary battery according to an experimental example of the present invention.
- FIG. 7 is a view for explaining the surface area of an anode material for a lithium secondary battery according to an experimental example of the present invention.
- FIG. 8 is a TEM image of an anode material for a lithium secondary battery according to an experimental example of the present invention.
- 9 and 10 are XPS analysis results of negative electrode materials for lithium secondary batteries according to experimental examples of the present invention.
- FIG. 11 is a view for explaining a distance between lattices of an anode material for a lithium secondary battery according to an experimental example of the present invention.
- FIGS. 12 to 14 are diagrams for explaining constant current charge/discharge analysis results of a lithium secondary battery according to an experimental example of the present invention.
- 15 to 17 are views for explaining EIS analysis results of lithium secondary batteries according to experimental examples of the present invention.
- first, second, and third are used to describe various elements in various embodiments of the present specification, these elements should not be limited by these terms. These terms are only used to distinguish one component from another. Therefore, what is referred to as a first element in one embodiment may be referred to as a second element in another embodiment.
- Each embodiment described and illustrated herein also includes its complementary embodiments.
- 'and/or' is used to mean including at least one of the elements listed before and after.
- connection is used to mean both indirectly and directly connecting a plurality of components.
- FIG. 1 is a flowchart illustrating a method of manufacturing an anode material for a lithium secondary battery according to an embodiment of the present invention.
- a base structure including lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO) is prepared (S100).
- the average distance between the gratings of the central portion of the base structure and the average distance between the gratings of the surface portion of the base structure may be equal to each other.
- the average distance between the gratings of the central portion of the base structure and the average distance between the gratings of the surface portion may be 4.73 nm.
- the base structure may be subjected to a first heat treatment (S200).
- the primary heat treatment of the base structure may be performed for 5 hours at a temperature of 780 ° C in an air atmosphere.
- the base structure When the base structure is subjected to a first heat treatment, electrical conductivity and lithium ion conductivity of the base structure may be improved.
- oxygen vacancy may be formed in the base structure. That is, the oxygen deficiency content in the base structure subjected to the first heat treatment may be greater than the oxygen deficiency content in the base structure before heat treatment.
- the oxygen vacancy area ratio (Area %) was 12.96%, and the XPS (X- As a result of ray photoelectron spectroscopy analysis, the oxygen vacancy area ratio (Area %) may be 26.14%.
- the average distance between the lattices of the central portion of the base structure subjected to the first heat treatment and the average distance between the lattices of the surface portion may vary.
- the average distance between lattices in the central portion of the base structure subjected to the first heat treatment is 4.73 nm, which is the same as before heat treatment
- the average distance between lattices in the surface portion is 5.12 nm, which may be longer than before heat treatment. That is, the average distance (d-spacing) between lattices of the surface of the base structure before heat treatment may be shorter than the average distance between lattices of the surface of the base structure subjected to the first heat treatment.
- Oxygen deficiency formed in the base structure may cause a memory effect (an effect in which overall capacity decreases as charging and discharging are repeated) of the lithium secondary battery.
- the base structure may be subjected to a second heat treatment (S300).
- the secondary heat treatment of the base structure may be performed for 5 hours at a temperature of 780 °C in an oxygen (O 2 ) atmosphere. More specifically, after disposing the base structure in a tube (tube) by supplying oxygen (O 2 ) at a flow rate of 0.5 L / min and heat treatment, the base structure may be subjected to secondary heat treatment. That is, the secondary heat treatment of the base structure may be performed in a relatively high concentration of oxygen (O 2 ) atmosphere compared to the first heat treatment of the base structure.
- oxygen vacancies formed during the first heat treatment of the base structure may be removed.
- the oxygen deficiency content in the base structure subjected to the secondary heat treatment may be less than the oxygen deficiency content in the base structure before heat treatment.
- XPS X-ray photoelectron spectroscopy
- the average distance between the grids of the central portion and the surface portion of the base structure subjected to the second heat treatment may be shorter than the average distance between the grids of the central portion and the surface portion of the base structure subjected to the first heat treatment.
- the average distance between the grids of the central portion and the surface portion of the base structure subjected to the second heat treatment may be equal to each other.
- the average distance between the grids of the central portion and the surface portion of the base structure subjected to the second heat treatment may be 2.93 nm.
- the concentration of oxygen deficiency present in the surface portion of the base structure subjected to the secondary heat treatment is lower than the concentration of oxygen deficiency present in a region located in a direction from the surface portion to the central portion of the base structure subjected to the secondary heat treatment.
- the oxygen deficiency concentration may be defined as the number of oxygen deficiencies per area (or volume).
- the memory effect of the lithium secondary battery may be reduced.
- electrical conductivity and lithium ion conductivity of the lithium secondary battery may be improved and the memory effect may be reduced.
- the method for manufacturing a negative electrode material for a lithium secondary battery includes preparing a base structure including lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO), waiting for the base structure. Improving electrical conductivity and lithium ion conductivity of the base structure by performing a first heat treatment in an (air) atmosphere, and performing a second heat treatment of the base structure subjected to the first heat treatment in an oxygen (O 2 ) atmosphere to thereby obtain the first heat treatment of the base.
- a step of removing oxygen vacancy present in the structure may be included.
- lithium-titanium-oxide Li 4 Ti 5 O 12 , LTO
- electrical conductivity and lithium ion conductivity can be improved, as well as memory due to oxygen deficiency. effect can be reduced.
- the manufacturing method of a negative electrode material for a lithium secondary battery according to the first modified example of the present invention is a lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO), like the manufacturing method of the negative electrode material for a lithium secondary battery according to the above-described embodiment.
- a step of removing oxygen vacancy present in the base structure may be included.
- the manufacturing method of the anode material for a lithium secondary battery according to the first modified example differs in the tube used in the process of secondary heat treatment of the base structure compared to the manufacturing method of the anode material for a lithium secondary battery according to the above embodiment.
- a tube having a constant size of an oxygen (O 2 ) inlet and outlet may be used in the process of secondary heat treatment of the base structure.
- a tube having an oxygen (O 2 ) inlet and outlet may be used in the process of secondary heat treatment of the base structure.
- the size of the outlet of the tube used in the second heat treatment of the base structure according to the first modified example may be smaller than the size of the inlet. That is, the tube used in the process of secondary heat treatment of the base structure according to the first modified example may have a smaller diameter from the inlet to the outlet. Due to this, sufficient oxygen (O 2 ) may be supplied to the base structure disposed adjacent to the outlet. On the other hand, when a tube having an inlet and an outlet having a constant size or having a size of the outlet larger than the size of the inlet is used, sufficient oxygen (O 2 ) may not be supplied to the base structure disposed adjacent to the outlet. Accordingly, a problem may occur in that oxygen deficiency is not eliminated in the base structure adjacent to the outlet.
- the tube used in the process of secondary heat treatment of the base structure according to the first modification may have a flat bottom surface. Accordingly, the phenomenon that the base structure disposed in the tube leans to one side can be prevented.
- the manufacturing method of a negative electrode material for a lithium secondary battery according to the second modified example of the present invention is a lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO) like the manufacturing method of the negative electrode material for a lithium secondary battery according to the above-described embodiment.
- a step of removing oxygen vacancy present in the base structure may be included.
- the manufacturing method of the anode material for a lithium secondary battery according to the second modified example is compared to the manufacturing method of the anode material for a lithium secondary battery according to the embodiment, and the oxygen supplied in the process of secondary heat treatment of the base structure (O 2 ) can be different.
- the flow rate of oxygen (O 2 ) supplied during the secondary heat treatment of the base structure may be maintained constant.
- the flow rate of oxygen (O 2 ) supplied may vary during the secondary heat treatment of the base structure.
- oxygen deficiency present on the surface of the base structure is easily removed, but in the center of the base structure Existing oxygen deficiency may cause a problem that is not eliminated.
- the manufacturing method of a negative electrode material for a lithium secondary battery according to the third modified example of the present invention is a lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO) like the manufacturing method of the negative electrode material for a lithium secondary battery according to the above-described embodiment.
- a step of removing oxygen vacancy present in the base structure may be included.
- the manufacturing method of the anode material for a lithium secondary battery according to the third modified example may have a different process of secondary heat treatment of the base structure compared to the manufacturing method of the anode material for a lithium secondary battery according to the embodiment.
- oxygen (O 2 ) may be supplied during secondary heat treatment of the base structure.
- oxygen (O 2 ) is supplied during the secondary heat treatment of the base structure, and after the secondary heat treatment is finished, the base structure Even while the temperature is reduced to room temperature, oxygen (O 2 ) may be continuously supplied.
- a relatively low flow rate of oxygen (O 2 ) is supplied during the secondary heat treatment of the base structure, whereas after the secondary heat treatment is completed, A relatively high flow rate of oxygen (O 2 ) may be supplied. Accordingly, oxygen deficiency present in the center as well as the surface of the base structure can be easily removed.
- a lithium-titanium-oxide (Li 4 Ti 5 O 12 , LTO) base structure was prepared.
- the base structure was placed in a muffle furnace and subjected to primary heat treatment for 5 hours at a temperature of 780° C. (10° C./min ramping rate) in an air atmosphere. Thereafter, the primary heat-treated base structure was placed in a tube furnace and subjected to secondary heat treatment at a temperature of 780° C. (10° C./min ramping rate) for 5 hours while supplying oxygen (O 2 ) at a flow rate of 0.5 L/min.
- O 2 oxygen
- the base structure before the heat treatment is defined as P-LTO
- the base structure subjected to the first heat treatment is defined as A-LTO
- the base structure subjected to the second heat treatment is defined as AO-LTO.
- FIG. 2 is a SEM image of an anode material for a lithium secondary battery according to an experimental example of the present invention.
- FIG. 2 a scanning electron microscopy (SEM) image of the anode material for a lithium secondary battery according to the experimental example is shown.
- SEM scanning electron microscopy
- 3 to 5 are XRD analysis results of negative electrode materials for lithium secondary batteries according to experimental examples of the present invention.
- FIG. 5 shows an enlarged Li 4 Ti 5 O 12 (111) peak of FIG. 4 and (B) of FIG. 5 enlarges the Li 4 Ti 5 O 12 (400) peak of FIG. indicate
- FIG. 6 is a Raman analysis result of an anode material for a lithium secondary battery according to an experimental example of the present invention.
- FIG. 7 is a view for explaining the surface area of an anode material for a lithium secondary battery according to an experimental example of the present invention.
- FIG. 8 is a TEM image of an anode material for a lithium secondary battery according to an experimental example of the present invention.
- 9 and 10 are XPS analysis results of negative electrode materials for lithium secondary batteries according to experimental examples of the present invention.
- FIGS. 9 and 10 X-ray photoelectron spectroscopy (XPS) analysis results for P-LTO, A-LTO, and AO-LTO are shown.
- XPS X-ray photoelectron spectroscopy
- FIG. 11 is a view for explaining a distance between lattices of an anode material for a lithium secondary battery according to an experimental example of the present invention.
- a slurry was prepared by mixing N-methyl-2-pyrrolidone with an active material, carbon black (Super-P), and a binder (polyvinylidene fluoride, PVDF) at a weight ratio of 8:1:1.
- active material carbon black
- binder polyvinylidene fluoride, PVDF
- An electrode was prepared by doctor-blading the prepared slurry on a current collector (Cu foil). The prepared electrode was dried in a vacuum oven at 120 °C for 12 hours.
- a CR 2032 type lithium secondary battery was prepared using a lithium foil as a counter electrode, a LiPF 6 -based electrolyte, and a Cegard 2320 membrane as a separator. More specifically, a material in which 1.0 M LiPF 6 was mixed with ethylene carbonate and ethyl methyl carbonate (EMC) in a volume ratio of 1:1 was used as the electrolyte.
- EMC ethyl methyl carbonate
- FIGS. 12 to 14 are diagrams for explaining constant current charge/discharge analysis results of a lithium secondary battery according to an experimental example of the present invention.
- 12 shows the electrochemical dependence of the potentiostatic time (t P ) protocol used to record the memory effect.
- 13 shows the voltage profiles of P-LTO, A-LTO-, and AO-LTO at each t P .
- 14 shows the t P dependent change of the lowest point of the delithiation profile in the voltage profile without t P .
- 15 to 17 are views for explaining EIS analysis results of lithium secondary batteries according to experimental examples of the present invention.
- EIS electrochemical impedance spectra
- FIG. 15 shows Nyquist plots of P-LTO, A-LTO, and AO-LTO.
- 16 shows a resistance (R SEI ) change related to charge transfer through the SEI layer
- FIG. 17 shows a resistance (R ct ) change related to interfacial charge transfer.
- the Nyquist spectra consisted of a semi-circle part and a tail part.
- the shape of the semicircular part and the tail part remained substantially constant despite increasing the analysis time (0h->10h), whereas in the case of A-LTO the analysis time increased (0h->10h). >10h), it was confirmed that both the shape of the semicircular part and the shape of the tail part changed.
- the memory effect generated in A-LTO is a phenomenon caused by the interface layer made similar to the SEI layer by the sample having increased reactivity due to the introduction of oxygen vacancy.
- An anode material for a lithium secondary battery according to an embodiment of the present invention may be applied to a lithium secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
리튬이차전지용 음극 소재의 제조 방법이 제공된다. 상기 리튬이차전지용 음극 소재의 제조 방법은, 리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하는 베이스 구조체를 준비하는 단계, 상기 베이스 구조체를 1차 열처리하여, 상기 베이스 구조체의 전기 전도도 및 리튬 이온 전도도를 향상시키는 단계, 및 1차 열처리된 상기 베이스 구조체를 2차 열처리하여, 1차 열처리된 상기 베이스 구조체 내에 존재하는 산소 결핍(oxygen vacancy)을 제거하는 단계를 포함할 수 있다.
Description
본 발명은 리튬이차전지용 음극 소재 및 그 제조 방법에 관한 것으로서, 보다 구체적으로는 리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하는 리튬이차전지용 음극 소재 및 그 제조 방법에 관련된 것이다.
본 출원은 아래의 연구개발과제의 결과물로 도출된 것이다.
- 관련연구과제: 태양광 전환 수소 생산용 수전해 시스템 기술 개발(안산시)
- 연구과제고유번호: GRRCHanyang2020-A01 (202100100010001)
- 사업주무부처: 지방자치단체
- 연구사업명: 경기지역협력연구센터사업(GRRC) / 경기지역협력연구센터사업(GRRC) / GRRC 기본과제
- 주관기관: 경기지역협력연구센터
- 연구관리전문기관: 경기도청
- 연구기간: 2021.07.01~2022.06.30
리튬이차전지는 기존에 사용되었던 니켈-카드뮴 배터리 및 니켈-메탈하이드라이드 배터리에서 나타나는 메모리 효과(Memory effect, 충방전을 반복함에 따라 전체적인 용량이 감소되는 효과)가 나타나지 않는다고 알려져 있다.
하지만 최근의 연구결과 리튬 인산철(LiFePO4), anatase TiO2, 알루미늄(Al)이 도핑된 리튬-티타늄-산화물(Li4Ti5O12, LTO)등과 같은 특정 물질이 사용된 리튬이차전지에서도 메모리 효과가 나타나는 것이 밝혀졌다.
리튬이차전지에서 나타나는 메모리 효과는 particle-by-particle model을 통하여 열역학적 관점을 기반으로 하여 이해되어왔다. 특히 알루미늄이 도핑 된 리튬-티타늄-산화물(Li4Ti5O12, LTO)에서는 알루미늄 이온이 리튬이온이 움직이는 것과 유사하게 이동을 하지만 비가역적인 반응이기 때문에 리튬이온의 거동을 방해하게 되고 이러한 결과로 메모리 효과가 나타난다는 것이 밝혀졌다.
리튬-티타늄-산화물(Li4Ti5O12, LTO)은 작동전압 내에서 매우 안정적이라는 장점을 갖고 있어 리튬이차전지의 음극 소재로서 각광받고 있지만, 전기 전도도(electric conductivity)와 리튬 이온 전도도(lithium ion conductivity)가 낮다는 단점이 있다. 이에 따라, 리튬-티타늄-산화물(Li4Ti5O12, LTO)에 알루미늄(Al)을 도핑하는 방법 등을 통해 전기 전도도와 리튬 이온 전도도를 향상시키려 했지만, 상술된 바와 같이 메모리 효과가 발생하는 또 다른 문제점이 발생된다.
이로 인해, 리튬-티타늄-산화물(Li4Ti5O12, LTO)의 장점을 유지하면서 전기 전도도와 리튬 이온 전도도를 향상시키고, 메모리 효과를 감소시킬 수 있는 방법에 대해 다양한 연구가 이루어지고 있다.
본 발명이 해결하고자 하는 일 기술적 과제는, 전기 전도도가 향상된 리튬이차전지용 음극 소재 및 그 제조 방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 다른 기술적 과제는, 리튬 이온 전도도가 향상된 리튬이차전지용 음극 소재 및 그 제조 방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 알루미늄이 도핑되지 않은 LTO가 사용된 리튬이차전지용 음극 소재 및 그 제조 방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 또 다른 기술적 과제는, 메모리 효과가 감소된 리튬이차전지용 음극 소재 및 그 제조 방법을 제공하는 데 있다.
본 발명이 해결하고자 하는 기술적 과제는 상술된 것에 제한되지 않는다.
상술된 기술적 과제들을 해결하기 위해 본 발명은 리튬이차전지용 음극 소재의 제조 방법을 제공한다.
일 실시 예에 따르면, 상기 리튬이차전지용 음극 소재의 제조 방법은 리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하는 베이스 구조체를 준비하는 단계, 상기 베이스 구조체를 1차 열처리하여, 상기 베이스 구조체의 전기 전도도 및 리튬 이온 전도도를 향상시키는 단계, 및 1차 열처리된 상기 베이스 구조체를 2차 열처리하여, 1차 열처리된 상기 베이스 구조체 내에 존재하는 산소 결핍(oxygen vacancy)을 제거하는 단계를 포함할 수 있다.
일 실시 예에 따르면, 상기 베이스 구조체의 1차 열처리 환경과, 상기 베이스 구조체의 2차 열처리 환경은 서로 다른 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 베이스 구조체의 1차 열처리는 대기(air) 분위기에서 수행되고, 상기 베이스 구조체의 2차 열처리는 산소(O2) 분위기에서 수행되는 것을 포함할 수 있다.
일 실시 예에 따르면, 1차 열처리된 상기 베이스 구조체 내의 산소 결핍 함량은, 열처리되기 전 상기 베이스 구조체 내의 산소 결핍 함량보다 많고, 2차 열처리된 상기 베이스 구조체 내의 산소 결핍 함량은, 열처리되기 전 상기 베이스 구조체 내의 산소 결핍 함량보다 적은 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 베이스 구조체의 1차 열처리 온도 및 시간과, 상기 베이스 구조체의 2차 열처리 온도 및 시간은 같은 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 베이스 구조체의 1차 열처리 및 2차 열처리는 780℃의 온도에서 5시간 동안 수행되는 것을 포함할 수 있다.
일 실시 예에 따르면, 열처리되기 전 상기 베이스 구조체 표면의 격자 사이 거리(d-spacing)는, 1차 열처리된 상기 베이스 구조체 표면의 격자 사이 거리보다 짧고, 2차 열처리된 상기 베이스 구조체 표면의 격자 사이 거리는, 열처리되기 전 상기 베이스 구조체 표면의 격자 사이 거리보다 짧은 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 베이스 구조체의 2차 열처리는, 0.5 L/min의 유속으로 산소(O2)를 공급하며 수행되는 것을 포함할 수 있다.
상술된 기술적 과제들을 해결하기 위해 본 발명은 리튬이차전지용 음극 소재를 제공한다.
일 실시 예에 따르면, 상기 리튬이차전지용 음극 소재는 리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하되, 상기 리튬-티타늄-산화물의 XPS(X-ray Photoelectron Spectroscopy) 분석 결과 산소 결핍(oxygen vacancy)의 면적 비율(Area %)이 9.38% 이하인 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 리튬-티타늄-산화물은, 금속이 도핑되지 않은 것을 포함할 수 있다.
일 실시 예에 따르면, 상기 금속은, 알루미늄(Al)을 포함할 수 있다.
일 실시 예에 따르면, 상기 리튬-티타늄-산화물 중심부의 격자 사이 평균 거리(d-spacing)와 상기 리튬-티타늄-산화물 표면부의 격자 사이 평균 거리가 같은 것을 포함할 수 있다.
본 발명의 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하는 베이스 구조체를 준비하는 단계, 상기 베이스 구조체를 대기(air) 분위기에서 1차 열처리하여 상기 베이스 구조체의 전기 전도도 및 리튬 이온 전도도를 향상시키는 단계, 및 1차 열처리된 상기 베이스 구조체를 산소(O2) 분위기에서 2차 열처리하여 1차 열처리된 상기 베이스 구조체 내에 존재하는 산소 결핍(oxygen vacancy)을 제거하는 단계를 포함할 수 있다. 이에 따라, 리튬-티타늄-산화물(Li4Ti5O12, LTO)에 금속(예를 들어, 알루미늄)을 도핑하지 않더라도 전기 전도도 및 리튬 이온 전도도를 향상시킬 수 있을 뿐만 아니라, 산소 결핍에 의한 메모리 효과 발생까지 감소시킬 수 있다.
도 1은 본 발명의 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법을 설명하기 위한 순서도이다.
도 2는 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 SEM 이미지이다.
도 3 내지 도 5는 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 XRD 분석 결과이다.
도 6은 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 Raman 분석 결과이다.
도 7은 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 표면적을 설명하기 위한 도면이다.
도 8은 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 TEM 이미지이다.
도 9 및 도 10은 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 XPS 분석 결과이다.
도 11은 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 격자 사이 거리를 설명하기 위한 도면이다.
도 12 내지 도 14는 본 발명의 실험 예에 따른 리튬이차전지의 정전류 충방전 분석 결과를 설명하기 위한 도면들이다.
도 15 내지 도 17은 본 발명의 실험 예에 따른 리튬이차전지의 EIS 분석 결과를 설명하기 위한 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시 예를 상세히 설명할 것이다. 그러나 본 발명의 기술적 사상은 여기서 설명되는 실시 예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예는 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한, 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다.
또한, 본 명세서의 다양한 실시 예 들에서 제1, 제2, 제3 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 따라서, 어느 한 실시 예에 제 1 구성요소로 언급된 것이 다른 실시 예에서는 제 2 구성요소로 언급될 수도 있다. 여기에 설명되고 예시되는 각 실시 예는 그것의 상보적인 실시 예도 포함한다. 또한, 본 명세서에서 '및/또는'은 전후에 나열한 구성요소들 중 적어도 하나를 포함하는 의미로 사용되었다.
명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함한다. 또한, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 구성요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징이나 숫자, 단계, 구성요소 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 배제하는 것으로 이해되어서는 안 된다. 또한, 본 명세서에서 "연결"은 복수의 구성 요소를 간접적으로 연결하는 것, 및 직접적으로 연결하는 것을 모두 포함하는 의미로 사용된다.
또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
도 1은 본 발명의 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법을 설명하기 위한 순서도이다.
도 1을 참조하면, 리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하는 베이스 구조체가 준비된다(S100). 일 실시 예에 따르면, 상기 베이스 구조체 중앙부의 격자 사이 평균 거리와 상기 베이스 구조체 표면부의 격자 사이 평균 거리(d-spacing)는 서로 같을 수 있다. 구체적으로, 상기 베이스 구조체 중앙부의 격자 사이 평균 거리와 표면부의 격자 사이 평균 거리는 4.73 nm일 수 있다.
상기 베이스 구조체는 1차 열처리될 수 있다(S200). 일 실시 예에 따르면, 상기 베이스 구조체의 1차 열처리는 대기(air) 분위기에서 780℃의 온도로 5시간 동안 수행될 수 있다.
상기 베이스 구조체가 1차 열처리되는 경우, 상기 베이스 구조체의 전기 전도도(electric conductivity)와 리튬 이온 전도도(lithium ion conductivity)가 향상될 수 있다. 다만, 상기 베이스 구조체가 1차 열처리됨에 따라, 상기 베이스 구조체 내에 산소 결핍(oxygen vacancy)이 형성될 수 있다. 즉, 1차 열처리된 상기 베이스 구조체 내의 산소 결핍 함량은, 열처리되기 전 상기 베이스 구조체 내의 산소 결핍 함량보다 많을 수 있다. 구체적으로, 열처리되기 전 상기 베이스 구조체의 XPS(X-ray Photoelectron Spectroscopy) 분석 결과 산소 결핍(oxygen vacancy)의 면적 비율(Area %)은 12.96%이고, 1차 열처리된 상기 베이스 구조체의 XPS(X-ray Photoelectron Spectroscopy) 분석 결과 산소 결핍(oxygen vacancy)의 면적 비율(Area %)은 26.14%일 수 있다.
상기 베이스 구조체가 1차 열처리되어 산소 결핍이 형성됨에 따라, 1차 열처리된 베이스 구조체 중앙부의 격자 사이 평균 거리와 표면부의 격자 사이 평균 거리가 달라질 수 있다. 구체적으로, 1차 열처리된 베이스 구조체 중앙부의 격자 사이 평균 거리는 4.73 nm로서 열처리전 상태와 같은 반면, 표면부의 격자 사이 평균 거리는 5.12 nm로서 열처리전 상태보다 멀어질 수 있다. 즉, 열처리되기 전 상기 베이스 구조체 표면의 격자 사이 평균 거리(d-spacing)는, 1차 열처리된 상기 베이스 구조체 표면의 격자 사이 평균 거리보다 짧을 수 있다.
상기 베이스 구조체 내에 형성된 산소 결핍은, 리튬이차전지의 메모리 효과(Memory effect, 충방전을 반복함에 따라 전체적인 용량이 감소되는 효과)를 발생시킬 수 있다.
상기 베이스 구조체가 1차 열처리된 후, 상기 베이스 구조체는 2차 열처리될 수 있다(S300). 일 실시 예에 따르면, 상기 베이스 구조체의 2차 열처리는 산소(O2) 분위기에서 780℃의 온도로 5시간 동안 수행될 수 있다. 보다 구체적으로, 튜브(tube) 내에 상기 베이스 구조체를 배치한 후 0.5 L/min의 유속으로 산소(O2)를 공급하며 열처리함으로써, 상기 베이스 구조체가 2차 열처리될 수 있다. 즉, 상기 베이스 구조체의 2차 열처리는, 상기 베이스 구조체의 1차 열처리와 비교하여 상대적으로 높은 농도의 산소(O2) 분위기에서 수행될 수 있다.
상기 베이스 구조체가 2차 열처리되는 경우, 상기 베이스 구조체의 1차 열처리 과정에서 형성된 산소 결핍들이 제거될 수 있다. 일 실시 예에 따르면, 2차 열처리된 상기 베이스 구조체 내의 산소 결핍 함량은, 열처리되기 전 상기 베이스 구조체 내의 산소 결핍 함량보다 적을 수 있다. 구체적으로, 2차 열처리된 상기 베이스 구조체의 XPS(X-ray Photoelectron Spectroscopy) 분석 결과 산소 결핍(oxygen vacancy)의 면적 비율(Area %)은 9.38%일 수 있다.
일 실시 예에 따르면, 2차 열처리된 상기 베이스 구조체 중앙부 및 표면부의 격자 사이 평균 거리는, 1차 열처리된 상기 베이스 구조체 중앙부 및 표면부의 격자 사이 평균 거리보다 짧을 수 있다. 또한, 2차 열처리된 상기 베이스 구조체 중앙부 및 표면부의 격자 사이 평균 거리는 서로 같을 수 있다. 구체적으로, 2차 열처리된 상기 베이스 구조체 중앙부 및 표면부의 격자 사이 평균 거리는 2.93 nm일 수 있다.
일 실시 예에 따르면, 2차 열처리된 상기 베이스 구조체의 표면부에 존재하는 산소 결핍의 농도는, 2차 열처리된 상기 베이스 구조체의 표면부로부터 중앙부 방향으로 위치한 영역에 존재하는 산소 결핍의 농도보다 낮을 수 있다. 상기 산소 결핍의 농도는 면적(또는 부피)당 산소 결핍의 수로 정의될 수 있다.
2차 열처리를 통해 상기 베이스 구조체 내의 산소 결핍이 제거됨에 따라, 리튬이차전지의 메모리 효과를 감소시킬 수 있다. 이로 인해, 2차 열처리된 상기 베이스 구조체가 리튬이차전지의 음극 소재로 사용되는 경우, 리튬이차전지의 전기 전도도 및 리튬 이온 전도도를 향상시킬 수 있을 뿐만 아니라 메모리 효과도 감소시킬 수 있다.
결과적으로, 본 발명의 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하는 베이스 구조체를 준비하는 단계, 상기 베이스 구조체를 대기(air) 분위기에서 1차 열처리하여 상기 베이스 구조체의 전기 전도도 및 리튬 이온 전도도를 향상시키는 단계, 및 1차 열처리된 상기 베이스 구조체를 산소(O2) 분위기에서 2차 열처리하여 1차 열처리된 상기 베이스 구조체 내에 존재하는 산소 결핍(oxygen vacancy)을 제거하는 단계를 포함할 수 있다. 이에 따라, 리튬-티타늄-산화물(Li4Ti5O12, LTO)에 금속(예를 들어, 알루미늄)을 도핑하지 않더라도 전기 전도도 및 리튬 이온 전도도를 향상시킬 수 있을 뿐만 아니라, 산소 결핍에 의한 메모리 효과 발생까지 감소시킬 수 있다.
이상, 본 발명의 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법이 설명되었다. 이하, 본 발명의 변형 예들에 따른 리튬이차전지용 음극 소재의 제조 방법이 설명된다.
제1 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법
본 발명의 제1 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상술된 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법과 같이 리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하는 베이스 구조체를 준비하는 단계, 상기 베이스 구조체를 1차 열처리하여 상기 베이스 구조체의 전기 전도도 및 리튬 이온 전도도를 향상시키는 단계, 및 1차 열처리된 상기 베이스 구조체를 2차 열처리하여 1차 열처리된 상기 베이스 구조체 내에 존재하는 산소 결핍(oxygen vacancy)을 제거하는 단계를 포함할 수 있다. 다만, 상기 제1 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상기 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법과 비교하여 상기 베이스 구조체를 2차 열처리하는 과정에서 사용되는 튜브가 다를 수 있다.
구체적으로, 상기 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상기 베이스 구조체를 2차 열처리하는 과정에서 산소(O2) 유입구의 크기와 유출구의 크기가 일정한 튜브가 사용될 수 있다. 이와 달리, 상기 제1 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상기 베이스 구조체를 2차 열처리하는 과정에서 산소(O2) 유입구의 크기와 유출구의 크기가 다른 튜브가 사용될 수 있다.
예를 들어, 상기 제1 변형 예에 따라 상기 베이스 구조체를 2차 열처리하는 과정에서 사용되는 튜브는, 유입구의 크기보다 유출구의 크기가 작을 수 있다. 즉, 상기 제1 변형 예에 따라 베이스 구조체를 2차 열처리하는 과정에서 사용되는 튜브는, 유입구로부터 유출구로 갈수록 직경이 작아질 수 있다. 이로 인해, 유출구와 인접하게 배치된 상기 베이스 구조체에도 충분한 산소(O2)가 공급될 수 있다. 이와 달리, 유입구와 유출구가 일정한 크기를 갖거나 유출구의 크기가 유입구의 크기보다 큰 튜브가 사용되는 경우, 유출구와 인접하게 배치된 상기 베이스 구조체에는 충분한 산소(O2)가 공급되지 않을 수 있다. 이에 따라, 유출구와 인접한 상기 베이스 구조체는 산소 결핍이 제거되지 않는 문제점이 발생될 수 있다.
하지만, 상술된 바와 같이, 유입구로부터 유출구로 갈수록 직경이 작아지는 튜브를 통해 2차 열처리가 수행되는 경우, 튜브 내부에 배치된 상기 베이스 구조체의 위치와 관계없이 전체적으로 충분한 산소(O2) 공급이 이루어질 수 있으므로, 모든 베이스 구조체의 산소 결핍이 용이하게 제거될 수 있다.
일 실시 예에 따르면, 상기 제1 변형 예에 따라 베이스 구조체를 2차 열처리하는 과정에서 사용되는 튜브는, 바닥면이 평평할 수 있다. 이에 따라, 튜브 내에 배치된 상기 베이스 구조가 어느 한쪽으로 쏠리는 현상이 방지될 수 있다.
제2 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법
본 발명의 제2 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상술된 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법과 같이 리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하는 베이스 구조체를 준비하는 단계, 상기 베이스 구조체를 1차 열처리하여 상기 베이스 구조체의 전기 전도도 및 리튬 이온 전도도를 향상시키는 단계, 및 1차 열처리된 상기 베이스 구조체를 2차 열처리하여 1차 열처리된 상기 베이스 구조체 내에 존재하는 산소 결핍(oxygen vacancy)을 제거하는 단계를 포함할 수 있다. 다만, 상기 제2 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상기 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법과 비교하여 상기 베이스 구조체를 2차 열처리하는 과정에서 공급되는 산소(O2)의 유량이 다를 수 있다.
구체적으로, 상기 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상기 베이스 구조체를 2차 열처리하는 과정에서 공급되는 산소(O2)의 유량이 일정하게 유지될 수 있다. 이와 달리, 상기 제2 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상기 베이스 구조체를 2차 열처리하는 과정에서 공급되는 산소(O2)의 유량이 변동될 수 있다.
예를 들어, 상기 제2 변형 예에 따라 상기 베이스 구조체를 2차 열처리하는 경우, 산소(O2) 공급이 이루어지는 초기 단계에서는 상대적으로 낮은 유량의 산소(O2)가 공급되는 반면 후기 단계에서는 상대적으로 높은 유량의 산소(O2)가 공급될 수 있다. 즉, 산소(O2) 공급 시간이 증가할수록 공급되는 산소(O2)의 유량 또한 증가할 수 있다. 이로 인해, 상기 베이스 구조체의 표면뿐만 아니라 중심부 까지도 산소 결핍이 용이하게 제거될 수 있다. 이와 달리, 산소(O2) 공급 시간이 증가함에도 불구하고 일정한 유량의 산소(O2) 공급이 이루어지는 경우, 상기 베이스 구조체의 표면에 존재하는 산소 결핍은 용이하게 제거되지만, 상기 베이스 구조체의 중심부에 존재하는 산소 결핍은 제거되지 않는 문제점이 발생될 수 있다.
제3 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법
본 발명의 제3 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상술된 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법과 같이 리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하는 베이스 구조체를 준비하는 단계, 상기 베이스 구조체를 1차 열처리하여 상기 베이스 구조체의 전기 전도도 및 리튬 이온 전도도를 향상시키는 단계, 및 1차 열처리된 상기 베이스 구조체를 2차 열처리하여 1차 열처리된 상기 베이스 구조체 내에 존재하는 산소 결핍(oxygen vacancy)을 제거하는 단계를 포함할 수 있다. 다만, 상기 제3 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상기 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법과 비교하여 상기 베이스 구조체를 2차 열처리하는 과정이 서로 다를 수 있다.
구체적으로, 상기 실시 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상기 베이스 구조체를 2차 열처리하는 동안 산소(O2)가 공급될 수 있다. 이와 달리, 상기 제2 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상기 베이스 구조체를 2차 열처리하는 동안 산소(O2)가 공급될 뿐만 아니라, 2차 열처리가 끝난 후 상기 베이스 구조체가 상온까지 감온되는 동안에도 산소(O2)가 지속적으로 공급될 수 있다.
또한, 상기 제2 변형 예에 따른 리튬이차전지용 음극 소재의 제조 방법은, 상기 베이스 구조체를 2차 열처리하는 동안에는 상대적으로 낮은 유량의 산소(O2)가 공급되는 반면, 2차 열처리가 끝난 후에는 상대적으로 높은 유량의 산소(O2)가 공급될 수 있다. 이에 따라, 상기 베이스 구조체의 표면뿐만 아니라 중심부에 존재하는 산소 결핍까지 용이하게 제거될 수 있다.
이와 달리, 2차 열처리가 끝난 후 산소(O2) 공급이 지속적으로 이루어지지 않는 경우, 대기와 접촉된 상기 베이스 구조체에 다시 산소 결핍이 형성되는 문제점이 발생될 수 있다. 또한, 2차 열처리 동안과 2차 열처리가 끝난 후에 공급되는 산소(O2) 유량이 일정한 경우, 상기 베이스 구조체의 중심부에 존재하는 산소 결핍은 제거되지 않는 문제점이 발생될 수 있다.
이상, 본 발명의 실시 예 및 변형 예들에 따른 리튬이차전지용 음극 소재의 제조 방법이 설명되었다. 이하, 본 발명의 실시 예에 따른 리튬이차전지용 음극 소재의 구체적인 실험 예 및 특성 평가 결과가 설명된다.
실험 예에 따른 리튬이차전지용 음극 소재 제조
리튬-티타늄-산화물(Li4Ti5O12, LTO) 베이스 구조체를 준비했다. 베이스 구조체를 muffle furnace에 넣고 대기(air) 분위기에서 780℃의 온도(10℃/min ramping rate)로 5시간 동안 1차 열처리하였다. 이후, 1차 열처리된 베이스 구조체를 tube furnace에 넣고 0.5 L/min의 유속으로 산소(O2)를 공급하면서 780℃의 온도(10℃/min ramping rate)로 5시간 동안 2차 열처리하였다.
열처리되기 전 상태의 베이스 구조체는 P-LTO로 정의되고, 1차 열처리된 베이스 구조체는 A-LTO로 정의되고, 2차 열처리된 베이스 구조체는 AO-LTO로 정의된다.
열처리되기 전 상태의 Li4Ti5O12 | P-LTO |
1차 열처리된 Li4Ti5O12 | A-LTO |
2차 열처리된 Li4Ti5O12 | AO-LTO |
도 2는 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 SEM 이미지이다.
도 2를 참조하면, 상기 실험 예에 따른 리튬이차전지용 음극 소재의 SEM(Scanning Electron Microscopy) 이미지를 나타낸다. 구체적으로, 도 2의 (A) 및 (B)는 P-LTO의 SEM 이미지를 나타내고, 도 2의 (C) 및 (D)는 A-LTO의 SEM 이미지를 나타내고, 도 2의 (E) 및 (F)는 AO-LTO의 SEM 이미지를 나타낸다.
도 2의 (A) 내지 (F)에서 확인할 수 있듯이, P-LTO, A-LTO, 및 AO-LTO는 형상과 입자 크기가 유사한 것을 확인할 수 있었다. 이에 따라, P-LTO의 열처리 공정은 형상과 입자 크기의 변화를 실질적으로 일으키지 않는 것을 알 수 있다.
도 3 내지 도 5는 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 XRD 분석 결과이다.
도 3 내지 도 5를 참조하면, 상기 실험 예에 따른 리튬이차전지용 음극 소재의 XRD(X-ray Diffraction) 분석 결과를 나타낸다. 구체적으로, 도 5의 (A)는 도 4의 Li4Ti5O12(111) 피크를 확대하여 나타내고 도 5의 (B)는 도 4의 Li4Ti5O12(400) 피크를 확대하여 나타낸다.
도 3에서 확인할 수 있듯이, P-LTO, A-LTO, 및 AO-LTO에서 모두 Cubic Li4Ti5O12와 Monoclinic Li2TiO2가 나타나는 것을 확인할 수 있었다. 또한, 도 4 및 도 5에서 확인할 수 있듯이, composition에 있어서 큰 변화는 없지만 AO-LTO의 경우 P-LTO 및 A-LTO와 비교하여 피크 이동(peak shift)가 발생한 것을 확인할 수 있었다.
도 6은 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 Raman 분석 결과이다.
도 6을 참조하면, P-LTO, 및 A-LTO에 대한 Raman 분석 결과를 나타낸다. 도 6에서 확인할 수 있듯이, P-LTO와 A-LTO 모두 spinel 구조를 나타내는 것을 확인할 수 있었다. 또한, P-LTO와 A-LTO의 베이스 라인이 잘 일치하지만 각각의 금속과 산소의 연결을 의미하는 피크의 intensity가 조금 감소해 있는 것을 확인할 수 있었다.
도 7은 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 표면적을 설명하기 위한 도면이다.
도 7을 참조하면, P-LTO, A-LTO, 및 AO-LTO 각각에 대해 질소 흡탈착(N2 adsorption/desorption)을 수행하여, BET surface area, Total Pore Volume, 및 Mean Pore Diameter를 측정하였다. 측정된 결과는 아래의 <표 2>를 통해 정리된다.
구분 | P-LTO | A-LTO | AO-LTO |
BET Surface Area(m2/g) | 5.70 | 5.03 | 4.46 |
Total Pore Volume(cm3/g) | 0.0087 | 0.0086 | 0.0089 |
Mean Pore Diametet(nm) | 6.12 | 6.85 | 7.99 |
도 7및 <표 2>에서 확인할 수 있듯이, P-LTO, A-LTO, AO-LTO의 BET surface area, Total Pore Volume, 및 Mean Pore Diameter는 큰 차이가 없는 것을 확인할 수 있었다.
도 8은 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 TEM 이미지이다.
도 8의 (A) 내지 (C)를 참조하면, P-LTO, A-LTO, 및 AO-LTO에 대한 TEM(Transmission Electron Microscope) 이미지를 나타낸다. 도 8의 (A) 내지 (C)에서 확인할 수 있듯이, P-LTO가 1차 열처리된 A-LTO의 표면에는 산소 결핍(oxygen vacancy)가 분포하고 있는 것을 확인할 수 있었다. 이와 달리, 2차 열처리된 AO-LTO의 경우 A-LTO와 달리 표면에 존재하던 산소 결핍들이 제거된 것을 확인할 수 있었다.
도 9 및 도 10은 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 XPS 분석 결과이다.
도 9 및 도 10을 참조하면, P-LTO, A-LTO, 및 AO-LTO에 대한 XPS(X-ray Photoelectron Spectroscopy) 분석 결과를 나타낸다. 도 9 및 도 10에서 확인할 수 있듯이, P-LTO가 1차 열처리된 A-LTO는 산소 결핍(Ov)이 현저하게 증가한 것을 확인할 수 있었다. 이와 달리, 2차 열처리된 AO-LTO의 경우 A-LTO와 달리 산소 결핍이 현저하게 감소된 것을 확인할 수 있었다. 도 9 및 도 10을 통해 분석된 보다 구체적인 결과가 아래의 <표 3> 내지 <표 5>를 통해 정리된다.
P-LTO | Peak Position | FWHM | Area | %Area |
O2- | 529.39 | 1.16 | 21795.5 | 68.58 |
Ti-O | 530.29 | 1.67 | 5284.8 | 16.63 |
Ov | 531.88 | 1.55 | 4117.2 | 12.96 |
-OH | 533.23 | 1.34 | 582.3 | 1.83 |
A-LTO | Peak Position | FWHM | Area | %Area |
O2- | 529.38 | 1.15 | 9929.4 | 40.41 |
Ti-O | 529.88 | 1.58 | 5054.8 | 20.57 |
Ov | 531.84 | 1.48 | 6422.2 | 26.14 |
-OH | 533.08 | 1.53 | 3162.4 | 12.87 |
AO-LTO | Peak Position | FWHM | Area | %Area |
O2- | 529.27 | 1.00 | 7687.1 | 47.77 |
Ti-O | 529.62 | 1.61 | 6117.9 | 38.02 |
Ov | 531.24 | 1.38 | 1509.8 | 9.38 |
-OH | 532.26 | 1.79 | 776.9 | 4.83 |
<표 3> 내지 <표 5>에서 확인할 수 있듯이, P-LTO를 1차 열처리한 경우(A-LTO) 산소 결핍이 증가(12.96 Area % -> 26.14 Area %)하지만, 2차 열처리에 의해(AO-LTO) 산소 결핍이 현저하게 감소(26.14 Area % -> 9.38%)하는 것을 확인할 수 있었다. 즉, 2차 열처리를 통해 LTO 내에 존재하는 산소 결핍들이 제거되는 것을 알 수 있다. 도 11은 본 발명의 실험 예에 따른 리튬이차전지용 음극 소재의 격자 사이 거리를 설명하기 위한 도면이다.
도 11의 (A) 내지 (C)를 참조하면, P-LTO, A-LTO, 및 AO-LTO를 준비한 후 각각에 대해 중심부(bulk)에서의 격자 사이 평균 거리(d-spacing)와 표면부에서의 격자 사이 평균 거리를 측정하였다.
도 11의 (C)에서 확인할 수 있듯이, P-LTO의 경우 중심부에서의 격자 사이 평균 거리와 표면부에서의 격자 사이 평균 거리가 모두 4.73 nm로 나타나는 것을 확인할 수 있었다. 이와 달리, 도 11의 (B)에서 확인할 수 있듯이, A-LTO의 경우 중심부에서의 격자 사이 평균 거리는 4.73 nm로 나타나지만, 표면부에서의 격자 사이 평균 거리는 5.12 nm로 나타나는 것을 확인할 수 있었다. 이와 달리, 도 11의 (C)에서 확인할 수 있듯이, AO-LTO의 경우 중심부에서의 격자 사이 평균 거리와 표면부에서의 격자 사이 평균 거리가 모두 2.93 nm로 나타나는 것을 확인할 수 있었다.
전기화학적 분석(Electrochemical Analysis) 실험을 위한 리튬이차전지 제조
N-methyl-2-pyrrolidone에 활물질, 카본 블랙(Super-P), 바인더(polyvinylidene fluoride, PVDF)를 8:1:1의 중량비로 혼합하여 슬러리를 제조하였다. 활물질은 상술된 P-LTO, A-LTO, AO-LTO가 사용되었다.
제조된 슬러리를 집전체(Cu foil)에 닥터-블레이딩(doctor blading)하여 전극을 제조하였다. 제조된 전극은 120℃의 진공 오븐에서 12시간 동안 건조시켰다.
상대 전극(counter electrode)으로 리튬 호일(Li foil)을 사용하고, LiPF6 기반의 전해질을 사용하며, 분리막으로서 Cegard 2320 멤브레인을 사용하여 CR 2032 유형의 리튬이차전지를 제조하였다. 보다 구체적으로, 전해질은 1.0M의 LiPF6에 에틸렌 카보네이트(ethylene carbonate)와 에틸 메틸 카보네이트(ethyl methyl carbonate, EMC)가 1:1의 부피비로 혼합된 물질을 사용하였다.
도 12 내지 도 14는 본 발명의 실험 예에 따른 리튬이차전지의 정전류 충방전 분석 결과를 설명하기 위한 도면들이다.
도 12 내지 도 14를 참조하면, 상기 실험 예에 따른 리튬이차전지의 메모리 효과를 측정하기 위하여, 정전류 충방전(Galvanostatic charge/discharge) 분석을 수행하였다. 구체적으로, 오토매틱 배터리 사이클러(WBCS3000, WonATech)를 사용하여 0.1C(1C=175mAh/g)의 속도로 수행하였다.
도 12는 메모리 효과를 기록하는데 사용되는 정전위 시간(potentiostatic time, tP) 프로토콜에 대한 전기화학적 의존성을 나타낸다. 도 13은 각 tP에서 P-LTO, A-LTO-, 및 AO-LTO의 전압 프로파일을 나타낸다. 도 14는 tP가 없는 전압 프로파일에서 탈리튬화(delithiation) 프로파일의 가장 낮은 지점의 tP 종속 변화를 나타낸다.
도 13 및 도 14에서 확인할 수 있듯이, P-LTO와 AO-LTO의 경우 메모리 효과가 거의 발생되지 않지만, A-LTO의 경우 메모리 효과가 현저하게 발생되는 것을 확인할 수 있었다.
상술된 물성 분석들(SEM 및 TEM 이미지 분석, XRD 분석, XPS 분석)과 도 12 내지 도 14에서 도출된 결과를 통해, A-LTO에서 발생되는 메모리 효과는 산소 결핍(oxygen vacancy)에 의한 것임을 알 수 있고, 이러한 산소 결핍은 부진한 kinetic에 의한 것임을 알 수 있다.
도 15 내지 도 17은 본 발명의 실험 예에 따른 리튬이차전지의 EIS 분석 결과를 설명하기 위한 도면이다.
도 15 내지 도 17을 참조하면, 상기 실험 예에 따른 리튬이차전지의 EIS(Electrochemical impedance spectra) 분석을 수행하였다. 구체적으로, EIS 분석은 ZIVE BP2 potentiostat(WonATech)을 사용하여 106~10-2 Hz 주파수 범위에서 수행되었다.
도 15는 P-LTO, A-LTO, 및 AO-LTO의 Nyquist plots을 나타낸다. 도 16은 SEI층을 통한 전하 이동과 관련된 저항(RSEI) 변화를 나타내고, 도 17은 계면 전하 이동과 관련된 저항(Rct) 변화를 나타낸다.
도 15에서 확인할 수 있듯이, Nyquist spectra는 반원(semi-circle) 부분과 꼬리(tail) 부분으로 이루어진 것을 확인할 수 있었다. P-LTO 및 AO-LTO의 경우 분석 시간이 증가(0h->10h)함에도 불구하고 반원 부분과 꼬리 부분의 형상이 실질적으로 일정하게 유지되는 반면, A-LTO의 경우 분석 시간이 증가(0h->10h)함에 따라 반원 부분의 형상과 꼬리 부부의 형상이 모두 변화하는 것을 확인할 수 있었다.
도 16 및 도 17에서 확인할 수 있듯이, P-LTO와 AO-LTO의 경우 RSEI 값과 Rct 값의 증가가 나타나지 않는 반면, A-LTO의 경우 RSEI 값과 Rct 값의 증가가 나타나는 것을 확인할 수 있었다. 따라서, A-LTO에서 발생된 메모리 효과는 산소 결핍(oxygen vacancy)의 도입으로 반응성이 증가한 시료에 의해 SEI layer와 유사하게 만들어진 interface layer에 의한 현상이라는 것을 알 수 있다.
이상, 본 발명을 바람직한 실시 예를 사용하여 상세히 설명하였으나, 본 발명의 범위는 특정 실시 예에 한정되는 것은 아니며, 첨부된 특허청구범위에 의하여 해석되어야 할 것이다. 또한, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 이해하여야 할 것이다.
본 발명의 실시 예에 따른 리튬이차전지용 음극 소재는 리튬이차전지에 적용될 수 있다.
Claims (12)
- 리튬이차전지용 음극 소재의 제조 방법에 있어서,리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하는 베이스 구조체를 준비하는 단계;상기 베이스 구조체를 1차 열처리하여, 상기 베이스 구조체의 전기 전도도 및 리튬 이온 전도도를 향상시키는 단계; 및1차 열처리된 상기 베이스 구조체를 2차 열처리하여, 1차 열처리된 상기 베이스 구조체 내에 존재하는 산소 결핍(oxygen vacancy)을 제거하는 단계를 포함하는 리튬이차전지용 음극 소재의 제조 방법.
- 제1 항에 있어서,상기 베이스 구조체의 1차 열처리 환경과, 상기 베이스 구조체의 2차 열처리 환경은 서로 다른 것을 포함하는 리튬이차전지용 음극 소재의 제조 방법.
- 제2 항에 있어서,상기 베이스 구조체의 1차 열처리는 대기(air) 분위기에서 수행되고, 상기 베이스 구조체의 2차 열처리는 산소(O2) 분위기에서 수행되는 것을 포함하는 리튬이차전지용 음극 소재의 제조 방법.
- 제1 항에 있어서,1차 열처리된 상기 베이스 구조체 내의 산소 결핍 함량은, 열처리되기 전 상기 베이스 구조체 내의 산소 결핍 함량보다 많고,2차 열처리된 상기 베이스 구조체 내의 산소 결핍 함량은, 열처리되기 전 상기 베이스 구조체 내의 산소 결핍 함량보다 적은 것을 포함하는 리튬이차전지용 음극 소재의 제조 방법.
- 제1 항에 있어서,상기 베이스 구조체의 1차 열처리 온도 및 시간과, 상기 베이스 구조체의 2차 열처리 온도 및 시간은 같은 것을 포함하는 리튬이차전지용 음극 소재의 제조 방법.
- 제5 항에 있어서,상기 베이스 구조체의 1차 열처리 및 2차 열처리는 780℃의 온도에서 5시간 동안 수행되는 것을 포함하는 리튬이차전지용 음극 소재의 제조 방법.
- 제1 항에 있어서,열처리되기 전 상기 베이스 구조체 표면의 격자 사이 거리(d-spacing)는, 1차 열처리된 상기 베이스 구조체 표면의 격자 사이 거리보다 짧고,2차 열처리된 상기 베이스 구조체 표면의 격자 사이 거리는, 열처리되기 전 상기 베이스 구조체 표면의 격자 사이 거리보다 짧은 것을 포함하는 리튬이차전지용 음극 소재의 제조 방법.
- 제1 항에 있어서,상기 베이스 구조체의 2차 열처리는, 0.5 L/min의 유속으로 산소(O2)를 공급하며 수행되는 것을 포함하는 리튬이차전지용 음극 소재의 제조 방법.
- 리튬이차전지용 음극 소재에 있어서,리튬-티타늄-산화물(Li4Ti5O12, LTO)을 포함하되, 상기 리튬-티타늄-산화물의 XPS(X-ray Photoelectron Spectroscopy) 분석 결과 산소 결핍(oxygen vacancy)의 면적 비율(Area %)이 9.38% 이하인 것을 포함하는 리튬이차전지용 음극 소재.
- 제9 항에 있어서,상기 리튬-티타늄-산화물은, 금속이 도핑되지 않은 것을 포함하는 리튬이차전지용 음극 소재.
- 제9 항에 있어서,상기 금속은, 알루미늄(Al)을 포함하는 리튬이차전지용 음극 소재.
- 제9 항에 있어서,상기 리튬-티타늄-산화물 중심부의 격자 사이 평균 거리(d-spacing)와 상기 리튬-티타늄-산화물 표면부의 격자 사이 평균 거리가 같은 것을 포함하는 리튬이차전지용 음극 소재.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/419,668 US20240217836A1 (en) | 2021-08-26 | 2024-01-23 | Negative electrode material for lithium secondary battery, and method for producing same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20210113240 | 2021-08-26 | ||
KR10-2021-0113240 | 2021-08-26 | ||
KR10-2022-0059787 | 2022-05-16 | ||
KR1020220059787A KR20230031125A (ko) | 2021-08-26 | 2022-05-16 | 리튬이차전지용 음극 소재 및 그 제조 방법 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/419,668 Continuation US20240217836A1 (en) | 2021-08-26 | 2024-01-23 | Negative electrode material for lithium secondary battery, and method for producing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023027382A1 true WO2023027382A1 (ko) | 2023-03-02 |
Family
ID=85323264
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/011779 WO2023027382A1 (ko) | 2021-08-26 | 2022-08-08 | 리튬이차전지용 음극 소재 및 그 제조 방법 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20240217836A1 (ko) |
WO (1) | WO2023027382A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014001110A (ja) * | 2012-06-20 | 2014-01-09 | Taiyo Yuden Co Ltd | リチウムチタン複合酸化物、その製造方法及び電池用電極 |
JP2016050156A (ja) * | 2014-09-01 | 2016-04-11 | 東邦チタニウム株式会社 | チタン酸リチウムの製造方法およびそれを用いたリチウムイオン二次電池の製造方法 |
KR20160112665A (ko) * | 2015-03-20 | 2016-09-28 | 자동차부품연구원 | 리튬이차전지, 리튬이차전지 전극 소재 및 그 제조방법 |
KR102038422B1 (ko) * | 2018-12-19 | 2019-10-30 | 한국세라믹기술원 | 리튬 전이금속 산화물의 표면 처리 방법 |
KR20200054261A (ko) * | 2017-09-14 | 2020-05-19 | 네오머티리얼즈 프로프라이어터리 리미티드 | 리튬 티타네이트의 합성 |
-
2022
- 2022-08-08 WO PCT/KR2022/011779 patent/WO2023027382A1/ko active Application Filing
-
2024
- 2024-01-23 US US18/419,668 patent/US20240217836A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014001110A (ja) * | 2012-06-20 | 2014-01-09 | Taiyo Yuden Co Ltd | リチウムチタン複合酸化物、その製造方法及び電池用電極 |
JP2016050156A (ja) * | 2014-09-01 | 2016-04-11 | 東邦チタニウム株式会社 | チタン酸リチウムの製造方法およびそれを用いたリチウムイオン二次電池の製造方法 |
KR20160112665A (ko) * | 2015-03-20 | 2016-09-28 | 자동차부품연구원 | 리튬이차전지, 리튬이차전지 전극 소재 및 그 제조방법 |
KR20200054261A (ko) * | 2017-09-14 | 2020-05-19 | 네오머티리얼즈 프로프라이어터리 리미티드 | 리튬 티타네이트의 합성 |
KR102038422B1 (ko) * | 2018-12-19 | 2019-10-30 | 한국세라믹기술원 | 리튬 전이금속 산화물의 표면 처리 방법 |
Also Published As
Publication number | Publication date |
---|---|
US20240217836A1 (en) | 2024-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015080450A1 (ko) | 고체 전해질층을 포함하는 이차전지 | |
WO2016175426A1 (ko) | 리튬 코발트 산화물의 표면처리 방법 및 이를 포함하는 리튬이차전지 | |
WO2015030402A1 (ko) | 리튬 전이금속 복합 입자, 이의 제조방법, 및 이를 포함하는 양극 활물질 | |
WO2014084502A1 (ko) | 규소계 복합체 및 이의 제조방법 | |
WO2015133692A1 (ko) | 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법 | |
WO2015060686A1 (ko) | 고체 전해질 입자, 이의 제조방법 및 이를 포함하는 리튬 이차전지 | |
WO2018164405A1 (ko) | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 | |
WO2016088997A1 (ko) | 나트륨 이차전지용 망간계 양극활물질 및 이를 포함하는 나트륨 이차전지 | |
WO2016093411A1 (ko) | 리튬-공기 전지용 양극, 그의 제조방법 및 그를 포함하는 리튬-공기 전지 | |
WO2015174652A1 (ko) | 리튬바나듐지르코늄포스페이트를 포함하는 리튬이온전지의 양극활물질 및 그를 포함하는 리튬이온전지 | |
WO2019108050A1 (ko) | 규소산화물복합체를 포함하는 비수전해질 이차전지용 음극활물질 및 이의 제조방법 | |
WO2021125870A1 (ko) | 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 | |
WO2018174616A1 (ko) | 양극 활물질 선분산체 조성물, 이차전지용 양극 및 이를 포함하는 리튬 이차전지 | |
WO2015190696A1 (ko) | 리튬이차전지용 산화물계 이중구조 음극활물질 및 이를 포함하는 리튬이차전지 | |
WO2014084636A1 (ko) | 다공성 규소 산화물-탄소재 복합체를 포함하는 음극 활물질 및 이의 제조방법 | |
WO2021112607A1 (ko) | 이차전지용 양극재의 제조방법 | |
WO2018236025A1 (ko) | 리튬 전극 및 이를 포함하는 리튬 이차전지 | |
WO2023027382A1 (ko) | 리튬이차전지용 음극 소재 및 그 제조 방법 | |
WO2022114868A1 (ko) | 폐 이차전지를 이용한 재생 양극 활물질의 제조방법 | |
WO2016088923A1 (ko) | 금속-공기 전지용 양극, 그의 제조방법 및 그를 포함하는 금속-공기 전지 | |
WO2013065918A1 (ko) | 리튬 이차전지용 양극 활물질의 제조 방법 | |
WO2019135490A1 (ko) | 양극활물질의 제조 방법 | |
WO2023113581A1 (ko) | 전고체 전지용 양극 활물질, 양극 및 전고체 전지 | |
WO2023234729A1 (ko) | 리튬 이차전지용 음극 활물질 및 이의 제조방법 | |
WO2017164718A1 (ko) | 리튬이차전지 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬이차전지 양극활물질 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22861592 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22861592 Country of ref document: EP Kind code of ref document: A1 |