WO2023020039A1 - 湿法回收锂电池中有价金属的方法 - Google Patents

湿法回收锂电池中有价金属的方法 Download PDF

Info

Publication number
WO2023020039A1
WO2023020039A1 PCT/CN2022/092457 CN2022092457W WO2023020039A1 WO 2023020039 A1 WO2023020039 A1 WO 2023020039A1 CN 2022092457 W CN2022092457 W CN 2022092457W WO 2023020039 A1 WO2023020039 A1 WO 2023020039A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage leaching
solution
stage
lithium
solid
Prior art date
Application number
PCT/CN2022/092457
Other languages
English (en)
French (fr)
Inventor
谢英豪
余海军
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2318189.4A priority Critical patent/GB2621776A/en
Priority to ES202390060A priority patent/ES2976219A2/es
Priority to MA61238A priority patent/MA61238A1/fr
Priority to MX2023014184A priority patent/MX2023014184A/es
Priority to DE112022000197.6T priority patent/DE112022000197T5/de
Publication of WO2023020039A1 publication Critical patent/WO2023020039A1/zh
Priority to US18/212,177 priority patent/US20230331571A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0071Leaching or slurrying with acids or salts thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0015Obtaining aluminium by wet processes
    • C22B21/0023Obtaining aluminium by wet processes from waste materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B47/00Obtaining manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention belongs to the technical field of lithium battery recovery, and in particular relates to a method for wet recovery of valuable metals in lithium batteries.
  • Lithium-ion batteries are widely used in portable electronic devices such as mobile phones, mobile power supplies, and notebooks due to their high energy density, high voltage, good cycle performance, low self-discharge, and high charge-discharge efficiency. At the same time, with the continuous development of the new energy automobile industry, the market demand for lithium-ion batteries is also expanding.
  • the positive electrode of the lithium-ion battery is composed of: positive active material (lithium transition metal oxide), a small amount of conductive agent (usually acetylene black) and organic binder, after they are evenly mixed, coated on the aluminum foil current collector to form the positive electrode .
  • the traditional method of recovering the cathode material of decommissioned lithium-ion batteries is the leaching method, which is mainly leached through two steps of pretreatment and acid leaching.
  • retired lithium-ion batteries can use inorganic acids (such as hydrochloric acid, nitric acid, sulfuric acid, etc.) ) as a leaching agent, while adding part of hydrogen peroxide to leach lithium, cobalt, nickel, and manganese elements from the positive electrode active material.
  • the leaching process of the traditional method will leach all the metal ions that can be dissolved, and then go through a series of impurity removal processes to obtain a metal salt solution with high purity.
  • impurity removal process multi-stage extraction is required for the separation of some metal ions.
  • the extraction process is long, the metal loss rate is high, and it is time-consuming and labor-intensive.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a kind of method of wet recovery valuable metal in lithium battery, and this method does not need the participation of organic solvent, can make pure nickel-cobalt sulfate mixed solution, manganese sulfate solution and lithium carbonate, It can be directly used as a raw material for the synthesis of lithium battery positive electrode material precursors and as a sintered raw material for positive electrode materials.
  • propose a kind of wet recovery method of valuable metal in lithium battery comprise the following steps:
  • a second acid solution is added to the first-stage leaching residue to carry out a second-stage leaching, and solid-liquid separation is performed to obtain a second-stage leaching solution containing nickel and cobalt ions.
  • waste lithium battery powder contains different transition metals due to different positive electrode active materials; in addition to positive electrode active materials, it usually contains metal impurities such as aluminum, iron and/or copper.
  • the term "the first acid liquid fed with hydrogen sulfide gas" means that hydrogen sulfide gas is continuously fed into the first acid liquid during the first stage of leaching.
  • the first acid solution is a sulfuric acid solution.
  • the process of successively removing aluminum and manganese is as follows: firstly add lye to adjust the pH to 5.0-5.5, then separate the solid and liquid to obtain manganese-lithium filtrate and aluminum slag, and then continue to add lye to adjust the pH to 5.0-5.5. 10.5-11.0, solid-liquid separation to obtain lithium-containing filtrate and manganese slag.
  • the manganese slag can be dissolved with sulfuric acid to prepare manganese sulfate. It can be directly used as a raw material for the synthesis of the precursor of the positive electrode material of the lithium battery.
  • the lye is at least one of sodium hydroxide or potassium hydroxide.
  • the second-stage leaching solution is also subjected to copper and iron removal processes: iron powder is added to the second-stage leaching solution, and copper slag is removed by solid-liquid separation, and then the second-stage leaching solution after copper removal An oxidizing agent is added to the leaching solution to adjust the pH to 3.5-4.0, and the iron slag is removed by solid-liquid separation to obtain a nickel-cobalt salt solution.
  • the solid-to-liquid ratio of the waste lithium battery powder to the first acid solution is 100-250 g/L; preferably, the reaction temperature of the one-stage leaching is 20-90°C, pH It is 3.0 ⁇ 3.5, and the pressure is 0 ⁇ 6MPa.
  • lithium carbonate is added to the lithium-containing filtrate, and solid-liquid separation is performed to obtain lithium carbonate and saline wastewater.
  • Lithium carbonate can be directly used as a raw material for sintering of lithium battery cathode materials.
  • the solid-liquid ratio of the first-stage leaching residue to the second acid solution is 200-500 g/L; preferably, the concentration of the second acid solution is 0.1-6.0 mol/L ;
  • the reaction temperature of the second-stage leaching is 30-180° C., and the pressure is -0.2-0.01 MPa.
  • the second acid solution is sulfuric acid solution.
  • the negative pressure in the second-stage leaching can be relieved by introducing nitrogen to keep the pressure stable, and the hydrogen sulfide gas generated during this process is absorbed by sodium hydroxide to prepare sodium sulfide.
  • the hydrogen sulfide produced in the second-stage leaching is recycled to the first-stage leaching.
  • the molar ratio of the added amount of the iron powder to the content of copper ions in the second-stage leaching solution is (1.0 ⁇ 1.1):1.
  • the oxidant is one or more of oxygen, hydrogen peroxide or persulfuric acid.
  • one or more of nickel, cobalt hydroxides, carbonates or oxides are used to adjust the pH after adding the oxidizing agent to remove iron.
  • the present invention comprises three steps: 1. acid solution is used to control pH, and under the condition of pressurized hydrogen sulfide gas, selective leaching is carried out so that Mn 2+ , Li + , Al 3+ metal ions enter a stage of leaching solution, while nickel, Cobalt, copper, and iron exist in the leaching slag of the first stage in the form of sulfide, and this process only consumes a small amount of sulfuric acid; , the metal separation is extremely thorough, and the obtained products are relatively pure, which can be directly used in subsequent processing and production; In the second-stage leaching solution, the hydrogen sulfide gas produced can be recycled and pressurized to the first-stage leaching process, so that only a very small amount of hydrogen sulfide is consumed in the entire reaction process, and then copper and iron are easily hydrolyzed by using the properties of easy replacement of copper and easy hydrolysis of iron. Iron, to obtain a relatively pure nickel-cobalt salt mixed solution, which can be directly used in the synthesis of positive electrode
  • Fig. 1 is a schematic process flow diagram of embodiment 1 of the present invention.
  • Lithium 9.96g/L, manganese 18.33g/L, and aluminum 3.16g/L in the first-stage leaching solution It can be seen that the leaching rate of lithium is about 99.35%, the leaching rate of manganese is about 97.5%, and the leaching rate of aluminum is about 98.75%.
  • the quality of the first-stage leaching slag accounts for about 80% of the total mass of the battery powder; in the second-stage leaching solution, nickel 41.32g/L, cobalt 25.61g/L, iron 2.76g/L, copper 3.36g/L, it can be seen that the leaching of nickel The leaching rate is about 98.62%, the leaching rate of cobalt is about 99.17%, the leaching rate of iron is about 97.70%, and the leaching rate of copper is about 82.45%.
  • a method for wet recovery of valuable metals in lithium batteries, the specific process is:
  • Lithium 9.98g/L, manganese 18.55g/L, and aluminum 3.19g/L in the first-stage leaching solution It can be seen that the leaching rate of lithium is about 99.55%, the leaching rate of manganese is about 98.67%, and the leaching rate of aluminum is about 99.69%.
  • the quality of the first-stage leaching slag accounts for about 80% of the total mass of the battery powder; in the second-stage leaching solution, nickel 41.40g/L, cobalt 25.58g/L, iron 2.74g/L, copper 3.52g/L, it can be seen that the leaching of nickel The leaching rate is about 98.81%, the leaching rate of cobalt is about 99.05%, the leaching rate of iron is about 96.99%, and the leaching rate of copper is about 86.38%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electrochemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种湿法回收锂电池中有价金属的方法,该方法在加压通入硫化氢气体的情况下,对废旧锂电池粉选择性浸出,使Mn 2+、Li +、Al 3+金属离子进入一段浸出液中,而镍、钴、铜、铁则以硫化物的形式存在于一段浸出渣中,此过程仅消耗少量的硫酸,再对一段浸出液调节pH除铝和锰,此过程,金属分离极为彻底,制得的产品也较为纯净,一段浸出渣在酸液中负压浸出,使镍、钴、铁、铜的硫化物溶解到二段浸出液中,产生的硫化氢气体可循环利用,加压至一段浸出工序,使整个反应过程中,仅消耗非常少量的硫化氢,再利用铜易置换和铁易水解的性质,除去铜和铁,得到较为纯净的镍钴盐混合溶液,可直接用于正极材料前驱体的合成使用。

Description

湿法回收锂电池中有价金属的方法 技术领域
本发明属于锂电池回收技术领域,具体涉及一种湿法回收锂电池中有价金属的方法。
背景技术
锂离子电池以高能量密度、高电压、循环性能好、自放电小、充放电效率高等优点,被广泛应用在手机、移动电源、笔记本等便携式电子设备产品中。同时随着新能源汽车产业的不断发展,市场对于锂离子电池的需求也在不断扩大。
然而动力电池的使用寿命一般不超过10年,达到寿命后将会面临报废的问题,废旧锂离子电池中包含大量有危害的和有价值的金属,如果随意丢弃,将会对自然环境造成极大的污染和破坏。因此,回收利用退役锂离子电池不仅对环境保护和可持续发展具有积极作用,同时回收退役锂离子电池正极中的有价元素能充分利用城市矿山资源,缓解自然资源短缺的压力。
锂离子电池的负极活性物质为石墨,正极活性物质主要是LiCoO 2、LiNi xC OyMn zO 2(其中,x+y+z=1)和LiMn 2O 4等锂过渡金属氧化物。锂离子电池的正极的构成为:正极活性物质(锂过渡金属氧化物)、少量导电剂(一般为乙炔黑)和有机粘结剂,将它们均匀混合后,涂布在铝箔集流体上形成正极。
传统的回收退役锂离子电池正极材料的方法是浸出方法,浸出方法主要是通过预处理和酸浸出两个步骤进行浸出。首先,退役锂离子电池经过拆解、粉碎、筛分、分选、磁选、一次研磨、正极材料分选、二次研磨等一系列操作后才能使用无机酸(例如盐酸、硝酸、硫酸等强酸)作为浸取剂,同时加入部分过氧化氢从正极活性物质中浸出锂、钴、镍、锰元素。
传统方法的浸取过程会将所有能够溶解的金属离子全部浸出,浸出后再通过一系列的除杂工序得到纯度较高的金属盐溶液。在除杂过程中针对部分金属离子的分离需要采用多级萃取,萃取流程较长,金属损失率高,费时费力。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种一种湿法回收锂电池中有价金属的方法,该方法无需有机溶剂的参与,即可制得纯净的镍钴硫酸盐混合溶液、硫酸锰溶液和碳酸锂,可直接用于锂电池正极材料前驱体的合成原料和正极材料的烧结原料。
根据本发明的一个方面,提出了一种湿法回收锂电池中有价金属的方法,包括以下步骤:
将废旧锂电池粉在通入硫化氢气体的第一酸液中进行一段浸出,再固液分离,得到一段浸出渣和一段浸出液;
向所述一段浸出液中加入碱液调节pH先后除去铝和锰,得到含锂滤液;
向所述一段浸出渣中加入第二酸液进行二段浸出,固液分离得到含镍钴离子的二段浸出液。
需要说明的是,术语“废旧锂电池粉”,因正极活性物质不同,所含有的过渡金属不同;除正极活性物质以外,通常还含有铝、铁和/或铜这些金属杂质。
术语“通入硫化氢气体的第一酸液”,表示在所述一段浸出过程中,向所述第一酸液中持续通入硫化氢气体。
在本发明的一些实施方式中,所述第一酸液为硫酸溶液。
在本发明的一些实施方式中,所述先后除去铝和锰的过程为,先加入碱液调节pH至5.0~5.5,固液分离得到锰锂滤液和铝渣,再继续加入碱液调节pH至10.5~11.0,固液分离得到含锂滤液和锰渣。
在本发明的一些优选的实施方式中,所述锰渣可用硫酸溶解制备硫酸锰。可直接用于锂电池正极材料前驱体的合成原料。
在本发明的一些实施方式中,所述碱液为氢氧化钠或氢氧化钾中的至少一种。
在本发明的一些实施方式中,所述二段浸出液还进行除铜和除铁的工序:向所述二段浸出液中加入铁粉,固液分离除去铜渣,再向除铜后的二段浸出液中加入氧化剂并调 节pH为3.5~4.0,固液分离除去铁渣,即得镍钴盐溶液。
在本发明的一些实施方式中,所述废旧锂电池粉与所述第一酸液的固液比为100~250g/L;优选的,所述一段浸出的反应温度为20~90℃,pH为3.0~3.5,压力为0~6MPa。
在本发明的一些实施方式中,向所述含锂滤液中加入碳酸钠,固液分离得到碳酸锂和含盐废水。碳酸锂可直接用于锂电池正极材料的烧结原料。
在本发明的一些实施方式中,所述一段浸出渣与所述第二酸液的固液比为200~500g/L;优选的,所述第二酸液的浓度为0.1~6.0mol/L;优选的,所述二段浸出的反应温度为30~180℃,压力为-0.2~-0.01MPa。优选的,所述第二酸液为硫酸溶液。优选的,可通入氮气缓解二段浸出中的负压压力使压力保持稳定,此过程中产生的硫化氢气体用氢氧化钠吸收后配制硫化钠。
在本发明的一些实施方式中,所述二段浸出产生的硫化氢循环至一段浸出中。
在本发明的一些实施方式中,所述铁粉的加入量与所述二段浸出液中铜离子的含量的摩尔比为(1.0~1.1):1。
在本发明的一些实施方式中,所述氧化剂为氧气、过氧化氢或过硫酸中的一种或多种。
在本发明的一些实施方式中,加入氧化剂后采用镍、钴的氢氧化物、碳酸盐或氧化物中的一种或多种来调节pH以除去铁。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
本发明包括三步:①采用酸液控制pH,在加压通入硫化氢气体的情况下,选择性浸出,使Mn 2+、Li +、Al 3+金属离子进入一段浸出液中,而镍、钴、铜、铁则以硫化物的形式存在于一段浸出渣中,此过程仅消耗少量的硫酸;②对一段浸出液先调节pH除铝,再调节pH得到纯净的氢氧化锰锰渣,此过程,金属分离极为彻底,制得的产品也较为纯净,可直接用于后续的加工生产;③对一段浸出渣,在酸液中负压浸出,使镍、钴、铁、铜的硫化物溶解到二段浸出液中,产生的硫化氢气体可循环利用,加压至一段浸出工序,使整个反应过程中,仅消耗非常少量的硫化氢,再利用铜易置换和铁易水解的性 质,除去铜和铁,得到较为纯净的镍钴盐混合溶液,可直接用于正极材料前驱体的合成使用。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的工艺流程示意图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种湿法回收锂电池中有价金属的方法,参照图1,具体过程为:
废旧电池粉中各金属含量为:镍16.76%、钴10.33%、锰7.52%、锂4.01%、铁1.13%、铝1.28%、铜1.63%,通过以下步骤回收有价金属:
首先,将收集的100g废旧锂电池粉在通入硫化氢气体的硫酸溶液中进行一段浸出,控制固液比为250g/L,反应温度为20℃,pH为3.0,压力为3MPa,反应7h后,经固液分离,得到L一段浸出渣和400m一段浸出液,并分别处理;
(1)一段浸出液制取碳酸锂:
①向一段浸出液中加入氢氧化钠调节pH至5.0~5.5,固液分离得到锰锂滤液和铝渣;
②向锰锂滤液中继续加入氢氧化钠调节pH至10.5~11.0,固液分离得到含锂滤液和锰渣,锰渣用硫酸溶解制备硫酸锰;
③向含锂滤液中加入碳酸钠,固液分离后,制得碳酸锂和含盐废水;
(2)一段浸出渣制取镍钴盐溶液:
①将一段浸出渣在硫酸中采用负压进行二段浸出,控制固液比为200g/L,硫酸浓度为5mol/L,反应温度为90℃,负压压力为-0.1MPa,反应7h后,经固液分离,得到400mL 二段浸出液和炭渣,负压产生的硫化氢进入一段浸出工序循环使用;
②向二段浸出液中加入铁粉,铁粉的加入量与铜离子的摩尔比为1.1:1,反应完成后固液分离,除去铜渣;
③向除铜后的二段浸出液中加入过氧化氢和氢氧化镍并调节pH为3.5~4.0,除去铁,所得溶液即为纯净的镍钴硫酸盐混合溶液。
一段浸出液中,锂9.96g/L、锰18.33g/L、铝3.16g/L,可知,锂的浸出率约为99.35%,锰的浸出率约为97.5%,铝的浸出率约为98.75%;一段浸出渣的质量约占电池粉总质量的80%;二段浸出液中,镍41.32g/L,钴25.61g/L、铁2.76g/L、铜3.36g/L,可知,镍的浸出率约为98.62%,钴的浸出率约为99.17%,铁的浸出率约为97.70%,铜的浸出率约为82.45%。
实施例2
一种湿法回收锂电池中有价金属的方法,具体过程为:
废旧电池粉中各金属含量为:镍16.76%、钴10.33%、锰7.52%、锂4.01%、铁1.13%、铝1.28%、铜1.63%,通过以下步骤回收有价金属:
首先,将收集的100g废旧锂电池粉在通入硫化氢气体的硫酸溶液中进行一段浸出,控制固液比为250g/L,反应温度为60℃,pH为3.0,压力为6MPa,反应7h后,经固液分离,得到一段浸出渣和400mL一段浸出液,并分别处理;
(1)一段浸出液制取碳酸锂:
①向一段浸出液中加入氢氧化钠调节pH至5.0~5.5,固液分离得到锰锂滤液和铝渣;
②向锰锂滤液中继续加入氢氧化钠调节pH至10.5~11.0,固液分离得到含锂滤液和锰渣,锰渣用硫酸溶解制备硫酸锰;
③向含锂滤液中加入碳酸钠,固液分离后,制得碳酸锂和含盐废水;
(2)一段浸出渣制取镍钴盐溶液:
①将一段浸出渣在硫酸中采用负压进行二段浸出,控制固液比为200g/L,硫酸浓度为3mol/L,反应温度为30℃,负压压力为-0.2MPa,反应7h后,经固液分离,得到400mL 二段浸出液和炭渣,负压产生的硫化氢进入一段浸出工序循环使用;
②向二段浸出液中加入铁粉,铁粉的加入量与铜离子的摩尔比为1.0.5:1,反应完成后固液分离,除去铜渣;
③向除铜后的二段浸出液中加入过硫酸和氢氧化钴并调节pH为3.5~4.0,除去铁,所得溶液即为纯净的镍钴硫酸盐混合溶液。
一段浸出液中,锂9.98g/L、锰18.55g/L、铝3.19g/L,可知,锂的浸出率约为99.55%,锰的浸出率约为98.67%,铝的浸出率约为99.69%;一段浸出渣的质量约占电池粉总质量的80%;二段浸出液中,镍41.40g/L,钴25.58g/L、铁2.74g/L、铜3.52g/L,可知,镍的浸出率约为98.81%,钴的浸出率约为99.05%,铁的浸出率约为96.99%,铜的浸出率约为86.38%。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种湿法回收锂电池中有价金属的方法,其特征在于,包括以下步骤:
    将废旧锂电池粉在通入硫化氢气体的第一酸液中进行一段浸出,再固液分离,得到一段浸出渣和一段浸出液;
    向所述一段浸出液中加入碱液调节pH先后除去铝和锰,得到含锂滤液;
    向所述一段浸出渣中加入第二酸液进行二段浸出,固液分离得到含镍钴离子的二段浸出液。
  2. 根据权利要求1所述的方法,其特征在于:所述先后除去铝和锰的过程为,先加入碱液调节pH至5.0~5.5,固液分离得到锰锂滤液和铝渣,再继续加入碱液调节pH至10.5~11.0,固液分离得到含锂滤液和锰渣。
  3. 根据权利要求1所述的方法,其特征在于:所述二段浸出液还进行除铜和除铁的工序:向所述二段浸出液中加入铁粉,固液分离除去铜渣,再向除铜后的二段浸出液中加入氧化剂并调节pH为3.5~4.0,固液分离除去铁渣,即得镍钴盐溶液。
  4. 根据权利要求1所述的方法,其特征在于:所述废旧锂电池粉与所述第一酸液的固液比为100~250g/L;优选的,所述一段浸出的反应温度为20~90℃,pH为3.0~3.5,压力为0~6MPa。
  5. 根据权利要求1所述的方法,其特征在于:向所述含锂滤液中加入碳酸钠,固液分离得到碳酸锂和含盐废水。
  6. 根据权利要求1所述的方法,其特征在于:所述一段浸出渣与所述第二酸液的固液比为200~500g/L;优选的,所述第二酸液的浓度为0.1~6.0mol/L;优选的,所述二段浸出的反应温度为30~180℃,压力为-0.2~-0.01MPa。
  7. 根据权利要求1所述的方法,其特征在于:所述二段浸出产生的硫化氢循环至一段浸出中。
  8. 根据权利要求3所述的方法,其特征在于:所述铁粉的加入量与所述二段浸出液中铜离子的含量的摩尔比为(1.0~1.1):1。
  9. 根据权利要求3所述的方法,其特征在于:所述氧化剂为氧气、过氧化氢或过硫酸中的一种或多种。
  10. 根据权利要求3所述的方法,其特征在于:加入氧化剂后采用镍、钴的氢氧化物、碳酸盐或氧化物中的一种或多种来调节pH以除去铁。
PCT/CN2022/092457 2021-08-17 2022-05-12 湿法回收锂电池中有价金属的方法 WO2023020039A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
GB2318189.4A GB2621776A (en) 2021-08-17 2022-05-12 Method for wet recovery of valuable metals in lithium battery
ES202390060A ES2976219A2 (es) 2021-08-17 2022-05-12 Procedimiento húmedo para recuperar metales valiosos de una batería de litio
MA61238A MA61238A1 (fr) 2021-08-17 2022-05-12 Procédé de récupération par voie humide de métaux valorisables dans une batterie au lithium
MX2023014184A MX2023014184A (es) 2021-08-17 2022-05-12 Procedimiento humedo para recuperar metales valiosos de una bateria de litio.
DE112022000197.6T DE112022000197T5 (de) 2021-08-17 2022-05-12 Nassverfahren zur rückgewinnung wertvoller metalle aus lithiumbatterien
US18/212,177 US20230331571A1 (en) 2021-08-17 2023-06-20 Wet process for recovering valuable metals from lithium battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110943314.5A CN113802002B (zh) 2021-08-17 2021-08-17 湿法回收锂电池中有价金属的方法
CN202110943314.5 2021-08-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/212,177 Continuation US20230331571A1 (en) 2021-08-17 2023-06-20 Wet process for recovering valuable metals from lithium battery

Publications (1)

Publication Number Publication Date
WO2023020039A1 true WO2023020039A1 (zh) 2023-02-23

Family

ID=78893685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092457 WO2023020039A1 (zh) 2021-08-17 2022-05-12 湿法回收锂电池中有价金属的方法

Country Status (8)

Country Link
US (1) US20230331571A1 (zh)
CN (1) CN113802002B (zh)
DE (1) DE112022000197T5 (zh)
ES (1) ES2976219A2 (zh)
GB (1) GB2621776A (zh)
MA (1) MA61238A1 (zh)
MX (1) MX2023014184A (zh)
WO (1) WO2023020039A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113802002B (zh) * 2021-08-17 2022-11-15 广东邦普循环科技有限公司 湿法回收锂电池中有价金属的方法
AU2023222125A1 (en) * 2022-02-16 2024-08-15 Umicore Process for the recovery of li, ni and co
CN114655969B (zh) * 2022-03-28 2023-01-31 北京科技大学 高杂磷酸铁锂正极废料回收制备碳酸锂和磷酸铁的方法
CN114875240A (zh) * 2022-04-06 2022-08-09 湖南邦普循环科技有限公司 处理废旧锂电池铜钴合金的方法和应用
WO2023237713A1 (en) 2022-06-10 2023-12-14 Umicore Sulphidation of a solid metal feed comprising ni and/or co
FI131084B1 (en) 2022-06-10 2024-09-17 Umicore Process for sulphiding metal
CN115058594A (zh) * 2022-07-14 2022-09-16 广东佳纳能源科技有限公司 从废旧锂离子电池中回收有价金属元素的方法和浸出装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665912A (zh) * 2009-11-30 2012-09-12 韩国地质资源研究院 从锂离子电池和三元正极材料制备cmb催化剂的方法
EP2532759A1 (fr) * 2011-06-07 2012-12-12 Sarp Industries Procédé de séparation de métaux à partir de batteries contenant du lithium
CN106505272A (zh) * 2016-12-12 2017-03-15 江西赣锋锂业股份有限公司 一种锂电池正极材料废料的处理方法
CN107779595A (zh) * 2017-10-23 2018-03-09 金川集团股份有限公司 一种低冰镍湿法处理直接分离镍铜的方法
WO2018047147A1 (en) * 2016-09-12 2018-03-15 Attero Recycling Pvt. Ltd. Process for recovering pure cobalt and nickel from spent lithium batteries
CN109593963A (zh) * 2018-10-31 2019-04-09 天齐锂业资源循环技术研发(江苏)有限公司 一种从废旧锂电池中选择性回收有价金属的新方法
CN109935922A (zh) * 2019-03-14 2019-06-25 北京矿冶科技集团有限公司 一种从废旧锂离子电池材料中回收有价金属的方法
CN111100992A (zh) * 2019-12-31 2020-05-05 荆门市格林美新材料有限公司 一种基于高温还原的镍湿法精炼尾渣的处理方法
CN112029997A (zh) * 2020-07-20 2020-12-04 中南大学 一种大规模处理废旧锂离子电池正极材料的回收工艺
CN113802002A (zh) * 2021-08-17 2021-12-17 广东邦普循环科技有限公司 湿法回收锂电池中有价金属的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3385997B2 (ja) * 1999-02-12 2003-03-10 大平洋金属株式会社 酸化鉱石から有価金属を回収する方法
JP5012970B2 (ja) * 2010-07-21 2012-08-29 住友金属鉱山株式会社 使用済みニッケル水素電池に含有される活物質からのニッケル、コバルトの分離方法
JP2015183292A (ja) * 2014-03-26 2015-10-22 三菱マテリアル株式会社 コバルトおよびニッケルの回収方法
CN107795950A (zh) * 2017-09-29 2018-03-13 无锡昊瑜节能环保设备有限公司 一种汽车照明灯
JP6915497B2 (ja) * 2017-10-23 2021-08-04 住友金属鉱山株式会社 銅とニッケルおよびコバルトの分離方法
JP6939506B2 (ja) * 2017-12-18 2021-09-22 住友金属鉱山株式会社 銅とニッケルおよびコバルトの分離方法
IT201800002175A1 (it) * 2018-01-30 2019-07-30 Consiglio Nazionale Ricerche Procedimento idrometallurgico per il trattamento di batterie al litio e recupero dei metalli in esse contenuti.

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665912A (zh) * 2009-11-30 2012-09-12 韩国地质资源研究院 从锂离子电池和三元正极材料制备cmb催化剂的方法
EP2532759A1 (fr) * 2011-06-07 2012-12-12 Sarp Industries Procédé de séparation de métaux à partir de batteries contenant du lithium
WO2018047147A1 (en) * 2016-09-12 2018-03-15 Attero Recycling Pvt. Ltd. Process for recovering pure cobalt and nickel from spent lithium batteries
CN106505272A (zh) * 2016-12-12 2017-03-15 江西赣锋锂业股份有限公司 一种锂电池正极材料废料的处理方法
CN107779595A (zh) * 2017-10-23 2018-03-09 金川集团股份有限公司 一种低冰镍湿法处理直接分离镍铜的方法
CN109593963A (zh) * 2018-10-31 2019-04-09 天齐锂业资源循环技术研发(江苏)有限公司 一种从废旧锂电池中选择性回收有价金属的新方法
CN109935922A (zh) * 2019-03-14 2019-06-25 北京矿冶科技集团有限公司 一种从废旧锂离子电池材料中回收有价金属的方法
CN111100992A (zh) * 2019-12-31 2020-05-05 荆门市格林美新材料有限公司 一种基于高温还原的镍湿法精炼尾渣的处理方法
CN112029997A (zh) * 2020-07-20 2020-12-04 中南大学 一种大规模处理废旧锂离子电池正极材料的回收工艺
CN113802002A (zh) * 2021-08-17 2021-12-17 广东邦普循环科技有限公司 湿法回收锂电池中有价金属的方法

Also Published As

Publication number Publication date
GB202318189D0 (en) 2024-01-10
MX2023014184A (es) 2024-03-13
MA61238A1 (fr) 2023-08-31
ES2976219A2 (es) 2024-07-26
GB2621776A (en) 2024-02-21
DE112022000197T5 (de) 2023-11-23
CN113802002B (zh) 2022-11-15
US20230331571A1 (en) 2023-10-19
CN113802002A (zh) 2021-12-17
GB2621776A8 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
WO2023020039A1 (zh) 湿法回收锂电池中有价金属的方法
CN107196004B (zh) 一种从废旧锂离子动力电池中回收有价金属的方法
CN109082522B (zh) 一种废旧三元锂电池正极粉料的回收方法
CN109881008A (zh) 一种还原焙烧-水淬法回收废旧锂离子电池中锂的方法
CN111477985B (zh) 一种回收废旧锂离子电池的方法
CN112047335B (zh) 一种废旧锂离子电池黑粉的联合处理方法
CN105322247A (zh) 一种直接用失效锂离子电池制备钴酸锂的方法
CN110092398A (zh) 一种废旧锂离子电池焙烧尾气资源化利用的方法
CN112510281A (zh) 一种废旧锂离子电池全组分回收方法
CN101603126A (zh) 一种废旧锂电池正极活性材料的高效浸出工艺
WO2022267419A1 (zh) 一种回收废旧锂离子电池粉中单质铜的方法和应用
WO2023029573A1 (zh) 一种从废旧锂电池中提取锂的方法
CN113942987A (zh) 一种制备磷酸铁前驱体及磷酸铁锂正极材料的方法
CN114249313A (zh) 一种从废磷酸铁锂粉末中回收电池级磷酸铁的方法
CN114480834B (zh) 从废旧锂离子电池中回收有价金属的方法及反应器
CN115652077A (zh) 一种废旧锰酸锂电池选择性分离回收锂和锰的方法
CN115092902A (zh) 利用富铁锰渣制备磷酸铁锰锂正极材料的方法
CN114540640A (zh) 一种锂电池回收方法
CN117185319A (zh) 一种硫酸盐空气焙烧回收磷酸铁锂电池的方法
CN111663042A (zh) 一种废旧锂离子电池中有价金属的回收方法
WO2023040010A1 (zh) 一种废旧锂离子电池正极材料的修复方法
CN106868317A (zh) 失效钴酸锂电池正极材料的回收方法
CN111834683B (zh) 一种钴酸锂废电池的回收方法
CN117619859B (zh) 一种废旧锂离子动力电池资源化回收方法
CN113025826B (zh) 用三元酸从锂离子电池正极中浸出锂、钴、镍、锰的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857356

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022000197

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: P2300209

Country of ref document: HU

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/014184

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 202318189

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220512

122 Ep: pct application non-entry in european phase

Ref document number: 22857356

Country of ref document: EP

Kind code of ref document: A1