WO2023015730A1 - 一种包覆表面活性剂的聚合物微球及其制备方法 - Google Patents

一种包覆表面活性剂的聚合物微球及其制备方法 Download PDF

Info

Publication number
WO2023015730A1
WO2023015730A1 PCT/CN2021/126172 CN2021126172W WO2023015730A1 WO 2023015730 A1 WO2023015730 A1 WO 2023015730A1 CN 2021126172 W CN2021126172 W CN 2021126172W WO 2023015730 A1 WO2023015730 A1 WO 2023015730A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
preparation
reaction
oil
water
Prior art date
Application number
PCT/CN2021/126172
Other languages
English (en)
French (fr)
Inventor
铁磊磊
李翔
王浩颐
常振
于萌
乔奇琳
冀文雄
吴豹
Original Assignee
中海油田服务股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中海油田服务股份有限公司 filed Critical 中海油田服务股份有限公司
Publication of WO2023015730A1 publication Critical patent/WO2023015730A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/536Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants

Definitions

  • the invention belongs to the technical field of offshore oilfield exploitation, and in particular relates to a polymer microsphere coated with a surfactant and a preparation method thereof.
  • Polymer microspheres have become a widely used deep control and flooding system because they can achieve step-by-step plugging in reservoir pores and have strong temperature and salt resistance.
  • Surfactants can improve oil recovery by reducing the interfacial tension between oil and water and changing the wettability of rocks.
  • the existing polymer microsphere system only improves the microscopic heterogeneity of the formation through the size effect of the particle itself, and the system has a single function.
  • the existing surfactant systems have disadvantages such as being easily adsorbed by formations, poor salt resistance, and high cost.
  • the heterogeneous flooding system uses the above two systems in combination, but this combination is more of a physical combination. The two systems will gradually undergo chromatographic separation as they migrate underground. Adsorption loss, after reaching the remaining oil enrichment area deep in the formation, it is difficult to achieve the recombination effect.
  • the present invention is proposed to provide a surfactant-coated polymer microsphere and a preparation method thereof which overcome the above problems or at least partly solve the above problems.
  • a polymer microsphere coated with a surfactant comprising a polymer microsphere and a surfactant coated in the polymer microsphere;
  • the polymer microsphere is polymerized by acrylic acid and acrylamide under the action of a crosslinking agent, and the degree of hydrolysis of the polymer microsphere is 2% to 40%;
  • the surfactant includes coconut oil fatty acid diethanolamide.
  • the mass fraction of coconut oil fatty acid diethanolamide in the surfactant-coated polymer microspheres is 5%-20%.
  • a preparation method of polymer microspheres coated with surfactant comprising the following steps:
  • the water phase is divided into two parts, the first initiator is added to the first part of the water phase, the solution obtained is added to the oil phase, and an emulsification reaction is carried out to obtain a reaction bottom liquid;
  • the first surfactant is a sorbitan fatty acid ester surfactant or an alkylphenol polyoxyethylene ether surfactant.
  • the oil is white oil and/or paraffinic base oil.
  • the mass fraction of the oil phase is 40% to 75%; wherein, the mass fraction of the first surfactant is 2% to 7%, and the rest is oil .
  • the crosslinking agent is N,N-methylenebisacrylamide and/or divinylbenzene
  • the mass fraction of the crosslinking agent is ⁇ 10%.
  • step (2) based on the total mass of the reaction system, the sum of the mass of acrylic acid and acrylamide is 7.09%-40.08%, and the mass ratio of acrylic acid to acrylamide is 1:50-1:1.
  • step (2) sodium hydroxide is used to adjust the pH value, and the content of sodium acrylate in the obtained aqueous phase is 2% to 40% compared to the sum of mass of acrylic acid, acrylamide and sodium acrylate.
  • the mass ratio of the first part of the water phase to the second part of the water phase is 1:(3-5).
  • the first initiator is potassium persulfate and/or ammonium persulfate
  • the mass fraction of the first initiator is 0.05%-1.0%.
  • the stirring speed of the emulsification reaction is 1000-1200 rpm.
  • the second surfactant is coconut oil fatty acid diethanolamide
  • the mass fraction of the second surfactant is 5%-20%.
  • coconut oil fatty acid diethanolamide is prepared by aminolysis method, including: transesterification of coconut oil and methanol to obtain methyl ester, condensation reaction of methyl ester and diethanolamine in the presence of a basic catalyst to obtain coconut oil fatty acid diethanolamide .
  • the second initiator is sodium bisulfite
  • the mass fraction of the second initiator is 0.05%-1.0%.
  • adding the aqueous monomer liquid to the reaction bottom liquid includes: adding the monomer aqueous liquid dropwise to the reaction bottom liquid under stirring conditions, and the initial temperature is 30°C to 35°C , The temperature was maintained at 55°C to 65°C during the dropping process.
  • step (5) the aqueous monomer liquid is added to the reaction bottom liquid by means of constant flow and dropwise addition.
  • the stirring speed is 550-600 rpm.
  • the surfactant-coated polymer microspheres of the present invention and the preparation method thereof at least have the following beneficial effects:
  • the surfactant-coated polymer microsphere of the present invention uses the existing microsphere system as a functional carrier to coat the oil washing agent (i.e. surfactant) in it, and relies on intelligent controlled release technology to control the surfactant in Release and play a role in the deep formation to achieve the purpose of high-efficiency "modulation and flooding-oil washing" compound effect.
  • oil washing agent i.e. surfactant
  • the polymer microsphere coated with surfactant of the present invention selects the non-ionic surfactant coconut oil fatty acid diethanolamide, because it itself has no charge, it can only be blended with functional monomers to quickly polymerize to form cross-linked microspheres. Gel, so that it is fixed in the gel body, so the polymer microspheres coated with surfactants of the present invention are synthesized in one step.
  • Figure 1 shows that the microspheres formed by gelation have different microstructures.
  • Figure 2 shows the basic concept of the preparation method of coated surfactant polymer microspheres.
  • FIG. 3 shows the oil-water interfacial tension of the samples of Example 1 at different times.
  • Figure 4 shows the oil-water interfacial tension of the samples of Example 2 at different times.
  • Figure 5 shows the oil-water interfacial tension of the samples of Example 3 at different times.
  • Fig. 6 shows the variation curve of the pressure with the PV number of water injection for the single sand pipe flooding of the sample in Example 3.
  • Fig. 7 shows the single sand pipe flooding and recovery curve of the sample in Example 3.
  • surfactant-coated polymer microspheres In the present invention, “surfactant-coated polymer microspheres”, “surfactant-coated system”, “coating body” and the like have the same meaning and can be used interchangeably.
  • the compounding of the polymer microsphere system and the surfactant is only a physical compounding.
  • chromatographic separation will gradually occur, and the adsorption loss of the surfactant along the way will cause the residual oil to reach the deep formation. After the enrichment zone, it is difficult to achieve the composite effect.
  • the inventors of the present invention conducted in-depth research, and thus creatively proposed a surfactant-coated polymer microsphere and a preparation method thereof.
  • the surfactant-coated polymer microspheres of the present invention include: polymer microspheres and surfactants coated in the polymer microspheres.
  • Polymer microspheres are polymerized with acrylic acid and acrylamide as monomers under the action of a crosslinking agent, and sodium hydroxide is added to the system of acrylic acid, acrylamide, crosslinking agent and water to adjust the pH value of the system , so that sodium acrylate accounts for 2% to 40% of the sum of the mass of acrylic acid, sodium acrylate and acrylamide, that is, the degree of hydrolysis of polymer microspheres is 2% to 40%, for example, 2%, 5%, 10%, 12% %, 15%, 20%, 22%, 25%, 30%, 32%, 35%, 40%, etc.
  • the surfactant coated in the polymer microsphere includes coconut oil fatty acid diethanolamide.
  • the massfraction of coconut oil fatty acid diethanolamide in the polymer microspheres of coating surfactant is 5% ⁇ 20%, for example, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20%, etc. .
  • the inventors of the present invention have found through research that polymer microspheres have a 3D network structure, which can absorb water several to hundreds of times compared to its own mass, and it is difficult to lose water under high pressure.
  • the ball forming process of microspheres is divided into the following stages: in the first stage, primary nanoparticles connected together in a chain form are first formed; in the second stage, due to the high concentration of monomers in the system, these primary nanoparticles pass through The monomer in the monomer droplets is captured to form larger particles of approx.
  • the amoeba structure is formed driven by the minimum interface energy.
  • the amoeba structure self-assembles to form multiple balls, while the viscosity of the dispersed phase and the reaction temperature increase.
  • the spheres in the fourth stage gel to form larger spheres.
  • the polymer microsphere of the present invention is a copolymer microsphere formed by low-temperature reverse-phase oxidation-reduction polymerization with acrylamide and acrylic acid as monomers, and the surfactant coconut oil fatty acid diethanolamide is fixed inside the microsphere through gelation . Due to the uneven distribution of cross-linking agent and monomer in the microspheres, the microspheres formed by gelation have different microstructures: microspheres with incomplete three-dimensional network structure, "soft balls” with complete network structure and tight internal structure. 1. A "hard ball” with a loose external structure, as shown in Figure 1. The controllable release of the surfactant coconut oil fatty acid diethanolamide can be realized by controlling the content of the cross-linking agent inside the microspheres.
  • the controlled release of surfactant coconut oil fatty acid diethanolamide can be realized by controlling the content and proportion of monomers inside the microspheres.
  • Sodium acrylate can increase the hydration rate of the microspheres, which is beneficial to the outward diffusion of the surfactant coconut oil fatty acid diethanolamide; at the same time, the increase of anion charge can inhibit the diffusion of the amine in the surfactant coconut oil fatty acid diethanolamide. So that sodium acrylate addition exists an optimum value.
  • the amount of sodium acrylate at 2% to 40%, the controlled release of the surfactant coconut oil fatty acid diethanolamide can be realized.
  • the basic idea of the preparation method of the surfactant-coated polymer microspheres of the present invention is: acrylamide and acrylic acid are used as monomers to form copolymerized microspheres through low-temperature reverse-phase oxidation-reduction polymerization, and the surfactant coconut oil fatty acid di Ethanolamide is immobilized inside the microspheres by gelation. Specifically shown in Figure 2.
  • the preparation method of the polymer microspheres coated with surfactant of the present invention comprises the following steps:
  • the first surfactant is any one of sorbitan fatty acid ester surfactants or alkylphenol polyoxyethylene ether surfactants.
  • Sorbitan fatty acid ester surfactants that is, surfactants with the trade name Span, such as Span80, Span60, etc.
  • Alkylphenol polyoxyethylene ether surfactants that is, the trade name is OP series surfactants, such as OP-40 and the like.
  • the oil is white oil and/or paraffinic base oil.
  • the oil phase accounts for 40%-75% (eg, 40%, 45%, 50%, 55%, 60%, 65%, 70% or 75%, etc.). It should be noted here that the so-called “total mass of the reaction system” refers to the sum of the mass of all reaction materials involved in the preparation of the coated surfactant system, that is, the mass of the entire reaction system.
  • the oil phase is composed of the first surfactant and oil, wherein, based on the total mass of the reaction system, the mass fraction of the first surfactant is 2% to 7%, such as 2%, 3%, 4% %, 5%, 6% or 7%, etc.
  • the ratio of the oil phase to the total mass of the reaction system minus the ratio of the first surfactant is the ratio of oil in the entire reaction system.
  • the polymer microspheres coated with surfactant is a water-in-oil system, and by adding the first surfactant, stable small droplets can be produced in the oil phase, whereby, in subsequent steps, the The water-in-oil microspheres can only be formed after the oil phase is added into the water phase for initiation.
  • the crosslinking agent is N,N-methylenebisacrylamide and/or divinylbenzene. Based on the total mass of the reaction system, the mass fraction of the crosslinking agent is ⁇ 10%.
  • acrylic acid and acrylamide are the monomers of the polymerization reaction, and the mass fraction of the sum of the two is 7.09% to 40.08% (for example, 7.09%, 10%, 12%, 15% %, 17%, 20%, 22%, 25%, 27%, 30%, 32%, 35%, 37%, 40.08%, etc.), and the mass ratio of acrylic acid:acrylamide is 1:50 ⁇ 1:1 (For example, 1:1, 1:5, 1:10, 1:15, 1:20, 1:25, 1:30, 1:35, 1:40, 1:45, or 1:50, etc.).
  • the mass content of sodium acrylate is 2% to 40%, for example, 2%, 5%, 10% , 12%, 15%, 20%, 22%, 25%, 30%, 32%, 35%, 40%, etc.
  • the degree of hydrolysis of the polymer is controlled by controlling the pH value of the aqueous phase.
  • sodium hydroxide is used to neutralize acrylic acid in the system, so that sodium acrylate accounts for 2%-40% of the sum of acrylic acid, sodium acrylate and acrylamide, that is, the degree of hydrolysis of the microspheres is 2%-40%.
  • pH ⁇ 7 there is no acrylic acid in the solution
  • the degree of hydrolysis is the ratio of sodium acrylate to the sum of sodium acrylate and acrylamide
  • pH ⁇ 7 the degree of hydrolysis is the ratio of sodium acrylate to the sum of acrylic acid, sodium acrylate and acrylamide .
  • step (1) and step (2) the present invention has no special requirement, can follow step (1) and step (2) to carry out sequentially, also can two steps carry out simultaneously, or, also can first Proceed to step (2), and then to step (1).
  • step (3) the water phase prepared by step (2) is divided into two parts, i.e. the first part water phase and the second part water phase, wherein the mass ratio of the first part water phase to the second part water phase is 1:(3 ⁇ 5).
  • step (1) Add the first initiator to the first part of the water phase, stir and dissolve, then add the resulting solution to the oil phase prepared in step (1), and increase the stirring speed to 1000-1200rpm, such as 1000rpm, 1050rpm, 1100rpm, 1150rpm or 1200rpm Etc., carry out emulsification reaction (for example 30 minutes), feed high-purity nitrogen continuously during. After the emulsification reaction is finished, the reaction bottom liquid is obtained.
  • 1000-1200rpm such as 1000rpm, 1050rpm, 1100rpm, 1150rpm or 1200rpm Etc.
  • the first initiator is potassium persulfate and/or ammonium persulfate. Based on the total mass of the reaction system, the mass fraction of the first initiator is 0.05% to 1.0%, such as 0.05%, 0.10%, 0.15%, 0.20%, 0.25%, 0.30%, 0.35%, 0.40%, 0.45%, 0.50%, 0.55%, 0.60%, 0.65%, 0.70%, 0.75%, 0.80%, 0.85%, 0.90%, 0.95% or 1.0%, etc.
  • the second surfactant is coconut oil fatty acid diethanolamide.
  • the inventors have found through research that since the formation is negatively charged, cationic surfactants are easily adsorbed in the formation through electrostatic adsorption, and the amount of surfactant released after coating is limited, so it is difficult to play the role of washing oil.
  • Anionic surfactants have good water solubility and can be dissolved in monomer water, but when dispersed into the oil phase system, the lipophilic group at one end will make the added surfactants arrange at the oil-water interface, thus destroying the The original oil-water balance increases the HLB value of the system, and water phase communication is easy to occur during polymerization, and the polymerization and formation of large particles cause the reaction to fail.
  • non-ionic surfactants have no ionic charge, their fixation mainly depends on the rapid formation of gel, thus limiting their diffusion to the oil-water interface, easy to form a coated surfactant system, and have good oil washing ability after release. Therefore, in the present invention, a nonionic surfactant is selected in the coating surfactant system. Further, because the surfactant coconut oil fatty acid diethanolamide can obtain lower oil-water interfacial tension, and the dosage is small, and the price is relatively cheap, so the coating surfactant system mainly uses coconut oil fatty acid diethanolamide as the surface for coating. active agent.
  • coconut oil fatty acid diethanolamide which is a known nonionic surfactant
  • coconut oil fatty acid diethanolamide which is a known nonionic surfactant
  • the present invention adopt aminolysis method to prepare coconut oil fatty acid diethanolamide, promptly carry out transesterification with coconut oil and methanol to obtain methyl ester, carry out condensation reaction by methyl ester and diethanolamine in the presence of basic catalyst to obtain coconut oil fatty acid Diethanolamide products.
  • the transesterification step includes: using NaOH (eg flake) as a catalyst to react coconut oil with methanol.
  • NaOH eg flake
  • the consumption of NaOH is 2% ⁇ 2.5% (mol percentage) of methanol, for example 2.0%, 2.1%, 2.2%, 2.3%, 2.4% or 2.5% etc.
  • the mol ratio of coconut oil and methanol is 1:4.5 ⁇ 1:4.8, for example, 1:4.5, 1:4.6, 1:4.7 or 1:4.8, etc.
  • the reaction temperature of coconut oil and methanol is 68 ⁇ 72°C, such as 68°C, 69°C, 70°C, 71°C or 72°C °C, etc.
  • the reaction time is 1-1.5 hours, for example, 1 hour, 1.1 hours, 1.2 hours, 1.3 hours, 1.4 hours or 1.5 hours.
  • the condensation reaction step includes: using NaOH as a catalyst to react methyl ester and diethanolamine under stirring conditions.
  • the consumption of NaOH is 0.3% ⁇ 0.4% (molar percentage) of methyl ester, for example, 0.3%, 0.32%, 0.34%, 0.36%, 0.38% or 0.4%
  • Stirring condition is to adopt the stirring speed of 100r/min for example ;
  • the molar ratio of methyl ester to diethanolamine is 1:2 ⁇ 1:2.5, for example, 1:2, 1:21, 1:22, 1:23, 1:24 or 1:25 etc.; Methyl ester and diethanolamine
  • the reaction temperature is 105 ⁇ 115°C, for example, 105°C, 106°C, 107°C, 108°C, 109°C, 110°C, 111°C, 112°C, 113°C, 114°C or 115°C etc.;
  • the reaction time is 150 ⁇ 175 minutes, eg, 150 minutes, 155 minutes, 160 minutes, 165 minutes, 170 minutes or
  • the inventor of the present invention has carried out preliminary research on the performance of the coconut oil fatty acid diethanolamide prepared by the above method, and tested the oil-water interfacial tension of the coconut oil fatty acid diethanolamide of different concentrations.
  • the detection adopts American Kono TX500 spinning drop interfacial tensiometer, and the set temperature of the instrument is 65°C.
  • Experimental water Simulated formation water with a total salinity of 5863.27mg/L, of which NaCl: 4.8036mg/L, CaCl 2 : 0.149mg/L, MgCl 2 6H 2 O: 0.1463mg/L, Na 2 SO 4 : 0.0589mg/L, NaHCO 3 : 0.7832mg/L; experimental oil: on-site crude oil, 65°C, density: 0.913; surfactant coconut oil fatty acid diethanolamide preparation concentration: 0.1wt%, 0.3wt%, 0.5wt% , configured with simulated formation water; TX500 speed: 5000r/min; oil-water density difference: 0.077.
  • Oil-water system 0.1wt% - crude oil 0.3wt% - crude oil 0.5wt% - crude oil Steady state value of interfacial tension (mN/m) 0.087 0.020 0.024
  • the surfactant coconut oil fatty acid diethanolamide prepared by the present invention can obtain lower oil-water interfacial tension, and the concentration of 0.1% can realize interfacial tension ⁇ 0.1mN/m.
  • the mass fraction of the surfactant coconut oil fatty acid diethanolamide is 5% to 20%, for example, 5%, 6%, 7%, 8%, 9%, 10% %, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19% or 20%, etc.
  • the inventors of the present invention have also found through research that when the aqueous solution containing the surfactant coconut oil fatty acid diethanolamide is slightly alkaline, its oil-water interfacial tension is relatively low, which is more conducive to the release of the coated surfactant system to obtain Lower oil-water interfacial tension. Therefore, in combination with the surfactant coconut oil fatty acid diethanolamide in the above mass fraction, and by adjusting the degree of hydrolysis of the polymer microspheres to 2% to 40%, and adjusting the pH value of the monomer aqueous solution to 6.0 to 8.5, the coated surface can be realized. Controlled release of active agent system release.
  • the second initiator is sodium bisulfite. Based on the total mass of the reaction system, the mass fraction of the second initiator is 0.05% to 1.0%, such as 0.05%, 0.10%, 0.15%, 0.20%, 0.25%, 0.30%, 0.35%, 0.40%, 0.45%, 0.50%, 0.55%, 0.60%, 0.65%, 0.70%, 0.75%, 0.80%, 0.85%, 0.90%, 0.95% or 1.0%, etc.
  • step (3) Reduce the stirring speed of the emulsified reaction bottom liquid in step (3) to 550-600rpm (for example, 550rpm, 560rpm, 570rpm, 580rpm, 590rpm or 600rpm, etc.), and use a constant-flow dropping funnel to obtain
  • 550-600rpm for example, 550rpm, 560rpm, 570rpm, 580rpm, 590rpm or 600rpm, etc.
  • the monomer water droplet is added to the reaction bottom liquid, and the initial temperature is controlled at 30-35°C (for example, 30°C, 31°C, 32°C, 33°C, 34°C or 35°C, etc.). The change is slow. With the dropping of the monomer, the temperature of the system rises quickly, and the temperature rises above 50°C.
  • the temperature of the bottom liquid system is kept at 55-65°C (such as 55°C, 56°C , 57°C, 58°C, 59°C, 60°C, 61°C, 62°C, 63°C, 64°C or 65°C, etc.).
  • the insulation reaction is carried out.
  • the temperature of the liquid system is above 60°C. With the continuous stirring and nitrogen flow, the system temperature decreases slowly. After a period of continuous reaction (for example, 2 hours) , remove the heat preservation, use air cooling to lower the temperature, and when the temperature drops to room temperature, stop stirring, and the reaction ends, and the surfactant-coated polymer microspheres of the present invention are obtained.
  • the inventors conducted research on the initiation temperature during the oxidation-reduction reaction, the stirring speed in the emulsification stage and the reaction stage.
  • the initial temperature is controlled at 30-35°C, so that the polymerization can be initiated quickly, the surfactant can be easily encapsulated in the polymer microspheres, and the temperature is kept for a long time to complete the reaction.
  • the above experimental research is to add 1/3-1/5 monomers to the oil phase for emulsification, and then add the remaining 2/3-4/5 monomers to the system in a rapid dropwise manner for continuous reaction.
  • the emulsification stage requires a higher stirring speed. The higher the stirring speed, the better the emulsification effect; and a certain stirring speed is also required in the reaction stage. If the stirring speed is too low, the heat generated by polymerization cannot be dissipated in time, which will easily cause particles. The agglomeration between them produces large particles. A certain stirring speed can make the particle size of the coated microspheres relatively uniform, and the overall stability is good. It is not easy to produce obvious stratification after standing for a long time. In the experiment, 1000-1200rpm is preferred as the emulsification stage. Stirring speed, 550 ⁇ 600rpm as the stirring speed of the reaction stage.
  • the initial temperature is controlled at 30-35°C, and the temperature of the system changes slowly at the initial stage of dropping.
  • the temperature of the system rises rapidly (due to the oxidation-reduction reaction, this step of temperature rise is carried out spontaneously, and the temperature of the system can be controlled by controlling the speed of the monomer dropwise), and the temperature rises to above 50°C. Control the dropping speed of the monomer to keep the temperature of the system at 55-65°C. Therefore, the monomer water in step (4) is added dropwise to the emulsified reaction bottom liquid in step (3) by dropping.
  • step (3) to (5) it should be carried out in strict accordance with the order of the steps, that is, step (3) ⁇ step (4) ⁇ step (5).
  • the inventor has found through research that in the preparation method of the present invention, the oxidation-reduction initiation system (wherein, the first initiator is oxidative and the second initiator has reductivity) is used, and the molecular structure of the second surfactant used is The components containing amines have certain reducing agent properties.
  • the oxidizing first initiator cannot be added to the monomer aqueous solution containing a large amount of second surfactant in advance during the preparation process, otherwise, it will form Oxidation-reduction system, the free radicals formed can easily cause the monomer aqueous solution to polymerize in advance.
  • the water phase is divided into two parts in the preparation process, wherein the first part of the water phase is added with an oxidant, i.e.
  • step (4) A second surfactant is added in (step (4)), so that the oxidation-reduction reaction occurs when the monomer is added dropwise, and the polymerization forms a cross-linked gel to fix the second surfactant therein (step (5)).
  • non-ionic surface-active coconut oil fatty acid diethanolamide other substances can be purchased from the market, and there is no special requirement.
  • transesterification process is prepared by aminolysis method, that is, transesterification of coconut oil and methanol to obtain methyl ester, and condensation reaction of methyl ester and diethanolamine in the presence of a basic catalyst to obtain coconut oil fatty acid diethanolamide product.
  • the various parameters of transesterification process are selected as follows: (1) catalyst selects NaOH (flaky) for use, and its consumption is 2% (mol percentage) of methyl alcohol; (2) reaction temperature is 70 °C; (3) methyl alcohol is 4.8mol ; (4) The molar ratio of methanol to diethanolamine is 4.5:1; (5) The reaction time is 1.5h.
  • reaction reaction technology The various parameters of condensation reaction technology are selected as follows: (1) catalyst is KOH, and its consumption is 0.3% (mol percentage) of methyl ester; (2) reaction temperature is 115 °C; (3) reaction time is 150min; (4) ) The stirring speed is 100r/min; (5) The molar ratio of methyl ester to diethanolamine is 1:2.
  • the initial temperature is controlled at 30°C.
  • the temperature of the system changes slowly.
  • the speed of monomer addition keeps the temperature of the system at 55-65°C; when all the monomer water is added to the system, a cotton-wrapped three-necked flask is used for heat preservation reaction.
  • the system temperature slowly After the reaction continued for 2 hours, the heat preservation was removed, and the temperature was lowered by air cooling. When the temperature dropped to room temperature, the stirring was stopped, and the reaction ended.
  • the average steady-state value (mN/m) of the oil-water interfacial tension of the samples in this embodiment is 1.38.
  • Fig. 3 shows the oil-water interfacial tension of samples of this embodiment at different times. It can be seen from Figure 3 that the oil droplet changes from a circular shape to a quasi-elliptical shape, and the oil-water interfacial tension decreases, but it is not obvious.
  • the initial temperature is controlled at 35°C.
  • the temperature of the system changes slowly.
  • the speed of monomer addition keeps the temperature of the system at 55-65°C; when all the monomer water is added to the system, a cotton-wrapped three-necked flask is used for heat preservation reaction.
  • the system temperature slowly After the reaction continued for 2 hours, the heat preservation was removed, and the temperature was lowered by air cooling. When the temperature dropped to room temperature, the stirring was stopped, and the reaction ended.
  • the average steady-state value (mN/m) of the oil-water interfacial tension of the samples in this embodiment is 0.265.
  • Fig. 4 shows the oil-water interfacial tension of the samples of this embodiment at different times. It can be seen from Figure 4 that the oil droplet changes from a circular shape to a quasi-elliptical shape, and the lower the oil-water interfacial tension, the longer the oil droplet stretches. Compared with the sample in Example 1, the oil-water interfacial tension of the sample in this example is lower more obvious.
  • the initial temperature is controlled at 30°C.
  • the temperature of the system changes slowly.
  • the speed of monomer addition keeps the temperature of the system at 55-65°C; when all the monomer water is added to the system, a cotton-wrapped three-necked flask is used for heat preservation reaction.
  • the system temperature slowly After the reaction continued for 2 hours, the heat preservation was removed, and the temperature was lowered by air cooling. When the temperature dropped to room temperature, the stirring was stopped, and the reaction ended.
  • the average steady-state value (mN/m) of the oil-water interfacial tension of the samples in this embodiment is 0.00158.
  • Fig. 5 shows the oil-water interfacial tension of samples of this embodiment at different times. It can be seen from Figure 5 that the oil droplet changes from a round shape to a slender strip, and the oil-water interfacial tension is significantly reduced, reaching an ultra-low interfacial tension.
  • Experimental conditions manual dry filling, average sand pipe permeability of about 2.26Dc; total salinity of simulated formation water used in the experiment: 5863.27mg/L; sample of Example 3, prepared concentration: 5000mg/L, 65°C constant temperature oven Medium aging for 7 days, injection slug: 0.2PV; experimental simulated crude oil viscosity: about 10mPa.s (65°C), crude oil plus kerosene; displacement rate: 0.3mL/min.
  • Experimental process first inject water to measure the permeability; then saturate the simulated crude oil; after 24 hours of equilibrium, the formation water will be displaced by constant flow to about 90% water content, then inject polymer microspheres at 0.2PV, and then switch to continuous water injection, and the liquid outlet of the sand tube Use an automatic liquid collector to collect liquid every 30 minutes.
  • the computer collects pressure data in real time during the whole process. After the experiment, the amount of oil and water is manually counted and the curve is drawn.
  • the recovery rate of microspheres coated with surfactant system in this experiment can reach 76.84%, and the coated surfactant system and subsequent water flooding can increase the recovery rate of 16.57% on the basis of water flooding.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本发明提供了一种包覆表面活性剂的聚合物微球,包括聚合物微球和包覆在其中的椰子油脂肪酸二乙醇酰胺。本发明还提供了其制备方法,包括:将第一表面活性剂分散于油中形成油相;将丙烯酸、丙烯酰胺和交联剂溶于水中,得到水相;将水相分成两部分,向第一部分水相中加入第一引发剂,得到的溶液加入到油相中,进行乳化反应,得到反应底液;将第二表面活性剂加入到第二部分水相中,加入第二引发剂,得到单体水液;将单体水液加入到反应底液中,进行保温反应。本发明的包覆表面活性剂的聚合物微球以微球作为功能载体,将表活剂包覆其中,同时依靠智能控释技术,控制功能成分在地层深部的释放及作用发挥,实现高效"调-洗"复合作用。

Description

一种包覆表面活性剂的聚合物微球及其制备方法
相关申请的交叉参考
本申请要求于2021年8月9日提交至中国专利局、申请号为202110910611.X、名称为“一种包覆表面活性剂的聚合物微球及其制备方法”的中国专利申请的优先权,其全部内容通过引用的方式结合在本申请中。
技术领域
本发明属于海上油田开采技术领域,具体涉及一种包覆表面活性剂的聚合物微球及其制备方法。
背景技术
聚合物微球由于可以在油藏孔隙中实现逐级封堵,并具有较强的耐温抗盐性而成为广泛应用的深部调驱体系。表面活性剂可通过降低油水界面张力、改变岩石的润湿性,从而提高采收率。《石油地质与工程》杂志在2021年3月的第35卷第2期发表的文章“B-PPG非均相复合体系对滤砂管通过性能实验研究-以胜利海上油田为例”中记载了目前胜利油田等通过使用表面活性剂、微球复合技术发展了非均相驱油体系,既能发挥微球原有的作用效果,又能叠加表面活性剂超低界面张力带来的洗油能力,从而获得最佳的驱油效果。
但是,现有的聚合物微球体系仅是通过颗粒自身的尺寸效应来改善地层微观非均质性,体系作用单一。现有的表面活性剂体系存在易被地层吸附、抗盐能力差、成本高等缺点。非均相驱油体系复合使用了前述两种体系,但这种复合更多是一种物理复合,两种体系随着在地下运移,会逐渐发生色谱分离,加之表面活性剂在沿程的吸附损耗,在到达地层深部剩余油富集区后,很难达到复合作用效果。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的包覆表面活性剂的聚合物微球及其制备方法。
具体来说,本发明是通过如下技术方案实现的:
一种包覆表面活性剂的聚合物微球,包括聚合物微球和包覆在聚合物微球中的表面活性剂;
其中,聚合物微球是丙烯酸和丙烯酰胺在交联剂作用下聚合而成,聚合 物微球的水解度是2%~40%;表面活性剂包括椰子油脂肪酸二乙醇酰胺。
优选地,椰子油脂肪酸二乙醇酰胺在包覆表面活性剂的聚合物微球中的质量分数是5%~20%。
一种包覆表面活性剂的聚合物微球的制备方法,包括以下步骤:
(1)将第一表面活性剂分散于油中形成油相;
(2)将丙烯酸、丙烯酰胺和交联剂溶于水中,调整pH值至6.0~8.5,得到水相;
(3)将水相分成两部分,向第一部分水相中加入第一引发剂,得到的溶液加入到油相中,进行乳化反应,得到反应底液;
(4)将第二表面活性剂加入到第二部分水相中,调整pH值至6.0~8.5,然后加入第二引发剂,得到单体水液;
(5)将单体水液加入到反应底液中,进行保温反应。
优选地,在步骤(1)中,第一表面活性剂是脱水山梨醇脂肪酸酯类表面活性剂或烷基酚聚氧乙烯醚类表面活性剂。
优选地,在步骤(1)中,油是白油和/或石蜡基油。
优选地,在步骤(1)中,以反应体系的总质量计,油相的质量分数是40%~75%;其中,第一表面活性剂的质量分数是2%~7%,其余为油。
优选地,在步骤(2)中,交联剂是N,N-亚甲基双丙烯酰胺和/或二乙烯基苯;
以反应体系的总质量计,交联剂的质量分数≤10%。
优选地,在步骤(2)中,以反应体系的总质量计,丙烯酸和丙烯酰胺的质量之和是7.09%~40.08%,丙烯酸与丙烯酰胺的质量比为1:50~1:1。
优选地,在步骤(2)中,采用氢氧化钠调整pH值,得到的水相中丙烯酸钠的含量相比于丙烯酸、丙烯酰胺和丙烯酸钠质量之和是2%~40%。
优选地,在步骤(3)中,第一部分水相与第二部分水相的质量比是1:(3~5)。
优选地,在步骤(3)中,第一引发剂是过硫酸钾和/或过硫酸铵;
以反应体系的总质量计,第一引发剂的质量分数是0.05%~1.0%。
优选地,在步骤(3)中,乳化反应的搅拌速度是1000~1200rpm。
优选地,在步骤(4)中,第二表面活性剂是椰子油脂肪酸二乙醇酰胺;
以反应体系的总质量计,第二表面活性剂的质量分数是5%~20%。
优选地,椰子油脂肪酸二乙醇酰胺采用胺解法制备,包括:以椰子油与甲醇进行酯交换得到甲酯,由甲酯与二乙醇胺在碱性催化剂存在下进行缩合反应得到椰子油脂肪酸二乙醇酰胺。
优选地,在步骤(4)中,第二引发剂是亚硫酸氢钠;
以反应体系的总质量计,第二引发剂的质量分数是0.05%~1.0%。
优选地,在步骤(5)中,将单体水液加入到反应底液中包括:在搅拌的条件下将单体水液滴加入到反应底液中,起始温度是30℃~35℃,滴加过程中温度保持在55℃~65℃。
优选地,在步骤(5)中,单体水液采用恒流滴加的方式加入到反应底液中。
优选地,在步骤(5)中,搅拌的速度是550~600rpm。
相比于现有技术,本发明的包覆表面活性剂的聚合物微球及其制备方法至少具有如下有益效果:
本发明的包覆表面活性剂的聚合物微球是将现有微球体系作为功能载体,将洗油剂(即表面活性剂)包覆其中,同时依靠智能控释技术,控制表活剂在地层深部的释放及发挥作用,实现高效“调驱-洗油”复合作用的目的。
本发明的包覆表面活性剂的聚合物微球选用了非离子表面活性剂椰子油脂肪酸二乙醇酰胺,由于其本身不带电荷,只能通过与功能单体共混,快速聚合形成交联的凝胶,使其被固定在凝胶体中,因此通过一步法即合成出了本发明的包覆表面活性剂的聚合物微球。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1显示了凝胶化形成的微球具有不同微观结构。
图2显示了包覆表面活性剂聚合物微球的制备方法的基本构思。
图3显示了实施例1的样品的不同时间的油水界面张力。
图4显示了实施例2的样品的不同时间的油水界面张力。
图5显示了实施例3的样品的不同时间的油水界面张力。
图6显示了实施例3的样品单砂管驱替,压力随注水PV数变化曲线。
图7显示了实施例3的样品单砂管驱替,采收率曲线。
具体实施方式
为了充分了解本发明的目的、特征及功效,通过下述具体实施方式,对本发明作详细说明。本发明的工艺方法除下述内容外,其余均采用本领域的常规方法或装置。下述名词术语除非另有说明,否则均具有本领域技术人员通常理解的含义。
在本发明中,“包覆表面活性剂的聚合物微球”、“包覆表活剂体系”、“包覆体”等具有相同的含义,可互换使用。
目前聚合物微球体系与表面活性剂的复合只是物理复合,两种体系随着在地下运移,会逐渐发生色谱分离,并且,表活剂在沿程的吸附损耗,在到达地层深部剩余油富集区后,很难达到复合作用效果。针对这些问题,本发明的发明人进行了深入的研究,从而创造性的提出了一种包覆表面活性剂的聚合物微球及其制备方法。
包覆表面活性剂的聚合物微球
本发明的包覆表面活性剂的聚合物微球包括:聚合物微球和包覆在聚合物微球中的表面活性剂。
聚合物微球是以丙烯酸和丙烯酰胺为单体,在交联剂的作用下聚合而成,并且,在丙烯酸、丙烯酰胺、交联剂和水的体系中加入氢氧化钠调节体系的pH值,使丙烯酸钠占丙烯酸、丙烯酸钠和丙烯酰胺质量之和的2%~40%,即实现聚合物微球的水解度是2%~40%,例如,2%、5%、10%、12%、15%、20%、22%、25%、30%、32%、35%、40%等。
其中,包覆在聚合物微球中的表面活性剂包括椰子油脂肪酸二乙醇酰胺。其中,椰子油脂肪酸二乙醇酰胺在包覆表面活性剂的聚合物微球中的质量分数是5%~20%,例如,5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%等。。
本发明的发明人通过研究发现,聚合物微球具有3D网络结构,它可以吸收与自身质量相比几到几百倍的水,并在高压下,也很难失水。微球的成球过程分为以下几个阶段:第一阶段,首先形成的是以链状连接在一起的初级纳米颗粒;第二阶段,由于体系中单体浓度很高,这些初级纳米颗粒通过捕获单体液滴中的单体以形成约的较大颗粒。第三阶段,在最小界面能驱动下形成了的变形虫结构。第四阶段,变形虫结构进行自组装形成多个球,同 时分散相的粘度和反应温度升高。第五阶段,当粘度达到阈值时,第四阶段的球体凝胶化形成更大的球体。
本发明的聚合物微球,是以丙烯酰胺、丙烯酸为单体,通过低温反相氧化-还原聚合形成的共聚微球,表面活性剂椰子油脂肪酸二乙醇酰胺通过凝胶化固定在微球内部。由于交联剂和单体在微球内的不均匀分布,使得凝胶化形成的微球具有不同微观结构:三维网络结构不完整的微球、网络结构完整的“软球”以及内部结构紧密、外部结构疏松的“硬球”,具体如图1所示。可通过控制微球内部交联剂含量,实现表面活性剂椰子油脂肪酸二乙醇酰胺的可控释放。同时,可通过控制微球内部单体的含量和占比,实现表面活性剂椰子油脂肪酸二乙醇酰胺的可控释放。丙烯酸钠可使微球水化速度增加,有利于表面活性剂椰子油脂肪酸二乙醇酰胺向外扩散;同时,阴离子电荷的增加可以抑制表面活性剂椰子油脂肪酸二乙醇酰胺中胺的扩散,双重作用使丙烯酸钠加入量存在一个最佳值。通过调节丙烯酸钠的量在2%~40%,可实现表面活性剂椰子油脂肪酸二乙醇酰胺的可控释放。
包覆表面活性剂的聚合物微球的制备方法
本发明的包覆表面活性剂的聚合物微球的制备方法基本构思是:以丙烯酰胺、丙烯酸为单体,通过低温反相氧化-还原聚合形成的共聚微球,表面活性剂椰子油脂肪酸二乙醇酰胺通过凝胶化固定在微球内部。具体如图2所示。
作为一种优选的实施方案,本发明的包覆表面活性剂的聚合物微球的制备方法包括如下步骤:
(1)将第一表面活性剂和油加入到容器中,采用上搅拌的方式,在30~40℃(例如,30℃、31℃、32℃、33℃、34℃、35℃、36℃、37℃、38℃、39℃或40℃等)搅拌分散(例如15分钟),使第一表面活性剂分散在油中,从而形成油相。
在本发明中,第一表面活性剂是脱水山梨醇脂肪酸酯类表面活性剂或烷基酚聚氧乙烯醚类表面活性剂中的任一种。脱水山梨醇脂肪酸酯类表面活性剂,即商品名为Span的表面活性剂,例如Span80、Span60等。烷基酚聚氧乙烯醚类表面活性剂,即商品名是OP系列的表面活性剂,例如OP-40等。
在本发明中,油是白油和/或石蜡基油。
在本发明中,以反应体系的总质量计,油相占40%~75%(例如,40%、45%、50%、55%、60%、65%、70%或75%等)。在此应当说明的是,所谓“反应体系的总质量”,是指包括参与制备包覆表活剂体系的所有反应物料的质量之和,也即整个反应体系的质量。
在本发明中,油相由第一表面活性剂和油组成,其中,以反应体系的总质量计,第一表面活性剂的质量分数是2%~7%,例如2%、3%、4%、5%、6%或7%等。油相在反应体系的总质量中所占比例去掉第一表面活性剂的比例即为油在整个反应体系中所占比例。
在本发明中,包覆表面活性剂的聚合物微球是油包水的体系,通过加入第一表面活性剂,能够使油相中产生稳定的小液滴,借此,在后续步骤中向该油相加入水相引发后,才能形成油包水的微球。
(2)将丙烯酸、丙烯酰胺、交联剂和水加入到另一容器中,然后向其中加入氢氧化钠中和丙烯酸,搅拌溶解至无固体物,以使pH值调整至6.0~8.5,得到水相。
在本发明中,交联剂是N,N-亚甲基双丙烯酰胺和/或二乙烯基苯。以反应体系的总质量计,交联剂的质量分数≤10%。
在本发明中,丙烯酸和丙烯酰胺是聚合反应的单体,以反应体系的总质量计,二者之和的质量分数是7.09%~40.08%(例如,7.09%、10%、12%、15%、17%、20%、22%、25%、27%、30%、32%、35%、37%、40.08%等),并且丙烯酸:丙烯酰胺的质量比为1:50~1:1(例如,1:1、1:5、1:10、1:15、1:20、1:25、1:30、1:35、1:40、1:45或1:50等)。
在本发明中,加入氢氧化钠中和丙烯酸后,与丙烯酸、丙烯酸钠和丙烯酰胺质量之和相比,丙烯酸钠的质量含量是2%~40%,例如,2%、5%、10%、12%、15%、20%、22%、25%、30%、32%、35%、40%等。
在本发明中,通过控制水相的pH值从而控制聚合物的水解度。具体地,通过氢氧化钠中和体系中的丙烯酸,使得丙烯酸钠占丙烯酸、丙烯酸钠及丙烯酰胺之和的2%-40%,即微球的水解度为2%-40%。当pH≥7时,溶液中没有丙烯酸,水解度就是丙烯酸钠占丙烯酸钠及丙烯酰胺之和的比例,当pH<7时,水解度就是丙烯酸钠占丙烯酸、丙烯酸钠及丙烯酰胺之和的比例。如此,当应用本发明的包覆表面活性剂的聚合物微球时,借助于聚合物微球的水解度不同而实现表面活性剂的控制释放。
对于上述的步骤(1)和步骤(2)的顺序,本发明并无特殊要求,可以按照步骤(1)和步骤(2)依序进行,也可以两个步骤同时进行,或者,也可以先进行步骤(2),再进行步骤(1)。
(3)将步骤(2)制备的水相分为两部分,即第一部分水相和第二部分水相,其中,第一部分水相与第二部分水相的质量比是1:(3~5)。
向第一部分水相中加入第一引发剂,搅拌溶解后,将得到的溶液加入到 步骤(1)制备的油相中,搅拌速度增加至1000~1200rpm,例如1000rpm、1050rpm、1100rpm、1150rpm或1200rpm等,进行乳化反应(例如30分钟),期间持续通入高纯氮气。乳化反应结束后得到反应底液。
在本发明中,第一引发剂是过硫酸钾和/或过硫酸铵。以反应体系的总质量计,第一引发剂的质量分数是0.05%~1.0%,例如0.05%、0.10%、0.15%、0.20%、0.25%、0.30%、0.35%、0.40%、0.45%、0.50%、0.55%、0.60%、0.65%、0.70%、0.75%、0.80%、0.85%、0.90%、0.95%或1.0%等。
(4)将第二表面活性剂加入到第二部分水相中,搅拌分散均匀,调整pH值至6.0~8.5。例如,6.0、6.5、7.0、7.5、8.0或8.5等,然后加入第二引发剂,得到单体水液。
在本发明中,第二表面活性剂是椰子油脂肪酸二乙醇酰胺。
发明人经过研究发现,由于地层带负电,阳离子表面活性剂容易通过静电吸附作用吸附在地层中,包覆后释放的表面活性剂的量有限,很难起到洗油的作用。阴离子表面活性剂,其水溶性好,可以溶解在单体水液中,但在分散到油相体系时,一端亲油的基团就会使加入的表面活性剂排列在油水界面,从而破坏了原有的油水平衡,使得体系HLB值升高,聚合时很容易发生水相连通,聚并形成大颗粒而使反应失败。非离子表面活性剂,由于没有离子电荷的作用,固定其主要依靠快速形成凝胶,从而限制其扩散到油水界面,易于形成包覆表面活性剂体系,而且,释放后具有良好的洗油能力。因此,在本发明中,在包覆表面活性剂体系中选用了非离子表面活性剂。进一步,由于表面活性剂椰子油脂肪酸二乙醇酰胺可以获得更低的油水界面张力,且用量少,价格相对便宜,因此包覆表活剂体系主要选用椰子油脂肪酸二乙醇酰胺作为包覆用表面活性剂。
但是,基于发明人的研究,作为已知非离子表面活性剂的椰子油脂肪酸二乙醇酰胺,目前在市场上工业品较多,具有很多副产物,带来很大不确定性。因此,在本发明中,采用胺解法制备椰子油脂肪酸二乙醇酰胺,即以椰子油与甲醇进行酯交换得到甲酯,由甲酯与二乙醇胺在碱性催化剂存在下进行缩合反应得到椰子油脂肪酸二乙醇酰胺产品。
具体地,酯交换步骤包括:采用NaOH(例如片状)作为催化剂,使椰子油与甲醇进行反应。其中,NaOH的用量是甲醇的2%~2.5%(摩尔百分比),例如2.0%、2.1%、2.2%、2.3%、2.4%或2.5%等;椰子油与甲醇的摩尔比是1:4.5~1:4.8,例如,1:4.5、1:4.6、1:4.7或1:4.8等;椰子油与甲醇的反应温度是68~72℃,例如68℃、69℃、70℃、71℃或72℃等;反应时间是1~1.5 小时,例如,1小时、1.1小时、1.2小时、1.3小时、1.4小时或1.5小时等。
具体地,缩合反应步骤包括:采用NaOH作为催化剂,在搅拌的条件下,使甲酯与二乙醇胺进行反应。其中,NaOH的用量是甲酯的0.3%~0.4%(摩尔百分比),例如,0.3%、0.32%、0.34%、0.36%、0.38%或0.4%;搅拌条件例如是采用100r/min的搅拌速度;甲酯与二乙醇胺的摩尔比是1:2~1:2.5,例如,1:2、1:21、1:22、1:23、1:24或1:25等;甲酯与二乙醇胺的反应温度是105~115℃,例如,105℃、106℃、107℃、108℃、109℃、110℃、111℃、112℃、113℃、114℃或115℃等;反应时间是150~175分钟,例如,150分钟、155分钟、160分钟、165分钟、170分钟或175分钟等。
本发明的发明人对上述方法制备的椰子油脂肪酸二乙醇酰胺的性能进行了初步研究,测试了不同浓度的椰子油脂肪酸二乙醇酰胺的油水界面张力。
检测采用美国科诺TX500旋转滴界面张力仪,仪器设定温度为65℃。实验用水:模拟地层水,总矿化度为5863.27mg/L,其中NaCl:4.8036mg/L、CaCl 2:0.149mg/L、MgCl 2·6H 2O:0.1463mg/L、Na 2SO 4:0.0589mg/L、NaHCO 3:0.7832mg/L;实验用油:现场原油,65℃,密度:0.913;表面活性剂椰子油脂肪酸二乙醇酰胺配制浓度:0.1wt%,0.3wt%,0.5wt%,用模拟地层水配置;TX500转速:5000r/min;油水密度差:0.077。
具体结果如下:
油水体系 0.1wt%-原油 0.3wt%-原油 0.5wt%-原油
界面张力稳态值(mN/m) 0.087 0.020 0.024
从上述数据可以看出,本发明制备的表面活性剂椰子油脂肪酸二乙醇酰胺可以获得更低的油水界面张力,0.1%的浓度即可实现界面张力≤0.1mN/m。
在本发明中,以反应体系的总质量计,表面活性剂椰子油脂肪酸二乙醇酰胺的质量分数是5%~20%,例如,5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%等。
进一步,本发明的发明人通过研究还发现,当含表面活性剂椰子油脂肪酸二乙醇酰胺的水溶液偏碱性时,其油水界面张力相对较低,更有利于包覆表活剂体系释放后获得更低的油水界面张力。因此,结合上述质量分数的表面活性剂椰子油脂肪酸二乙醇酰胺,并且通过调节聚合物微球水解度至2%~40%、调节单体水液pH值至6.0~8.5,可实现包覆表活剂体系释的可控释放。
在本发明中,第二引发剂是亚硫酸氢钠。以反应体系的总质量计,第二 引发剂的质量分数是0.05%~1.0%,例如0.05%、0.10%、0.15%、0.20%、0.25%、0.30%、0.35%、0.40%、0.45%、0.50%、0.55%、0.60%、0.65%、0.70%、0.75%、0.80%、0.85%、0.90%、0.95%或1.0%等。
(5)将步骤(3)乳化好的反应底液搅拌速度降低至550~600rpm(例如,550rpm、560rpm、570rpm、580rpm、590rpm或600rpm等),采用恒流滴液漏斗将步骤(4)得到的单体水液滴加入反应底液中,起始温度控制在30~35℃(例如,30℃、31℃、32℃、33℃、34℃或35℃等),滴加初期,体系温度变化缓慢,随着单体的滴加,体系很快升温,温度上升到50℃以上,通过控制单体滴加的速度,使底液体系温度保持在55~65℃(例如55℃、56℃、57℃、58℃、59℃、60℃、61℃、62℃、63℃、64℃或65℃等)。
待单体水液全部加入到反应底液中,进行保温反应,液体体系温度在60℃以上,随着搅拌和通氮气的持续进行,体系温度缓慢降低,持续反应一段时间(例如2小时)后,撤掉保温,采用空冷降温,待温度降低至室温时,停止搅拌,反应结束,即得到本发明的包覆表面活性剂的聚合物微球。
在本发明中,发明人对氧化-还原反应过程中的引发温度、乳化阶段和反应阶段的搅拌速度进行了研究。
就引发温度来说,得出如下研究结果:
Figure PCTCN2021126172-appb-000001
Figure PCTCN2021126172-appb-000002
基于上述研发发现,在本发明中,将起始温度控制在30~35℃,从而能够快速引发聚合、将表面活性剂容易地包裹在聚合物微球中、并且长时间保温以使反应完全。
就搅拌速度来说,得出如下研究结果:
Figure PCTCN2021126172-appb-000003
上述实验研究是采用1/3-1/5单体先加入到油相中乳化,然后再将剩余的2/3-4/5单体采用快速滴加的方式加入到体系中持续性反应,乳化阶段需要较高的搅拌速度,搅拌速度越高,乳化效果越好;而在反应阶段也需要一定的搅拌速度,如果搅拌速度过低,聚合产生的热量不能及时的散失出去,就容易造成颗粒之间的聚并,产生大颗粒,一定的搅拌速度可以使得包覆微球粒度相对均匀,整体稳定性良好,长时间静置不易产生明显的分层现象,实验中优选1000~1200rpm作为乳化阶段的搅拌速度,550~600rpm作为反应阶段的搅拌速度。
此外,采用恒流滴液漏斗将步骤(4)的单体水液滴加入步骤(3)乳化好的反应底液,起始温度控制在30~35℃,滴加初期,体系温度变化缓慢,随着单体的滴加,体系很快升温(由于氧化-还原反应,该步升温是自发进行的,可通过控制单体滴加的速度,控制体系温度),温度上升到50℃以上, 通过控制单体滴加的速度,使体系温度保持在55~65℃,因此,采用滴加的方式将步骤(4)的单体水液滴加入步骤(3)乳化好的反应底液。
对于上述的步骤(3)至(5),应该严格按照步骤的顺序依序进行,即步骤(3)→步骤(4)→步骤(5)。发明人通过研究发现,本发明的制备方法中,采用氧化-还原引发体系(其中,第一引发剂是氧化性,第二引发剂具有还原性),而采用的第二表面活性剂的分子结构中有胺的组分,具有一定的还原剂特性,因此,制备过程中无法将具有氧化性的第一引发剂提前加入到含有大量第二表面活性剂的单体水液中,否则,会构成氧化-还原体系,形成的自由基很容易造成单体水液提前聚合。为了让聚合反应在包覆过程中进行,因此,制备过程中将水相分成两部分,其中第一部分水相中加入氧化剂,即第一引发剂(即步骤(3)),第二部分水相中加入第二表面活性剂(步骤(4)),从而使得在单体滴加时才发生氧化-还原反应,聚合形成交联凝胶将第二表面活性剂固定其中(步骤(5))。
应当说明的是,在本发明中,除了非离子表面活性椰子油脂肪酸二乙醇酰胺,其它物质都可以通过市场购买获得,并无特别要求。
实施例
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
首先,对下述各实施例样品的油水界面张力稳态值的检测方法进行说明,如下:
采用美国科诺TX500旋转滴界面张力仪,仪器设定温度为65℃。实验用水:模拟地层水,总矿化度为5863.27mg/L,其中NaCl:4.8036mg/L、CaCl 2:0.149mg/L、MgCl 2·6H 2O:0.1463mg/L、Na 2SO 4:0.0589mg/L、NaHCO 3:0.7832mg/L;实验用油:现场原油,65℃,密度:0.913;采用模拟地层水将实施例的样品配制成浓度是5000mg/L的溶液;TX500转速:5000r/min;油水密度差:0.077。
制备例1
下述各实施例中采用的椰子油脂肪酸二乙醇酰胺的制备方法如下:
采用胺解法制备,即以椰子油与甲醇进行酯交换得到甲酯,由甲酯与二乙醇胺在碱性催化剂存在下进行缩合反应得到椰子油脂肪酸二乙醇酰胺产品。酯交换工艺的各种参数选定如下:(1)催化剂选用NaOH(片状),其用量是甲醇的2%(摩尔百分比);(2)反应温度为70℃;(3)甲醇为4.8mol;(4)甲醇与二乙醇胺的摩尔比是4.5:1;(5)反应时间为1.5h。缩合反应工 艺的各种参数选定如下:(1)催化剂为KOH,其用量是甲酯的0.3%(摩尔百分比);(2)反应温度为115℃;(3)反应时间为150min;(4)搅拌速度为100r/min;(5)甲酯与二乙醇胺的摩尔比是1:2。
实施例1
称取36.57%白油和3.66%Span80于三口烧瓶中形成油相,采用上搅拌,在40℃搅拌分散15min;依次称量1.52%丙烯酸、13.72%丙烯酰胺、0.02%N,N-亚甲基双丙烯酰胺和一定量的水,加入氢氧化钠溶液中和丙烯酸,搅拌溶解至无固体物,调整体系pH值为6.6,水解度为12.7%;取配制好的水相总量的1/5,加入0.24%过硫酸铵,搅拌溶解后,加入到油相中,搅拌速度增加至1000rpm,乳化30min,期间持续通入高纯氮气;称取18.29%椰子油脂肪酸二乙醇酰胺加入到剩余的4/5水相中,搅拌分散均匀,调整体系pH值在6.6,加入0.07%亚硫酸氢钠,通过调节水的用量使得体系各百分数之和为100%;反应搅拌速度降低至600rpm,采用恒流滴液漏斗将剩余的单体水液滴加入,起始温度控制在30℃,滴加初期,体系温度变化缓慢,随着滴加的进行,体系很快升温,温度上升到50℃时通过控制单体滴加的速度,使体系温度保持在55-65℃;待单体水液全部加入到体系中,采用棉花包裹三口烧瓶进行保温反应,随着搅拌和通氮气的持续进行,体系温度缓慢降低,持续反应2h后,撤掉保温,采用空冷降温,待温度降低至室温时,停止搅拌,反应结束。
本实施例的样品的油水界面张力稳态值(mN/m)平均为1.38。
图3显示了本实施例样品的不同时间的油水界面张力。由图3可以看出,油滴由圆形最终变为类椭圆形,油水界面张力有所降低,但并不明显。
实施例2
称取36.57%白油和3.66%Span80于三口烧瓶中形成油相,采用上搅拌,在40℃搅拌分散15min;依次称量3.05%丙烯酸、12.19%丙烯酰胺、0.02%N,N-亚甲基双丙烯酰胺和一定量的水,加入氢氧化钠溶液中和丙烯酸,搅拌溶解至无固体物,调整体系pH值为7.2,水解度为24.6%;取配制好的水相总量的1/5,加入0.24%过硫酸铵,搅拌溶解后,加入到油相中,搅拌速度增加至1100rpm,乳化30min,期间持续通入高纯氮气;称取18.29%椰子油脂肪酸二乙醇酰胺加入到剩余的4/5水相中,搅拌分散均匀,调整体系pH值在7.2,加入0.07%亚硫酸氢钠,通过调节水的用量使得体系各百分数之和为100%;反应搅拌速度降低至600rpm,采用恒流滴液漏斗将剩余的单体水液滴加入,起始温度控制在35℃,滴加初期,体系温度变化缓慢,随着滴加的进行,体系很快升温,温度上升到50℃时通过控制单体滴加的速度,使体系温度保持在55-65℃;待单体水液全部加入到体系中,采用棉花包裹三口烧瓶进行保 温反应,随着搅拌和通氮气的持续进行,体系温度缓慢降低,持续反应2h后,撤掉保温,采用空冷降温,待温度降低至室温时,停止搅拌,反应结束。
本实施例的样品的油水界面张力稳态值(mN/m)平均为0.265。
图4显示了本实施例样品的不同时间的油水界面张力。由图4可以看出,油滴由圆形最终变为类椭圆形,油水界面张力越低,油滴拉伸的越长,本实施例样品与实施例1的样品相比,油水界面张力降低的更明显。
实施例3
称取36.57%白油和3.66%Span80于三口烧瓶中形成油相,采用上搅拌,在40℃搅拌分散15min;依次称量4.57%丙烯酸、10.67%丙烯酰胺、0.02%N,N-亚甲基双丙烯酰胺和一定量的水,加入氢氧化钠溶液中和丙烯酸,搅拌溶解至无固体物,调整体系pH值为8.4,水解度为35.9%;取配制好的水相总量的1/5,加入0.24%过硫酸铵,搅拌溶解后,加入到油相中,搅拌速度增加至1200rpm,乳化30min,期间持续通入高纯氮气;称取18.29%椰子油脂肪酸二乙醇酰胺加入到剩余的4/5水相中,搅拌分散均匀,调整体系pH值在8.4,加入0.07%亚硫酸氢钠,通过调节水的用量使得体系各百分数之和为100%;反应搅拌速度降低至600rpm,采用恒流滴液漏斗将剩余的单体水液滴加入,起始温度控制在30℃,滴加初期,体系温度变化缓慢,随着滴加的进行,体系很快升温,温度上升到50℃时通过控制单体滴加的速度,使体系温度保持在55-65℃;待单体水液全部加入到体系中,采用棉花包裹三口烧瓶进行保温反应,随着搅拌和通氮气的持续进行,体系温度缓慢降低,持续反应2h后,撤掉保温,采用空冷降温,待温度降低至室温时,停止搅拌,反应结束。
本实施例的样品的油水界面张力稳态值(mN/m)平均为0.00158。
图5显示了本实施例样品的不同时间的油水界面张力。由图5可以看出,油滴由圆形最终变为细长条,油水界面张力显著降低,达到超低界面张力。
效果检测:
实验条件:采用人工干法装填,砂管平均渗透率2.26Dc左右;实验用地层模拟水总矿化度:5863.27mg/L;实施例3的样品,配制浓度:5000mg/L,65℃恒温烘箱中老化7d,注入段塞:0.2PV;实验模拟原油粘度:10mPa.s左右(65℃),原油加煤油配制;驱替速度:0.3mL/min。
实验过程:先注水测渗透率;然后饱和模拟原油;待平衡24小时后地层水恒流驱替至含水90%左右,转注入聚合物微球0.2PV,后转持续注水,砂管出液端用自动集液器每隔30分钟收集一次液体,整个过程电脑实时采集压力数据,实验结束后人工统计油水量并绘制曲线。
实验结果显示于下表和图6、图7中。
单砂管驱替实验结果:
  采收率
水驱 60.27%
注包覆表活剂体系0.2PV后转持续注水 76.84%
包覆表活剂体系提高采收率 16.57%
如图6所示,注入实施例3的包覆表面活性剂的聚合物微球体系,压力并没有出现明显的上升,反而出现了较大的降低,主要是由于为了获得更高浓度的表面活性剂释放,使得表面活性剂的含量占比较高,包覆表面活性剂的聚合物微球体系中微球体系本身占比较低;同时,制备时为了能快速固定表面活性剂椰子油脂肪酸二乙醇酰胺,防止其向油水界面扩散,采用了大剂量引发快速聚合工艺,使得丙烯酰胺的聚合分子量较小,包覆体整体弹性强度较低,本身起到的封堵作用相对较弱;而且包覆体释放的表面活性剂椰子油脂肪酸二乙醇酰胺使得砂管中的油水界面张力降低较多,并存在一定程度的洗油作用,改善了地层模拟水的注入性。因此,砂管压力不但没有升高,反而出现降低,并保持低压力驱替。
如上表和图7所示,本实验采用包覆表活剂体系微球采收率可达76.84%,包覆表活剂体系及后续水驱可在水驱基础上提高采收率16.57%。这就说明注入0.2PV的包覆表活剂体系起到了很好的“调-洗”效果,提高采收率效果明显。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的替代、修饰、组合、改变、简化等,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (18)

  1. 一种包覆表面活性剂的聚合物微球,其特征在于,包括聚合物微球和包覆在所述聚合物微球中的表面活性剂;
    其中,所述聚合物微球是丙烯酸和丙烯酰胺在交联剂作用下聚合而成,所述聚合物微球的水解度是2%~40%;所述表面活性剂包括椰子油脂肪酸二乙醇酰胺。
  2. 根据权利要求1所述的包覆表面活性剂的聚合物微球,其特征在于,所述椰子油脂肪酸二乙醇酰胺在所述包覆表面活性剂的聚合物微球中的质量分数是5%~20%。
  3. 一种包覆表面活性剂的聚合物微球的制备方法,其特征在于,包括以下步骤:
    (1)将第一表面活性剂分散于油中形成油相;
    (2)将丙烯酸、丙烯酰胺和交联剂溶于水中,调整pH值至6.0~8.5,得到水相;
    (3)将水相分成两部分,向第一部分水相中加入第一引发剂,得到的溶液加入到所述油相中,进行乳化反应,得到反应底液;
    (4)将第二表面活性剂加入到第二部分水相中,调整pH值至6.0~8.5,然后加入第二引发剂,得到单体水液;
    (5)将所述单体水液加入到所述反应底液中,进行保温反应。
  4. 根据权利要求3所述的制备方法,其特征在于,在步骤(1)中,所述第一表面活性剂是脱水山梨醇脂肪酸酯类表面活性剂或烷基酚聚氧乙烯醚类表面活性剂。
  5. 根据权利要求3所述的制备方法,其特征在于,在步骤(1)中,所述油是白油和/或石蜡基油。
  6. 根据权利要求3所述的制备方法,其特征在于,在步骤(1)中,以反应体系的总质量计,所述油相的质量分数是40%~75%;其中,所述第一 表面活性剂的质量分数是2%~7%,其余为油。
  7. 根据权利要求3所述的制备方法,其特征在于,在步骤(2)中,所述交联剂是N,N-亚甲基双丙烯酰胺和/或二乙烯基苯;
    以反应体系的总质量计,所述交联剂的质量分数≤10%。
  8. 根据权利要求3所述的制备方法,其特征在于,在步骤(2)中,以反应体系的总质量计,丙烯酸和丙烯酰胺的质量之和是7.09%~40.08%,丙烯酸与丙烯酰胺的质量比为1:50~1:1。
  9. 根据权利要求3所述的制备方法,其特征在于,在步骤(2)中,采用氢氧化钠调整pH值,得到的水相中丙烯酸钠的含量相比于丙烯酸、丙烯酰胺和丙烯酸钠质量之和是2%~40%。
  10. 根据权利要求3所述的制备方法,其特征在于,在步骤(3)中,所述第一部分水相与第二部分水相的质量比是1:(3~5)。
  11. 根据权利要求3所述的制备方法,其特征在于,在步骤(3)中,所述第一引发剂是过硫酸钾和/或过硫酸铵;
    以反应体系的总质量计,所述第一引发剂的质量分数是0.05%~1.0%。
  12. 根据权利要求3所述的制备方法,其特征在于,在步骤(3)中,所述乳化反应的搅拌速度是1000~1200rpm。
  13. 根据权利要求3所述的制备方法,其特征在于,在步骤(4)中,所述第二表面活性剂是椰子油脂肪酸二乙醇酰胺;
    以反应体系的总质量计,所述第二表面活性剂的质量分数是5%~20%。
  14. 根据权利要求13所述的制备方法,其特征在于,所述椰子油脂肪酸二乙醇酰胺采用胺解法制备,包括:以椰子油与甲醇进行酯交换得到甲酯,由甲酯与二乙醇胺在碱性催化剂存在下进行缩合反应得到椰子油脂肪酸二乙醇酰胺。
  15. 根据权利要求3所述的制备方法,其特征在于,在步骤(4)中,所述第二引发剂是亚硫酸氢钠;
    以反应体系的总质量计,所述第二引发剂的质量分数是0.05%~1.0%。
  16. 根据权利要求3所述的制备方法,其特征在于,在步骤(5)中,将所述单体水液加入到所述反应底液中包括:在搅拌的条件下将所述单体水液滴加入到所述反应底液中,起始温度是30℃~35℃,滴加过程中温度保持在55℃~65℃。
  17. 根据权利要求16所述的制备方法,其特征在于,在步骤(5)中,所述单体水液采用恒流滴加的方式加入到所述反应底液中。
  18. 根据权利要求16所述的制备方法,其特征在于,在步骤(5)中,搅拌的速度是550~600rpm。
PCT/CN2021/126172 2021-08-09 2021-10-25 一种包覆表面活性剂的聚合物微球及其制备方法 WO2023015730A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110910611.XA CN113527576B (zh) 2021-08-09 2021-08-09 一种包覆表面活性剂的聚合物微球及其制备方法
CN202110910611.X 2021-08-09

Publications (1)

Publication Number Publication Date
WO2023015730A1 true WO2023015730A1 (zh) 2023-02-16

Family

ID=78090766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126172 WO2023015730A1 (zh) 2021-08-09 2021-10-25 一种包覆表面活性剂的聚合物微球及其制备方法

Country Status (2)

Country Link
CN (1) CN113527576B (zh)
WO (1) WO2023015730A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113527576B (zh) * 2021-08-09 2022-05-27 中海油田服务股份有限公司 一种包覆表面活性剂的聚合物微球及其制备方法
CN114002198A (zh) * 2021-10-29 2022-02-01 中海油田服务股份有限公司 提高海上油田采出液中荧光微球调驱剂检出灵敏度的方法
CN115806813B (zh) * 2022-12-02 2024-02-02 西安奥德石油工程技术有限责任公司 一种具有核壳异性结构的缓释型聚合物微球提采剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315003A (zh) * 2017-01-17 2018-07-24 中国石油化工股份有限公司 聚丙烯酰胺类微球深部调驱剂及其制备方法和应用
AU2020103311A4 (en) * 2020-11-09 2021-01-14 Southwest Petroleum University Hollow polymer microsphere profile control agent and preparation method thereof
CN112851856A (zh) * 2021-01-29 2021-05-28 陕西科技大学 一种耐盐型聚合物微球封堵剂及其制备方法
CN113527576A (zh) * 2021-08-09 2021-10-22 中海油田服务股份有限公司 一种包覆表面活性剂的聚合物微球及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014324A (ja) * 2015-06-26 2017-01-19 国立研究開発法人国立循環器病研究センター 温度応答性ポリマーの製造方法、温度応答性ポリマー、細胞培養器の製造方法、細胞培養器
CN106867496B (zh) * 2015-12-14 2020-05-01 中国石油化工股份有限公司 含疏水缔合聚合物乳液的在线注入型驱油剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315003A (zh) * 2017-01-17 2018-07-24 中国石油化工股份有限公司 聚丙烯酰胺类微球深部调驱剂及其制备方法和应用
AU2020103311A4 (en) * 2020-11-09 2021-01-14 Southwest Petroleum University Hollow polymer microsphere profile control agent and preparation method thereof
CN112851856A (zh) * 2021-01-29 2021-05-28 陕西科技大学 一种耐盐型聚合物微球封堵剂及其制备方法
CN113527576A (zh) * 2021-08-09 2021-10-22 中海油田服务股份有限公司 一种包覆表面活性剂的聚合物微球及其制备方法

Also Published As

Publication number Publication date
CN113527576A (zh) 2021-10-22
CN113527576B (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023015730A1 (zh) 一种包覆表面活性剂的聚合物微球及其制备方法
CN108315003B (zh) 聚丙烯酰胺类微球深部调驱剂及其制备方法和应用
CN102304200B (zh) 一种交联聚合物微球及其制备方法
WO2017113773A1 (zh) 一种疏水缔合聚合物及其制备方法
CN102382241A (zh) 一种长支链聚丙烯酰胺共聚物及其制备方法
CN104357039A (zh) 一种聚合物微球乳液驱油剂及其制备方法
CN105085799A (zh) 一种缓膨型纳米弹性微球深部调剖驱油剂的制备方法及其应用
WO2019192629A1 (zh) 一种阴离子型热增黏水溶性聚合物及其制备方法和应用
JP7174162B2 (ja) アクリルアミド共重合体及びその製造方法並びに応用
CN113337260B (zh) 一种阳离子冻胶深部调剖体系及其制备方法
CN111087537B (zh) 多重交联核壳型聚合物微球及调驱剂及其制备方法和应用
CN102850487A (zh) 一种水溶性疏水缔合聚合物驱油剂及其合成方法
CN113121752B (zh) 一种减阻剂及其制备方法和应用
CN109111904B (zh) 一种异电荷聚合物纳米微球调剖剂及其制备方法
CN109134781B (zh) 一种双重交联微米级微球调剖剂的制备方法及应用
CN111808594B (zh) 一种油田用高分子聚合物驱油表面活性剂及其制备方法
CN114479817B (zh) 一种聚合物微球与聚合物复配体系及其制备方法和应用
CN115850570B (zh) 一种超支化聚合物微球降滤失剂及其制备方法和应用
CN115819676A (zh) 油藏深部调剖用自组装纳米颗粒及其制备方法和应用
CN107652408B (zh) 一种反相微乳液聚合层间修饰粘土改性am-mah原油降凝剂及其制备方法
CN113121745B (zh) 微悬浮聚合制备的阴阳复合柔性聚合物微球及制备方法
CN115466348A (zh) 一种两性聚合物乳液土壤固化剂的制备及其应用
CN115710330A (zh) 一种调驱用聚合物微球/氧化石墨烯乳液的制备方法
CN115386040B (zh) 一种耐高矿化度泡沫稳定剂及其制备方法
CN115806813B (zh) 一种具有核壳异性结构的缓释型聚合物微球提采剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE