WO2023014175A1 - 도네페질 함유 지속방출형 미립구 - Google Patents

도네페질 함유 지속방출형 미립구 Download PDF

Info

Publication number
WO2023014175A1
WO2023014175A1 PCT/KR2022/011672 KR2022011672W WO2023014175A1 WO 2023014175 A1 WO2023014175 A1 WO 2023014175A1 KR 2022011672 W KR2022011672 W KR 2022011672W WO 2023014175 A1 WO2023014175 A1 WO 2023014175A1
Authority
WO
WIPO (PCT)
Prior art keywords
donepezil
microspheres
drug loading
dispersed phase
drug
Prior art date
Application number
PCT/KR2022/011672
Other languages
English (en)
French (fr)
Inventor
김병혁
정찬은
권혁일
신호철
홍용순
김주현
Original Assignee
환인제약 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 환인제약 주식회사 filed Critical 환인제약 주식회사
Priority to CA3231101A priority Critical patent/CA3231101A1/en
Publication of WO2023014175A1 publication Critical patent/WO2023014175A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia

Definitions

  • the present invention relates to sustained-release microspheres containing donepezil and an injection containing the same.
  • Donepezil is a drug developed to treat dementia (particularly, Alzheimer's dementia), and an oral tablet is currently being sold. Currently marketed oral tablets containing donepezil are instructed to be taken once daily before bedtime.
  • the sustained-release injection contains microspheres in which a drug is encapsulated in a biodegradable polymer.
  • a microsphere-containing injection When such a microsphere-containing injection is injected into the body, the drug is gradually released from the microspheres injected into the body, so that the pharmacological effect can be continuously displayed. Therefore, when the sustained-release injection is administered once, the drug can be continuously displayed for a long time, for example, at least one week or more. If such a sustained-release injection is developed, for example, the drug effect can be maintained even if the drug is injected and administered every 1 week, 10 days, 4 weeks or 2 months, minimizing the number of invasions of the drug into the body and taking medication Adaptability can be dramatically improved.
  • the present invention is to develop a donepezil-containing sustained-release injection that minimizes the range of fluctuations in blood drug concentration during administration, thereby minimizing side effects and continuously exhibiting pharmacological effects.
  • microspheres are prepared therefrom, for example, by a single emulsification method, so that 40 to 40 to 40% of the total drug in the first half of the drug administration cycle is prepared.
  • Sustained release microspheres can be provided that release 60%.
  • the present invention relates to a sustained-release injectable composition containing two or more types of donepezil microspheres with different drug loadings, wherein the administration cycle (eg, administration every week, administration every 10 days, or administration every 4 days)
  • the ratio of AUC during the first half of the dosing cycle to AUC during the first half of the dosing cycle i.e., AUC 0 to 1/2 dosing cycle / AUC 0 ⁇ dosing cycle
  • the drug loading amount refers to the weight ratio of donepezil contained in the microspheres to the corresponding microspheres.
  • the administration cycle may be designed to have a range of, for example, 7 days or more, preferably 7 days to 2 months.
  • it can be designed with the goal of administering the injection of the present invention every 10 days or every 4 weeks.
  • the average drug loading of the donepezil microspheres is preferably 35% or less, preferably 32% or less.
  • a high drug loading may be advantageous. There is a problem in that it cannot be maintained at an effective concentration during the administration cycle, or the drug not encapsulated in the microspheres exists as crystals, resulting in high blood concentrations immediately after administration.
  • the donepezil microspheres preferably contain two types of theoretical drug loadings: 32-40% and 28-32%. That is, the injection of the present invention includes both donepezil-containing microspheres with a theoretical drug loading of 32 to 40% and donepezil-containing microspheres with a theoretical drug loading of 28 to 32% (here, the drug loading of the present invention is different from each other) Since two or more types of donepezil microspheres are included, the theoretical drug loading of microspheres cannot all be 32%).
  • the injection of the present invention includes donepezil-containing microspheres having a theoretical drug loading of 28% or more and 32% or less and donepezil-containing microspheres having a theoretical drug loading of more than 32% and 40% or less, or a theoretical drug loading of 28% or more and 32% or less. less than donepezil-containing microspheres and donepezil-containing microspheres having a theoretical drug loading of 32% or more and 40% or less.
  • the term "theoretical drug loading amount” refers to the amount of the loaded raw material donepezil and the injected raw material polymer when producing donepezil-containing microspheres, assuming that all of the injected raw material donepezil is produced in microspheres, and that all of the injected raw material donepezil is encapsulated in the microspheres. It means the loading amount of donepezil in microspheres, which can be obtained from Equation 1 below:
  • Theoretical drug loading (%) [amount of donepezil added during microsphere preparation / (amount of donepezil added during microsphere preparation + amount of polymer added during microsphere preparation) ] ⁇ 100 (%)
  • actual drug loading amount refers to the content of donepezil contained per 100 mg of microspheres actually prepared when the microspheres containing donepezil are prepared, and is used interchangeably with the term “drug loading amount” unless otherwise specified. and can be used
  • the weight ratio of microspheres having a theoretical drug loading of 32 to 40% and microspheres having a theoretical drug loading of 28 to 32% is preferably 1:0.8 to 5.
  • the donepezil microspheres include donepezil or a pharmaceutically acceptable salt, hydrate or solvate thereof and a biodegradable polymer.
  • the donepezil microspheres preferably contain an average of 25 to 32 mg of donepezil or a pharmaceutically acceptable salt thereof per 100 mg of the microspheres (ie, the actual drug loading amount in the present invention is 25 to 32 mg). preferably 32%).
  • the present invention relates to a method for preparing two or more types of donepezil microspheres having different drug loadings.
  • the preparation may include preparing microspheres by sequentially adding the first dispersion containing donepezil and the second dispersion phase containing donepezil to the continuous phase and then stirring them.
  • It may be prepared by mixing the first microsphere and the second microsphere.
  • the loading amount of the first drug and the loading amount of the second drug are different from each other.
  • the encapsulation rate means the ratio of the actual drug loading amount to the theoretical drug loading amount, and is calculated according to Equation 2 below:
  • the encapsulation rate has a value of approximately 90% to 100%.
  • the drug loading amount means a target theoretical drug loading amount or an actual drug loading amount reflecting an encapsulation rate
  • the present invention by including two or more types of microspheres showing different drug loading amounts in the injection and administering the injection cycle, It can exert the effect of exhibiting uniform AUC and uniform drug concentration in blood during
  • the sustained-release microsphere injection according to the present invention uses polymers having different properties or simply prepares two solutions having different drug loadings in a specific ratio with one polymer without any additional process, thereby consistently releasing the drug in the body for a target period. Therefore, it is possible to suppress side effects at a therapeutic concentration or higher and improve medication non-compliance.
  • Figure 1 is the result of the 28-day drug concentration profile of Example 2 and Comparative Example in the SD rat pharmacokinetic test of Experimental Example 3.
  • Example 2 is a SEM image for confirming the morphology of the donepezil-containing microspheres prepared in Example 2.
  • Example 1 Preparation of polymer microspheres with a weight ratio of 36% and 30% theoretical drug loading of 1:1 (total theoretical drug loading is 33%)
  • the organic solvent was volatilized at a temperature of 47° C. for 3 hours and slowly cooled to 10° C. for 1 hour.
  • the cured microspheres were washed several times with water for injection, wet-filtered using a sieve net, and freeze-dried to finally obtain microspheres containing donepezil.
  • Example 2 Preparation of polymer microspheres with a weight ratio of 40% and 30% theoretical drug loading of 1:4 (total theoretical drug loading 32%)
  • the organic solvent was volatilized at a temperature of 47° C. for 3 hours and slowly cooled to 10° C. for 1 hour.
  • the cured microspheres were washed several times with water for injection, wet-filtered using a sieve net, and freeze-dried to finally obtain microspheres containing donepezil.
  • Example 3 Preparation of polymeric microspheres with a theoretical drug loading of 38% and a theoretical drug loading of 28% in a weight ratio of 1:2 (total theoretical drug loading of 31.3%)
  • the organic solvent was volatilized at a temperature of 47° C. for 3 hours and slowly cooled to 10° C. for 1 hour.
  • the cured microspheres were washed several times with water for injection, wet-filtered using a sieve net, and freeze-dried to finally obtain microspheres containing donepezil.
  • Example 4 Preparation of polymeric microspheres composed of 32% theoretical drug loading and 28% weight ratio of 1:1 (total theoretical drug loading 30%)
  • the organic solvent was volatilized at a temperature of 47° C. for 3 hours and slowly cooled to 10° C. for 1 hour.
  • the cured microspheres were washed several times with water for injection, wet-filtered using a sieve net, and freeze-dried to finally obtain microspheres containing donepezil.
  • Comparative Example 1 Preparation of polymeric microspheres in which 40% of the theoretical drug loading amount is a single weight ratio
  • the organic solvent was volatilized at a temperature of 47° C. for 2 hours and slowly cooled to 10° C. for 1 hour.
  • the cured microspheres were washed several times with water for injection, wet-filtered using a sieve net, and freeze-dried to finally obtain microspheres containing donepezil.
  • Comparative Example 2 Preparation of polymeric microspheres in which 30% of the theoretical drug loading amount is a single weight ratio
  • the organic solvent was volatilized at a temperature of 47° C. for 3 hours and slowly cooled to 10° C. for 1 hour.
  • the cured microspheres were washed several times with water for injection, wet-filtered using a sieve net, and freeze-dried to finally obtain microspheres containing donepezil.
  • Comparative Example 3 Preparation of polymeric microspheres composed of 40% theoretical drug loading and 30% weight ratio of 1:1 (total theoretical drug loading 35%)
  • the organic solvent was volatilized at a temperature of 47° C. for 3 hours and slowly cooled to 10° C. for 1 hour.
  • the cured microspheres were washed several times with water for injection, wet-filtered using a sieve net, and freeze-dried to finally obtain microspheres containing donepezil.
  • microspheres were fixed to an aluminum stub using carbon tape, coated with platinum for 3 minutes under a vacuum of 0.1 torr and high voltage (10 kV), and then SEM (equipment name: SEC-SNE 4500M Plus A, Korea) It was mounted on powder, and the microsphere surface morphology was observed using an image analysis program (mini-SEM).
  • Example 2 is a SEM picture of the microspheres prepared in Example 1.
  • Example 1 Percentage of theoretical drug loading Average theoretical drug loading (%) Drug Enclosure Rate (%) Actual drug loading (%)
  • Example 1 36%:30% 1:1 33.0 92.9 30.65
  • the encapsulation rate is calculated according to the following equation:
  • the "ratio of theoretical drug loading” represents the ratio of the total weight of microspheres having a relatively high theoretical drug loading to the total weight of microspheres having a relatively small theoretical drug loading.
  • the drug encapsulation rates of Examples 1 to 4 and Comparative Examples 1 to 3 were all about 90% or more.
  • This experiment is to confirm the effect of reducing the variability of blood drug concentration according to the content ratio of microspheres with different drug loading amounts.
  • microspheres prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were injected subcutaneously into the cervical region of SD rats, and the concentration of donepezil in blood was measured.
  • AUC Absolute under Curve
  • AUC is a parameter related to the amount of a drug absorbed from the digestive tract or absorbed from tissues upon administration by injection and reaching the circulatory bloodstream in the body.
  • Comparative Example 1 since an excessively large amount of drug reaches the bloodstream during the first half of the administration cycle during injection administration, it is difficult to reach an effective blood concentration after the first half of the administration cycle.
  • Comparative Example 2 when administered by injection, a relatively small amount of drug reaches the bloodstream during the first half of the administration cycle, and therefore, an effective blood concentration may not be reached during the first half of the administration cycle.
  • Examples 1 to 4 including two types of microspheres with different drug loadings 336 hours (336 hours, half of the initial half of the administration cycle) for AUC up to 672 hours (28 days), which is the target administration cycle. 14 days) ranged from 0.4 to 0.6. That is, it exhibits a uniform AUC and uniform drug release during the target administration cycle. Therefore, when the microspheres of Examples 1 to 4 are administered by injection, the effective blood concentration can be continuously reached throughout the administration cycle, and an abnormally low blood drug concentration or an abnormally high blood drug concentration is exhibited at the beginning of the administration, resulting in a curative effect. It is possible to prevent the occurrence of a phenomenon in which the effect is not observed or the treatment effect is biased, and the medication compliance can be improved.
  • microspheres with relatively high theoretical drug loadings have a relatively high theoretical drug loading of 40%
  • the microspheres with relatively low theoretical drug loadings have a larger total weight.
  • the total weight ratio of microspheres having a theoretical drug loading of 40% and microspheres having a theoretical drug loading of 30% is 1:4
  • the average actual drug loading of the microspheres is relatively small, 30%
  • the AUC ratio is 0.52, which is a desirable result.
  • the theoretical drug loading of microspheres with relatively high theoretical drug loading is 40%
  • the effect when the average actual drug loading of microspheres exceeds 32% and it can be seen that the effect appears preferably when the average actual drug loading of the microspheres is 32% or less. Therefore, in the present invention, when the content of microspheres having a relatively high drug loading amount is relatively high among two types of microspheres having different drug loading amounts, it can be said that it is preferable that the average actual drug loading amount of the microspheres is 32% or less.
  • This experiment is an experiment to confirm whether the results of the ratio of AUC in the pharmacokinetic (PK) test for SD rats of Experimental Example 3 appear similarly in beagle dogs, which are other experimental animal species.
  • microspheres prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were injected intramuscularly into the thigh of a beagle dog, and the concentration of donepezil in blood was measured.
  • the AUC 0 -336h /AUC 0-672h ratio is within the range of 0.4 to 0.6, which is a uniform drug as in the case of rat administration. means release.
  • microsphere-containing injectable composition according to the present invention can exhibit a constant therapeutic effect during the target administration period by exhibiting a constant AUC during the administration period, and this effect appears similarly when administered to other species.
  • the injectable composition according to the present invention can be usefully used as a treatment for dementia.

Abstract

도네페질 함유 미립구를 포함하는 주사제를 개시한다.

Description

도네페질 함유 지속방출형 미립구
본 발명은 도네페질을 함유하는 지속방출형 미립구(microsphere) 및 이를 포함하는 주사제에 관한 것이다.
도네페질은 치매(특히, 알츠하이머성 치매)를 치료하기 위하여 개발된 약물로서, 현재 경구용 정제가 판매되고 있다. 현재 판매 중인 도네페질 함유 경구용 정제는 1일 1회 취침 전에 복용하도록 지시되어 있다.
그러나, 알츠하이머 환자들이 스스로 매일 취침 전에 정제를 복용하는 데에는 어려움이 있기 때문에, 복약 순응도가 떨어지고, 이에 따라 지속적인 약리효과를 나타내는데 지장을 초래할 수 있다.
따라서, 도네페질 투여시 복약 순응도를 향상시키기 위한 새로운 제형을 개발할 필요가 있다.
이러한 과제를 해결하기 위하여, 도네페질을 함유하는 지속방출형 주사제를 개발하기 위한 연구가 수행되고 있다.
상기 지속방출형 주사제는 약물을 생체분해성 고분자 내에 봉입시킨 미립구를 함유한다. 이와 같은 미립구 함유 주사제를 체내에 주사하면, 체내 주입된 미립구 내에서 약물이 서서히 방출되어, 약리효과가 지속적으로 나타나도록 할 수 있다. 따라서, 지속방출형 주사제를 1회 투여한 경우, 예를 들어 적어도 1주 이상의 장시간 동안 약물이 지속적으로 나타나게 할 수 있다. 이러한, 지속방출형 주사제를 개발한다면, 예를 들어, 1주, 10일, 4주 또는 2개월마다 약물을 주사 투여하여도 약효가 지속되도록 할 수 있어서, 약물의 체내 침습 횟수를 최소화하고, 복약 순응도를 획기적으로 향상시킬 수 있다.
이러한 과제를 해결하기 위하여, 투여 시 투여주기 동안 혈중 약물 농도의 변동 폭을 최소화시킨 도네페질 함유 지속방출형 주사제를 개발할 필요가 있다.
본 발명은 투여 시 혈중 약물 농도의 변동 폭을 최소화시켜, 부작용의 발현을 최소화하면서 약리효과가 지속적으로 나타나도록 한 도네페질 함유 지속방출형 주사제를 개발하기 위한 것이다.
본 발명은, 고분자를 포함하며, 일정한 비율의 서로 다른 약물 로딩량을 가지는 두 개의 분산액을 준비하고, 이로부터 예를 들어 단일 유화 방법으로 미립구를 제조하여 약물 투여 주기의 전반부에 총 약물의 40 내지 60%를 방출하는 지속 방출 미립구를 제공할 수 있다.
구체적으로, 본 발명은 약물 로딩량이 서로 상이한 2종류 이상의 도네페질 미립구를 포함하는 지속 방출형 주사제 조성물에 관한 것으로서, 투여 주기(예를 들어, 1주마다 투여하거나, 10일마다 투여하거나, 또는 4주마다 투여하도록 설계할 수 있다) 동안의 AUC에 대한 투여 주기의 초기 절반 동안의 AUC의 비(즉, AUC0 ~ 1/2투여주기 / AUC0 ~투여주기)가 0.4 ~ 0.6 이다. 여기에서, 상기 약물 로딩량은 미립구 중에 포함되어 있는 도네페질의 해당 미립구에 대한 중량비를 의미한다.
본 발명에서 상기 투여 주기는 예를 들어 7일 이상, 바람직하게는 7일 내지 2개월의 범위를 가질 수 있도록 설계할 수 있다. 예를 들어, 본 발명의 주사제를 10일마다 투여하는 것 또는 4주마다 투여하는 것을 목표로 하여 설계할 수 있다.
또한, 본 발명에서, 상기 도네페질 미립구의 평균 약물 로딩량은 35% 이하, 바람직하게는 32% 이하인 것이 바람직하다. 미립구의 총 투여량을 감소시키고, 제조시 생산단가를 낮추기 위해서는 약물 로딩량이 높은 것이 유리할 수 있으나, 약물 로딩량이 너무 높아지게 되면 서방화제인 고분자의 비율이 감소하게 되고, 이에 따라 주사제 투여시 혈중 약물 농도를 투여 주기 동안 유효 농도로 유지하지 못하거나, 미립구 내에 봉입되지 않은 약물이 결정으로 존재하여 투여 직후에 높은 혈중 농도를 보여주는 결과를 낳을 수 있다는 문제가 있다.
본 발명에서, 상기 도네페질 미립구는 이론 약물 로딩량이 32~40%인 것과 28~32%인 것의 2종류를 포함하는 것이 바람직하다. 즉, 본 발명의 주사제는 이론 약물 로딩량이 32~40%인 도네페질 함유 미립구 및 이론 약물 로딩량이 28~32%인 도네페질 함유 미립구를 모두 포함한다(여기에서, 본 발명은 약물 로딩량이 서로 상이한 2종류 이상의 도네페질 미립구를 포함하므로, 미립구의 이론 약물 로딩량이 모두 32%일 수는 없다). 따라서, 본 발명의 주사제는 이론 약물 로딩량이 28% 이상 32% 이하인 도네페질 함유 미립구 및 이론 약물 로딩량이 32% 초과 40% 이하인 도네페질 함유 미립구를 포함하거나, 또는 이론 약물 로딩량이 28% 이상 32% 미만인 도네페질 함유 미립구 및 이론 약물 로딩량이 32% 이상 40% 이하인 도네페질 함유 미립구를 포함할 수 있다.
본 명세서에서 용어 "이론 약물 로딩량"은 도네페질 함유 미립구를 제조할 때에 투입된 원료 도네페질 및 투입된 원료 고분자가 전부 미립구로 제조되고, 또한 투입된 원료 도네페질이 전부 미립구 내에 봉입되는 것으로 가정하였을 때의 미립구 내 도네페질 로딩량을 의미하며, 하기 수학식 1로부터 구할 수 있다:
[수학식 1]
이론 약물 로딩량(%) = [ 미립구 제조시 투입된 도네페질의 양 / (미립구 제조시 투입된 도네페질의 양 + 미립구 제조시 투입된 고분자의 양) ] × 100(%)
본 명세서에서 용어 "실제 약물 로딩량"은 도네페질 함유 미립구를 제조하였을 때에, 실제 제조된 미립구 100mg 당 함유된 도네페질의 함량을 의미하며, 따로 규정되지 않는 한, 용어 "약물 로딩량"과 혼용되어 사용될 수 있다.
본 발명에서, 이론 약물 로딩량이 32~40%인 미립구와 이론 약물 로딩량이 28~32%인 미립구의 중량비는 1 : 0.8 ~ 5인 것이 바람직하다.
또한, 본 발명에서, 상기 도네페질 미립구는 도네페질 또는 이의 약학적으로 허용되는 염, 수화물 또는 용매화물 및 생분해성 고분자를 포함한다.
본 발명에서, 상기 도네페질 미립구는, 미립구 100mg 당 도네페질 또는 이의 약학적으로 허용되는 염을 도네페질로서 평균 25 내지 32mg 를 포함하는 것이 바람직하다(즉, 본 발명에서 실제 약물 로딩량은 25 내지 32% 인 것이 바람직하다).
또한, 본 발명은 약물 로딩량이 서로 상이한 2종류 이상의 도네페질 미립구를 제조하는 방법에 관한 것이다.
본 발명에 따른 도네페질 함유 미립구는,
제1 약물 로딩량을 갖는 도네페질 함유 제1 분산상을 제조하는 단계;
제2 약물 로딩량을 갖는 도네페질 함유 제2 분산상을 제조하는 단계;
상기 도네페질 함유 제1 분산액 및 도네페질 함유 제2분산상을 순차적으로 연속상에 가한 후, 교반하여 미립구를 제조하는 단계를 포함하여 제조될 수 있다.
또한, 본 발명에 따른 도네페질 함유 미립구는,
제1 약물 로딩량을 갖는 도네페질 함유 제1 분산상을 제조하는 단계;
상기 도네페질 함유 제1 분산상을 연속상에 가한 후, 교반하여 제1 미립구를 제조하는 단계;
제2 약물 로딩량을 갖는 도네페질 함유 제2 분산상을 제조하는 단계;
상기 도네페질 함유 제2분산상을 별도의 연속상에 가한 후, 교반하여 제2 미립구를 제조하는 단계; 및
상기 제1 미립구와 상기 제2 미립구를 혼합하는 단계를 포함하여 제조될 수 있다.
본 발명의 도네페질 함유 미립구 제조방법에서, 상기 제1 약물 로딩량 및 상기 제2 약물 로딩량은 서로 상이하다.
본 명세서에서 봉입률은 이론 약물 로딩량에 대한 실제 약물 로딩량의 비를 의미하며, 하기 수학식 2에 따라 계산된다:
[수학식 2]
Figure PCTKR2022011672-appb-img-000001
도네페질 함유 미립구를 실제로 제조할 때에 그 봉입률은 대략 90% 내지 100%의 값을 갖는다.
약물 로딩량이, 목표로 하는 이론 약물 로딩량을 의미하든 봉입률이 반영된 실제 약물 로딩량을 의미하든, 본 발명에서는 서로 상이한 약물 로딩량을 나타내는 2종류 이상의 미립구를 주사제에 포함시켜 투여함으로써, 투여 주기 동안 균일한 AUC 및 균일한 혈중 약물 농도를 나타내는 효과를 발휘하게 할 수 있다.
본 발명에 따른 서방성 미립구 주사제는 상이한 특성을 가지는 고분자를 사용하거나 추가 공정없이 간단히 하나의 고분자로 특정 비율의 서로 다른 약물 로딩량을 가지는 두 용액으로 제조함으로써 체내에서 목표 기간 동안 일정하게 약물을 방출하게 하므로 치료 농도 이상에서의 부작용을 억제하고 복약 불순응을 개선할 수 있다.
도 1은 실험예 3의 SD랫드 약물 동태시험에서 실시예 2 및 비교예의 28일간 약물농도 프로파일의 결과이다.
도 2는 실시예 2에서 제조된 도네페질 함유 미립구의 형태(morphology)를 확인하기 위한 SEM 이미지이다.
이하에서는, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 그러나, 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐, 본 발명의 범위가 하기 실시예에 의하여 제한되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되는 것이다.
실시예 1 : 이론 약물 로딩량이 36%인 것과 30%인 것이 1:1(총 이론 약물 로딩량은 33%임) 중량 비율로 이루어진 고분자 미립구 제조
도네페질(제조사: Neuland Laboratories, 인도) 0.9g(이론 약물 로딩량 36%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사 Evonik, 독일) 1.6g을 디클로로메탄(제조사: 대정화금, 한국) 4.8g에 첨가하고 교반하여 완전히 용해시켜 첫번째 분산상 고분자 용액을 제조하였다.
따로, 도네페질(제조사: Neuland Laboratories, 인도) 0.75g(이론 약물 로딩량 30%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사: Evonik, 독일) 1.75g을 디클로로메탄(제조사: 대정화금, 한국) 5.25g에 첨가하고 교반하여 완전히 용해시켜 두번째 분산상 고분자 용액을 제조하였다.
또한, 적량의 폴리비닐알코올을 물에 용해시켜 0.5% 폴리비닐알코올 연속상을 제조하였다.
이중자켓 비이커에 0.5% 폴리비닐알코올 연속상을 넣고 항온 순환수조를 사용하여 10℃ 이하의 온도로 유지시킨 후, 상기 제조한 두 분산상(약물 로딩량이 서로 상이한 두 종류의 도네페질 함유 분산상 고분자 용액)을 각각 상기 연속상에 순차적으로 가하면서, 고속 교반하여 에멀젼을 형성시켰다.
이후, 유기용매를 제거하고 고형화된 미립구를 획득하기 위하여, 47℃ 온도에서 3시간 동안 유기용매를 휘발시키고, 1시간 동안 10℃로 서서히 냉각하였다. 경화된 미립구를 주사용수로 수 회 세척한 후, 체망을 이용하여 습식여과하고, 동결 건조시켜 도네페질이 함유된 미립구를 최종적으로 수득하였다.
실시예 2 : 이론 약물 로딩량이 40%인 것과 30%인 것이 1:4(총 이론 약물 로딩량 32%) 중량 비율로 이루어진 고분자 미립구 제조
도네페질(제조사: Neuland Laboratories, 인도) 1.6g(이론 약물 로딩량 40%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사 Evonik, 독일) 2.4g을 디클로로메탄(제조사: 대정화금, 한국) 7.2g에 첨가하고 교반하여 완전히 용해시켜 첫번째 분산상 고분자 용액을 제조하였다.
따로, 도네페질(제조사: Neuland Laboratories, 인도) 4.8g(이론 약물 로딩량 30%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사 Evonik, 독일) 11.2g을 디클로로메탄(제조사: 대정화금, 한국) 33.6g에 첨가하고 교반하여 완전히 용해시켜 두번째 분산상 고분자 용액을 제조하였다.
또한 적량의 폴리비닐알코올을 물에 용해시켜 0.5% 폴리비닐알코올 연속상을 제조하였다.
이중자켓 비이커에 0.5% 폴리비닐알코올 연속상을 넣고 항온순환수조를 사용하여 10℃이하의 온도로 유지시킨 후, 상기 제조한 두 분산상(약물 로딩량이 서로 상이한 두 종류의 도네페질 함유 분산상 고분자 용액)을 각각 상기 연속상에 순차적으로 가하면서, 고속 교반하여 에멀젼을 형성시켰다.
이후, 유기용매를 제거하고 고형화된 미립구를 획득하기 위하여, 47℃ 온도에서 3시간 동안 유기용매를 휘발시키고 1시간 동안 10℃로 서서히 냉각하였다. 경화된 미립구는 주사용수로 수 회 세척한 후 체망을 이용하여 습식여과하고, 동결 건조시켜 도네페질이 함유된 미립구를 최종적으로 수득하였다.
실시예 3 : 이론 약물 로딩량이 38%인 것과 28%인 것이 1:2(총 이론 약물 로딩량 31.3%) 중량 비율로 이루어진 고분자 미립구 제조
도네페질(제조사: Neuland Laboratories, 인도) 2.53g(이론 약물 로딩량 38%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사 Evonik, 독일) 4.13g을 디클로로메탄(제조사: 대정화금, 한국) 12.39g에 첨가하고 교반하여 완전히 용해시켜 첫번째 분산상 고분자 용액을 제조하였다.
따로, 도네페질(제조사: Neuland Laboratories, 인도) 3.73g(이론 약물 로딩량 30%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사: Evonik, 독일) 9.6g을 디클로로메탄(제조사: 대정화금, 한국) 28.8g에 첨가하고 교반하여 완전히 용해시켜 두번째 분산상 고분자 용액을 제조하였다.
또한, 적량의 폴리비닐알코올을 물에 용해시켜, 0.5% 폴리비닐알코올 연속상을 제조하였다.
이중자켓 비이커에 0.5% 폴리비닐알코올 연속상을 넣고 항온순환수조를 사용하여 10℃이하의 온도로 유지시킨 후, 상기 제조한 두 분산상(약물 로딩량이 서로 상이한 두 종류의 도네페질 함유 고분자 용액)을 각각 상기 연속상에 순차적으로 가하면서, 고속 교반하여 에멀젼을 형성시켰다.
이후, 유기용매를 제거하고 고형화된 미립구를 획득하기 위하여, 47℃ 온도에서 3시간 동안 유기용매를 휘발시키고, 1시간 동안 10℃로 서서히 냉각하였다. 경화된 미립구는 주사용수로 수 회 세척한 후, 체망을 이용하여 습식여과하고, 동결 건조시켜 도네페질이 함유된 미립구를 최종적으로 수득하였다.
실시예 4 : 이론 약물 로딩량이 32%인 것과 28%인 것이 1:1(총 이론 약물 로딩량 30%) 중량 비율로 이루어진 고분자 미립구 제조
도네페질(제조사: Neuland Laboratories, 인도) 3.2g(이론 약물 로딩량 32%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사 Evonik, 독일) 6.8g을 디클로로메탄(제조사: 대정화금, 한국) 20.4g에 첨가하고 교반하여 완전히 용해시켜 첫번째 분산상 고분자 용액을 제조하였다.
따로, 도네페질(제조사: Neuland Laboratories, 인도) 2.8g(이론 약물 로딩량 28%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사 Evonik, 독일) 7.2g을 디클로로메탄(제조사: 대정화금, 한국) 21.6g에 첨가하고 교반하여 완전히 용해시켜 두번째 분산상 고분자 용액을 제조하였다.
또한, 적량의 폴리비닐알코올을 물에 용해시켜 0.5% 폴리비닐알코올 연속상을 제조하였다.
이중자켓 비이커에 0.5% 폴리비닐알코올 연속상을 넣고 항온 순환수조를 사용하여 10℃ 이하의 온도로 유지시킨 후, 상기 제조한 두 분산상(약물 로딩량이 서로 상이한 두 종류의 도네페질 함유 분산상 고분자 용액)을 각각 상기 연속상에 순차적으로 가하면서, 고속 교반하여 순차적으로 에멀젼을 형성시켰다.
이후, 유기용매를 제거하고 고형화된 미립구를 획득하기 위하여, 47℃ 온도에서 3시간 동안 유기용매를 휘발시키고, 1시간 동안 10℃로 서서히 냉각하였다. 경화된 미립구를 주사용수로 수 회 세척한 후, 체망을 이용하여 습식여과하고, 동결 건조시켜 도네페질이 함유된 미립구를 최종적으로 수득하였다.
비교예 1 : 이론 약물 로딩량 40%가 단독 중량 비율로 이루어진 고분자 미립구 제조
도네페질(제조사: Neuland Laboratories, 인도) 2g(이론 약물 로딩량 40%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사 Evonik, 독일) 3g을 디클로로메탄(제조사: 대정화금, 한국) 9g에 첨가하고 교반하여 완전히 용해시켜 분산상인 고분자 용액을 제조하였다.
또한, 적량의 폴리비닐알코올을 물에 용해시켜 0.5% 폴리비닐알코올 연속상을 제조하였다.
이중자켓 비이커에 0.5% 폴리비닐알코올 연속상을 넣고 항온 순환수조를 사용하여 10℃ 이하의 온도로 유지시킨 후, 상기 제조한 분산상(도네페질 함유 분산상 고분자 용액)을 상기 연속상에 가하면서, 고속 교반하여 에멀젼을 형성시켰다.
이후, 유기용매를 제거하고 고형화된 미립구를 획득하기 위하여, 47℃ 온도에서 2시간 동안 유기용매를 휘발시키고, 1시간 동안 10℃로 서서히 냉각하였다. 경화된 미립구는 주사용수로 수 회 세척한 후, 체망을 이용하여 습식여과하고, 동결 건조시켜 도네페질이 함유된 미립구를 최종적으로 수득하였다.
비교예 2 : 이론 약물 로딩량 30%가 단독 중량 비율로 이루어진 고분자 미립구 제조
도네페질(제조사: Neuland Laboratories, 인도) 6g(이론 약물 로딩량 30%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사 Evonik, 독일) 14g을 디클로로메탄(제조사: 대정화금, 한국) 42g에 첨가하고 교반하여 완전히 용해시켜 분산상인 고분자 용액을 제조하였다.
또한, 적량의 폴리비닐알코올을 물에 용해시켜 0.5% 폴리비닐알코올 연속상을 제조하였다.
이중자켓 비이커에 0.5% 폴리비닐알코올 연속상을 넣고 항온 순환수조를 사용하여 10℃이하의 온도로 유지시킨 후, 상기 제조한 분산상(도네페질 함유 분산상 고분자 용액)을 상기 연속상에 가하면서, 고속 교반하여 에멀젼을 형성시켰다.
이후, 유기용매를 제거하고 고형화된 미립구를 획득하기 위하여, 47℃ 온도에서 3시간 동안 유기용매를 휘발시키고 1시간 동안 10℃로 서서히 냉각하였다. 경화된 미립구는 주사용수로 수 회 세척한 후 체망을 이용하여 습식여과하고, 동결 건조시켜 도네페질이 함유된 미립구를 최종적으로 수득하였다.
비교예 3 : 이론 약물 로딩량이 40%인 것과 30%인 것이 1:1(총 이론 약물 로딩량 35%) 중량 비율로 이루어진 고분자 미립구 제조
도네페질(제조사: Neuland Laboratories, 인도) 1g(이론 약물 로딩량 40%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H; 제조사 Evonik, 독일) 1.5g을 디클로로메탄(제조사: 대정화금, 한국) 4.5g에 첨가하고 교반하여 완전히 용해시켜 첫번째 분산상 고분자 용액을 제조하였다.
따로, 도네페질(제조사: Neuland Laboratories, 인도) 0.75g(이론 약물 로딩량 30%) 및 생분해성 고분자인 폴리 D,L-락티드 (Resomer R 203H(제조사: Evonik, 독일) 1.75g을 디클로로메탄(제조사: 대정화금, 한국) 5.25g에 첨가하고 교반하여 완전히 용해시켜 두번째 분산상 고분자 용액을 제조하였다.
또한, 적량의 폴리비닐알코올을 물에 용해시켜 0.5% 폴리비닐알코올 연속상을 제조하였다.
이중자켓 비이커에 0.5% 폴리비닐알코올 연속상을 넣고 항온 순환수조를 사용하여 10℃이하의 온도로 유지시킨 후, 상기 제조한 두 분산상(약물 로딩량이 서로 상이한 두 종류의 도네페질 함유 분산상 고분자 용액)을 각각 상기 연속상에 순차적으로 가하면서, 고속 교반하여 에멀젼을 형성시켰다.
이후, 유기용매를 제거하고 고형화된 미립구를 획득하기 위하여, 47℃ 온도에서 3시간 동안 유기용매를 휘발시키고, 1시간 동안 10℃로 서서히 냉각하였다. 경화된 미립구는 주사용수로 수 회 세척한 후, 체망을 이용하여 습식여과하고, 동결 건조시켜 도네페질이 함유된 미립구를 최종적으로 수득하였다.
실험예 1 : SEM을 이용한 미립구 형태(morphology) 관찰
미립구 약 20mg을 카본테이프를 이용하여 알루미늄 스터브(stub)에 고정시키고, 진공도 0.1 토르(torr) 및 고전압(10kV) 하에서 3분간 백금 코팅한 후, SEM(장비명 SEC-SNE 4500M Plus A, 한국) 분체에 장착하고, 이미지 분석 프로그램(mini-SEM)을 사용하여 미립구 표면 형태(morphology)를 관찰하였다.
도 2는 실시예 1에서 제조된 미립구의 SEM 사진이다.
실시예 1 내지 4 및 비교예 1 내지 3에서 제조된 미립구에서 형태상 특이한 점은 발견되지 아니하였다.
실험예 2 :미립구내 도네페질의 봉입률 및 함유량 측정
상기 실시예 1 내지 4 및 비교예 1 내지 3에서 각 제조된 미립구 각각에 대하여, 약 100mg을 취하여 아세토니트릴에 완전히 녹인 후 이동상으로 희석하였다. 희석된 용액 20uL를 HPLC에 주입하여 검출파장 318nm에서 흡광도를 측정하였다.
<측정 조건>
컬럼: Luna phenyl-Hetyl, C18 5um, 4.6 X 250mm
이동상: 테트라하이드로푸란, 트리에틸아민 용액(용액A)과 메탄올 테트라하이드로푸란 용액(용액B)의 3:1 혼합용액 (pH 2.0)
각 측정된 실제 약물 로딩량(미립구 100mg 당 존재하는 도네페질 함량) 및 약물 봉입률은 하기 표 1에 나타내었다.
이론 약물 로딩량의 비율 평균 이론 약물 로딩량(%) 약물 봉입률(%) 실제 약물 로딩량(%)
실시예 1 36%:30% = 1:1 33.0 92.9 30.65
실시예 2 40%:30% = 1:4 32.0 94.2 30.16
실시예 3 38%:28% = 1:2 31.3 94.8 29.71
실시예 4 32%:28% = 1:1 30.0 95.6 28.68
비교예 1 40% 단독 40.0 94.4 37.74
비교예 2 30% 단독 30.0 89.6 26.88
비교예 3 40%:30% = 1:1 35.0 91.6 32.07
전술한 바와 같이, 봉입률은 하기 수학식에 따라 계산된다:
[수학식 2]
Figure PCTKR2022011672-appb-img-000002
상기 표에서, "이론 약물 로딩량의 비율"은 이론 약물 로딩량이 상대적으로 높은 미립구의 총 중량 및 이론 약물 로딩량이 상대적으로 적은 미립구의 총중량의 비를 나타낸 것이다.
실시예 1 내지 4 및 비교예 1 내지 3의 약물 봉입률은 모두 약 90% 이상인 것으로 나타났다.
실험예 3 : SD 랫트를 이용한 미립구 주사제의 약물 동태 시험
본 실험은 약물 로딩량이 서로 상이한 미립구의 함량비에 따른 혈중 약물 농도의 변동성 감소 효과를 확인하기 위한 것이다.
실시예 1 내지 4 및 비교예 1 내지 3에서 각 제조된 미립구를 SD 랫트의 경배부에 피하 주사 투여하고, 혈중 도네페질 농도를 측정하였다.
구체적으로, SD 랫트 한 마리 당 25.2mg의 도네페질에 해당하는 미립구를 SD 랫트의 경배부에 피하주사 하였다(n=6).
주사한 날로부터 1, 3, 7, 10, 14, 17, 21, 24, 28, 35일 경과한 날에 랫트의 경정맥으로부터 0.3mL 혈액을 채취하여 빙냉상태로 유지하고, 원심분리하여 100uL의 혈장을 분리하였다. 분리된 혈장을 LC/MS/MS를 이용하여 도네페질의 농도를 분석하였다. 랫트에 대한 약물 동태(pharmacokinetic) 시험 결과를 표 2에 나타내었다.
AUC0 -336h (hr*ng/mL) AUC0 -672h (hr*ng/mL) AUC0 -336h/AUC0 -672h 비(ratio)
실시예 1 5120.4 9288.6 0.55
실시예 2 6055.7 11639.2 0.52
실시예 3 5871.3 9997.4 0.59
실시예 4 4056.0 9209.1 0.44
비교예 1 17433.3 20335.6 0.86
비교예 2 3705.5 11651.9 0.32
비교예 3 13297.3 17602.1 0.76
표 2에 나타난 바와 같이, 약물 로딩량이 30% 또는 40%인 미립구를 단독으로 함유하는 비교예 1 및 2의 경우, 목표로 하는 투여 주기인 672시간(28일)까지의 AUC에 대한 상기 투여 주기의 초기의 절반인 336시간(14일)까지의 AUC의 비는 각각 0.86 및 0.32이었다.
AUC(Area under Curve: 곡선 하 면적)는 약물이 소화관으로부터 흡수되거나 또는 주사 투여 시 조직으로부터 흡수되어 체내의 순환 혈류에 도달된 양과 관련있는 파라미터이다. 상기 비교예 1은 주사 투여 시 투여 주기의 초기 절반 동안 지나치게 많은 약물량이 혈류에 도달하게 되므로, 투여 주기의 초기 절반 이후에는 유효 혈중 농도에 도달하기 어렵게 된다. 상기 비교예 2는 주사 투여 시 투여 주기의 초기 절반 동안 비교적 적은 약물량이 혈류에 도달하게 되므로, 투여 주기의 초기 절반 동안에 유효 혈중 농도에 도달하지 못할 수 있다.
반면, 약물 로딩량이 서로 상이한 2종류의 미립구를 포함하는 실시예 1 내지 4의 경우, 목표로 하는 투여 주기인 672시간(28일)까지의 AUC에 대한 상기 투여 주기의 초기의 절반인 336시간(14일)까지의 AUC의 비는 0.4 ~ 0.6 범위의 값을 갖는다. 즉, 목표로 하는 투여 주기 동안 균일한 AUC를 나타내며, 약물 방출이 균일하게 나타난다. 따라서, 실시예 1 내지 4의 미립구를 주사 투여하는 경우, 투여 주기 내내 유효 혈중 농도에 지속적으로 도달할 수 있으며, 투여 초반에 비정상적으로 낮은 혈중 약물 농도를 나타내거나 비정상적으로 높은 혈중 약물 농도를 나타내어 치효 효과가 나타나지 않거나 치료 효과가 편중되어 나타나는 현상이 일어나는 것을 방지할 수 있으며, 아울러 복약순응도를 향상시킬 수 있다.
다만, 약물 로딩량이 서로 상이한 2종류의 미립구를 포함하되, 이론 약물 로딩량이 상대적으로 높은 미립구의 이론 약물 로딩량이 40%로서 비교적 높은 경우에는, 이론 약물 로딩량이 상대적으로 낮은 미립구의 총 중량이 더 큰 것이 바람직한 것으로 나타났다. 즉, 이론 약물 로딩량이 40%인 미립구와 이론 약물 로딩량이 30%인 미립구의 총중량비가 1:4인 실시예 2의 경우에는 미립구의 평균 실제 약물 로딩량이 비교적 적은 30%이고 AUC 비가 0.52로서 바람직한 결과를 나타내었으나, 이론 약물 로딩량이 40%인 미립구와 이론 약물 로딩량이 30%인 미립구의 총중량비가 1:1인 비교예 3의 경우에는 미립구의 평균 실제 약물 로딩량이 비교적 큰 32.07%이고 AUC 비가 0.76으로서 그 결과가 다소 미흡하다.
따라서, 약물 로딩량이 서로 상이한 2종류의 미립구를 포함하되, 이론 약물 로딩량이 상대적으로 높은 미립구의 이론 약물 로딩량이 40%인 경우에는, 미립구의 평균 실제 약물 로딩량이 32%를 초과하는 경우에 그 효과가 다소 적게 나타났고, 미립구의 평균 실제 약물 로딩량이 32% 이하인 경우에 그 효과가 바람직하게 나타난다는 것을 알 수 있다. 따라서, 본 발명에서는 약물 로딩량이 서로 상이한 2종류의 미립구 중에서 약물 로딩량이 상대적으로 높은 미립구의 함량이 비교적 높은 경우, 미립구의 평균 실제 약물 로딩량이 32% 이하인 것이 바람직하다고 할 수 있다.
실험예 4 : 비글을 이용한 미립구의 약물 동태 시험
본 실험은 실험예 3의 SD 래트에 대한 약물 동태(PK) 시험에서의 AUC 의 비에 대한 결과가 다른 실험 동물 종인 비글견에서도 유사하게 나타나는지 확인하기 위한 실험이다.
실험예 3과 유사하게 실시예 1 내지 4 및 비교예 1 내지 3에서 각 제조된 미립구를 비글견의 대퇴부에 근육 주사 투여하고, 혈중 도네페질 농도를 측정하였다.
구체적으로, 비글견 한 마리 당 84.0mg의 도네페질에 해당하는 미립구를 비글견의 대퇴부에 근육주사 하였다(n=3).
주사한 날로부터 1, 3, 7, 10, 14, 17, 21, 24, 28, 35일 경과한 날에 비글견의 요측피정맥으로부터 0.5mL 혈액을 채취하여 빙냉상태로 유지하고, 원심분리하여 100uL의 혈장을 분리하였다. 분리된 혈장을 LC/MS/MS를 이용하여 도네페질의 농도를 분석하였다. 비글견에 대한 약물 동태(pharmacokinetic) 시험 결과를 표 3에 나타내었다.
AUC0 -336h (hr*ng/mL) AUC0 -672h (hr*ng/mL) AUC0 -336h/AUC0 -672h 비(ratio)
실시예 2 1167.9 2038.9 0.57
실시예 3 1205.6 2168.0 0.56
실시예 4 795.8 1629.7 0.49
표 3에 나타난 바와 같이, 실시예 2 내지 4를 비글견에 투여한 후 AUC0 -336h/AUC0-672h 비(ratio)는 0.4 내지 0.6의 범위 이내이고, 이는 래트 투여 시와 마찬가지로 균일한 약물 방출을 나타냄을 의미한다.
따라서, 본 발명에 따른 미립구 함유 주사제 조성물은 투여 주기 동안 일정한 AUC를 나타냄으로써 목표로 하는 투여 주기 동안 일정한 치료 효과를 나타낼 수 있고, 이러한 효과는 다른 종에 투여한 경우에도 유사하게 나타난다는 점을 확인하였다.
본 발명에 따른 주사제 조성물은 치매 치료제로서 유용하게 사용될 수 있다.

Claims (10)

  1. 약물 로딩량이 서로 상이한 2종류 이상의 도네페질 미립구를 포함하는 지속 방출형 주사제 조성물로서,
    투여 주기 동안의 AUC에 대한 투여 주기의 초기 절반 동안의 AUC의 비가 0.4 ~ 0.6 인 주사제 조성물.
    (여기에서, 상기 약물 로딩량은 각 미립구 중에 포함되어 있는 도네페질의 해당 미립구에 대한 중량비를 의미한다)
  2. 제1항에 있어서, 상기 투여 주기는 1주 내지 2개월인 것을 특징으로 하는 주사제 조성물.
  3. 제1항에 있어서. 상기 투여 주기는 10일 내지 28일인 것을 특징으로 하는 주사제 조성물.
  4. 제1항에 있어서, 상기 도네페질 미립구는 이론 약물 로딩량이 32~40%인 것과 28~32%인 것의 2종류를 포함하는 것을 특징으로 하는 주사제 조성물.
  5. 제1항에서 상기 도네페질 미립구는 평균 약물 로딩량이 32% 이하인 것을 특징으로 하는 주사제 조성물.
  6. 제4항에 있어서, 이론 약물 로딩량이 32~40%인 미립구와 이론 약물 로딩량이 28~32%인 미립구의 중량비는 1 : 0.8 ~ 5인 것을 특징으로 하는 주사제 조성물.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 도네페질 미립구는 도네페질 또는 이의 약학적으로 허용되는 염, 수화물 또는 용매화물 및 생분해성 고분자를 포함하는 주사제 조성물.
  8. 제5항에 있어서, 상기 도네페질 미립구는, 미립구 100mg 당 도네페질 또는 이의 약학적으로 허용되는 염을 도네페질로서 평균 25 내지 32mg 포함하는 것을 특징으로 하는 주사제 조성물.
  9. 도네페질 함유 미립구를 제조하는 방법으로서,
    제1 약물 로딩량을 갖는 도네페질 함유 제1 분산상을 제조하는 단계;
    제2 약물 로딩량을 갖는 도네페질 함유 제2 분산상을 제조하는 단계;
    상기 도네페질 함유 제1 분산상 및 도네페질 함유 제2분산상을 순차적으로 연속상에 가한 후, 교반하여 미립구를 제조하는 단계를 포함하되,
    상기 제1 약물 로딩량 및 상기 제2 약물 로딩량은 서로 상이하여, 약물 로딩량이 서로 상이한 2종류 이상의 도네페질 미립구를 제조하는 방법.
  10. 도네페질 함유 미립구를 제조하는 방법으로서,
    제1 약물 로딩량을 갖는 도네페질 함유 제1 분산상을 제조하는 단계;
    상기 도네페질 함유 제1 분산상을 연속상에 가한 후, 교반하여 제1 미립구를 제조하는 단계;
    제2 약물 로딩량을 갖는 도네페질 함유 제2 분산상을 제조하는 단계;
    상기 도네페질 함유 제2분산상을 별도의 연속상에 가한 후, 교반하여 제2 미립구를 제조하는 단계; 및
    상기 제1 미립구와 상기 제2 미립구를 혼합하는 단계를 포함하되,
    상기 제1 약물 로딩량 및 상기 제2 약물 로딩량은 서로 상이하여, 약물 로딩량이 서로 상이한 2종류 이상의 도네페질 미립구를 제조하는 방법.
PCT/KR2022/011672 2021-08-05 2022-08-05 도네페질 함유 지속방출형 미립구 WO2023014175A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3231101A CA3231101A1 (en) 2021-08-05 2022-08-05 Sustained-release microspheres comprising donepezil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0103519 2021-08-05
KR1020210103519A KR102451185B1 (ko) 2021-08-05 2021-08-05 도네페질 함유 지속방출형 미립구

Publications (1)

Publication Number Publication Date
WO2023014175A1 true WO2023014175A1 (ko) 2023-02-09

Family

ID=83596120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011672 WO2023014175A1 (ko) 2021-08-05 2022-08-05 도네페질 함유 지속방출형 미립구

Country Status (3)

Country Link
KR (1) KR102451185B1 (ko)
CA (1) CA3231101A1 (ko)
WO (1) WO2023014175A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070191A (ko) * 2013-11-06 2016-06-17 스템센트알엑스 인코포레이티드 신규한 항-클라우딘 항체 및 사용 방법
KR20180088445A (ko) * 2015-12-04 2018-08-03 애브비 스템센트알엑스 엘엘씨 신규한 항-클라우딘 항체 및 사용 방법
KR20190064526A (ko) * 2017-11-30 2019-06-10 주식회사 지투지바이오 도네페질을 함유하는 서방성 주사제제 및 그 제조방법
KR20190078017A (ko) * 2017-12-26 2019-07-04 동국제약 주식회사 도네페질을 포함하는 장기지속형 미립구 및 이의 제조방법
KR102212717B1 (ko) * 2019-11-08 2021-02-08 환인제약 주식회사 지속 방출을 위한 마이크로스피어 및 이의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI95572C (fi) 1987-06-22 1996-02-26 Eisai Co Ltd Menetelmä lääkeaineena käyttökelpoisen piperidiinijohdannaisten tai sen farmaseuttisen suolan valmistamiseksi

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160070191A (ko) * 2013-11-06 2016-06-17 스템센트알엑스 인코포레이티드 신규한 항-클라우딘 항체 및 사용 방법
KR20180088445A (ko) * 2015-12-04 2018-08-03 애브비 스템센트알엑스 엘엘씨 신규한 항-클라우딘 항체 및 사용 방법
KR20190064526A (ko) * 2017-11-30 2019-06-10 주식회사 지투지바이오 도네페질을 함유하는 서방성 주사제제 및 그 제조방법
KR20190078017A (ko) * 2017-12-26 2019-07-04 동국제약 주식회사 도네페질을 포함하는 장기지속형 미립구 및 이의 제조방법
KR102212717B1 (ko) * 2019-11-08 2021-02-08 환인제약 주식회사 지속 방출을 위한 마이크로스피어 및 이의 제조 방법

Also Published As

Publication number Publication date
CA3231101A1 (en) 2023-02-09
KR102451185B1 (ko) 2022-10-07

Similar Documents

Publication Publication Date Title
WO2014163400A1 (ko) 도네페질을 포함하는 비경구투여용 약제학적 조성물
WO2021010719A1 (ko) 리바스티그민을 포함하는 장기지속형 제제 및 이의 제조방법
WO2010024615A2 (ko) 용매교류증발법에 의한 서방출성 미립구의 제조방법
WO2013015578A1 (en) Sustained release tablet comprising pregabalin through two-phase release-controlling system
WO2011120281A1 (zh) 左旋奥拉西坦在制备预防或治疗认知功能障碍药物中的应用
WO2021162532A2 (ko) Glp-1 유사체, 또는 이의 약학적으로 허용가능한 염을 포함하는 서방형 미립구를 포함하는 약학적 조성물
WO2021091333A1 (ko) 지속 방출을 위한 마이크로스피어 및 이의 제조 방법
WO2019108021A2 (ko) 토파시티닙을 포함하는 약제학적 조성물
WO2023014175A1 (ko) 도네페질 함유 지속방출형 미립구
WO2022005216A1 (ko) 인지질을 함유하는 약물-점토광물 복합체 및 이를 포함하는 경구투여용 조성물
WO2018124700A1 (ko) 벤즈이미다졸 유도체를 포함하는 신규한 제제
WO2021133051A1 (ko) 로피니롤을 포함하는 마이크로스피어 및 이를 함유하는 주사제 조성물
WO2020050677A1 (ko) 안정성이 향상된 의약 조성물
WO2022119300A1 (ko) 안정성 및 생체이용율이 개선된 올라파립 고체 분산체 조성물
WO2023249461A1 (ko) 도네페질과 파모산을 함유하는 서방성 미립구
WO2022035003A1 (ko) 두타스테리드를 포함하는 약학적 조성물
WO2019107989A1 (ko) 피마살탄을 포함하는 고체 분산체
WO2021261926A1 (ko) 치매치료를 위한 장기지속형 주사제
WO2023085503A1 (ko) 고용량 바레니클린을 포함하는 미립구 및 이의 제조방법 및 이를 포함하는 약학적 조성물
WO2011031100A2 (en) Aripiprazole-bentonite-aea hybrid, pharmaceutical composition containing the same and method for preparing the same
WO2018190451A1 (ko) 안지오텐신 수용체 길항제를 포함하는 약제학적 조성물
WO2023249464A1 (ko) 약물과 파모산을 함유하는 서방성 미립구
WO2021242021A1 (ko) 글루카곤 유사 펩타이드 1 작용제 함유 제어방출 미립구 및 이의 제조방법
WO2023249465A1 (ko) 엔테카비르를 포함하는 장기지속성 미립구 제제 및 이의 제조방법
WO2019013583A2 (ko) 약제학적 제제 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3231101

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2022853550

Country of ref document: EP

Effective date: 20240305