WO2023013660A1 - 気圧調整が容易な露光用ペリクル - Google Patents

気圧調整が容易な露光用ペリクル Download PDF

Info

Publication number
WO2023013660A1
WO2023013660A1 PCT/JP2022/029726 JP2022029726W WO2023013660A1 WO 2023013660 A1 WO2023013660 A1 WO 2023013660A1 JP 2022029726 W JP2022029726 W JP 2022029726W WO 2023013660 A1 WO2023013660 A1 WO 2023013660A1
Authority
WO
WIPO (PCT)
Prior art keywords
pellicle
filter
frame
nanofibers
pellicle frame
Prior art date
Application number
PCT/JP2022/029726
Other languages
English (en)
French (fr)
Inventor
芳宏 久保田
優 簗瀬
彩乃 竹内
晃範 西村
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to KR1020247007489A priority Critical patent/KR20240044466A/ko
Publication of WO2023013660A1 publication Critical patent/WO2023013660A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof
    • G03F1/64Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof characterised by the frames, e.g. structure or material, including bonding means therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Abstract

【課題】特にEUV露光において求められる最大許容異物サイズの低下並びにペリクル膜が曝される過酷な気圧変動に呼応すべく、ペリクルフレームを貫通して設けられる通気孔にあてがわれるフィルターの高性能化を果たす。 【解決手段】本発明のペリクルは、ペリクルフレーム3と、前記ペリクルフレームの上端面に設けられたペリクル膜1と、前記ペリクルフレームに設けられた通気孔6と、前記通気孔を塞ぐフィルター7と、を備え、前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有する。

Description

気圧調整が容易な露光用ペリクル
 本発明は、半導体や液晶などの製造に用いられる露光用マスクを異物から保護する、気圧調整が容易な露光用ペリクルに関し、特には気圧調整が容易なEUVマスク用ペリクルに関するものである。
 半導体や液晶などの製造は所謂、リソグラフィー技術を使い露光用マスク(単に「マスク」ともいう。)を用いて回路パターンを形成する。近年、特に半導体ではこの回路パターンもミクロンからサブミクロン、更にはナノへと微細化が進み、それに従って露光光源もg線(436nm)、i線(365nm)、KrFエキシマレーザー(248nm)、ArFエキシマレザー(193nm)、へと短波長化が進んでいる。最近は更に短波長のEUV(極端紫外線;13.5nm)露光も検討され、最先端デバイスには一部実用化も始まっている。
 上記の半導体、例えば、LSI、超LSIなどの製造は一般的には、ウエハーにレジストを塗布後、所望の回路パターンが描画された露光マスク共々、露光機に設置し、露光マスクに光を照射し、回路パターンをウエハーに転写する。通常、これらの操作はゴミを極力低減したクリーンルーム内で行われるが、それでもマスク作成後の移動や設置などで、人体や機器、或いは環境由来のゴミが、マスク上に付着することが多い。これらのゴミは回路パターンと共に転写されるため、異常な回路が発生し、得られた半導体は不良品となり、製造歩留まりの低下をもたらす。
 そこで、この防止策に非特許文献1の如くマスク作成後、直ちにゴミ除けのペリクルをマスク上に貼り付けることが一般的に行われている。これはペリクルを一括、マスクに貼り付けると、仮にゴミがあって飛来しても、ペリクルにより遮られ、マスクの回路パターン上にゴミは到達できず、ペリクル膜に載ってもそこはマスク面から距離があるため、露光の焦点を回路パターン上に合わせることにより、ペリクル上のゴミは「焦点ボケ」で転写されないことによる。
 ペリクルの基本構成は、通常、金属製のフレームと、その上端面に接着剤を介して張設された露光波長に対し高透明で耐光性を有するペリクル膜と、マスクに貼り付けるフレーム下端面に形成された比較的耐光性のあるアクリルやシリコーン等よりなる粘着剤層と、ペリクルがマスクに気密に装着された後のペリクルの内外気圧差を調整する、フレームに穿たれた通気孔と、通気孔の外側口を塞ぐフィルター、とから成っている。
 ペリクル膜としては、露光波長に高透過率あり、高耐光性を有し、例えばg線(436nm)にはニトロセルロース、i線(365nm)にはプロピオン酸セルロースが、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)には非晶質フッ素ポリマーが用いられている。最近は更なる微細化と共に短波長化が一層進み、EUV(極端紫外線;13.5nm)露光も使われ始めている。このペリクル膜材としてはEUV光に対し透過率性が高く、且つ、耐光性が高い材料ならば使用可能だが、実際には低価格で再現性良く均一な成膜ができることから、通常は単結晶シリコン、多結晶シリコン、非晶質シリコン、又はこれらの窒化物、酸窒化物、若しくは炭化物等が好適である。更には、これらの膜材を保護する目的で、SiC、SiO、Si、SiON、Y、YN、Mo、Ru及びRhなどの保護膜を備えてもよい。膜厚は高透過率を得るため、サブミクロン以下の上記の無機材料膜が検討され、一部は既に実用に供されている。
 これらのうち、大気圧下で使われるg線(436nm)i線(365nm)、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)等の従来型ペリクルでは、その通気孔用フィルターには一般的に、PET、PTFE等の数十μmから数百μmのファイバー径から成る不織布が使われている(特許文献1)。
特開2005-268464号公報
「電子材料」、1997年7月号、p.103
 一方、真空又は減圧下で使われ、近年実用化され始めたEUV(極端紫外線:13.5nm)露光のペリクルでは、その通気孔用フィルターとして、従来のPET、PTFE等の樹脂製や多孔質の焼結金属やセラミックス等が一部で使用されたり、或いは提案されているが、その厳しい使用条件に耐える物は無いに等しい状況であり、EUV(極端紫外線:13.5nm)露光の実用化への大きな障害となっている。即ち、従来のPET、PTFE等の樹脂製の不織布のフィルターではファイバー径が太く、圧損も高く、又、阻止すべきサブミクロン以下のゴミも容易に通過させてしまう欠点を持つ。多孔質の焼結金属やセラミックスは、ろ過孔を微細にしかも一定にすることは、作成時に孔同士の融着などが起き易く技術的な困難さを伴う。阻止すべきゴミの径よりも大きい孔や必要以上の小さい孔、或いは塞がった孔などが混在してしまい、通気時の圧損が大きく、フィルター性能も安定しない等の問題がある。
 他方、EUV露光装置は1台数百億円と特に高価な装置であり、且つ、生産には無駄で直接役立っていないが、その操作上不可欠な、マスクの出し入れ時の真空引きや大気圧戻しが、露光装置運転上のデッドタイムとなり、コストアップ要因となっている。そのため、生産コストを下げるべく、この真空引きや大気圧戻しをより高速にし、少しでもEUV露光装置の稼働率を上げることが求められている。
 しかしながら、現行のEUV露光のペリクル膜は、EUVの光耐性、光透過率や加工性の点から、サブミクロン以下の極薄単結晶シリコン、多結晶シリコン、非晶質シリコン、又はこれらの窒化物、酸窒化物、若しくは炭化物などの剛直な無機材料膜が一般的に使われており、このため、上記の真空引きや大気圧戻しを高速で行うと、急激な空気の出入りにより、合体したマスクとペリクルで閉じ込められた空間内で局部的な空気の濃淡が発生し、その内外で大きな局部的な圧力差を生じる。この圧力差に極薄で剛直なペリクル膜は追従できず、ペリクル膜が破断、飛散し、高価な露光機内を汚し、以後、露光が不可能となり、莫大な損害を生じ、EUV露光技術上の大きなネックとなっている。   
 この改善策として先行技術では、例えば特許文献1では、所謂ペリクル膜と通気孔フィルターを兼ねたマスクカバー(レチクルカバー)で回路パターンを覆い、ゴミから保護することが提案されている。確かに、この方法はフィルター面積として露光面も含み、極めて大きく取れるため、真空引きや大気圧戻しを高速で行うことは可能だが、その半面、フィルターの通気孔確保のために、ポーラスなフッ素樹脂、具体的にはPTFEが提示されているものの、EUV光は波長が極端に短い紫外線(極端紫外線:13.5nm)なので、照射されるエネルギーが極めて大きく、有機物は短時間で分解してしまう。比較的、耐光性が良いPTFEでさえも長時間のEUV光での使用に耐えられないという大きな問題を抱えている。
 そこで、本発明者らは、前記のネックと種々の問題の解決に鋭意努力した結果、本発明に至ったものである。即ち、下記のとおりである。 
[1] ペリクルフレームと、
 前記ペリクルフレームの上端面に設けられたペリクル膜と、
 前記ペリクルフレームに設けられた通気孔と、
 前記通気孔を塞ぐフィルターと、
を備え、
 前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成されるシートを有することを特徴とするペリクル。
[2] ペリクルフレームと、
 前記ペリクルフレームの上端面に設けられたペリクル膜と、
 前記ペリクルフレームに設けられた通気孔と、
 前記通気孔を塞ぐフィルターと、
を備え、
 前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有することを特徴とするペリクル。
[3] 前記フィルターは、その一部又は全部が、ナノファイバー及びカーボンナノチューブで構成される不織布を有することを特徴とする前記[2]に記載のペリクル。
[4] 前記フィルターを構成するファイバーのうち、5~70vol%が、平均ファイバー径が数μm以上ないし数百μm以下のファイバーであることを特徴とする前記[1]~[3]のいずれかに記載のペリクル。
[5] 前記フィルターは、その一部又は全部が、前記通気孔に挿入されていることを特徴とする前記[1]~[4]のいずれかに記載のペリクル。
[6] 前記通気孔は、その外側口に座繰りが設けられており、前記フィルターは、その一部又は全部が該座繰りに埋め込まれていることを特徴とする前記[1]~[5]のいずれかに記載のペリクル。
[7] 前記通気孔は、その外側口又は内側口の少なくとも一方に面取りが施されていることを特徴とする前記[1]~[6]のいずれかに記載のペリクル。
[8] 前記通気孔の開口面積の合計の割合は、前記ペリクルフレーム下端面の総面積に対して、2%以上であることを特徴とする前記[1]~[7]のいずれかに記載のペリクル。
[9] 前記通気孔の開口面積の合計の割合は、前記ペリクルフレーム下端面の総面積に対して、10%以上50%以下であることを特徴とする前記[8]に記載のペリクル。
[10] 前記フィルターは、一方の片表面からもう一方の片表面、又は両表面から中央部に向かって段階的に平均ファイバー径が小さくなるろ過精度勾配を持つことを特徴とする前記[1]~[9]のいずれかに記載のペリクル。
「ろ過精度勾配」:フィルター材のろ過精度を段階的に変えることをいう。一般的には大きい粒子から小さい粒子へ段階的に捕捉させ、急激な目詰まりを防ぐ。
[11] 前記フィルターは、平均ファイバー径が数μm以上ないし数百μm以下のファイバーを含み、一方の片表面からもう一方の片表面、又は両表面から中央部に向かって段階的に前記ファイバーの存在割合が低くなっていることを特徴とする前記[1]~[10]のいずれかに記載のペリクル。
[12] 前記フィルターは、それぞれ異なる平均ファイバー径を有するファイバーで構成される複数の不織布シートを重ねて合体したものであることを特徴とする前記[10]又は[11]に記載のペリクル。
[13] 前記ペリクル膜は、膜厚が1μm以下であり、その一部又は全部が、単結晶シリコン、多結晶シリコン、非晶質シリコン、又はこれらの窒化物、酸窒化物、若しくは炭化物より成ることを特徴とする前記[1]~[12]のいずれかに記載のペリクル。
[14] 前記ペリクル膜には、無機化合物のコーティングが施されていることを特徴とする前記[1]~[13]のいずれかに記載のペリクル。
[15] 前記無機化合物が、SiC、Si、又はYのいずれかであることを特徴とする前記[14]に記載のペリクル。
[16] 前記ナノファイバーの全部又は一部の表面は、SiC又はSiで被覆されていることを特徴とする前記[1]~[15]のいずれかに記載のペリクル。
[17] 前記ぺリクルが、EUVマスク用ペリクルであることを特徴とする前記[1]~[16]のいずれかに記載のペリクル。
[18] ペリクルフレームと、
 前記ペリクルフレームに設けられた通気孔と、
 前記通気孔を塞ぐフィルターと、
を備え、
 前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成されるシートを有することを特徴とするフィルター付ペリクルフレーム。
[19] ペリクルフレームと、
 前記ペリクルフレームに設けられた通気孔と、
 前記通気孔を塞ぐフィルターと、
を備え、
 前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有することを特徴とするフィルター付ペリクルフレーム。
[20] 前記[1]~[17]のいずれかに記載のペリクルを露光マスクに装着してなることを特徴とするペリクル付き露光マスク。
[21] 前記[1]~[17]のいずれかに記載のペリクルの製造方法であって、エレクトロスピニング法を用いて前記ナノファイバーを作成する工程を備えることを特徴とするペリクルの製造方法。
[22] 前記[20]に記載のペリクル付き露光マスクを用いて露光することを特徴とする露光方法。
[23] 前記[20]に記載のペリクル付き露光マスクによって露光する工程を備えることを特徴とする半導体装置の製造方法。
 本発明によれば、通常の各種ペリクルは勿論のこと、就中、超微細なパターンを転写する最先端EUV露光機へのマスクの出入りの際の真空引きや大気圧戻しを、より高速に行うことができ、高価な露光装置の稼働率を上げ、生産性コストを大きく下げることが可能となる。
本発明の一実施形態におけるペリクル付き露光マスクの縦断面構造を示す概略図である。
 以下、本発明を実施するための形態を図面と共に詳細に説明する。
 図1に示すように、本発明のペリクル10は、ペリクルフレーム3と、ペリクルフレーム3の上端面に接着剤層2を介して設けられた極薄のペリクル膜1と、ペリクルフレーム3に設けられた少なくとも1つの通気孔7、とを含んでいる。通気孔は、一部又は全部がナノファイバー又はカーボンナノチューブ(CNT)の少なくとも一方で構成される不織布を有する異物侵入防止用のフィルター7で塞がれている。図1では、フィルター7は通気孔6の外側口の外部にあるが、その一部又は全体が通気孔6に挿入された態様を除外するものではない。また通気孔6の外側口に、フィルター7の一部又は全体を埋め込む座繰りを設けたものや、ペリクルフレーム3周縁部からの発塵低下に加え、フィルター7と通気孔6周縁部の接触に際しての発塵を防ぐため、通気孔6の外側口又は内側口の少なくとも一方に面取りがあるものも可能であり、ペリクルフレーム3は、マスク5の形状に対応して枠状(通常、四角形状)である。
 上記不織布は、JIS L-0222:2001に記載されるように「繊維シート,ウェブ又はバットで,繊維が一方向又はランダムに配向しており,交絡,及び/又は融着,及び/又は接着によって繊維間が結合されたもの。ただし,紙,織物,編物,タフト及び縮じゅう(絨)フェルトを除く。」を意味する。なお、本発明において、上記フィルターは必ずしも不織布である必要はなく、シートであればよい。上記シートは一部又は全部がナノファイバー又はカーボンナノチューブ(CNT)の少なくとも一方がシート状に構成され、ナノファイバー又はカーボンナノチューブ(CNT)が絡み合った状態であることが好ましい。
 ペリクル膜1は、極薄のシリコン製であり、単結晶シリコン、多結晶シリコン、非晶質シリコン、又はこれらの窒化物、酸窒化物、若しくは炭化物より成る。これは種々の金属、無機化合物と比較して各種の結晶形状や化合物の薄膜が比較的強度が高いこと、そして高純度膜が容易且つ、経済的に作成できること、などの理由から選ばれるものである。また、グラフェン、ダイヤモンドライクカーボン、カーボンナノチューブ等の炭素膜もEUV露光用としては有効である。なお、これらのペリクル膜1に対し、割れや腐食の防止などを目的に、SiC、Si、Y等の各種無機化合物のコーティングを施すことは好適である。ペリクル膜単独での取り扱いが難しい場合は、シリコン等の枠に支えられたペリクル膜を用いることができる。その場合、枠の領域とペリクルフレームを接着することにより、ペリクルを容易に製造することができる。
 ペリクル膜1の膜厚は1μmを超えると露光光の透過量が不充分となるため、1μm以下が好ましく、100nm~1μmがより好ましい。
 本発明において、ペリクルフレームに設けられた通気孔6は前記の如く、一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方(ナノファイバー及びカーボンナノチューブの両方の場合を含む。)で構成される不織布を有する異物侵入防止用のフィルター7で塞がれる。これは先にも述べたように、従来の不織布のフィルターでは、近年のサブミクロン~数nmの超高精細、高微細な回路パターンで問題になるゴミ等の異物は最早、除去不能である。一方、多孔質の焼結金属やセラミックスのフィルターはその焼成時に孔径分布の調整や孔の塞がり、或いは厚み調整等が難しく、圧損が高くなったり、再現性が出なかったり、等の問題が発生することなどによる。なお、前記通気孔の配置・数・形状は特に限定されず、種々の態様をとりうる。
 通気孔は、ペリクルの外側の空間と内側の空間をつなぐように設けることが好ましい。図1のような、ペリクルフレームの外側面から内側面に向けて貫通して設けられた通気孔は製造するのが容易である。一方で、外側面と内側面を貫通する通気孔ではなく、ペリクルフレームの外側面から内側面の方向へ延びた貫通孔の向きを途中でペリクルフレームの上端面又は下端面の方向へ曲げて、ペリクルフレームの上端面又は下端面に開口を設けてもよい。また、ペリクルフレームの内側面から外側面の方向へ延びた貫通孔の向きを途中でペリクルフレームの上端面又は下端面の方向へ曲げて、ペリクルフレームの上端面又は下端面に開口を設けることもできる。このように、途中で方向を変えた通気孔は上端面又は下端面の開口面積を広く設計することが容易であり、ペリクルの高さが約2.5mm以下という制限を有するEUV露光用のペリクル等の薄型ペリクルにおいて有効な技術となる。
 しかしながら、本発明のように、一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有する異物侵入防止用のフィルター7で通気孔6を塞ぐことにより、上記の問題が解決し、これまでのペリクルは勿論のこと、最先端の超微細化されたマスク、とりわけEUVマスク用ペリクルにも好適である。即ち、サブミクロン~数nmの異物が、本発明で採用するこのフィルターで高効率に捕集されるため、更にフィルターを薄くできる上に、加えて極細ファイバー径ゆえ、空気やガスの出入り時の圧損も低下する等の相乗効果により、マスクの出し入れ時の真空引きや大気圧戻しを、より高速化することが可能となる。これらの結果、露光装置運転上のデッドタイムも短縮化が可能となり、露光装置の稼働率が上がり、生産コストを下げることが可能となる。
 この際の通気孔6の全開口面積は、開口の一方をペリクルフレームの上端面又は下端面にした場合、開口を有するペリクルフレーム端面の総面積の2%以上が好ましいが、より高速な真空引きや大気圧戻しを可能とするには10%以上がより好ましく、更なる生産コストの低下が可能となる。但し、全通気孔の合計開口面積の上限はペリクルフレームの強度に依存し、あまり大きくすると、ペリクルフレームの変形が起き、その結果、回路パターンも歪むため、好ましくない。したがって、合計開口面積の上限はペリクルフレームの種類によって決定するのがよいが、高強度のペリクルフレームの加工の難度により、どんな種類でも50%を超えると加工費アップをサポートできる合理性を失いやすい。したがって、合計開口面積は50%以下であることが好ましく、45%以下であることがより好ましく、35%以下であること特に好ましい。ここで、この全開口面積は、開口を有するペリクルフレーム端面の総面積に対する前記端面に設けられた全開口の面積の割合を意味する。
 なお、通常の不織布の製造法には一般に延伸法で作成されたファイバーが使われるが、その平均ファイバー径は数μm以上と太く、また、各々のファイバー径も延伸力依存で細くなったり、太くなったりして広い分布となるため、異物の捕捉率や強度が一定しない。それ故、本発明におけるナノファイバーには不適で使用できない。そのため、本発明においては、ナノファイバーは所謂、これらが比較的一定となるエレクトロスピンニング法で作成したものが最適であり、エレクトロスピンニング法及び/又は周知のCNTの製法で作られる不織布が最適である。エレクトロスピンニング法は、周知のように、シリンジ中にナノファイバーの原料である高分子溶液を流し入れた後に、高電圧を与え高分子溶液を帯電させ、静電爆発を起こすことでナノファイバーを作成する方法である。該方法を行う際の条件は、特に限定されず、高分子材料の種類等に応じて適宜設定すればよい。
 前記ナノファイバーの材質は、特に限定されず、例えば、有機高分子(ポリプロピレン、ポリエステル、ポリカルボシラン、ポリエチレン、ナイロン、ポリアセテート、ポリアクリル、ポリスチレン、ポリ塩化ビニルなど)、無機高分子(シリカ、アルミナ、チタニア、ジルコニアなど)、天然高分子化合物(セルロース、キチンなど)、炭素材料などが挙げられる。なお、本明細書において、「ナノファイバー」とは、平均ファイバー径がナノオーダーである繊維状物質をいう。
 本発明において、ナノファイバー及びカーボンナノチューブの平均ファイバー径(直径)は更に限定するものではないが、通常、1μm以下で10~950nmの範囲が好適である。これは10nm未満のファイバーは余りにも強度が弱く、取り扱いが難しいこと、また、950nm以上では昨今の問題になっているナノオーダーの異物の除去が困難であることによる。
 また、本発明では、フィルターの全てのファイバーをナノファイバー及び/又はカーボンナノチューブとするよりも、真空引きや大気圧戻しを高速化した時の風圧に耐えるように強度アップのために数μm以上ないし数百μm以下(例えば、1μmから300μm程度)のファイバーを意図的に、フィルターを構成するファイバーのうち、5~70vol%だけ混在させるのが好ましい。これは数μm以上ないし数百μm以下のファイバーが5vol%未満では強度が低目になり、あまり高速化ができず、また、70vol%超では強度は高くても、サブミクロン以下の微細な異物の捕集率が低下し始めるためである。
 本発明において、ナノファイバー、特には無機系のシリカナノファイバーやCNTは、表面が脆く活性なため、雰囲気ガスによっては消失や破損し易いので、これらの表面をSiCやSi等で被覆して少し改質してもよい。
 また、本発明においては、前記フィルターは、一方の片表面からもう一方の片表面、又は両表面から中央部に向かって段階的に平均ファイバー径が小さくなるろ過精度勾配を持つことが好ましい。このように、ろ過精度勾配を形成するとフィルターの強度を向上させると共に異物捕集率はより高く、しかも圧損も小さくできる。その結果、マスクの出入り時の真空引きや大気圧戻しの、より高速化が可能となる。更に好ましい形態は、フィルターの不織布を片表面からもう一方の表面、又は両表面から中央部に向かってナノファイバーと数μm以上ないし数百μm以下の太いファイバーとの混入比率を段階的に平均ファイバー径を小さくするように変えて、ろ過精度勾配を持たせることが好ましい。これは、ナノファイバーのみで構成される不織布は、異物捕集率は高くてもフィルター強度が弱く、直ぐに破れ長期の使用に耐えないことがあるからである。
 更に加えるに、ナノファイバーと数μm以上ないし数百μm以下の太いファイバーとの混入の際の太いファイバーは曲げ強度も有り、柔軟性を持ったポリプロピレン、ポリエステル、ポリカルボシラン等の高分子系ファイバーが好適である。これは、これらのファイバーがあたかも鉄筋コンクリートの鉄筋の如き役割を担い、混在するナノファイバー及びフィルター全体が高速の真空引きや大気圧戻し時の風圧により破壊されるのを防ぐことができるからである。
 ろ過精度勾配を段階的に有したフィルターを作成する方法としては、それぞれ異なる平均ファイバー径を有するファイバーで構成される複数の不織布シートから、所望の勾配が達成されるように適宜選択して重ね、合体することにより得られる。重ねた後、側面に接着剤を塗布すると分散を防ぐことができる。座繰りに埋め込む場合は、座繰りの側面に接着剤を塗布することが好ましい。
 このように作成されたフィルターを、ペリクルフレームに穿たれた通気孔を塞ぐように装着する方法は、従来のフィルターの場合と変わらない。例えば、通気孔の外側口の周りに、フィルターの形状に合わせて、方形枠状、リング状等に接着剤を塗布し、これにフィルターを貼着させる。座繰りがある場合は、接着剤を座繰りの側面に塗布すると、フィルターの固定とフィルターの分散防止がなされる。
 本発明のペリクルをマスクに装着する方法を図1を用いて説明する。ペリクルフレーム3の下端面にはペリクル10をフォトマスク5に装着するための粘着剤層4が形成されている。更に粘着剤層4の下端面には、粘着面を保護するためのライナー(図示せず)が設けられている。ペリクル10をフォトマスク5に装着する時は、このライナーを外し、粘着剤層4を露出させてフォトマスク5に貼り付け使用する。
 以下に本発明を実施例及び比較例を示して具体的に説明するが、本発明の範囲がこれに制限されるものではない。
[実施例1]
 現行品フィルターで使用されている平均ファイバー径5μmのポリプロピレン・ファイバーにエレクトロスピンニング法で作成した平均ファイバー径0.3μmのシリカ・ナノファイバーを混ぜ合わせ、厚み500μmの不織布フィルターであって、その両端面で平均ファイバー径が0.95μm、中央部の平均ファイバー径が0.35μmの「ろ過精度勾配」を持った不織布フィルターを28個作った。なお、平均ファイバー径はSEM像より算出した。
 次に、図1に示したように、この不織布フィルター7で、厚さ0.1μmのp-Si(ポリシリコン)製ペリクル膜1が張設されたペリクルフレーム3の通気孔6、計28個(全開口面積=450mm;ペリクルフレーム下端面総面積の21%)を1つずつ塞いだ後に、このペリクル10を露光マスク5に粘着剤層4を介して貼った。
 その後、この露光マスクを模擬EUV装置に装着して、NaClを微粒子生成アトマイザーで処理してNaCl微粒子を発生させ、静電分級器を用いて0.01~0.5μmのNaCl微粒子に分級し、疑似異物雰囲気とした。この疑似異物雰囲気を模擬EUV装置内に導入しつつ、マスクの出し入れを想定した真空引きや大気圧戻しのシミュレーション実験を実施した。真空引き後、大気圧戻しの際の異物捕捉率と差圧を測定して、上記不織布フィルターの概略評価とした。
 その結果、異物捕捉率は0.01~0.5μmの微粒子についてすべて100%であった。差圧は線速0.15cm/sで0.5Paであった。また、p-Siペリクル膜は圧力変化によるショックに対して破損することなく十分耐えられるものであった。
[比較例1]
 現行品フィルターによる比較例として、上記実施例1の平均ファイバー径5μmのポリプロピレン・ファイバーのみで構成され、厚み500μm全体にわたってろ過精度勾配が無く、厚み方向に均一な不織布フィルターを28個作成した。
 その後、実施例1と同一装置、同条件で同じくペリクルフレームのフィルターに上記不織布フィルターを使用し、真空引き後、大気圧戻しの際の異物捕捉率と差圧を測定し、上記不織布フィルターの評価を行った。
 その結果、異物捕捉率は、0.01μm近傍の微粒子についての異物捕捉率は94.0%、0.05μm近傍の異物捕捉率は93.5%、0.10μm近傍の異物捕捉率は94.8%、0.5μm近傍の異物捕捉率は95.3%であった。差圧は線速0.15cm/sで20.5Paであったが、途中、差圧が大きすぎたため、極薄のp-Siペリクル膜が破裂してしまい、現行のフィルターは、この模擬EUV装置には不適切であることが分かった。
[実施例2]
 平均ファイバー径3μmのポリエステル・ファイバーのみを50μm積層し、片端面とした。この片端面上に平均ファイバー径35nm(0.035μm)のカーボンナノチューブ(CNT)と上記の平均ファイバー径3μmのポリエステル・ファイバーとを、両者の混入度を徐々に変化させつつ、400μm積層し、更に平均ファイバー径35nmのCNTのみで50μm厚みを積み、もう一方の端面とし、ろ過精度勾配を中間部に有する不織布フィルターを28個作成した。更にこの不織布フィルターで、図1に示すように、0.1μmのp-Si膜ペリクル膜1が張設されたペリクルフレーム3の通気孔6、計28個(全開口面積=321mm;ペリクルフレーム下端面総面積の15%に相当)を塞いだ後に、このペリクル10を露光マスク5に粘着剤層4を介し貼った。
 その後、実施例1と同じ装置、同一条件で上記不織布フィルターの評価を行った。
 その結果、異物捕捉率は0.01~0.5μmですべて100%、差圧は線速0.15cm/sで0.2Paであり、p-Siペリクル膜は差圧による損傷は被らず、露光マスクの出し入れ時の真空引き、大気圧戻しには十分耐えるものであった。
1   ペリクル膜
2   接着剤層
3   ペリクルフレーム
4   粘着剤層
5   フォトマスク
6   通気孔
7   フィルター
10  ペリクル
 

Claims (23)

  1.  ペリクルフレームと、
     前記ペリクルフレームの上端面に設けられたペリクル膜と、
     前記ペリクルフレームに設けられた通気孔と、
     前記通気孔を塞ぐフィルターと、
    を備え、
     前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成されるシートを有することを特徴とするペリクル。
  2.  ペリクルフレームと、
     前記ペリクルフレームの上端面に設けられたペリクル膜と、
     前記ペリクルフレームに設けられた通気孔と、
     前記通気孔を塞ぐフィルターと、
    を備え、
     前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有することを特徴とするペリクル。
  3.  前記フィルターは、その一部又は全部が、ナノファイバー及びカーボンナノチューブで構成される不織布を有することを特徴とする請求項2に記載のペリクル。
  4.  前記フィルターを構成するファイバーのうち、5~70vol%が、平均ファイバー径が数μm以上ないし数百μm以下のファイバーであることを特徴とする請求項1~3のいずれか1項に記載のペリクル。
  5.  前記フィルターは、その一部又は全部が、前記通気孔に挿入されていることを特徴とする請求項1~4のいずれか1項に記載のペリクル。
  6.  前記通気孔は、その外側口に座繰りが設けられており、前記フィルターは、その一部又は全部が該座繰りに埋め込まれていることを特徴とする請求項1~5のいずれか1項に記載のペリクル。
  7.  前記通気孔は、その外側口又は内側口の少なくとも一方に面取りが施されていることを特徴とする請求項1~6のいずれか1項に記載のペリクル。
  8.  前記通気孔の開口面積の合計の割合は、前記ペリクルフレーム下端面の総面積に対して、2%以上であることを特徴とする請求項1~7のいずれか1項に記載のペリクル。
  9.  前記通気孔の開口面積の合計の割合は、前記ペリクルフレーム下端面の総面積に対して、10%以上50%以下であることを特徴とする請求項8に記載のペリクル。
  10.  前記フィルターは、一方の片表面からもう一方の片表面、又は両表面から中央部に向かって段階的に平均ファイバー径が小さくなるろ過精度勾配を持つことを特徴とする請求項1~9のいずれか1項に記載のペリクル。
  11.  前記フィルターは、平均ファイバー径が数μm以上ないし数百μm以下のファイバーを含み、一方の片表面からもう一方の片表面、又は両表面から中央部に向かって段階的に前記ファイバーの存在割合が低くなっていることを特徴とする請求項1~10のいずれか1項に記載のペリクル。
  12.  前記フィルターは、それぞれ異なる平均ファイバー径を有するファイバーで構成される複数の不織布シートを重ねて合体したものであることを特徴とする請求項10又は11に記載のペリクル。
  13.  前記ペリクル膜は、膜厚が1μm以下であり、その一部又は全部が、単結晶シリコン、多結晶シリコン、非晶質シリコン、又はこれらの窒化物、酸窒化物、若しくは炭化物より成ることを特徴とする請求項1~12のいずれか1項に記載のペリクル。
  14.  前記ペリクル膜には、無機化合物のコーティングが施されていることを特徴とする請求項1~13のいずれか1項に記載のペリクル。
  15.  前記無機化合物が、SiC、Si、又はYのいずれかであることを特徴とする請求項14に記載のペリクル。
  16.  前記ナノファイバーの全部又は一部の表面は、SiC又はSiで被覆されていることを特徴とする請求項1~15のいずれか1項に記載のペリクル。
  17.  前記ぺリクルが、EUVマスク用ペリクルであることを特徴とする請求項1~16のいずれか1項に記載のペリクル。
  18.  ペリクルフレームと、
     前記ペリクルフレームに設けられた通気孔と、
     前記通気孔を塞ぐフィルターと、
    を備え、
     前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成されるシートを有することを特徴とするフィルター付ペリクルフレーム。
  19.  ペリクルフレームと、
     前記ペリクルフレームに設けられた通気孔と、
     前記通気孔を塞ぐフィルターと、
    を備え、
     前記フィルターは、その一部又は全部が、ナノファイバー又はカーボンナノチューブの少なくとも一方で構成される不織布を有することを特徴とするフィルター付ペリクルフレーム。
  20.  請求項1~17のいずれか1項に記載のペリクルを露光マスクに装着してなることを特徴とするペリクル付き露光マスク。
  21.  請求項1~17のいずれか1項に記載のペリクルの製造方法であって、エレクトロスピニング法を用いて前記ナノファイバーを作成する工程を備えることを特徴とするペリクルの製造方法。
  22.  請求項20に記載のペリクル付き露光マスクを用いて露光することを特徴とする露光方法。
  23.  請求項20に記載のペリクル付き露光マスクによって露光する工程を備えることを特徴とする半導体装置の製造方法。
     
PCT/JP2022/029726 2021-06-15 2022-08-03 気圧調整が容易な露光用ペリクル WO2023013660A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247007489A KR20240044466A (ko) 2021-06-15 2022-08-03 기압 조정이 용이한 노광용 펠리클

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021099551 2021-06-15
JP2021128949A JP2022191120A (ja) 2021-06-15 2021-08-05 気圧調整が容易な露光用ペリクル
JP2021-128949 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013660A1 true WO2023013660A1 (ja) 2023-02-09

Family

ID=84612672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029726 WO2023013660A1 (ja) 2021-06-15 2022-08-03 気圧調整が容易な露光用ペリクル

Country Status (4)

Country Link
JP (1) JP2022191120A (ja)
KR (1) KR20240044466A (ja)
TW (1) TW202318099A (ja)
WO (1) WO2023013660A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268464A (ja) 2004-03-18 2005-09-29 Canon Inc レチクルカバーおよび露光装置
JP2007322779A (ja) * 2006-06-01 2007-12-13 Nitto Denko Corp 防眩性ハードコートフィルム、偏光板及びそれを用いた液晶表示装置
JP2010019151A (ja) * 2008-07-10 2010-01-28 Nifco Inc 燃料用フィルタ
JP2012062894A (ja) * 2011-10-18 2012-03-29 Nifco Inc 燃料用フィルタ装置
JP2016151642A (ja) * 2015-02-17 2016-08-22 三井化学株式会社 ペリクル膜の製造方法、ペリクルの製造方法、およびフォトマスクの製造方法
WO2018008594A1 (ja) * 2016-07-05 2018-01-11 三井化学株式会社 ペリクル膜、ペリクル枠体、ペリクル、その製造方法、露光原版、露光装置、半導体装置の製造方法
WO2019172170A1 (ja) * 2018-03-09 2019-09-12 株式会社カネカ グラファイト薄膜を含むペリクル
WO2019240166A1 (ja) * 2018-06-12 2019-12-19 三井化学株式会社 ペリクル用支持枠、ペリクル及びペリクル用支持枠の製造方法、並びにペリクルを用いた露光原版及び露光装置
KR20210002185A (ko) * 2019-06-27 2021-01-07 주식회사 에프에스티 펠리클용 벤트 필터 및 이를 포함하는 펠리클

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268464A (ja) 2004-03-18 2005-09-29 Canon Inc レチクルカバーおよび露光装置
JP2007322779A (ja) * 2006-06-01 2007-12-13 Nitto Denko Corp 防眩性ハードコートフィルム、偏光板及びそれを用いた液晶表示装置
JP2010019151A (ja) * 2008-07-10 2010-01-28 Nifco Inc 燃料用フィルタ
JP2012062894A (ja) * 2011-10-18 2012-03-29 Nifco Inc 燃料用フィルタ装置
JP2016151642A (ja) * 2015-02-17 2016-08-22 三井化学株式会社 ペリクル膜の製造方法、ペリクルの製造方法、およびフォトマスクの製造方法
WO2018008594A1 (ja) * 2016-07-05 2018-01-11 三井化学株式会社 ペリクル膜、ペリクル枠体、ペリクル、その製造方法、露光原版、露光装置、半導体装置の製造方法
WO2019172170A1 (ja) * 2018-03-09 2019-09-12 株式会社カネカ グラファイト薄膜を含むペリクル
WO2019240166A1 (ja) * 2018-06-12 2019-12-19 三井化学株式会社 ペリクル用支持枠、ペリクル及びペリクル用支持枠の製造方法、並びにペリクルを用いた露光原版及び露光装置
KR20210002185A (ko) * 2019-06-27 2021-01-07 주식회사 에프에스티 펠리클용 벤트 필터 및 이를 포함하는 펠리클

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTRONIC MATERIALS, July 1997 (1997-07-01), pages 103

Also Published As

Publication number Publication date
TW202318099A (zh) 2023-05-01
JP2022191120A (ja) 2022-12-27
KR20240044466A (ko) 2024-04-04

Similar Documents

Publication Publication Date Title
CN109416503B (zh) 防护膜、防护膜组件框体、防护膜组件、其制造方法、曝光原版、曝光装置、半导体装置的制造方法
US7153615B2 (en) Extreme ultraviolet pellicle using a thin film and supportive mesh
US8431034B2 (en) Manufacturing of nanopores
JP2001133960A (ja) リソグラフィー用ペリクル及びペリクルの使用方法
WO2023013660A1 (ja) 気圧調整が容易な露光用ペリクル
JP2005316492A (ja) モノリシック・ハード・ペリクル
WO2023027051A1 (ja) 高速で気圧調整が可能な露光用ペリクル
TW202212961A (zh) 用於微影裝置之護膜薄膜
CN117980819A (zh) 容易进行气压调整的曝光用防护膜
KR20240054318A (ko) 고속으로 기압 조정이 가능한 노광용 펠리클
TWI825480B (zh) 用於euv微影蝕刻之超薄且超低密度的薄膜
TWI485510B (zh) 微影用防塵薄膜組件
CN115032861A (zh) 防护组件及形成倍缩光罩组件及增加防护薄膜寿命的方法
KR20110053914A (ko) 리소그래피용 펠리클
EP4152094A1 (en) Pellicle frame, pellicle, pellicle-attached exposure original plate, method for manufacturing semiconductor, method for manufacturing liquid crystal display plate, and exposure method
KR102512243B1 (ko) 극자외선 리소그라피용 다공성 펠리클 프레임
EP4300189A1 (en) Pellicle, original plate for light exposure, light exposure device, method for producing pellicle, and method for producing semiconductor device
WO2022030498A1 (ja) ペリクル、露光原版、露光装置、ペリクルの製造方法及び半導体装置の製造方法
TW202405580A (zh) 用於euv微影蝕刻之超薄且超低密度的薄膜
JP2023069412A (ja) Euvリソグラフィ用ペリクル
TW202411783A (zh) 用於euv微影之增強的超薄且超低密度薄膜及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022853079

Country of ref document: EP

Effective date: 20240305