WO2023013549A1 - キサンテン化合物、樹脂組成物、硬化物、硬化物の製造方法、有機el表示装置および表示装置 - Google Patents

キサンテン化合物、樹脂組成物、硬化物、硬化物の製造方法、有機el表示装置および表示装置 Download PDF

Info

Publication number
WO2023013549A1
WO2023013549A1 PCT/JP2022/029310 JP2022029310W WO2023013549A1 WO 2023013549 A1 WO2023013549 A1 WO 2023013549A1 JP 2022029310 W JP2022029310 W JP 2022029310W WO 2023013549 A1 WO2023013549 A1 WO 2023013549A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin composition
organic
group
cured product
Prior art date
Application number
PCT/JP2022/029310
Other languages
English (en)
French (fr)
Inventor
小森悠佑
西岡拓紀
三好一登
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020237039469A priority Critical patent/KR20240044383A/ko
Priority to US18/571,832 priority patent/US20240248396A1/en
Priority to JP2022552772A priority patent/JP7544136B2/ja
Priority to CN202280042306.6A priority patent/CN117480218A/zh
Publication of WO2023013549A1 publication Critical patent/WO2023013549A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • C07D311/84Xanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D311/88Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/28Pyronines ; Xanthon, thioxanthon, selenoxanthan, telluroxanthon dyes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0046Photosensitive materials with perfluoro compounds, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/105Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having substances, e.g. indicators, for forming visible images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • G09F9/335Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes being organic light emitting diodes [OLED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers

Definitions

  • the present invention relates to a xanthene compound, a resin composition using the xanthene compound, and an organic EL display device using the resin composition.
  • an organic EL display device has a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer and a second electrode on a substrate, and a voltage is applied between the first electrode and the second electrode facing each other. can be applied to emit light.
  • a photosensitive resin composition that can be patterned by ultraviolet irradiation is generally used as the flattening layer material and the insulating layer material.
  • a photosensitive resin composition using a polyimide-based resin has high heat resistance of the resin and little gas component generated from the cured product, so that it is preferably used in terms of obtaining a highly reliable organic EL display device. ing.
  • carbon black, organic/inorganic pigments, and dyes are added to the resin composition, as seen in black matrix materials for liquid crystal display devices and RGB paste materials.
  • a method of adding a coloring agent such as
  • Techniques for increasing the blackness of a cured product in a positive photosensitive resin composition include, for example, a method of adding a quinonediazide compound and a black pigment to an alkali-soluble resin composed of a novolak resin and/or a vinyl polymer (see Patent Document 1); A method of adding a photosensitizer and a black pigment to a soluble polyimide (see Patent Document 2), and a method of adding a photosensitizer and yellow, red, and blue dyes and/or pigments to an alkali-soluble resin composed of a polyimide and/or a polyimide precursor. (see Patent Document 3), and the like. Further, xanthene compounds, for example, are known as dyes having high heat resistance and a large molar extinction coefficient (see Patent Documents 4 and 5).
  • conventional xanthene compounds have high heat resistance, they have a maximum absorption wavelength around 550 nm and do not have sufficient light shielding properties, especially in the long wavelength region of visible light.
  • a 1 to A 4 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms which may have an electron-donating substituent. However, at least three of A 1 to A 4 are aryl groups having 6 to 10 carbon atoms which may have the electron donating substituent, and carbon atoms which may have the electron donating substituent At least one of the aryl groups of numbers 6 to 10 has an electron-donating substituent, and R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, —SO 3 H, —SO 3 ⁇ , —SO 3 NR 6 R 7 , —COOH, —COO ⁇ , —COOR 8 , —CONR 9 R 10 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, R 5 represents a hydrogen atom; —SO 3 H, —SO 3 — ,
  • R 6 to R 10 each independently represent a carbon atom Represents a monovalent hydrocarbon group of numbers 1 to 20.
  • Z represents an anion compound
  • n represents 0 or 1.
  • the xanthene compound (b) represented by formula (1) has a charge as a whole shall be neutral to [2]
  • [3] The xanthene compound (b) according to the above [1] or [2], wherein n is 0 in the formula (1).
  • n 1 and Z is an aliphatic or aromatic sulfonate ion.
  • a resin composition comprising the xanthene compound (b) according to any one of [1] to [4] above and an alkali-soluble resin (a).
  • the alkali-soluble resin (a) is one or more selected from the group consisting of polyimides, polyimide precursors, polybenzoxazoles, polybenzoxazole precursors, polyamideimides, polyamideimide precursors and copolymers thereof.
  • the resin composition according to . [12] A cured product obtained by curing the resin composition according to any one of [5] to [10] above.
  • a 1 to A 4 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms which may have an electron-donating substituent. However, at least three of A 1 to A 4 are aryl groups having 6 to 10 carbon atoms which may have the electron donating substituent, and carbon atoms which may have the electron donating substituent At least one of the aryl groups of numbers 6 to 10 has an electron-donating substituent, and R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, —SO 3 H, —SO 3 ⁇ , —SO 3 NR 6 R 7 , —COOH, —COO ⁇ , —COOR 8 , —CONR 9 R 10 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, R 5 represents a hydrogen atom; —SO 3 H, —SO 3 — ,
  • R 6 to R 10 each independently represent a carbon atom represents a monovalent hydrocarbon group of numbers 1 to 20.
  • the xanthene compound (b') represented by formula (2) shall be neutral or cationic in charge.
  • the photomask used during exposure is a halftone photomask having a light-transmitting portion, a light-shielding portion, and a semi-light-transmitting portion, and the light-transmitting portion has a transmittance of 100%.
  • An organic EL display device having a drive circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer, and a second electrode on a substrate, wherein the planarizing layer and/or the insulating layer are the above [ 12] or an organic EL display device having the cured product according to [13].
  • the organic EL display device according to [16] wherein the insulating layer contains the cured product, and the insulating layer has an optical density of 0.5 to 1.5 in visible light per 1 ⁇ m of film thickness.
  • a display device comprising at least metal wiring, the cured product of [12] or [13] above, and a plurality of light-emitting elements, wherein the light-emitting elements each have a pair of electrode terminals on one surface. and the pair of electrode terminals are connected to the plurality of metal wires extending in the cured product, and the plurality of metal wires are configured to maintain electrical insulation due to the cured product.
  • Device comprising at least metal wiring, the cured product of [12] or [13] above, and a plurality of light-emitting elements, wherein the light-emitting elements each have a pair of electrode terminals on one surface. and the pair of electrode terminals are connected to the plurality of metal wires extending in the cured product, and the plurality of metal wires are configured to maintain electrical insulation due to the cured product.
  • xanthene compound that has high heat resistance and is capable of blocking light up to the long wavelength region of visible light compared to conventional xanthene compounds.
  • FIG. 1 is a cross-sectional view of an example of an organic EL display device;
  • FIG. 1 is a cross-sectional view of an example of a display device;
  • FIG. 1 is a cross-sectional view of an example of a display device;
  • the xanthene compound (b) of the present invention is a compound represented by formula (1).
  • a 1 to A 4 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms which may have an electron-donating substituent. However, at least three of A 1 to A 4 are aryl groups having 6 to 10 carbon atoms which may have the electron donating substituent, and the number of carbon atoms which may have the electron donating substituent At least one of the 6-10 aryl groups has an electron-donating substituent.
  • R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, -SO 3 H, -SO 3 - , -SO 3 NR 6 R 7 , -COOH, -COO - , -COOR 8 , —CONR 9 R 10 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R5 represents a hydrogen atom, -SO3H , -SO3- , -SO3NR6R7 , -COOH , -COO- , -COOR8 , -CONR9R10 .
  • R 6 to R 10 each independently represent a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • Z represents an anion compound and n represents 0 or 1.
  • the xanthene compound (b) represented by Formula (1) shall be neutral in charge as a whole.
  • At least three of A 1 to A 4 are aryl groups having 6 to 10 carbon atoms which may have the electron donating substituent, At least one of the aryl groups having 6 to 10 carbon atoms which may have an electron-donating substituent has an electron-donating substituent, so that the maximum absorption wavelength at 350 to 800 nm compared to a xanthene compound that does not have an electron-donating substituent can be lengthened.
  • Examples of the aryl group having 6 to 10 carbon atoms in the aryl group having 6 to 10 carbon atoms which may have an electron-donating substituent include, for example, a phenyl group and a naphthyl group.
  • At least one of the at least three aryl groups having 6 to 10 carbon atoms which may have an electron-donating substituent has an electron-donating substituent.
  • An electron-donating substituent is an atomic group that donates electrons to a substituted atomic group by an inductive effect or a resonance effect in the theory of organic electrons. Examples of electron-donating substituents include those having a negative Hammett rule substituent constant ⁇ p value.
  • the substituent constant ⁇ p value of Hammett's rule can be cited from Kagaku Binran Basic Edition Revised 5th Edition (page II-380).
  • Specific examples of electron donating substituents include alkyl groups ( ⁇ p value of methyl group: ⁇ 0.17), alkoxy groups ( ⁇ p value of methoxy group: ⁇ 0.27), aryloxy groups ( ⁇ ⁇ p value of OC 6 H 5 : ⁇ 0.32), hydroxyl group ( ⁇ p value of —OH: ⁇ 0.37), amino group ( ⁇ p value of —NH 2 : ⁇ 0.66), alkylamino group ( ⁇ p -value for -N(CH 3 ) 2 : -0.83), and so on.
  • the Hammett's rule substituent constant ⁇ p value of the electron-donating substituent is preferably -0.20 or less, and - It is preferably 0.25 or less, more preferably -0.30 or less.
  • the lower limit of the substituent constant ⁇ p value of Hammett's rule is not particularly limited, but is preferably -0.90 or more.
  • a 1 to A 4 When three of A 1 to A 4 are aryl groups having 6 to 10 carbon atoms which may have an electron-donating substituent, two or more carbon atoms of 6 which may have an electron-donating substituent
  • the aryl group of ⁇ 10 preferably has an electron donating substituent
  • the aryl group of 6 to 10 carbon atoms which may have 3 electron donating substituents more preferably has an electron donating substituent.
  • a 1 to A 4 When four of A 1 to A 4 are aryl groups having 6 to 10 carbon atoms which may have an electron-donating substituent, two or more carbon atoms of 6 which may have an electron-donating substituent
  • the aryl group of ⁇ 10 preferably has an electron-donating substituent, and the aryl group having 6 to 10 carbon atoms which may have 3 or more electron-donating substituents may have an electron-donating substituent. More preferably, the aryl group having 6 to 10 carbon atoms which may have four electron-donating substituents has an electron-donating substituent.
  • the preferred substitution position of the electron-donating substituent is preferably the para-position or ortho-position, more preferably the para-position, with respect to the carbon atom bonded to the xanthene compound (b) via the nitrogen atom. preferable.
  • the aryl group having 6 to 10 carbon atoms which may have an electron-donating substituent may have substituents other than the electron-donating substituents described above.
  • substituents other than electron-donating substituents include aryl groups, halogen atoms, and monovalent groups represented by —COORa, —OCORa, —SO 3 ⁇ , and —SO 2 Ra. can be done.
  • the compound represented by formula (1) is neutral in charge as a whole, when the aryl group having 6 to 10 carbon atoms has —SO 3 — , the number of —SO 3 — substitutions is one. and R 1 to R 5 have neutral groups.
  • Ra represents an alkyl group.
  • the substituents other than the electron-donating substituents preferably have 20 or less carbon atoms, preferably 10 or less.
  • Ra preferably has 20 or less carbon atoms, more preferably 10 or less carbon atoms.
  • the sum of Hammett's rule substituent constant ⁇ p values bonded to the aryl group having 6 to 10 carbon atoms which may have an electron-donating substituent is preferably ⁇ 0.20 or less.
  • a 1 and A 2 and/or A 3 and A 4 may be combined to form a ring.
  • These rings may form a ring by a single bond or a bond via any atom of nitrogen, oxygen or sulfur.
  • a 5-membered ring or a 6-membered ring is preferable.
  • the ring to be formed include, for example, a carbazole ring in which two aryl groups having 6 to 10 carbon atoms which may have an electron-donating substituent are bonded via a single bond, and a carbazole ring having an electron-donating substituent. may contain an indole ring in which an aryl group having 6 to 10 carbon atoms and an alkyl group having 1 to 10 carbon atoms are bonded through a single bond.
  • R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, —SO 3 H, —SO 3 — , —SO 3 NR 6 R 7 , —COOH, —COO — , —COOR 8 , —CONR 9 R 10 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms; R 6 to R 10 each independently represent a hydrocarbon group having 1 to 20 carbon atoms.
  • the hydrocarbon group having 1 to 20 carbon atoms can include an alkyl group, a cycloalkyl group, an aryl group, and the like.
  • R5 represents a hydrogen atom, -SO3H , -SO3- , -SO3NR6R7 , -COOH , -COO- , -COOR8 , -CONR9R10 ;
  • R 6 to R 10 each independently represent a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 5 is preferably a hydrogen atom, -SO 3 H, -SO 3 - , -SO 3 NR 6 R 7 , -COOR 8 , -CONR 9 R 10 , -SO 3 H , —SO 3 ⁇ , —SO 3 NR 6 R 7 and —CONR 9 R 10 are more preferred.
  • R 5 is —SO 3 NR 6 R 7
  • R 6 or R 7 is preferably an aryl group
  • R 6 and R 7 are preferably aryl groups. More preferred.
  • R 5 is —CONR 9 R 10
  • R 9 or R 10 is preferably an aryl group, more preferably R 9 and R 10 are aryl groups. .
  • Z represents an anion compound.
  • n is 1 when the compound represented by formula (1) has an anionic compound represented by Z;
  • the anion compound may be either an inorganic anion or an organic anion.
  • inorganic ions include halide ions such as chlorine and bromine
  • organic ions include aliphatic or aromatic sulfonate ions, aliphatic or aromatic carboxylate ions, and others.
  • Each R in the ionic formula is a monovalent hydrocarbon group having 1 to 20 carbon atoms which may independently have a substituent and may have a heteroatom in the carbon chain.
  • substituents for R include alkyl groups having 1 to 10 carbon atoms, aryl groups having 1 to 10 carbon atoms, halogen atoms, hydroxyl groups, alkoxy groups and aryloxy groups.
  • Heteroatoms include nitrogen atoms, oxygen atoms, halogen atoms and the like.
  • n is 1 and Z is preferably an aliphatic or aromatic sulfonate ion or an aliphatic or aromatic carboxylate ion, more preferably Z is an aliphatic or aromatic sulfonate ion.
  • a monovalent alkyl group having 1 to 20 carbon atoms is preferable, and in addition to a methyl group, an ethyl group, a propyl group, a butyl group, a group in which some of the hydrogen atoms of these alkyl groups are substituted with halogen atoms. etc.
  • the aromatic group is preferably a monovalent aryl group having 1 to 20 carbon atoms, such as a phenyl group, tolyl group, ethylphenyl group, propylphenyl group, butylphenyl group and dodecylphenyl group.
  • the molecular weight of Z is preferably 1,000 or less, preferably 700 or less, and more preferably 300 or less, from the viewpoint of improving sensitivity by increasing the ratio of coloring components per molecule and decreasing the amount of ionic dye added.
  • the lower limit of the molecular weight of Z is not particularly limited, it is preferably 1 or more, more preferably 100 or more.
  • n 0 or 1;
  • the compound represented by Formula (1) shall be charge neutral as a whole.
  • neutral in charge means that the number of positive charges and the number of negative charges of the compound represented by formula (1) are the same. Since the compound represented by formula (1) is neutral in charge as a whole, when R 1 to R 5 contain anions, only one of R 1 to R 5 is —SO 3 — or —COO - becomes.
  • R 1 to R 5 in the xanthene compound (b) When only one of R 1 to R 5 in the xanthene compound (b) is —SO 3 — or —COO — or when the aryl group having 6 to 10 carbon atoms has —SO 3 — , Since a counter anion is present in the substituent, the compound represented by formula (1) as a whole is neutral in charge even if it does not have Z, and n is 0. On the other hand, when none of R 1 to R 5 in the xanthene compound (b) contains an anion or when the aryl group having 6 to 10 carbon atoms does not have —SO 3 — , the compound represented by formula (1) is neutral in charge as a whole, n becomes 1. When n is 1, the compound represented by formula (1) has Z.
  • n is preferably 0 from the viewpoint of preventing halide ions from entering the cured product of the resin composition containing the xanthene compound (b).
  • n is preferably 1 from the viewpoint of improving the sensitivity of a resin composition containing an alkali-soluble resin (a) and a photosensitive compound (c), which will be described later.
  • the xanthene compound (b) preferably has a maximum absorption wavelength in the range of 580 nm or more and 700 nm or less in the range of 350 to 800 nm.
  • a xanthene compound in which a nitrogen atom is substituted with an alkyl group gives a red spectrum having a maximum absorption wavelength of about 550 nm at 350 to 800 nm, but the xanthene compound (b) represented by the formula (1)
  • At least three of A 1 to A 4 are aryl groups having 6 to 10 carbon atoms which may have an electron donating substituent, and the number of carbon atoms which may have an electron donating substituent
  • At least one of the 6 to 10 aryl groups has an electron-donating substituent, thereby lengthening the maximum absorption wavelength and obtaining a blue spectrum.
  • the xanthene compound (b) more preferably has a maximum absorption wavelength in the range of 590 nm or more and 700 nm or less, and more preferably in
  • the resin composition contains a xanthene compound (b) having a maximum absorption wavelength in any of the wavelength range of 580 nm or more and 700 nm or less, and a xanthene compound (b) having a maximum absorption wavelength in the range of 490 nm or more and less than 580 nm at 350 to 800 nm, which will be described later.
  • the xanthene compound (b) of the present invention can be produced according to known methods for producing xanthene compounds, and is not particularly limited.
  • a dichlorinated sulfonefluorescein and a corresponding aromatic amine compound are heated and stirred in a solvent, and after cooling to room temperature, the reaction solution is poured into an aqueous hydrochloric acid solution and stirred. Next, the precipitate is collected by filtration, washed with water or hot water, and dried to obtain a xanthene compound in which two of the nitrogen atoms are substituted with the same aryl group.
  • the corresponding half of the aromatic amine compound is added dropwise little by little into a solvent containing a sulfonefluorescein dichloride, and after the reaction , can be obtained by dropping the remaining aromatic amine compound.
  • the xanthene compound in which two of the nitrogen atoms are substituted with aryl groups and the corresponding aromatic halogen compound are heated and stirred in a solvent containing a copper catalyst and a base, and the reaction solution is filtered to remove insoluble matter. After that, it is poured into an aqueous solution of hydrochloric acid and stirred. Next, the precipitate is collected by filtration, washed with water or hot water, and dried to obtain a xanthene compound in which 3 or 4 of the nitrogen atoms are substituted with aryl groups.
  • a xanthene compound in which 3 of the nitrogen atoms are substituted with aryl groups the same reaction is performed using a different aromatic halogen compound or aliphatic halogen compound, so that 4 of the nitrogen atoms are substituted with aryl groups.
  • a xanthene compound or a xanthene compound in which three of the nitrogen atoms are substituted with an aryl group and one with an alkyl group can be obtained.
  • the resin composition of the present invention contains the xanthene compound (b) of the present invention and an alkali-soluble resin (a).
  • Alkali solubility means that a solution obtained by dissolving a resin in ⁇ -butyrolactone is coated on a silicon wafer and prebaked at 120° C. for 4 minutes to form a prebaked film having a film thickness of 10 ⁇ m ⁇ 0.5 ⁇ m. It refers to a dissolution rate of 50 nm/min or more, which is obtained from the decrease in film thickness when the film is immersed in a 2.38% by mass tetramethylammonium hydroxide aqueous solution at ⁇ 1° C. for 1 minute and then rinsed with pure water.
  • the alkali-soluble resin (a) is alkali-soluble, it has hydroxyl groups and/or acidic groups in the structural units of the resin and/or at the ends of its main chain.
  • the acidic group can have, for example, a carboxy group, a phenolic hydroxyl group, a sulfonic acid group, and the like.
  • Alkali-soluble resin (a) contains polyimide, polyimide precursor, polybenzoxazole precursor, polyamideimide, polyamideimide precursor, polyamide, polymer of radically polymerizable monomer having an acidic group, phenol resin, and the like. can be, but is not limited to.
  • the resin composition may contain two or more of these resins.
  • the alkali-soluble resin (a) has high development adhesion, excellent heat resistance, and low outgassing at high temperatures, so that the cured product has high long-term reliability when used in an organic EL display device.
  • a polyimide precursor or a polybenzoxazole precursor is more preferable from the viewpoint of further improving the sensitivity.
  • polyimide precursor refers to a resin converted to polyimide by heat treatment or chemical treatment.
  • polyimide precursors may include polyamic acid, polyamic acid ester, and the like.
  • a polybenzoxazole precursor refers to a resin that is converted to polybenzoxazole by heat treatment or chemical treatment, and may contain, for example, polyhydroxyamide.
  • the polyimide precursor and polybenzoxazole precursor described above have a structural unit represented by the following formula (3), and the polyimide has a structural unit represented by the following formula (4). Two or more of these may be contained, or a resin obtained by copolymerizing the structural unit represented by formula (3) and the structural unit represented by formula (4) may be contained.
  • X represents an organic group having 4 to 40 carbon atoms and 2 to 8 valences
  • Y represents an organic group having 6 to 40 carbon atoms and 2 to 11 valences
  • R 11 and R 13 each independently represent a hydroxyl group or a sulfonic acid group
  • R 12 and R 14 each independently represent a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • t, u and w represent an integer of 0-3, and v represents an integer of 0-6. However, t+u+v+w>0.
  • E represents an organic group having 4 to 40 carbon atoms and 4 to 10 valences
  • G represents an organic group having 6 to 40 carbon atoms and 2 to 8 valences
  • R 15 and R 16 each independently represent a carboxy group, a sulfonic acid group or a hydroxyl group
  • x and y each independently represent an integer of 0 to 6; However, x+y>0.
  • the polyimide, polyimide precursor, polybenzoxazole precursor, or copolymer thereof preferably has 5 to 100,000 structural units represented by formula (3) or formula (4). Moreover, in addition to the structural unit represented by Formula (3) or Formula (4), it may have other structural units. In this case, it is preferable that the structural units represented by formula (3) or (4) account for 50 mol % or more of all structural units.
  • X(R 11 ) t (COOR 12 ) u represents an acid residue.
  • X is a divalent to octavalent organic group having 4 to 40 carbon atoms, preferably a divalent to octavalent organic group containing an aromatic ring or a cycloaliphatic group.
  • Acid residues include residues of dicarboxylic acids such as terephthalic acid, isophthalic acid, diphenyletherdicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyldicarboxylic acid, benzophenonedicarboxylic acid, triphenyldicarboxylic acid, trimellitic acid, Residues of tricarboxylic acids such as trimesic acid, diphenyl ether tricarboxylic acid, biphenyltricarboxylic acid, pyromellitic acid, 3,3′,4,4′-biphenyltetracarboxylic acid, 2,3,3′,4′-biphenyltetracarboxylic acid acid, 2,2',3,3'-biphenyltetracarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid, 2,2',3,3'-benzophenonetetrac
  • R20 represents an oxygen atom, C( CF3 ) 2 or C( CH3 ) 2 .
  • R21 and R22 each independently represent a hydrogen atom or a hydroxyl group.
  • one or two carboxy groups correspond to (COOR 12 ) in formula (3).
  • E(R 15 ) x represents a residue of an acid dianhydride.
  • E is an organic group having 4 to 40 carbon atoms and a tetravalent to 10 valent group, preferably an organic group containing an aromatic ring or a cycloaliphatic group.
  • acid dianhydride residues include pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,3,3′,4′- biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3 ,3′-benzophenonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1-bis(3,4-dicarboxyphenyl)ethane dianhydride, 1,1-bis(2,3-dicarboxyphenyl)ethane dianhydride, bis(3,4-dicarboxyphenyl)methan
  • R20 represents an oxygen atom, C( CF3 ) 2 or C( CH3 ) 2 .
  • R21 and R22 each independently represent a hydrogen atom or a hydroxyl group.
  • Y(R 13 ) v (COOR 14 ) w in formula (3) above and G(R 16 ) y in formula (4) above represent diamine residues.
  • Y is an organic group having 6 to 40 carbon atoms and 2 to 11 valences, preferably a 2 to 11 valences organic group containing an aromatic ring or a cycloaliphatic group.
  • G is a divalent to octavalent organic group having 6 to 40 carbon atoms, preferably a divalent to octavalent organic group containing an aromatic ring or a cycloaliphatic group.
  • diamine residues include 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylmethane, 1,4-bis( 4-aminophenoxy)benzene, benzidine, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxy)biphenyl, bis ⁇ 4-(4-amino phenoxy)phenyl ⁇ ether, 1,4-bis(4-aminophenoxy)benzene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-diethyl-4,4'-diaminobiphenyl, 3 ,3′-dimethyl-4,4′-diaminobiphenyl, 3,3
  • R20 represents an oxygen atom, C( CF3 ) 2 or C( CH3 ) 2 .
  • R 21 to R 24 each independently represent a hydrogen atom or a hydroxyl group.
  • the terminal of the alkali-soluble resin (a) may be capped with a known monoamine, acid anhydride, acid chloride, monocarboxylic acid, or active ester compound having an acidic group.
  • the alkali-soluble resin (a) may be synthesized by a known method.
  • Examples of methods for producing polyamic acid which is a polyimide precursor, include a method of reacting a tetracarboxylic dianhydride and a diamine compound in a solvent at low temperatures.
  • a diester is obtained with a tetracarboxylic dianhydride and an alcohol, and then a condensing agent
  • a method of reacting in a solvent with an amine in the presence of For example, a diester is obtained from a tetracarboxylic dianhydride and an alcohol, and then the remaining dicarboxylic acid is acid-chloridated and reacted with an amine in a solvent.
  • the esterification agent is not particularly limited, and a known method can be applied. However, N,N-dimethylformamide dialkyl acetal is preferable because the obtained resin can be easily purified.
  • a method for producing polyhydroxyamide, which is a polybenzoxazole precursor includes, for example, a method of subjecting a bisaminophenol compound and dicarboxylic acid to a condensation reaction in a solvent. Specifically, for example, a method of reacting a dehydration condensing agent such as dicyclohexylcarbodiimide (DCC) with an acid, and then adding a bisaminophenol compound thereto.
  • DCC dicyclohexylcarbodiimide
  • a method of dropping a solution of a dicarboxylic acid dichloride into a solution of a bisaminophenol compound to which a tertiary amine such as pyridine is added can be used.
  • Methods for producing polyimide include, for example, a method of dehydrating and ring-closing the polyamic acid or polyamic acid ester obtained by the above method in a solvent.
  • Methods for dehydration and ring closure include chemical treatment with an acid or base, heat treatment, and the like.
  • Methods for producing polybenzoxazole include, for example, a method of dehydrating and ring-closing the polyhydroxyamide obtained by the above method in a solvent.
  • Methods for dehydration and ring closure include chemical treatment with an acid or base, heat treatment, and the like.
  • Polyamideimide precursors include tricarboxylic acids, corresponding tricarboxylic acid anhydrides, and polymers of tricarboxylic acid anhydride halides and diamine compounds, preferably polymers of trimellitic anhydride chloride and aromatic diamine compounds.
  • Examples of the method for producing a polyamideimide precursor include a method of reacting a tricarboxylic acid, a corresponding tricarboxylic acid anhydride, a tricarboxylic acid anhydride halide, etc. with a diamine compound in a solvent at a low temperature.
  • Examples of methods for producing polyamideimide include a method of reacting trimellitic anhydride and an aromatic diisocyanate in a solvent, and a method of dehydrating and ring-closing the polyamideimide precursor obtained by the above method in a solvent.
  • Methods for dehydration and ring closure include chemical treatment with an acid or base, heat treatment, and the like.
  • the polymerization solvent is not particularly limited, and includes alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether and propylene glycol monomethyl ether, alkyl acetates such as propyl acetate, butyl acetate, and isobutyl acetate, methyl isobutyl ketone, methyl propyl ketone, and the like.
  • ketones alcohols such as butyl alcohol and isobutyl alcohol, ethyl lactate, butyl lactate, dipropylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol diethyl ether, 3-methoxybutyl acetate, ethylene glycol monoethyl ether acetate, gamma-butyrolactone, N-methyl-2-pyrrolidone, diacetone alcohol, N-cyclohexyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, propylene glycol monomethyl ether acetate, N,N- dimethylisobutyamide, 3-methoxy-N,N-dimethylpropionamide, 3-butoxy-N,N-dimethylpropionamide, 1,3-dimethyl-2-imidazolidinone, N,N-dimethylpropy
  • the content of the alkali-soluble resin (a) is preferably 40% by mass to 90% by mass based on 100% by mass of the solid content of the resin composition.
  • the resin composition of the present invention may further contain a photosensitive compound (c).
  • the content of the photosensitive compound (c) is 0 with respect to 100 parts by mass of the alkali-soluble resin (a) from the viewpoint of increasing sensitivity. It is preferably 1 part by mass or more, more preferably 1 part by mass or more, and even more preferably 10 parts by mass or more.
  • the content is preferably 100 parts by mass or less.
  • the photosensitive compound (c) may contain a photoacid generator (c1), a photopolymerization initiator (c2), and the like.
  • the photoacid generator (c1) is a compound that generates an acid upon exposure to light
  • the photopolymerization initiator (c2) is a compound that undergoes bond cleavage and/or reaction upon exposure to generate radicals.
  • the photoacid generator (c1) By containing the photoacid generator (c1), an acid is generated in the light-irradiated area and the solubility of the light-irradiated area in an alkaline aqueous solution increases, so that a positive relief pattern in which the light-irradiated area dissolves can be obtained. can. Further, by containing the photoacid generator (c1) and an epoxy compound or a thermal cross-linking agent described later, the acid generated in the light-irradiated portion accelerates the cross-linking reaction of the epoxy compound or the thermal cross-linking agent, and the light-irradiated portion becomes insoluble. A negative relief pattern can be obtained.
  • the photosensitive compound (c) is a photoacid that can obtain a positive relief pattern. It preferably contains a generator (c1).
  • the photoacid generator (c1) can contain, for example, a quinonediazide compound, a sulfonium salt, a phosphonium salt, a diazonium salt, an iodonium salt, and the like.
  • the resin composition of the present invention preferably contains two or more kinds of photoacid generators (c1). When two or more kinds of photoacid generators (c1) are contained, a photosensitive resin composition with higher sensitivity can be obtained. From the viewpoint of long-term reliability when the cured product of the present invention is used as a flattening layer and/or an insulating layer of an organic EL display device, the photoacid generator (c1) preferably contains a quinone diazide compound.
  • Examples of the quinonediazide compound include those in which the sulfonic acid of quinonediazide is bonded to a polyhydroxy compound via an ester bond, the sulfonic acid of quinonediazide to a polyamino compound in a sulfonamide bond, and the sulfonic acid of quinonediazide to a polyhydroxypolyamino compound in an ester bond and/or a sulfone bond.
  • An amide bond or the like can be contained.
  • both a 5-naphthoquinonediazidesulfonyl group and a 4-naphthoquinonediazidesulfonyl group are preferably used. It may contain a naphthoquinone diazide sulfonyl ester compound having a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound.
  • a 4-naphthoquinonediazide sulfonyl ester compound has absorption in the i-line region of a mercury lamp and is suitable for i-line exposure.
  • a 5-naphthoquinonediazide sulfonyl ester compound has absorption extending to the g-line region of a mercury lamp and is suitable for g-line exposure.
  • the quinonediazide compound can be synthesized from a compound having a phenolic hydroxyl group and a quinonediazide sulfonic acid compound by any esterification reaction. By using these quinonediazide compounds, the resolution, sensitivity and film retention rate are further improved.
  • sulfonium salts are preferred because they moderately stabilize the acid component generated by exposure.
  • phosphonium salts are preferred.
  • diazonium salts are preferred.
  • iodonium salts are preferred.
  • a sensitizer and the like can be contained as necessary.
  • the content of the photoacid generator (c1) is 0 with respect to 100 parts by mass of the alkali-soluble resin (a) from the viewpoint of increasing sensitivity. It is preferably 1 part by mass or more, more preferably 10 parts by mass or more, and even more preferably 25 parts by mass or more.
  • the content is preferably 100 parts by mass or less.
  • Examples of the photopolymerization initiator (c2) include benzyl ketal photopolymerization initiators, ⁇ -hydroxyketone photopolymerization initiators, ⁇ -aminoketone photopolymerization initiators, acylphosphine oxide photopolymerization initiators, and oxime esters.
  • photoinitiator, acridine photoinitiator, titanocene photoinitiator, benzophenone photoinitiator, acetophenone photoinitiator, aromatic ketoester photoinitiator, benzoic acid ester photoinitiator agents and the like can be contained.
  • the resin composition of the present invention may contain two or more photopolymerization initiators (c2).
  • the photopolymerization initiator (c2) more preferably contains an ⁇ -aminoketone photopolymerization initiator, an acylphosphine oxide photopolymerization initiator, or an oxime ester photopolymerization initiator.
  • ⁇ -aminoketone-based photopolymerization initiators examples include 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4 -morpholinophenyl)-butan-1-one, 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholinophenyl)-butan-1-one, 3,6-bis(2-methyl- 2-morpholinopropionyl)-9-octyl-9H-carbazole and the like.
  • acylphosphine oxide photopolymerization initiators include 2,4,6-trimethylbenzoyl-diphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide, and bis(2,6-dimethoxybenzoyl). )-(2,4,4-trimethylpentyl)phosphine oxide and the like.
  • oxime ester photopolymerization initiators include 1-phenylpropane-1,2-dione-2-(O-ethoxycarbonyl)oxime, 1-phenylbutane-1,2-dione-2-(O-methoxy carbonyl)oxime, 1,3-diphenylpropane-1,2,3-trione-2-(O-ethoxycarbonyl)oxime, 1-[4-(phenylthio)phenyl]octane-1,2-dione-2-( O-benzoyl)oxime, 1-[4-[4-(carboxyphenyl)thio]phenyl]propane-1,2-dione-2-(O-acetyl)oxime, 1-[9-ethyl-6-(2 -methylbenzoyl)-9H-carbazol-3-yl]ethanone-1-(O-acetyl)oxime, 1-[9-ethyl-6-[2-methyl-4-[1-(2,2-di
  • the content of the photopolymerization initiator (c2) is, from the viewpoint of increasing sensitivity, the total of the alkali-soluble resin (a) and the radically polymerizable compound described later. It is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, and even more preferably 10 parts by mass or more, relative to 100 parts by mass. On the other hand, from the viewpoint of further improving the resolution and reducing the taper angle, it is preferably 50 parts by mass or less.
  • the resin composition of the present invention may contain a colorant (d) other than the xanthene compound (b).
  • a colorant (d) other than the xanthene compound (b).
  • the coloring agent (d) By containing the coloring agent (d), the light having a wavelength absorbed by the coloring agent (d) is blocked from the light transmitted through the resin composition film or the light reflected from the resin composition film. can be given.
  • a light-shielding property when the cured product of the present invention described later is used as a planarizing layer and / or an insulating layer of an organic EL display device, deterioration, malfunction, leakage current, etc. due to light penetration into the TFT are prevented. be able to. Furthermore, reflection of external light from wiring and TFTs can be suppressed, and the contrast between light-emitting areas and non-light-emitting areas can be improved.
  • a dye (d1) and/or a pigment (d2) is preferably used as the colorant (d).
  • At least one colorant (d) is preferably contained, for example, one dye or organic pigment, two or more dyes or pigments, one or more dyes and one It is preferable to contain the above pigments.
  • the dye (d1) is preferable as the coloring agent (d) in the present invention.
  • the dye (d1) may be an ionic dye (d10) that forms an ion pair between organic ions (hereinafter sometimes referred to as an ionic dye (d10) ) is preferred.
  • the pigment (d2) is preferable from the viewpoint of being able to suppress discoloration of the colorant in the heat treatment step of the resin composition of the present invention, which will be described later.
  • the resin composition of the present invention preferably contains a colorant (d-2) having a maximum absorption wavelength in the range of 490 nm or more and less than 580 nm at 350 to 800 nm, specifically 350 to 800 nm.
  • a dye (d1-2) having a maximum absorption wavelength in any of the range of 490 nm or more and less than 580 nm, and / or a pigment having a maximum absorption wavelength in any of the range of 490 nm or more and less than 580 nm in 350 to 800 nm ( d2-2) is preferably contained.
  • they may be simply referred to as (d-2) component, (d1-2) component and (d2-2) component, respectively.
  • the component (d1-2) is a dye that is soluble in an organic solvent that dissolves the alkali-soluble resin (a) and is compatible with the resin from the viewpoint of storage stability, curing, and fading during light irradiation. It is preferable to contain a dye having high heat resistance and light resistance. Since the component (d1-2) has a maximum absorption wavelength in the range of 490 nm or more and less than 580 nm in the range of 350 to 800 nm, it can contain, for example, a red dye or a violet dye. As types of dyes, for example, oil-soluble dyes, disperse dyes, reactive dyes, acid dyes, direct dyes, and the like can be contained.
  • the skeleton structure of the dye includes, but is not limited to, anthraquinone, azo, phthalocyanine, methine, oxazine, quinoline, triarylmethane, xanthene, and the like.
  • anthraquinone-based, azo-based, methine-based, triarylmethane-based, and xanthene-based solvents are preferred from the viewpoint of solubility in organic solvents and heat resistance.
  • a xanthene compound is more preferable from the viewpoint of workability when the xanthene compound (b) of the present invention is made into a resin composition.
  • Each of these dyes may be used alone or as a metal-containing complex salt.
  • the component (d-2) is preferably a pigment with high heat resistance and light resistance from the viewpoint of fading during curing and light irradiation.
  • organic pigments are represented by Color Index (CI) numbers.
  • red pigments include Pigment Red 48:1, 122, 168, 177, 202, 206, 207, 209, 224, 242, 254 and the like.
  • violet pigments include Pigment Violet 19, 23, 29, 32, 33, 36, 37, 38, and the like.
  • pigments other than these can also be contained.
  • the content of component (d-2) is preferably 0.1 to 300 parts by mass, more preferably 0.2 to 200 parts by mass, particularly 1 to 200 parts by mass, relative to 100 parts by mass of the alkali-soluble resin (a). part is preferred.
  • the content of component (d-2) is preferably 0.1 to 300 parts by mass, more preferably 0.2 to 200 parts by mass, particularly 1 to 200 parts by mass, relative to 100 parts by mass of the alkali-soluble resin (a). part is preferred.
  • the content of the component (d-2) is preferably 0.1 to 300 parts by mass, more preferably 0.2 to 200 parts by mass, particularly 1 to 200 parts by mass, relative to 100 parts by mass of the alkali-soluble resin (a). part is preferred.
  • the organic pigment used as the (d2-2) component may contain those subjected to surface treatment such as rosin treatment, acidic group treatment, or basic group treatment, if necessary.
  • it can be contained together with a dispersant in some cases.
  • the dispersant can contain, for example, cationic, anionic, nonionic, amphoteric, silicone, and fluorine surfactants.
  • the colorant (d) may contain a colorant (d-1) having a maximum absorption wavelength in any of the range of 400 nm or more and less than 490 nm in the range of 350 to 800 nm.
  • a pigment (d2-1) having a maximum absorption wavelength may be contained.
  • they may be simply referred to as (d-1) component, (d1-1) component, and (d2-1) component, respectively.
  • the dye (d1-1) used as the component (d-1) is soluble in an organic solvent that dissolves the alkali-soluble resin (a) from the viewpoint of storage stability, curing, and fading during light irradiation.
  • a dye compatible with the resin and a dye having high heat resistance and light resistance are preferable.
  • the component (d1-1) has a maximum absorption in any of the wavelength range of 400 nm or more and less than 490 nm, examples thereof include yellow dyes and orange dyes.
  • dye types include oil-soluble dyes, disperse dyes, reactive dyes, acid dyes, and direct dyes.
  • the skeleton structure of the dye includes, but is not limited to, anthraquinone, azo, phthalocyanine, methine, oxazine, quinoline, triarylmethane, xanthene, and the like.
  • anthraquinone-based, azo-based, methine-based, triarylmethane-based, and xanthene-based solvents are preferred from the viewpoint of solubility in organic solvents and heat resistance.
  • Each of these dyes may be used alone or as a metal-containing complex salt.
  • the pigment (d2-1) used as the component (d-1) is preferably a pigment with high heat resistance and light resistance from the viewpoint of fading during curing and light irradiation.
  • organic pigments are represented by Color Index (CI) numbers.
  • yellow pigments include Pigment Yellow 83, 117, 129, 138, 139, 150, 180 and the like.
  • orange pigments include Pigment Orange 38, 43, 64, 71, 72 and the like.
  • pigments other than these can also be contained.
  • the content of component (d-1) is preferably 0.1 to 300 parts by mass, more preferably 0.2 to 200 parts by mass, particularly 1 to 200 parts by mass, relative to 100 parts by mass of the alkali-soluble resin (a). part is preferred.
  • the content of component (d-1) is preferably 0.1 to 300 parts by mass, more preferably 0.2 to 200 parts by mass, particularly 1 to 200 parts by mass, relative to 100 parts by mass of the alkali-soluble resin (a). part is preferred.
  • the organic pigment used as component (d2-1) may be subjected to surface treatment such as rosin treatment, acidic group treatment, or basic group treatment, if necessary. It can also optionally be used with a dispersant.
  • dispersants include cationic, anionic, nonionic, amphoteric, silicone and fluorosurfactants.
  • the colorant (d) may contain a colorant (d-3) having a maximum absorption wavelength in any of the range of 580 nm or more and 800 nm or less in the range of 350 to 800 nm.
  • a pigment (d2-3) having a maximum absorption wavelength may be included.
  • they may be simply referred to as the (d-3) component, the (d1-3) component, and the (d2-3) component, respectively.
  • the dye (d1-3) used as component (d-3) is soluble in an organic solvent that dissolves the alkali-soluble resin (a) from the viewpoint of storage stability, curing, and fading during light irradiation.
  • a dye compatible with the resin and a dye having high heat resistance and light resistance are preferable.
  • the (d1-3) component has a maximum absorption wavelength in the range of 580 nm to 800 nm in the range of 350 to 800 nm, and thus includes blue dyes and green dyes.
  • Types of dyes include, for example, oil-soluble dyes, disperse dyes, reactive dyes, acid dyes, and direct dyes.
  • the skeleton structure of the dye includes, but is not limited to, anthraquinone, azo, phthalocyanine, methine, oxazine, quinoline, triarylmethane, and the like.
  • anthraquinone-based, azo-based, methine-based, and triarylmethane-based solvents are preferred from the viewpoint of solubility in organic solvents and heat resistance.
  • Each of these dyes may be used alone or as a metal-containing complex salt.
  • the pigment (d2-3) used as component (d-3) is preferably a pigment with high heat resistance and light resistance from the viewpoint of fading during curing and light irradiation.
  • organic pigments are represented by Color Index (CI) numbers.
  • blue pigments include Pigment Blue 15 (15:3, 15:4, 15:6, etc.), 21, 22, 60, 64, and the like.
  • green pigments include Pigment Green 7, 10, 36, 47, 58 and the like.
  • pigments other than these can also be contained.
  • the content of component (d-3) is preferably 0.1 to 300 parts by mass, more preferably 0.2 to 200 parts by mass, particularly 1 to 200 parts by mass, relative to 100 parts by mass of the alkali-soluble resin (a). part is preferred.
  • the content of component (d-3) is preferably 0.1 to 300 parts by mass, more preferably 0.2 to 200 parts by mass, particularly 1 to 200 parts by mass, relative to 100 parts by mass of the alkali-soluble resin (a). part is preferred.
  • the organic pigment used as component (d2-3) may be subjected to surface treatment such as rosin treatment, acidic group treatment, or basic group treatment, if necessary. It can also optionally be used with a dispersant.
  • dispersants include cationic, anionic, nonionic, amphoteric, silicone and fluorosurfactants.
  • the xanthene compound (b), the component (d-2), the component (d-1) and/or the thermochromic compound described later and optionally the component (d-3) are used in combination, It is possible to lower the visible light transmittance of the cured product and make it black.
  • the optical density per 1 ⁇ m film thickness of the cured product obtained by curing the resin composition containing the xanthene compound (b) of the present invention (hereinafter sometimes referred to as OD value) is preferably OD value of 0.5 or more, more preferably 0.7 or more.
  • the cured product can improve the light-shielding property, so in a display device such as an organic EL display device or a liquid crystal display device, visualization of electrode wiring and external light reflection can be further reduced, Contrast in image display can be improved.
  • the OD value is preferably 1.5 or less from the viewpoint of being able to improve the sensitivity during exposure when a resin composition containing a photosensitive compound, which will be described later, is formed.
  • the resin composition of the present invention comprises a xanthene compound (b1) (hereinafter sometimes referred to as xanthene compound (b1)) in which n is 1 and Z is an organic anion in formula (1), and an ion pair between organic ions. and the organic anion is preferably one.
  • the ionic dye that forms an ion pair between organic ions represents an ionic dye consisting of individual organic anions and organic cations, and in the formula (1), such as a xanthene compound in which n is 0, A compound having an anion site and a cation site as a whole and being neutral in charge as a whole is not counted as an organic anion.
  • the fact that the organic anion is one type means that the organic anion in the xanthene compound (b1) and the organic anion constituting the ionic dye (d10) are the same.
  • the resin composition of the present invention contains the xanthene compound (b1) and the ionic dye (d10) and the respective organic anion moieties are different, the resin composition contains two or more organic anion species.
  • the presence of a plurality of organic anions and organic cations in the resin composition causes an increase in foreign matter during frozen storage due to ion exchange between the ionic dyes, resulting in deterioration of storage stability.
  • the resin composition of the present invention contains only one type of organic anion species, storage stability during frozen storage is improved. This is because the organic anion species for the xanthene compound (b1) and the ionic dye (d10) were limited, and ion exchange between the ionic dyes in the resin composition was suppressed even if the organic cation moieties were different. Presumed.
  • the ionic dye (d10) that forms an ion pair between organic ions in the present invention is a salt-forming compound composed of an organic anion portion of an acid dye and an organic cation portion of a non-dye, an organic cation portion of a basic dye and a non-dye or a salt-forming compound consisting of an organic anion portion of an acid dye and an organic cation portion of a basic dye.
  • a salt-forming compound consisting of an organic cation portion of a basic dye and an organic anion portion of a non-dye can be produced by using a basic dye as a raw material and exchanging the counter anion with a non-dye organic anion by a known method.
  • a salt-forming compound comprising an acid dye organic anion portion and a non-dye organic cation portion can be produced by using an acid dye as a raw material and exchanging the counter cation with a non-dye organic cation by a known method.
  • a salt-forming compound composed of an organic anion portion of an acid dye and an organic cation portion of a basic dye can be produced by using an acid dye and a basic dye as raw materials and exchanging their counter ions by a known method.
  • the acid dye that is the raw material for the ionic dye (d10) is a compound that has an acidic substituent such as a sulfo group or a carboxy group in the dye molecule, or an anionic water-soluble dye that is a salt thereof.
  • Acid dyes include those that have an acidic substituent such as a sulfo group or a carboxy group and are classified as direct dyes.
  • an acid dye for example, C.I. I. Acid Yellow 1, 17, 18, 23, 25, 36, 38, 42, 44, 54, 59, 72, 78, 151; C.I. I. Acid Orange 7, 10, 12, 19, 20, 22, 28, 30, 52, 56, 74, 127; C.I. I. acid red 1, 3, 4, 6, 8, 11, 12, 14, 18, 26, 27, 33, 37, 53, 57, 88, 106, 108, 111, 114, 131, 137, 138, 151, 154, 158, 159, 173, 184, 186, 215, 257, 266, 296, 337; I. Acid Brown 2, 4, 13, 248; C.I. I. Acid Violet 11, 56, 58; C.I. I.
  • azo acid dyes such as Acid Blue 92, 102, 113, 117; C.I. I. Quinoline acid dyes such as Acid Yellow 2, 3, 5; C.I. I. Xanthene acid dyes such as Acid Red 50, 51, 52, 87, 91, 92, 93, 94, 289; C.I. I. Acid Red 82, 92; C.I. I. Acid Violet 41, 42, 43; C.I. I. Acid Blue 14, 23, 25, 27, 40, 45, 78, 80, 127: 1, 129, 145, 167, 230; C.I. I. Anthraquinone acid dyes such as Acid Green 25, 27; C.I. I. Acid Violet 49; C.I. I.
  • the acid dye preferably contains a xanthene-based acid dye in terms of high heat resistance.
  • Xanthene-based acid dyes include C.I. I. It is more preferable to contain a rhodamine-based acid dye such as Acid Red 50, 52, 289.
  • Each R in the ionic formula may independently have a substituent and is a hydrocarbon group having 1 to 20 carbon atoms which may have a heteroatom in the carbon chain.
  • the molecular weight of the non-dye organic cation moiety is preferably 1000 or less, preferably 700 or less, and 300 or less. is more preferred.
  • the lower limit of the molecular weight of the non-dye organic cation moiety is not particularly limited, it is preferably 1 or more, more preferably 100 or more.
  • the basic dye used as a raw material for the ionic dye (d10) is a compound having a basic group such as an amino group or an imino group in the molecule, or a salt thereof, and is a dye that becomes a cation in an aqueous solution. .
  • basic dyes for example, C.I. I. Basic Red 17, 22, 23, 25, 29, 30, 38, 39, 46, 46: 1, 82; I. Basic Orange 2, 24, 25; C.I. I. Basic Violet 18; C.I. I. Basic Yellow 15, 24, 25, 32, 36, 41, 73, 80; C.I. I. Basic Brown 1; C.I. I. azo basic dyes such as Basic Blue 41, 54, 64, 66, 67, 129; C.I. I. Basic Red 1, 2; C.I. I. Xanthene-based basic dyes such as Basic Violet 10, 11; C.I. I. Basic Yellow 11, 13, 21, 23, 28; C.I. I. Basic Orange 21; C.I. I. Basic Red 13, 14; C.I. I.
  • Basic methine dyes such as Basic Violet 16, 39; C.I. I. anthraquinone-based basic dyes such as Basic Blue 22, 35, 45, 47; C.I. I. Basic Violet 1, 2, 3, 4, 13, 14, 23; C.I. I. Basic Blue 1, 5, 7, 8, 11, 15, 18, 21, 24, 26; C.I. I. Examples include triarylmethane-based basic dyes such as Basic Green 1 and 4, and xanthene-based basic dyes having the structures shown below.
  • R 25 , R 27 and R 29 to R 31 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms which may have a substituent; 28 each independently represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms;
  • the basic dye preferably contains xanthene-based basic dyes and triarylmethane-based basic dyes in terms of increasing the blackness of the cured film, and xanthene-based acidic dyes in terms of high heat resistance. It is preferable to contain a dye.
  • non-dye organic anion moieties that are raw materials for the ionic dye (d10) include aliphatic or aromatic sulfonate ions, aliphatic or aromatic carboxylate ions, and sulfonimide anions [(RSO 2 ) 2 N ] ⁇ , borate anion (BR 4 ) ⁇ and the like.
  • the anion compound is an aliphatic or aromatic sulfonate ion, an aliphatic or aromatic Group carboxylate ions are preferred.
  • each R in the ionic formula may independently have a substituent and is a hydrocarbon group having 1 to 20 carbon atoms which may have a heteroatom in the carbon chain.
  • the molecular weight of the non-dye organic anion moiety is preferably 1000 or less, preferably 700 or less, and 300 or less. is more preferred.
  • the lower limit of the molecular weight of the non-dye anion portion is not particularly limited, it is preferably 1 or more, more preferably 100 or more.
  • the organic anion portion and/or the organic cation portion of the ionic dye (d10) preferably has a xanthene skeleton.
  • the organic anions having a xanthene skeleton include the xanthene-based acid dyes described above, and examples of the organic cations having a xanthene skeleton include the xanthene-based basic dyes described above.
  • the ionic dye (d10) preferably has an acidic group from the viewpoint of increasing alkali solubility during development and improving sensitivity.
  • the acidic group can have, for example, a carboxy group, a phenolic hydroxyl group, a sulfonic acid group, a sulfonate group, etc., and a sulfonic acid group and a sulfonate group are particularly preferred.
  • the ionic dye (d10) is a coloring having a maximum absorption wavelength in any of the range of 490 nm or more and less than 580 nm at 350 to 800 nm from the viewpoint of improving the light shielding property of visible light. It preferably contains agent (d10-2).
  • a salt-forming compound by ion exchange of an acid dye or a basic dye can be produced by a known method. For example, when an aqueous solution of an acid dye and an aqueous solution of a basic dye are separately prepared and mixed slowly while stirring, a salt-forming compound consisting of an organic anion portion of the acid dye and an organic cation portion of the basic dye is formed as a precipitate. Generate. By collecting this by filtration, the salt-forming compound can be obtained. The obtained salt-forming compound is preferably dried at about 60 to 70°C.
  • the total content of the ionic dye (d10) contained in the resin composition of the present invention is preferably 0.1 parts by mass or more and 300 parts by mass or less with respect to 100 parts by mass of the alkali-soluble resin (a). 2 parts by mass or more and 200 parts by mass or less is preferable, and 1 part by mass or more and 200 parts by mass or less is particularly preferable.
  • the content of the ionic dye (b) is 0.1 parts by mass or more, light of the corresponding wavelength can be absorbed. Also, by making it 300 parts by mass or less, it is possible to absorb the light of the corresponding wavelength while maintaining the adhesive strength between the photosensitive colored resin film and the substrate and the heat resistance and mechanical properties of the film after heat treatment.
  • the resin composition of the present invention may contain a thermochromic compound.
  • the thermochromic compound is a thermochromic compound that develops color by heat treatment and has maximum absorption at 350 nm or more and 700 nm or less, more preferably a thermochromic compound that develops color by heat treatment and has maximum absorption at 350 nm or more and 500 nm or less. is a compound.
  • the thermochromic compound is preferably a compound that develops color at a temperature higher than 120°C, more preferably a thermochromic compound that develops color at a temperature higher than 180°C.
  • the higher the color-developing temperature of the thermochromic compound the better the heat resistance under high-temperature conditions, and the less the color fades due to long-term irradiation with ultraviolet light and visible light, and the better the light resistance.
  • thermochromogenic compound may be a general heat-sensitive dye or pressure-sensitive dye, or may be another compound.
  • thermochromic compounds include those that develop color by changing their chemical structure and charge state due to the action of acidic groups coexisting in the system during heat treatment, or those that undergo a thermal oxidation reaction due to the presence of oxygen in the air. It can contain a substance that causes coloration and the like.
  • the thermochromic compound of the present invention differs from the colorant (d) because it does not have a maximum absorption in any of the ranges of 350 nm or more and 700 nm or less before heat treatment.
  • thermochromic compound having a triarylmethane skeleton is said to develop color when the hydrogen of the methine group is eliminated by heat treatment and one aryl group becomes a quinone structure.
  • the colorant (d) having a triarylmethane skeleton has a quinone structure even before heat treatment, and thus differs from the thermochromic compound of the present invention.
  • the skeleton structure of the thermochromic compound includes a triarylmethane skeleton, a diarylmethane skeleton, a fluorane skeleton, a bislactone skeleton, a phthalide skeleton, a xanthene skeleton, a rhodamine lactam skeleton, a fluorene skeleton, a phenothiazine skeleton, a phenoxazine skeleton, and a spiropyran skeleton.
  • a triarylmethane skeleton is preferable because of its high thermal coloring temperature and excellent heat resistance.
  • triarylmethane skeleton examples include 2,4′,4′′-methylidynetrisphenol, 4,4′,4′′-methylidynetrisphenol, 4,4′-[(4-hydroxyphenyl) methylene]bis(benzenamine), 4,4'-[(4-aminophenyl)methylene]bisphenol, 4,4'-[(4-aminophenyl)methylene]bis[3,5-dimethylphenol], 4, 4′-[(2-hydroxyphenyl)methylene]bis[2,3,6-trimethylphenol], 4-[bis(4-hydroxyphenyl)methyl]-2-methoxyphenol, 4,4′-[(2 -hydroxyphenyl)methylene]bis[2-methylphenol], 4,4′-[(4-hydroxyphenyl)methylene]bis[2-methylphenol], 4-[bis(4-hydroxyphenyl)methyl]-2 -ethoxyphenol, 4,4'-[(4-hydroxyphenyl)methylene]bis[2,6-dimethylphenol],
  • the hydroxyl group-containing compound having a triarylmethane skeleton may be used as a quinonediazide compound by ester-bonding the sulfonic acid of naphthoquinonediazide to the compound.
  • the content when the thermochromic compound is contained, the content is preferably 5 to 80 parts by mass, particularly preferably 10 to 60 parts by mass, based on 100 parts by mass of the alkali-soluble resin (a).
  • the content of the thermochromic compound is 5 parts by mass or more, the transmittance of the cured product in the ultraviolet-visible region can be reduced. Moreover, if it is 80 parts by mass or less, the heat resistance and strength of the cured product can be maintained, and the water absorption can be reduced.
  • the resin composition of the present invention may contain a radically polymerizable compound.
  • the resin composition contains a photopolymerization initiator (c2)
  • it is essential to contain a radically polymerizable compound.
  • a radically polymerizable compound is a compound having a plurality of ethylenically unsaturated double bonds in its molecule.
  • radical polymerization of the radically polymerizable compound proceeds by radicals generated from the photopolymerization initiator (c2) described above, and the light-irradiated portion becomes insoluble, whereby a negative pattern can be obtained.
  • the photocuring of the light-irradiated portion is accelerated, and the sensitivity can be further improved.
  • the crosslink density after thermosetting is improved, the hardness of the cured product can be improved.
  • a compound having a (meth)acrylic group which facilitates the progress of radical polymerization, is preferable.
  • Compounds having two or more (meth)acrylic groups in the molecule are more preferable from the viewpoint of improving the sensitivity at the time of exposure and improving the hardness of the cured product.
  • the double bond equivalent of the radically polymerizable compound is preferably 80 to 400 g/mol from the viewpoint of improving the sensitivity during exposure and improving the hardness of the cured product.
  • radically polymerizable compounds include trimethylolpropane tri(meth)acrylate, ditrimethylolpropane tri(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, pentaerythritol tri(meth)acrylate, and pentaerythritol tetra(meth)acrylate.
  • acrylates dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, tripentaerythritol hepta(meth)acrylate, tripentaerythritol octa(meth)acrylate, 2,2-bis[4-(3-( meth)acryloxy-2-hydroxypropoxy)phenyl]propane, 1,3,5-tris((meth)acryloxyethyl)isocyanuric acid, 1,3-bis((meth)acryloxyethyl)isocyanuric acid, 9,9 -bis[4-(2-(meth)acryloxyethoxy)phenyl]fluorene, 9,9-bis[4-(3-(meth)acryloxypropoxy)phenyl]fluorene, 9,9-bis(4-( It can contain meth)acryloxyphenyl)fluorene or their acid modified products, ethylene oxide modified products, prop
  • the content of the radically polymerizable compound is preferably 15% by mass or more based on the total 100% by mass of the alkali-soluble resin (a) and the radically polymerizable compound, and 30% by mass. % or more by mass is more preferable.
  • it is preferably 65% by mass or less, and 50% by mass or less in the total 100% by mass of the alkali-soluble resin (a) and the radically polymerizable compound. is more preferred.
  • the resin composition of the present invention may contain a thermal cross-linking agent.
  • a thermal cross-linking agent refers to a compound having at least two thermally reactive functional groups such as an alkoxymethyl group, a methylol group, an epoxy group, and an oxetanyl group in the molecule.
  • cross-linking occurs between the thermal cross-linking agent and the alkali-soluble resin (a) or between the thermal cross-linking agents to improve the heat resistance, chemical resistance and bending resistance of the cured product after thermal curing.
  • Preferred examples of compounds having at least two alkoxymethyl groups or methylol groups include DML-PC, DML-PEP, DML-OC, DML-OEP, DML-34X, DML-PTBP, DML-PCHP, DML-OCHP, DML-PFP, DML-PSBP, DML-POP, DML-MBOC, DML-MBPC, DML-MTrisPC, DML-BisOC-Z, DML-BisOCHP-Z, DML-BPC, DML-BisOC-P, DMO-PC, DMOM-PTBP, DMOM-MBPC, TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPE, TML-BPA, TML-BPAF, TML-BPAP, TMOM-BP, TMOM-BPE, TMOM-BPA, TMOM-BPAF, TMOM-BPAP, HML-TPPHBA, H
  • Preferred examples of compounds having at least two epoxy groups include “Epolite” (registered trademark) 40E, “Epolite” 100E, “Epolite” 200E, “Epolite” 400E, “Epolite” 70P, “Epolite” 200P, “Epolite” “400P,” Epolite” 1500NP, “Epolite” 80MF, “Epolite” 4000, “Epolite” 3002 (manufactured by Kyoeisha Chemical Co., Ltd.), “Denacol” (registered trademark) EX-212L, “Denacol” EX-214L , “Denacol” EX-216L, “Denacol” EX-850L (manufactured by Nagase ChemteX Corporation), GAN, GOT (manufactured by Nippon Kayaku Co., Ltd.), “Epicort” (registered trademark) 828, "Epikote” 1002,
  • Compounds having at least two oxetanyl groups include, for example, Ethanacol EHO, Ethanacol OXBP, Ethanacol OXTP, Ethanacol OXMA (manufactured by Ube Industries, Ltd.), oxetaneated phenol novolak, and the like.
  • the thermal cross-linking agent may be contained in combination of two or more.
  • the content is preferably 1% by mass or more and 30% by mass or less in 100% by mass of the total amount of the resin composition excluding the solvent. If the content of the thermal cross-linking agent is 1% by mass or more, the chemical resistance and bending resistance of the cured product can be further enhanced. Further, if the content of the thermal crosslinking agent is 30% by mass or less, the amount of outgassing from the cured product can be further reduced, the long-term reliability of the organic EL display device can be further improved, and the storage stability of the resin composition can be improved. Also excellent.
  • the resin composition of the present invention may contain a solvent. By containing a solvent, a varnish state can be obtained, and coatability can be improved.
  • Solvents include polar aprotic solvents such as ⁇ -butyrolactone, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol mono Ethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether , propylene glycol mono-n-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether, trip
  • the content of the solvent is not particularly limited, but is preferably 100 to 3000 parts by mass, more preferably 150 to 2000 parts by mass, based on 100 parts by mass of the total resin composition excluding the solvent.
  • the proportion of the solvent having a boiling point of 180° C. or higher in 100% by mass of the total amount of the solvent is preferably 20% by mass or less, more preferably 10% by mass or less.
  • Adhesion improvers include vinyltrimethoxysilane, vinyltriethoxysilane, epoxycyclohexylethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, Silane coupling agents such as 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, titanium chelating agents, aluminum chelating agents, aromatic amine compounds and alkoxy group-containing A compound obtained by reacting a silicon compound can be contained.
  • the content of the adhesion improver is preferably 0.01 to 10% by mass in 100% by mass of the total amount of the resin composition excluding the solvent.
  • the resin composition of the present invention may contain a surfactant.
  • a surfactant By containing the surfactant, the wettability with the substrate can be improved.
  • surfactants include SH series, SD series, and ST series from Dow Corning Toray Co., Ltd., BYK series from BYK Chemie Japan Co., Ltd., KP series from Shin-Etsu Chemical Co., Ltd., and NOF Corporation.
  • Disform series of DIC Corporation "Megafac (registered trademark)” series of DIC Corporation, Florard series of Sumitomo 3M Limited, “Surflon (registered trademark)” series of Asahi Glass Co., Ltd., “Asahi Guard (registered trademark)” series of Asahi Glass Co., Ltd. )” series, Omnova Solution's Polyfox series, etc., Kyoeisha Chemical Co., Ltd.'s Polyflow series, Kusumoto Kasei Co., Ltd.'s "Disparon (registered trademark)” series, etc.
  • it may contain a methacrylic surfactant or the like.
  • the content is preferably 0.001 to 1% by mass in 100% by mass of the total amount of the resin composition excluding the solvent.
  • the resin composition of the present invention may contain inorganic particles.
  • Preferred specific examples of inorganic particles can include silicon oxide, titanium oxide, barium titanate, alumina, talc, and the like.
  • the primary particle diameter of the inorganic particles is preferably 100 nm or less, more preferably 60 nm or less.
  • the content of the inorganic particles is preferably 5 to 90% by mass in 100% by mass of the total amount of the resin composition excluding the solvent.
  • the total mass of all chlorine atoms and all bromine atoms contained in the resin composition is preferably 150 ppm or less, and 100 ppm or less, relative to the total mass of the solid content of the resin composition. More preferably, it is 2 ppm or less, which is the detection limit of combustion ion chromatography.
  • the total mass of the solid content of the resin composition refers to the mass obtained by subtracting the mass of the solvent from the total mass of the resin composition.
  • the lower limit of the total mass of all chlorine atoms and all bromine atoms is 0 ppm, and below the detection limit of combustion ion chromatography is regarded as 0 ppm.
  • a method for producing the resin composition of the present invention will be described.
  • a xanthene compound (b), an alkali-soluble resin (a), and, if necessary, a photosensitive compound (c), a colorant (d), a thermochromic compound, a radically polymerizable compound, a thermal cross-linking agent, a solvent, and an adhesion improver for example, a xanthene compound (b), an alkali-soluble resin (a), and, if necessary, a photosensitive compound (c), a colorant (d), a thermochromic compound, a radically polymerizable compound, a thermal cross-linking agent, a solvent, and an adhesion improver.
  • the resin composition of the present invention can be obtained by dissolving the agent, surfactant, inorganic particles, and the like.
  • Dissolution methods include stirring and heating.
  • the heating temperature is preferably set within a range that does not impair the performance of the resin composition, and is usually room temperature to 80°C.
  • the order of dissolving each component is not particularly limited, and for example, a method of dissolving compounds in order of low solubility can be mentioned.
  • ingredients that tend to generate bubbles during stirring and dissolution such as surfactants and some adhesion improvers, by adding them at the end after dissolving the other ingredients, the other ingredients will not be dissolved due to the generation of bubbles. can be prevented.
  • the obtained resin composition is preferably filtered using a filtration filter to remove dust and particles.
  • filter pore sizes include, but are not limited to, 0.5 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, 0.07 ⁇ m, 0.05 ⁇ m, and 0.02 ⁇ m.
  • Materials for the filter include polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), and the like. Among them, polyethylene and nylon are preferred.
  • the method for producing a cured product of the present invention comprises, on a substrate, the steps of forming a resin film made of a resin composition containing a photosensitive compound (c) among the resin compositions of the present invention, and exposing the resin film. 3.
  • a method for producing a cured product, comprising the steps of developing an exposed resin film and heat-treating the developed resin film.
  • the resin film can be obtained by coating a resin composition containing a photosensitive compound (c) among the resin compositions of the present invention to obtain a coating film of the resin composition, and drying the coated film. .
  • Examples of methods for applying the resin composition of the present invention include spin coating, slit coating, dip coating, spray coating, and printing.
  • the slit coating method is preferable because it can be applied with a small amount of coating liquid and is advantageous for cost reduction.
  • the amount of the coating liquid required for the slit coating method is, for example, about 1/5 to 1/10 of that for the spin coating method.
  • Examples of slit nozzles used for coating include "Linear Coater” manufactured by Dainippon Screen Mfg. Co., Ltd., "Spinless” manufactured by Tokyo Ohka Kogyo Co., Ltd., “TS Coater” manufactured by Toray Engineering Co., Ltd., and Chugai Ro Kogyo Co., Ltd.
  • the coating speed is generally in the range of 10 mm/sec to 400 mm/sec.
  • the film thickness of the coating film varies depending on the solid content concentration and viscosity of the resin composition, but it is usually applied so that the film thickness after drying is 0.1 to 10 ⁇ m, preferably 0.3 to 5 ⁇ m.
  • the base material to be coated with the resin composition may be pretreated with the adhesion improver described above.
  • a pretreatment method for example, 0.5 to 20% by mass of an adhesion improver is added to a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, and diethyl adipate.
  • a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, and diethyl adipate.
  • a method of treating the base material surface using the dissolved solution can be mentioned. Methods for treating the substrate surface include spin coating, slit die coating, bar coating, dip coating, spray coating, vapor treatment, and the like.
  • drying treatment under reduced pressure is performed as necessary.
  • the speed of drying under reduced pressure depends on the volume of the vacuum chamber, the capacity of the vacuum pump, the diameter of the pipe between the chamber and the pump, and the like. is preferably set to A general vacuum drying time is often about 30 seconds to 100 seconds, and the ultimate pressure in the vacuum chamber at the end of the vacuum drying is usually 100 Pa or less with the coated substrate present. By setting the ultimate pressure to 100 Pa or less, the surface of the coating film can be kept in a dry state with reduced stickiness, thereby suppressing surface contamination and particle generation during subsequent substrate transport.
  • the heating time is preferably from 1 minute to several hours.
  • the heating temperature varies depending on the type and purpose of the coating film, but is preferably 80° C. or higher, more preferably 90° C. or higher, from the viewpoint of accelerating solvent drying during prebaking.
  • the temperature is preferably 150° C. or lower, more preferably 140° C. or lower, from the viewpoint of reducing the progress of curing during prebaking.
  • a resin film containing a photosensitive compound (c) can form a pattern.
  • a desired pattern can be formed by exposing the resin film to actinic rays through a photomask having a desired pattern, followed by development.
  • the photomask used for exposure is preferably a halftone photomask having a light-transmitting portion, a light-shielding portion, and a semi-light-transmitting portion.
  • a pattern having a step shape can be formed after development.
  • the portion formed from the light shielding portion corresponds to the thick film portion
  • the portion formed from the light shielding portion corresponds to the thick film portion.
  • the portion formed from the tone exposure portion corresponds to the thin film portion.
  • the transmittance of the semi-light-transmitting portion is preferably 5% or more, more preferably 10% or more.
  • the transmittance of the semi-transparent portion is within the above range, the step between the thick film portion and the thin film portion can be clearly formed.
  • the transmittance of the translucent portion is preferably 30% or less, preferably 25% or less, more preferably 20% or less, and most preferably 15% or less.
  • the film thickness of the thin film portion can be formed thick, even when forming a black cured product having a low optical density in visible light per 1 ⁇ m of film thickness. , the optical density of the entire film can be increased.
  • Actinic rays used for exposure include ultraviolet rays, visible rays, electron beams, and X-rays.
  • the exposed portion dissolves in the developer.
  • the exposed areas are cured and rendered insoluble in the developer.
  • Developers include tetramethylammonium hydroxide, diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethyl
  • alkaline compounds such as aminoethyl methacrylate, cyclohexylamine, ethylenediamine and hexamethylenediamine are preferred.
  • Polar solvents such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone and dimethylacrylamide, and alcohols such as methanol, ethanol and isopropanol are added to these alkaline aqueous solutions.
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate; and ketones such as cyclopentanone, cyclohexanone, isobutyl ketone and methyl isobutyl ketone.
  • developing methods include methods such as spray, paddle, immersion, and ultrasonic waves.
  • the pattern formed by development is preferably rinsed with distilled water.
  • Alcohols such as ethanol and isopropyl alcohol, and esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to distilled water for rinsing.
  • the heat treatment temperature is preferably 180° C. or higher, more preferably 200° C. or higher, even more preferably 230° C. or higher, and particularly preferably 250° C. or higher, from the viewpoint of further reducing the amount of outgassing generated from the cured product.
  • the temperature is preferably 500° C. or lower, more preferably 450° C. or lower. Within this temperature range, the temperature may be raised stepwise or may be raised continuously. From the viewpoint of further reducing the amount of outgas, the heat treatment time is preferably 30 minutes or longer.
  • the time is preferably 3 hours or less.
  • a first aspect of the cured product of the present invention is a cured product obtained by curing the resin composition of the present invention.
  • the resin composition of the present invention contains a polyimide precursor, a polybenzoxazole precursor, a copolymer thereof, or a copolymer of them and a polyimide, an imide ring or an oxazole ring is formed by heat treatment. Therefore, heat resistance and chemical resistance can be further improved.
  • the xanthene compound (b), (d-2) component, (d-1) component and/or thermochromic compound and optionally (d-3) component are used in combination to obtain visible light.
  • the heat treatment temperature is preferably 180° C. or higher, more preferably 200° C. or higher, even more preferably 230° C. or higher, and particularly preferably 250° C. or higher, from the viewpoint of further reducing the amount of outgassing generated from the cured product.
  • the temperature is preferably 500° C. or lower, more preferably 450° C. or lower.
  • the temperature may be raised stepwise or may be raised continuously.
  • the heat treatment time is preferably 30 minutes or longer.
  • the time is preferably 3 hours or less. For example, there is a method of performing heat treatment at 150° C. and 250° C. for 30 minutes each, and a method of performing heat treatment while linearly increasing the temperature from room temperature to 300° C. over 2 hours.
  • a second aspect of the cured product of the present invention is a cured product containing a xanthene compound (b′) represented by formula (2) (hereinafter sometimes referred to as a cured product of the second aspect). be.
  • a 1 to A 4 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 10 carbon atoms which may have an electron-donating substituent. However, at least three of A 1 to A 4 are aryl groups having 6 to 10 carbon atoms which may have the electron donating substituent, and the number of carbon atoms which may have the electron donating substituent At least one of the 6-10 aryl groups has an electron-donating substituent.
  • R 1 to R 4 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkoxy group, -SO 3 H, -SO 3 - , -SO 3 NR 6 R 7 , -COOH, -COO - , -COOR 8 , —CONR 9 R 10 represents a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R5 represents a hydrogen atom, -SO3H , -SO3- , -SO3NR6R7 , -COOH , -COO- , -COOR8 , -CONR9R10 ;
  • R 6 to R 10 each independently represent a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • the xanthene compound (b') represented by Formula (2) shall be neutral or cationic in charge.
  • the cured product of the second aspect preferably further contains a coloring agent (d) other than the formula (2), and at 350 to 800 nm, any of the range of 490 nm or more and less than 580 nm More preferably, it contains a coloring agent (d-2) having a maximum absorption wavelength.
  • xanthene compound (b') represented by formula (2) are the same as those of the xanthene compound (b) represented by formula (1).
  • the resin composition and cured product containing the xanthene compound (b) of the present invention can be used for surface protective layers and interlayer insulating layers of semiconductor elements, insulating layers of organic electroluminescence (hereinafter referred to as EL) elements, and organic EL elements.
  • EL organic electroluminescence
  • CMOS complementary metal-oxide-semiconductor
  • PFRAM Polymer Ferroelectric RAM
  • OUM Phase Change RAM
  • a display device including a first electrode formed on a substrate and a second electrode provided opposite to the first electrode for example, a display device using an LCD, ECD, ELD, or an organic electroluminescence device (Organic electroluminescence device) It can also be used as an insulating layer.
  • An organic EL display device, a semiconductor device, and a semiconductor electronic component will be described below as examples.
  • An organic EL display device of the present invention is an organic EL display device having a driving circuit, a planarizing layer, a first electrode, an insulating layer, a light-emitting layer and a second electrode on a substrate, wherein the planarizing layer and/or the insulating layer A layer has the cured product of the present invention.
  • the substrate is a part of the organic EL display device.
  • the insulating layer contains the cured product of the present invention, and that the insulating layer has an optical density of 0.5 to 1.5 in visible light per 1 ⁇ m of film thickness.
  • the cured product can improve the light-shielding property, so in a display device such as an organic EL display device or a liquid crystal display device, visualization of electrode wiring and external light reflection can be further reduced. , the contrast in image display can be improved. Further, when the OD value is 1.5 or less, the sensitivity at the time of exposure when a resin composition containing a photosensitive compound is formed can be improved.
  • the thickness of the insulating layer is preferably 1.0 to 5.0 ⁇ m, more preferably 1.5 ⁇ m or more, and still more preferably 2.0 ⁇ m or more.
  • a substrate made of glass, various plastics, or the like is provided with TFTs and wirings located on the sides of the TFTs and connected to the TFTs, and unevenness is covered thereon.
  • a planarization layer is thus provided, and a display element is provided on the planarization layer.
  • the display element and the wiring are connected through a contact hole formed in the planarization layer.
  • the substrate having the above-described drive circuit includes a resin film in the organic EL display device.
  • a cured product obtained by curing the resin composition of the present invention is used as an insulating layer or a flattening layer of such a flexible display device, it is particularly preferably used because of its excellent bending resistance.
  • Polyimide is particularly preferred as the resin film from the viewpoint of improving adhesion to the cured product obtained by curing the resin composition of the present invention.
  • the organic EL display device of the present invention preferably further comprises a color filter having a black matrix in order to enhance the effect of reducing external light reflection.
  • the black matrix preferably contains a resin such as epoxy resin, acrylic resin, urethane resin, polyester resin, polyimide resin, polyolefin resin, or siloxane resin.
  • the black matrix contains a coloring agent.
  • a coloring agent for example, a black organic pigment, a mixed color organic pigment, a black inorganic pigment, or the like can be contained.
  • black organic pigments that can be used include carbon black, perylene black, aniline black, and benzofuranone pigments.
  • Mixed-color organic pigments may contain, for example, pseudo-black pigments obtained by mixing two or more pigments such as red, blue, green, purple, yellow, magenta and/or cyan.
  • Black inorganic pigments include, for example, graphite; fine particles of metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, and silver; metal oxides; metal composite oxides; metal sulfides; substances; metal oxynitrides; metal carbides and the like.
  • metals such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, and silver
  • metal oxides such as titanium, copper, iron, manganese, cobalt, chromium, nickel, zinc, calcium, and silver
  • metal oxides such as titanium composite oxides
  • metal sulfides such as sodium shieldide
  • substances metal oxynitrides
  • metal carbides and the like are preferred.
  • the OD value of the black matrix is preferably 1.5 or more, more preferably 2.5 or more, and even more preferably 4.5 or more.
  • FIG. 1 A cross-sectional view of an example of a TFT substrate is shown in FIG.
  • Bottom gate type or top gate type TFTs (thin film transistors) 1 are provided in a matrix on a substrate 6 , and a TFT insulating layer 3 is formed to cover the TFTs 1 .
  • a wiring 2 connected to the TFT 1 is provided on the TFT insulating layer 3 .
  • a flattening layer 4 is provided on the TFT insulating layer 3 so as to bury the wiring 2 therein.
  • a contact hole 7 reaching the wiring 2 is provided in the planarization layer 4 .
  • An ITO (transparent electrode) 5 is formed on the planarization layer 4 while being connected to the wiring 2 through the contact hole 7 .
  • the ITO 5 becomes an electrode of a display element (for example, an organic EL element).
  • An insulating layer 8 is formed so as to cover the periphery of the ITO 5 .
  • the organic EL element may be of a top emission type in which light is emitted from the side opposite to the substrate 6, or may be of a bottom emission type in which light is extracted from the substrate 6 side. In this manner, an active matrix type organic EL display device is obtained in which the TFTs 1 for driving the organic EL elements are connected to the respective organic EL elements.
  • the TFT insulating layer 3, the planarizing layer 4 and/or the insulating layer 8 are formed by, as described above, the steps of forming a resin film made of the resin composition of the present invention, exposing the resin film, and developing the exposed resin film. and a step of heat-treating the developed resin film.
  • An organic EL display device can be obtained by a manufacturing method including these steps.
  • the display device of the present invention is a display device comprising at least metal wiring, the cured product of the present invention, and a plurality of light-emitting elements, wherein the light-emitting element has a pair of electrode terminals on one surface thereof, and the pair of The electrode terminals of (1) are connected to the plurality of metal wirings extending in the cured product, and the plurality of metal wirings are configured to maintain electrical insulation due to the cured product.
  • the display device of the present invention refers to a display device other than an organic EL display device.
  • a display device 11 has a plurality of light emitting elements 12 arranged on a counter substrate 15 and a cured product 13 arranged on the light emitting elements 12 .
  • the term "on the light emitting element” means not only the surface of the light emitting element but also the support substrate and the upper side of the light emitting element.
  • the embodiment shown in FIG. 2 exemplifies a configuration in which a plurality of cured products 13 are further laminated on the cured product 13 arranged so as to be in contact with at least a part of the light emitting element 12, and a total of three layers are laminated.
  • the cured product 13 may be a single layer.
  • the light emitting element 12 has a pair of electrode terminals 16 on the surface opposite to the surface in contact with the counter substrate 15 , and each electrode terminal 16 is connected to a metal wiring 14 extending through the cured product 13 .
  • the cured product 13 also functions as an insulating layer. It's becoming A structure in which the metal wiring maintains electrical insulation means that a portion of the metal wiring that requires electrical insulation is covered with a cured product obtained by curing a resin composition containing an alkali-soluble resin (a). means.
  • the state in which the insulating layer has electrical insulation means the state in which the volume resistivity of the insulating layer is 10 12 ⁇ cm or more.
  • the light emitting element 12 is electrically connected to a driving element 18 attached to a light emitting element driving substrate 17 provided at a position facing the counter substrate 15 through metal wirings 14 and 14c. Light emission can be controlled.
  • the light emitting element driving substrate 17 is electrically connected to the metal wiring 14 via solder bumps 20, for example.
  • a barrier metal 19 may be provided in order to prevent diffusion of metal such as the metal wiring 14 .
  • the cured product 13 is black and has an OD value of 0.5 to 1.5 in visible light per 1 ⁇ m of thickness of the insulating layer.
  • the cured product can improve the light-shielding property, so in a display device such as an organic EL display device or a liquid crystal display device, visualization of electrode wiring and external light reflection can be further reduced. , the contrast in image display can be improved. Further, when the OD value is 1.5 or less, the sensitivity at the time of exposure when a resin composition containing a photosensitive compound is formed can be improved.
  • the transmission spectrum of the prebaked film B is converted into absorbance and subtracted from the transmission spectrum of the prebaked film A to obtain the transmission spectrum derived from the xanthene compound (b). It was judged to be "A” when it was present, “B” when it was at 580 nm or more and less than 600 nm, and "C” when it was at less than 580 nm.
  • the transmission spectra of the prebaked film and the cured product at a wavelength of 300 nm to 800 nm are measured in the same manner as in (1), and from the transmission spectra of the prebaked film A and the cured film A, the corresponding transmission spectra of the prebaked film B and the cured film B are obtained.
  • the transmission spectra of the prebaked film and the cured film derived from the xanthene compound (b) were obtained by converting to absorbance and then subtracting the absorbance.
  • the absorbance at the maximum absorption wavelength is calculated from the transmission spectra of the prebaked film and the cured film derived from the obtained xanthene compound (b), and the absorbance change rate (absorbance of the cured product derived from the xanthene compound (b) / derived from the xanthene compound (b) of the pre-baked film) (%) was calculated.
  • the rate of change in absorbance was 90% or more, it was judged as "A"; when it was less than 90% and 75% or more, it was judged as "B";
  • TMAH tetramethylammonium aqueous solution
  • the resulting pattern was observed with an FPD microscope MX61 (manufactured by Olympus Corporation) at a magnification of 20 times to measure the aperture diameter of the holes.
  • the minimum exposure dose at which the contact hole diameter reached 10 ⁇ m was determined and defined as the sensitivity. If the sensitivity was less than 120 mJ/ cm2 , it was judged as "A”; if it was 120 mJ/ cm2 or more and less than 150 mJ/ cm2 , it was judged as "B"; bottom.
  • the measurement area was about 201 cm 2 inside a circle with a radius of 8 cm from the center of the wafer, and the number of foreign substances (defect density) per 1 cm 2 of the coating film was obtained.
  • TOF-SIMS analysis was performed.
  • the TOF-SIMS device and measurement conditions used for analysis are as follows.
  • Apparatus ION-TOF "TOF.SIMS5" Primary ion: Bi 3 ++ Acceleration voltage of primary ions: 30 kV Primary ion current: 0.1 pA Etching ion: Ar gas cluster ion Etching ion acceleration voltage: 5.0 kV Measurement range: 200 ⁇ m ⁇ 200 ⁇ m.
  • Synthesis Example 1 Synthesis of hydroxyl group-containing diamine compound ( ⁇ ) 18.3 g (0.05 mol) of 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (hereinafter referred to as BAHF) was added to 100 mL of acetone, It was dissolved in 17.4 g (0.3 mol) of propylene oxide and cooled to -15°C. A solution prepared by dissolving 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride in 100 mL of acetone was added dropwise thereto. After completion of the dropwise addition, the mixture was allowed to react at -15°C for 4 hours, and then returned to room temperature. The precipitated white solid was filtered off and vacuum dried at 50°C.
  • BAHF 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane
  • Synthesis Example 2 Synthesis of quinonediazide compound (c-1) 21.22 g (0.05 mol) of TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 5-naphthoquinonediazide sulfonyl chloride 26 were mixed under a stream of dry nitrogen. .87 g (0.10 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. 15.18 g of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise thereto so that the inside of the system did not reach 35° C. or higher. After dropping, the mixture was stirred at 30°C for 2 hours.
  • TrisP-PA trade name, manufactured by Honshu Chemical Industry Co., Ltd.
  • Synthesis Example 3 Synthesis of alkali-soluble resin (a-1) 3,3′,4,4′-diphenyl ether tetracarboxylic dianhydride (hereinafter referred to as ODPA) 31.0 g (0.10 mol) under dry nitrogen stream was dissolved in 500 g of 1-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP). 45.35 g (0.075 mol) of the hydroxyl group-containing diamine compound ( ⁇ ) obtained in Synthesis Example 1 and 1,3-bis(3-aminopropyl)tetramethyldisiloxane (hereinafter referred to as SiDA)1.
  • ODPA 3,3′,4,4′-diphenyl ether tetracarboxylic dianhydride
  • NMP 1-methyl-2-pyrrolidone
  • SiDA 1,3-bis(3-aminopropyl)tetramethyldisiloxane
  • Synthesis Example 4 Synthesis of xanthene compound (b-1)
  • 20.26 g (0.05 mol) of the compound represented by ( ⁇ ) 120 g of ethylene glycol and 20.58 g of 4-ethoxyaniline ( 0.15 mol) was heated and stirred at 120° C. for 18 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, and then added dropwise to 450 g of 17.5% by mass hydrochloric acid at 0 to 10° C. and stirred for 1 hour.
  • a xanthene compound (b-1) in which three of the nitrogen atoms were substituted with aryl groups.
  • the resulting compound was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound.
  • Synthesis Example 5 Synthesis of xanthene compound (b-2) 18.46 g (0.05 mol) of a compound represented by ( ⁇ ) in the following reaction formula [2], 120 g of sulfolane, 13.63 g of zinc chloride and 4-ethoxyaniline 20.58 g (0.15 mol) of the mixture was heated and stirred at 170° C. for 8 hours. After completion of the reaction, the reaction solution was allowed to cool to room temperature, and then added dropwise to 450 g of 17.5% by mass hydrochloric acid at 0 to 10° C. and stirred for 1 hour.
  • a xanthene compound (b-2) in which four nitrogen atoms were substituted with aryl groups.
  • the obtained compound was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound.
  • Synthesis Example 6 Synthesis of xanthene compound (b-3)
  • 8.10 g (0.01 mol) of the xanthene compound (b-2) obtained in Synthesis Example 5 2.54 g (0.01 mol) of diphenylamine, 0.015 mol
  • 10.11 g (0.1 mol) of triethylamine and 150 g of 1,2-dichloroethane, 1.69 g (0.011 mol) of phosphorus oxychloride was added dropwise at room temperature, and the mixture was stirred at 85° C. for 3 hours. It was heated and stirred.
  • reaction solution was allowed to cool to room temperature, poured into 300 g of pure water, and extracted with 100 g of chloroform. After the organic layer was washed with 150 g of 4 mol/L hydrochloric acid and 150 g of pure water, the solvent was distilled off to obtain xanthene compound (b-3) in which xanthene compound (b-2) was amidated.
  • xanthene compound (b-3) was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound.
  • Synthesis Example 7 Synthesis of xanthene compound (b-4)
  • compound (b-2-1) obtained in the same manner as in Synthesis Example 5 22.83 g (0.04 mol), 1- A mixture of 150 g of methyl-2-pyrrolidone, 1.3 g of copper powder, 8.3 g of potassium carbonate and 17.43 g (0.08 mol) of 3-iodotoluene was heated and stirred at 150° C. for 12 hours. After completion of the reaction, the reaction solution was filtered to remove insoluble matter, and the reaction solution was added dropwise to 450 g of 17.5% mass hydrochloric acid at 0 to 10° C. and stirred for 1 hour.
  • a xanthene compound in which four nitrogen atoms were substituted with aryl groups In a mixture of 7.51 g (0.01 mol) of the xanthene compound obtained, 2.54 g (0.015 mol) of diphenylamine, 10.11 g (0.1 mol) of triethylamine and 150 g of 1,2-dichloroethane at room temperature 1.69 g (0.011 mol) of phosphorus oxychloride was added dropwise, and the mixture was heated and stirred at 85° C. for 3 hours.
  • reaction solution was allowed to cool to room temperature, poured into 300 g of pure water, and extracted with 100 g of chloroform. After the organic layer was washed with 150 g of 4 mol/L hydrochloric acid and 150 g of pure water, the solvent was distilled off to obtain an amidated xanthene compound (b-4).
  • the resulting compound was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound.
  • Synthesis Example 8 Synthesis of xanthene compound (b-5)
  • compound (b-4) obtained in the same manner as in Synthesis Example 7 was N,N-
  • the solution was dissolved in 150 g of dimethylformamide (DMF), 2.91 g (0.015 mol) of sodium p-toluenesulfonate was added, and the mixture was heated and stirred at 40° C. for 3 hours. After allowing the reaction solution to cool to room temperature, the reaction solution is poured into 1000 g of pure water, the precipitated crystals are collected by filtration, washed with water, and dried at 60° C. for 24 hours to obtain the counter ion of (b-4).
  • a xanthene compound (b-5) was obtained by exchanging the .
  • the obtained compound was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound.
  • Synthesis Example 9 Synthesis of xanthene compound (b-6) A xanthene compound (b-6) was obtained by exchanging the counter ion of (b-4) in the same manner as in Synthesis Example 8 except that The resulting compound was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound.
  • Synthesis Example 10 Synthesis of xanthene compound (b-7)
  • the obtained compound was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound.
  • Synthesis example 11 Synthesis of xanthene compound (b-8) A xanthene compound (b-8) was obtained by exchanging the counter ion of (b-4) in the same manner as in Synthesis Example 5 except that the xanthene compound (b-8) was obtained. The obtained compound was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound. LC-MS (ESI, posi): m/z 903 [M+H] + LC-MS (ESI, nega): m/z 149 [M] -
  • Synthesis Example 12 Synthesis of xanthene compound (b-9) In the following reaction formula [11], 2.91 g (0.015 mol) of sodium p-toluenesulfonate was replaced with 5.13 g (0.015 mol) of sodium tetraphenylborate. A xanthene compound (b-9) was obtained in the same manner as in Synthesis Example 8 except that the counter ion of (b-4) was exchanged. The obtained compound was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound. LC-MS (ESI, posi): m/z 903 [M+H] + LC-MS (ESI, nega): m/z 319 [M] -
  • Synthesis Example 13 Synthesis of xanthene compound (b-10)
  • a xanthene compound (b-10) was obtained by exchanging the counter ion of (b-4) in the same manner as in Synthesis Example 8, except that the counter ion was changed to (b-10).
  • the obtained compound was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound.
  • Synthesis Example 11 Synthesis of xanthene compound (b-11) In the following reaction formula [13], 20.58 g (0.15 mol) of 4-ethoxyaniline was replaced with 16.07 g (0.15 mol) of p-toluidine. In the same manner as in Synthesis Example 5, a xanthene compound (b-11-1) having four nitrogen atoms substituted with aryl groups was obtained. Next, the same procedure as in Synthesis Example 6 except that the obtained xanthene compound (b-2) was 8.10 g (0.01 mol) and the xanthene compound (b-11-1) was 6.90 g (0.01 mol).
  • a xanthene compound (b-11) obtained by amidating the xanthene compound (b-11-1) was obtained.
  • the resulting compound was subjected to LC-MS analysis using LC-MS2020 (manufactured by Shimadzu Corporation) and confirmed to be the target compound.
  • the names of the compounds used in Examples and Comparative Examples are shown below.
  • the colorant (d) is synthesized using a known method, and a UV-visible spectrophotometer MultiSpec-1500 (manufactured by Shimadzu Corporation) is used to measure the transmission spectrum at a wavelength of 300 nm to 800 nm in a GBL solution.
  • the maximum absorption wavelength was calculated by The maximum absorption wavelength of compound (d10-2-1) was 534 nm, and the maximum absorption wavelength of compound (d10-2-2) was 536 nm.
  • e-1 4,4',4''-methylidine trisphenol (thermochromogenic compound)
  • GBL ⁇ -butyrolactone
  • EL Ethyl lactate
  • PGME Propylene glycol monomethyl ether
  • Example 1 7.0 g of polyimide precursor (a-1) and 0.5 g of xanthene compound (b-1) were added to 20 g of GBL to obtain varnish A1 of a resin composition containing xanthene compound (b). Further, 7.0 g of polyimide precursor (a-1) was added to 20 g of GBL to obtain varnish B1 of a resin composition containing no xanthene compound (b). Using the obtained varnishes A1 and B1, the maximum absorption wavelength of 350 to 800 nm and the heat resistance of the dye were evaluated as described above.
  • Example 12 Polyimide precursor (a-1) 10.0 g, xanthene compound (b) 2.0 g, photosensitive compound (c-1) 2.0 g, (d10-2-2) 1.0 g, (e-1) 2 0 g of the solution was dissolved in 10 g of GBL, 20 g of EL and 70 g of PGME, and filtered through a 0.2 ⁇ m polytetrafluoroethylene filter to obtain varnish AA of a positive photosensitive resin composition. Using the obtained varnish, the sensitivity, OD value, and change in OD value were evaluated as described above.
  • Example 26 Using the cured film of the resin composition AE obtained in Example 16, the xanthene compound (b') in the cured film was analyzed by TOF-SIMS as in the previous term. As a result of the analysis, a molecular ion of m/z 902 ( 902 C 62 H 52 N 3 O 4 ) was confirmed. From this result, it was confirmed that the cured film of the resin composition AE contained the cation moiety of the xanthene compound (b-5).
  • Tables 1 to 4 show the composition and evaluation results of each example and comparative example.
  • TFT thin film transistor
  • Wiring 3 TFT insulating layer 4: Flattening layer 5: ITO (transparent electrode) 6: Substrate 7: Contact hole 8: Insulating layer 11: Display device 12: Light emitting element 13: Cured material 14, 14c: Metal wiring 15: Counter substrate 16: Electrode terminal 17: Light emitting element driving substrate 18: Driving element 19: Barrier Metal 20: solder bumps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Photolithography (AREA)

Abstract

本発明は、高い耐熱性を有し、従来のキサンテン化合物と比較して可視光の長波長領域まで遮光することができるキサンテン化合物を提供することを目的とする。 上記課題を解決するため、本発明のキサンテン化合物(b)は、式(1)で表されるキサンテン化合物(b)である。

Description

キサンテン化合物、樹脂組成物、硬化物、硬化物の製造方法、有機EL表示装置および表示装置
 本発明は、キサンテン化合物およびそのキサンテン化合物を用いた樹脂組成物ならびにその樹脂組成物を用いた有機EL表示装置等に関する。
 スマートフォン、タブレットPC、テレビなど、薄型ディスプレイを有する表示装置において、有機エレクトロルミネッセンス(以下、「有機EL」)表示装置を用いた製品が多く開発されている。一般に、有機EL表示装置は、基板上に、駆動回路、平坦化層、第一電極、絶縁層、発光層および第二電極を有し、対向する第一電極と第二電極との間に電圧を印加することで発光することができる。これらのうち、平坦化層用材料および絶縁層用材料としては、紫外線照射によるパターニング可能な感光性樹脂組成物が一般に用いられている。中でもポリイミド系の樹脂を用いた感光性樹脂組成物は、樹脂の耐熱性が高く、硬化物から発生するガス成分が少ないため、高信頼性の有機EL表示装置を得られる点で好適に用いられている。
 近年、有機EL表示装置の光取り出し効率向上を目的とし、偏光板の薄膜化や偏光板レスの表示装置が開発されており、コントラストを向上させるために絶縁層や平坦化層の可視光の透過率を低くすることが求められている。
 硬化物における可視光の透過率を低下させ、黒色度を上げる技術としては、液晶表示装置用ブラックマトリクス材料やRGBペースト材料にみられるように、樹脂組成物にカーボンブラックや有機・無機顔料、染料などの着色剤を添加する方法が挙げられる。
 ポジ型感光性樹脂組成物において硬化物の黒色度を上げる技術としては、例えばノボラック樹脂および/またはビニル重合体からなるアルカリ可溶性樹脂にキノンジアジド化合物と黒色顔料を添加する方法(特許文献1参照)、可溶性ポリイミドに感光剤、黒色顔料を添加する方法(特許文献2参照)、ポリイミドおよび/またはポリイミド前駆体からなるアルカリ可溶性樹脂に感光剤と黄色、赤色、青色の染料および/または顔料を添加する方法(特許文献3参照)、などがある。また、耐熱性の高く、モル吸光係数が大きい染料として、例えばキサンテン化合物が知られている(特許文献4、5参照)。
特開平6-230215号公報 特開2003-119381号公報 特開2018-63433号公報 特開2014-9330号公報 特開2020-111627号公報
 従来のキサンテン化合物は、耐熱性は高いものの、最大吸収波長を550nmあたりに有し、可視光の特に長波長領域の遮光性が十分ではなかった。
 上記課題を解決するため、本発明は、以下の構成を有する。
[1]式(1)で表されるキサンテン化合物(b)。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、A~Aはそれぞれ独立に、水素原子、炭素数1~10のアルキル基または電子供与性置換基を有してもよい炭素数6~10のアリール基を表す。ただし、A~Aのうち少なくとも3つは該電子供与性置換基を有してもよい炭素数6~10のアリール基であり、該電子供与性置換基を有してもよい炭素数6~10のアリール基のうち少なくとも1つは電子供与性置換基を有する。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、水酸基、アルコキシ基、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10、炭素原子数1~20の1価の炭化水素基を表す。Rは水素原子、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10を表す。R~R10は、それぞれ独立に、炭素原子数1~20の1価の炭化水素基を表す。Zはアニオン化合物を表し、nは0または1を表す。ただし、式(1)で表されるキサンテン化合物(b)は、全体として電荷的に中性であるものとする。)
[2]前記電子供与性置換基のハメット則の置換基定数σ値が、-0.20以下である上記[1]に記載のキサンテン化合物(b)。
[3]前記式(1)において、nが0である上記[1]または[2]に記載のキサンテン化合物(b)。
[4]前記式(1)において、nが1であり、Zが脂肪族または芳香族のスルホナートイオンである上記[1]または[2]に記載のキサンテン化合物(b)。
[5]上記[1]~[4]のいずれかに記載のキサンテン化合物(b)とアルカリ可溶性樹脂(a)を含む樹脂組成物。
[6]さらに感光性化合物(c)を含む上記[5]に記載の樹脂組成物。
[7]前記感光性化合物(c)がキノンジアジド化合物を含む上記[6]に記載の樹脂組成物。
[8]さらに、350~800nmにおいて、490nm以上580nm未満の範囲のいずれかに最大吸収波長を有する着色剤(d-2)を含有する上記[5]~[7]のいずれかに記載の樹脂組成物。
[9]前記式(1)においてnが1かつZが有機アニオンであるキサンテン化合物(b1)、および有機イオン同士のイオン対を形成しているイオン性染料(d10)を含み、前記有機アニオンが1種類である上記[5]~[7]のいずれかに記載の樹脂組成物。
[10]前記アルカリ可溶性樹脂(a)が、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリアミドイミド、ポリアミドイミド前駆体およびそれら共重合体からなる群より選択される1種類以上を含む上記[5]~[9]のいずれかに記載の樹脂組成物。
[11]前記樹脂組成物中に含まれる全塩素原子と全臭素原子の総質量が、樹脂組成物の固形分の総質量に対して、150ppm以下である上記[5]~[10]のいずれかに記載の樹脂組成物。
[12]上記[5]~[10]のいずれかに記載の樹脂組成物を硬化した硬化物。
[13]式(2)で表されるキサンテン化合物(b’)を含有する硬化物。
Figure JPOXMLDOC01-appb-C000004
(式(2)中、A~Aはそれぞれ独立に、水素原子、炭素数1~10のアルキル基または電子供与性置換基を有してもよい炭素数6~10のアリール基を表す。ただし、A~Aのうち少なくとも3つは該電子供与性置換基を有してもよい炭素数6~10のアリール基であり、該電子供与性置換基を有してもよい炭素数6~10のアリール基のうち少なくとも1つは電子供与性置換基を有する。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、水酸基、アルコキシ基、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10、炭素原子数1~20の1価の炭化水素基を表す。Rは水素原子、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10を表す。R~R10は、それぞれ独立に、炭素原子数1~20の1価の炭化水素基を表す。ただし、式(2)で表されるキサンテン化合物(b’)は、電荷的に中性またはカチオン性であるものとする。)
[14]基板上に、上記[6]~[11]のいずれかに記載の樹脂組成物からなる樹脂膜を形成する工程、該樹脂膜を露光する工程、露光した樹脂膜を現像する工程および現像した樹脂膜を加熱処理する工程を含む硬化物の製造方法。
[15]前記樹脂膜を露光する工程において、露光時に用いるフォトマスクが、透光部、遮光部および半透光部を有するハーフトーンフォトマスクであり、透光部の透過率を100%とした時の半透光部の透過率が5%~30%である上記[14]に記載の硬化物の製造方法。
[16]基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層、および第2電極を有する有機EL表示装置であって、該平坦化層および/または絶縁層が上記[12]または[13]に記載の硬化物を有する有機EL表示装置。
[17]前記絶縁層が前記硬化物を有し、前記絶縁層の膜厚1μm当たりの可視光における光学濃度が0.5~1.5である上記[16]に記載の有機EL表示装置。
[18]さらにブラックマトリクスを有するカラーフィルタを具備する上記[16]または[17]に記載の有機EL表示装置。
[19]少なくとも金属配線、上記[12]または[13]に記載の硬化物、および複数の発光素子を有する表示装置であって、前記発光素子はいずれか一方の面に一対の電極端子を具備し、前記一対の電極端子は前記硬化物中に延在する複数本の前記金属配線と接続し、複数本の前記金属配線は、前記硬化物により電気的絶縁性を保持する構成である、表示装置。
 高い耐熱性を有し、従来のキサンテン化合物と比較して可視光の長波長領域まで遮光することができるキサンテン化合物を提供する。
有機EL表示装置の一例の断面図である。 表示装置の一例の断面図である。
 本発明の実施の形態について詳細に説明する。
 <キサンテン化合物(b)>
 本発明のキサンテン化合物(b)は、式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000005
 式(1)中、A~Aはそれぞれ独立に、水素原子、炭素数1~10のアルキル基または電子供与性置換基を有してもよい炭素数6~10のアリール基を表す。ただし、A~Aのうち少なくとも3つは該電子供与性置換基を有してもよい炭素数6~10のアリール基であり、該電子供与性置換基を有してもよい炭素数6~10のアリール基のうち少なくとも1つは電子供与性置換基を有する。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、水酸基、アルコキシ基、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10、炭素原子数1~20の1価の炭化水素基を表す。Rは水素原子、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10を表す。R~R10は、それぞれ独立に、炭素原子数1~20の1価の炭化水素基を表す。Zはアニオン化合物を表し、nは0または1を表す。ただし、式(1)で表されるキサンテン化合物(b)は、全体として電荷的に中性であるものとする。
 本発明のキサンテン化合物(b)は、式(1)において、A~Aのうち少なくとも3つは該電子供与性置換基を有してもよい炭素数6~10のアリール基であり、該電子供与性置換基を有してもよい炭素数6~10のアリール基のうち少なくとも1つは電子供与性置換基を有することにより、そうでないキサンテン化合物と比べて350~800nmにおける最大吸収波長を長波長化させることができる。
 上記、電子供与性置換基を有してもよい炭素数6~10のアリール基の炭素数6~10のアリール基としては、例えば、フェニル基、ナフチル基などを含有することができる。式(1)において、350~800nmにおける最大吸収波長をより長波長化できる観点から、A~Aの4つ全てがアリール基であることが好ましい。
 上記少なくとも3つの電子供与性置換基を有してもよい炭素数6~10のアリール基のうち少なくとも1つは電子供与性置換基を有する。式(1)における窒素原子上のアリール基が電子供与性置換基を有することにより、キサンテン化合物(b)の350~800nmにおける最大吸収波長をさらに長波長化させることができる。電子供与性置換基とは、有機電子論において、誘起効果や共鳴効果により、置換した原子団に、電子を供与する原子団である。電子供与性置換基としては、ハメット則の置換基定数σ値として、負の値をとるものが挙げられる。ハメット則の置換基定数σ値は、化学便覧基礎編改訂5版(II-380頁)から引用することができる。電子供与性置換基の具体例としては、例えば、アルキル基(メチル基のσ値:-0.17)やアルコキシ基(メトキシ基のσ値:-0.27)、アリールオキシ基(-OCのσ値:-0.32)、水酸基(-OHのσ値:-0.37)、アミノ基(-NHのσ値:-0.66)、アルキルアミノ基(-N(CHのσ値:-0.83)などを有することができる。
 キサンテン化合物(b)の350~800nmにおける最大吸収波長を長波長化できる観点から、電子供与性置換基のハメット則の置換基定数σ値が、-0.20以下であることが好ましく、-0.25以下であることが好ましく、-0.30以下であることがさらに好ましい。ハメット則の置換基定数σ値の下限は特に制限されないが、-0.90以上であることが好ましい。
 A~Aのうち、3つが電子供与性置換基を有してもよい炭素数6~10のアリール基の場合、2つ以上の電子供与性置換基を有してもよい炭素数6~10のアリール基が電子供与性置換基を有することが好ましく、3つの電子供与性置換基を有してもよい炭素数6~10のアリール基が電子供与性置換基を有することがより好ましい。
 A~Aのうち、4つが電子供与性置換基を有してもよい炭素数6~10のアリール基の場合、2つ以上の電子供与性置換基を有してもよい炭素数6~10のアリール基が電子供与性置換基を有することが好ましく、3つ以上の電子供与性置換基を有してもよい炭素数6~10のアリール基が電子供与性置換基を有することがより好ましく、4つの電子供与性置換基を有してもよい炭素数6~10のアリール基が電子供与性置換基を有することがさらに好ましい。
 電子供与性置換基の好ましい置換位置としては、キサンテン化合物(b)と窒素原子を介して結合している炭素原子に対し、パラ位またはオルト位であることが好ましく、パラ位であることがさらに好ましい。
 上記電子供与性置換基を有してもよい炭素数6~10のアリール基は、前述の電子供与性置換基以外の置換基を有してもよい。電子供与性置換基以外の置換基の例としては、例えば、アリール基、ハロゲン原子、-COORa、-OCORa、-SO 、-SORaで表される一価の基などを含有することができる。ただし、式(1)で表される化合物は全体として電荷的に中性であるため、炭素数6~10のアリール基が-SO を有する場合、-SO の置換数は1つであり、R~Rは中性基を有する。Raはアルキル基を表す。キサンテン化合物(b)の分子量を下げ、単位質量あたりの着色成分の割合を上げる観点から、電子供与性置換基以外の置換基は炭素数20以下が好ましく、10以下が好ましい。同観点から、Raは炭素数20以下が好ましく、炭素数10以下が好ましい。上記電子供与性置換基を有してもよい炭素数6~10のアリール基に結合するハメット則の置換基定数σ値の総和は、-0.20以下であることが好ましい。
 AとA、および/またはAとAは、それぞれ結合して環を形成してもよい。それらの環は単結合、または、窒素原子、酸素原子もしくは硫黄原子のいずれかの原子を介した結合によって環を形成していてもよい。また、その場合に形成される環としては、5員環または6員環が好ましい。形成される環の例としては、例えば、電子供与性置換基を有してもよい炭素数6~10のアリール基が単結合を介して2つ結合したカルバゾール環、電子供与性置換基を有してもよい炭素数6~10のアリール基と炭素数1~10のアルキル基が単結合を介して結合したインドール環などを含有することができる。
 R~Rはそれぞれ独立に、水素原子、ハロゲン原子、水酸基、アルコキシ基、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10、炭素原子数1~20の1価の炭化水素基を表す。R~R10は、それぞれ独立に、炭素原子数1~20の炭化水素基を表す。炭素原子数1~20の炭化水素基としては、アルキル基、シクロアルキル基、アリール基などを含有することができる。
 Rは水素原子、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10を表す。R~R10は、それぞれ独立に、炭素原子数1~20の1価の炭化水素基を表す。耐熱性を高める観点から、Rは水素原子、-SOH、-SO 、-SONR、-COOR、-CONR10であることが好ましく、-SOH、-SO 、-SONR、-CONR10であることがさらに好ましい。Rが-SONRである場合、耐熱性を高める観点から、R、Rのいずれかがアリール基であることが好ましく、RおよびRがアリール基であることがさらに好ましい。Rが-CONR10である場合、耐熱性を高める観点から、R、R10のいずれかがアリール基であることが好ましく、RおよびR10がアリール基であることがさらに好ましい。
 Zはアニオン化合物を表す。式(1)で表される化合物がZで表されるアニオン化合物を有する場合、nは1である。アニオン化合物は、無機アニオンおよび有機アニオンのどちらでもよく、無機イオンとしては塩素、臭素等のハライドイオン、有機イオンとしては脂肪族または芳香族のスルホナートイオン、脂肪族または芳香族カルボキシレートイオンの他にスルホンイミドアニオン[(RSON]、ボレートアニオン(BRなどを含有することができる。イオン式中のRは、それぞれ独立に置換基を有してもよく、炭素鎖中にヘテロ原子を有していてもよい炭素数1~20の1価の炭化水素基である。Rの置換基としては、炭素数1~10のアルキル基、炭素数1~10のアリール基、ハロゲン原子、水酸基、アルコキシ基、アリールオキシ基などが挙げられる。ヘテロ原子としては窒素原子、酸素原子、ハロゲン原子などが挙げられる。有機EL表示装置にキサンテン化合物(b)を有する樹脂組成物からなる硬化物を適用した際の、有機EL表示装置の電極や発光層の劣化を抑制する観点から、式(1)中のn=1であり、Zのアニオン化合物は、有機アニオンが好ましく、脂肪族または芳香族のスルホナートイオン、脂肪族または芳香族カルボキシレートイオン、スルホンイミドアニオン、ボレートアニオンであることが好ましい。さらに、後述するアルカリ可溶性樹脂(a)および感光性化合物(c)を含む樹脂組成物とした際の、感度を向上させる観点および残渣を低減する観点から、式(1)において、nが1であり、Zが脂肪族もしくは芳香族のスルホナートイオン、または脂肪族もしくは芳香族カルボキシレートイオンであることが好ましく、Zが脂肪族または芳香族のスルホナートイオンであることがさらに好ましい。脂肪族基としては、炭素数1~20の1価のアルキル基が好ましく、メチル基、エチル基、プロピル基、ブチル基の他、これらアルキル基の水素原子の一部をハロゲン原子で置換した基などが挙げられる。芳香族基としては、炭素数1~20の1価のアリール基が好ましく、フェニル基、トリル基、エチルフェニル基、プロピルフェニル基、ブチルフェニル基、ドデシルフェニル基などが挙げられる。1分子あたりの着色成分の割合を上げ、イオン性染料の添加量を下げることで感度を向上させる観点から、Zの分子量は、1000以下が好ましく、700以下が好ましく、300以下がさらに好ましい。Zの分子量の下限は特に限定されないが、1以上が好ましく、100以上がさらに好ましい。
 nは0または1を表す。ただし、式(1)で表される化合物は、全体として電荷的に中性であるものとする。電荷的に中性とは、式(1)で表される化合物の正電荷数と負電荷数が一致している状態を表す。式(1)で表される化合物が全体として電荷的に中性となるため、R~Rがアニオンを含む場合、R~Rのうち1つのみが-SO または-COOとなる。キサンテン化合物(b)におけるR~Rのうちいずれか1つのみが-SO または-COOの場合または炭素数6~10のアリール基が-SO を有する場合、分子中の置換基に対アニオンが存在するため、式(1)で表される化合物はZを有さなくても全体として電荷的に中性となり、nは0となる。一方、キサンテン化合物(b)におけるR~Rがいずれもアニオンを含まない場合または炭素数6~10のアリール基が-SO を有さない場合、式(1)で表される化合物が全体として電荷的に中性となるため、nは1となる。nが1の場合、式(1)で表される化合物はZを有する。キサンテン化合物(b)を有する樹脂組成物からなる硬化物へのハライドイオンの混入を防ぐ観点から、式(1)において、nが0であることが好ましい。一方、後述するアルカリ可溶性樹脂(a)および感光性化合物(c)を含む樹脂組成物とした際の、感度を向上させる観点から、nは1が好ましい。
 キサンテン化合物(b)は、350~800nmにおいて、580nm以上700nm以下の範囲のいずれかに最大吸収波長を有することが好ましい。一般的に窒素原子上がアルキル基で置換されているキサンテン化合物は350~800nmにおける最大吸収波長を550nm程度に有する赤色のスペクトルが得られるが、式(1)で表されるキサンテン化合物(b)は、A~Aのうち少なくとも3つは該電子供与性置換基を有してもよい炭素数6~10のアリール基であり、該電子供与性置換基を有してもよい炭素数6~10のアリール基のうち少なくとも1つは電子供与性置換基を有することにより、最大吸収波長が長波長化し、青色のスペクトルが得られる。キサンテン化合物(b)は、最大吸収波長を590nm以上700nm以下の範囲のいずれかに有することがより好ましく、600nm以上700nm以下の範囲のいずれかに有することがさらに好ましい。
 可視光の遮光性を高める観点から、樹脂組成物が、580nm以上700nm以下の波長範囲のいずれかに最大吸収波長を有するキサンテン化合物(b)と後述する350~800nmにおいて490nm以上580nm未満の範囲のいずれかに最大吸収波長を有する着色剤(d-2)とを含有し、さらに、後述する350~800nmにおいて400nm以上490nm未満の範囲に最大吸収波長を有する着色剤(d-1)、または後述する熱発色性化合物を含有することが好ましい。
 本発明のキサンテン化合物(b)は、公知のキサンテン化合物の製造方法に準じて製造することができ、特に限定されない。
 例えば、スルホンフルオレセインの二塩素化体と対応する芳香族アミン化合物を溶媒中で加熱撹拌させ、室温冷却後にこの反応液を塩酸水溶液に注ぎ撹拌する。次いで、析出物をろ取後、水やお湯で洗浄後、乾燥させることにより窒素原子上の2つが同じアリール基で置換されたキサンテン化合物が得られる。窒素原子上の2つが異なるアリール基で置換されたキサンテン化合物を製造する場合は、対応する半分の芳香族アミン化合物を、スルホンフルオレセインの二塩素化体を含む溶媒中に少量ずつ滴下し、反応後、残る一方の芳香族アミン化合物を滴下することにより得ることができる。
 続いて、窒素原子上の2つがアリール基で置換されたキサンテン化合物と対応する芳香族ハロゲン化合物を銅触媒と塩基を含む溶媒中で加熱撹拌させ、この反応溶液をろ過して不溶解物を除いた後、塩酸水溶液に注ぎ撹拌する。次いで、析出物をろ取後、水やお湯で洗浄後、乾燥させることにより窒素原子上の3つまたは4つがアリール基で置換されたキサンテン化合物が得られる。窒素原子上の3つがアリール基で置換されたキサンテン化合物の場合、さらに異なる芳香族ハロゲン化合物または脂肪族ハロゲン化合物を用いて同様に反応させることで、窒素原子上の4つがアリール基で置換されたキサンテン化合物または窒素原子上の3つがアリール基、1つがアルキル基で置換されたキサンテン化合物を得ることができる。
 <アルカリ可溶性樹脂(a)>
 本発明の樹脂組成物は、本発明のキサンテン化合物(b)とアルカリ可溶性樹脂(a)を含む。アルカリ可溶性とは、樹脂をγ-ブチロラクトンに溶解した溶液をシリコンウエハ上に塗布し、120℃で4分間プリベークを行って膜厚10μm±0.5μmのプリベーク膜を形成し、該プリベーク膜を23±1℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に1分間浸漬した後、純水でリンス処理したときの膜厚減少から求められる溶解速度が50nm/分以上であることをいう。
 アルカリ可溶性樹脂(a)は、アルカリ可溶性を有するため、樹脂の構造単位中および/またはその主鎖末端に水酸基および/または酸性基を有する。酸性基としては、例えば、カルボキシ基、フェノール性水酸基、スルホン酸基などを有することができる。
 アルカリ可溶性樹脂(a)としては、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体、ポリアミドイミド、ポリアミドイミド前駆体、ポリアミド、酸性基を有するラジカル重合性モノマーの重合体、フェノール樹脂などを含有することができるが、これに限定されない。樹脂組成物は、これらの樹脂を2種以上含有してもよい。
 中でも、現像密着性が高いこと、耐熱性に優れ、高温下におけるアウトガス量が少ないことによって、硬化物を有機EL表示装置に用いた時の長期信頼性が高いことから、アルカリ可溶性樹脂(a)が、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリアミドイミド、ポリアミドイミド前駆体およびそれら共重合体からなる群より選択される1種以上を含むことが好ましく、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体またはそれらの共重合体がより好ましい。さらに、感度をより向上させる観点から、ポリイミド前駆体またはポリベンゾオキサゾール前駆体がさらに好ましい。ここで、ポリイミド前駆体とは、加熱処理や化学処理によりポリイミドに変換される樹脂を指す。ポリイミド前駆体の例としては、例えば、ポリアミド酸、ポリアミド酸エステルなどを含有することができる。ポリベンゾオキサゾール前駆体とは、加熱処理や化学処理によりポリベンゾオキサゾールに変換される樹脂を指し、例えば、ポリヒドロキシアミドなどを含有することができる。
 上述のポリイミド前駆体およびポリベンゾオキサゾール前駆体は下記式(3)で表される構造単位を有し、ポリイミドは下記式(4)で表される構造単位を有する。これらを2種以上含有してもよいし、式(3)で表される構造単位および式(4)で表される構造単位を共重合した樹脂を含有してもよい。
Figure JPOXMLDOC01-appb-C000006
 式(3)中、Xは炭素数4~40かつ2~8価の有機基、Yは炭素数6~40かつ2~11価の有機基を表す。R11およびR13は、それぞれ独立に、水酸基またはスルホン酸基を表す。R12およびR14は、それぞれ独立に、水素原子または炭素数1~20の1価の炭化水素基を表す。t、uおよびwは0~3の整数を表し、vは0~6の整数を表す。ただしt+u+v+w>0である。
Figure JPOXMLDOC01-appb-C000007
 式(4)中、Eは炭素数4~40かつ4~10価の有機基、Gは炭素数6~40かつ2~8価の有機基を表す。R15およびR16は、それぞれ独立に、カルボキシ基、スルホン酸基または水酸基を表す。xおよびyは、それぞれ独立に、0~6の整数を表す。ただしx+y>0である。
 ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール前駆体またはそれらの共重合体は、式(3)または式(4)で表される構造単位を5~100000有することが好ましい。また、式(3)または式(4)で表される構造単位に加えて、他の構造単位を有してもよい。この場合、式(3)または式(4)で表される構造単位を、全構造単位のうち50モル%以上有することが好ましい。
上記式(3)中、X(R11(COOR12は酸の残基を表す。Xは炭素数4~40かつ2~8価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する2~8価の有機基が好ましい。
 酸の残基としては、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸などのジカルボン酸の残基、トリメリット酸、トリメシン酸、ジフェニルエーテルトリカルボン酸、ビフェニルトリカルボン酸などのトリカルボン酸の残基、ピロメリット酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、2,2’,3,3’-ビフェニルテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、2,2’,3,3’-ベンゾフェノンテトラカルボン酸、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン、2,2-ビス(2,3-ジカルボキシフェニル)ヘキサフルオロプロパン、1,1-ビス(3,4-ジカルボキシフェニル)エタン、1,1-ビス(2,3-ジカルボキシフェニル)エタン、ビス(3,4-ジカルボキシフェニル)メタン、ビス(2,3-ジカルボキシフェニル)メタン、ビス(3,4-ジカルボキシフェニル)エーテル、1,2,5,6-ナフタレンテトラカルボン酸、2,3,6,7-ナフタレンテトラカルボン酸、2,3,5,6-ピリジンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸および下記に示した構造の芳香族テトラカルボン酸や、ブタンテトラカルボン酸などの脂肪族テトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸などの環状脂肪族基を含有する脂肪族テトラカルボン酸などのテトラカルボン酸の残基などを挙げることができる。X(R11(COOR12は、これらの残基を2種以上有していてもよい。
Figure JPOXMLDOC01-appb-C000008
 R20は酸素原子、C(CFまたはC(CHを表す。R21およびR22はそれぞれ独立に水素原子または水酸基を表す。
上記酸の残基のうち、トリカルボン酸またはテトラカルボン酸の残基の場合は、1つまたは2つのカルボキシ基が式(3)における(COOR12)に相当する。
 上記式(4)中、E(R15は酸二無水物の残基を表す。Eは炭素数4~40かつ4価~10価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する有機基が好ましい。
 酸二無水物の残基としては、具体的には、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、および下記に示した構造の酸二無水物などの芳香族テトラカルボン酸二無水物や、ブタンテトラカルボン酸二無水物などの脂肪族テトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物などの環状脂肪族基を含有する脂肪族テトラカルボン酸二無水物の残基などを挙げることができる。E(R15は、これらの残基を2種以上有していてもよい。
Figure JPOXMLDOC01-appb-C000009
 R20は酸素原子、C(CFまたはC(CHを表す。R21およびR22はそれぞれ独立に水素原子または水酸基を表す。
 上記式(3)のY(R13(COOR14および上記式(4)のG(R16はジアミンの残基を表す。Yは炭素数6~40かつ2~11価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する2~11価の有機基が好ましい。、Gは炭素数6~40かつ2~8価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する2~8価の有機基が好ましい。
 ジアミンの残基の具体的な例としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、2,2’-ビス(トリフルオロメチル)-5,5’-ジヒドロキシベンジジン、3,5-ジアミノ安息香酸、3,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、これらの芳香族環の水素原子の少なくとも一部をアルキル基やハロゲン原子で置換した化合物などの芳香族ジアミンの残基、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの環状脂肪族基を含有する脂肪族ジアミンの残基および下記に示した構造のジアミンの残基などを含有することができる。Y(R13(COOR14およびG(R16は、これらの残基を2種以上有していてもよい。
Figure JPOXMLDOC01-appb-C000010
 R20は酸素原子、C(CFまたはC(CHを表す。R21~R24はそれぞれ独立に水素原子または水酸基を表す。
 また、アルカリ可溶性樹脂(a)の末端を、公知の酸性基を有するモノアミン、酸無水物、酸クロリド、モノカルボン酸、活性エステル化合物により封止してもよい。
 アルカリ可溶性樹脂(a)は、公知の方法により合成すればよい。
 ポリイミド前駆体であるポリアミド酸の製造方法としては、例えば、低温中でテトラカルボン酸二無水物とジアミン化合物を溶剤中で反応させる方法が挙げられる。
 同じくポリイミド前駆体であるポリアミド酸エステルの製造方法としては、前述のポリアミド酸をエステル化剤と反応させる方法の他に、テトラカルボン酸二無水物とアルコールとによりジエステルを得て、その後、縮合剤の存在下でアミンと溶剤中で反応させる方法。テトラカルボン酸二無水物とアルコールとによりジエステルを得て、その後、残りのジカルボン酸を酸クロリド化し、アミンと溶剤中で反応させる方法などが挙げられる。合成の容易さの観点から、ポリアミド酸とエステル化剤を反応させる工程を含むことが好ましい。エステル化剤としては、特に限定は無く、公知の方法を適用することができるが、得られた樹脂の精製が容易であることから、N、N-ジメチルホルムアミドジアルキルアセタールが好ましい。
 ポリベンゾオキサゾール前駆体であるポリヒドロキシアミドの製造方法としては、例えば、ビスアミノフェノール化合物とジカルボン酸を溶剤中で縮合反応させる方法が挙げられる。具体的には、例えば、ジシクロヘキシルカルボジイミド(DCC)などの脱水縮合剤と酸を反応させ、ここにビスアミノフェノール化合物を加える方法。ピリジンなどの3級アミンを加えたビスアミノフェノール化合物の溶液にジカルボン酸ジクロリドの溶液を滴下する方法などが挙げられる。
ポリイミドの製造方法としては、例えば、前述の方法で得られたポリアミド酸またはポリアミド酸エステルを溶剤中で脱水閉環する方法などが挙げられる。脱水閉環の方法としては、酸や塩基などによる化学処理、加熱処理などが挙げられる。
 ポリベンゾオキサゾールの製造方法としては、例えば、前述の方法で得られたポリヒドロキシアミドを溶剤中で脱水閉環する方法などが挙げられる。脱水閉環の方法としては、酸や塩基などによる化学処理、加熱処理などが挙げられる。
ポリアミドイミド前駆体としては、トリカルボン酸、対応するトリカルボン酸無水物、トリカルボン酸無水物ハライドとジアミン化合物との重合体が挙げられ、無水トリメリット酸クロライドと芳香族ジアミン化合物との重合体が好ましい。ポリアミドイミド前駆体の製造方法としては、例えば、低温中でトリカルボン酸、対応するトリカルボン酸無水物、トリカルボン酸無水物ハライドなどとジアミン化合物を溶剤中で反応させる方法などが挙げられる。
 ポリアミドイミドの製造方法としては、例えば、無水トリメリット酸と芳香族ジイソシアネートを溶剤中で反応させる方法、前述の方法で得られたポリアミドイミド前駆体を溶剤中で脱水閉環する方法などが挙げられる。脱水閉環の方法としては、酸や塩基などによる化学処理、加熱処理などが挙げられる。
 重合溶剤としては特に限定は無く、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルなどのアルキレングリコールモノアルキルエーテル類、プロピルアセテート、ブチルアセテート、イソブチルアセテート、などのアルキルアセテート類、メチルイソブチルケトン、メチルプロピルケトンなどのケトン類、ブチルアルコール、イソブチルアルコールなどのアルコール類、乳酸エチル、乳酸ブチル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテ、ジエチレングリコールジエチルエーテル、3-メトキシブチルアセテート、エチレングリコールモノエチルエーテルアセテート、ガンマブチロラクトン、N-メチル-2-ピロリドン、ジアセトンアルコール、N-シクロヘキシル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、プロピレングリコールモノメチルエーテルアセテート、N,N-ジメチルイソ酪酸アミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、1,3-ジメチル-2-イミダゾリジノン、N,N-ジメチルプロピレン尿素、デルタバレロラクトン、2-フェノキシエタノール、2-ピロリドン、2-メチル-1,3-プロパンジオール、ジエチレングリコールブチルエーテル、トリアセチン、安息香酸ブチル、シクロヘキシルベンゼン、ビシクロヘキシル、o-ニトロアニソール、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、N-(2-ヒドロキシエチル)-2-ピロリドン、N,N-ジメチルプロパンアミド、N,N-ジメチルイソブチルアミド、N,N,N’,N’-テトラメチル尿素、3-メチル-2-オキサゾリジノンなどを含有することができる。
 アルカリ可溶性樹脂(a)の含有量は、樹脂組成物の固形分100質量%中に40質量%~90質量%が好ましい。アルカリ可溶性樹脂(a)の含有量をこの範囲とすることで、樹脂組成物の耐熱性を維持しつつ、硬化膜の遮光性を高めることができる。
 <感光性化合物(c)>
 本発明の樹脂組成物は、さらに感光性化合物(c)を含んでもよい。
 本発明の樹脂組成物が、感光性化合物(c)を含有する場合、感光性化合物(c)の含有量は、高感度化の観点から、アルカリ可溶性樹脂(a)100質量部に対して0.1質量部以上が好ましく、より好ましくは1質量部以上であり、10質量部以上がさらに好ましい。一方、本発明の硬化物を有機EL表示装置の平坦化層および/または絶縁層としたときの長期信頼性の観点から、100質量部以下が好ましい。
 感光性化合物(c)としては、光酸発生剤(c1)や、光重合開始剤(c2)などを含有することができる。光酸発生剤(c1)は、光照射により酸を発生する化合物であり、光重合開始剤(c2)は、露光により結合開裂および/または反応し、ラジカルを発生する化合物である。
 光酸発生剤(c1)を含有することにより、光照射部に酸が発生して光照射部のアルカリ水溶液に対する溶解性が増大し、光照射部が溶解するポジ型のレリーフパターンを得ることができる。また、光酸発生剤(c1)と後述するエポキシ化合物または熱架橋剤を含有することにより、光照射部に発生した酸がエポキシ化合物や熱架橋剤の架橋反応を促進し、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。一方、光重合開始剤(c2)および後述するラジカル重合性化合物を含有することにより、光照射部においてラジカル重合が進行し、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。本発明の硬化物を有機EL表示装置の平坦化層および/または絶縁層とした際に、微細パターンを形成できる観点から、感光性化合物(c)としてはポジ型のレリーフパターンを得られる光酸発生剤(c1)を含むことが好ましい。
 光酸発生剤(c1)としては、例えば、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などを含有することができる。本発明の樹脂組成物は、光酸発生剤(c1)を2種以上含有することが好ましく、2種以上含有する場合には、より高感度な感光性樹脂組成物を得ることができる。本発明の硬化物を有機EL表示装置の平坦化層および/または絶縁層としたときの長期信頼性の観点から、光酸発生剤(c1)は、特にキノンジアジド化合物を含むことが好ましい。
 キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどを含有することができる。
 キノンジアジドとしては、5-ナフトキノンジアジドスルホニル基、4-ナフトキノンジアジドスルホニル基のいずれも好ましく用いられる。同一分子中に4-ナフトキノンジアジドスルホニル基、5-ナフトキノンジアジドスルホニル基を有するナフトキノンジアジドスルホニルエステル化合物を含有してもよいし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物を含有してもよい。4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。
 露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましいが、高感度化の観点から4-ナフトキノンジアジドスルホニルエステル化合物を含むことが好ましい。
 上記キノンジアジド化合物は、フェノール性水酸基を有する化合物と、キノンジアジドスルホン酸化合物とから、任意のエステル化反応によって合成することができる。これらのキノンジアジド化合物を使用することにより、解像度、感度、残膜率がより向上する。
 本発明において、光酸発生剤(c1)のうち、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩は、露光によって発生した酸成分を適度に安定化させるため好ましい。中でもスルホニウム塩が好ましい。さらに増感剤などを必要に応じて含有することもできる。
 上記樹脂組成物が、光酸発生剤(c1)を含有する場合、光酸発生剤(c1)の含有量は、高感度化の観点から、アルカリ可溶性樹脂(a)100質量部に対して0.1質量部以上が好ましく、より好ましくは10質量部以上であり、25質量部以上がさらに好ましい。一方、本発明の硬化物を有機EL表示装置の平坦化層および/または絶縁層としたときの長期信頼性の観点から、100質量部以下が好ましい。
 光重合開始剤(c2)としては、例えば、ベンジルケタール系光重合開始剤、α-ヒドロキシケトン系光重合開始剤、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤、オキシムエステル系光重合開始剤、アクリジン系光重合開始剤、チタノセン系光重合開始剤、ベンゾフェノン系光重合開始剤、アセトフェノン系光重合開始剤、芳香族ケトエステル系光重合開始剤、安息香酸エステル系光重合開始剤などを含有することができる。本発明の樹脂組成物は、光重合開始剤(c2)を2種以上含有してもよい。感度をより向上させる観点から、光重合開始剤(c2)は、α-アミノケトン系光重合開始剤、アシルホスフィンオキシド系光重合開始剤またはオキシムエステル系光重合開始剤を含有することがさらに好ましい。
 α-アミノケトン系光重合開始剤としては、例えば、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)-ブタン-1-オン、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-オクチル-9H-カルバゾールなどを含有することができる。
 アシルホスフィンオキシド系光重合開始剤としては、例えば、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)ホスフィンオキシドなどを含有することができる。
 オキシムエステル系光重合開始剤としては、例えば、1-フェニルプロパン-1,2-ジオン-2-(O-エトキシカルボニル)オキシム、1-フェニルブタン-1,2-ジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパン-1,2,3-トリオン-2-(O-エトキシカルボニル)オキシム、1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン-2-(O-ベンゾイル)オキシム、1-[4-[4-(カルボキシフェニル)チオ]フェニル]プロパン-1,2-ジオン-2-(O-アセチル)オキシム、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン-1-(O-アセチル)オキシム、1-[9-エチル-6-[2-メチル-4-[1-(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチルオキシ]ベンゾイル]-9H-カルバゾール-3-イル]エタノン-1-(O-アセチル)オキシム又は1-(9-エチル-6-ニトロ-9H-カルバゾール-3-イル)-1-[2-メチル-4-(1-メトキシプロパン-2-イルオキシ)フェニル]メタノン-1-(O-アセチル)オキシムなどを含有することができる。
 本発明において、光重合開始剤(c2)を含有する場合、光重合開始剤(c2)の含有量は、高感度化の観点から、アルカリ可溶性樹脂(a)および後述のラジカル重合性化合物の合計100質量部に対して、0.1質量部以上が好ましく、より好ましくは1質量部以上であり、10質量部以上がさらに好ましい。一方、解像度をより向上させ、テーパー角度を低減する観点から、50質量部以下が好ましい。
 <着色剤(d)>
 本発明の樹脂組成物は、キサンテン化合物(b)以外の着色剤(d)を含有してもよい。着色剤(d)を含有させることで、樹脂組成物の膜を透過する光、または樹脂組成物の膜から反射する光から、着色剤(d)が吸収する波長の光を遮光する、遮光性を付与することができる。遮光性を付与することで、後述する本発明の硬化物を有機EL表示装置の平坦化層および/または絶縁層としたときにTFTへの光の侵入による劣化や誤作動、リーク電流などを防ぐことができる。さらに、配線やTFTからの外光反射の抑制や、発光エリアと非発光エリアのコントラストを向上させることができる。
 着色剤(d)としては、染料(d1)および/または顔料(d2)を使用することが好ましい。着色剤(d)は少なくとも1種類含有することが好ましく、例えば、1種の染料または有機顔料を含有したり、または2種以上の染料または顔料を含有したり、1種以上の染料と1種以上の顔料を含有したりすることが好ましい。
 溶剤溶解性の観点から本発明における着色剤(d)としては、染料(d1)が好ましい。さらに、高感度化の観点および残渣を低減する観点から染料(d1)としては、有機イオン同士のイオン対を形成するイオン性染料(d10)(以下、イオン性染料(d10)と呼ぶ場合がある。)が好ましい。一方、後述する本発明の樹脂組成物の加熱処理工程における着色剤の退色を抑制できる観点からは、顔料(d2)が好ましい。
 本発明の樹脂組成物は、350~800nmにおいて、490nm以上580nm未満の範囲のいずれかに最大吸収波長を有する着色剤(d-2)を含有することが好ましく、具体的には、350~800nmにおいて、490nm以上580nm未満の範囲のいずれかに最大吸収波長を有する染料(d1-2)、および/または、350~800nmにおいて、490nm以上580nm未満の範囲のいずれかに最大吸収波長を有する顔料(d2-2)を含有することが好ましい。以下、それぞれ単に(d-2)成分、(d1-2)成分および(d2-2)成分という場合がある。
 本発明において、(d1-2)成分は、保存安定性、硬化時、光照射時の退色の観点からアルカリ可溶性樹脂(a)を溶解する有機溶剤に可溶でかつ樹脂と相溶する染料、耐熱性、耐光性の高い染料を含有することが好ましい。(d1-2)成分は、350~800nmにおいて、490nm以上580nm未満の範囲のいずれかに最大吸収波長を有することから、例えば、赤色染料や紫色染料などを含有することができる。染料の種類として例えば、油溶性染料、分散染料、反応性染料、酸性染料もしくは直接染料などを含有することができる。
 染料の骨格構造としては、アントラキノン系、アゾ系、フタロシアニン系、メチン系、オキサジン系、キノリン系、トリアリールメタン系、キサンテン系などが挙げられるがこれらに限定しない。これらのうち、有機溶剤に対する溶解性や耐熱性の観点から、アントラキノン系、アゾ系、メチン系、トリアリールメタン系、キサンテン系が好ましい。また、本発明のキサンテン化合物(b)を樹脂組成物とした際の加工性の観点からキサンテン系がさらに好ましい。またこれら各染料は単独でも含金属錯塩系として用いてもよい。具体的には、Sumilan、Lanyl染料(住友化学工業(株)製)、Orasol、Oracet、Filamid、Irgasperse染料(チバ・スペシャリティ・ケミカルズ(株)製)、Zapon、Neozapon、Neptune、Acidol染料(BASF(株)製)、Kayaset、Kayakalan染料(日本化薬(株)製)、Valifast Colors染料(オリエント化学工業(株)製)、Savinyl、Sandoplast、Polysynthren、Lanasyn染料(クラリアントジャパン(株)製)、Aizen Spilon染料(保土谷化学工業(株)製)、機能性色素(山田化学工業(株)製)、Plast Color染料、Oil Color染料(有本化学工業(株)製)等のうち、350~800nmにおいて、490nm以上580nm未満の範囲のいずれかに最大吸収波長を有するものをそれぞれ入手できるが、それらに限定されるものではない。これらの染料は単独または混合することで用いられる。
 本発明において、(d-2)成分は、硬化時、光照射時の退色の観点から耐熱性および耐光性の高い顔料が好ましい。
 有機顔料の具体例をカラーインデックス(CI)ナンバーで表す。赤色顔料の例としては、ピグメントレッド48:1、122、168、177、202、206、207、209、224、242、254などが挙げられる。紫色顔料の例としては、ピグメントバイオレット19、23、29、32、33、36、37、38などが挙げられる。また、これら以外の顔料を含有することもできる。
 (d-2)成分の含有量は、アルカリ可溶性樹脂(a)100質量部に対して、0.1~300質量部が好ましく、更に0.2~200質量部が好ましく、特に1~200質量部が好ましい。(d-2)成分の含有量が0.1質量部以上とすることで、対応する波長の光を吸収させることができる。また、300質量部以下とすることで、感光性着色樹脂膜と基板の密着強度や熱処理後の膜の耐熱性、機械特性を維持しつつ、対応する波長の光を吸収させることができる。
 本発明において、(d2-2)成分として用いられる有機顔料は、必要に応じて、ロジン処理、酸性基処理、塩基性基処理などの表面処理が施されているものを含有してもよい。また、場合により分散剤とともに含有することができる。分散剤は、例えば、カチオン系、アニオン系、非イオン系、両性、シリコーン系、フッ素系の界面活性剤などを含有することができる。
 また、本発明の樹脂組成物において、着色剤(d)は、350~800nmにおいて、400nm以上490nm未満の範囲のいずれかに最大吸収波長を有する着色剤(d-1)を含有してもよく、具体的には、350~800nmにおいて、400nm以上490nm未満の範囲のいずれかに最大吸収波長を有する染料(d1-1)、および/または、350~800nmにおいて、400nm以上490nm未満の範囲のいずれかに最大吸収波長を有する顔料(d2-1)を含有してもよい。以下、それぞれ単に(d-1)成分、(d1-1)成分、(d2-1)成分という場合がある。
 本発明において、(d-1)成分として用いられる染料(d1-1)は保存安定性、硬化時、光照射時の退色の観点からアルカリ可溶性樹脂(a)を溶解する有機溶剤に可溶でかつ樹脂と相溶する染料、耐熱性、耐光性の高い染料が好ましい。(d1-1)成分は波長400nm以上490nm未満の範囲のいずれかに最大吸収を持つことから、例えば、黄色染料や橙色染料などが挙げられる。染料の種類として例えば、油溶性染料、分散染料、反応性染料、酸性染料もしくは直接染料などが挙げられる。
 染料の骨格構造としては、アントラキノン系、アゾ系、フタロシアニン系、メチン系、オキサジン系、キノリン系、トリアリールメタン系、キサンテン系などが挙げられるがこれらに限定しない。これらのうち、有機溶剤に対する溶解性や耐熱性の観点から、アントラキノン系、アゾ系、メチン系、トリアリールメタン系、キサンテン系が好ましい。またこれら各染料は単独でも含金属錯塩系として用いてもよい。具体的には、Sumilan、Lanyl染料(住友化学工業(株)製)、Orasol、Oracet、Filamid、Irgasperse染料(チバ・スペシャリティ・ケミカルズ(株)製)、Zapon、Neozapon、Neptune、Acidol染料(BASF(株)製)、Kayaset、Kayakalan染料(日本化薬(株)製)、Valifast Colors染料(オリエント化学工業(株)製)、Savinyl、Sandoplast、Polysynthren、Lanasyn染料(クラリアントジャパン(株)製)、Aizen Spilon染料(保土谷化学工業(株)製)、機能性色素(山田化学工業(株)製)、Plast Color染料、Oil Color染料(有本化学工業(株)製)等のうち、350~800nmにおいて、400nm以上490nm未満の範囲のいずれかに最大吸収波長を有するものをそれぞれ入手できるが、それらに限定されるものではない。これらの染料は単独または混合することで用いられる。
 本発明において、(d-1)成分として用いられる顔料(d2-1)は、硬化時、光照射時の退色の観点から耐熱性および耐光性の高い顔料が好ましい。
 有機顔料の具体例をカラーインデックス(CI)ナンバーで表す。黄色顔料の例としては、ピグメントイエロー83、117、129、138、139、150、180などが挙げられる。橙色顔料の例としてはピグメントオレンジ38、43、64、71、72などが挙げられる。また、これら以外の顔料を含有することもできる。
 (d-1)成分の含有量は、アルカリ可溶性樹脂(a)100質量部に対して、0.1~300質量部が好ましく、更に0.2~200質量部が好ましく、特に1~200質量部が好ましい。(d-1)成分の含有量が0.1質量部以上とすることで、対応する波長の光を吸収させることができる。また、300質量部以下とすることで、感光性着色樹脂膜と基板の密着強度や熱処理後の膜の耐熱性、機械特性を維持しつつ、対応する波長の光を吸収させることができる。
 本発明において、(d2-1)成分として用いられる有機顔料は、必要に応じて、ロジン処理、酸性基処理、塩基性基処理などの表面処理が施されているものを使用してもよい。また、場合により分散剤とともに使用することができる。分散剤は、例えば、カチオン系、アニオン系、非イオン系、両性、シリコーン系、フッ素系の界面活性剤を挙げることができる。
 本発明の樹脂組成物において、着色剤(d)は、350~800nmにおいて、580nm以上800nm以下の範囲のいずれかに最大吸収波長を有する着色剤(d-3)を含有してもよく、具体的には、350~800nmにおいて、580nm以上800nm以下の範囲のいずれかに最大吸収波長を有する染料(d1-3)、および/または、350~800nmにおいて、580nm以上800nm以下の範囲のいずれかに最大吸収波長を有する顔料(d2-3)を含有してもよい。以下、それぞれ単に(d-3)成分、(d1-3)成分、(d2-3)成分という場合がある。
 本発明において、(d-3)成分として用いられる染料(d1-3)は保存安定性、硬化時、光照射時の退色の観点からアルカリ可溶性樹脂(a)を溶解する有機溶剤に可溶でかつ樹脂と相溶する染料、耐熱性、耐光性の高い染料が好ましい。(d1-3)成分は350~800nmにおいて、580nm以上800nm以下の範囲のいずれかに最大吸収波長を有することから例えば青色染料や緑色染料などが挙げられる。
 染料の種類として例えば、油溶性染料、分散染料、反応性染料、酸性染料もしくは直接染料などが挙げられる。
 染料の骨格構造としては、アントラキノン系、アゾ系、フタロシアニン系、メチン系、オキサジン系、キノリン系、トリアリールメタン系などが挙げられるがこれらに限定しない。これらのうち、有機溶剤に対する溶解性や耐熱性の観点から、アントラキノン系、アゾ系、メチン系、トリアリールメタン系が好ましい。またこれら各染料は単独でも含金属錯塩系として用いてもよい。具体的には、Sumilan、Lanyl染料(住友化学工業(株)製)、Orasol、Oracet、Filamid、Irgasperse染料(チバ・スペシャリティ・ケミカルズ(株)製)、Zapon、Neozapon、Neptune、Acidol染料(BASF(株)製)、Kayaset、Kayakalan染料(日本化薬(株)製)、Valifast Colors染料(オリエント化学工業(株)製)、Savinyl、Sandoplast、Polysynthren、Lanasyn染料(クラリアントジャパン(株)製)、Aizen Spilon染料(保土谷化学工業(株)製)、機能性色素(山田化学工業(株)製)、Plast Color染料、Oil Color染料(有本化学工業(株)製)等のうち、350~800nmにおいて、580nm以上800nm以下の範囲のいずれかに最大吸収波長を有するものをそれぞれ入手できるが、それらに限定されるものではない。これらの染料は単独または混合することで用いられる。
 本発明において、(d-3)成分として用いられる顔料(d2-3)は、硬化時、光照射時の退色の観点から耐熱性および耐光性の高い顔料が好ましい。
 有機顔料の具体例をカラーインデックス(CI)ナンバーで表す。青色顔料の例としてはピグメントブルー15(15:3、15:4、15:6など)、21、22、60、64などが挙げられる。緑色顔料の例としてはピグメントグリーン7、10、36、47、58などが挙げられる。また、これら以外の顔料を含有することもできる。
 (d-3)成分の含有量は、アルカリ可溶性樹脂(a)100質量部に対して、0.1~300質量部が好ましく、更に0.2~200質量部が好ましく、特に1~200質量部が好ましい。(d-3)成分の含有量が0.1質量部以上とすることで、対応する波長の光を吸収させることができる。また、300質量部以下とすることで、感光性着色樹脂膜と基板の密着強度や熱処理後の膜の耐熱性、機械特性を維持しつつ、対応する波長の光を吸収させることができる。
 本発明において、(d2-3)成分として用いられる有機顔料は、必要に応じて、ロジン処理、酸性基処理、塩基性基処理などの表面処理が施されているものを使用してもよい。また、場合により分散剤とともに使用することができる。分散剤は、例えば、カチオン系、アニオン系、非イオン系、両性、シリコーン系、フッ素系の界面活性剤を挙げることができる。
 また、本発明においてキサンテン化合物(b)、(d-2)成分、(d-1)成分および/または後述する熱発色性化合物および必要に応じて(d-3)成分を併用することで、硬化物の可視光透過率を下げ、黒色とすることが可能である。本発明のキサンテン化合物(b)を含む樹脂組成物を硬化した硬化物の膜厚1μm当たりの光学濃度(以下、OD値という場合がある)は、好ましくはOD値0.5以上、より好ましくは0.7以上である。OD値が上記範囲内であると、硬化物によって遮光性を向上させることができるため、有機EL表示装置又は液晶表示装置などの表示装置において、電極配線の可視化や外光反射をより低減し、画像表示におけるコントラストを向上させることができる。一方、後述の感光化合物を含む樹脂組成物とした際の露光時の感度を向上させることができる観点から、OD値は、1.5以下が好ましい。
 <イオン性染料(d10)と有機アニオン>
 本発明の樹脂組成物は、式(1)においてnが1かつZが有機アニオンであるキサンテン化合物(b1)(以下、キサンテン化合物(b1)と呼ぶ場合がある)、および有機イオン同士のイオン対を形成するイオン性染料(d10)を含み、前記有機アニオンが1種類であることが好ましい。ただし、有機イオン同士のイオン対を形成するイオン性染料とは、個々の有機アニオン、有機カチオンからなるイオン性染料を表し、式(1)においてnが0であるキサンテン化合物のように、単体にてアニオン部位とカチオン部位を有し、全体として電荷的に中性となる化合物は有機アニオンとしては数えない。また、ここで有機アニオンが1種類であるとは、キサンテン化合物(b1)中の有機アニオンとイオン性染料(d10)を構成する有機アニオンとが同一であることを意味する。本発明の樹脂組成物が、キサンテン化合物(b1)およびイオン性染料(d10)を含み、それぞれの有機アニオン部同士が異なる場合、樹脂組成物に含まれる有機アニオン種は2種以上となる。この場合、樹脂組成物中に有機アニオン、有機カチオンが複数種存在することで、イオン性染料同士のイオン交換により冷凍保管中に異物が増加し、保存安定性が悪化する問題が発生する。一方、キサンテン化合物(b1)およびイオン性染料(d10)を含む場合、本発明の樹脂組成物中に含まれる有機アニオン種が1種類であることにより、冷凍保管時の保存安定性が向上する。これはキサンテン化合物(b1)およびイオン染料(d10)に対する有機アニオン種が限定されたことにより、有機カチオン部同士が異なっていても樹脂組成物中においてイオン性染料同士のイオン交換が抑制されたからと推定される。
 本発明における有機イオン同士のイオン対を形成するイオン性染料(d10)とは、酸性染料の有機アニオン部と非染料の有機カチオン部からなる造塩化合物、塩基性染料の有機カチオン部と非染料の有機アニオン部からなる造塩化合物、または酸性染料の有機アニオン部と塩基性染料の有機カチオン部からなる造塩化合物のことをいう。
 塩基性染料の有機カチオン部と非染料の有機アニオン部からなる造塩化合物は、塩基性染料を原料として、公知の方法でカウンターアニオンを非染料の有機アニオンに交換して製造できる。酸性染料の有機アニオン部と非染料の有機カチオン部からなる造塩化合物は、酸性染料を原料として、公知の方法でカウンターカチオンを非染料の有機カチオンに交換して製造できる。酸性染料の有機アニオン部と塩基性染料の有機カチオン部からなる造塩化合物は、酸性染料と塩基性染料を原料として、公知の方法でそれぞれのカウンターイオンを交換して製造できる。
 イオン性染料(d10)の原料となる酸性染料とは、色素の分子中にスルホ基やカルボキシ基などの酸性の置換基を有する化合物か、またはその塩であるアニオン性の水溶性染料である。なお酸性染料としては、スルホ基やカルボキシ基などの酸性の置換基を有し、直接染料に分類されるものを含む。
 酸性染料としては、例えば、C.I.アシッドイエロー1、17、18、23、25、36、38、42、44、54、59、72、78、151;C.I.アシッドオレンジ7、10、12、19、20、22、28、30、52、56、74、127;C.I.アシッドレッド1、3、4、6、8、11、12、14、18、26、27、33、37、53、57、88、106、108、111、114、131、137、138、151、154、158、159、173、184、186、215、257、266、296、337;C.I.アシッドブラウン2、4、13、248;C.I.アシッドバイオレット11、56、58;C.I.アシッドブルー92、102、113、117などのアゾ系酸性染料;C.I.アシッドイエロー2、3、5などのキノリン系酸性染料;C.I.アシッドレッド50、51、52、87、91、92、93、94、289などのキサンテン系酸性染料;C.I.アシッドレッド82、92;C.I.アシッドバイオレット41、42、43;C.I.アシッドブルー14、23、25、27、40、45、78、80、127:1、129、145、167、230;C.I.アシッドグリーン25、27などのアントラキノン系酸性染料;C.I.アシッドバイオレット49;C.I.アシッドブルー7、9、22、83、90;C.I.アシッドグリーン9、50;C.I.フードグリーン3等のトリアリールメタン系酸性染料;C.I.アシッドブルー249などのフタロシアニン系酸性染料;C.I.アシッドブルー74などのインジゴイド系酸性染料が挙げられる。中でも、酸性染料は、耐熱性の高さの点で、キサンテン系酸性染料を含有することが好ましい。キサンテン系酸性染料は、C.I.アシッドレッド50、52、289などのローダミン系酸性染料を含有することがより好ましい。
 イオン性染料(d10)の原料となる非染料の有機カチオン部としては、アンモニウムイオン[N(R)、ホスホニウムイオン[P(R)、イミニウムイオン[(R)-N=C(R)、アルソニウムイオン[As(R)、スチボニウムイオン[Sb(R)、オキソニウムイオン[O(R)、スルホニウムイオン[S(R)、セレノニウムイオン[Se(R)、スタノニウムイオン[Sn(R)、ヨードニウムイオン[I(R)、ジアゾニウムイオン[R-N≡N]等が挙げられる。本発明の樹脂組成物からなる硬化物を適用した際の絶縁性の観点から、アンモニウムイオン[N(R)、ホスホニウムイオン[P(R)、イミニウムイオン[(R)-N=C(R)が好ましい。なお、イオン式中のRは、それぞれ独立に置換基を有してもよく、炭素鎖中にヘテロ原子を有していてもよい炭素数1~20の炭化水素基である。1分子あたりの着色成分の割合を上げ、イオン性染料の添加量を下げることで感度を向上させる観点から、非染料の有機カチオン部の分子量は、1000以下が好ましく、700以下が好ましく、300以下がさらに好ましい。非染料の有機カチオン部の分子量の下限は特に限定されないが、1以上が好ましく、100以上がさらに好ましい。
 イオン性染料(d10)の原料となる塩基性染料とは、分子中にアミノ基やイミノ基などの塩基性の基を有する化合物か、またはその塩であり、水溶液中でカチオンとなる染料である。
 塩基性染料としては、例えば、C.I.ベーシックレッド17、22、23、25、29、30、38、39、46、46:1、82;C.I.ベーシックオレンジ2、24、25;C.I.ベーシックバイオレット18;C.I.ベーシックイエロー15、24、25、32、36、41、73、80;C.I.ベーシックブラウン1;C.I.ベーシックブルー41、54、64、66、67、129などのアゾ系塩基性染料;C.I.ベーシックレッド1、2;C.I.ベーシックバイオレット10、11などのキサンテン系塩基性染料;C.I.ベーシックイエロー11、13、21、23、28;C.I.ベーシックオレンジ21;C.I.ベーシックレッド13、14;C.I.ベーシックバイオレット16、39;などのメチン系塩基性染料;C.I.ベーシックブルー22、35、45、47などのアントラキノン系塩基性染料;C.I.ベーシックバイオレット1、2、3、4、13、14、23;C.I.ベーシックブルー1、5、7、8、11、15、18、21、24、26;C.I.ベーシックグリーン1、4などのトリアリールメタン系塩基性染料および下記に示した構造のキサンテン系塩基性染料が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 R25、R27およびR29~R31はそれぞれ独立に、水素原子、炭素数1~10のアルキル基または置換基を有してもよい炭素数6~10のアリール基を、R26およびR28はそれぞれ独立に、水素原子または炭素数1~10のアルキル基を表す。
中でも、塩基性染料は、硬化膜の黒色度を高くできる点で、キサンテン系塩基性染料、トリアリールメタン系塩基性染料を含有することが好ましく、耐熱性の高さの点で、キサンテン系酸性染料を含有することが好ましい。
 イオン性染料(d10)の原料となる非染料の有機アニオン部としては、脂肪族または芳香族のスルホナートイオン、脂肪族または芳香族カルボキシレートイオンの他にスルホンイミドアニオン[(RSON]、ボレートアニオン(BRなどが挙げられる。本発明の樹脂組成物からなる硬化物を適用した際の、有機EL表示装置の電極や発光層の劣化を抑制する観点から、アニオン化合物は脂肪族または芳香族のスルホナートイオン、脂肪族または芳香族カルボキシレートイオンが好ましい。さらに、高感度化の観点および残渣を低減する観点から脂肪族または芳香族のスルホナートイオンが好ましい。なお、イオン式中のRは、それぞれ独立に置換基を有してもよく、炭素鎖中にヘテロ原子を有していてもよい炭素数1~20の炭化水素基である。1分子あたりの着色成分の割合を上げ、イオン性染料の添加量を下げることで感度を向上させる観点から、非染料の有機アニオン部の分子量は、1000以下が好ましく、700以下が好ましく、300以下がさらに好ましい。非染料のアニオン部の分子量の下限は特に限定されないが、1以上が好ましく、100以上がさらに好ましい。
 耐熱性の高さの観点から、イオン性染料(d10)の有機アニオン部および/または有機カチオン部が、キサンテン骨格を有することが好ましい。キサンテン骨格を有する有機アニオンとしては、上述のキサンテン系酸性染料が挙げられ、キサンテン骨格を有する有機カチオンとしては、上述のキサンテン系塩基性染料が挙げられる。
 イオン性染料(d10)は、現像時のアルカリ溶解性を高め、感度を向上させる観点から、酸性基を有することが好ましい。酸性基としては、例えば、カルボキシ基、フェノール性水酸基、スルホン酸基、スルホナート基などを有することができ、スルホン酸基、スルホナート基が特に好ましい。
 キサンテン化合物(b)と併用する際に、可視光の遮光性を高める観点から、イオン性染料(d10)は、350~800nmにおいて、490nm以上580nm未満の範囲のいずれかに最大吸収波長を有する着色剤(d10-2)を含有することが好ましい。
 酸性染料や塩基性染料のイオン交換による造塩化合物は、公知の方法で製造できる。例えば、酸性染料の水溶液と塩基性染料の水溶液をそれぞれ調製し、両者を撹拌しながらゆっくり混合すると、析出物として、酸性染料の有機アニオン部と塩基性染料の有機カチオン部からなる造塩化合物が生成する。これをろ過により回収することにより、該造塩化合物を得ることができる。得られた該造塩化合物は、60~70℃程度で乾燥することが好ましい。
 本発明の樹脂組成物に含まれるイオン性染料(d10)の総含有量は、アルカリ可溶性樹脂(a)100質量部に対して、0.1質量部以上300質量部以下が好ましく、更に0.2質量部以上200質量部以下が好ましく、特に1質量部以上200質量部以下が好ましい。イオン性染料(b)の含有量が0.1質量部以上とすることで、対応する波長の光を吸収させることができる。また、300質量部以下とすることで、感光性着色樹脂膜と基板の密着強度や熱処理後の膜の耐熱性、機械特性を維持しつつ、対応する波長の光を吸収させることができる。
 <熱発色性化合物>
 本発明の樹脂組成物は、熱発色性化合物を含有してもよい。熱発色性化合物は加熱処理により発色し、350nm以上、700nm以下に最大吸収を有する熱発色性化合物であり、より好ましくは加熱処理により発色し、350nm以上、500nm以下に最大吸収を有する熱発色性化合物である。
 本発明において、熱発色性化合物は、120℃より高温で発色する化合物が好ましく、180℃より高温で発色する熱発色性化合物がより好ましい。熱発色性化合物の発色温度が高いほど高温条件下での耐熱性に優れ、また長時間の紫外光および可視光の照射により退色することが少なく耐光性に優れる。
 本発明において、熱発色性化合物は、一般の感熱色素または感圧色素であってもよいし、その他の化合物であってもよい。熱発色性化合物の例としては、加熱処理時に系中に共存する酸性基の作用により、その化学構造や電荷状態を変化させることによって発色するもの、あるいは空気中の酸素の存在により熱酸化反応等を起こして発色するものなどを含有することができる。本発明の熱発色性化合物は、加熱処理前は350nm以上、700nm以下の範囲のいずれかに最大吸収を有さないため、着色剤(d)とは異なる。例えば、トリアリールメタン骨格を有する熱発色性化合物は、加熱処理によりメチン基の水素が脱離し、1つのアリール基がキノン構造となることで発色するとされる。一方、トリアリールメタン骨格を有する着色材(d)は加熱処理前からキノン構造を有するため、本発明の熱発色性化合物とは異なる。
 熱発色性化合物の骨格構造としては、トリアリールメタン骨格、ジアリールメタン骨格、フルオラン骨格、ビスラクトン骨格、フタリド骨格、キサンテン骨格、ローダミンラクタム骨格、フルオレン骨格、フェノチアジン骨格、フェノキサジン骨格、スピロピラン骨格などを含有することができる。中でも、熱発色温度が高く耐熱性に優れるためトリアリールメタン骨格が好ましい。
 トリアリールメタン骨格の具体例としては、2,4’,4’’-メチリジントリスフェノール、4,4’,4’’-メチリジントリスフェノール、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス(ベンゼンアミン)、4,4’-[(4-アミノフェニル)メチレン]ビスフェノール、4,4’-[(4-アミノフェニル)メチレン]ビス[3,5-ジメチルフェノール]、4,4’-[(2-ヒドロキシフェニル)メチレン]ビス[2,3,6-トリメチルフェノール]、4-[ビス(4-ヒドロキシフェニル)メチル]-2-メトキシフェノール、4,4’-[(2-ヒドロキシフェニル)メチレン]ビス[2-メチルフェノール]、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス[2-メチルフェノール]、4-[ビス(4-ヒドロキシフェニル)メチル]-2-エトキシフェノール、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス[2,6-ジメチルフェノール]、2,2’-[(4-ヒドロキシフェニル)メチレン]ビス[3,5-ジメチルフェノール]、4,4’-[(4-ヒドロキシ-3-メトキシフェニル)メチレン]ビス[2,6-ジメチルフェノール]、2,2’-[(2-ヒドロキシフェニル)メチレン]ビス[2,3,5-トリメチルフェノール]、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス[2,3,6-トリメチルフェノール]、4,4’-[(2-ヒドロキシフェニル)メチレン]ビス[2-シクロヘキシル-5-メチルフェノール]、4,4’-[(4-ヒドロキシフェニル)メチレン]ビス[2-シクロヘキシル-5-メチルフェノール]、4,4’-[(3-メトキシ-4-ヒドロキシフェニル)メチレン]ビス[2-シクロヘキシル-5-メチルフェノール]、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス[2-メチルフェノール]、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス[2,6-ジメチルフェノール]、4,4’-[(3,4-ジヒドロキシフェニル)メチレン]ビス[2,3,6-トリメチルフェノール]、などを含有することができる。これらは単独でもしくは混合して用いられる。なお、トリアリールメタン骨格を有する水酸基含有化合物は当該化合物にナフトキノンジアジドのスルホン酸をエステル結合させて、キノンジアジド化合物として用いてもよい。
 本発明において、熱発色性化合物を含有する場合の含有量は、アルカリ可溶性樹脂(a)100質量部に対して、5~80質量部が好ましく、特に10~60質量部が好ましい。熱発色性化合物の含有量が5質量部以上であれば、硬化物の紫外可視光領域における透過率を低下させることができる。また80質量部以下であれば、硬化物の耐熱性や強度を維持し、吸水率を低減することができる。
 <ラジカル重合性化合物>
 本発明の樹脂組成物は、ラジカル重合性化合物を含有してもよい。特に、上記樹脂組成物が光重合開始剤(c2)を含有する場合は、ラジカル重合性化合物を含有することが必須である。ラジカル重合性化合物とは、分子中に複数のエチレン性不飽和二重結合を有する化合物をいう。露光時、前述の光重合開始剤(c2)から発生するラジカルによって、ラジカル重合性化合物のラジカル重合が進行し、光照射部が不溶化することにより、ネガ型のパターンを得ることができる。さらにラジカル重合性化合物を含有することにより、光照射部の光硬化が促進されて、感度をより向上させることができる。加えて、熱硬化後の架橋密度が向上することから、硬化物の硬度を向上させることができる。
 ラジカル重合性化合物としては、ラジカル重合の進行しやすい、(メタ)アクリル基を有する化合物が好ましい。露光時の感度向上及び硬化物の硬度向上の観点から、(メタ)アクリル基を分子内に二つ以上有する化合物がより好ましい。ラジカル重合性化合物の二重結合当量としては、露光時の感度向上及び硬化物の硬度向上の観点から、80~400g/molが好ましい。
 ラジカル重合性化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールヘプタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、2,2-ビス[4-(3-(メタ)アクリロキシ-2-ヒドロキシプロポキシ)フェニル]プロパン、1,3,5-トリス((メタ)アクリロキシエチル)イソシアヌル酸、1,3-ビス((メタ)アクリロキシエチル)イソシアヌル酸、9,9-ビス[4-(2-(メタ)アクリロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(3-(メタ)アクリロキシプロポキシ)フェニル]フルオレン、9,9-ビス(4-(メタ)アクリロキシフェニル)フルオレンまたはそれらの酸変性体、エチレンオキシド変性体、プロピレンオキシド変性体などを含有することができる。
 ラジカル重合性化合物の含有量は、感度をより向上させ、テーパー角度を低減する観点から、アルカリ可溶性樹脂(a)およびラジカル重合性化合物の合計100質量%中に、15質量%以上が好ましく、30質量%以上がより好ましい。一方、硬化物の耐熱性をより向上させ、テーパー角度を低減する観点から、アルカリ可溶性樹脂(a)およびラジカル重合性化合物の合計100質量%中に、65質量%以下が好ましく、50質量%以下がより好ましい。
 <熱架橋剤>
 本発明の樹脂組成物は、熱架橋剤を含有してもよい。熱架橋剤とは、アルコキシメチル基、メチロール基、エポキシ基、オキセタニル基などの熱反応性の官能基を分子内に少なくとも2つ有する化合物を指す。熱架橋剤を含有することにより、熱架橋剤とアルカリ可溶性樹脂(a)との間、または熱架橋剤同士で架橋し、熱硬化後の硬化物の耐熱性、耐薬品性および折り曲げ耐性を向上させることができる。
 アルコキシメチル基またはメチロール基を少なくとも2つ有する化合物の好ましい例としては、DML-PC、DML-PEP、DML-OC、DML-OEP、DML-34X、DML-PTBP、DML-PCHP、DML-OCHP、DML-PFP、DML-PSBP、DML-POP、DML-MBOC、DML-MBPC、DML-MTrisPC、DML-BisOC-Z、DML-BisOCHP-Z、DML-BPC、DML-BisOC-P、DMOM-PC、DMOM-PTBP、DMOM-MBPC、TriML-P、TriML-35XL、TML-HQ、TML-BP、TML-pp-BPF、TML-BPE、TML-BPA、TML-BPAF、TML-BPAP、TMOM-BP、TMOM-BPE、TMOM-BPA、TMOM-BPAF、TMOM-BPAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(以上、商品名、本州化学工業(株)製)、“NIKALAC”(登録商標)MX-290、“NIKALAC”MX-280、“NIKALAC”MX-270、“NIKALAC”MX-279、“NIKALAC”MW-100LM、“NIKALAC”MX-750LM(以上、商品名、(株)三和ケミカル製)などを含有することができる。
 エポキシ基を少なくとも2つ有する化合物の好ましい例としては、“エポライト”(登録商標)40E、“エポライト”100E、“エポライト”200E、“エポライト”400E、“エポライト”70P、“エポライト”200P、“エポライト”400P、“エポライト”1500NP、“エポライト”80MF、“エポライト”4000、“エポライト”3002(以上、共栄社化学(株)製)、“デナコール”(登録商標)EX-212L、“デナコール”EX-214L、“デナコール”EX-216L、“デナコール”EX-850L(以上、ナガセケムテックス(株)製)、GAN、GOT(以上、日本化薬(株)製)、“エピコート”(登録商標)828、“エピコート”1002、“エピコート”1750、“エピコート”1007、YX8100-BH30、E1256、E4250、E4275(以上、ジャパンエポキシレジン(株)製)、“エピクロン”(登録商標)EXA-9583、HP4032(以上、DIC(株)製)、VG3101(三井化学(株)製)、“テピック”(登録商標)S、“テピック”G、“テピック”P(以上、日産化学工業(株)製)、“デナコール”EX-321L(ナガセケムテックス(株)製)、NC6000(日本化薬(株)製)、“エポトート”(登録商標)YH-434L(東都化成(株)製)、EPPN502H、NC3000(日本化薬(株)製)、“エピクロン”(登録商標)N695、HP7200(以上、DIC(株)製)などを含有することができる。
 オキセタニル基を少なくとも2つ有する化合物としては、例えば、エタナコールEHO、エタナコールOXBP、エタナコールOXTP、エタナコールOXMA(以上、宇部興産(株)製)、オキセタン化フェノールノボラックなどを含有することができる。
熱架橋剤は2種類以上を組み合わせて含有してもよい。
 熱架橋剤を含有する場合の含有量は、溶剤を除く樹脂組成物全量100質量%中に、1質量%以上30質量%以下が好ましい。熱架橋剤の含有量が1質量%以上であれば、硬化物の耐薬品性および折り曲げ耐性をより高めることができる。また、熱架橋剤の含有量が30質量%以下であれば、硬化物からのアウトガス量をより低減し、有機EL表示装置の長期信頼性をより高めることができ、樹脂組成物の保存安定性にも優れる。
 <溶剤>
 本発明の樹脂組成物は、溶剤を含有してもよい。溶剤を含有することにより、ワニスの状態にすることができ、塗布性を向上させることができる。
 溶剤としては、γ-ブチロラクトンなどの極性の非プロトン性溶剤、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトン、ジイソブチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン、ジアセトンアルコールなどのケトン類、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチルなどのエステル類、2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-プロピル、酢酸i-プロピル、酢酸n-ブチル、酢酸i-ブチル、ぎ酸n-ペンチル、酢酸i-ペンチル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸i-プロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸エチル等の他のエステル類、トルエン、キシレンなどの芳香族炭化水素類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロピオンアミド、3-ブトキシ-N,N-ジメチルプロピオンアミド、N,N-ジメチルプロパンアミド、N,N-ジメチルイソブチルアミド等のアミド類、3-メチル-2-オキサゾリジノンなどを含有してもよい。溶剤は、これらを2種以上含有してもよい。
 溶剤の含有量は、特に限定されないが、溶剤を除く樹脂組成物全量100質量部に対して、100~3000質量部が好ましく、150~2000質量部がさらに好ましい。また、溶剤全量100質量%中における沸点180℃以上の溶剤が占める割合は、20質量%以下が好ましく、10質量%以下がさらに好ましい。沸点180℃以上の溶剤の割合を20質量%以下にすることにより、熱硬化後のアウトガス量をより低減することができ、有機EL装置の長期信頼性をより高めることができる。
 <密着改良剤>
 本発明の樹脂組成物は、密着改良剤を含有してもよい。密着改良剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、エポキシシクロヘキシルエチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシランなどのシランカップリング剤、チタンキレート剤、アルミキレート剤、芳香族アミン化合物とアルコキシ基含有ケイ素化合物を反応させて得られる化合物などを含有することができる。これらを2種以上含有してもよい。これらの密着改良剤を含有することにより、樹脂膜を現像する場合などに、シリコンウエハ、酸化インジウムスズ(ITO)、SiO、窒化ケイ素などの下地基材との現像密着性を高めることができる。また、洗浄などに用いられる酸素プラズマ、UVオゾン処理に対する耐性を高めることができる。密着改良剤の含有量は、溶剤を除く樹脂組成物全量100質量%中に、0.01~10質量%が好ましい。
 <界面活性剤>
 本発明の樹脂組成物は、界面活性剤を含有してもよい。界面活性剤を含有することにより、基板との濡れ性を向上させることができる。界面活性剤としては、例えば、東レ・ダウコーニング(株)のSHシリーズ、SDシリーズ、STシリーズ、ビックケミー・ジャパン(株)のBYKシリーズ、信越化学工業(株)のKPシリーズ、日油(株)のディスフォームシリーズ、DIC(株)の“メガファック(登録商標)”シリーズ、住友スリーエム(株)のフロラードシリーズ、旭硝子(株)の“サーフロン(登録商標)”シリーズ、“アサヒガード(登録商標)”シリーズ、オムノヴァ・ソルーション社のポリフォックスシリーズなどのフッ素系界面活性剤、共栄社化学(株)のポリフローシリーズ、楠本化成(株)の“ディスパロン(登録商標)”シリーズなどのアクリル系および/またはメタクリル系の界面活性剤などを含有することができる。
 界面活性剤を含有する場合の含有量は、溶剤を除く樹脂組成物全量100質量%中に、好ましくは0.001~1質量%である。
 <無機粒子>
 本発明の樹脂組成物は、無機粒子を含有してもよい。無機粒子の好ましい具体例としては、例えば、酸化珪素、酸化チタン、チタン酸バリウム、アルミナ、タルクなどを含有することができる。無機粒子の一次粒子径は100nm以下が好ましく、60nm以下がより好ましい。
 無機粒子の含有量は、溶剤を除く樹脂組成物全量100質量%中に、好ましくは5~90質量%である。
 <全塩素原子、全臭素原子>
 本発明の樹脂組成物は、樹脂組成物中に含まれる全塩素原子と全臭素原子の総質量が、樹脂組成物の固形分の総質量に対して、150ppm以下であることが好ましく、100ppm以下であることがより好ましく、燃焼イオンクロマトグラフィーの検出下限である2ppm以下であることがさらに好ましい。ここで、樹脂組成物の固形分の総質量とは、樹脂組成物の全質量から溶剤の質量を除いた質量を指す。全塩素原子と全臭素原子の総質量の下限は0ppmであり、燃焼イオンクロマトグラフィーの検出下限以下を0ppmとみなす。
 樹脂組成物中に含まれる全塩素原子と全臭素原子の総量を樹脂組成物の固形分に対して、150ppm以下とすることで、樹脂組成物を硬化した硬化物を有する有機EL表示装置の電極や発光層の劣化を抑制し、長期信頼性を向上させることができる。
 <樹脂組成物の製造方法>
 次に、本発明の樹脂組成物を製造する方法について説明する。例えば、キサンテン化合物(b)、アルカリ可溶性樹脂(a)と、必要により、感光性化合物(c)、着色剤(d)、熱発色性化合物、ラジカル重合性化合物、熱架橋剤、溶剤、密着改良剤、界面活性剤、無機粒子などを溶解させることにより、本発明の樹脂組成物を得ることができる。
 溶解方法としては、撹拌や加熱が挙げられる。加熱する場合、加熱温度は樹脂組成物の性能を損なわない範囲で設定することが好ましく、通常、室温~80℃である。また、各成分の溶解順序は特に限定されず、例えば、溶解性の低い化合物から順次溶解させる方法が挙げられる。また、界面活性剤や一部の密着改良剤など、撹拌溶解時に気泡を発生しやすい成分については、他の成分を溶解してから最後に添加することにより、気泡の発生による他成分の溶解不良を防ぐことができる。
 得られた樹脂組成物は、濾過フィルターを用いて濾過し、ゴミや粒子を除去することが好ましい。フィルター孔径は、例えば0.5μm、0.2μm、0.1μm、0.07μm、0.05μm、0.02μmなどが挙げられるが、これらに限定されない。濾過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチレン(PTFE)などが挙げられる。中でも、ポリエチレンやナイロンが好ましい。
 <硬化物の製造方法>
 本発明の硬化物の製造方法は、基板上に、本発明の樹脂組成物のうち、感光性化合物(c)を含む樹脂組成物からなる樹脂膜を形成する工程、該樹脂膜を露光する工程、露光した樹脂膜を現像する工程および現像した樹脂膜を加熱処理する工程を含む硬化物の製造方法である。
 基板上に、本発明の樹脂組成物のうち、感光性化合物(c)を含む樹脂組成物からなる樹脂膜を形成する工程について説明する。本発明において、樹脂膜は、本発明の樹脂組成物のうち、感光性化合物(c)を含む樹脂組成物を塗布して樹脂組成物の塗布膜を得て、乾燥することにより得ることができる。
 本発明の樹脂組成物を塗布する方法としては、例えば、スピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などが挙げられる。これらの中でも、少量の塗布液で塗布を行うことができ、コスト低減に有利であることから、スリットコート法が好ましい。スリットコート法に必要とされる塗布液の量は、例えば、スピンコート法と比較すると、1/5~1/10程度である。塗布に用いるスリットノズルとしては、例えば、大日本スクリーン製造(株)製「リニアコーター」、東京応化工業(株)製「スピンレス」、東レエンジニアリング(株)製「TSコーター」、中外炉工業(株)製「テーブルコータ」、東京エレクトロン(株)製「CSシリーズ」「CLシリーズ」、サーマトロニクス貿易(株)製「インライン型スリットコーター」、平田機工(株)製「ヘッドコーターHCシリーズ」など、複数のメーカーから上市されているものを選択することができる。塗布速度は、10mm/秒~400mm/秒の範囲が一般的である。塗布膜の膜厚は、樹脂組成物の固形分濃度、粘度などによって異なるが、通常、乾燥後の膜厚が0.1~10μm、好ましくは0.3~5μmになるように塗布される。
 塗布に先立ち、樹脂組成物を塗布する基材を、予め前述した密着改良剤で前処理してもよい。前処理方法としては、例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20質量%溶解させた溶液を用いて、基材表面を処理する方法が挙げられる。基材表面の処理方法としては、スピンコート法、スリットダイコート法、バーコート法、ディップコート法、スプレーコート法、蒸気処理法などの方法が挙げられる。
 塗布後、必要に応じて減圧乾燥処理を施す。
減圧乾燥速度は、真空チャンバー容積、真空ポンプ能力やチャンバーとポンプ間の配管径等にもよるが、例えば、塗布基板のない状態で、真空チャンバー内が60秒経過後40Paまで減圧される条件等に設定することが好ましい。一般的な減圧乾燥時間は、30秒から100秒程度であることが多く、減圧乾燥終了時の真空チャンバー内到達圧力は、塗布基板のある状態で通常100Pa以下である。到達圧を100Pa以下にすることにより塗布膜表面のべた付きを低減した乾燥状態にすることができ、これにより、続く基板搬送における表面汚染やパーティクルの発生を抑制することができる。
 塗布後または減圧乾燥後、塗布膜を加熱乾燥することが一般的である。この工程をプリベークとも言う。乾燥はホットプレート、オーブン、赤外線などを使用する。ホットプレートを用いる場合、プレート上に直接、もしくは、プレート上に設置したプロキシピン等の治具上に塗布膜を保持して加熱する。加熱時間は1分間~数時間が好ましい。加熱温度は塗布膜の種類や目的により様々であるが、プリベーク時の溶剤乾燥を促進する観点から、80℃以上が好ましく、90℃以上がさらに好ましい。一方、プリベーク時の硬化進行を低減する観点から150℃以下が好ましく、140℃以下がさらに好ましい。
 次に上記樹脂膜を露光する工程について説明する。
感光性化合物(c)を含有する樹脂膜は、パターンを形成することができる。例えば、樹脂膜に、所望のパターンを有するフォトマスクを通して化学線を照射することにより露光し、現像することにより、所望のパターンを形成することができる。
 樹脂膜を露光する工程において、露光時に用いるフォトマスクは、透光部、遮光部および半透光部を有するハーフトーンフォトマスクであることが好ましい。ハーフトーンフォトマスクを用いて露光することで、現像後に段差形状を有するパターンを形成することができる。なお、ポジ型の樹脂膜を用いた場合、段差形状を有するパターンにおいて、該遮光部から形成した箇所は、厚膜部に相当し、該半透光部を介して活性化学線を照射したハーフトーン露光部から形成した箇所は、薄膜部に相当する。ハーフトーンフォトマスクにおける透光部の透過率を100%とした時の半透光部の透過率は5%以上が好ましく、10%以上がさらに好ましい。半透光部の透過率が前述の範囲内であると、厚膜部と薄膜部の段差を明確に形成することができる。一方、半透光部の透過率は30%以下が好ましく、25%以下が好ましく、20%以下がさらに好ましく、15%以下が最も好ましい。半透光部の透過率が前述の範囲内であると、薄膜部の膜厚を厚く形成することができ、膜厚1μm当たりの可視光における光学濃度が低い黒色の硬化物を形成する場合でも、膜全体の光学濃度を上げることができる。
 露光に用いられる化学線としては、紫外線、可視光線、電子線、X線などが挙げられる。本発明においては、水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。ポジ型の感光性を有する場合、露光部が現像液に溶解する。ネガ型の感光性を有する場合、露光部が硬化し、現像液に不溶化する。
 次に、露光した樹脂膜を現像する工程について説明する。
露光後、ポジ型の場合は露光部を、ネガ型の場合は非露光部を、現像液により除去することによって所望のパターンを形成する。現像液としては、テトラメチルアンモニウムヒドロキシド、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。これらのアルカリ水溶液に、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを1種以上添加してもよい。現像方式としては、スプレー、パドル、浸漬、超音波等の方式が挙げられる。
 次に、現像によって形成したパターンを、蒸留水によりリンス処理することが好ましい。エタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを蒸留水に加えてリンス処理してもよい。
 次に、現像した樹脂膜を加熱処理する工程について説明する。
現像後、現像した樹脂膜を加熱処理することによって、硬化物を得る。
加熱処理温度は、硬化物から発生するアウトガス量をより低減させる観点から、180℃以上が好ましく、200℃以上がより好ましく、230℃以上がさらに好ましく、250℃以上が特に好ましい。一方、硬化物の膜靭性を向上させる観点から、500℃以下が好ましく、450℃以下がより好ましい。この温度範囲において、段階的に昇温してもよいし、連続的に昇温してもよい。加熱処理時間は、アウトガス量をより低減させる観点から、30分間以上が好ましい。また、硬化物の膜靭性を向上させる観点から3時間以下が好ましい。例えば、150℃、250℃で各30分間ずつ加熱処理する方法や、室温から300℃まで2時間かけて直線的に昇温しながら加熱処理する方法などが挙げられる。
 <硬化物>
 本発明の硬化物の第一の態様は、本発明の樹脂組成物を硬化した硬化物である。本発明の樹脂組成物を加熱処理することにより、耐熱性の低い成分を除去できるため、耐熱性および耐薬品性をより向上させることができる。特に、本発明の樹脂組成物が、ポリイミド前駆体、ポリベンゾオキサゾール前駆体、それらの共重合体またはそれらとポリイミドとの共重合体を含む場合は、加熱処理によりイミド環、オキサゾール環を形成するため、耐熱性および耐薬品性をより向上させることができる。
 また、本発明においてキサンテン化合物(b)、(d-2)成分、(d-1)成分および/または熱発色性化合物および必要に応じて(d-3)成分を併用することで、可視光の遮光性を高め、黒色の硬化物を得ることができる。加熱処理温度は、硬化物から発生するアウトガス量をより低減させる観点から、180℃以上が好ましく、200℃以上がより好ましく、230℃以上がさらに好ましく、250℃以上が特に好ましい。一方、硬化物の膜靭性を向上させる観点から、500℃以下が好ましく、450℃以下がより好ましい。この温度範囲において、段階的に昇温してもよいし、連続的に昇温してもよい。加熱処理時間は、アウトガス量をより低減させる観点から、30分間以上が好ましい。また、硬化物の膜靭性を向上させる観点から3時間以下が好ましい。例えば、150℃、250℃で各30分間ずつ熱処理する方法や、室温から300℃まで2時間かけて直線的に昇温しながら熱処理する方法などが挙げられる。
 また本発明の硬化物の第二の態様は、式(2)で表されるキサンテン化合物(b’)を含有する硬化物(以下、第二の態様の硬化物と呼ぶ場合がある。)である。
Figure JPOXMLDOC01-appb-C000012
式(2)中、A~Aはそれぞれ独立に、水素原子、炭素数1~10のアルキル基または電子供与性置換基を有してもよい炭素数6~10のアリール基を表す。ただし、A~Aのうち少なくとも3つは該電子供与性置換基を有してもよい炭素数6~10のアリール基であり、該電子供与性置換基を有してもよい炭素数6~10のアリール基のうち少なくとも1つは電子供与性置換基を有する。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、水酸基、アルコキシ基、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10、炭素原子数1~20の1価の炭化水素基を表す。Rは水素原子、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10を表す。R~R10は、それぞれ独立に、炭素原子数1~20の1価の炭化水素基を表す。ただし、式(2)で表されるキサンテン化合物(b’)は、電荷的に中性またはカチオン性であるものとする。
 硬化物が式(2)で表されるキサンテン化合物(b’)を含有することにより、硬化物の可視光における遮光性を高めることができる。可視光全体の遮光性を高める観点から、第二の態様の硬化物はさらに式(2)以外の着色剤(d)を含むことが好ましく、350~800nmにおいて、490nm以上580nm未満の範囲のいずれかに最大吸収波長を有する着色剤(d-2)を含むことがより好ましい。
 式(2)で表されるキサンテン化合物(b’)のその他の好適な態様は、式(1)で表されるキサンテン化合物(b)と同様である。
 <樹脂組成物および硬化物の適用例>
 本発明のキサンテン化合物(b)を含む樹脂組成物および硬化物は、半導体素子の表面保護層や層間絶縁層、有機エレクトロルミネッセンス(Electroluminescence:以下ELと記す)素子の絶縁層、有機EL素子を用いた表示装置の駆動用薄膜トランジスタ(Thin Film Transistor:以下TFTと記す)基板の平坦化層、回路基板の配線保護絶縁層、固体撮像素子のオンチップマイクロレンズや各種表示装置・固体撮像素子用平坦化層に好適に用いられる。例えば、耐熱性の低いMRAM、次世代メモリとして有望なポリマーメモリ(Polymer Ferroelectric RAM:PFRAM)や相変化メモリ(Phase Change RAM:PCRAM、Ovonics Unified Memory:OUM)などの表面保護層や層間絶縁層として好適である。また、基板上に形成された第一電極と、前記第一電極に対向して設けられた第二電極とを含む表示装置、例えば、LCD、ECD、ELD、有機電界発光素子を用いた表示装置(有機電界発光装置)などの絶縁層にも用いることができる。以下、有機EL表示装置および半導体装置、半導体電子部品を例に説明する。
 <有機EL表示装置>
 本発明の有機EL表示装置は、基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層および第2電極を有する有機EL表示装置であって、平坦化層および/または絶縁層が本発明の硬化物を有する。なお、基板は、有機EL表示装置の一部である。
 本発明の有機EL表示装置は、前記絶縁層が本発明の硬化物を有し、前記絶縁層の膜厚1μm当たりの可視光における光学濃度が0.5~1.5であることが好ましい。OD値が0.5以上であると、硬化物によって遮光性を向上させることができるため、有機EL表示装置又は液晶表示装置などの表示装置において、電極配線の可視化や外光反射をより低減し、画像表示におけるコントラストを向上させることができる。またOD値が1.5以下であると、感光化合物を含む樹脂組成物とした際の露光時の感度を向上させることができる。
 前記絶縁層が黒色膜の場合、絶縁層の膜厚は1.0~5.0μmが好ましく、より好ましくは1.5μm以上、さらに好ましくは2.0μm以上である。黒色の絶縁層を前述の範囲内とすることで、膜厚1μm当たりの可視光における光学濃度が低い黒色膜であっても、膜全体の光学濃度を上げることができ、外光反射の低減効果を高めることができる。
 アクティブマトリックス型の表示装置を例に挙げると、ガラスや各種プラスチックなどの基板上に、TFTと、TFTの側方部に位置しTFTと接続された配線とを有し、その上に凹凸を覆うようにして平坦化層を有し、さらに平坦化層上に表示素子が設けられている。表示素子と配線とは、平坦化層に形成されたコンタクトホールを介して接続される。特に、近年有機EL表示装置のフレキシブル化が主流になっているため、前述の駆動回路を有する基板が樹脂フィルムを含む有機EL表示装置であることが好ましい。本発明の樹脂組成物を硬化した硬化物をそのようなフレキシブル表示装置の絶縁層、平坦化層として用いると、折り曲げ耐性に優れるため特に好ましく用いられる。本発明の樹脂組成物を硬化した硬化物との密着性を向上させる観点から、樹脂フィルムとしてはポリイミドが特に好ましい。
 本発明の有機EL表示装置は、外光反射の低減効果を高めるため、さらにブラックマトリクスを有するカラーフィルタを具備することが好ましい。ブラックマトリクスは、例えば、エポキシ系樹脂、アクリル系樹脂、ウレタン系樹脂、ポリエステル系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂またはシロキサン系樹脂等の樹脂を含有することが好ましい。
 ブラックマトリクスは、着色剤を含有する。着色剤としては、例えば、黒色有機顔料、混色有機顔料、黒色無機顔料などを含有することができる。黒色有機顔料としては、例えば、カーボンブラック、ペリレンブラックアニリンブラック、ベンゾフラノン系顔料などを含有することができる。混色有機顔料としては、例えば、赤、青、緑、紫、黄色、マゼンダおよび/またはシアン等の2種以上の顔料を混合して疑似黒色化したものなどを含有することができる。黒色無機顔料としては、例えば、グラファイト;チタン、銅、鉄、マンガン、コバルト、クロム、ニッケル、亜鉛、カルシウム、銀等の金属の微粒子;金属酸化物;金属複合酸化物;金属硫化物;金属窒化物;金属酸窒化物;金属炭化物などを含有することができる。これらの中でも、高い遮光性を有するカーボンブラック、チタン窒化物、チタン炭化物や、これらと銀などの金属との複合粒子が好ましい。
 ブラックマトリクスのOD値としては、1.5以上であることが好ましく、2.5以上であることがより好ましく、4.5以上であることがさらに好ましい。
 図1にTFT基板の一例の断面図を示す。基板6上に、ボトムゲート型またはトップゲート型のTFT(薄膜トランジスタ)1が行列状に設けられており、このTFT1を覆う状態でTFT絶縁層3が形成されている。また、このTFT絶縁層3上にTFT1に接続された配線2が設けられている。さらにTFT絶縁層3上には、配線2を埋め込む状態で平坦化層4が設けられている。平坦化層4には、配線2に達するコンタクトホール7が設けられている。そして、このコンタクトホール7を介して、配線2に接続された状態で、平坦化層4上にITO(透明電極)5が形成されている。ここで、ITO5は、表示素子(例えば有機EL素子)の電極となる。そしてITO5の周縁を覆うように絶縁層8が形成される。有機EL素子は、基板6と反対側から発光光を放出するトップエミッション型でもよいし、基板6側から光を取り出すボトムエミッション型でもよい。このようにして、各有機EL素子にこれを駆動するためのTFT1を接続したアクティブマトリックス型の有機EL表示装置が得られる。
 かかるTFT絶縁層3、平坦化層4および/または絶縁層8は、前述の通り本発明の樹脂組成物からなる樹脂膜を形成する工程、前記樹脂膜を露光する工程、露光した樹脂膜を現像する工程および現像した樹脂膜を加熱処理する工程により形成することができる。これらの工程を有する製造方法より、有機EL表示装置を得ることができる。
 <有機EL表示装置以外の表示装置>
 本発明の表示装置は、少なくとも金属配線、本発明の硬化物、および複数の発光素子を有する表示装置であって、前記発光素子はいずれか一方の面に一対の電極端子を具備し、前記一対の電極端子は前記硬化物中に延在する複数本の前記金属配線と接続し、複数本の前記金属配線は、前記硬化物により電気的絶縁性を保持する構成である。本発明の表示装置とは、有機EL表示装置以外の表示装置を指す。
 前記表示装置について、図2を一態様の例として説明する。
図2において、表示装置11は、対向基板15上に複数の発光素子12を配し、発光素子12上に硬化物13を配する。発光素子上とは、発光素子の表面のみならず、支持基板や発光素子の上側にあればよい。図2に示す態様では、発光素子12の少なくとも一部と接するように配した硬化物13の上にさらに複数の硬化物13を積層し合計して3層積層する構成を例示しているが、硬化物13は単層であってもよい。発光素子12は対向基板15と接する面とは反対の面に一対の電極端子16を具備し、それぞれの電極端子16が硬化物13中に延在する金属配線14と接続されている。なお、硬化物13中に延在する複数本の金属配線14は、硬化物13により覆われていれば、硬化物13は、絶縁層としても機能するため、電気的絶縁性を保持する構成となっている。金属配線が電気的絶縁性を保持する構成となっているとは、アルカリ可溶性樹脂(a)を含む樹脂組成物を硬化した硬化物によって金属配線の電気的絶縁性が必要な部分が覆われること意味する。また、本発明において絶縁層が、電気的絶縁性がある状態とは、絶縁層の体積抵抗率が1012Ω・cm以上である状態を意味する。さらに発光素子12が、対向基板15に対して対向した位置に設けられた発光素子駆動基板17に付加された駆動素子18と、金属配線14や14cを通じて電気的に接続されて、発光素子12の発光を制御させることができる。また、発光素子駆動基板17は、例えばはんだバンプ20を介して金属配線14と電気的に接続されている。さらに金属配線14などの金属の拡散を防止するため、バリアメタル19を配してもよい。
 前記硬化物13は黒色かつ該絶縁層の膜厚1μm当たりの可視光におけるOD値が0.5~1.5であることが好ましい。OD値が0.5以上であると、硬化物によって遮光性を向上させることができるため、有機EL表示装置又は液晶表示装置などの表示装置において、電極配線の可視化や外光反射をより低減し、画像表示におけるコントラストを向上させることができる。またOD値が1.5以下であると、感光化合物を含む樹脂組成物とした際の露光時の感度を向上させることができる。
 以下、実施例等をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。なお、実施例中の各評価は以下の方法により行った。
 (1)キサンテン化合物(b)の350~800nmにおける最大吸収波長の評価
 各実施例および比較例により得られたキサンテン化合物(b)を含む樹脂組成物のワニスAおよびキサンテン化合物(b)を含まない樹脂組成物のワニスBを、5センチ角のガラス基板上に加熱処理(キュア)後の膜厚が1.5μmとなるようにスピンコートで塗布し、120℃で120秒間プリベークし、対応するプリベーク膜Aとプリベーク膜Bを得た。得られたプリベーク膜Aとプリベーク膜Bについて、紫外可視分光光度計MultiSpec-1500(島津製作所(株)製)を用いて、波長300nm~800nmの透過スペクトルを測定した。次にプリベーク膜Aの透過スペクトルからプリベーク膜Bの透過スペクトルを吸光度に変換してから差し引くことで、キサンテン化合物(b)由来の透過スペクトルを求め、350~800nmにおいて、最大吸収波長を600nm以上に有する場合は「A」、580nm以上600nm未満に有する場合は「B」、580nm未満に有する場合は「C」と判定した。
 (2)キサンテン化合物(b)の耐熱性評価
 (1)と同様にして得られたプリベーク膜Aとプリベーク膜Bをそれぞれ2つにカットし、1つ目は何も処理せず、2つ目をイナートオーブンCLH-21CD-S(光洋サーモシステム(株)製)を用いて230℃にて大気雰囲気下で1時間加熱処理して、対応する硬化物Aと硬化物Bを作製した。その後、(1)と同様にしてプリベーク膜と硬化物の波長300nm~800nmの透過スペクトルを測定し、プリベーク膜Aおよび硬化膜Aの透過スペクトルから対応するプリベーク膜Bおよび硬化膜Bの透過スペクトルを吸光度に変換してから差し引くことで、キサンテン化合物(b)由来のプリベーク膜および硬化膜の透過スペクトルを求めた。得られたキサンテン化合物(b)由来のプリベーク膜および硬化膜の透過スペクトルから最大吸収波長における吸光度を算出し、吸光度変化率(キサンテン化合物(b)由来の硬化物の吸光度/キサンテン化合物(b)由来のプリベーク膜の吸光度)(%)を計算した。吸光度変化率が90%以上であった場合は「A」、90%未満75%以上であった場合は「B」、75%未満であった場合は「C」と判定した。
 (3)樹脂組成物の感度の評価
 各実施例および比較例により得られたワニスを、塗布現像装置ACT-8(東京エレクトロン(株)製)を用いて、8インチシリコンウェハー上にスピンコート法により塗布し、120℃で2分間ベークをして膜厚4.0μmのプリベーク膜を作製した。なお、膜厚は、触針式プロファイラー(P-15;ケ-エルエ-・テンコ-ル社製)を用いて測定した。その後、露光機i線ステッパーNSR-2005i9C(ニコン社製)を用いて、10μmのホールのパターンを有するマスクを介して、露光量50~300mJ/cmの範囲で5mJ/cm毎に露光した。露光後、前記ACT-8の現像装置を用いて、2.38質量%のテトラメチルアンモニウム水溶液(以下TMAH、多摩化学工業(株)製)を現像液として、非露光部の膜減り量が0.5μmになるまで現像した後、蒸留水でリンスを行い、振り切り乾燥し、パターンを得た。
 得られたパターンをFPD顕微鏡MX61(オリンパス(株)製)を用いて倍率20倍で観察し、ホールの開口径を測定した。コンタクトホールの開口径が10μmに達した最低露光量を求め、これを感度とした。感度が120mJ/cm未満であった場合は「A」、120mJ/cm以上150mJ/cm未満であった場合は「B」、150mJ/m以上であった場合は「C」と判定した。
 (4)樹脂組成物の1μm当たりのOD値の評価
 5センチ角のガラス基板上に各実施例および比較例により得られたワニスを加熱処理(キュア)後の膜厚が2.0μmとなるようにスピンコートで塗布し、120℃で120秒間プリベークし、プリベーク膜を作製した。その後、光洋サーモシステム(株)製高温クリーンオーブンINH-9CD-Sを用いて、大気雰囲気下230℃で60分間キュアし、硬化膜を作製した。なお、硬化膜の膜厚は、触針式プロファイラー(P-15;ケ-エルエ-・テンコ-ル社製)を用いて測定した。このようにして得られた硬化膜について、光学濃度計(361T;X-Rite社製)を用いて、OD値を測定した。得られたOD値を硬化膜の膜厚で割り返すことで、1μm当たりOD値とした(1μm当たりのOD値=OD値/硬化膜の膜厚)。1μm当たりのOD値が0.70以上であった場合は「A」、0.70未満0.50以上であった場合は「B」、0.50未満であった場合は「C」と判定した。
 (5)樹脂組成物の繰り返しキュアによるOD値の変化量の評価
 (4)で得られた硬化膜を、光洋サーモシステム(株)製高温クリーンオーブンINH-9CD-Sを再度用いて、大気雰囲気下230℃で60分間キュアし、2回キュアを行った硬化膜を作製した。(4)と同様にして硬化膜の膜厚およびOD値を測定し、得られたOD値を硬化膜の膜厚で割り返すことで、繰り返しキュア後の1μm当たりOD値を算出した。繰り返しキュアによるOD値の変化量が0.05未満であった場合は「A」、0.10未満0.05以上であった場合は「B」、0.10以上であった場合は「C」と判定した。ただし、OD値の変化量が0.10未満であっても、(4)のOD値が0.50未満であった場合は「C」と判定した。
 (6)樹脂組成物の冷凍保存安定性の評価
 東京エレクトロン(株)製塗布・現像装置“CLEAN TRACK ACT-12”を用いて、ろ過後-18℃の冷凍庫で60日間静置保存した各ワニスを12インチSiウエハ上に塗布し、100℃で3分間、ホットプレートで乾燥させ、膜厚1000nmの感光性樹脂膜を得た。得られた感光性樹脂膜について、(株)トプコン製ウエハ表面検査装置“WM-10”にて0.27μm以上の大きさの異物数を計測した。計測面積はウエハの中心から半径8cmの円の内側の約201cmとし、塗膜1cmあたりの異物数(欠陥密度)を求めた。基板1枚あたりの欠陥密度が1.00個/cm未満であった場合は「A」、1.00個/cm以上3.00個/cm未満であった場合は「B」、3.00個/cm以上であった場合は「C」と判定した。
 (7)TOF-SIMSによる硬化膜中のキサンテン化合物(b’)の分析
 得られた硬化膜に対して、膜表面をエッチングイオンでクリーニングしてからTOF-SIMS分析を行った。分析に用いたTOF-SIMS装置と測定条件は以下の通りである。
 装置:ION-TOF社製「TOF.SIMS5」
 一次イオン:Bi ++
 一次イオンの加速電圧:30kV
 一次イオン電流:0.1pA
 エッチングイオン:Arガスクラスターイオン
 エッチングイオン加速電圧:5.0kV
 測定範囲:200μm×200μm。
 合成例1 ヒドロキシル基含有ジアミン化合物(α)の合成
 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(以降BAHFと呼ぶ)18.3g(0.05モル)をアセトン100mL、プロピレンオキシド17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間反応させ、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
 固体30gを300mLのステンレスオートクレーブに入れ、メチルセロソルブ250mLに分散させ、5質量%パラジウム-炭素を2g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、濾過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物(α)を得た。
Figure JPOXMLDOC01-appb-C000013
 合成例2 キノンジアジド化合物(c-1)の合成
 乾燥窒素気流下、TrisP-PA(商品名、本州化学工業(株)製)21.22g(0.05モル)と5-ナフトキノンジアジドスルホニル酸クロリド26.87g(0.10モル)を1,4-ジオキサン450gに溶解させ、室温にした。ここに、1,4-ジオキサン50gと混合したトリエチルアミン15.18gを、系内が35℃以上にならないように滴下した。滴下後30℃で2時間撹拌した。トリエチルアミン塩を濾過し、ろ液を水に投入した。その後、析出した沈殿をろ過で集めた。この沈殿を真空乾燥機で乾燥させ、下記式で表されるキノンジアジド化合物(c-1)を得た。
Figure JPOXMLDOC01-appb-C000014
 合成例3 アルカリ可溶性樹脂(a-1)の合成
 乾燥窒素気流下、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物(以降ODPAと呼ぶ)31.0g(0.10モル)を1-メチル-2-ピロリドン(以下、NMPという場合がある)500gに溶解させた。ここに合成例1で得られたヒドロキシル基含有ジアミン化合物(α)45.35g(0.075モル)と1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン(以降SiDAと呼ぶ)1.24g(0.005モル)をNMP50gとともに加えて、40℃で2時間反応させた。次に末端封止剤として3-アミノフェノール(以降MAPと呼ぶ)4.36g(0.04モル)をNMP5gとともに加え、50℃で2時間反応させた。その後、N,N-ジメチルホルムアミドジエチルアセタール32.39g(0.22モル)をNMP50gで希釈した溶液を投入した。投入後、50℃で3時間撹拌した。撹拌終了後、溶液を室温まで冷却した後、溶液を水3Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、アルカリ可溶性樹脂であるポリイミド前駆体(a-1)を得た。
 合成例4 キサンテン化合物(b-1)の合成
 下記反応式[1]において、(β)で表される化合物20.26g(0.05モル)、エチレングリコール120gおよび4-エトキシアニリン20.58g(0.15モル)の混合物を120℃で18時間加熱撹拌をした。反応終了後、反応溶液を室温まで放冷した後、反応溶液を0~10℃の17.5質量%塩酸450gに滴下して1時間撹拌をした。その後、析出物をろ取して、80℃の純水で洗浄し、60℃で24時間乾燥させ、窒素原子上の2つがアリール基で置換されたキサンテン化合物(b-1-1)を得た。
 次に、得られた化合物(b-1-1)24.27g(0.04モル)、1-メチル-2-ピロリドン150g、銅粉末1.3g、炭酸カリウム8.3gおよび4-ヨードフェネトール19.84g(0.08モル)の混合物を150℃で12時間加熱撹拌をした。反応終了後、反応溶液をろ過して不溶解物を除き、反応溶液を0~10℃の17.5質量%塩酸540gに滴下して1時間撹拌をした。その後、析出物をろ取して、60℃で24時間乾燥することにより、窒素原子上の3つがアリール基で置換されたキサンテン化合物(b-1)を得た。得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 727[M+H]
Figure JPOXMLDOC01-appb-C000015
 合成例5 キサンテン化合物(b-2)の合成
 下記反応式[2]において(γ)で表される化合物18.46g(0.05モル)、スルホラン120g、塩化亜鉛13.63gおよび4-エトキシアニリン20.58g(0.15モル)の混合物を170℃で8時間加熱撹拌をした。反応終了後、反応溶液を室温まで放冷した後、反応溶液を0~10℃の17.5%質量塩酸450gに滴下して1時間撹拌をした。続いて、析出物をろ取し、5質量%炭酸ナトリウム水溶液500gに加え、1時間撹拌をし、ろ取後に純水で洗浄し、60℃で24時間乾燥させ、窒素原子上の2つがアリール基で置換されたキサンテン化合物(b-2-1)を得た。
 次に、得られた化合物(b-2-1)22.83g(0.04モル)、1-メチル-2-ピロリドン150g、銅粉末1.3g、炭酸カリウム8.3gおよび4-ヨードフェネトール19.84g(0.08モル)の混合物を150℃で12時間加熱撹拌をした。反応終了後、反応溶液をろ過して不溶解物を除き、反応溶液を0~10℃の17.5%質量塩酸450gに滴下して1時間撹拌をした。その後、析出物をろ取して、60℃で24時間乾燥することにより、窒素原子上の4つがアリール基で置換されたキサンテン化合物(b-2)を得た。得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 811[M+H]
Figure JPOXMLDOC01-appb-C000016
 合成例6 キサンテン化合物(b-3)の合成
 下記反応式[3]において、合成例5で得られたキサンテン化合物(b-2)8.10g(0.01モル)、ジフェニルアミン2.54g(0.015モル)、トリエチルアミン10.11g(0.1モル)および1,2-ジクロロエタン150gの混合物中に、室温でオキシ塩化リン1.69g(0.011モル)を滴下し、85℃で3時間加熱撹拌をした。反応終了後、反応溶液を室温まで放冷した後、反応溶液を純水300gに入れ、クロロホルム100gで抽出した。有機層を4mol/Lの塩酸150g、純水150gで洗浄したのち、溶剤を留去し、キサンテン化合物(b-2)がアミド化されたキサンテン化合物(b-3)を得た。得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 963[M+H]
Figure JPOXMLDOC01-appb-C000017
 合成例7 キサンテン化合物(b-4)の合成
 下記反応式[5]において、合成例5と同様にして得られた化合物(b-2-1)22.83g(0.04モル)、1-メチル-2-ピロリドン150g、銅粉末1.3g、炭酸カリウム8.3gおよび3-ヨードトルエン17.43g(0.08モル)の混合物を150℃で12時間加熱撹拌をした。反応終了後、反応溶液をろ過して不溶解物を除き、反応溶液を0~10℃の17.5%質量塩酸450gに滴下して1時間撹拌をした。その後、析出物をろ取して、60℃で24時間乾燥することにより、窒素原子上の4つがアリール基で置換されたキサンテン化合物を得た。得られたキサンテン化合物7.51g(0.01モル)、ジフェニルアミン2.54g(0.015モル)、トリエチルアミン10.11g(0.1モル)および1,2-ジクロロエタン150gの混合物中に、室温でオキシ塩化リン1.69g(0.011モル)を滴下し、85℃で3時間加熱撹拌をした。反応終了後、反応溶液を室温まで放冷した後、反応溶液を純水300gに入れ、クロロホルム100gで抽出した。有機層を4mol/Lの塩酸150g、純水150gで洗浄したのち、溶剤を留去し、アミド化されたキサンテン化合物(b-4)を得た。得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 903[M+H]
Figure JPOXMLDOC01-appb-C000018
 合成例8 キサンテン化合物(b-5)の合成
 下記反応式[6]において、合成例7と同様にして得られた化合物(b-4)9.39g(0.01モル)をN,N-ジメチルホルムアミド(DMF)150g中に溶解させ、パラトルエンスルホン酸ナトリウム2.91g(0.015モル)を加え、40℃で3時間加熱撹拌した。反応溶液を室温まで放冷した後、反応溶液を純水1000gに注ぎ、析出した結晶をろ取して、水洗浄後、60℃で24時間乾燥させることにより、(b-4)のカウンターイオンを交換させたキサンテン化合物(b-5)を得た。得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 903[M+H]
LC-MS(ESI、nega):m/z 171[M]
Figure JPOXMLDOC01-appb-C000019
 合成例9 キサンテン化合物(b-6)の合成
 下記反応式[7]において、パラトルエンスルホン酸ナトリウム2.91g(0.015モル)をラウリルベンゼンスルホン酸ナトリウム5.23g(0.015モル)とした以外は合成例8と同様にして(b-4)のカウンターイオンを交換させたキサンテン化合物(b-6)を得た。
得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 903[M+H]
LC-MS(ESI、nega):m/z 325[M]
Figure JPOXMLDOC01-appb-C000020
 合成例10 キサンテン化合物(b-7)の合成
 下記反応式[8]において、ジフェニルアミン2.54g(0.015モル)をピペリジン1.28g(0.015モル)とした以外は合成例7と同様にしてアミド化されたキサンテン化合物(b-7)を得た。
得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 819[M+H]
Figure JPOXMLDOC01-appb-C000021
 合成例11 キサンテン化合物(b-8)の合成
 下記反応式[10]において、パラトルエンスルホン酸ナトリウム2.91g(0.015モル)をトリフルオロメタンスルホン酸ナトリウム2.58g(0.015モル)とした以外は合成例5と同様にして(b-4)のカウンターイオンを交換させたキサンテン化合物(b-8)を得た。
得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 903[M+H]
LC-MS(ESI、nega):m/z 149[M]
Figure JPOXMLDOC01-appb-C000022
 合成例12 キサンテン化合物(b-9)の合成
 下記反応式[11]において、パラトルエンスルホン酸ナトリウム2.91g(0.015モル)をテトラフェニルほう酸ナトリウム5.13g(0.015モル)とした以外は合成例8と同様にして(b-4)のカウンターイオンを交換させたキサンテン化合物(b-9)を得た。
得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 903[M+H]
LC-MS(ESI、nega):m/z 319[M]
Figure JPOXMLDOC01-appb-C000023
 合成例13 キサンテン化合物(b-10)の合成
 下記反応式[12]において、パラトルエンスルホン酸ナトリウム2.91g(0.015モル)をビス(トリフルオロメタンスルホニル)イミドカリウム4.78g(0.015モル)とした以外は合成例8と同様にして(b-4)のカウンターイオンを交換させたキサンテン化合物(b-10)を得た。
得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 903[M+H]
LC-MS(ESI、nega):m/z 280[M]
Figure JPOXMLDOC01-appb-C000024
 合成例11 キサンテン化合物(b-11)の合成
 下記反応式[13]において、4-エトキシアニリン20.58g(0.15モル)をp-トルイジン16.07g(0.15モル)とした以外は合成例5と同様にして窒素原子上の4つがアリール基で置換されたキサンテン化合物(b-11-1)を得た。次に、キサンテン化合物(b-2)8.10g(0.01モル)を得られたキサンテン化合物(b-11-1)6.90g(0.01モル)とした以外は合成例6と同様にしてキサンテン化合物(b-11-1)がアミド化されたキサンテン化合物(b-11)を得た。
得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 842[M+H]
Figure JPOXMLDOC01-appb-C000025
 比較合成例1 キサンテン化合物(1)の合成
 下記反応式[4]において(β)で表される化合物20.26g(0.05モル)、2-プロパノール120gおよび2,6-ジメチルアニリン7.3g(0.06モル)の混合物を80℃で15時間加熱撹拌をした。反応終了後、反応溶液を室温まで放冷した後、反応溶液を17.5質量%塩酸450gに滴下して室温で1時間、撹拌をした。その後、析出物をろ取して、80℃の純水で洗浄し、60℃で24時間、乾燥することにより、窒素原子上の1つがアリール基で置換されたキサンテン化合物を得た。
 次に得られたキサンテン化合物19.60g(0.04モル)、エチレングリコール100gおよびo-トルイジン8.57g(0.08モル)の混合物を120℃で18時間加熱撹拌をした。反応終了後、反応溶液を室温まで放冷した後、反応溶液を17.5質量%塩酸400gに滴下して室温で1時間、撹拌をした。その後、析出物をろ取して、80℃の純水で洗浄し、60℃で24時間乾燥することにより、窒素原子上の2つがアリール基で置換されたキサンテン化合物を得た。
 続いて、得られたキサンテン化合物19.62g(0.035モル、1-メチル-2-ピロリジノン130g、炭酸カリウム7.8gおよびヨウ化メチル14.9g(0.105モル)の混合物を80℃で2時間、撹拌をした。反応終了後、反応溶液を室温まで放冷した後、反応溶液を0~10℃の17.5質量%塩酸540gに滴下して1時間、撹拌をした。その後、析出物をろ取して、60℃で24時間乾燥することにより、キサンテン化合物(1)を得た。得られた化合物は、LC-MS2020(島津製作所(株)製)を用いてLC-MS分析を行い、目的の化合物であることを確認した。
LC-MS(ESI、posi):m/z 589[M+H]
Figure JPOXMLDOC01-appb-C000026
 比較合成例2 キサンテン化合物(2)の合成
 下記反応式[9]において、4-エトキシアニリン20.58g(0.15モル)をアニリンg(0.015モル)とした以外は合成例5と同様にして窒素原子上の2つが電子供与性置換基を有さないアリール基で置換されたキサンテン化合物を得た。
 次に、(b-2-1)22.83g(0.04モル)を得られた窒素原子上の2つが電子供与性置換基を有さないアリール基で置換されたキサンテン化合物19.30g(0.04モル)、4-ヨードフェネトール19.84g(0.08モル)をヨードベンゼン16.32g(0.08モル)とした以外は合成例5と同様にして窒素原子上の4つが電子供与性置換基を有さないアリール基で置換されたキサンテン化合物(2)を得た。
LC-MS(ESI、posi):m/z 635[M+H]
Figure JPOXMLDOC01-appb-C000027
 各実施例、比較例で用いた化合物の名称を以下に示す。なお着色剤(d)は公知の方法を用いて合成し、紫外可視分光光度計MultiSpec-1500(島津製作所(株)製)を用いて、GBL溶液中の波長300nm~800nmの透過スペクトルを測定することで最大吸収波長を算出した。化合物(d10-2-1)の最大吸収波長は534nm、化合物(d10-2-2)の最大吸収波長は536nmであった。
e-1:4,4’,4’’-メチリジントリスフェノール(熱発色性化合物)
GBL:γ-ブチロラクトン
EL:乳酸エチル
PGME:プロピレングリコールモノメチルエーテル
Figure JPOXMLDOC01-appb-C000028
 実施例1
 ポリイミド前駆体(a-1)7.0g、キサンテン化合物(b-1)0.5gをGBL20gに加えてキサンテン化合物(b)を含む樹脂組成物のワニスA1を得た。また、ポリイミド前駆体(a-1)7.0gをGBL20gに加えてキサンテン化合物(b)を含まない樹脂組成物のワニスB1を得た。得られたワニスA1およびB1を用いて前記のように350~800nmの最大吸収波長、染料の耐熱性評価行った。
 実施例2~11、比較例1~3
 アルカリ可溶性樹脂(a)、キサンテン化合物(b)、溶剤を表1に記載の通り変更した以外は実施例1と同様にしてキサンテン化合物(b)を含む樹脂組成物のワニスA、キサンテン化合物(b)を含まない樹脂組成物のワニスBを得た。得られたワニスAおよびBを用いて前記のように350~800nmの最大吸収波長、染料の耐熱性評価を行った。
 実施例12
 ポリイミド前駆体(a-1)10.0g、キサンテン化合物(b)2.0g、感光性化合物(c-1)2.0g、(d10-2-2)1.0g、(e-1)2.0gをGBL10g、EL20g、PGME70gに溶解した後、0.2μmのポリテトラフルオロエチレン製のフィルターでろ過し、ポジ型感光性樹脂組成物のワニスAAを得た。得られたワニスを用いて前記のように感度、OD値、OD値の変化量の評価を行った。
 実施例13~23、比較例3~5
 アルカリ可溶性樹脂(a)、キサンテン化合物(b)、感光性化合物(c)、着色材(d)、その他添加剤、溶剤を表2に記載の通り変更した以外は実施例12と同様にしてポジ型感光性樹脂組成物のワニスを得た。得られたワニスを用いて前記のように感度、OD値、OD値の変化量の評価を行った。
 実施例24~25
 表2に記載のポジ型感光性樹脂組成物のワニスを用いて、前記のように冷凍保存安定性の評価を行った。
 実施例26
 実施例16で得られた樹脂組成物AEの硬化膜を用いて、前期のようにTOF-SIMSによる硬化膜中のキサンテン化合物(b’)の分析を行った。分析の結果、m/z902(9026252)の分子イオンが確認された。本結果より、樹脂組成物AEの硬化膜は、キサンテン化合物(b-5)のカチオン部が含まれることを確認した。
 各実施例および比較例の組成および評価結果を表1~4に示す。
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
1:TFT(薄膜トランジスタ)
2:配線
3:TFT絶縁層
4:平坦化層
5:ITO(透明電極)
6:基板
7:コンタクトホール
8:絶縁層
11:表示装置
12:発光素子
13:硬化物
14、14c:金属配線
15:対向基板
16:電極端子
17:発光素子駆動基板
18:駆動素子
19:バリアメタル
20:はんだバンプ
 

Claims (19)

  1. 式(1)で表されるキサンテン化合物(b)。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、A~Aはそれぞれ独立に、水素原子、炭素数1~10のアルキル基または電子供与性置換基を有してもよい炭素数6~10のアリール基を表す。ただし、A~Aのうち少なくとも3つは該電子供与性置換基を有してもよい炭素数6~10のアリール基であり、該電子供与性置換基を有してもよい炭素数6~10のアリール基のうち少なくとも1つは電子供与性置換基を有する。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、水酸基、アルコキシ基、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10、炭素原子数1~20の1価の炭化水素基を表す。Rは水素原子、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10を表す。R~R10は、それぞれ独立に、炭素原子数1~20の1価の炭化水素基を表す。Zはアニオン化合物を表し、nは0または1を表す。ただし、式(1)で表されるキサンテン化合物(b)は、全体として電荷的に中性であるものとする。)
  2. 前記電子供与性置換基のハメット則の置換基定数σ値が、-0.20以下である請求項1に記載のキサンテン化合物(b)。
  3. 前記式(1)において、nが0である請求項1または2に記載のキサンテン化合物(b)。
  4. 前記式(1)において、nが1であり、Zが脂肪族または芳香族のスルホナートイオンである請求項1または2に記載のキサンテン化合物(b)。
  5. 請求項1に記載のキサンテン化合物(b)とアルカリ可溶性樹脂(a)を含む樹脂組成物。
  6. さらに感光性化合物(c)を含む請求項5に記載の樹脂組成物。
  7. 前記感光性化合物(c)がキノンジアジド化合物を含む請求項6に記載の樹脂組成物。
  8. さらに、350~800nmにおいて、490nm以上580nm未満の範囲のいずれかに最大吸収波長を有する着色剤(d-2)を含有する請求項5に記載の樹脂組成物。
  9. 前記式(1)においてnが1かつZが有機アニオンであるキサンテン化合物(b1)、および有機イオン同士のイオン対を形成しているイオン性染料(d10)を含み、前記有機アニオンが1種類である請求項5に記載の樹脂組成物。
  10. 前記アルカリ可溶性樹脂(a)が、ポリイミド、ポリイミド前駆体、ポリベンゾオキサゾール、ポリベンゾオキサゾール前駆体、ポリアミドイミド、ポリアミドイミド前駆体およびそれら共重合体からなる群より選択される1種類以上を含む請求項5に記載の樹脂組成物。
  11. 前記樹脂組成物中に含まれる全塩素原子と全臭素原子の総質量が、樹脂組成物の固形分の総質量に対して、150ppm以下である請求項5に記載の樹脂組成物。
  12. 請求項5に記載の樹脂組成物を硬化した硬化物。
  13. 式(2)で表されるキサンテン化合物(b’)を含有する硬化物。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、A~Aはそれぞれ独立に、水素原子、炭素数1~10のアルキル基または電子供与性置換基を有してもよい炭素数6~10のアリール基を表す。ただし、A~Aのうち少なくとも3つは該電子供与性置換基を有してもよい炭素数6~10のアリール基であり、該電子供与性置換基を有してもよい炭素数6~10のアリール基のうち少なくとも1つは電子供与性置換基を有する。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、水酸基、アルコキシ基、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10、炭素原子数1~20の1価の炭化水素基を表す。Rは水素原子、-SOH、-SO 、-SONR、-COOH、-COO、-COOR、-CONR10を表す。R~R10は、それぞれ独立に、炭素原子数1~20の1価の炭化水素基を表す。ただし、式(2)で表されるキサンテン化合物(b’)は、電荷的に中性またはカチオン性であるものとする。)
  14. 基板上に、請求項6に記載の樹脂組成物からなる樹脂膜を形成する工程、該樹脂膜を露光する工程、露光した樹脂膜を現像する工程および現像した樹脂膜を加熱処理する工程を含む硬化物の製造方法。
  15. 前記樹脂膜を露光する工程において、露光時に用いるフォトマスクが、透光部、遮光部および半透光部を有するハーフトーンフォトマスクであり、透光部の透過率を100%とした時の半透光部の透過率が5%~30%である請求項14に記載の硬化物の製造方法。
  16. 基板上に、駆動回路、平坦化層、第1電極、絶縁層、発光層、および第2電極を有する有機EL表示装置であって、該平坦化層および/または絶縁層が請求項12または13に記載の硬化物を有する有機EL表示装置。
  17. 前記絶縁層が前記硬化物を有し、前記絶縁層の膜厚1μm当たりの可視光における光学濃度が0.5~1.5である請求項16に記載の有機EL表示装置。
  18. さらにブラックマトリクスを有するカラーフィルタを具備する請求項16に記載の有機EL表示装置。
  19. 少なくとも金属配線、請求項12または13に記載の硬化物、および複数の発光素子を有する表示装置であって、前記発光素子はいずれか一方の面に一対の電極端子を具備し、前記一対の電極端子は前記硬化物中に延在する複数本の前記金属配線と接続し、複数本の前記金属配線は、前記硬化物により電気的絶縁性を保持する構成である、表示装置。
     
     
PCT/JP2022/029310 2021-08-06 2022-07-29 キサンテン化合物、樹脂組成物、硬化物、硬化物の製造方法、有機el表示装置および表示装置 WO2023013549A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237039469A KR20240044383A (ko) 2021-08-06 2022-07-29 크산텐 화합물, 수지 조성물, 경화물, 경화물의 제조 방법, 유기 el 표시 장치 및 표시 장치
US18/571,832 US20240248396A1 (en) 2021-08-06 2022-07-29 Xanthene compound, resin composition, cured object, method for producing cured object, organic el display device, and display device
JP2022552772A JP7544136B2 (ja) 2021-08-06 2022-07-29 キサンテン化合物、樹脂組成物、硬化物、硬化物の製造方法、有機el表示装置および表示装置
CN202280042306.6A CN117480218A (zh) 2021-08-06 2022-07-29 呫吨化合物、树脂组合物、固化物、固化物的制造方法、有机el显示装置及显示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-129709 2021-08-06
JP2021129709 2021-08-06
JP2022024575 2022-02-21
JP2022-024575 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023013549A1 true WO2023013549A1 (ja) 2023-02-09

Family

ID=85154753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029310 WO2023013549A1 (ja) 2021-08-06 2022-07-29 キサンテン化合物、樹脂組成物、硬化物、硬化物の製造方法、有機el表示装置および表示装置

Country Status (5)

Country Link
US (1) US20240248396A1 (ja)
JP (1) JP7544136B2 (ja)
KR (1) KR20240044383A (ja)
TW (1) TW202319381A (ja)
WO (1) WO2023013549A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135460A (ja) * 1982-12-28 1984-08-03 ポラロイド・コ−ポレ−シヨン 写真製品
JPS61137876A (ja) * 1984-12-07 1986-06-25 Hodogaya Chem Co Ltd キサンテン化合物、キサンテン化合物の製造方法及びキサンテン化合物を含有する画像形成組成物
JP2001288389A (ja) * 2000-04-06 2001-10-16 Fuji Photo Film Co Ltd インクジェット用インクおよびインクジェット記録方法
WO2015115416A1 (ja) * 2014-01-31 2015-08-06 富士フイルム株式会社 着色組成物、硬化膜、カラーフィルタの製造方法、カラーフィルタ、固体撮像素子および画像表示装置
WO2022138710A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 平版印刷版原版、平版印刷版の製造方法、印刷方法、アルミニウム支持体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06230215A (ja) 1993-02-05 1994-08-19 Sumitomo Chem Co Ltd ブラックマトリックス用ポジ型レジスト組成物
JP2003119381A (ja) 2001-10-17 2003-04-23 Hitachi Cable Ltd 黒色ポリイミド組成物及びブラックマトリックス
JP6009246B2 (ja) 2012-07-02 2016-10-19 中外化成株式会社 キサンテン色素およびその製造方法
CN107430335B (zh) 2015-04-01 2021-04-02 东丽株式会社 感光性着色树脂组合物
JP2020111627A (ja) 2019-01-08 2020-07-27 日本化薬株式会社 着色樹脂組成物
WO2020184326A1 (ja) 2019-03-14 2020-09-17 東レ株式会社 感光性樹脂組成物、感光性樹脂シート、硬化膜、硬化膜の製造方法、有機el表示装置、および電子部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135460A (ja) * 1982-12-28 1984-08-03 ポラロイド・コ−ポレ−シヨン 写真製品
JPS61137876A (ja) * 1984-12-07 1986-06-25 Hodogaya Chem Co Ltd キサンテン化合物、キサンテン化合物の製造方法及びキサンテン化合物を含有する画像形成組成物
JP2001288389A (ja) * 2000-04-06 2001-10-16 Fuji Photo Film Co Ltd インクジェット用インクおよびインクジェット記録方法
WO2015115416A1 (ja) * 2014-01-31 2015-08-06 富士フイルム株式会社 着色組成物、硬化膜、カラーフィルタの製造方法、カラーフィルタ、固体撮像素子および画像表示装置
WO2022138710A1 (ja) * 2020-12-25 2022-06-30 富士フイルム株式会社 平版印刷版原版、平版印刷版の製造方法、印刷方法、アルミニウム支持体の製造方法

Also Published As

Publication number Publication date
JP7544136B2 (ja) 2024-09-03
US20240248396A1 (en) 2024-07-25
TW202319381A (zh) 2023-05-16
JPWO2023013549A1 (ja) 2023-02-09
KR20240044383A (ko) 2024-04-04

Similar Documents

Publication Publication Date Title
JP6988485B2 (ja) 樹脂組成物、樹脂シート、硬化膜、有機el表示装置、半導体電子部品、半導体装置および有機el表示装置の製造方法
TWI752987B (zh) 樹脂組成物
TWI757457B (zh) 感光性樹脂組成物、硬化膜、具備硬化膜之元件、具備硬化膜之有機el顯示裝置、硬化膜之製造方法、及有機el顯示裝置之製造方法
JP4082041B2 (ja) ポジ型感光性樹脂前駆体組成物及びそれを用いた電子部品ならびに表示装置
JPWO2004109403A1 (ja) 感光性樹脂組成物およびそれを用いた電子部品ならびに表示装置
JP7106863B2 (ja) 有機el表示装置用感光性樹脂組成物
TWI770283B (zh) 感光性樹脂組成物、硬化膜、具備硬化膜之元件、具備硬化膜之有機el顯示裝置、硬化膜之製造方法及有機el顯示裝置之製造方法
JP7352176B2 (ja) 感光性樹脂組成物、硬化膜、および該硬化膜を用いた表示装置
JP4360168B2 (ja) ポジ型感光性樹脂組成物
JP4333219B2 (ja) 感光性樹脂組成物および耐熱性樹脂膜の製造方法
JP2007114763A (ja) ポジ型感光性樹脂組成物
JP7517149B2 (ja) 感光性樹脂組成物、感光性樹脂シート、硬化膜、硬化膜の製造方法、有機el表示装置、および電子部品
JP2004085622A (ja) ポジ型感光性樹脂前駆体組成物およびそれを用いた半導体用電子部品ならびに有機電界発光素子用表示装置
WO2023013549A1 (ja) キサンテン化合物、樹脂組成物、硬化物、硬化物の製造方法、有機el表示装置および表示装置
WO2023120352A1 (ja) 感光性樹脂組成物、硬化物、硬化物の製造方法、有機el表示装置および表示装置
JP2005309032A (ja) ポジ型感光性樹脂組成物
WO2023171284A1 (ja) 感光性樹脂組成物、硬化物、硬化物の製造方法、有機el表示装置および表示装置
WO2024135186A1 (ja) 感光性樹脂組成物、硬化物、有機el表示装置、表示装置、およびフェノール化合物
CN117480218A (zh) 呫吨化合物、树脂组合物、固化物、固化物的制造方法、有机el显示装置及显示装置
CN113544585B (zh) 感光性树脂组合物、感光性树脂片、固化膜及其制造方法、有机el显示装置及电子部件
CN118679427A (zh) 感光性树脂组合物、硬化物、硬化物的制造方法、有机el显示装置及显示装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022552772

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280042306.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18571832

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22852968

Country of ref document: EP

Kind code of ref document: A1