WO2023011117A1 - 吸附剂及其制备方法、己二胺的提纯方法、有机二胺的制备方法及所用的装置 - Google Patents

吸附剂及其制备方法、己二胺的提纯方法、有机二胺的制备方法及所用的装置 Download PDF

Info

Publication number
WO2023011117A1
WO2023011117A1 PCT/CN2022/104898 CN2022104898W WO2023011117A1 WO 2023011117 A1 WO2023011117 A1 WO 2023011117A1 CN 2022104898 W CN2022104898 W CN 2022104898W WO 2023011117 A1 WO2023011117 A1 WO 2023011117A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
catalyst
adsorbent
organic
preparation
Prior art date
Application number
PCT/CN2022/104898
Other languages
English (en)
French (fr)
Inventor
王根林
丁克鸿
徐林
王铖
王刚
吴健
许越
梅学庚
汪洋
聂庆超
Original Assignee
江苏扬农化工集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110881293.9A external-priority patent/CN113441118B/zh
Priority claimed from CN202110882630.6A external-priority patent/CN113582853B/zh
Application filed by 江苏扬农化工集团有限公司 filed Critical 江苏扬农化工集团有限公司
Publication of WO2023011117A1 publication Critical patent/WO2023011117A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/50Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of carboxylic acid amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • C07C211/121,6-Diaminohexanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/12Esters of phenols or saturated alcohols
    • C08F222/14Esters having no free carboxylic acid groups, e.g. dialkyl maleates or fumarates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters

Definitions

  • the invention relates to the field of organic chemistry, in particular to an adsorbent and a preparation method thereof, a purification method of hexamethylenediamine, a preparation method of organic diamine and a device used therefor.
  • nylon 66 is widely used in the field of machinery and electrical appliances, mainly used in gears, bearings, electronic appliances, auto parts, etc. Compared with other general-purpose plastics, nylon 66 not only has the characteristics of high mechanical strength, good toughness, and good wear resistance, but also has excellent properties such as self-lubrication, flame retardancy, non-toxic and environmental protection.
  • Nylon 66 is a thermoplastic polymer, a polycrystalline semi-crystalline polymer, which is formed by the polycondensation of adipic acid and hexamethylenediamine, and is a type of polyamide.
  • Hexamethylenediamine is a key intermediate in the production of nylon 66, and is an important chemical raw material.
  • the purity of hexamethylenediamine has a great influence on the product quality of nylon 66.
  • the polycondensation reaction of polymers requires high purity of raw materials.
  • the synthesis methods of hexamethylenediamine mainly include caprolactam method, adiponitrile method, and hexanediol method. These methods inevitably use rectification to refine hexamethylenediamine. During the rectification process, hexamethylenediamine undergoes side reactions to form 3,4, 5,6-tetrahydro-2H-azepine, and the rectification process is difficult to completely remove the impurity.
  • CN103936595A discloses a method for refining crude hexamethylenediamine.
  • the refining method adopts column rectification and separation to obtain hexamethylenediamine with a content of 99.99%.
  • this method has low separation efficiency and high energy consumption.
  • CN101939286A discloses a purification method of hexamethylenediamine.
  • the purification method separates tetrahydrobutylene heptane present in hexamethylenediamine by distillation, but the method does not involve 3,4,5,6- The separation of tetrahydro-2H-azepine, and the separation efficiency of this method is low.
  • CN106810455A discloses a production method of high-quality refined hexamethylenediamine.
  • the semi-finished hexamethylenediamine is subjected to repeated distillation and purification to obtain high-quality refined hexamethylenediamine.
  • Impurities have different boiling points. After dehydration, removal of light components, and removal of heavy components under vacuum conditions, the purity of hexamethylenediamine is finally obtained at least 99.9%, but this method still has low purity and high energy consumption.
  • the main purpose of the present invention is to provide a kind of adsorbent and preparation method thereof, the purification method of hexamethylenediamine, the preparation method of organic diamine and the device used, to solve the problem of many by-products in the traditional method of producing caprolactam in the prior art, The problem of poor economic efficiency.
  • a surface molecularly imprinted functionalized adsorbent includes a carrier and surface molecules loaded on the carrier, the surface molecules are molecularly imprinted polymers; the surface molecules An imprinted cavity is formed between them, and the imprinted cavity matches the azepine compound.
  • a method for preparing the above-mentioned surface molecularly imprinted functionalized adsorbent includes the following steps: (1) functional monomer and azepine compound template Polymerization to obtain a pre-polymerization reaction material; (2) the pre-polymerization reaction material is polymerized with a carrier, a crosslinking agent and an initiator to obtain polymer particles; (3) the polymer particles are obtained after removing the azepine compound template Surface Molecular Imprinting Functionalized Adsorbents.
  • an application of the above-mentioned surface molecularly imprinted functionalized adsorbent is provided.
  • the adsorbent is used for separating azepine compounds, preferably for removing impurities of azepine compounds.
  • a method for purifying hexamethylenediamine uses the above-mentioned surface molecularly imprinted functionalized adsorbent to carry out adsorption and separation of impurities.
  • a method for preparing organic diamine comprising: hydrogenation reaction of amino nitrile organic matter and hydrogen under the action of a hydrogenation catalyst to obtain a reaction product containing organic diamine
  • the material is subjected to the second refining and the second adsorption to obtain organic diamine, the second adsorption adopts the above-mentioned surface molecular imprinting functionalized adsorbent, and the second refining is the second rectification treatment.
  • a device used in the preparation method of the above-mentioned organic diamine which device includes a gasification unit connected once, an ammoniation reaction unit, a first refining unit, a first adsorption unit, a hydrogenation reaction unit, second refining unit and second adsorption unit.
  • the adsorbent provided by the present invention has an imprinted cavity that matches the azepine compound, and can specifically adsorb the azepine compound, and is used in the separation process of the azepine compound , with excellent selective separation effect.
  • Figure 1 is a schematic flow chart of the preparation method of the surface molecularly imprinted functionalized adsorbent provided in Example 1 of the present invention
  • Fig. 2 is the SEM image of the adsorbent functionalized with surface molecular imprinting prepared in Example 1 of the present invention
  • Fig. 3 is the BET adsorption and desorption curve diagram of the surface molecularly imprinted functionalized adsorbent prepared in Example 1 of the present invention
  • Fig. 4 is a schematic diagram of catalyst B1 of the present invention.
  • Fig. 5 is a schematic diagram of catalyst C1 of the present invention.
  • Fig. 6 is a nitrogen adsorption and desorption curve diagram of catalyst I of the present invention.
  • Fig. 7 is an element distribution diagram of catalyst I of the present invention.
  • Fig. 8 is a transmission electron microscope image of catalyst I of the present invention.
  • Fig. 9 is a schematic diagram of the device used in the method for preparing hexamethylenediamine from caprolactam provided in Example 12 of the present invention.
  • Fig. 10 is a schematic diagram of the gasification unit in Fig. 9 .
  • Fig. 11 is a schematic diagram of the hydrogenation reaction unit in Fig. 9 .
  • the present invention provides an adsorbent with functionalized surface molecular imprinting, the adsorbent includes a carrier and surface molecules loaded on the carrier, the surface molecules are molecularly imprinted polymers; imprinted cavities are formed between the surface molecules, and the imprinted The cavity is matched to the azepine compound.
  • the adsorbent provided by the present invention has an imprinting cavity that matches the azepine compound, can specifically adsorb the azepine compound, and is used in the separation process of the azepine compound, and has excellent selective separation Effect.
  • the surface molecules are capable of forming weak chemical bonds with the azepines.
  • the weak chemical bonds include hydrogen bonds. Since the surface molecules of the present invention can form weak chemical bonds such as hydrogen bonds with the azepine compounds, they can specifically adsorb the azepine compounds, reducing the difficulty of separating them from other substances.
  • the imprinted cavity matches the molecular space, shape and group of the azepine compound.
  • the biospecific adsorption similar to antibody-antigen is realized, and the selective adsorption of trace or trace azepine compounds is realized.
  • the carrier includes any one or a combination of at least two of alumina, silica, activated carbon, ZSM-5 molecular sieve or montmorillonite, wherein a typical but non-limiting combination is alumina and
  • the above-mentioned carrier has a porous structure and a large specific surface area, so it can provide sufficient loading sites for the loading of surface molecules and increase its loading capacity.
  • the particle size of the adsorbent is 50nm-5 ⁇ m, such as 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 500nm, 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, 2.5 ⁇ m, 3 ⁇ m, 3.5 ⁇ m, 4 ⁇ m, 4.5 ⁇ m or 5 ⁇ m etc.
  • the specific surface area of the adsorbent is 100-1000m 2 /g, such as 100m 2 /g, 200m 2 /g, 300m 2 /g, 400m 2 /g, 500m 2 /g, 600m 2 /g, 700m 2 /g, 800m 2 /g, 900m 2 /g or 1000m 2 /g, etc.
  • the azepines are selected from 3,4,5,6-tetrahydro-2H-azepines.
  • the carrier is a carrier loaded with an amino group, that is, an amino-modified carrier, and the carrier modified with an amino group can be a carrier known in the prior art or a carrier obtained by a modification method known in the prior art, It may also be a carrier obtained by the method described below in the present application.
  • the carrier loaded with amino groups is further preferred.
  • the amino groups on the surface of the carrier can be well combined with the cross-linking agent to connect surface molecules, making the performance of the adsorbent more stable.
  • the surface molecules include polymerized molecules that are polymerized with functional monomers, cross-linking agents and azepines and then removed from the azepines, which is commonly called molecularly imprinted polymers.
  • the surface molecules of the present invention are realized by surface molecular imprinting.
  • the azepine compounds are firstly polymerized and then removed to vacate the imprinted cavities between the surface molecules, thereby improving the specificity of adsorption.
  • the functional monomer is selected from amines and/or pyridines, including any one or a combination of at least two of acrylamide, o-phenylenediamine, or 2-vinylpyridine, where the typical But non-limiting combinations are the combination of acrylamide and o-phenylenediamine, the combination of 2-vinylpyridine and o-phenylenediamine, the combination of acrylamide and 2-vinylpyridine, the combination of acrylamide, o-phenylenediamine and 2 - a combination of vinylpyridine three.
  • Both the above-mentioned functional monomers and azepine compounds contain N atoms, and the N atoms have lone pairs of electrons.
  • the N atoms in the functional monomers and azepine compounds can form an intermolecular bond with the H atom of the other party.
  • the hydrogen bond based on the characteristics of hydrogen bond connection, facilitates the subsequent removal of azepine compounds.
  • the crosslinking agent includes any one or a combination of at least two of ethylene glycol diglycidyl ether, ethylene glycol dimethacrylate, or N,N-methylenebisacrylamide , where a typical but non-limiting combination is the combination of ethylene glycol diglycidyl ether and ethylene glycol dimethacrylate, the combination of ethylene glycol dimethacrylate and N,N-methylenebisacrylamide , a combination of ethylene glycol diglycidyl ether and N,N-methylenebisacrylamide.
  • the present invention provides a method for preparing a surface molecularly imprinted functionalized adsorbent according to the first aspect, the preparation method comprising the following steps:
  • the pre-polymerization reaction material is polymerized with a carrier, a crosslinking agent and an initiator to obtain polymer particles;
  • the preparation method of the adsorbent provided by the second aspect of the present invention is carried out by prepolymerizing the azepine compound template with the functional monomer, then reacting with the crosslinking agent and the carrier to load it on the carrier, and finally removing the template molecule therein, In this way, imprinted cavities matching the azepine compound template are left between the surface molecules loaded on the carrier surface, so that the adsorbent has specific adsorption performance for the azepine compound when used, and it is necessary to solve the problem of azepine compound. Provides excellent adsorbents for the separation of compound templates.
  • the present invention can better ensure the combination of the azepine compound template and the functional monomer by first pre-polymerizing the azepine compound template and the functional monomer with weak chemical bonds such as hydrogen bonds and then polymerizing, avoiding The unfavorable reaction between the azepine compound template and the cross-linking agent ensures the matching of the imprinted cavity and the azepine compound molecule.
  • the azepine compound template in step (1) is selected from 3,4,5,6-tetrahydro-2H-azepines.
  • the present invention preferably selects templates for specific impurities in hexamethylenediamine products, wherein nitrogen-containing groups can form weak chemical bonds such as hydrogen bonds with functional monomers, and subsequently remove the 3,4, 5,6-tetrahydro-2H-azepine template, so as to obtain adsorbents with matching imprinted cavities.
  • the molar ratio of the functional monomer to the azepine compound template is 1 to 6:1, such as 1:1, 1.6:1, 2.2:1, 2.7:1, 3.3:1, 3.8:1, 4.4:1, 4.9:1, 5.5:1 or 6:1, etc., but not limited to the listed values, other unlisted values within this range are also applicable.
  • the above prepolymerization is performed in the first organic solvent.
  • the first organic solvent includes alcohols, such as methanol, ethanol or propanol, etc., preferably ethanol.
  • alcohols such as methanol, ethanol or propanol, etc., preferably ethanol.
  • the ratio of the azepine compound template to the first organic solvent is 0.5-10g:1L, for example, 0.5g:1L, 1.0g:1L, 2.0g:1L, 3.0g:1L, 4.0g: 1L, 5.0g:1L, 6.5g:1L, 7.0g:1L, 9.0g:1L or 10g:1L, etc., but not limited to the listed values, other unlisted values within this range are also applicable.
  • the pre-polymerization reaction temperature is 10-40°C, for example, 10°C, 14°C, 17°C, 20°C, 24°C, 27°C, 30°C, 34°C, 37°C or 40°C, etc., but not Limited to the listed values, other unlisted values within this range are also applicable, preferably at room temperature.
  • the prepolymerization is carried out under stirring conditions.
  • the present invention has no special limitation on the stirring method, and any stirring method known to those skilled in the art can be used, and can also be adjusted according to the actual process, for example, magnetic stirring or paddle stirring can be used.
  • the pre-polymerization reaction time is 1 to 20h, for example, it can be 1h, 4h, 6h, 8h, 10h, 12h, 14h, 16h, 18h or 20h, etc., but not limited to the listed values, other not within this range The listed values also apply.
  • the ratio of the carrier to the first organic solvent in step (2) is 5-30g:1L, such as 5g:1L, 8g:1L, 11g:1L, 14g:1L, 17g:1L, 19g:1L, 22g:1L, 25g:1L, 28g:1L or 30g:1L, etc., but not limited to the listed values, other unlisted values within this range are also applicable.
  • the carrier By controlling the ratio of the carrier to the first organic solvent, the carrier can be fully dispersed in the pre-polymerization reaction material, and sufficient carrying space can be provided for the pre-polymerization.
  • the molar ratio of the crosslinking agent to the azepine compound template is 18-22:1, such as 18.0:1, 18.5:1, 19.0:1, 19.4:1, 19.8:1, 20.0:1, 20.5:1, 21.0:1, 21.5:1 or 22:1, etc., but not limited to the listed values, other unlisted values within this range are also applicable.
  • the ratio of the initiator to the first organic solvent is 0.1-1g:1L, such as 0.1g:1L, 0.2g:1L, 0.3g:1L, 0.4g:1L, 0.5g:1L, 0.6g : 1L, 0.7g: 1L, 0.8g: 1L, 0.9g: 1L or 1g: 1L, etc., but not limited to the listed values, other unlisted values within this range are also applicable.
  • the initiator comprises azobisisobutyronitrile and/or ammonium persulfate.
  • the temperature of the polymerization reaction is 40-80°C, such as 40°C, 45°C, 49°C, 54°C, 58°C, 63°C, 67°C, 72°C, 76°C or 80°C, etc., but not limited to For the listed values, other unlisted values within this range are also applicable.
  • the polymerization reaction time is 10-48h, for example, it can be 10h, 15h, 19h, 23h, 27h, 32h, 36h, 40h, 44h or 48h, etc., but is not limited to the listed values, other not listed in this range values are also applicable.
  • the polymerization reaction includes: first mixing the pre-polymerization reaction material and the carrier, and then adding a crosslinking agent and an initiator after the first dispersion to carry out the polymerization reaction.
  • the first dispersion comprises ultrasonic dispersion.
  • the time for the first dispersion is 10 to 60 minutes, for example, it can be 10 minutes, 16 minutes, 22 minutes, 27 minutes, 33 minutes, 38 minutes, 44 minutes, 49 minutes, 55 minutes or 60 minutes, etc., but not limited to the listed values. The listed values also apply.
  • the crosslinking agent and the initiator are added in the first protective atmosphere.
  • the first protective atmosphere includes any one or a combination of at least two of nitrogen, helium or argon, wherein a typical but non-limiting combination is a combination of nitrogen and helium, a combination of argon and helium , a combination of nitrogen and argon.
  • the method for removing the azepine compound template includes any one of solvent washing extraction, solid phase extraction, supercritical extraction, gas purging or Soxhlet extraction.
  • the step of removing the azepine compound template in step (3) includes: using a mixed acid solution to extract the azepine compound template in the polymer particles.
  • extraction comprises Soxhlet extraction.
  • the mixed acid solution contains formic acid and acetic acid.
  • the volume ratio of formic acid and acetic acid is 5-10:1, for example, it can be 5.0:1, 5.5:1, 6.0:1, 7.0:1, 7.3:1, 7.5:1, 8.0:1, 8.5:1 , 9.5:1 or 10:1, etc., but not limited to the listed values, other unlisted values in this range are also applicable, preferably 8:1. Provides better solvent removal.
  • the first drying is also included after removing the azepine compound template.
  • the temperature of the first drying is 40-100°C, such as 40°C, 47°C, 54°C, 60°C, 67°C, 74°C, 80°C, 87°C, 94°C or 100°C, etc., but not Limited to the listed values, other unlisted values within this range are also applicable.
  • the carrier is added to step (2) after modification.
  • the method for modifying the carrier includes: mixing the primary carrier, the second organic solvent and an amino-containing organic substance, and performing a modification reaction, and the obtained modified reaction material is sequentially subjected to solid-liquid separation, washing and second drying to obtain a modified carrier.
  • the method of solid-liquid separation is not particularly limited in the present invention, and any method known to those skilled in the art that can be used for solid-liquid separation can be used, such as filtration, sedimentation separation or centrifugal separation.
  • the primary carrier includes any one or a combination of at least two of alumina, silica, activated carbon, ZSM-5 molecular sieve or montmorillonite, aluminum or silicon, wherein a typical but non-limiting combination is A combination of aluminum oxide and aluminum, a combination of silicon dioxide and aluminum, a combination of aluminum oxide and silicon dioxide, a combination of silicon and aluminum, a combination of aluminum oxide and silicon, preferably aluminum oxide.
  • the second organic solvent comprises toluene.
  • the amino-containing organic comprises an aminosilane, preferably 3-aminopropyltriethoxysilane.
  • the temperature of the modification reaction is 80-100°C, such as 80°C, 83°C, 85°C, 87°C, 89°C, 92°C, 94°C, 96°C, 98°C or 100°C, etc., but not Limited to the listed values, other unlisted values within this range are also applicable.
  • the mass ratio of the amino group-containing organic matter to the primary carrier is 1-10:1, for example, it can be 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1 , 8:1, 9:1 or 10:1, etc., but not limited to the listed values, other unlisted values within this range are also applicable.
  • the ratio of the primary carrier to the second organic solvent is 15-30g:1L, such as 15g:1L, 17g:1L, 19g:1L, 20g:1L, 22g:1L, 24g:1L, 25g:1L , 27g:1L, 29g:1L or 30g:1L, etc., but not limited to the listed values, other unlisted values within this range are also applicable.
  • the order of mixing the primary carrier, the second organic solvent and the amino-containing organic substance includes: mixing the primary carrier and the second organic solvent first, and adding the amino-containing organic substance after the second dispersion.
  • the adding method of the amino-containing organic substance is dropwise addition. It is preferable to adopt the method of dropping, which can better improve the uniformity of modification and improve the adsorption effect of the final adsorbent.
  • the second dispersion is ultrasonic dispersion.
  • the present invention has no special requirements on the power of ultrasonic dispersion in the first dispersion and the second dispersion, and can be adjusted according to the actual process, for example, it can be 200W, 300W, 400W, 500W, 550W, 600W or 700W.
  • the time for the second dispersion is 10 to 60 minutes, for example, it can be 10 minutes, 16 minutes, 20 minutes, 27 minutes, 30 minutes, 38 minutes, 40 minutes, 45 minutes, 55 minutes or 60 minutes, etc., but not limited to the listed values. The listed values also apply.
  • the amino group-containing organic substance is added under a second protective atmosphere.
  • the second protective atmosphere includes any one or a combination of at least two of nitrogen, argon or helium, wherein a typical but non-limiting combination is a combination of nitrogen and argon, a combination of helium and argon , a combination of nitrogen and helium.
  • the washing includes washing with toluene and washing with methanol in sequence, so as to remove amino-containing organic substances or other small molecules that have not been successfully grafted during the modification process.
  • the number of washes with toluene is at least three times, for example, 3 times, 4 times, 5 times, 6 times or 8 times, etc.
  • the number of washings with methanol is at least three times, for example, 3 times, 4 times, 5 times, 6 times or 8 times, etc.
  • the second drying temperature is 40-100°C, for example, 40°C, 47°C, 54°C, 60°C, 67°C, 74°C, 80°C, 87°C, 94°C or 100°C, etc., but not Limited to the listed values, other unlisted values within this range are also applicable.
  • the present invention has no special limitation on the first drying and second drying methods, and any available drying method known to those skilled in the art can be used, such as vacuum drying or blast drying, etc., preferably vacuum drying.
  • the preparation method comprises the following steps:
  • the present invention provides the application of the surface molecularly imprinted functionalized adsorbent according to the first aspect.
  • the adsorbent is used for separating azepine compounds, preferably for removing impurities of azepine compounds.
  • the adsorbent in the first aspect of the present invention can perform specific adsorption on azapine compounds. Due to the strong selectivity of adsorption, it can have relatively obvious property differences from other non-similar substances, so it is especially suitable for trace azapine compounds. Compared with other methods, the removal of azo-type compound impurities and trace aza-type compound impurities has the advantages of low energy consumption and high removal efficiency.
  • the trace amount means that the content of the azepine compounds is less than 0.01%; the trace amount means that the content of the azepine compounds is 0.01-1%.
  • the present invention provides a method for purifying hexamethylenediamine.
  • the purification method uses the surface molecularly imprinted functionalized adsorbent of the first aspect to perform adsorption and separation of impurities.
  • the purification method of hexamethylenediamine provided by the fourth aspect of the present invention will produce by-products such as azepines in the existing purification and production process of hexamethylenediamine, and the azepines are difficult to remove by rectification, and Azapine compound impurities still remain after preliminary purification, and the inventor has developed a method for adsorption, separation and purification of hexamethylenediamine through various explorations.
  • the method of the present invention has the following two invention points: (1) Although it has been Both diamines and azapine compounds are organic substances, and all have polar groups, but the inventors still find that they can pass through the existing separation methods: rectification, adsorption, filtration, extraction and membrane separation.
  • the adsorbent is a kind of adsorbent, which can not only specifically adsorb azepines, but also has a low adsorption capacity for hexamethylenediamine, so that the removal of impurities in hexamethylenediamine can be achieved under high yield conditions.
  • the purification method of adsorption separation has the advantages of recyclable adsorbent and low energy consumption, and its application in industry can significantly reduce production costs.
  • the purification method includes: using an adsorbent to adsorb the azepine compound impurities in the crude hexamethylenediamine.
  • the mass ratio of crude hexamethylenediamine to adsorbent is 300-600:1, such as 300:1, 334:1, 367:1, 400:1, 434:1, 467:1, 500:1 , 534:1, 567:1 or 600:1, etc., but not limited to the listed values, other unlisted values within this range are also applicable. It can be seen from the above mass ratio that the adsorbent of the present invention has a large treatment capacity and high treatment efficiency.
  • the present invention has no special limitation on the specific adsorption method, and any adsorption method known to those skilled in the art can be used, such as tank type, fixed bed type, tower type or moving bed type, etc.
  • the adsorption method can also be adjusted according to the actual process.
  • the adsorbent is regenerated after adsorption saturation and recycled.
  • the present invention has no special limitation on the mode of regeneration treatment, and any mode known to those skilled in the art that can be used for regeneration treatment of adsorbent can be adopted, such as solvent washing, Soxhlet extraction, gas purging, solid phase extraction or supercritical any of the extractions.
  • the present invention provides a method for preparing organic diamine, the method comprising the following steps: hydrogenation reaction of amino nitrile organic matter and hydrogen under the action of a hydrogenation catalyst to obtain a reaction product containing organic diamine;
  • the raw material undergoes the second refining and the second adsorption to obtain the organic diamine, the second adsorption adopts the surface molecular imprinting functionalized adsorbent provided in the first aspect of the application, and the second refining is the second rectification treatment.
  • the surface molecularly imprinted functionalized adsorbent of the present application is used to adsorb the refined reaction material. Since the adsorbent has an imprinted cavity that matches the azapine compound, it can Among them, the azapine compound impurities are specifically adsorbed, which greatly reduces the adsorption of organic diamines, thereby achieving excellent selective separation of azapine compounds and realizing the industrial production of high-purity organic diamine products. High-purity organic diamine products can be obtained from raw materials with low energy consumption, high selectivity and high conversion rate, and the industrial production value is high.
  • the present invention adopts the purification method of refining and adsorption combination, which can further purify a small amount of impurities remaining after refining, thereby reducing the generation of by-products in the reaction, and the obtained organic diamine product has high purity, which is more conducive to reducing its impact on the product.
  • the above-mentioned preparation method also includes a preparation process of amino nitrile organic matter, the preparation process comprising: step A, gasifying ammonia gas and organic amide to obtain a gasification material; the gasification material is carried out under the action of an ammoniation catalyst Amination reaction to obtain the first reaction material; Step B, the first reaction material is subjected to the first purification and the first adsorption to obtain amino nitrile organic matter.
  • an auxiliary agent is also added in step A, and the auxiliary agent contains any one or a combination of at least two of the corresponding elements of the ammoniation catalyst.
  • the corresponding elements include aluminum, silicon, boron, nitrogen, alkaline earth elements, transition metal elements, and phosphorus.
  • the loss of elements in the ammoniation catalyst can be reduced during the reaction, the activity of the ammoniation catalyst can be maintained from the source, and the Service life of the ammoniation catalyst.
  • the ammoniation catalyst is prone to produce beneficial elements due to physical interaction (including material scouring, especially generated water scouring, etc.) or chemical interaction (including complexation reaction, etc.) with reactants/products loss of the ammoniation catalyst, which in turn causes the deactivation of the ammoniation catalyst.
  • the present invention introduces elements corresponding to the beneficial elements in the ammoniation catalyst, reduces the loss of beneficial elements from the perspective of chemical balance, stabilizes the performance of the ammoniation catalyst, and reduces the amount of beneficial components caused by the ammoniation catalyst.
  • the deactivation caused by loss and its further deep coking, carbon deposition and other phenomena have realized the reduction of deactivation of the ammoniation catalyst from the source and in situ.
  • the additive is mixed with the ammonia gas in step A and then mixed with the organic amide.
  • the auxiliary agent in the present invention contains other elements such as carrier and auxiliary elements in the ammoniation catalyst, it can also achieve better service life of the ammoniation catalyst than the prior art, but the present invention further preferably contains the elements contained in the auxiliary agent and the ammoniation catalyst.
  • the elements of the active components in the catalyst are corresponding, so that the loss of the active components can be compensated in time, and the service life of the ammoniation catalyst is longer.
  • the existing form of the aluminum element in the additive includes aluminum trichloride and/or isopropyl distearoyloxyaluminate.
  • the existing form of silicon element in the additive includes tetraalkyl silicate.
  • the form of boron in the additive includes alkyl borate.
  • the form of nitrogen in the additive includes any one or a combination of at least two of nitrogen-containing organic compounds, ammonium salts or nitrogen-containing complexes, wherein a typical but non-limiting combination is nitrogen-containing organic compounds and ammonium A combination of salts, a combination of nitrogen-containing complexes and ammonium salts, a combination of nitrogen-containing organic compounds and nitrogen-containing complexes.
  • the nitrogen-containing organic compound includes N,N-alkyl dimethylformyl nitrate and/or copper N-acetoacetyl aromatic amide.
  • the ammonium salt includes ammonium dihydrogen phosphate, ammonium hydrogen phosphate, ammonium phosphate or ammonium polyphosphate, or a combination of at least two, wherein a typical but non-limiting combination is ammonium dihydrogen phosphate and ammonium hydrogen phosphate.
  • ammonium dihydrogen phosphate ammonium hydrogen phosphate
  • ammonium polyphosphate ammonium polyphosphate and ammonium hydrogen phosphate
  • the complexes include nickel bromide hexamine complexes and/or cobalt chloride hexamine complexes.
  • the presence of alkaline earth metal elements in the additive includes alkylmagnesium bromide.
  • the existing form of the transition metal element in the additive includes nickel bromide hexamine complex, cobalt chloride hexamine complex, N-acetoacetyl aromatic amide copper or tetraalkyl titanate
  • nickel bromide hexamine complex cobalt chloride hexamine complex
  • N-acetoacetyl aromatic amide copper or tetraalkyl titanate
  • a typical but non-limiting combination is a combination of nickel bromide hexamine complex and cobalt chloride hexamine complex, cobalt chloride hexamine complex and N-acetyl
  • the existing form of phosphorus in the auxiliary agent includes any one or a combination of at least two of phosphoric acid, hypophosphorous acid, phosphate, hydrogen phosphate, hypophosphite, polyphosphoric acid, polyphosphate or phosphoric acid ester, wherein Typical but non-limiting combinations are combinations of phosphoric acid and hypophosphorous acid, combinations of phosphate and hypophosphorous acid, combinations of hydrogen phosphate and phosphate ester, combinations of hypophosphite and hypophosphorous acid, combinations of hypophosphite and polyphosphoric acid, A combination of polyphosphates and phosphate esters.
  • the phosphate comprises ammonium phosphate.
  • the hydrogen phosphate comprises ammonium hydrogen phosphate.
  • the dihydrogen phosphate comprises ammonium dihydrogen phosphate.
  • the polyphosphate comprises ammonium polyphosphate.
  • the phosphoric acid ester comprises any one or a combination of at least two of monoalkyl phosphate, dialkyl phosphate or trialkyl phosphate, wherein a typical but non-limiting combination is monoalkyl phosphate and A combination of dialkyl phosphates, a combination of trialkyl phosphates and dialkyl phosphates, a combination of monoalkyl phosphates and trialkyl phosphates.
  • the additive is added in an amount of 0.1-100ppm by weight of the ammonia gas, for example, 0.1ppm, 0.5ppm, 1ppm, 5ppm, 10ppm, 20ppm, 30ppm, 40ppm, 50ppm, 60ppm, 80ppm, 90ppm or 100ppm.
  • the present invention further preferably mixes the auxiliary agent with ammonia gas and adds it to the reaction process, which can further avoid the auxiliary agent in the gasification process.
  • the polymerization of the additive, or to avoid the influence of the auxiliary agent on the polymerization of the organic amide, mixed with ammonia gas into the reaction, the ammonia gas reduces the partial pressure of the auxiliary agent and the organic amide, thereby reducing the temperature required for the gasification of the organic amide and its Coking, carbonization, etc., so the mixture of additives and ammonia can more effectively guarantee the effect of additives to prolong the service life of catalysts.
  • additives are added to the reaction process along with the materials, and for catalysts that are more likely to be deactivated at the entrance of the bed, the loss of its components is reduced and the effect is more significant, which is conducive to maintaining the reaction effect and maintaining the organic amide concentration in the catalyst bed.
  • Stable reducing the polymerization caused by the increase in the concentration of organic amides caused by catalyst deactivation and the further generation of polymers, tar and carbon deposits, which is conducive to maintaining the active sites of the catalyst and further prolonging the service life of the catalyst.
  • the temperature of the preheating treatment is 300-600°C, such as 300°C, 350°C, 400°C, 450°C, 500°C, 550°C or 600°C.
  • the organic amide is an organic lactam.
  • the number of carbon atoms in the organic amide is a natural number of 3 to 18, such as 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 , preferably a natural number of 3-10.
  • the organic amide comprises caprolactam.
  • step A specifically includes: ammonia and the first part of organic amide are mixed and gasified, and then passed into the i-stage fixed-bed reactor, and the ammoniation reaction is carried out under the action of the first reaction temperature, the first reaction pressure and the first catalyst , to obtain the first reaction discharge.
  • the i-th reaction output and the i+1 part of the organic amide are passed into the i+1 fixed-bed reactor, the value range of i is 1 ⁇ i ⁇ n-1 and i is a natural number, and n is selected from a natural number ⁇ 2 ;
  • the i+1th reaction temperature, the i+1th reaction pressure and the i+1th catalyst effect carry out the ammoniation reaction to obtain the i+1th reaction discharge; wherein, the i+1th reaction discharge cycle is used as the next step
  • the organic amide is preferably fed in stages, which can effectively reduce the coking of the catalyst surface caused by the polymerization of the organic amide, reduce the generation of by-products and improve the conversion rate and selectivity of the reaction, and the present invention combines refining and The combined product purification method of adsorption and purification further purifies the crude amino nitrile organic matter through adsorption, which improves the economic benefits of the overall process.
  • the i+1th reaction temperature >ih reaction temperature.
  • the i+1th reaction pressure >ih reaction pressure.
  • the molar ratio of the active component to the support element in the i+1 catalyst > the molar ratio of the active component to the support element in the i catalyst.
  • the temperature and pressure of the reaction and the content of the active component of the reaction catalyst are gradually increased.
  • the molar ratio of the organic amide to ammonia is high and the reaction pressure is low. It can effectively reduce the polymerization or decomposition of organic amides, especially organic lactams, coking and coking on the catalyst surface.
  • the selectivity of the reaction is high and the by-products are less; as the reaction progresses, gradually increase the temperature and
  • the pressure effectively improves the utilization rate of ammonia gas, reduces the amount of ammonia gas circulation, and improves the overall economics of the process, so that the reaction selectivity and conversion rate can be high under the condition of low ammonia gas to organic amide molar ratio. .
  • the present invention uniquely and preferably adjusts the content of active components in the catalysts of each stage, so that the molar ratio of active components and carrier elements is low in the early stage, but a higher molar ratio of ammonia gas/organic amide is used to obtain higher amino nitrile organic compounds
  • the partial pressure of the organic amide is small, and the polymerization, decomposition or coking of the organic amide is less, which is beneficial to reduce the coking on the surface of the catalyst and prolong the life of the catalyst;
  • High specific ratio, high conversion rate of organic amide greatly improving the utilization rate of ammonia, combined with multi-stage replenishment of organic amide, the partial pressure of organic amide in the control system is kept at a low state, and the polymerization of organic amide in the subsequent reaction process is also reduced.
  • decomposition or coking which is beneficial to reduce coking on the surface of the catalyst and prolong the life of the catalyst.
  • the active ingredient contains phosphorus element.
  • the carrier element comprises silicon.
  • the molar ratio of the active component to silicon in the i-th catalyst is (0.1-2):1, such as 0.1:1, 0.2:1, 0.4:1, 0.5:1, 0.8:1, 1:1 , 1.2:1, 1.5:1, 1.8:1 or 2:1 etc.
  • the supports of the first to n-th catalysts each independently contain silicon and aluminum.
  • the molar ratios of silicon, aluminum and phosphorus in the first catalyst to the nth catalyst are each independently 1:(0.01 ⁇ 1):(0.1 ⁇ 2), for example, it can be 1:0.01:0.1, 1:0.01: 0.2, 1:0.01:0.5, 1:0.01:0.8, 1:0.01:1, 1:0.01:1.5, 1:0.01:2, 1:0.05:0.1, 1:0.08:0.1, 1:0.1:0.2, 1:0.0.2:0.8, 1:0.8:0.1, 1:1:0.1, 1:0.01:0.5, 1:0.5:0.1 or 1:0.8:2 etc.
  • the present invention has no special limitation on the phosphorus source of the active component, and the phosphorus source commonly used by those skilled in the art can be used, but the preferred phosphorus source in this application has a better catalytic effect.
  • the phosphorus source of the active ingredient includes any one or a combination of at least two of phosphoric acid, phosphate or metaphosphate, wherein a typical but non-limiting combination is a combination of phosphoric acid and phosphate, phosphate and metaphosphate A combination of phosphates, a combination of phosphoric acid and metaphosphate.
  • the phosphate includes any one or a combination of at least two of boron phosphate, calcium phosphate, magnesium phosphate, aluminum phosphate, ammonium phosphate, titanium phosphate, copper phosphate or nickel phosphate, wherein a typical but non-limiting combination is Combination of boron phosphate and calcium phosphate, combination of magnesium phosphate and calcium phosphate, combination of boron phosphate and magnesium phosphate, combination of aluminum phosphate and ammonium phosphate, combination of aluminum phosphate and titanium phosphate, combination of ammonium phosphate and calcium phosphate, nickel phosphate Combination with Ammonium Phosphate, Aluminum Phosphate and Copper Phosphate.
  • the metaphosphate includes any one or a combination of at least two of calcium metaphosphate, aluminum metaphosphate or magnesium metaphosphate, wherein a typical but non-limiting combination is a combination of calcium metaphosphate and aluminum metaphosphate, metaphosphate A combination of aluminum phosphate and magnesium metaphosphate, a combination of calcium metaphosphate and magnesium metaphosphate.
  • the supports of the first catalyst to the nth catalyst are each independently a silica-alumina molecular sieve.
  • the first catalyst to the nth catalyst are silicon aluminum phosphorus molecular sieves.
  • the silicon-aluminum-phosphorus molecular sieve inevitably produces tar and carbon deposits during the reaction process, which further leads to its inactivation.
  • the graded preparation method of the present invention can effectively improve the service life of the catalyst.
  • the preparation method of the silicon aluminum phosphorus molecular sieve of the present invention is carried out with reference to CN111659463A.
  • the present invention has no special limitation on the aluminum source and silicon source, and the aluminum source and silicon source commonly used by those skilled in the art can be used, but the preferred aluminum source and silicon source in this application have a better catalytic effect.
  • the aluminum source in the silicoaluminophosphorous molecular sieve includes any one or a combination of at least two of alumina, aluminum isopropoxide or pseudoboehmite, wherein a typical but non-limiting combination is alumina and isopropoxide A combination of aluminum alkoxide, a combination of aluminum isopropoxide and pseudo-boehmite, a combination of alumina and pseudo-boehmite.
  • the silicon source in the silicon aluminum phosphorus molecular sieve includes silica hydrogel.
  • the ratio of the molar ratio of the active component to the support element in the i catalyst to the molar ratio of the active component to the support element in the i+1 catalyst is 1:1.2 to 3, for example, it can be 1:1.2, 1: 1.3, 1:1.4, 1:1.5, 1:1.8, 1:2, 1:2.2, 1:2.5, 1:2.8 or 1:3 etc.
  • the molar ratio of the active component of the catalyst to the carrier element is formed according to the above ratio, which can better improve the selectivity of the reaction, the conversion rate and the utilization rate of ammonia gas, and prolong the service life of the catalyst.
  • the molar ratio of the active component to silicon in the i catalyst and the molar ratio of the active component to silicon in the i+1 catalyst is 1:1.2 to 3, for example, it can be 1:1.2, 1:1.3, 1:1.4, 1:1.5, 1:1.8, 1:2, 1:2.2, 1:2.5, 1:2.8 or 1:3 etc.
  • the i-th part of caprolactam and the i+1 part of caprolactam are in the same amount.
  • the first catalyst to the nth catalyst each independently contain the first type of pores.
  • the catalyst also contains the second type of pores and/or the catalyst also includes a protruding part, and the protruding part is on the outer side of the catalyst.
  • the length of at least one dimension of the pores of the second type of channel accounts for 0.15-0.6 times the length of the corresponding dimension of the catalyst and/or the protruding length of the protrusion accounts for 0.1-0.6 times the length of the corresponding dimension of the catalyst.
  • the present invention further prefers the catalyst containing the second type of channel and/or protrusion structure, which can better reduce the pressure drop of the bed and increase the service life of the catalyst compared with the catalyst with the conventional structure.
  • the i+1-th reaction temperature is 10-50°C higher than the i-th reaction temperature, for example, 10°C, 12°C, 15°C, 18°C, 20°C, 25°C, 28°C, 30°C, 35°C, 40°C, 45°C or 50°C, etc.
  • the i+1 reaction pressure is 0.1-0.5 MPa higher than the i reaction pressure, for example, it can be 0.1 MPa, 0.15 MPa, 0.2 MPa, 0.25 MPa, 0.3 MPa, 0.35 MPa, 0.4 MPa, 0.45 MPa or 0.5 MPa, etc. .
  • the present invention further optimizes the degree of increase of the reaction temperature and reaction pressure, which can better improve the selectivity and conversion rate of the reaction.
  • the i-th part of the organic amide and the i+1 part of the organic amide are in the same amount.
  • the regeneration methods of the first catalyst to the nth catalyst each independently include: passing oxygen-containing gas into a regeneration device equipped with a deactivated catalyst, the regeneration device is provided with m uniformly distributed inlets or includes m series-connected A regenerator; and supplementary oxygen-containing gas is introduced from the second to the mth inlet or from the second to the mth regenerator to regenerate the deactivated catalyst; wherein, m is a natural number ⁇ 2.
  • the catalyst regeneration method preferably provided by the present invention can directly regenerate the deactivated catalyst in situ in the reaction device, and the regenerator can be directly applied to the fixed bed reaction device of the original reaction, realizing the in situ regeneration of the catalyst and avoiding complicated Catalyst disassembly process and environmental pollution during the process; the unloaded catalyst can also be loaded into the device for regeneration, which improves the safety and reliability of the catalyst regeneration process.
  • the deactivated catalyst of the present invention contains carbon-containing harmful substances, and carbon-containing harmful substances refer to the carbon-containing harmful substances in the catalyst that are adsorbed, bonded, deposited or covered on the surface of the catalyst, block the pores of the catalyst, cover the active sites of the catalyst, or cause catalyst deactivation in other ways.
  • the regeneration method of the present invention can maintain a stable oxygen content in the total regeneration device by adopting multi-stage supplementary oxygen-containing gas, reduce further reaction of carbon dioxide and carbon-containing harmful substances to generate carbon monoxide, significantly reduce the content of carbon monoxide in the system, and further reduce the regeneration process and Risk of explosion in tail gas treatment; use gradient heating and gradient increase of oxygen content to make the regeneration process gentle and gentle, reduce the temperature rise of bed hot spots, and help maintain the structure of the catalyst and reduce pulverization.
  • the end of regeneration is at high temperature , Keep under high oxygen content, further remove carbon deposits, tar and other carbon-containing harmful substances in the internal pores of the molecular sieve catalyst, fully release the active sites of the catalyst, and fully restore the catalyst activity.
  • the deactivated catalyst contains carbon-containing harmful substances.
  • the regeneration unit is an original reaction unit.
  • the oxygen content of the oxygen-containing gas is gradually increased with the regeneration time, and the regeneration temperature is gradually increased with the regeneration time.
  • the oxygen content of the oxygen-containing gas is 0.5-21v/v%, such as 0.5v/v%, 2.8v/v%, 5.1v/v%, 7.4v/v%, 9.7v/v%, 11.9v/v%, 14.2v/v%, 16.5v/v%, 18.8v/v% or 21v/v%, etc.
  • the increase rate of the oxygen content of the oxygen-containing gas is 0.001-5v/v%/h, such as 0.001v/v%/h, 0.1v/v%/h, 0.7v/v%/h, 1.2 v/v%/h, 1.8v/v%/h, 2.3v/v%/h, 2.9v/v%/h, 3.4v/v%/h, 4v/v%/h, 4.5v/v %/h or 5v/v%/h, etc., Preferably it is 0.001-1v/v%/h.
  • the increase rate of the oxygen content is within the above range, which can better realize the regeneration of the catalyst while saving the amount of oxygen used.
  • the initial oxygen content in the oxygen-containing gas is 0.5-2v/v%, such as 0.5v/v%, 0.7v/v%, 0.9v/v%, 1v/v%, 1.2v/v%, 1.4v/v%, 1.5v/v%, 1.7v/v%, 1.9v/v% or 2v/v%, etc.
  • the final oxygen content in the oxygen-containing gas is 10-21v/v%, such as 10v/v%, 12v/v%, 13v/v%, 14v/v%, 15v/v%, 17v/v %, 18v/v%, 19v/v%, 20v/v% or 21v/v%, etc.
  • the invention further comprehensively controls the initial oxygen content and the final oxygen content, more effectively improves the regeneration effect of the catalyst, and prolongs the service life of the catalyst.
  • the regeneration is kept at the final oxygen content for 1-200h, for example, 1h, 5h, 10h, 15h, 20h, 30h, 50h, 80h, 100h, 110h, 150h, 180h or 200h, etc., preferably 50-150h .
  • the oxygen-containing gas is introduced from the first inlet or the first regenerator inlet.
  • the supplemental oxygen-containing gas comprises air, oxygen-enriched air and/or oxygen.
  • the oxygen content of the oxygen-containing gas fed into each fixed-bed reactor is equivalent, or the oxygen content in the fixed-bed reactor at the inlet where the supplementary oxygen-containing gas is fed is the same as that of the oxygen-containing gas fed into the first inlet.
  • the oxygen content is comparable.
  • the present invention increases the oxygen content of each stage of regeneration by supplementing the introduction of oxygen-containing gas so that it is equivalent to the oxygen content of the oxygen-containing gas fed into the previous regenerator or equivalent to the oxygen content of the oxygen-containing gas fed into the first inlet. Uniformity, improve the effect of regeneration.
  • the regeneration temperature is 250-800°C, for example, 250°C, 312°C, 373°C, 434°C, 495°C, 556°C, 617°C, 678°C, 739°C or 800°C.
  • the heating rate of regeneration is 0.01-20°C/h, for example, it can be 0.01°C/h, 2.4°C/h, 5°C/h, 6.8°C/h, 8.9°C/h, 11.2°C/h, 13.0°C /h, 15.0°C/h, 17.0°C/h, or 20°C/h, etc., preferably 0.01 to 5°C/h.
  • the present invention further controls the temperature rise rate of the regeneration within the above range, reduces the hot spot temperature rise and local overheating in the regeneration process, significantly reduces the cracking of the catalyst, and the mechanical strength of the catalyst is well preserved, and the regeneration effect of the catalyst Better quality and longer service life.
  • the initial temperature of regeneration is 100-500°C, such as 100°C, 120°C, 150°C, 180°C, 200°C, 250°C, 260°C, 270°C, 300°C, 320°C, 330°C, 350°C °C, 400°C, 450°C, or 500°C, etc., preferably 250 to 350°C.
  • the final temperature of regeneration is 300-1200°C, for example, it can be 300°C, 400°C, 500°C, 700°C, 750°C, 800°C, 850°C, 900°C, 970°C, 1000°C or 1200°C, etc.
  • it is 700-800 degreeC.
  • the regeneration is kept at the final temperature for 1-200h, for example, 1h, 6h, 24h, 50h, 100h, 150h and 200h, etc., preferably 50-150h.
  • Regeneration includes early regeneration and late regeneration in sequence
  • the early stage of regeneration includes fixing the oxygen content of the oxygen-containing gas as the initial oxygen content, and raising the regeneration temperature from the initial temperature to the final temperature; the later stage of regeneration includes: fixing the regeneration temperature as the final temperature, and raising the oxygen content of the oxygen-containing gas to the final temperature. Final oxygen content; continue regeneration at the final oxygen content and final temperature.
  • the two can be carried out at the same time, or the temperature can be raised first, and then the oxygen content can be raised; or the oxygen content can be raised first and then the temperature is raised, preferably the temperature is raised first and then
  • the increase in oxygen content can better reduce the temperature rise of hot spots and reduce the maximum content of carbon monoxide, prolonging the life of the catalyst.
  • the regeneration process includes an early stage of regeneration and a late stage of regeneration in sequence.
  • the early stage of regeneration includes fixing the oxygen content of the oxygen-containing gas as the initial oxygen content, and the regeneration temperature is raised from the initial temperature to the final temperature;
  • the late stage of regeneration includes: fixing the regeneration The temperature is the final temperature, and the oxygen content of the oxygen-containing gas is raised to the final oxygen content; regeneration continues at the final oxygen content and final temperature.
  • m is selected from natural numbers ranging from 2 to 6, such as 2, 3, 4, 5 or 6.
  • the regeneration method comprises the following steps:
  • Oxygen-containing gas with an initial oxygen content of 0.5-2v/v% is passed into a regeneration device equipped with a deactivated catalyst.
  • the regeneration device is provided with m uniformly distributed inlets or includes m regenerators in series; and from the second Supplementary oxygen-containing gas is introduced into the first to mth inlets or regenerators to regenerate the deactivated catalysts.
  • the oxygen content of the oxygen-containing gas is increased to the final oxygen content of 10-21v/v% at 0.001-5v/v%/h; the initial temperature of regeneration is 250-350°C, and the temperature is raised at 0.01-20°C/h Keep at the final temperature of 700-800°C for 1-200 hours at the final temperature and oxygen content to continue regeneration; wherein, m is a natural number ⁇ 2.
  • the preferred catalyst regeneration method of the present invention has little damage to the catalyst due to the regeneration process, and can even effectively eliminate part of the side reaction centers (such as strong acid centers), prolong the service life of the catalyst, and can be widely used in the regeneration of deactivated catalysts, reducing the Cost of production.
  • the mixed gasification in step A is carried out in a Venturi gasification device.
  • the organic amide part is a heat-sensitive substance, which is easy to polymerize, decompose or coke during the gasification process, resulting in lower gasification efficiency and easy coking of the gasifier. It is preferable to use a Venturi atomizer to promote the gasification of organic amide and reduce the gasification of organic amide efficiency.
  • the venturi gasification device is pre-installed in a heating medium.
  • the heating medium comprises molten salt.
  • the temperature of the organic amide in the liquid phase is 0 to 300°C, for example, 0°C, 10°C, 20°C, 50°C, 69°C, 70°C, 100°C, 120°C, 140°C °C, 150°C, 180°C, 200°C, 220°C, 250°C, 280°C, or 300°C, etc., preferably 69 to 220°C for caprolactam.
  • the temperature after gasification is 300-500°C, such as 300°C, 320°C, 350°C, 370°C, 400°C, 420°C, 450°C, 480°C, 490°C or 500°C.
  • the weight hourly space velocity of the organic amide passing through the ammoniation catalyst is independently 0.1-10h -1 , such as 0.1h -1 , 0.5h -1 , 1h -1 , 1.2h -1 , 1.5h -1 , 2h -1 , 2.5h -1 , 3h -1 , 4h -1 , 5h -1 , 6h -1 , 7h -1 , 8h -1 , 9h -1 or 10h -1 , preferably 0.5 to 5h -1 .
  • the temperature of the ammoniation reaction ranges from 300°C to 500°C, such as 300°C, 320°C, 350°C, 380°C, 400°C, 420°C, 450°C, 480°C or 500°C.
  • the pressure of the amination reaction is 0-2 MPaG, such as 0 MPaG, 0.5 MPaG, 1 MPaG, 1.2 MPaG, 1.3 MPaG, 1.5 MPaG, 1.8 MPaG or 2 MPaG, etc., preferably 0.2-1 MPaG.
  • G in MPaG in the present invention refers to gauge pressure
  • the total molar ratio of ammonia to organic amide is 2 to 50:1, for example, 2:1, 4:1, 5:1, 10:1, 12:1, 15:1, 18:1, 20:1, 25:1, 30:1, 35:1, 40:1, 45:1 or 50:1 etc.
  • the first adsorption uses a first adsorbent, and the first adsorbent includes an adsorbent loaded with metal elements.
  • the first adsorbent includes any one or a combination of at least two of montmorillonite, ZSM-5 zeolite molecular sieve, SiO 2 , Al 2 O 3 or activated carbon, wherein a typical but non-limiting combination is montmorillonite
  • montmorillonite The combination of SiO2 and ZSM-5 zeolite molecular sieve, the combination of SiO2 and ZSM-5 zeolite molecular sieve, the combination of montmorillonite and SiO2 , the combination of Al2O3 and activated carbon .
  • the metal elements include transition metal elements.
  • the present invention further preferably loads transition metal elements, wherein transition metal ions can form weakly chemically reactive ⁇ complex bonds with unsaturated hydrocarbons in impurities, thereby improving the selectivity of adsorption and reducing the 6- Loss rate of aminocapronitrile organics.
  • the transition metal elements include any one or a combination of at least two of Ag, Cu, Cd, Cr, Fe, Zn, Ni, Zr or Mn, wherein a typical but non-limiting combination is a combination of Ag and Cu , the combination of Ag and Cd, the combination of Cd and Cr, the combination of Fe and Cu, the combination of Fe and Zn, the combination of Zn and Cu, the combination of Ni and Mn, the combination of Ni and Zr.
  • the first adsorbed impurities contain unsaturated bonds.
  • the first adsorbed impurities contain carbon-carbon double bonds and/or carbon-carbon triple bonds.
  • the space velocity of the first adsorption is 0.5-3h -1 , for example, it can be 0.5h -1 , 0.8h -1 , 1.1h -1 , 1.4h -1 , 1.7h -1 , 1.9h -1 , 2.2 h -1 , 2.5h -1 , 2.8h -1 or 3h -1 , etc.
  • the temperature of the first adsorption is 20-60°C, for example, 20°C, 25°C, 29°C, 34°C, 38°C, 43°C, 47°C, 52°C, 56°C or 60°C.
  • the pressure of the first adsorption is 0.1-1 MPa, such as 0.1 MPa, 0.2 MPa, 0.3 MPa, 0.4 MPa, 0.5 MPa, 0.6 MPa, 0.7 MPa, 0.8 MPa, 0.9 MPa or 1 MPa.
  • the first adsorption of saturated metal oxide is purged and regenerated by the purge gas.
  • the first adsorbent of the present invention can be regenerated by hot N2 purging, so it has recycling value, low cost and high economy.
  • the purge gas comprises nitrogen.
  • the purging temperature is 300-400°C, for example, 300°C, 312°C, 323°C, 334°C, 345°C, 356°C, 367°C, 378°C, 389°C or 400°C.
  • the purging time is 2 to 8 hours, for example, 2 hours, 2.7 hours, 3.4 hours, 4 hours, 4.7 hours, 5.4 hours, 6 hours, 6.7 hours, 7.4 hours or 8 hours.
  • the polymer residue produced in the ammoniation reaction and/or the first refining process is sequentially subjected to depolymerization reaction, negative pressure dehydration and negative pressure distillation to obtain amino nitrile organic compounds and organic amides, respectively.
  • the present invention further preferably uses polymer residue solid waste generated in the reaction process as a raw material, and utilizes the reaction residue as a resource through processes such as depolymerization and separation, and recovers aminonitrile organic matter and organic amides, thereby reducing the amount of solid waste and recovering organic waste.
  • Amides can be used as raw materials for the synthesis of aminonitrile organic compounds again, which is beneficial to reduce raw material production costs and improve economic benefits.
  • Aminonitriles can initiate ring-opening polymerization of lactams to generate polyamides, with increased molecular weight and polymer residues. After depolymerization, aminonitrile products and lactam raw materials are obtained, which are separated by distillation, and the aminonitrile substances can be used for the next hydrogenation reaction.
  • water is added to the depolymerization reaction.
  • the mass ratio of polymer residue to water is 1:0.5-20, such as 1:1, 1:2, 1:4, 1:5, 1:8, 1:10, 1:12, 1 :15, 1:18 or 1:20 etc.
  • the temperature of the depolymerization reaction is 100-400°C, such as 100°C, 120°C, 150°C, 180°C, 200°C, 220°C, 250°C, 300°C, 340°C or 400°C.
  • the pressure of the depolymerization reaction is 0-10 MPa, such as 0 MPa, 1 MPa, 2 MPa, 3 MPa, 4 MPa, 5 MPa, 6 MPa, 7 MPa, 8 MPa, 9 MPa or 10 MPa.
  • the time for the depolymerization reaction is 10s-10h, for example, 10s, 30s, 1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h, 9h or 10h.
  • the depolymerization reaction is carried out under the action of a catalyst.
  • the mass ratio of the polymer residue to the catalyst is 1:0.01 to 0.5, such as 1:0.01, 1:0.02, 1:0.05, 1:0.08, 1:0.1, 1:0.12, 1:0.15, 1 :0.2, 1:0.25, 1:0.3, 1:0.35, 1:0.4, 1:0.45 or 1:0.5 etc.
  • the catalyst includes titanium silicon molecular sieve, solid acid catalyst or solid base catalyst, wherein the solid acid catalyst is Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 , B 2 O 3 , SiO 2 -Al2O 3 , ZrO 2 -Any one of SiO 2 , NiSO 4 and Zr(SO 4 ) 2 or a combination of any two or more; the solid base catalyst is KOH, NaOH, Ba(OH) 2 , Cu(OH) 2 , Fe(OH) 3. Any one of CaO-MgO, MgO-ZrO 2 and KF-ZrO 2 or a combination of any two or more.
  • the solid acid catalyst is Al 2 O 3 , TiO 2 , ZrO 2 , SiO 2 , B 2 O 3 , SiO 2 -Al2O 3 , ZrO 2 -Any one of SiO 2 , NiSO 4 and Zr(SO 4 ) 2 or a combination of any two or more
  • the hydrogenation catalyst includes ⁇ -Fe 2 O 3 /SiO 2 , Rh/SiO 2 , Pt-Rh/Al 2 O 3 , Fe 3 O 4 -SiO 2 -Ag, Ru-Fe 2 O 3 -Al 2 Any one or a combination of at least two of O 3 , Raney nickel, amorphous nickel or carbon-based cobalt catalysts, where typical but non-limiting combinations are ⁇ -Fe 2 O 3 /SiO 2 and Rh/SiO 2 combination, combination of Pt-Rh/Al 2 O 3 and carbon-based cobalt catalyst, combination of ⁇ -Fe 2 O 3 /SiO 2 and Pt-Rh/Al 2 O 3 , Fe 3 O 4 -SiO 2 -Ag Combination with Rh/SiO 2 , combination of carbon-based cobalt catalyst and Ru-Fe 2 O 3 -Al 2 O 3 , preferably carbon-based cobalt catalyst, preferably carbon-based cobal
  • the present invention preferably adopts the above-mentioned catalyst, which can have the dual advantages of being suitable for a magnetically stable bed and having higher catalytic activity.
  • the carbon-based cobalt catalyst is a nitrogen-phosphorous co-doped carbon-based cobalt catalyst.
  • the components of the carbon-based cobalt catalyst include an active component and a main component, the active component includes cobalt: 0.5-15%, phosphorus: 0.1-5%, nitrogen: 1-10%, and the main component includes carbon.
  • the nitrogen-phosphorous co-doped carbon-based cobalt catalyst preferably used in the present invention has the composition of the above components, and has high selectivity to the conversion of aminonitriles into organic diamines, and provides an excellent catalyst selection for the production of organic diamines;
  • the present invention by controlling the contents of the nitrogen element and the phosphorus element within the above range, the effects of regulating the catalytic activity and significantly improving the conversion rate and selectivity are achieved.
  • the particle size of the catalyst is 10-1000 ⁇ m, such as 10 ⁇ m, 120 ⁇ m, 230 ⁇ m, 340 ⁇ m, 450 ⁇ m, 560 ⁇ m, 670 ⁇ m, 780 ⁇ m, 890 ⁇ m or 1000 ⁇ m.
  • the cobalt content in the carbon-based cobalt catalyst in the present invention is 0.5-15%, for example, it can be 0.5%, 2.0%, 3.0%, 5.0%, 7.0%, 8.0%, 10.0%, 11.0%, 13.0% or 15.0%.
  • the phosphorus content in the carbon-based cobalt catalyst is 0.1-5%, such as 0.1%, 0.7%, 1.2%, 1.8%, 2.3%, 2.9%, 3.4%, 4%, 4.5% or 5%.
  • the nitrogen content in the carbon-based cobalt catalyst is 1-10%, such as 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9% or 10%.
  • the carbon-based cobalt catalyst in the present invention also contains oxygen element.
  • the carbon-based cobalt catalyst has a specific surface area of 50-1000m 2 /g, for example, 50m 2 /g, 156m 2 /g, 262m 2 /g, 367m 2 /g, 473m 2 /g, 578m 2 /g , 684m 2 /g, 789m 2 /g, 895m 2 /g or 1000m 2 /g, etc.
  • the mass ratio of phosphorus and nitrogen in the carbon-based cobalt catalyst is 1:0.5 to 20, for example, it can be 1:0.5, 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1: 3.5, 1:4, 1:5, 1:6, 1:7, 1:10, 1:12, 1:15, 1:18 or 1:20 etc.
  • the carbon-based cobalt catalyst has a carbon layer with a clad structure, preferably with cobalt as the center to form a clad carbon layer.
  • the carbon layer of the coating structure is a graphitized carbon layer wrapped in cobalt nanoparticles.
  • the degree of graphitization of the carbon in the main component is relatively low, and part of it is amorphous, which acts as a carrier; nitrogen-doped coated carbon
  • the layer and the cobalt nanoparticles as the active component form a strong interaction due to the coordination bond, which can enhance its activity and stability.
  • the preferred carbon-based cobalt catalyst of the present invention preferably forms a structure centered on the active center cobalt and coated with a carbon layer around it, the cycle stability of the catalyst is significantly improved, and the coated carbon layer is a phosphorus-nitrogen co-doped coated carbon layer, the catalytic selectivity is significantly improved.
  • the hydrogenation reaction is carried out in a magnetically stabilized reaction device.
  • the mass ratio of the amino nitrile organic compound to the hydrogenation catalyst is 1:0.001 to 1, such as 1:0.001, 1:0.01, 1:0.02, 1:0.1, 1:0.2, 1:0.3, 1: 0.4, 1:0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.9 or 1:1 etc.
  • the temperature of the hydrogenation reaction is 25-200°C, for example, 25°C, 45°C, 64°C, 84°C, 103°C, 123°C, 142°C, 162°C, 181°C or 200°C.
  • the pressure of the hydrogenation reaction is 0.1-5 MPa, such as 0.1 MPa, 0.7 MPa, 1.2 MPa, 1.8 MPa, 2.3 MPa, 2.9 MPa, 3.4 MPa, 4 MPa, 4.5 MPa or 5 MPa.
  • the magnetic field strength in the hydrogenation reaction is 1000-8000A ⁇ m -1 , for example, 1000A ⁇ m -1 , 2000A ⁇ m -1 , 3000A ⁇ m -1 , 4000A ⁇ m -1 , 5000A ⁇ m -1 , 6000A ⁇ m -1 , 7000A ⁇ m -1 , 8000A ⁇ m -1 , etc.
  • the space velocity of the amino nitrile organic compound is 0.01-20h -1 , for example, 0.01h -1 , 2.24h -1 , 4.46h -1 , 6.68h -1 , 8.9h -1 , 11.12h -1 , 13.34h -1 , 15.56h -1 , 17.78h -1 , 20h -1 , etc.
  • the molar ratio of hydrogen to amino nitriles is 2 to 100:1, for example, 2:1, 13:1, 24:1, 35:1, 46:1, 57:1, 68:1, 79:1, 90:1 or 100:1 etc.
  • the hydrogenation reaction is carried out under solvent conditions.
  • the solvent includes an alcohol solvent, preferably any one or a combination of at least two of ethanol, methanol, tert-butanol, isopropanol, n-propanol, isobutanol or n-butanol, wherein typical but not limited
  • the preferred combination is the combination of ethanol and methanol, the combination of tert-butanol and n-propanol, the combination of ethanol and tert-butanol, the combination of tert-butanol and isopropanol, the combination of isopropanol and isobutanol, the combination of n-propanol and methanol Combination, a combination of n-butanol and methanol.
  • the number of carbon atoms of the amino nitrile organic compound is a natural number of 3 to 18, such as 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 Or 18, preferably a natural number of 3 to 10, more preferably 6-aminocapronitrile.
  • the above preparation method further includes: mixing the amino nitrile organic substance and the solvent, heating to 25-200° C., and then passing it into a magnetically stable reaction device equipped with a catalyst.
  • a co-catalyst is also added in the mixing.
  • the cocatalyst includes alkali and/or alkali metal organic salt, preferably any one or a combination of at least two of NaOH, KOH, Ba(OH) 2 , CH 3 CH 2 ONa or CH 3 ONa, wherein typically But non-limiting combinations are the combination of NaOH and KOH, the combination of Ba (OH) 2 and CH3CH2ONa , the combination of Ba(OH) 2 and CH3ONa , the combination of CH3CH2ONa and KOH.
  • alkali and/or alkali metal organic salt preferably any one or a combination of at least two of NaOH, KOH, Ba(OH) 2 , CH 3 CH 2 ONa or CH 3 ONa, wherein typically But non-limiting combinations are the combination of NaOH and KOH, the combination of Ba (OH) 2 and CH3CH2ONa , the combination of Ba(OH) 2 and CH3ONa , the combination of CH3CH2ONa and KOH.
  • the mass ratio of the amino nitrile organic compound to the co-catalyst is 1:0.001-0.1, such as 1:0.001, 1:0.01, 1:0.02, 1:0.03, 1:0.04, 1:0.05, 1:0.06 , 1:0.07, 1:0.08, 1:0.09 or 1:0.1 etc.
  • the above-mentioned second refining includes rectification and/or distillation to obtain crude organic diamine.
  • the purity of the organic diamine in the crude organic diamine is ⁇ 99%.
  • the crude organic diamine contains azepine compound impurities, preferably 3,4,5,6-tetrahydro-2H-azepine.
  • the second adsorption includes: the second refined crude organic diamine absorbs impurities through a second adsorbent to obtain organic diamine.
  • the mass ratio of the crude organic diamine to the surface molecularly imprinted functionalized adsorbent is 300-600:1; the preferred organic diamine has a natural number of 3-18 carbon atoms, preferably a natural number of 3-10, more preferably Hexamethylenediamine.
  • the conventional adsorption method also has a certain adsorption effect, but the selectivity of adsorption is relatively poor; the present invention preferably adopts the surface molecular imprinted functionalized adsorbent, which can not only specifically adsorb azepine compounds, but also The adsorption capacity of the organic diamine is low, so that the removal of impurities in the organic diamine can be achieved under the condition of high yield.
  • the purification method of adsorption separation has the advantages of recyclable adsorbent and low energy consumption, and its application in industry can significantly reduce production costs.
  • the second adsorption includes: the second refined crude organic diamine absorbs impurities through a second adsorbent to obtain an organic diamine product.
  • the mass ratio of crude organic diamine to adsorbent is 300-600:1, for example, it can be 300:1, 334:1, 367:1, 400:1, 434:1, 467:1, 500:1 , 534:1, 567:1 or 600:1 etc.
  • the present invention has no special limitation on the specific adsorption method, and any adsorption method known to those skilled in the art can be used, such as tank type, fixed bed type, tower type or moving bed type, etc.
  • the adsorption method can also be adjusted according to the actual process.
  • the adsorbent is regenerated after adsorption saturation and recycled.
  • the present invention has no special limitation on the mode of regeneration treatment, and any mode known to those skilled in the art that can be used for regeneration treatment of adsorbent can be adopted, such as solvent washing, Soxhlet extraction, gas purging, solid phase extraction or supercritical any of the extractions.
  • the number of carbon atoms in the organic diamine is a natural number of 3 to 18, such as 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18, preferably a natural number of 3 to 10, more preferably hexamethylenediamine.
  • the present invention provides a device operated according to the method for preparing organic diamines in the fifth aspect, the device includes a gasification unit, an ammoniation reaction unit, a first refining unit, a first adsorption unit, a hydrogenation unit, and a hydrogenation unit connected in sequence. reaction unit, second refining unit and second adsorption unit.
  • the gasification unit comprises a Venturi gasification device.
  • the Venturi gasification device includes a converging section, a throat and a diverging section, the converging section is provided with a first inlet, the diverging section is provided with a first gas outlet, and the throat is provided with a second inlet.
  • the preferred organic amide in the present invention is atomized and sprayed, has a large contact area with hot ammonia gas, has a fast flow velocity at the throat, strong shear force and forms local micro-negative pressure (relative to the tapering section and the gradual diverging section) to accelerate gasification and improve
  • the gasification efficiency is conducive to the stable operation of the device and the improvement of the reaction effect.
  • the Venturi gasification device further includes an external circulation pipeline connecting the diverging section and the throat.
  • a material conveying device is arranged on the external circulation pipeline.
  • the external circulation pipeline is arranged at the lowest point of the diverging section.
  • a spoiler is arranged inside the diverging section.
  • the preferred spoiler of the present invention further strengthens the gasification process and reduces the polymerization and coking of organic amides.
  • an atomizing nozzle is arranged on the second inlet.
  • the ammoniation reaction unit comprises a fixed bed reaction device.
  • the hydrogenation reaction unit comprises magnetically stabilized reaction means.
  • the magnetically stable reaction device includes a tubular reactor, and at least two Helmholtz coils arranged axially outside the tubular reactor.
  • the magnetically stable reaction device preferably provided by the present invention provides a magnetic field by arranging at least two Helmholtz coils, thereby realizing that the tubular reactor is converted into a magnetically stable bed reactor, which can make the magnetic catalyst evenly distributed under the magnetic field and reduce the The wear of the catalyst and the mixed flow of the reactant materials avoid the loss of the catalyst and the generation of channel flow during the reaction.
  • the Helmholtz coils are independently connected to the transformer.
  • the number of turns of each Helmholtz coil is 1-500, such as 1, 2, 4, 10, 50, 100, 200, 300, 400 or 500.
  • the magnetic stabilization reaction device further includes a first heating device arranged in front of the tubular reactor and connected to the tubular reactor.
  • the present invention is also provided with a first heating device before the second tubular reactor to realize preheating of the reaction materials before the reaction, and the reaction effect is better.
  • a heating component is arranged outside the first heating device.
  • the first heating device is provided with an inert filler, such as a quartz filler, a glass filler, or a ceramic ball filler.
  • the present invention further improves heat transfer and preheating efficiency by adding inert fillers.
  • the bottom and/or lower side of the first heating device is provided with a third inlet, and the top is provided with a first outlet.
  • the bottom and/or lower side of the tubular reactor is provided with a fourth inlet.
  • the fourth inlet is connected to the first outlet.
  • the bottom and/or lower side of the tubular reactor is also provided with a hydrogen inlet.
  • the lower side of the tubular reactor is provided with a catalyst inlet.
  • the location of the catalyst inlet is below the Helmholtz coil.
  • the upper side of the tubular reactor is provided with a catalyst outlet.
  • the catalyst outlet is arranged above the Helmholtz coil.
  • the upper side of the tubular reactor is provided with a product outlet.
  • the top of the tubular reactor is provided with an outlet for tail gas.
  • the present invention has no special limitation on the inner diameter and length of the tubular reactor, which can be adjusted according to the production scale.
  • the present invention has at least the following beneficial effects:
  • the surface molecularly imprinted functionalized adsorbent provided by the present invention can be recycled multiple times, and after repeated regeneration 5 times, it can still purify hexamethylenediamine to more than 99.98%. It has the advantages of low cost, simple operation and high selectivity. Features such as green environmental protection;
  • the preparation method of the surface molecularly imprinted functionalized adsorbent provided by the present invention uses surface molecularly imprinted technology to prepare a molecularly imprinted polymer with specific recognition sites and specific adsorption for azapine compounds, and prepares The process is simple and easy;
  • the purification method of hexamethylenediamine provided by the present invention can further purify the hexamethylenediamine obtained by rectification, not only make the purity of hexamethylenediamine meet the polymerization requirements of nylon 66, but also improve the purity of hexamethylenediamine to more than 99.98wt% And the yield of hexamethylenediamine is above 98wt%, the loss rate is low, and the content of 3,4,5,6-tetrahydro-2H-azepine is reduced to below 0.011wt%, and reduced to 0.008wt% under optimal conditions Below, and the selective adsorption effect of the adsorbent on the azepine compound impurities is good, and the yield of hexamethylenediamine is high.
  • the method for preparing organic diamine integrates gas-phase ammoniation reaction, intermediate product adsorption purification, hydrogenation reaction and product adsorption purification process.
  • the purified aminonitrile organic matter has low impurity content, and the aminonitrile organic matter
  • the purity of the intermediate is above 99.999wt%, few by-products are produced in the subsequent preparation of the organic diamine product, the product is easy to purify, the obtained organic diamine product has high purity, and the final purity of the organic diamine is above 99.980wt%, preferably 99.99wt% %above;
  • the thermal distribution of the ammoniation reaction and the hydrogenation reaction is uniform, which is conducive to controlling the degree of reaction and prolonging the catalyst life.
  • the loss of beneficial elements of the catalyst, the service life of the ammoniation catalyst is extended to more than 7000h, and can reach more than 10000h under better conditions.
  • the selectivity of amino nitrile organic substances is above 88%, preferably above 98wt%, and the conversion rate of organic amides is above 86%, and under better conditions, the conversion is above 98%;
  • the selectivity of the organic diamine in the hydrogenation section is as high as 92wt%, preferably above 99wt%, and the conversion rate of aminonitrile organic matter is above 96wt%, preferably 99wt% Above, the loss rate of the hydrogenation catalyst is ⁇ 3.25wt%, preferably ⁇ 1.1wt%;
  • the process flow of the method for preparing organic diamines provided by the present invention can be produced continuously, is convenient for process control, and has excellent industrial application prospects.
  • This example provides a method for preparing an adsorbent functionalized with surface molecular imprinting.
  • the process flow of the preparation method is shown in Figure 1, which specifically includes the following steps:
  • the mixed acid solution of formic acid and acetic acid with a volume ratio of 8:1 is used to extract the 2,3,4,5,6-tetrahydro-2H-azepine template in the polymer particles, Until no 3,4,5,6-tetrahydro-2H-azepine is detected in the extract, the polymer particles that remove the 3,4,5,6-tetrahydro-2H-azepine template are placed at 60 In the vacuum drying at °C, dry to constant weight to obtain the surface molecularly imprinted functionalized adsorbent.
  • the surface molecularly imprinted functionalized adsorbent prepared in this example includes a carrier Al 2 O 3 and surface molecules loaded on the carrier Al 2 O 3 ; imprinted cavities are formed between the surface molecules, and the imprinted cavities and azepines Compounds match.
  • the SEM image of the adsorbent is shown in Figure 2.
  • the surface of the irregular microspherical carrier is coated with a molecularly imprinted polymer, where the irregular microspherical carrier is shown in the circle in the figure, and the polymer As shown in the white box, there is some agglomeration, indicating the successful preparation of the molecularly imprinted composite, and the polymer coated on the carrier has porosity, which improves the specific area and adsorption performance.
  • the BET adsorption/desorption curve is shown in Figure 3, where the squares represent the desorption curve, and the circles represent the adsorption curve.
  • the adsorbent belongs to the type IV adsorption isotherm and also belongs to the H3 hysteresis loop type, which is a typical Porous characteristics, and the measured surface area is 100.2m 2 /g, which has a large specific surface area and can provide more adsorption sites, which confirms the microscopic characteristics of SEM.
  • This embodiment provides a preparation method of an adsorbent with surface molecular imprinting functionalization.
  • 0.15L of 3-aminopropyltriethoxysilane is added dropwise in the modification reaction, and 5.7g of acrylamide is added in step (1) as Functional monomer, except that 79.3g ethylene glycol dimethacrylate was added in step (2) as a crosslinking agent, the rest were the same as in Example 1.
  • This example provides a method for preparing a surface molecularly imprinted functionalized adsorbent.
  • 0.15 L of 3-aminopropyltriethoxysilane is added dropwise in the modification reaction, and 8.4 g of 2- Vinylpyridine is used as a functional monomer, and 61.7 g of N,N-methylenebisacrylamide is added in step (2) as a crosslinking agent, and the rest are the same as in Example 1.
  • This example provides a method for preparing an adsorbent functionalized with surface molecular imprinting.
  • 0.15L of 3-aminopropyltriethoxysilane is added dropwise in the modification reaction, and 8.53g of acrylamide is added in step (1).
  • acrylamide is added in step (1).
  • As a functional monomer except that 87.2 g of ethylene glycol dimethacrylate was added in step (2) as a crosslinking agent, the rest were the same as in Example 1.
  • This example provides a method for preparing an adsorbent functionalized with surface molecular imprinting.
  • 0.15L of 3-aminopropyltriethoxysilane is added dropwise in the modification reaction, and 1.42g of acrylamide is added in step (1).
  • acrylamide is added in step (1).
  • As a functional monomer except that 87.1 g of ethylene glycol dimethacrylate was added in step (2) as a crosslinking agent, the rest were the same as in Example 1.
  • This example provides a method for preparing an adsorbent functionalized with surface molecular imprinting.
  • 0.15 L of 3-aminopropyltriethoxysilane is added dropwise in the modification reaction, and 7.1 g of acrylamide is added in step (1).
  • a functional monomer except that 71.3 g of ethylene glycol dimethacrylate was added in step (2) as a crosslinking agent, the rest were the same as in Example 1.
  • This example provides a preparation method of an adsorbent functionalized with surface molecular imprinting.
  • the preparation method is the same as that of Example 1 except that the carrier Al 2 O 3 is not modified.
  • This example provides a preparation method of an adsorbent functionalized with surface molecular imprinting.
  • the preparation method is the same as that of Example 1 except that the carrier Al 2 O 3 is replaced by the carrier silica.
  • This example provides a method for preparing a surface molecularly imprinted functionalized adsorbent.
  • the preparation method directly prepares functional monomers, azepine compound templates, crosslinking agents and initiators. Except polymerization together, all the other are identical with embodiment 1.
  • the mixed acid solution of formic acid and acetic acid with a volume ratio of 8:1 is used to extract the 2,3,4,5,6-tetrahydro-2H-azepine template in the polymer particles, Until no 3,4,5,6-tetrahydro-2H-azepine is detected in the extract, the polymer particles that remove the 3,4,5,6-tetrahydro-2H-azepine template are placed at 60 In the vacuum drying at °C, dry to constant weight to obtain the surface molecularly imprinted functionalized adsorbent.
  • This embodiment provides a method for preparing an adsorbent functionalized with surface molecular imprinting.
  • the preparation method includes the following steps:
  • the mixed acid solution of formic acid and acetic acid with a volume ratio of 10:1 is used to extract the 2,3,4,5,6-tetrahydro-2H-azepine template in the polymer particles, Until no 3,4,5,6-tetrahydro-2H-azepine is detected in the extract, the polymer particles that remove the 3,4,5,6-tetrahydro-2H-azepine template are placed at 100 In the vacuum drying at °C, dry to constant weight to obtain the surface molecularly imprinted functionalized adsorbent.
  • This embodiment provides a method for preparing an adsorbent functionalized with surface molecular imprinting.
  • the preparation method includes the following steps:
  • the mixed acid solution of formic acid and acetic acid with a volume ratio of 5:1 is used to extract the 2,3,4,5,6-tetrahydro-2H-azepine template in the polymer particles, Until no 3,4,5,6-tetrahydro-2H-azepine was detected in the extract, the polymer particles that had removed the 3,4,5,6-tetrahydro-2H-azepine template were placed at 40 In the vacuum drying at °C, dry to constant weight to obtain the surface molecularly imprinted functionalized adsorbent.
  • This comparative example provides a preparation method of an adsorbent, the preparation method is the same as that of Example 1 except that 3,4,5,6-tetrahydro-2H-azepine is not added as the template of the azepine compound.
  • This application example provides a kind of purification method of hexamethylenediamine, and purification method comprises: the adsorbent that the embodiment 1 of 1kg is made is added in the reactor of 1m3 , then add 500kg hexamethylenediamine after rectification treatment, Stir to disperse evenly, stir and adsorb at room temperature (25°C) for 20 hours, then filter to separate the adsorbent, and the filtrate is sent to gas chromatography for content analysis.
  • Application Examples 2-9 respectively provide a purification method of hexamethylenediamine.
  • the purification methods are the same as Application Example 1 except that the adsorbents provided in Examples 2-9 are respectively used.
  • This application example provides a purification method for hexamethylenediamine.
  • the purification method includes: filling 1 kg of the adsorbent prepared in Example 10 into 4 adsorption columns connected in series, and then passing through the column at a rate of 0.5h -1 through rectification
  • the treated hexamethylenediamine was adsorbed at 35° C., and the content was analyzed by gas chromatography in the liquid phase after the adsorption.
  • This application example provides a purification method of hexamethylenediamine.
  • the purification method includes: adding 2.5kg of the adsorbent obtained in Example 11 into a 2m3 reactor, then adding 500kg of hexamethylenediamine, stirring and dispersing evenly, and At room temperature (25°C) the adsorption was shaken for 35 hours, then the adsorbent was separated by filtration, and the filtrate was analyzed by gas chromatography.
  • This application comparative example provides a purification method of hexamethylenediamine.
  • the purification method is the same as that of application example 1 except that the adsorbent provided in comparative example 1 is used.
  • This application comparative example provides a purification method of hexamethylenediamine, and the purification method adopts the purification method provided in Example 1 in CN103936595A.
  • the modified aluminum oxide carrier used in application example 1 is compared with the unmodified aluminum oxide carrier used in application example 7 and application example 8
  • the purity after adsorption in Application Example 1 is 99.992wt%
  • the purity after adsorption of hexamethylenediamine in Application Examples 7 to 8 is only 99.989wt% and 99.990wt%, which shows that , the present invention can further improve the impurity removal performance by optimizing the modified aluminum oxide as a carrier;
  • the adsorbent is prepared by pre-polymerization in application example 1.
  • the hexamethylenediamine after adsorption in application example 1 The purity is 99.992wt%, the content of 3,4,5,6-tetrahydro-2H-azepine after adsorption is only 0.005wt%, while the purity of hexamethylenediamine after adsorption in Application Example 9 is only 99.988wt%,
  • the content of 3,4,5,6-tetrahydro-2H-azepine is as high as 0.011wt%, which shows that the present invention prepares the adsorbent by further preferably pre-polymerizing, which significantly improves the hexamethylenediamine
  • the purification effect reduces the content of 3,4,5,6-tetrahydro-2H-azepine after adsorption.
  • Example 2 carry out the adsorption and purification of hexamethylenediamine with the method provided in Application Example 2, and investigate the adsorption effect after the catalyst has been regenerated several times.
  • the template molecules in the adsorbent were continuously extracted with a 8:1 mixture of methanol and acetic acid until no template molecules were detected in the extract, and the adsorbent was dried in a vacuum oven until constant Heavy, get the adsorbent after regeneration.
  • the regenerated adsorbent was used for adsorption by the method in Application Example 2, and this was repeated 5 times to investigate the regenerability of the adsorbent.
  • the specific inspection results are shown in Table 2.
  • the adsorbent can purify hexamethylenediamine to more than 99.99%, showing good regeneration performance. After repeated regeneration 5 times, the performance of the adsorbent is slightly reduced, but still can The hexamethylenediamine is purified to more than 99.98%, so the adsorbent of the present invention can be reused many times to reduce the use cost.
  • the surface molecularly imprinted functionalized adsorbent provided by the present invention can be recycled multiple times, and has the characteristics of low cost, simple operation, high selectivity, and environmental protection. It is used in the purification process of hexamethylenediamine, and is preferred Under the conditions, the purity of hexamethylenediamine can be increased to more than 99.99wt%, and the technical effect of the yield of hexamethylenediamine is more than 98wt%, and the content of 3,4,5,6-tetrahydro-2H-azepine Reduced to below 0.011wt%, reducing the impact on later nylon products.
  • Catalyst A1 is a hollow cylindrical catalyst, containing the first type of channel in the catalyst; the main body of the catalyst also contains the second type of channel; the second type of channel is a cylindrical channel, the diameter of the cylindrical channel is 1mm, and the height is 5mm; The main body is cylindrical, the diameter of the main body is 4.2mm, and the height is 5mm;
  • the pore size of the first type of pore is nanoscale; the pore size of the first type of pore is 12.61 nm.
  • the pore volume of the catalyst is 0.694cm 3 /g; the specific surface area of the catalyst is 178.23m 2 /g, and the molar ratio of silicon, aluminum and phosphorus is 1:0.8:0.2.
  • the preparation method of catalyst A1 is carried out according to CN111659463A, except that in the molding step, a mold matching with catalyst A1 is used for molding to form catalyst A1 with a specific structure, other preparation methods are carried out according to CN111659463A.
  • Catalyst A2 to Catalyst A4 have the same structure and preparation method as Catalyst A1, except that the molar ratios of silicon, aluminum and phosphorus are 1:0.8:0.5, 1:0.8:0.8 and 1:0.8:1.6.
  • Catalyst B1 is a clover-shaped cylindrical catalyst.
  • the clover-shaped catalyst includes a cylindrical body 1 and a protrusion 2, wherein the height of the cylinder is 5mm, and the leaflets outside the clover circle intersection are the protrusion 2, as shown in Figure 4
  • the inside of the dotted line is marked as the main part of the catalyst, and the part outside the dotted circle is marked as the protruding part 2.
  • the diameter of the dotted line circle is 3 mm, and a marked in the dotted line is the length of the protruding part 2, which is 1.6 mm. ;
  • the pore size of the first type of pore is nanoscale; the pore size of the first type of pore is 16.29nm.
  • the pore volume of the catalyst is 0.719cm 3 /g; the specific surface area of the catalyst is 151.89m 2 /g, and the molar ratio of silicon, aluminum and phosphorus is 1:0.8:0.2.
  • the preparation method of catalyst B1 is carried out according to CN111659463A, except that in the molding step, a mold matching with catalyst B1 is used for molding to form catalyst B1 with a specific structure, other preparation methods are carried out according to CN111659463A.
  • Catalysts B2 to B4 have the same structure and preparation method as catalyst B1, except that the molar ratios of silicon, aluminum and phosphorus are 1:0.8:0.3, 1:0.8:0.5 and 1:0.8:1.5.
  • Catalyst C1 is a three-hole spherical catalyst.
  • the three-hole spherical catalyst includes a spherical main body 1 and an internal second-type channel 3.
  • the second-type channel 3 is a single hole that runs through the main body 1 and is provided with three , the diameter of the single hole is 1.0 mm, the three single holes are distributed in an equilateral triangle, and the diameter of the spherical body 1 is 4.5 mm;
  • the pore size of the first type of pore is nanoscale; the pore size of the first type of pore is 18.43nm.
  • the pore volume of the catalyst is 0.781cm 3 /g; the specific surface area of the catalyst is 201.77m 2 /g, and the molar ratio of silicon, aluminum and phosphorus is 1:0.6:0.3.
  • the preparation method of catalyst C1 is carried out according to CN111659463A, except that in the molding step, a mold matching with catalyst C1 is used for molding to form catalyst C1 with a specific structure, other preparation methods are carried out according to CN111659463A.
  • Catalysts C2 to C3 have the same structure and preparation method as catalyst C1, except that the molar ratios of silicon, aluminum and phosphorus are 1:0.6:0.7, 1:0.6:0.9 and 1:0.6:1.3.
  • Catalysts D1 to D4 are the same as catalysts A1 to A4 except that they are solid cylindrical catalysts.
  • the preparation method of the first adsorbent a comprises the steps:
  • the second impregnation was carried out on a shaking table at 50 rpm for 4 hours, dried to constant weight, and the dried adsorbent was calcined in a muffle furnace with a heating rate of 6°C/min and an end point temperature of 550°C. The time is 3h, and the first adsorbent a is obtained.
  • the preparation method of the first adsorbent b comprises the steps:
  • the preparation method of the first adsorbent c comprises the steps:
  • Catalyst I is a carbon-based cobalt catalyst co-doped with nitrogen and phosphorus, and its preparation method comprises the following steps:
  • the precipitated material After being uniformly ground, the precipitated material is placed in a tube furnace and pyrolyzed in an argon atmosphere.
  • the mass space velocity of the argon gas is 1h -1 , and the temperature is raised to 600°C at 5°C/min.
  • the pyrolysis time is After 2h, a nitrogen-phosphorus co-doped carbon-based cobalt catalyst was obtained.
  • the nitrogen adsorption-desorption curve of Catalyst I is shown in Figure 6. It can be seen from Figure 6 that Catalyst I has excellent adsorption performance, with a specific surface area of 271 m 2 /g; it can be seen from Figure 7 that Catalyst I contains N, P, Co and O elements, and according to the analysis, it can be seen that the catalyst contains 3.11% Co, 4.10% N and 0.81% P. It can be seen from the transmission electron microscope image in Figure 8 that the nitrogen and phosphorus co-doped carbon-based cobalt catalyst has cobalt A nitrogen-phosphorus-doped cladding carbon layer is formed as the center, and the cobalt center is uniformly distributed.
  • Catalyst II is a carbon-based cobalt catalyst co-doped with nitrogen and phosphorus, and its preparation method comprises the following steps:
  • the precipitating material After being uniformly ground, the precipitating material is placed in a tube furnace, and pyrolyzed in an argon atmosphere.
  • the mass space velocity of the argon is 0.2h -1 , and the temperature is raised to 800°C at 4°C/min.
  • the pyrolysis time After 1.5 h, a nitrogen-phosphorus co-doped carbon-based cobalt catalyst was obtained.
  • Catalyst III is a carbon-based cobalt catalyst co-doped with nitrogen and phosphorus, and its preparation method comprises the following steps:
  • the precipitating material After being uniformly ground, the precipitating material is placed in a tube furnace and pyrolyzed in an argon atmosphere.
  • the mass space velocity of the argon gas is 3h -1 , and the temperature is raised to 700°C at 10°C/min.
  • the pyrolysis time is After 3.5 hours, a nitrogen-phosphorus co-doped carbon-based cobalt catalyst was obtained.
  • Catalyst IV is a nitrogen-doped carbon-based cobalt catalyst, and its preparation method is the same as that of catalyst I except that no triphenylphosphine is added in step (I).
  • Catalyst V is a phosphorus-doped carbon-based cobalt catalyst, and its preparation method is the same as catalyst I except that urea is not added in step (I).
  • the preparation method of the second adsorbent ⁇ is the same as that in Example 1.
  • the second adsorbent ⁇ provides a second adsorbent functionalized with surface molecular imprinting.
  • the second adsorbent includes a carrier Al 2 O 3 and surface molecules loaded on the carrier Al 2 O 3 ; imprinted cavities are formed between the surface molecules , the imprinted cavity matches the azepine compound.
  • the preparation method of the second adsorbent ⁇ comprises the steps:
  • the 2,3,4,5,6-tetrahydro-2H-azepine template in the polymer particles was extracted with a mixed acid solution of formic acid and acetic acid with a volume ratio of 10:1 until the extraction 3,4,5,6-tetrahydro-2H-azepine could not be detected in the solution, and the polymer particles without 3,4,5,6-tetrahydro-2H-azepine template were placed in a 100°C In vacuum drying, dry to constant weight to obtain the second adsorbent ⁇ functionalized with surface molecular imprinting.
  • the second adsorbent ⁇ provides a second adsorbent functionalized with surface molecular imprinting.
  • the second adsorbent includes a carrier Al 2 O 3 and surface molecules loaded on the carrier Al 2 O 3 ; imprinted cavities are formed between the surface molecules , the imprinted cavity matches the azepine compound.
  • the preparation method of the second adsorbent gamma comprises the steps:
  • the 2,3,4,5,6-tetrahydro-2H-azepine template in the polymer particles was extracted with a mixed acid solution of formic acid and acetic acid with a volume ratio of 5:1 until the extraction 3,4,5,6-tetrahydro-2H-azepine could not be detected in the solution, and the polymer particles without 3,4,5,6-tetrahydro-2H-azepine template were placed in a 40°C In vacuum drying, dry to constant weight to obtain the second adsorbent ⁇ with surface molecular imprinting functionalization.
  • the second adsorbent ⁇ is the adsorbent prepared in Comparative Example 1.
  • This embodiment provides a method for preparing hexamethylenediamine from caprolactam, as shown in FIGS.
  • the gasification unit 10 includes a Venturi gasification device.
  • the Venturi gasification device comprises a converging section 101, a throat 102 and a diverging section 103, the converging section 101 is provided with a first inlet 104, and the diverging section 103 is provided with a first gas outlet 105, so The throat 102 is provided with a second inlet.
  • the Venturi gasification device also includes an external circulation pipeline connecting the diverging section 103 and the throat 102 .
  • a material conveying device 106 is arranged on the external circulation pipeline.
  • the external circulation pipeline is arranged at the lowest point of the diverging section 103 .
  • a spoiler is arranged inside the diverging section 103 .
  • An atomizing nozzle is arranged on the second inlet.
  • the ammoniation reaction unit 20 includes a fixed-bed reaction device, and the fixed-bed reaction device includes four fixed-bed reactors connected in series.
  • the hydrogenation reaction unit 50 includes a magnetically stable reaction device.
  • the magnetically stable reaction device includes a tubular reactor 502 and at least two Helmholtz coils 509 disposed outside the tubular reactor 502 and arranged axially.
  • the Helmholtz coils 509 are independently connected to the transformer. Each of the Helmholtz coils 509 has 20 turns.
  • the magnetically stable reaction device further includes a first heating device 501 arranged in front of the tubular reactor 502 and connected to the tubular reactor 502 .
  • a heating component 503 is arranged outside the first heating device 501 . Quartz filler is arranged in the first heating device 501 .
  • a third inlet 504 is provided at the lower side of the first heating device 501 , and a first outlet 505 is provided at the top.
  • a fourth inlet 506 is provided at the bottom of the tubular reactor 502 .
  • the fourth inlet 506 is connected to the first outlet 505 .
  • a hydrogen inlet 507 is also provided at the bottom and/or lower side of the tubular reactor 502 .
  • a catalyst inlet 508 is provided on the lower side of the tubular reactor 502 .
  • the catalyst inlet 508 is located below the Helmholtz coil 509 .
  • the upper side of the tubular reactor 502 is provided with a catalyst outlet 5012 .
  • the catalyst outlet 5012 is arranged above the Helmholtz coil 509 .
  • the upper side of the tubular reactor 502 is provided with a product outlet 5011 .
  • the top of the tubular reactor 502 is provided with a tail gas outlet 5010 .
  • Described method specifically comprises the steps:
  • Trimethyl phosphate (accounting for 10ppm by weight of ammonia gas) is mixed with ammonia gas and preheated at 500°C to superheat the ammonia gas to obtain a mixed gas;
  • the mixed gas and the i-th part of the organic amide in the liquid phase state at a temperature of 120°C are mixed and gasified at 350°C in the Venturi gasification device, and then passed into the first fixed-bed reactor (a total of 4 fixed-bed reactors in series) , counted as 4 sections of fixed-bed reactors, each section of fixed-bed reactors is filled with catalysts of the same weight), reacting at the first reaction temperature, the first reaction pressure and the first catalyst, to obtain the first reaction discharge;
  • the first to fourth reaction temperatures are 350°C, 375°C, 400°C and 425°C respectively, and the first to fourth reaction pressures are 0MPa, 0.3MPa, 0.6MPa and 0.9MPa respectively;
  • the first catalyst to the fourth catalyst are respectively catalysts A1 to catalyst A4; the i-th part of caprolactam and the i+1 part of caprolactam have the same amount, the weight hourly space velocity of the total caprolactam is 5h -1 , and the ammonia gas and organic
  • the total molar ratio of amides is 5:1;
  • the first reaction output is rectified to obtain crude 6-aminocapronitrile, and the crude 6-aminocapronitrile is passed through the first adsorbent a at 35°C and 0.5MPa at a space velocity of 1h -1 Purification by adsorption to obtain 6-aminocapronitrile product;
  • the polymer residue produced in step (1) and step (2) is mixed with water, the mass ratio of polymer residue to water is 1:4, and depolymerized at 200°C, 5MPa and Al 2 O 3 solid acid catalyst Reaction 3h, the mass ratio of polymer residue and catalyst is 1:0.4, then through negative pressure dehydration and negative pressure distillation, obtain 6-aminocapronitrile and caprolactam respectively;
  • Mix 6-aminocapronitrile, solvent methanol and auxiliary agent NaOH pass into the first heating device Heat it to 100°C, then pass it into the second tubular reactor, and react 6-aminocapronitrile and hydrogen under the conditions of pressure 2.0MPa and magnetic field strength 1000A ⁇ m -1 to prepare hexamethylenediamine and obtain the reaction product ;
  • the space velocity of 6-aminocapronitrile is 20h -1
  • the molar ratio of hydrogen to 6-aminocapronitrile is 5:1
  • the mass ratio of 6-aminocapronitrile to solvent is 1:3, 6-aminocapronitrile
  • the mass ratio of nitrile to auxiliary agent is 1:0.001;
  • the material is rectified at 120°C and -0.095MPaG to obtain crude hexamethylenediamine; 1kg of the second adsorbent ⁇ is added to a 1m reaction kettle, and then 500kg of thick hexamethylenediamine is added and stirred. Disperse evenly, stir and adsorb at room temperature (25°C) for 20 hours to obtain hexamethylenediamine.
  • the oxygen-containing gas with an initial oxygen content of 1v/v% is pumped in from the first inlet of the above-mentioned fixed-bed reactor, and then passed into four series-connected fixed-bed reactors equipped with deactivated silicon-aluminum-phosphorous molecular sieves, and automatically Supplementary oxygen-containing gas (air) is introduced into the first side port to the third side port, and the oxygen content at the inlet of each fixed-bed reactor is controlled to be consistent with the oxygen content of the oxygen-containing gas at the inlet of the first fixed-bed reactor , to regenerate the deactivated catalyst;
  • the regeneration process includes the early stage of regeneration and the late stage of regeneration.
  • the oxygen content of the oxygen-containing gas is fixed at 1v/v%, the initial temperature of regeneration is 300°C, and the temperature is raised to a final temperature of 800°C at 2°C/h; enter the late stage of regeneration , the fixed regeneration temperature is 800°C, and the oxygen content of the oxygen-containing gas is increased by 0.1v/v%/h to the final oxygen content of 10v/v%/h; keep the final oxygen content and final temperature for 180h to continue regeneration, A regenerated catalyst is obtained.
  • This embodiment provides a method for preparing hexamethylenediamine from caprolactam, said method comprising the steps of:
  • Isopropyl distearoyloxyaluminate (accounting for 20 ppm by weight of ammonia gas) is mixed with ammonia gas and preheated at 600° C. to superheat the ammonia gas to obtain a mixed gas.
  • the mixed gas and the first part of the organic amide in the liquid phase state at a temperature of 220 ° C are mixed and gasified at 500 ° C in the Venturi gasification device, and then passed into the first fixed-bed reactor (a total of 4 fixed-bed reactors in series) , counted as 4 sections of fixed-bed reactors, each section of fixed-bed reactors is filled with catalysts of the same weight), reacting at the first reaction temperature, the first reaction pressure and the first catalyst, to obtain the first reaction discharge;
  • the polymer residue produced in step (1) and step (2) is mixed with water, the mass ratio of polymer residue to water is 1:20, and decomposed at 100°C, 10MPa and Cu(OH) under the action of a solid alkali catalyst Polymerization reaction 10h, the mass ratio of polymer residue and catalyst is 1:0.5, then through negative pressure dehydration and negative pressure distillation, obtain 6-aminocapronitrile and caprolactam respectively;
  • the oxygen-containing gas with an initial oxygen content of 2v/v% is pumped in from the first inlet of the above-mentioned fixed-bed reactor, and then passed into four series-connected fixed-bed reactors equipped with deactivated silicon-aluminum-phosphorous molecular sieves, and automatically Supplementary oxygen-containing gas (air) is introduced into the first side port to the third side port, and the oxygen content at the inlet of each fixed-bed reactor is controlled to be consistent with the oxygen content of the oxygen-containing gas at the inlet of the first fixed-bed reactor , to regenerate the deactivated catalyst;
  • the regeneration process includes the early stage of regeneration and the late stage of regeneration.
  • the oxygen content of the oxygen-containing gas is fixed at 2v/v%, the initial temperature of regeneration is 250°C, and the temperature is raised to a final temperature of 800°C at 20°C/h; enter the late stage of regeneration , the fixed regeneration temperature is 800°C, the oxygen content of the oxygen-containing gas is raised to the final oxygen content of 21v/v%/h at 2v/v%/h; the final oxygen content and final temperature are maintained for 100h to continue regeneration, and the obtained regenerated catalyst.
  • This embodiment provides a method for preparing hexamethylenediamine from caprolactam, said method comprising the steps of:
  • Ammonia and organic amide are mixed and gasified to obtain a gasification material; the gasification material is subjected to an ammoniation reaction under the action of an ammoniation catalyst to obtain a first reaction material;
  • the post-reaction material is sequentially subjected to the second refining and the second adsorption to obtain the organic diamine product.
  • Nickel bromide hexamine complex (accounting for 100ppm by weight of ammonia gas) is mixed with ammonia gas and preheated at 300°C to overheat the ammonia gas to obtain a mixed gas;
  • the mixed gas and the first part of the organic amide in the liquid phase state at a temperature of 69°C are mixed and gasified at 300°C in the Venturi gasification device and then passed into the first fixed-bed reactor (a total of 3 fixed-bed reactors in series) , counted as 3 sections of fixed-bed reactors, each section of fixed-bed reactors is filled with catalysts of the same weight), reacting at the first reaction temperature, the first reaction pressure and the first catalyst action, to obtain the first reaction discharge;
  • the first to third reaction temperatures are 360°C, 400°C, and 460°C, respectively; the first to third reaction pressures are 0.3MPa, 0.7MPa, and 0.9MPa; the first catalyst to The fourth catalysts are catalysts C1 to C3 respectively; the amount of caprolactam in the i-th part and the caprolactam in the i+1 part is the same, the weight hourly space velocity of the total caprolactam is 1h -1 , and the total molar ratio of ammonia to organic amides is is 15:1;
  • the first reaction discharging material obtains crude 6-aminocapronitrile after rectification, and the crude 6-aminocapronitrile is modified at 20°C and 1MPa at a space velocity of 0.5h ⁇ 1 by a modified adsorbent c Purification by adsorption to obtain 6-aminocapronitrile product;
  • the polymer residue produced in step (1) and step (2) is mixed with water, the mass ratio of polymer residue to water is 1:0.5, and decomposed under the action of 400°C, 0.2MPa and Al 2 O 3 solid acid catalyst Polymerization reaction 0.5h, the mass ratio of polymer residue and catalyst is 1:0.01, then through negative pressure dehydration and negative pressure distillation, obtain 6-aminocapronitrile and caprolactam respectively;
  • the oxygen-containing gas with an initial oxygen content of 0.5v/v% is pumped from the first inlet of the above-mentioned fixed-bed reactor, and then passed into the
  • supplementary oxygen-containing gas air
  • the oxygen content is consistent with the oxygen content of the oxygen-containing gas at the inlet of the first fixed bed reactor to regenerate the deactivated catalyst
  • the regeneration process includes the early stage of regeneration and the late stage of regeneration.
  • the oxygen content of the oxygen-containing gas is fixed at 5v/v%
  • the initial temperature of regeneration is 350°C
  • the oxygen content of the oxygen-containing gas is increased by 0.05v/v%/h
  • enter the late stage of regeneration fix the final oxygen content of 10v/v%/h, and raise the temperature at 1°C/h to the final temperature of 700°C; keep at the final oxygen content and final temperature
  • the highest content of carbon monoxide in the regeneration process of the catalyst for the ammoniation reaction was investigated for Examples 12 to 14, and the hot spot temperature rise of the catalyst bed was measured during the regeneration process. It was found that the highest content of carbon monoxide in the regeneration process was significantly reduced, and the hot spot temperature rise was lower than that of the previous example. The situation of stepwise heating and increasing oxygen content is significantly reduced, and the catalyst life is basically unchanged after regeneration.
  • This example provides a method for preparing hexamethylenediamine from caprolactam.
  • the method is the same as in Example 12 except that trimethyl phosphate is not added as an auxiliary agent in step (1).
  • This example provides a method for preparing hexamethylenediamine from caprolactam.
  • the method is the same as in Example 12 except that "trimethyl phosphate" is replaced by "aluminum trichloride” in step (1).
  • This example provides a method for preparing hexamethylenediamine from caprolactam.
  • the method is the same as in Example 12 except that "catalyst A1-catalyst A4" is replaced by "catalyst D1-catalyst D4" in step (1). .
  • This example provides a method for preparing hexamethylenediamine from caprolactam.
  • the method is the same as in Example 12 except that the Venturi gasification device is replaced by a gasifier in step (1).
  • This embodiment provides a method for preparing hexamethylenediamine from caprolactam, except that the temperature and pressure of each section of the fixed-bed reactor in step (1) are kept the same as that of the first section of the fixed-bed reactor, all the others are the same as those in the implementation Example 12 is the same.
  • the present embodiment provides a kind of method for preparing hexamethylenediamine from caprolactam, described method except that the catalyst component in each section of fixed-bed reactor in step (1) is all kept the same with the 1st section fixed-bed reactor, all the other are the same as Example 12 is the same.
  • This example provides a method for preparing hexamethylenediamine from caprolactam, which is the same as that of Example 12 except that the magnetic field strength in step (3) is 0.
  • This example provides a method for preparing hexamethylenediamine from caprolactam, except that catalyst I in step (3) is replaced by Ru-Fe 2 O 3 -Al 2 O 3 catalyst (Ru: 5%; Fe 2 O 3 : 40%; Al 2 O 3 : 55%), the rest are the same as in Example 12.
  • This example provides a method for preparing hexamethylenediamine from caprolactam.
  • the method is the same as in Example 12 except that catalyst I is replaced by catalyst IV in step (3).
  • This example provides a method for preparing hexamethylenediamine from caprolactam.
  • the method is the same as in Example 12 except that catalyst I is replaced by catalyst V in step (3).
  • This example provides a method for preparing hexamethylenediamine from caprolactam.
  • the method is the same as in Example 12 except that the second adsorbent ⁇ is replaced by the second adsorbent ⁇ in step (4).
  • This comparative example provides a method for preparing hexamethylenediamine from caprolactam.
  • the method is the same as in Example 12 except that no adsorption purification is performed in step (2).
  • This comparative example provides a method for preparing hexamethylenediamine from caprolactam.
  • the method is the same as in Example 12 except that the adsorption step of step (4) is not carried out.
  • Test method The purity of products and raw materials is tested by gas chromatography quantitative analysis method. The service life of the catalyst is calculated based on the selectivity of 6-aminocapronitrile not less than 98%, and the selectivity of hexamethylenediamine is not less than 97%. The results are shown in Table 3.
  • the method for preparing hexamethylenediamine from caprolactam prolongs the life-span of the ammoniation catalyst to more than 7000h, and can reach more than 10000h under better conditions.
  • the purity of the capronitrile intermediate is more than 99.999wt%
  • the selectivity of 6-aminocapronitrile is more than 88%
  • the conversion rate of caprolactam is more than 86%, preferably more than 96%
  • the purity of hexamethylenediamine is more than 99.980wt%, and under optimal conditions, it is more than 99.99wt%.
  • the selectivity of hexamethylenediamine is more than 93wt%.
  • the loss rate is ⁇ 3.25wt%, preferably ⁇ 1.1wt% in the magnetic reaction device, wherein the conversion rate of 6-aminocapronitrile in the hydrogenation section is above 96wt%, preferably above 99wt%;
  • the present invention has realized the removal of the trace impurity of 6-aminocapronitrile and hexamethylenediamine by combining the purification mode of adsorption and refining, and the product purity obtained is higher high.
  • This embodiment provides a method for preparing n-dodecanediamine from 12-aminon-dodecanonitrile, except that caprolactam in step (1) is replaced by 12-aminon-dodecanonitrile, the rest are the same as in Example 1 .
  • the conversion rate of the raw material was 99.9 wt%
  • the selectivity of the product n-dodecyl diamine was 98.7 wt%
  • the purity of the product n-dodecyl diamine was 99.99 wt%.
  • the method for preparing organic diamines from organic amides integrates gas-phase ammoniation reaction, intermediate product adsorption purification, hydrogenation reaction and product adsorption purification process, and the purified aminonitrile organic matter has low impurity content , there are few by-products in the subsequent preparation of organic diamine products, the product is easy to purify, and the obtained organic diamine products have high purity.
  • This process has a long catalyst service life and a reasonable regeneration method, which reduces the cost of industrial production.
  • the adsorbent provided by the present invention has an imprinted cavity that matches the azepine compound, and can detoxify the azepine compound Carry out specific adsorption, and it is applied in the separation process of azepine compounds, and has excellent selective separation effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供一种吸附剂及其制备方法、己二胺的提纯方法、有机二胺的制备方法及所用的装置。吸附剂包括载体以及负载在载体上的表面分子;表面分子之间形成印迹空腔,印迹空腔与氮杂卓类化合物相匹配;吸附剂的制备流程短,适于工业化生产,而且吸附剂针对氮杂卓类化合物具有特异性吸附效果,能够较好地适用于己二胺中痕量杂质的吸附分离,显著提高了己二胺的产品纯度。

Description

吸附剂及其制备方法、己二胺的提纯方法、有机二胺的制备方法及所用的装置
本申请是以CN申请号为202110881293.9,申请日为2021年08月02日,以及以CN申请号为202110882630.6,申请日为2021年08月02日的中国申请为基础,并主张其优先权,该CN申请的公开内容再次作为整体引入本申请中。
技术领域
本发明涉及有机化学领域,具体而言,涉及一种吸附剂及其制备方法、己二胺的提纯方法、有机二胺的制备方法及所用的装置。
背景技术
尼龙66作为五大工程塑料之首,在机械和电器领域有着极其广泛的应用,主要应用于齿轮、轴承、电子电器、汽车部件等。与其他通用塑料相比,尼龙66不仅具有机械强度高、韧性好、耐磨性好的特点,而且具有自润滑性,阻燃性,无毒环保等优异性能。尼龙66是热塑性聚合物,是多晶型半结晶聚合物,是由己二酸和己二胺缩聚而成,是聚酰胺的一类。
己二胺是生产尼龙66的关键中间体,是一种重要的化工原料,己二胺的纯度对尼龙66的产品质量影响很大,高分子的缩聚反应对原料的纯度要求很高。己二胺的合成方法主要有己内酰胺法、己二腈法、己二醇法,这些方法都不可避免地用精馏来精制己二胺,精馏过程己二胺发生副反应生成3,4,5,6-四氢-2H-氮杂卓,而精馏过程很难彻底去除该杂质。
CN103936595A公开了一种粗己二胺的精制方法,精制方法采用塔精馏分离,获得含量99.99%己二胺,但该方法分离效率低,能耗高。
CN101939286A公开了一种己二胺的纯化方法,纯化方法通过蒸馏分离出存在于己二胺中的四氢叮庚,但该方法一方面并未涉及精馏过程中3,4,5,6-四氢-2H-氮杂卓的分离,而且该方法分离效率低下。
CN106810455A公开了一种高品质精己二胺的生产方法,该方法将半成品己二胺进行多次蒸馏提纯,即得高品质精己二胺,通过采用真空精馏技术,根据半成品己二胺中杂质的沸点不同,在真空条件下经过脱水、脱除轻组分、脱除重组分,最后得到己二胺的纯度≥99.9%,但该方法存在纯度仍然较低且能耗较高的情况。
因此,亟需一种温和的制备方法,除去己二胺粗产品中的3,4,5,6-四氢-2H-氮杂卓,以满足下游缩聚生成尼龙66的要求。
发明内容
本发明的主要目的在于提供一种吸附剂及其制备方法、己二胺的提纯方法、有机二胺的制备方法及所用的装置,以解决现有技术中传统的生产己内酰胺的方法副产物多、经济效益差的问题。
为了实现上述目的,根据本发明的一个方面,提供了一种表面分子印迹功能化的吸附剂,该吸附剂包括载体以及负载在载体上的表面分子,该表面分子为分子印迹聚合物;表面分子之间形成印迹空腔,印迹空腔与氮杂卓类化合物相匹配。
为了实现上述目的,根据本发明的一个方面,提供了一种上述表面分子印迹功能化的吸附剂的制备方法,该制备方法包括如下步骤:(1)功能单体和氮杂卓类化合物模板预聚合,得到预聚合反应料;(2)预聚合反应料与载体、交联剂和引发剂进行聚合反应,得到聚合物颗粒;(3)聚合物颗粒经去除氮杂卓类化合物模板后,得到表面分子印迹功能化的吸附剂。
根据本发明的另一方面,提供了一种上述表面分子印迹功能化的吸附剂的应用,吸附剂应用于分离氮杂卓类化合物,优选应用于氮杂卓类化合物杂质的脱除。
根据本发明的又一方面,提供了一种己二胺的提纯方法,提纯方法采用上述表面分子印迹功能化的吸附剂进行杂质的吸附分离。
根据本发明的再一方面,提供了一种有机二胺的制备方法,该制备方法包括:氨基腈类有机物和氢气在加氢催化剂作用下进行加氢反应,得到含有机二胺的反应后料;反应后料经过第二精制和第二吸附,得到有机二胺,第二吸附采用上述表面分子印迹功能化的吸附剂,第二精制为第二精馏处理。
根据本发明的再一方面,提供了一种上述有机二胺的制备方法所用的装置,该装置包括一次连接的气化单元、氨化反应单元、第一精制单元、第一吸附单元、加氢反应单元、第二精制单元和第二吸附单元。
应用本发明的技术方案,本发明提供的吸附剂由于具有与氮杂卓类化合物相匹配的印迹空腔,能够对氮杂卓类化合物进行特异性吸附,应用在氮杂卓类化合物分离过程中,具有优异的选择性分离效果。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例1提供的表面分子印迹功能化的吸附剂的制备方法流程示意图;
图2是本发明实施例1制得的表面分子印迹功能化的吸附剂的SEM图;
图3是本发明实施例1制得的表面分子印迹功能化的吸附剂的BET吸附和脱附曲线图;
图4是本发明催化剂B1的示意图。
图5是本发明催化剂C1的示意图。
图6是本发明催化剂I的氮气吸脱附曲线图。
图7是本发明催化剂I的元素分布图。
图8是本发明催化剂I的透射电镜图。
图9是本发明实施例12提供的从己内酰胺制备己二胺的方法采用的装置示意图。
图10是图9中气化单元的装置示意图。
图11是图9中加氢反应单元的装置示意图。
图中:1-主体;2-突出部;3-第二类孔道;10-气化单元;101-渐缩段;102-喉部;103-渐扩段;104-第一入口;105-第一气体出口;106-物料输送装置;20-氨化反应单元;30-第一精制单元;40-第一吸附单元;50-加氢反应单元;501-第一加热装置;502-管式反应器;503-加热部件;504-第三入口;505-第一出口;506-第四入口;507-氢气入口;508-催化剂入口;509-赫姆霍兹线圈;5010-尾气出口;5011-产品出口;5012-催化剂出口;60-第二精制单元;70-第二吸附单元。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
第一方面,本发明提供一种表面分子印迹功能化的吸附剂,吸附剂包括载体以及负载在载体上的表面分子,该表面分子为分子印迹聚合物;表面分子之间形成印迹空腔,印迹空腔与氮杂卓类化合物相匹配。
本发明提供的吸附剂由于具有与氮杂卓类化合物相匹配的印迹空腔,能够对氮杂卓类化合物进行特异性吸附,应用在氮杂卓类化合物分离过程中,具有优异的选择性分离效果。
优选地,表面分子能够与氮杂卓类化合物形成弱化学键。优选地,弱化学键包括氢键。本发明表面分子由于能够与氮杂卓类化合物形成氢键等弱化学键,从而能够对氮杂卓类化合物特异性吸附,降低了其与其它物质分离的难度。
优选地,印迹空腔与氮杂卓类化合物的分子空间、形状和基团相匹配。从而实现了类似于抗体-抗原的生物特异性吸附,实现对微量或痕量氮杂卓类化合物的选择性吸附。
优选地,载体包括三氧化二铝、二氧化硅、活性炭、ZSM-5分子筛或蒙脱石中的任意一种或至少两种的组合,其中典型但非限制性的组合为三氧化二铝和活性炭的组合,二氧化硅和ZSM-5分子筛的组合,三氧化二铝和二氧化硅的组合,活性炭和ZSM-5分子筛的组合,优选为三氧化二铝。上述载体为多孔结构,比表面积较大,因此可以为表面分子的负载提供充足的负载位点,提高其负载量。
优选地,吸附剂的粒径为50nm~5μm,例如可以是50nm、60nm、70nm、80nm、90nm、100nm、500nm、1μm、1.5μm、2μm、2.5μm、3μm、3.5μm、4μm、4.5μm或5μm等。
优选地,吸附剂的比表面积为100~1000m 2/g,例如可以是100m 2/g、200m 2/g、300m 2/g、400m 2/g、500m 2/g、600m 2/g、700m 2/g、800m 2/g、900m 2/g或1000m 2/g等。
优选地,氮杂卓类化合物选自3,4,5,6-四氢-2H-氮杂卓。
优选地,载体为负载有氨基的载体,即为氨基改性过的载体,该载氨基改性过的载体可以为现有技术已知载体或者采用现有技术已知改性方法得到的载体,也可以为采用本申请以下记载的方法得到的载体。
本发明进一步优选负载有氨基的载体,载体表面的氨基能够很好地与交联剂结合从而连接表面分子,使吸附剂的性能更加稳定。
优选地,表面分子包括以功能单体、交联剂和氮杂卓类化合物聚合后再去除氮杂卓类化合物的聚合分子,即通常所谓的分子印迹聚合物。
本发明表面分子是通过种表面分子印迹实现的,先将氮杂卓类化合物聚合后再将其去除,空缺出其在表面分子之间的印迹空腔,提高了吸附的特异性。
在本申请一些实施例中,功能单体选自胺类物质和/或吡啶类,包括丙烯酰胺、邻苯二胺或2-乙烯基吡啶中的任意一种或至少两种的组合,其中典型但非限制性的组合为丙烯酰胺和邻苯二胺的组合,2-乙烯基吡啶和邻苯二胺的组合,丙烯酰胺和2-乙烯基吡啶的组合,丙烯酰胺、邻苯二胺和2-乙烯基吡啶三者的组合。上述功能单体和氮杂卓类化合物都含有N原子,N原子具有孤对电子,在预聚合过程中,功能单体和氮杂卓类化合物中的N原子可以与对方的H原子形成分子间的氢键,基于氢键连接的特点,后续便于将氮杂卓类化合物去除。
在本申请一些实施例中,交联剂包括乙二醇二缩水甘油醚、乙二醇二甲基丙烯酸酯或N,N-亚甲基双丙烯酰胺中的任意一种或至少两种的组合,其中典型但非限制性的组合为乙二醇二缩水甘油醚和乙二醇二甲基丙烯酸酯的组合,乙二醇二甲基丙烯酸酯和N,N-亚甲基双丙烯酰胺的组合,乙二醇二缩水甘油醚和N,N-亚甲基双丙烯酰胺的组合。
第二方面,本发明提供根据第一方面的表面分子印迹功能化的吸附剂的制备方法,制备方法包括如下步骤:
(1)功能单体和氮杂卓类化合物模板预聚合,得到预聚合反应料;
(2)预聚合反应料与载体、交联剂和引发剂进行聚合反应,得到聚合物颗粒;
(3)聚合物颗粒经去除氮杂卓类化合物模板后,得到表面分子印迹功能化的吸附剂。
本发明第二方面提供的吸附剂的制备方法,通过先将氮杂卓类化合物模板与功能单体进行预聚合后再与交联剂和载体反应负载在载体上,最后去除其中的模板分子,从而使负载在载体表面的表面分子之间留出与氮杂卓类化合物模板相匹配的印迹空腔,使吸附剂在使用时 针对氮杂卓类化合物具有特异吸附性能,为解决氮杂卓类化合物模板的分离提供的优良的吸附剂。而且本发明通过先将氮杂卓类化合物模板与功能单体以氢键等弱化学键进行预聚合再进行聚合的方式,能够更好地确保氮杂卓类化合物模板与功能单体的结合,避免氮杂卓类化合物模板与交联剂的不利反应,保障印迹空腔与氮杂卓类化合物分子的匹配性。
优选地,步骤(1)氮杂卓类化合物模板选自3,4,5,6-四氢-2H-氮杂卓。本发明优选针对己二胺产品中的特异性杂质进行模板的选择,其中含氮的基团能够与功能单体形成氢键等弱化学键,后续又能够以较为温和的方式去除该3,4,5,6-四氢-2H-氮杂卓模板,从而能够得到与其具有相吻合的印迹空腔的吸附剂。
优选地,功能单体与氮杂卓类化合物模板的摩尔比为1~6:1,例如可以是1:1、1.6:1、2.2:1、2.7:1、3.3:1、3.8:1、4.4:1、4.9:1、5.5:1或6:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
在一些实施例中,上述预聚合在第一有机溶剂中进行。优选地,第一有机溶剂包括醇类,例如可以是甲醇、乙醇或丙醇等,优选为乙醇。以实现对功能单体和氮杂卓类化合物的充分分散,提高二者的传质效率,进而提高预聚合效率。
优选地,氮杂卓类化合物模板与第一有机溶剂的配比为0.5~10g:1L,例如可以是0.5g:1L、1.0g:1L、2.0g:1L、3.0g:1L、4.0g:1L、5.0g:1L、6.5g:1L、7.0g:1L、9.0g:1L或10g:1L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,预聚合的反应温度为10~40℃,例如可以是10℃、14℃、17℃、20℃、24℃、27℃、30℃、34℃、37℃或40℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用,优选为室温。
优选地,预聚合在搅拌条件下进行。本发明对搅拌的方式没有特殊限制,可采用本领域技术人员熟知的任何可用于搅拌的方式,也可根据实际工艺进行调整,例如可以是磁力搅拌或搅拌桨搅拌等。
优选地,预聚合的反应时间为1~20h,例如可以是1h、4h、6h、8h、10h、12h、14h、16h、18h或20h等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,步骤(2)载体与第一有机溶剂的配比为5~30g:1L,例如可以是5g:1L、8g:1L、11g:1L、14g:1L、17g:1L、19g:1L、22g:1L、25g:1L、28g:1L或30g:1L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。通过控制载体与第一有机溶剂的比例,实现载体在预聚合反应料中的充分分散,并且为预聚合提供充足的承载空间。
优选地,交联剂与氮杂卓类化合物模板的摩尔比为18~22:1,例如可以是18.0:1、18.5:1、19.0:1、19.4:1、19.8:1、20.0:1、20.5:1、21.0:1、21.5:1或22:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,引发剂与第一有机溶剂的配比为0.1~1g:1L,例如可以是0.1g:1L、0.2g:1L、0.3g:1L、0.4g:1L、0.5g:1L、0.6g:1L、0.7g:1L、0.8g:1L、0.9g:1L或1g:1L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,引发剂包括偶氮二异丁腈和/或过硫酸铵。
优选地,聚合反应的温度为40~80℃,例如可以是40℃、45℃、49℃、54℃、58℃、63℃、67℃、72℃、76℃或80℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,聚合反应的时间为10~48h,例如可以是10h、15h、19h、23h、27h、32h、36h、40h、44h或48h等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,聚合反应包括:先混合预聚合反应料和载体,第一分散后再加入交联剂和引发剂,进行聚合反应。
优选地,第一分散包括超声分散。优选地,第一分散的时间为10~60min,例如可以是10min、16min、22min、27min、33min、38min、44min、49min、55min或60min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,第一分散后,在第一保护气氛中再加入交联剂和引发剂。
优选地,第一保护气氛包括氮气、氦气或氩气中的任意一种或至少两种的组合,其中典型但非限制性的组合为氮气和氦气的组合,氩气和氦气的组合,氮气和氩气的组合。
优选地,去除氮杂卓类化合物模板的方式包括溶剂洗涤提取、固相萃取、超临界萃取、气体吹扫或索氏提取中的任意一种。
优选地,步骤(3)去除氮杂卓类化合物模板的步骤包括:采用混合酸液提取聚合物颗粒中的氮杂卓类化合物模板。优选地,提取包括索氏提取。
优选地,混合酸液中含有甲酸和乙酸。优选地,甲酸和乙酸的体积比为5~10:1,例如可以是5.0:1、5.5:1、6.0:1、7.0:1、7.3:1、7.5:1、8.0:1、8.5:1、9.5:1或10:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用,优选为8:1。具有更佳的溶剂去除效果。
优选地,去除氮杂卓类化合物模板后还包括第一干燥。优选地,第一干燥的温度为40~100℃,例如可以是40℃、47℃、54℃、60℃、67℃、74℃、80℃、87℃、94℃或100℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,载体经改性后再加入步骤(2)中。优选地,载体的改性方法包括:混合初载体、第二有机溶剂和含氨基的有机物,进行改性反应,得到的改性反应物料依次经固液分离、洗涤和第二干燥,得到改性载体。
本发明对固液分离的方式没有特殊限制,可采用本领域技术人员熟知的任何可用于固液分离的方式进行,例如可以是过滤、沉降分离或离心分离等。
优选地,初载体包括三氧化二铝、二氧化硅、活性炭、ZSM-5分子筛或蒙脱石、铝或硅中的任意一种或至少两种的组合,其中典型但非限制性的组合为三氧化二铝和铝的组合,二氧化硅和铝的组合,三氧化二铝和二氧化硅的组合,硅和铝的组合,三氧化二铝和硅的组合,优选为三氧化二铝。
优选地,第二有机溶剂包括甲苯。
优选地,含氨基的有机物包括氨基硅烷,优选为3-氨丙基三乙氧基硅烷。
优选地,改性反应的温度为80~100℃,例如可以是80℃、83℃、85℃、87℃、89℃、92℃、94℃、96℃、98℃或100℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,含氨基的有机物与初载体的质量比为1~10:1,例如可以是1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1或10:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,初载体与第二有机溶剂的配比为15~30g:1L,例如可以是15g:1L、17g:1L、19g:1L、20g:1L、22g:1L、24g:1L、25g:1L、27g:1L、29g:1L或30g:1L等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
在一些实施例中,上述混合初载体、第二有机溶剂和含氨基的有机物的顺序包括:先混合初载体和第二有机溶剂,第二分散后,再加入含氨基的有机物。
优选地,含氨基的有机物的加入方式为滴加。优选采用滴加的方式,能够更好地提高改性的均匀性,提高最终吸附剂的吸附效果。
优选地,第二分散为超声分散。
本发明对第一分散和第二分散中的超声分散的功率没有特殊的要求,可根据实际工艺进行调整,例如可以是200W、300W、400W、500W、550W、600W或700W等。
优选地,第二分散的时间为10~60min,例如可以是10min、16min、20min、27min、30min、38min、40min、45min、55min或60min等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
优选地,第二分散后,在第二保护气氛下加入含氨基的有机物。
优选地,第二保护气氛包括氮气、氩气或氦气中的任意一种或至少两种的组合,其中典型但非限制性的组合为氮气和氩气的组合,氦气和氩气的组合,氮气和氦气的组合。
优选地,洗涤包括依次进行的甲苯洗涤和甲醇洗涤,以将改性过程中未嫁接成功的含氨基的有机物或其它小分子去除。优选地,甲苯洗涤的次数为至少三次,例如可以是3次、4次、5次、6次或8次等。
优选地,甲醇洗涤的次数为至少三次,例如可以是3次、4次、5次、6次或8次等。
优选地,第二干燥的温度为40~100℃,例如可以是40℃、47℃、54℃、60℃、67℃、74℃、80℃、87℃、94℃或100℃等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。
本发明对第一干燥和第二干燥的方式没有特殊限制,可采用本领域技术人员熟知的任何可用于干燥的方式,例如可以是真空干燥或鼓风干燥等,优选为真空干燥。
作为本发明优选地技术方案,制备方法包括如下步骤:
(1)按摩尔比为1~6:1将功能单体和氮杂卓类化合物模板在第一有机溶剂中10~40℃预聚合1~20h,氮杂卓类化合物模板与第一有机溶剂的配比为0.5~10g:1L,得到预聚合反应料;
(2)先混合预聚合反应料和改性载体,改性载体与第一有机溶剂的配比为5~30g:1L,第一分散后再在第一保护气氛中加入交联剂和引发剂,交联剂与氮杂卓类化合物模板的摩尔比为18~22:1,引发剂与第一有机溶剂的配比为0.1~1g:1L,40~80℃进行聚合反应10~48h,得到聚合物颗粒;
(3)采用体积比为5~10:1的甲酸和乙酸的混合酸液提取聚合物颗粒中的氮杂卓类化合物模板,得到表面分子印迹功能化的吸附剂。
第三方面,本发明提供根据第一方面的表面分子印迹功能化的吸附剂的应用,吸附剂应用于分离氮杂卓类化合物,优选应用于氮杂卓类化合物杂质的脱除。
本发明第一方面的吸附剂能够针对氮杂卓类化合物进行特异性吸附,由于吸附的选择性较强,能够与其他物质非类似物质有较为明显的性质区别,因此特别适用于痕量氮杂卓类化合物杂质和微量氮杂卓类化合物杂质的脱除,相比其他方法而言具有能耗低,脱除效率高的优势。
本发明痕量是指氮杂卓类化合物含量<0.01%;微量是指氮杂卓类化合物含量为0.01~1%。
第四方面,本发明提供一种己二胺的提纯方法,提纯方法采用第一方面的表面分子印迹功能化的吸附剂进行杂质的吸附分离。
本发明第四方面提供的己二胺的提纯方法由于现有己二胺提纯和生产过程中会产生氮杂卓类化合物这类副产物,而氮杂卓类化合物难以通过精馏的方式去除,且经初步提纯后仍然残留有氮杂卓类化合物杂质,而发明人通过多方探索,开发了一种吸附分离提纯己二胺的方法,本发明方法具有下述两个发明点:(1)尽管己二胺和氮杂卓类化合物均为有机物质,且均具有极性基团,但发明人仍然从现有分离的方式:精馏、吸附、过滤、萃取和膜分离等方法中发现了能够通过吸附分离该杂质与己二胺;(2)发现常规吸附剂由于针对己二胺也具有较高的吸附效果,难以实现氮杂卓类化合物的选择性吸附,并选择第一方面表面分子印迹功能化的吸附剂,其不仅仅能够特异性吸附氮杂卓类化合物,而且对己二胺的吸附量较低,从而能够实现高收率条件下己二胺中杂质的脱除。
而且吸附分离的提纯方法具有吸附剂可循环利用,能耗低的优势,应用在工业上能够显著降低生产成本。
在一些实施例中,提纯方法包括:利用吸附剂吸附粗己二胺中的氮杂卓类化合物杂质。
优选地,粗己二胺与吸附剂的质量比为300~600:1,例如可以是300:1、334:1、367:1、400:1、434:1、467:1、500:1、534:1、567:1或600:1等,但不限于所列举的数值,该范围内其他未列举的数值同样适用。从上述质量比能够看出,本发明吸附剂的处理量大,处理效率高。
本发明对具体的吸附方式没有特殊限制,可采用本领域技术人员熟知的任何可用于吸附的方式,例如可以是釜式、固定床式、塔式或移动床式等。也可根据实际工艺对吸附方式进行调整。
优选地,吸附剂经吸附饱和后经再生处理后循环使用。
本发明对再生处理的方式没有特殊限制,可采用本领域技术人员熟知的任何可用于吸附剂再生处理的方式进行,例如可以是溶剂洗涤、索氏提取、气体吹扫、固相萃取或超临界萃取中的任意一种。
第五方面,本发明提供一种有机二胺的制备方法,方法包括如下步骤:氨基腈类有机物和氢气在加氢催化剂作用下进行加氢反应,得到含有机二胺的反应后料;反应后料经过第二精制和第二吸附,得到有机二胺,第二吸附采用本申请第一方面提供的表面分子印迹功能化的吸附剂,第二精制为第二精馏处理。
本发明提供的从制备方法,利用本申请的表面分子印迹功能化的吸附剂对精制后的反应后料进行吸附,由于该吸附剂具有与氮杂卓类化合物相匹配的印迹空腔,能够对其中的氮杂卓类化合物杂质进行特异性吸附,极大地减少了对有机二胺的吸附,从而实现优异的氮杂卓类化合物选择性分离效果,实现了高纯有机二胺产品的工业化生产,能够从原料以低能耗、高选择性和高转化率得到高纯的有机二胺产品,工业生产价值高。
可见,本发明采用精制和吸附组合的提纯方式,能够将精制后残留的少量杂质进一步提纯,从而减少了反应中的副产物产生,并且得到的有机二胺产品纯度高,更有利于减少其对下游尼龙等产品的影响。
优选地,上述制备方法还包括氨基腈类有机物的制备过程,该制备过程包括:步骤A,将氨气与有机酰胺混合气化,得到气化物料;气化物料在氨化催剂作用下进行氨化反应,得到第一反应物料;步骤B,第一反应物料经第一精制和第一吸附,得到氨基腈类有机物。
优选地,步骤A中中还加入助剂,助剂中含有与氨化催化剂的相应元素中的任意一种或至少两种的组合。相应元素包括铝元素、硅元素、硼元素、氮元素、碱土元素、过渡金属元素、磷元素。
本发明优选通过在氨化反应过程中加入含有与氨化催化剂组分相应元素的助剂,能够在反应过程中降低氨化催化剂中元素损失的情况,从源头维持氨化催化剂活性,显著延长了氨化催化剂的使用寿命。具体地,氨化催化剂在反应过程中,因与反应物/生成物之间的物理作用(包括物料冲刷、尤其是生成水冲刷等)或化学作用(包括络合反应等),易产生有益元素 的流失,进而引起氨化催化剂失活,本发明引入与氨化催化剂中有益元素相应的元素,从化学平衡的角度减少有益元素的流失,稳定氨化催化剂性能,减少因氨化催化剂有益组分流失引起的失活及其进一步的深度结焦、积碳等现象,实现了从源头、原位减少氨化催化剂失活。
优选地,助剂在步骤A中与氨气混合后再与有机酰胺混合。
虽然本发明中助剂含有氨化催化剂中载体、助元素等其他元素也同样能够比现有技术取得更佳的氨化催化剂使用寿命,但本发明进一步优选助剂中的含有的元素与氨化催化剂中活性组分的元素相对应,从而能够及时的弥补活性组分的流失,氨化催化剂的使用寿命更长。
优选地,助剂中铝元素的存在形式包括三氯化铝和/或异丙基二硬脂酰氧铝酸酯。
优选地,助剂中硅元素的存在形式包括硅酸四烷基酯。
优选地,助剂中硼元素的存在形式包括硼酸烷基酯。
优选地,助剂中氮元素的存在形式包括含氮有机物、铵盐或含氮络合物中的任意一种或至少两种的组合,其中典型但非限制性的组合为含氮有机物和铵盐的组合,含氮络合物和铵盐的组合,含氮有机物和含氮络合物的组合。
优选地,含氮有机物包括N,N-二甲基甲酰硝酸烷基酯和/或N-乙酰乙酰基芳香族酰胺铜。
优选地,铵盐包括磷酸二氢铵、磷酸氢铵、磷酸铵或聚磷酸铵中的任意一种或至少两种的组合,其中典型但非限制性的组合为磷酸二氢铵和磷酸氢铵的组合,磷酸铵和磷酸氢铵的组合,磷酸二氢铵和聚磷酸铵的组合,聚磷酸铵和磷酸氢铵的组合。
优选地,络合物包括溴化镍六胺络合物和/或氯化钴六胺络合物。
优选地,助剂中碱土金属元素的存在形式包括烷基溴化镁。
优选地,助剂中过渡金属元素的存在形式包括溴化镍六胺络合物、氯化钴六胺络合物、N-乙酰乙酰基芳香族酰胺铜或钛酸四烷基酯中的任意一种或至少两种的组合,其中典型但非限制性的组合为溴化镍六胺络合物和氯化钴六胺络合物的组合,氯化钴六胺络合物和N-乙酰乙酰基芳香族酰胺铜的组合,N-乙酰乙酰基芳香族酰胺铜和钛酸四烷基酯的组合。
优选地,助剂中磷元素的存在形式包括磷酸、次磷酸、磷酸盐、磷酸氢盐、次磷酸盐、聚磷酸、聚磷酸盐或磷酸酯中的任意一种或至少两种的组合,其中典型但非限制性的组合为磷酸和次磷酸的组合,磷酸盐和次磷酸的组合,磷酸氢盐和磷酸酯的组合,次磷酸盐和次磷酸的组合,次磷酸盐和聚磷酸的组合,聚磷酸盐和磷酸酯的组合。优选地,磷酸盐包括磷酸铵。
优选地,磷酸氢盐包括磷酸氢铵。优选地,磷酸二氢盐包括磷酸二氢铵。
优选地,聚磷酸盐包括聚磷酸铵。优选地,磷酸酯包括磷酸单烷基酯、磷酸二烷基酯或磷酸三烷基酯中的任意一种或至少两种的组合,其中典型但非限制性的组合为磷酸单烷基酯 和磷酸二烷基酯的组合,磷酸三烷基酯和磷酸二烷基酯的组合,磷酸单烷基酯和磷酸三烷基酯的组合。
优选地,助剂的添加量为氨气重量的0.1~100ppm,例如可以是0.1ppm、0.5ppm、1ppm、5ppm、10ppm、20ppm、30ppm、40ppm、50ppm、60ppm、80ppm、90ppm或100ppm等。
虽然助剂在氨化反应的任一过程中加入均能一定程度上改善催化剂的使用寿命,但本发明进一步优选将助剂与氨气混合加入反应的过程中,能够进一步避免气化过程中助剂的聚合,或者避免助剂对有机酰胺的聚合的影响,与氨气混合后进入反应中,氨气降低了助剂和有机酰胺的分压,从而降低了有机酰胺气化所需温度及其结焦、碳化量等情况,因此助剂与氨气混合能够更有效的保障助剂延长催化剂使用寿命的效果。
而且这样助剂随物料加入至反应过程中,针对床层入口处更易失活的催化剂,降低其组分流失及其引起效果更佳显著,有利于维持反应效果,保持催化剂床层内有机酰胺浓度稳定,减少因催化剂失活导致有机酰胺浓度升高进而引起的聚合及其进一步生成的聚合物、焦油和积碳,有利于保持催化剂活性位点,进一步延长催化剂使用寿命。
优选地,预热处理的温度为300~600℃,例如可以是300℃、350℃、400℃、450℃、500℃、550℃或600℃等。
优选地,有机酰胺为有机内酰胺。优选地,有机酰胺的碳原子数为3~18的自然数,例如可以是3、4、5、6、7、8、9、10、11、12、13、14、15、16、17或18,优选为3~10的自然数。优选地,有机酰胺包括己内酰胺。
优选地,步骤A具体包括:氨气与第1部分有机酰胺混合气化后通入第i段固定床反应器,在第1反应温度、第1反应压力以及第1催化剂作用下进行氨化反应,得到第1反应出料。
第i反应出料与第i+1部分有机酰胺通入第i+1段固定床反应器,i的取值范围为1≤i≤n-1且i为自然数,n选自≥2的自然数;在第i+1反应温度、第i+1反应压力以及第i+1催化剂作用下进行氨化反应,得到第i+1反应出料;其中,第i+1反应出料循环作为下一步的第i反应出料进行氨化反应至i+1=n。
本发明优选通过将有机酰胺分级通入,能够有效减少有机酰胺聚合及其引起的催化剂表面结焦问题,减少了副产物的产生并提高了反应的转化率和选择性,而且本发明组合采用精制和吸附提纯组合的产品提纯方式,通过吸附的方式进一步提纯了粗氨基腈类有机物,提高了整体工艺的经济效益。
优选地,第i+1反应温度>第i反应温度。优选地,第i+1反应压力>第i反应压力。优选地,第i+1催化剂中活性组分与载体元素的摩尔比>第i催化剂中活性组分与载体元素的摩尔比。
通过上述优选特征,随着物料向固定床反应器内通入逐渐提高反应的温度和压力以及反应催化剂活性组分的含量,在前部分,有机酰胺与氨气的摩尔比高、反应压力低,能够有效减少有机酰胺、尤其是有机内酰胺聚合或分解、结焦及其引起的催化剂表面结焦问题,此时反应的选择性高,副产物产生的较少;随着反应的推进,逐步提高温度和压力,有效提高了氨气的利用率,降低氨气循环量,提高了工艺整体的经济性,从而能够实现低氨气与有机酰胺摩尔比的情况下反应的选择性和转化率均高的效果。
本发明独特性地优选调整各段催化剂中活性组分的含量,从而在前期活性组分与载体元素的摩尔比低,但利用高氨气/有机酰胺摩尔比获得了较高的氨基腈类有机物的选择性,同时前期结合较低的反应压力,使有机酰胺分压小,有机酰胺聚合、分解或结焦少,有利于减少催化剂表面结焦、延长催化剂寿命;在后期活性组分与载体元素的摩尔比高,有机酰胺转化率高,大幅提升氨气利用率,结合多级补充有机酰胺的方式,控制体系内有机酰胺分压均处于较低的状态,也减少了后续反应过程中有机酰胺的聚合、分解或结焦,有利于减少催化剂表面结焦、延长催化剂寿命。
优选地,活性组分含有磷元素。优选地,载体元素包括硅。优选地,第i催化剂中活性组分与硅的摩尔比为(0.1~2):1,例如可以是0.1:1、0.2:1、0.4:1、0.5:1、0.8:1、1:1、1.2:1、1.5:1、1.8:1或2:1等。
优选地,第1催化剂至第n催化剂的载体各自独立地含有硅和铝。优选地,第1催化剂至第n催化剂中硅、铝和磷的摩尔比各自独立地为1:(0.01~1):(0.1~2),例如可以是1:0.01:0.1、1:0.01:0.2、1:0.01:0.5、1:0.01:0.8、1:0.01:1、1:0.01:1.5、1:0.01:2、1:0.05:0.1、1:0.08:0.1、1:0.1:0.2、1:0.0.2:0.8、1:0.8:0.1、1:1:0.1、1:0.01:0.5、1:0.5:0.1或1:0.8:2等。
本发明对活性组分的磷源没有特殊限制,可采用本领域技术人员常用的磷源,但采用本申请优选的磷源具有更佳的催化效果。
优选地,活性组分的磷源包括磷酸、磷酸盐或偏磷酸盐中的任意一种或至少两种的组合,其中典型但非限制性的组合为磷酸和磷酸盐的组合,磷酸盐和偏磷酸盐的组合,磷酸和偏磷酸盐的组合。
优选地,磷酸盐包括磷酸硼、磷酸钙、磷酸镁、磷酸铝、磷酸铵、磷酸钛、磷酸铜或磷酸镍中的任意一种或至少两种的组合,其中典型但非限制性的组合为磷酸硼和磷酸钙的组合,磷酸镁和磷酸钙的组合,磷酸硼和磷酸镁的组合,磷酸铝和磷酸铵的组合,磷酸铝和磷酸钛的组合,磷酸铵和磷酸钙的组合,磷酸镍和磷酸铵的组合,磷酸铝和磷酸铜的组合。优选地,偏磷酸盐包括偏磷酸钙、偏磷酸铝或偏磷酸镁中的任意一种或至少两种的组合,其中典型但非限制性的组合为偏磷酸钙和偏磷酸铝的组合,偏磷酸铝和偏磷酸镁的组合,偏磷酸钙和偏磷酸镁的组合。
优选地,第1催化剂至第n催化剂的载体各自独立地为硅铝分子筛。
优选地,第1催化剂至第n催化剂为硅铝磷分子筛。
虽然采用常规气相法制备氨基腈类有机物的催化剂采用本申请的制备方法均能够提高催化剂的使用寿命,例如适用于纯硅分子筛、钛硅分子筛、纯铝分子筛、磷铝分子筛、硼磷铝催化剂等,提高氨基腈类有机物的收率以及有机酰胺的转化率,但采用硅铝磷分子筛相比其他常规催化剂而言具有更优的转化效果。
本发明中硅铝磷分子筛在反应过程中不可避免的产生焦油、积碳,进而导致其失活的情况,通过本发明分级的制备方法,可有效提高催化剂的使用寿命。
本发明硅铝磷分子筛的制备方法参照CN111659463A中进行。
本发明对铝源和硅源没有特殊限制,可采用本领域技术人员常用的铝源和硅源,但采用本申请优选的铝源和硅源具有更佳的催化效果。优选地,硅铝磷分子筛中铝源包括氧化铝、异丙醇铝或拟薄水铝石中的任意一种或至少两种的组合,其中典型但非限制性的组合为氧化铝和异丙醇铝的组合,异丙醇铝和拟薄水铝石的组合,氧化铝和拟薄水铝石的组合。优选地,硅铝磷分子筛中硅源包括二氧化硅水凝胶。
优选地,第i催化剂中活性组分与载体元素的摩尔比和第i+1催化剂中活性组分与载体元素的摩尔比的比值为1:1.2~3,例如可以是1:1.2、1:1.3、1:1.4、1:1.5、1:1.8、1:2、1:2.2、1:2.5、1:2.8或1:3等。
本发明进一步优选催化剂的活性组分与载体元素的摩尔比按照上述比例构成,能够更好地提高反应的选择性、转化率和氨气利用率,并延长催化剂的使用寿命。优选地,第i催化剂中活性组分与硅的摩尔比和第i+1催化剂中活性组分与硅的摩尔比的比值为1:1.2~3,例如可以是1:1.2、1:1.3、1:1.4、1:1.5、1:1.8、1:2、1:2.2、1:2.5、1:2.8或1:3等。优选地,第i部分己内酰胺和第i+1部分己内酰胺的量相同。
优选地,第1催化剂至第n催化剂各自独立地含有第一类孔道。催化剂内还含有第二类孔道和/或催化剂还包括突出部,突出部在催化剂靠外侧。
优选地,第二类孔道的孔中至少一个维度的长度占催化剂对应维度长度的0.15~0.6倍和/或突出部的突出长度占催化剂对应维度长度的0.1~0.6倍。本发明进一步优选含有第二类孔道和/或突出部结构的催化剂,相较于常规结构的催化剂而言,能够更好地降低床层压降,提高催化剂的使用寿命。
优选地,第i+1反应温度比第i反应温度高10~50℃,例如可以是10℃、12℃、15℃、18℃、20℃、25℃、28℃、30℃、35℃、40℃、45℃或50℃等。优选地,第i+1反应压力比第i反应压力高0.1~0.5MPa,例如可以是0.1MPa、0.15MPa、0.2MPa、0.25MPa、0.3MPa、0.35MPa、0.4MPa、0.45MPa或0.5MPa等。
本发明进一步优选反应温度和反应压力的升高程度,能够更好地提高反应的选择性和转化率。
优选地,第i部分有机酰胺和第i+1部分有机酰胺的量相同。
优选地,第1催化剂至第n催化剂的再生方法各自独立的包括:含氧气体通入装有失活催化剂的再生装置中,再生装置设置有m个均匀分布的入口或包括有m个串联的再生器;并自第2个至第m个入口或自第2个至第m个再生器内通入补充含氧气体,进行失活催化剂的再生;其中,m为≥2的自然数。
本发明优选提供的催化剂的再生方法可以直接在反应装置中将失活催化剂进行原位再生,再生器能够直接适用于原本反应的固定床反应装置,实现了催化剂的原位再生,避免了复杂的催化剂拆卸过程及其过程中的环境污染;也可以将卸出的催化剂装入装置内进行再生,提高了催化剂再生过程中的安全性和可靠性。本发明失活催化剂中含有含碳有害物质,含碳有害物质是指催化剂中吸附、粘结、沉积或覆盖在催化剂表面,堵塞催化剂孔道、掩盖催化剂活性位点或其他方式导致催化剂失活的含碳物质;这些含碳有害物质在再生装置的前段与氧气反应生成二氧化碳,而二氧化碳在持续高温下容易与失活催化剂中积碳等含碳有害物质进一步反应生成一氧化碳,一氧化碳容易造成燃爆事故,本发明再生方法通过采用多段进补充含氧气体,能够维持全再生装置中稳定的氧含量,减少二氧化碳与含碳有害物质进一步反应生成一氧化碳,显著降低体系中一氧化碳的含量,进而降低了再生过程和尾气处理中的燃爆风险;采用梯度升温和梯度提升氧含量的方式,使再生过程趋于温和、平缓,降低床层热点温升,有利于维持催化剂结构、减少粉化,再生终末在高温、高含氧下保持,进一步去除分子筛催化剂内部孔道内的积碳、焦油等含碳有害物质,充分释放催化剂的活性位点,充分恢复催化剂活性。发明人发现采用本发明优选提供的再生方法后,催化剂在再生后的催化活性几乎没有下降,使用寿命显著延长。
优选地,失活催化剂中含有含碳有害物质。优选地,再生装置为原始反应装置。优选地,再生的过程中含氧气体的氧含量随再生时间进行梯度提升,再生的温度随再生时间进行梯度提升。优选地,含氧气体的氧含量为0.5~21v/v%,例如可以是0.5v/v%、2.8v/v%、5.1v/v%、7.4v/v%、9.7v/v%、11.9v/v%、14.2v/v%、16.5v/v%、18.8v/v%或21v/v%等。
优选地,含氧气体中还包括氮气。优选地,含氧气体的氧含量的提升速率为0.001~5v/v%/h,例如可以是0.001v/v%/h、0.1v/v%/h、0.7v/v%/h、1.2v/v%/h、1.8v/v%/h、2.3v/v%/h、2.9v/v%/h、3.4v/v%/h、4v/v%/h、4.5v/v%/h或5v/v%/h等,优选为0.001~1v/v%/h。
本发明进一步优选氧含量的提升速率在上述范围内,能更好地在节省氧气用量的情况下实现催化剂的再生。
优选地,含氧气体中初始氧含量为0.5~2v/v%,例如可以是0.5v/v%、0.7v/v%、0.9v/v%、1v/v%、1.2v/v%、1.4v/v%、1.5v/v%、1.7v/v%、1.9v/v%或2v/v%等。优选地,含氧气体中终末氧含量为10~21v/v%,例如可以是10v/v%、12v/v%、13v/v%、14v/v%、15v/v%、17v/v%、18v/v%、19v/v%、20v/v%或21v/v%等。
本发明进一步综合控制初始氧含量和终末氧含量,更加有效地提高了催化剂的再生效果,延长了催化剂的使用寿命。
优选地,再生在终末氧含量下保持1~200h,例如可以是1h、5h、10h、15h、20h、30h、50h、80h、100h、110h、150h、180h或200h等,优选为50~150h。
优选地,含氧气体自第1个入口或第1个再生器入口通入。
优选地,补充含氧气体包括空气、富氧空气和/或氧气。
优选地,每个固定床反应器内通入含氧气体的氧含量相当,或补充含氧气体通入的入口处固定床反应装置内的氧含量与第1个入口通入的含氧气体的氧含量相当。
本发明通过补充含氧气体的通入,使其与前一再生器通入含氧气体的氧含量相当或者与第1个入口通入的含氧气体的氧含量相当,提高再生各段氧含量的均匀性,提高再生的效果。
优选地,再生的温度为250~800℃,例如可以是250℃、312℃、373℃、434℃、495℃、556℃、617℃、678℃、739℃或800℃等。
优选地,再生的升温速率为0.01~20℃/h,例如可以是0.01℃/h、2.4℃/h、5℃/h、6.8℃/h、8.9℃/h、11.2℃/h、13.0℃/h、15.0℃/h、17.0℃/h或20℃/h等,优选为0.01~5℃/h。
本发明进一步控制再生的升温速率在上述范围内,减少了再生过程中的热点温升和局部过热情况,显著降低了催化剂的开裂情况,催化剂的机械强度得到很好地保留,而且催化剂的再生效果更加优良,使用寿命更长。
优选地,再生的初始温度为100~500℃,例如可以是100℃、120℃、150℃、180℃、200℃、250℃、260℃、270℃、300℃、320℃、330℃、350℃、400℃、450℃或500℃等,优选为250~350℃。
优选地,再生的终温为300~1200℃,例如可以是300℃、400℃、500℃、700℃、750℃、800℃、850℃、900℃、970℃、1000℃或1200℃等,优选为700~800℃。
优选地,再生在终温下保持1~200h,例如可以是1h、6h、24h、50h、100h、150h和200h等,优选为50~150h。
再生包括依次进行地再生前期和再生后期;
优选地,再生前期包括固定含氧气体的氧含量为初始氧含量,再生的温度从初始温度升温至终温;再生后期包括:固定再生的温度为终温,含氧气体的氧含量提升至终末氧含量;在终末氧含量和终温下继续再生。
本发明对升温和升氧含量的步骤没有先后顺序,二者可同时进行,也可先进行升温,再进行氧含量的提升;或先进行氧含量的提升再进行升温,优选先进行升温再进行氧含量的提升,能够更好地减少热点温升并降低一氧化碳的最高含量,延长催化剂的寿命。
即,优选地,再生过程包括依次进行地再生前期和再生后期,再生前期包括固定含氧气体的氧含量为初始氧含量,再生的温度从初始温度升温至终温;再生后期包括:固定再生的温度为终温,含氧气体的氧含量提升至终末氧含量;在终末氧含量和终温下继续再生。
优选地,m选自2~6的自然数,例如可以是2、3、4、5或6。
作为本发明优选的技术方案,再生方法包括如下步骤:
初始氧含量为0.5~2v/v%的含氧气体通入装有失活催化剂的再生装置中,再生装置设置有m个均匀分布的入口或包括有m个串联的再生器;并自第2个至第m个入口或再生器内通入补充含氧气体,进行失活催化剂的再生。
再生过程中,含氧气体的氧含量以0.001~5v/v%/h提升至终末氧含量10~21v/v%;再生的初始温度为250~350℃,以0.01~20℃/h升温至终温700~800℃,在终温和终末氧含量下保持1~200h继续再生;其中,m为≥2的自然数。
本发明优选地催化剂的再生方法由于再生过程对催化剂的损害小,甚至可以有效消除部分副反应中心(如强酸中心),使催化剂的使用寿命延长,能够广泛适用于失活催化剂的再生,降低了生产成本。
优选地,步骤A混合气化在文丘里气化装置中进行。
有机酰胺部分为热敏性物质,气化过程中易聚合、分解或结焦,导致气化效率降低、气化器易结焦,优选采用文丘里式雾化器促进有机酰胺气化,减少有机酰胺的气化效率。
优选地,文丘里气化装置中预置于加热介质中。优选地,加热介质包括熔盐。
优选地,混合气化之前,液相状态的有机酰胺的温度为0~300℃,例如可以是0℃、10℃、20℃、50℃、69℃、70℃、100℃、120℃、140℃、150℃、180℃、200℃、220℃、250℃、280℃或300℃等,针对己内酰胺时优选69~220℃。
优选地,气化后的温度为300~500℃,例如可以是300℃、320℃、350℃、370℃、400℃、420℃、450℃、480℃、490℃或500℃等。
优选地,有机酰胺通过氨化催化剂的重时空速各自独立地为0.1~10h -1,例如可以是0.1h -1、0.5h -1、1h -1、1.2h -1、1.5h -1、2h -1、2.5h -1、3h -1、4h -1、5h -1、6h -1、7h -1、8h -1、9h -1或10h -1等,优选0.5~5h -1
优选地,氨化反应的温度的范围为300~500℃,例如可以是300℃、320℃、350℃、380℃、400℃、420℃、450℃、480℃或500℃等。
优选地,氨化反应的压力为0~2MPaG,例如可以是0MPaG、0.5MPaG、1MPaG、1.2MPaG、1.3MPaG、1.5MPaG、1.8MPaG或2MPaG等,优选0.2~1MpaG。
本发明中MPaG中G是指表压。
优选地,氨气与有机酰胺的总摩尔比为2~50:1,例如可以是2:1、4:1、5:1、10:1、12:1、15:1、18:1、20:1、25:1、30:1、35:1、40:1、45:1或50:1等。
优选地,第一吸附采用第一吸附剂,该第一吸附剂包括负载有金属元素的吸附剂。
针对现有含杂质的氨基腈类有机物,选择负载有金属元素的吸附剂进行吸附,通过金属元素,使其与氨基腈类有机物中的杂质结合,实现氨基腈类有机物与杂质的分离,从而提高了氨基腈类有机物的纯度,使氨基腈类有机物的纯度在现有精制提纯的基础上有了更进一步的提升。
优选地,第一吸附剂包括蒙脱石、ZSM-5沸石分子筛、SiO 2、Al 2O 3或活性炭中的任意一种或至少两种的组合,其中典型但非限制性的组合为蒙脱石和ZSM-5沸石分子筛的组合,SiO 2和ZSM-5沸石分子筛的组合,蒙脱石和SiO 2的组合,Al 2O 3和活性炭的组合。
优选地,金属元素包括过渡金属元素。
本发明进一步优选负载过渡金属元素,其中过渡金属离子能与杂质中的不饱和烃形成弱化学反应的π络合键,从而提高了吸附的选择性,在提高的纯度的基础上减少了6-氨基己腈类有机物的损失率。
优选地,过渡金属元素包括Ag、Cu、Cd、Cr、Fe、Zn、Ni、Zr或Mn中的任意一种或至少两种的组合,其中典型但非限制性的组合为Ag和Cu的组合,Ag和Cd的组合,Cd和Cr的组合,Fe和Cu的组合,Fe和Zn的组合,Zn和Cu的组合,Ni和Mn的组合,Ni和Zr的组合。
优选地,第一吸附的杂质含有不饱和键。
优选地,第一吸附的杂质含有碳碳双键和/或碳碳三键。
优选地,第一吸附的空速为0.5~3h -1,例如可以是0.5h -1、0.8h -1、1.1h -1、1.4h -1、1.7h -1、1.9h -1、2.2h -1、2.5h -1、2.8h -1或3h -1等。优选地,第一吸附的温度为20~60℃,例如可以是20℃、25℃、29℃、34℃、38℃、43℃、47℃、52℃、56℃或60℃等。优选地,第一吸附的压力为0.1~1MPa,例如可以是0.1MPa、0.2MPa、0.3MPa、0.4MPa、0.5MPa、0.6MPa、0.7MPa、0.8MPa、0.9MPa或1MPa等。
优选地,吸附饱和后的金属氧化物第一吸附经吹扫气吹扫再生后,继续进行第一吸附。
本发明第一吸附剂可以通过热N 2吹扫进行再生,因此具有循环使用价值,成本低,经济性高。优选地,吹扫气包括氮气。优选地,吹扫的温度为300~400℃,例如可以是300℃、312℃、323℃、334℃、345℃、356℃、367℃、378℃、389℃或400℃等。优选地,吹扫的时间为2~8h,例如可以是2h、2.7h、3.4h、4h、4.7h、5.4h、6h、6.7h、7.4h或8h等。
优选地,氨化反应和/或第一精制中产生的聚合物残渣依次经解聚反应、负压脱水和负压蒸馏,分别得到氨基腈类有机物和有机酰胺。本发明进一步优选以反应过程中产生的聚合物残渣固废为原料,通过解聚、分离等过程进行反应残渣资源化利用,回收氨基腈类有机物和有机酰胺,降低了固废量,回收的有机酰胺可再次作为合成氨基腈类有机物的原料,利于降低原料生产成本,提高经济效益。氨基腈类可引发内酰胺发生开环聚合反应生成聚酰胺类物 质,分子量增大,产生聚合物残渣。解聚后获得氨基腈类产品和内酰胺原料,通过蒸馏分离,胺基腈类物质可以用于下一步加氢反应。
优选地,解聚反应中加入水。
优选地,聚合物残渣与水的质量比为1:0.5~20,例如可以是1:1、1:2、1:4、1:5、1:8、1:10、1:12、1:15、1:18或1:20等。优选地,解聚反应的温度为100~400℃,例如可以是100℃、120℃、150℃、180℃、200℃、220℃、250℃、300℃、340℃或400℃等。优选地,解聚反应的压力为0~10MPa,例如可以是0MPa、1MPa、2MPa、3MPa、4MPa、5MPa、6MPa、7MPa、8MPa、9MPa或10MPa等。优选地,解聚反应的时间为10s~10h,例如可以是10s、30s、1h、2h、3h、4h、5h、6h、7h、8h、9h或10h等。
优选地,解聚反应在催化剂作用下进行。优选地,聚合物残渣与催化剂的质量比为1:0.01~0.5,例如可以是1:0.01、1:0.02、1:0.05、1:0.08、1:0.1、1:0.12、1:0.15、1:0.2、1:0.25、1:0.3、1:0.35、1:0.4、1:0.45或1:0.5等。优选地,催化剂包括钛硅分子筛、固体酸催化剂或固体碱催化剂,其中,固体酸催化剂为Al 2O 3、TiO 2、ZrO 2、SiO 2、B 2O 3、SiO 2-Al2O 3、ZrO 2-SiO 2、NiSO 4和Zr(SO 4) 2中的任意一种或者任意两种以上的组合;固体碱催化剂为KOH、NaOH、Ba(OH) 2、Cu(OH) 2、Fe(OH) 3、CaO-MgO、MgO-ZrO 2和KF-ZrO 2中的任意一种或者任意两种以上的组合。
优选地,加氢催化剂包括γ-Fe 2O 3/SiO 2、Rh/SiO 2、Pt-Rh/Al 2O 3、Fe 3O 4-SiO 2-Ag、Ru-Fe 2O 3-Al 2O 3、雷尼镍、非晶态镍或碳基钴催化剂中的任意一种或至少两种的组合,其中典型但非限制性的组合为γ-Fe 2O 3/SiO 2和Rh/SiO 2的组合,Pt-Rh/Al 2O 3和碳基钴催化剂的组合,γ-Fe 2O 3/SiO 2和Pt-Rh/Al 2O 3的组合,Fe 3O 4-SiO 2-Ag和Rh/SiO 2的组合,碳基钴催化剂和Ru-Fe 2O 3-Al 2O 3的组合,优选为碳基钴催化剂,优选为碳基钴催化剂。
本发明优选采用上述催化剂,能够兼具适用于磁稳定床和较高催化活性的双重优势。
优选地,碳基钴催化剂为氮磷共掺杂的碳基钴催化剂。优选地,碳基钴催化剂的组分包括活性组分和主体组分,活性组分包括钴:0.5~15%,磷:0.1~5%,氮:1~10%,主体组分包括碳。
本发明优选采用的氮磷共掺杂的碳基钴催化剂具有如上组分的组成,对氨基腈类转化为有机二胺反应的选择性高,为有机二胺的生产提供了优良的催化剂选择;本发明通过将氮元素和磷元素的含量控制在上述范围,达到了调控催化活性,显著提高转化率和选择性的效果。
优选地,催化剂的粒径为10~1000μm,例如可以是10μm、120μm、230μm、340μm、450μm、560μm、670μm、780μm、890μm或1000μm等。
本发明中碳基钴催化剂中钴含量为0.5~15%,例如可以是0.5%、2.0%、3.0%、5.0%、7.0%、8.0%、10.0%、11.0%、13.0%或15.0%等。碳基钴催化剂中磷含量为0.1~5%,例如可以是0.1%、0.7%、1.2%、1.8%、2.3%、2.9%、3.4%、4%、4.5%或5%等。碳基钴催化剂中氮含量为1~10%,例如可以是1%、2%、3%、4%、5%、6%、7%、8%、9%或10%等。本发明中碳基钴催化剂中还含有氧元素。
优选地,碳基钴催化剂的比表面积为50~1000m 2/g,例如可以是50m 2/g、156m 2/g、262m 2/g、367m 2/g、473m 2/g、578m 2/g、684m 2/g、789m 2/g、895m 2/g或1000m 2/g等。
优选地,碳基钴催化剂中磷和氮的质量比值为1:0.5~20,例如可以是1:0.5、1:1、1:1.5、1:2、1:2.5、1:3、1:3.5、1:4、1:5、1:6、1:7、1:10、1:12、1:15、1:18或1:20等。
优选地,碳基钴催化剂中具有包覆结构的碳层,优选以钴为中心形成包覆碳层。包覆结构的碳层是包裹在钴纳米颗粒的石墨化碳层,主体组分的碳的石墨化程度相对较低,部分呈无定型状,起到的是载体作用;氮掺杂包覆碳层和作为活性组分的钴纳米颗粒因配位键形成强烈的相互作用,可以提升其活性和稳定性。
本发明优选碳基钴催化剂优选形成了以活性中心钴为中心,在周围包覆碳层的结构,催化剂的循环稳定性显著提高,而且该包覆碳层是磷氮共掺杂的包覆碳层,催化的选择性显著提高。
优选地,加氢反应在磁稳定反应装置中进行。
优选地,氨基腈类有机物与加氢催化剂的质量比为1:0.001~1,例如可以是1:0.001、1:0.01、1:0.02、1:0.1、1:0.2、1:0.3、1:0.4、1:0.5、1:0.6、1:0.7、1:0.8、1:0.9或1:1等。
优选地,加氢反应的温度为25~200℃,例如可以是25℃、45℃、64℃、84℃、103℃、123℃、142℃、162℃、181℃或200℃等。优选地,加氢反应的压力为0.1~5MPa,例如可以是0.1MPa、0.7MPa、1.2MPa、1.8MPa、2.3MPa、2.9MPa、3.4MPa、4MPa、4.5MPa或5MPa等。优选地,加氢反应中磁场强度为1000~8000A·m -1,例如可以是1000A·m -1、2000A·m -1、3000A·m -1、4000A·m -1、5000A·m -1、6000A·m -1、7000A·m -1、8000A·m -1等。优选地,氨基腈类有机物的空速为0.01~20h -1,例如可以是0.01h -1、2.24h -1、4.46h -1、6.68h -1、8.9h -1、11.12h -1、13.34h -1、15.56h -1、17.78h -1、20h -1等。优选地,氢气与氨基腈类有机物的摩尔比为2~100:1,例如可以是2:1、13:1、24:1、35:1、46:1、57:1、68:1、79:1、90:1或100:1等。
优选地,加氢反应在溶剂条件下进行。优选地,溶剂包括醇溶剂,优选包括乙醇、甲醇、叔丁醇、异丙醇、正丙醇、异丁醇或正丁醇中的任意一种或至少两种的组合,其中典型但非限制性的组合为乙醇和甲醇的组合,叔丁醇和正丙醇的组合,乙醇和叔丁醇的组合,叔丁醇和异丙醇的组合,异丙醇和异丁醇的组合,正丙醇和甲醇的组合,正丁醇和甲醇的组合。
优选地,氨基腈类有机物的碳原子数为3~18的自然数,例如可以是3、4、5、6、7、8、9、10、11、12、13、14、15、16、17或18,优选为3~10的自然数,进一步优选为6-氨基己腈。
优选地,在进行加氢反应之前,上述制备方法还包括:混合氨基腈类有机物和溶剂,加热至25~200℃,再通入装有催化剂的磁稳定反应装置中。优选地,混合中还加入助催化剂。优选地,助催化剂包括碱和/或碱金属有机盐,优选包括NaOH、KOH、Ba(OH) 2、CH 3CH 2ONa或CH 3ONa中的任意一种或至少两种的组合,其中典型但非限制性的组合为NaOH和KOH的 组合,Ba(OH) 2和CH 3CH 2ONa的组合,Ba(OH) 2和CH 3ONa的组合,CH 3CH 2ONa和KOH的组合。
优选地,氨基腈类有机物与助催化剂的质量比为1:0.001~0.1,例如可以是1:0.001、1:0.01、1:0.02、1:0.03、1:0.04、1:0.05、1:0.06、1:0.07、1:0.08、1:0.09或1:0.1等。
优选地,上述第二精制包括精馏和/或蒸馏,得到粗有机二胺。
优选地,粗有机二胺中有机二胺的纯度≥99%。
优选地,粗有机二胺中含有氮杂卓类化合物杂质,优选为3,4,5,6-四氢-2H-氮杂卓。
优选地,上述第二吸附包括:经第二精制后的粗有机二胺经第二吸附剂吸附杂质,得到有机二胺。优选粗有机二胺与表面分子印迹功能化的吸附剂的质量比为300~600:1;优选有机二胺的碳原子数为3~18的自然数,优选为3~10的自然数,更优选为己二胺。
由于现有有机二胺提纯和生产过程中会产生氮杂卓类化合物这类副产物,而氮杂卓类化合物难以通过精馏的方式去除,且经初步提纯后仍然残留有氮杂卓类化合物杂质,采用常规吸附方式同样具有一定的吸附效果,但吸附的选择性相对较差;本发明优选采用表面分子印迹功能化的吸附剂,其不仅仅能够特异性吸附氮杂卓类化合物,而且对有机二胺的吸附量较低,从而能够实现高收率条件下有机二胺中杂质的脱除。而且吸附分离的提纯方法具有吸附剂可循环利用,能耗低的优势,应用在工业上能够显著降低生产成本。
优选地,第二吸附包括:经第二精制后的粗有机二胺经第二吸附剂吸附杂质,得到有机二胺产品。
优选地,粗有机二胺与吸附剂的质量比为300~600:1,例如可以是300:1、334:1、367:1、400:1、434:1、467:1、500:1、534:1、567:1或600:1等。
本发明对具体的吸附方式没有特殊限制,可采用本领域技术人员熟知的任何可用于吸附的方式,例如可以是釜式、固定床式、塔式或移动床式等。也可根据实际工艺对吸附方式进行调整。
优选地,吸附剂经吸附饱和后经再生处理后循环使用。
本发明对再生处理的方式没有特殊限制,可采用本领域技术人员熟知的任何可用于吸附剂再生处理的方式进行,例如可以是溶剂洗涤、索氏提取、气体吹扫、固相萃取或超临界萃取中的任意一种。
优选地,有机二胺的碳原子数为3~18的自然数,例如可以是3、4、5、6、7、8、9、10、11、12、13、14、15、16、17或18,优选为3~10的自然数,进一步优选为己二胺。
值得说明的是,对于本发明中未进行特殊说明的步骤和参数,本发明不做特殊限制,可采用本领域技术人员熟知的步骤或参数进行,也可根据工艺条件进行调整,出于节约篇幅的角度,本发明不再一一说明。
第六方面,本发明提供一种根据第五方面的制备有机二胺的方法运行的装置,装置包括依次连接的气化单元、氨化反应单元、第一精制单元、第一吸附单元、加氢反应单元、第二精制单元和第二吸附单元。
优选地,气化单元包括文丘里气化装置。
优选地,文丘里气化装置包括渐缩段、喉部和渐扩段,渐缩段设置有第一入口,渐扩段设置有第一气体出口,喉部设置有第二入口。
本发明优选有机酰胺雾化喷出、与热氨气接触面积大,在喉部流速快、剪切力强且形成局部微负压(相对于渐缩段和渐扩段)加速气化,提高气化效率,有利于装置稳定运行和提升反应效果。
优选地,文丘里气化装置还包括连接渐扩段与喉部的外部循环管路。
优选地,外部循环管路上设置有物料输送装置。
优选地,外部循环管路设置于渐扩段的最低点位置。
优选地,渐扩段内部设置有扰流部件。
本发明优选的扰流部件也进一步强化了气化过程,减少了有机酰胺的聚合和结焦。
优选地,第二入口上设置有雾化喷嘴。
优选地,氨化反应单元包括固定床反应装置。
优选地,加氢反应单元包括磁稳定反应装置。优选地,磁稳定反应装置包括管式反应器,以及设置在管式反应器外侧呈轴向排布的至少两个赫姆霍兹线圈。
本发明优选提供的磁稳定反应装置通过设置至少两个赫姆霍兹线圈,提供磁场,从而实现管式反应器转化为磁稳定床反应器,能够使具有磁性的催化剂在磁场下均匀分布且减少催化剂的磨损和反应物料的混流,避免了催化剂的损耗和反应过程中沟流的产生。
优选地,赫姆霍兹线圈各自独立地与变压装置相连。优选地,每个赫姆霍兹线圈的匝数为1~500,例如可以是1、2、4、10、50、100、200、300、400或500等。
优选地,磁稳定反应装置还包括设置在管式反应器之前与管式反应器相连的第一加热装置。本发明还在第二管式反应器之前设置有第一加热装置,实现反应物料反应前的预热,反应效果更佳。
优选地,第一加热装置外设置有加热部件。优选地,第一加热装置内设置有惰性填料,例如可以是石英填料、玻璃填料或陶瓷球填料等。本发明进一步通过添加惰性填料,提高传热和预热效率。
优选地,第一加热装置的底部和/或下部一侧设置有第三入口,顶部设置有第一出口。优选地,管式反应器的底部和/或下部一侧设置有第四入口。优选地,第四入口与第一出口相连。
优选地,管式反应器的底部和/或下部一侧还设置有氢气入口。
优选地,管式反应器的下部一侧设置有催化剂入口。优选地,催化剂入口的设置位置在赫姆霍兹线圈的下面。
优选地,管式反应器的上部一侧设置有催化剂出口。优选地,催化剂出口设置在赫姆霍兹线圈的上面。优选地,管式反应器的上部一侧设置有产品出口。优选地,管式反应器的顶部设置有尾气出口。本发明对管式反应器的内径和长度没有特殊限制,可根据生产规模进行调整。
与现有技术相比,本发明至少具有以下有益效果:
(1)本发明提供的表面分子印迹功能化的吸附剂可以多次循环利用,重复再生5次后,仍然能将己二胺提纯到99.98%以上,具有成本低,操作简单,选择性高,绿色环保等特点;
(2)本发明提供的表面分子印迹功能化的吸附剂的制备方法采用表面分子印迹技术,制备了一种对氮杂卓类化合物具有特异识别位点、特异性吸附的分子印迹聚合物,制备工艺简单易行;
(3)本发明提供的己二胺的提纯方法能够进一步提纯精馏得到的己二胺,不仅使己二胺的纯度达到尼龙66的聚合要求,将己二胺的纯度提升至99.98wt%以上且己二胺的收率在98wt%以上,损失率低,3,4,5,6-四氢-2H-氮杂卓的含量降低至0.011wt%以下,在优选条件下降低至0.008wt%以下,而且吸附剂对氮杂卓类化合物杂质的选择性吸附效果佳,己二胺的收率高。
(4)本发明提供的制备有机二胺的方法集气相氨化反应、中间产物吸附提纯、加氢反应以及产品吸附提纯流程于一体,提纯后的氨基腈类有机物杂质含量低,氨基腈类有机物中间体的纯度在99.999wt%以上,后续制备有机二胺产品时副产物少,产品提纯容易,得到的有机二胺产品纯度高,最终有机二胺的纯度在99.980wt%以上,优选在99.99wt%以上;
(5)本发明提供的制备有机二胺的方法中氨化反应和加氢反应的热分布均匀,有利于控制反应程度,延长催化剂寿命,而且在氨化反应段进一步优选助剂的添加,减少催化剂的有益元素损失,氨化催化剂的使用寿命延长至7000h以上,在较优条件下可达到10000h以上,同时兼具高氨气利用率、高有机酰胺转化率和高氨基腈类有机物选择性的优势,氨基腈类有机物的选择性在88%以上,优选在98wt%以上,且有机酰胺的转化率在86%以上,在较优条件下转化在98%以上;
(6)本发明提供的制备有机二胺的方法中加氢段有机二胺的选择性高达92wt%以上,优选在99wt%以上,氨基腈类有机物的转化率在96wt%以上,优选在99wt%以上,加氢催化剂的损耗率≤3.25wt%,优选≤1.1wt%;
(7)本发明提供的制备有机二胺的方法流程能够连续化生产,方便工艺控制,具有优良的工业化应用前景。
以下结合具体实施例对本申请作进一步详细描述,这些实施例不能理解为限制本申请所要求保护的范围。
表面分子印迹功能化的吸附剂的实施案例
实施例1
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法的流程如图1所示,具体包括如下步骤:
先按混合50g载体Al 2O 3和2L无水甲苯,超声分散30min后,再在氮气气氛下滴加0.1L3-氨丙基三乙氧基硅烷,90℃进行改性反应18h,得到的改性反应物料依次经过滤、甲苯洗涤3次、甲醇洗涤3次和真空干燥箱中60℃烘干,得到改性载体;
(1)将3g丙烯酰胺作为功能单体和2g的3,4,5,6-四氢-2H-氮杂卓作为氮杂卓类化合物模板在2L乙醇中室温(25℃)预聚合10h,得到含有预聚物的预聚合反应料;
(2)先混合步骤(1)预聚合反应料和20g改性载体,超声分散30min后再在氮气气氛中加入71.5g乙二醇二甲基丙烯酸酯作为交联剂和0.8g偶氮二异丁腈作为引发剂,60℃进行聚合反应24h,得到聚合物颗粒;
(3)在索氏提取器中采用体积比为8:1的甲酸和乙酸的混合酸液提取聚合物颗粒中的2,3,4,5,6-四氢-2H-氮杂卓模板,直到提取液中检测不到3,4,5,6-四氢-2H-氮杂卓,将去掉3,4,5,6-四氢-2H-氮杂卓模板的聚合物颗粒置于60℃的真空干燥中,烘至恒重,得到表面分子印迹功能化的吸附剂。
本实施例制得的表面分子印迹功能化的吸附剂包括载体Al 2O 3以及负载在载体Al 2O 3上的表面分子;表面分子之间形成印迹空腔,印迹空腔与氮杂卓类化合物相匹配。吸附剂的SEM图如图2所示,从图2可以看出不规则微球状载体表面包覆着分子印迹聚合物,其中不规则微球状载体如图中圆形框圈内所示,聚合物如其中白色方框内所示,有些许团聚,表明分子印迹复合物的成功制备,包覆在载体外的聚合物具有多孔性,提高比面积和吸附性能。BET吸附/脱附曲线如图3所示,其中方框代表脱附曲线,圆圈代表吸附曲线,可以看出,吸附剂属于第Ⅳ型等温吸附线,也属于H3滞后回线类型,这是典型的多孔特征,同时表面积测出来为100.2m 2/g,具有较大比表面积,能提供更多的吸附位,印证了SEM的微观特征。
实施例2
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法除改性反应中滴加0.15L3-氨丙基三乙氧基硅烷,步骤(1)中加入5.7g丙烯酰胺作为功能单体,步骤(2)中加入79.3g乙二醇二甲基丙烯酸酯作为交联剂外,其余均与实施例1相同。
实施例3
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法除改性反应中滴加0.15L3-氨丙基三乙氧基硅烷,步骤(1)中加入8.4g的2-乙烯基吡啶作为功能单体,步骤(2)中加入61.7gN,N-亚甲基双丙烯酰胺作为交联剂外,其余均与实施例1相同。
实施例4
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法除改性反应中滴加0.15L3-氨丙基三乙氧基硅烷,步骤(1)中加入8.53g的丙烯酰胺作为功能单体,步骤(2)中加入87.2g乙二醇二甲基丙烯酸酯作为交联剂外,其余均与实施例1相同。
实施例5
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法除改性反应中滴加0.15L3-氨丙基三乙氧基硅烷,步骤(1)中加入1.42g的丙烯酰胺作为功能单体,步骤(2)中加入87.1g乙二醇二甲基丙烯酸酯作为交联剂外,其余均与实施例1相同。
实施例6
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法除改性反应中滴加0.15L3-氨丙基三乙氧基硅烷,步骤(1)中加入7.1g的丙烯酰胺作为功能单体,步骤(2)中加入71.3g乙二醇二甲基丙烯酸酯作为交联剂外,其余均与实施例1相同。
实施例7
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法除不对载体Al 2O 3进行改性外,其余均与实施例1相同。
实施例8
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法除载体Al 2O 3替换为载体二氧化硅外,其余均与实施例1相同。
实施例9
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法除不进行步骤(1)的预聚合,直接将功能单体、氮杂卓类化合物模板、交联剂和引发剂一起聚合外,其余均与实施例1相同。
具体步骤如下:
(1)将3g丙烯酰胺作为功能单体、2g的3,4,5,6-四氢-2H-氮杂卓作为氮杂卓类化合物模板和20g改性载体在2L乙醇中,超声分散30min后再在氮气气氛中加入71.5g乙二醇二甲基丙烯酸酯作为交联剂和0.8g偶氮二异丁腈作为引发剂,60℃进行聚合反应24h,得到聚合物颗粒;
(2)在索氏提取器中采用体积比为8:1的甲酸和乙酸的混合酸液提取聚合物颗粒中的2,3,4,5,6-四氢-2H-氮杂卓模板,直到提取液中检测不到3,4,5,6-四氢-2H-氮杂卓,将去掉3,4,5,6-四氢-2H-氮杂卓模板的聚合物颗粒置于60℃的真空干燥中,烘至恒重,得到表面分子印迹功能化的吸附剂。
实施例10
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法包括如下步骤:
先按混合15g载体Al 2O 3和1L无水甲苯,超声分散45min后,再在氮气气氛下滴加15mL3-氨丙基三乙氧基硅烷,80℃进行改性反应10h,得到的改性反应物料依次经过滤、甲苯洗涤4次、甲醇洗涤3次和真空干燥箱中40℃烘干,得到改性载体;
(1)将3.2g的丙烯酰胺作为功能单体和1g的3,4,5,6-四氢-2H-氮杂卓作为氮杂卓类化合物模板在1L乙醇中15℃搅拌预聚合20h,得到含有预聚物的预聚合反应料;
(2)先混合步骤(1)预聚合反应料和30g改性载体,超声分散60min后再在氮气气氛中加入78.6g乙二醇二甲基丙烯酸酯作为交联剂和1g偶氮二异丁腈作为引发剂,40℃进行聚合反应48h,得到聚合物颗粒;
(3)在索氏提取器中采用体积比为10:1的甲酸和乙酸的混合酸液提取聚合物颗粒中的2,3,4,5,6-四氢-2H-氮杂卓模板,直到提取液中检测不到3,4,5,6-四氢-2H-氮杂卓,将去掉3,4,5,6-四氢-2H-氮杂卓模板的聚合物颗粒置于100℃的真空干燥中,烘至恒重,得到表面分子印迹功能化的吸附剂。
实施例11
本实施例提供一种表面分子印迹功能化的吸附剂的制备方法,制备方法包括如下步骤:
先按混合60g载体Al 2O 3和2L无水甲苯,超声分散60min后,再在氮气气氛下滴加0.1L3-氨丙基三乙氧基硅烷,100℃进行改性反应25h,得到的改性反应物料依次经过滤、甲苯洗涤3次、甲醇洗涤4次和真空干燥箱中100℃烘干,得到改性载体;
(1)将5.7g的丙烯酰胺作为功能单体和2g的3,4,5,6-四氢-2H-氮杂卓作为氮杂卓类化合物模板在0.5L乙醇中室温(25℃)搅拌预聚合10h,得到含有预聚物的预聚合反应料;
(2)先混合步骤(1)预聚合反应料和2.5g改性载体,超声分散20min后再在氮气气氛中加入79.0g乙二醇二甲基丙烯酸酯作为交联剂和0.05g偶氮二异丁腈作为引发剂,60℃进行聚合反应24h,得到聚合物颗粒;
(3)在索氏提取器中采用体积比为5:1的甲酸和乙酸的混合酸液提取聚合物颗粒中的2,3,4,5,6-四氢-2H-氮杂卓模板,直到提取液中检测不到3,4,5,6-四氢-2H-氮杂卓,将去掉3,4,5,6-四氢-2H-氮杂卓模板的聚合物颗粒置于40℃的真空干燥中,烘至恒重,得到表面分子印迹功能化的吸附剂。
对比例1
本对比例提供一种吸附剂的制备方法,制备方法除未加入3,4,5,6-四氢-2H-氮杂卓作为氮杂卓类化合物模板外,其余均与实施例1相同。
应用例1
本应用例提供一种己二胺的提纯方法,提纯方法包括:将1kg的实施例1制得的吸附剂加入到1m 3的反应釜中,再加入500kg经过精馏处理后的己二胺,搅拌分散均匀,在室温(25℃)下搅拌吸附20h,然后过滤分离出吸附剂,滤液去气相色谱分析含量。
应用例2~9
应用例2~9分别提供一种己二胺的提纯方法,提纯方法除分别采用实施例2~9中提供的吸附剂外,其余均与应用例1相同。
应用例10
本应用例提供一种己二胺的提纯方法,提纯方法包括:将1kg的实施例10制得的吸附剂填充至串联的4个吸附柱中,再以0.5h -1速度通入经过精馏处理后的己二胺,在35℃下进行吸附,吸附后液相去气相色谱分析含量。
应用例11
本应用例提供一种己二胺的提纯方法,提纯方法包括:将2.5kg的实施例11制得的吸附剂加入到2m 3的反应釜中,再加入500kg己二胺,搅拌分散均匀,在室温(25℃)下震荡吸附35h,然后过滤分离出吸附剂,滤液去气相色谱分析含量。
应用对比例1
本应用对比例提供一种己二胺的提纯方法,提纯方法除采用对比例1中提供的吸附剂外,其余均与应用例1相同。
应用对比例2
本应用对比例提供一种己二胺的提纯方法,提纯方法采用CN103936595A中实施例1提供的提纯方法。
以上应用例和应用对比例的测试结果如表1所示。
表1
Figure PCTCN2022104898-appb-000001
从表1可以看出,首先综合应用例1~6以及应用例10~11可知,针对不同杂质含量的己二胺,本发明提供的提纯方法均能将己二胺的纯度提升至99.99wt%以上,且己二胺的收率在98wt%以上,损失率低,吸附后3,4,5,6-四氢-2H-氮杂卓的含量≤0.011wt%;
其次,综合应用例1和应用对比例1可以看出,本发明通过采用表面分子印迹功能化的吸附剂进行吸附提纯,能够将己二胺的纯度提升至99.98wt%以上,针对微量杂质的进一步去除具有优良效果;
再次,综合应用例1和应用例7~8可以看出,应用例1中采用改性三氧化二铝载体,相较于应用例7中采用未改性的三氧化二铝载体以及应用例8中采用二氧化硅载体而言,应用例1中吸附后的纯度为99.992wt%,而应用例7~8中己二胺吸附后的纯度分别仅为99.989wt%和99.990wt%,由此表明,本发明通过优选改性后的三氧化二铝作为载体,能够更进一步提高杂质去除性能;
最后,综合应用例1和应用例9可以看出,应用例1中采用预聚合的方式制备吸附剂,相较于应用例9中直接全部聚合而言,应用例1中吸附后己二胺的纯度为99.992wt%,吸附后 3,4,5,6-四氢-2H-氮杂卓的含量仅为0.005wt%,而应用例9中吸附后己二胺的纯度仅为99.988wt%,吸附后3,4,5,6-四氢-2H-氮杂卓的含量高达0.011wt%,由此表明,本发明通过进一步优选先预聚合的方式制备吸附剂,显著提高了己二胺的提纯效果,降低了吸附后3,4,5,6-四氢-2H-氮杂卓的含量。
以实施例2提供的吸附剂为例,以应用例2提供的方法进行己二胺的吸附提纯,考察催化剂再生多次后的吸附效果,其中再生处理的方法为:将回收出来的吸附剂置于索氏提取器中,用8:1的甲醇和乙酸混合液不间断地提取吸附剂中地模板分子,直到提取液中检测不到模板分子,将吸附剂置于真空干燥箱中烘至恒重,得到再生后吸附剂。将再生后吸附剂用于应用例2中的方法进行吸附,如此重复5次,考察吸附剂的可再生性能。具体考察结果如表2所示。
表2
Figure PCTCN2022104898-appb-000002
从表2可以看出:重复再生4次后,吸附剂都能将己二胺提纯到99.99%以上,表现出良好的再生性能,重复再生5次后,吸附剂的性能稍微下降,但仍然能将己二胺提纯到99.98%以上,因此本发明吸附剂可以多次重复利用,降低使用成本。
综上,本发明提供的表面分子印迹功能化的吸附剂可以多次循环利用,具有成本低,操作简单,选择性高,绿色环保等特点,其应用在己二胺提纯过程中,在较优条件下能够实现己二胺的纯度提升至99.99wt%以上,且己二胺的收率在98wt%以上的技术效果,且3,4,5,6-四氢-2H-氮杂卓的含量降低至0.011wt%以下,减少了对后期尼龙产品的影响。
氨化催化剂的实施案例
催化剂A1
催化剂A1为空心圆柱形催化剂,催化剂中含有第一类孔道;催化剂的主体内还含有第二类孔道;第二类孔道为圆柱形孔道,圆柱形孔道的直径为1mm,高度为5mm;催化剂的主体为圆柱形,主体的直径为4.2mm,高度为5mm;
第一类孔道的孔径大小为纳米级;第一类孔道的孔径为12.61nm。
催化剂的孔容为0.694cm 3/g;催化剂的比表面积为178.23m 2/g,硅、铝和磷的摩尔比为1:0.8:0.2。
催化剂A1的制备方法参照CN111659463A中进行,除成型步骤中采用具有与催化剂A1相匹配的模具进行成型,形成特定结构的催化剂A1外,其余制备方法参照CN111659463A中进行。
催化剂A2~催化剂A4与催化剂A1的结构和制备方法相同,区别仅在于硅、铝和磷的摩尔比为1:0.8:0.5、1:0.8:0.8和1:0.8:1.6。
催化剂B1
催化剂B1为三叶草型柱形催化剂,三叶草型催化剂包括圆柱形的主体1和突出部2,其中圆柱形的高度为5mm,其中以三叶草圆交叉之外的叶瓣为突出部2,具体如图4所示,其中虚线内部记为催化剂的主体部分,虚线圆以外的部分记为突出部2,虚线圆的直径为3mm,点划线中标记的a为突出部2的的长度,其为1.6mm;
第一类孔道的孔径大小为纳米级;第一类孔道的孔径为16.29nm。
催化剂的孔容为0.719cm 3/g;催化剂的比表面积为151.89m 2/g,硅、铝和磷的摩尔比为1:0.8:0.2。
催化剂B1的制备方法参照CN111659463A中进行,除成型步骤中采用具有与催化剂B1相匹配的模具进行成型,形成特定结构的催化剂B1外,其余制备方法参照CN111659463A中进行。
催化剂B2~催化剂B4与催化剂B1的结构和制备方法相同,区别仅在于硅、铝和磷的摩尔比为1:0.8:0.3、1:0.8:0.5和1:0.8:1.5。
催化剂C1
催化剂C1为三孔球型催化剂,如图5所示,三孔球型催化剂包括球型的主体1和内部第二类孔道3,第二类孔道3为贯穿主体1的单孔,设置有三个,单孔的直径为1.0mm,三个单孔呈正三角型分布,球形主体1的直径为4.5mm;
第一类孔道的孔径大小为纳米级;第一类孔道的孔径为18.43nm。
催化剂的孔容为0.781cm 3/g;催化剂的比表面积为201.77m 2/g,硅、铝和磷的摩尔比为1:0.6:0.3。
催化剂C1的制备方法参照CN111659463A中进行,除成型步骤中采用具有与催化剂C1相匹配的模具进行成型,形成特定结构的催化剂C1外,其余制备方法参照CN111659463A中进行。
催化剂C2~催化剂C3与催化剂C1的结构和制备方法相同,区别仅在于硅、铝和磷的摩尔比为1:0.6:0.7、1:0.6:0.9和1:0.6:1.3。
催化剂D1~催化剂D4除为实心柱形催化剂外,其余均分别与催化剂A1~催化剂A4相同。
第一吸附剂的实施案例
第一吸附剂a
第一吸附剂a的制备方法包括如下步骤:
(1)混合1.2kg蒙脱石和浓度为21%的盐酸溶液,进行预处理,依次经室温下第一浸渍2.5h,然后加热至85℃,趁热过滤,过滤过程中用纯水多次洗涤蒙脱石,将蒙脱石烘干干燥至恒重,得到前驱体;
(2)250g前驱体置于0.8L金属盐溶液中,金属盐溶液为总浓度0.1mol/LAgNO 3/Cd(NO 3) 2的水溶液(n Ag/n Cd=1:1)置于转速为50rpm的震荡摇床上进行第二浸渍4h、烘干干燥至恒重,干燥后的吸附剂置于马弗炉中煅烧,升温速率为6℃/min,终点温度为550℃,在终点温度下煅烧的时间为3h,得到第一吸附剂a。
第一吸附剂b
第一吸附剂b的制备方法包括如下步骤:
(1)混合1kgZSM-5沸石分子筛和浓度为50%的硝酸溶液,进行预处理,依次经室温下第一浸渍10h,然后加热至50℃,趁热过滤,过滤过程中用纯水多次洗涤ZSM-5沸石分子筛,将ZSM-5沸石分子筛烘干干燥至恒重,得到前驱体;
(2)250g前驱体置于0.3L总浓度为0.5mol/LAgNO 3/Cd(NO 3) 2的水溶液中(n Ag/n Cd=1:1)置于转速为50rpm的震荡摇床上进行第二浸渍0.5h、烘干干燥至恒重,干燥后的吸附剂置于马弗炉中煅烧,升温速率为5.5℃/min,终点温度为300℃,在终点温度下煅烧的时间为8h,得到第一吸附剂b。
第一吸附剂c
第一吸附剂c的制备方法包括如下步骤:
(1)混合1kgZSM-5沸石分子筛和浓度为12%的双氧水,进行预处理,依次经室温下第一浸渍15h,然后加热至65℃,趁热过滤,过滤过程中用纯水多次洗涤ZSM-5沸石分子筛,将ZSM-5沸石分子筛烘干干燥至恒重,得到前驱体;
(2)500g前驱体置于1.2L总浓度为0.08mol/LAgNO 3的水溶液中置于转速为20rpm的震荡摇床上进行第二浸渍5h、烘干干燥至恒重,干燥后的吸附剂置于马弗炉中煅烧,升温速率为5.5℃/min,终点温度为250℃,在终点温度下煅烧的时间为3.6h,得到第一吸附剂c。
加氢催化剂的实施案例
催化剂Ⅰ
催化剂Ⅰ为一种氮磷共掺杂的碳基钴催化剂,其制备方法包括如下步骤:
(Ⅰ)混合100.84g活性炭(碳含量84.5%,孔容9.6cm 3/g,比表面积为273m 2/g)、30.72g六水合硝酸钴、51.03g尿素、9.79g三苯基膦和溶剂(100.66g水和101.29g乙醇),搅拌混合的时间为12h,得到混合后的物料;
(Ⅱ)混合后的物料经55℃缓慢挥干24h去除溶剂,得到脱溶物料;
(Ⅲ)脱溶物料经研磨均匀后置于管式炉中,在氩气气氛中热解,氩气的质量空速为1h -1,以5℃/min升温至600℃,热解时间为2h,得到氮磷共掺杂碳基钴催化剂。
催化剂Ⅰ的氮气吸脱附曲线如图6所示,从图6中可以看出,催化剂Ⅰ具有优良的吸附性能,比表面积为271m 2/g;从图7可以看出催化剂Ⅰ中含有N、P、Co和O元素,且根据分析可知,催化剂中含有3.11%Co、4.10%N和0.81%P,从图8的透射电镜图可以看出,氮磷共掺杂碳基钴催化剂具有以钴为中心形成的氮磷掺杂的包覆碳层,且钴中心分布均匀。
催化剂Ⅱ
催化剂Ⅱ为一种氮磷共掺杂的碳基钴催化剂,其制备方法包括如下步骤:
(Ⅰ)混合100.56g活性炭(碳含量91.5%,孔容5.6cm 3/g,比表面积为355m 2/g)、38.59g草酸钴、27.05g乙二胺、83.02g二乙基苯基膦和溶剂(250.25g水和49.98g乙醇),搅拌混合的时间为6h,得到混合后的物料;
(Ⅱ)混合后的物料经45℃缓慢挥干48h去除溶剂,得到脱溶物料;
(Ⅲ)脱溶物料经研磨均匀后置于管式炉中,在氩气气氛中热解,氩气的质量空速为0.2h -1,以4℃/min升温至800℃,热解时间为1.5h,得到氮磷共掺杂碳基钴催化剂。
催化剂Ⅲ
催化剂Ⅲ为一种氮磷共掺杂的碳基钴催化剂,其制备方法包括如下步骤:
(Ⅰ)混合103.93g活性炭(碳含量78.7%,孔容11.7cm 3/g,比表面积为486m 2/g)、7.29g四水合醋酸钴、78.23g乙二胺/哌嗪(质量比1:1)、10.02g三乙基磷和溶剂(30.36g水和150.14g乙醇),搅拌混合的时间为8h,得到混合后的物料;
(Ⅱ)混合后的物料经60℃缓慢挥干6h去除溶剂,得到脱溶物料;
(Ⅲ)脱溶物料经研磨均匀后置于管式炉中,在氩气气氛中热解,氩气的质量空速为3h -1,以10℃/min升温至700℃,热解时间为3.5h,得到氮磷共掺杂碳基钴催化剂。
催化剂Ⅳ
催化剂Ⅳ为一种氮掺杂的碳基钴催化剂,其制备方法中除步骤(Ⅰ)中不加入三苯基膦外,其余均与催化剂Ⅰ相同。
催化剂Ⅴ
催化剂Ⅴ为一种磷掺杂的碳基钴催化剂,其制备方法中除步骤(Ⅰ)中不加入尿素外,其余均与催化剂Ⅰ相同。
第二吸附剂α
第二吸附剂α的制备方法同实施例1的制备方法。
第二吸附剂β
第二吸附剂β提供一种表面分子印迹功能化的第二吸附剂,第二吸附剂包括载体Al 2O 3以及负载在载体Al 2O 3上的表面分子;表面分子之间形成印迹空腔,印迹空腔与氮杂卓类化合物相匹配。
第二吸附剂β的制备方法包括如下步骤:
先按混合15g载体Al 2O 3和1L无水甲苯,超声分散45min后,再在氮气气氛下滴加15mL3-氨丙基三乙氧基硅烷,80℃进行改性反应10h,得到的改性反应物料依次经过滤、甲苯洗涤4次、甲醇洗涤3次和真空干燥箱中40℃烘干,得到改性载体;
①将3.2g的丙烯酰胺作为功能单体和1g的3,4,5,6-四氢-2H-氮杂卓作为氮杂卓类化合物模板在1L乙醇中15℃搅拌预聚合20h,得到含有预聚物的预聚合反应料;
②先混合步骤①预聚合反应料和30g改性载体,超声分散60min后再在氮气气氛中加入78.6g乙二醇二甲基丙烯酸酯作为交联剂和1g偶氮二异丁腈作为引发剂,40℃进行聚合反应48h,得到聚合物颗粒;
③在索氏提取器中采用体积比为10:1的甲酸和乙酸的混合酸液提取聚合物颗粒中的2,3,4,5,6-四氢-2H-氮杂卓模板,直到提取液中检测不到3,4,5,6-四氢-2H-氮杂卓,将去掉3,4,5,6-四氢-2H-氮杂卓模板的聚合物颗粒置于100℃的真空干燥中,烘至恒重,得到表面分子印迹功能化的第二吸附剂β。
第二吸附剂γ
第二吸附剂γ提供一种表面分子印迹功能化的第二吸附剂,第二吸附剂包括载体Al 2O 3以及负载在载体Al 2O 3上的表面分子;表面分子之间形成印迹空腔,印迹空腔与氮杂卓类化合物相匹配。
第二吸附剂γ的制备方法包括如下步骤:
先按混合60g载体Al 2O 3和2L无水甲苯,超声分散60min后,再在氮气气氛下滴加0.1L3-氨丙基三乙氧基硅烷,100℃进行改性反应25h,得到的改性反应物料依次经过滤、甲苯洗涤3次、甲醇洗涤4次和真空干燥箱中100℃烘干,得到改性载体;
①将5.7g的丙烯酰胺作为功能单体和2g的3,4,5,6-四氢-2H-氮杂卓作为氮杂卓类化合物模板在0.5L乙醇中室温(25℃)搅拌预聚合10h,得到含有预聚物的预聚合反应料;
②先混合步骤①预聚合反应料和2.5g改性载体,超声分散20min后再在氮气气氛中加入79.0g乙二醇二甲基丙烯酸酯作为交联剂和0.05g偶氮二异丁腈作为引发剂,60℃进行聚合反应24h,得到聚合物颗粒;
③在索氏提取器中采用体积比为5:1的甲酸和乙酸的混合酸液提取聚合物颗粒中的2,3,4,5,6-四氢-2H-氮杂卓模板,直到提取液中检测不到3,4,5,6-四氢-2H-氮杂卓,将去掉3,4,5,6-四氢-2H-氮杂卓模板的聚合物颗粒置于40℃的真空干燥中,烘至恒重,得到表面分子印迹功能化的第二吸附剂γ。
第二吸附剂δ即对比例1制备的吸附剂。
制备己二胺的实施案例
实施例12
本实施例提供一种从己内酰胺制备己二胺的方法,如图9~11所示,所述方法采用的装置包括依次连接的气化单元10、氨化反应单元20、第一精制单元30、第一吸附单元40、加氢反应单元50、第二精制单元60和第二吸附单元70。
所述气化单元10包括文丘里气化装置。所述文丘里气化装置包括渐缩段101、喉部102和渐扩段103,所述渐缩段101设置有第一入口104,所述渐扩段103设置有第一气体出口105,所述喉部102设置有第二入口。所述文丘里气化装置还包括连接所述渐扩段103与喉部102的外部循环管路。所述外部循环管路上设置有物料输送装置106。所述外部循环管路设置于渐扩段103的最低点位置。所述渐扩段103内部设置有扰流部件。所述第二入口上设置有雾化喷嘴。
所述氨化反应单元20包括固定床反应装置,所述固定床反应装置包括串联的4个固定床反应器。
所述加氢反应单元50包括磁稳定反应装置。所述磁稳定反应装置包括管式反应器502,以及设置在所述管式反应器502外侧呈轴向排布的至少两个赫姆霍兹线圈509。所述赫姆霍兹线圈509各自独立地与变压装置相连。每个所述赫姆霍兹线圈509的匝数为20。所述磁稳定反应装置还包括设置在所述管式反应器502之前与所述管式反应器502相连的第一加热装置501。所述第一加热装置501外设置有加热部件503。所述第一加热装置501内设置有石英填料。所述第一加热装置501的下部一侧设置有第三入口504,顶部设置有第一出口505。所述管式反应器502的底部设置有第四入口506。所述第四入口506与第一出口505相连。所述管式反应器502的底部和/或下部一侧还设置有氢气入口507。所述管式反应器502的下部一侧设置有催化剂入口508。所述催化剂入口508的设置位置在赫姆霍兹线圈509的下面。所述管式反应器502的上部一侧设置有催化剂出口5012。所述催化剂出口5012设置在赫姆霍兹线圈509的上面。所述管式反应器502的上部一侧设置有产品出口5011。所述管式反应器502的顶部设置有尾气出口5010。
所述方法具体包括如下步骤:
(1)磷酸三甲酯(占氨气重量10ppm)与氨气混合后于500℃进行预热处理使氨气过热,得到混合气;
混合气与温度为120℃液相状态的第i部分有机酰胺在文丘里气化装置中于350℃混合气化后通入第1段固定床反应器(共为串联的4个固定床反应器,计为4段固定床反应器,每段固定床反应器内装填相同重量的催化剂),在第1反应温度、第1反应压力以及第1催化剂作用下进行反应,得到第1反应出料;
第i反应出料与第i+1部分有机酰胺通入第i+1段固定床反应器,i的取值范围为1≤i≤3且i为自然数;在第i+1反应温度、第i+1反应压力以及第i+1催化剂作用下进行反应,得到第i+1反应出料;其中,得到第i+1反应出料循环作为下一步的第i反应出料进行氨化反应至i+1=n,n=4,得到第一反应出料;
所述第1反应温度至第4反应温度分别为350℃、375℃、400℃和425℃,所述第1反应压力至第4反应压力分别为0MPa、0.3MPa、0.6MPa和0.9MPa;所述第1催化剂至第4催化剂分别为催化剂A1~催化剂A4;所述第i部分己内酰胺和第i+1部分己内酰胺的量相同,总己内酰胺的重时空速为5h -1,所述氨气与有机酰胺的总摩尔比为5:1;
(2)所述第一反应出料经精馏后得到粗6-氨基己腈,所述粗6-氨基己腈以空速1h -1经第一吸附剂a在35℃、0.5MPa条件下吸附提纯,得到6-氨基己腈产品;
步骤(1)和步骤(2)中产生的聚合物残渣与水混合,聚合物残渣与水的质量比为1:4,在200℃、5MPa以及Al 2O 3固体酸催化剂作用下进行解聚反应3h,聚合物残渣与催化剂的质量比为1:0.4,然后经负压脱水和负压蒸馏,分别得到6-氨基己腈和己内酰胺;
(3)50g粒径D50=20μm的催化剂Ⅰ装填至磁稳定床反应装置中的第二管式反应器中;混合6-氨基己腈、溶剂甲醇和助剂NaOH,通入第一加热装置预热至100℃,再通入第二管式反应器,在压力2.0MPa,磁场强度为1000A·m -1的条件下6-氨基己腈和氢气进行反应,制备己二胺,得到反应后料;其中,6-氨基己腈的空速为20h -1,氢气与6-氨基己腈的摩尔比为5:1,6-氨基己腈与溶剂的质量比为1:3,6-氨基己腈与助剂的质量比为1:0.001;
(4)所述反应后料经120℃、-0.095MPaG精馏,得到粗己二胺;将1kg的第二吸附剂α加入到1m 3的反应釜中,再加入500kg粗己二胺,搅拌分散均匀,在室温(25℃)下搅拌吸附20h,得到己二胺。
本实施例中氨化反应的催化剂的再生方法包括:
初始氧含量为1v/v%的含氧气体从上述固定床反应器的第1个入口泵入,依次通入装有失活硅铝磷分子筛的4个串联的固定床反应器中,并自第1个侧口至第3个侧口内通入补充含氧气体(空气),控制每个固定床反应器入口处的氧含量与第一个固定床反应器入口处含氧气体的氧含量一致,进行失活催化剂的再生;
所述再生过程包括再生前期和再生后期,再生前期,固定含氧气体的氧含量为1v/v%,再生的初始温度为300℃,以2℃/h升温至终温800℃;进入再生后期,固定再生的温度为800℃,含氧气体的氧含量以0.1v/v%/h提升至终末氧含量10v/v%/h;在终末氧含量和终温下保持180h继续再生,得到再生催化剂。
实施例13
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法包括如下步骤:
(1)异丙基二硬脂酰氧铝酸酯(占氨气重量20ppm)与氨气混合后于600℃进行预热处理使氨气过热,得到混合气。
混合气与温度为220℃液相状态的第1部分有机酰胺在文丘里气化装置中于500℃混合气化后通入第1段固定床反应器(共为串联的4个固定床反应器,计为4段固定床反应器,每段固定床反应器内装填相同重量的催化剂),在第1反应温度、第1反应压力以及第1催化剂作用下进行反应,得到第1反应出料;
第i反应出料与第i+1部分有机酰胺通入第i+1段固定床反应器,i的取值范围为1≤i≤3且i为自然数;在第i+1反应温度、第i+1反应压力以及第i+1催化剂作用下进行反应,得到第i+1反应出料;所述第i+1反应出料循环作为下一步的第i反应出料至i+1=n,n=4;所述第1反应温度至第4反应温度分别为300℃、375℃、450℃和500℃,所述第1反应压力至第4反应压力分别为0.2MPa、0.5MPa、0.7MPa和1.0MPa;所述第1催化剂至第4催化剂分别为催化剂B1~催化剂B4;所述第i部分己内酰胺和第i+1部分己内酰胺的量相同,总己内酰胺的重时空速为10h -1,所述氨气与有机酰胺的总摩尔比为50:1;
(2)所述反应出料经精馏后得到粗6-氨基己腈,所述粗6-氨基己腈以空速3h -1经第一吸附剂b在60℃、1MPa条件下吸附提纯,得到6-氨基己腈产品;
步骤(1)和步骤(2)中产生的聚合物残渣与水混合,聚合物残渣与水的质量比为1:20,在100℃、10MPa以及Cu(OH) 2固体碱催化剂作用下进行解聚反应10h,聚合物残渣与催化剂的质量比为1:0.5,然后经负压脱水和负压蒸馏,分别得到6-氨基己腈和己内酰胺;
(3)60g粒径D50=300μm的催化剂Ⅱ装填至磁稳定床反应装置中的第二管式反应器中;混合6-氨基己腈、溶剂异丙醇和助剂Ba(OH) 2,通入第一加热装置预热至200℃,再通入第二管式反应器,在压力5.0MPa,磁场强度为8000A·m -1的条件下6-氨基己腈和氢气进行反应,制备己二胺,得到反应后料,其中6-氨基己腈的空速为15h -1,氢气与6-氨基己腈的摩尔比为100:1,6-氨基己腈与溶剂的质量比为1:50,6-氨基己腈与助剂的质量比为1:0.001;
(4)所述反应后料经120℃、-0.095MPaG精馏,得到粗己二胺;将1kg的第二吸附剂β填充至串联的4个吸附柱中,再以0.3h -1速度通入粗己二胺,在35℃下进行吸附,得到己二胺。
本实施例中氨化反应的催化剂的再生方法包括:
初始氧含量为2v/v%的含氧气体从上述固定床反应器的第1个入口泵入,依次通入装有失活硅铝磷分子筛的4个串联的固定床反应器中,并自第1个侧口至第3个侧口内通入补充含氧气体(空气),控制每个固定床反应器入口处的氧含量与第一个固定床反应器入口处含氧气体的氧含量一致,进行失活催化剂的再生;
所述再生过程包括再生前期和再生后期,再生前期,固定含氧气体的氧含量为2v/v%,再生的初始温度为250℃,以20℃/h升温至终温800℃;进入再生后期,固定再生的温度为800℃,含氧气体的氧含量以2v/v%/h提升至终末氧含量21v/v%/h;在终末氧含量和终温下保持100h继续再生,得到再生催化剂。
实施例14
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法包括如下步骤:
(1)氨气与有机酰胺混合气化,得到气化物料;所述气化物料在氨化催化剂作用下进行氨化反应,得到第一反应物料;
(2)所述第一反应物料经第一精制和第一吸附,得到氨基腈类有机物;
(3)所述氨基腈类有机物和氢气在加氢催化剂作用下进行加氢反应,得到含有机二胺的反应后料;
(4)所述反应后料依次经第二精制和第二吸附,得到有机二胺产品。
(5)溴化镍六胺络合物(占氨气重量100ppm)与氨气混合后于300℃进行预热处理使氨气过热,得到混合气;
混合气与温度为69℃液相状态的第1部分有机酰胺在文丘里气化装置中于300℃混合气化后通入第1段固定床反应器(共为串联的3个固定床反应器,计为3段固定床反应器,每段固定床反应器内装填相同重量的催化剂),在第1反应温度、第1反应压力以及第1催化剂作用下进行反应,得到第1反应出料;
第i反应出料与第i+1部分有机酰胺通入第i+1段固定床反应器,i的取值范围为1≤i≤2且i为自然数;在第i+1反应温度、第i+1反应压力以及第i+1催化剂作用下进行反应,得到第i+1反应出料;其中,所述第i+1反应出料循环作为下一步的第i反应出料至i+1=n,n=3;
所述第1反应温度至第3反应温度分别为360℃、400℃、460℃,所述第1反应压力至第3反应压力分别为0.3MPa、0.7MPa和0.9MPa;所述第1催化剂至第4催化剂分别为催化剂C1~催化剂C3;所述第i部分己内酰胺和第i+1部分己内酰胺的量相同,总己内酰胺的重时空速为1h -1,所述氨气与有机酰胺的总摩尔比为15:1;
(2)所述第一反应出料经精馏后得到粗6-氨基己腈,所述粗6-氨基己腈以空速0.5h -1经改性吸附剂c在20℃、1MPa条件下吸附提纯,得到6-氨基己腈产品;
步骤(1)和步骤(2)中产生的聚合物残渣与水混合,聚合物残渣与水的质量比为1:0.5,在400℃、0.2MPa以及Al 2O 3固体酸催化剂作用下进行解聚反应0.5h,聚合物残渣与催化剂的质量比为1:0.01,然后经负压脱水和负压蒸馏,分别得到6-氨基己腈和己内酰胺;
(3)30g粒径D50=900μm的催化剂Ⅲ装填至磁稳定床反应装置中的第二管式反应器中;混合6-氨基己腈、溶剂正丁醇和助剂KOH,通入第一加热装置预热至50℃,再通入第二管式反应器,在压力1.0MPa,磁场强度为2000A·m -1的条件下6-氨基己腈和氢气进行反应,制备己二胺,其中6-氨基己腈的空速为1h -1,氢气与6-氨基己腈的摩尔比为2:1,6-氨基己腈与溶剂的质量比为1:1,6-氨基己腈与助剂的质量比为1:0.1;
(4)所述反应后料经130℃、-0.090MPaG精馏,得到粗己二胺;将1kg的第二吸附剂γ填充至串联的5个吸附柱中,再以0.5h -1空速通入粗己二胺,在25℃下进行吸附,得到己二胺。
本实施例中氨化反应的催化剂的再生方法包括:
初始氧含量为0.5v/v%的含氧气体从上述固定床反应器的第1个入口泵入,依次通入装有
失活硅铝磷分子筛的3个串联的固定床反应器中,并自第1个侧口至第2个侧口内通入补充含氧气体(空气),控制每个固定床反应器入口处的氧含量与第一个固定床反应器入口处含氧气体的氧含量一致,进行失活催化剂的再生;
所述再生过程包括再生前期和再生后期,再生前期,固定含氧气体的氧含量为5v/v%,再生的初始温度为350℃,含氧气体的氧含量以0.05v/v%/h提升至终末氧含量10v/v%/h;进入再生后期,固定终末氧含量10v/v%/h,以1℃/h升温至终温700℃;在终末氧含量和终温下保持200h继续再生,得到再生催化剂。
针对实施例12~14考察氨化反应的催化剂在再生过程中一氧化碳最高含量,并测量再生过程中催化剂床层的热点温升,发现再生过程中一氧化碳的最高含量显著降低,且热点温升较未进行梯级升温和升高氧含量的情况显著降低,再生后催化剂寿命基本不变。
实施例15
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(1)中不加入磷酸三甲酯作为助剂外,其余均与实施例12相同。
实施例16
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(1)中将“磷酸三甲酯”替换为“三氯化铝”外,其余均与实施例12相同。
实施例17
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(1)中将“催化剂A1~催化剂A4”替换为“催化剂D1~催化剂D4”外,其余均与实施例12相同。
实施例18
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(1)中将文丘里气化装置替换为气化釜外,其余均与实施例12相同。
实施例19
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(1)中每一段固定反应器的温度和压力都与第1段固定床反应器保持相同外,其余均与实施例12相同。
实施例20
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(1)中每一段固定反应器内的催化剂组分都与第1段固定床反应器保持相同外,其余均与实施例12相同。
实施例21
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(3)中磁场强度为0外,其余均与实施例12相同。
实施例22
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(3)中催化剂Ⅰ替换为Ru-Fe 2O 3-Al 2O 3催化剂(Ru:5%;Fe 2O 3:40%;Al 2O 3:55%)外,其余均与实施例12相同。
实施例23
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(3)中催化剂Ⅰ替换为催化剂Ⅳ外,其余均与实施例12相同。
实施例24
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(3)中催化剂Ⅰ替换为催化剂Ⅴ外,其余均与实施例12相同。
实施例25
本实施例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(4)中第二吸附剂α替换为第二吸附剂δ外,其余均与实施例12相同。
对比例2
本对比例提供一种从己内酰胺制备己二胺的方法,所述方法除步骤(2)中不进行吸附提纯外,其余均与实施例12相同。
对比例3
本对比例提供一种从己内酰胺制备己二胺的方法,所述方法除不进行步骤(4)的吸附步骤外,其余均与实施例12相同。
测试方法:采用气相色谱定量分析的方法测试产品和原料的纯度,以6-氨基己腈选择性不低于98%计催化剂的使用寿命,己二胺的选择性不低于97%计算催化剂的使用寿命,其结果如表3所示。
表3
Figure PCTCN2022104898-appb-000003
Figure PCTCN2022104898-appb-000004
从表1可以看出如下几点:
(1)综合实施例12~25可以看出,本发明提供的从己内酰胺制备己二胺的方法,将氨化催化剂的寿命延长至7000h以上,在较优条件下可达到10000h以上,6-氨基己腈中间体的纯度在99.999wt%以上,6-氨基己腈的选择性在88%以上,且己内酰胺的转化率在86%以上,优选在96%以上,而且较优条件下最终己二胺的纯度在99.980wt%以上,在优选条件下在99.99wt%以上,己二胺的选择性在93wt%以上,在较优条件下己二胺的选择性在99.2wt%以上,加氢催化剂的损耗率≤3.25wt%,在磁反应装置中优选≤1.1wt%,其中加氢段6-氨基己腈的转化率在96wt%以上,优选在99wt%以上;
(2)综合实施例12和对比例2~3可以看出,本发明通过组合采用吸附和精制的提纯方式,实现了6-氨基己腈和己二胺的微量杂质的去除,得到的产品纯度更高。
实施例26
本实施例提供一种从12-氨基正十二腈制备正十二二胺的方法,所述方法除步骤(1)中己内酰胺替换为12-氨基正十二腈,其余均与实施例1相同。实施例26中原料的转化率为99.9wt%,产品正十二二胺的选择性为98.7wt%,产品正十二二胺的纯度为99.99wt%。
综上所述,本发明提供的从有机酰胺制备有机二胺的方法集气相氨化反应、中间产物吸附提纯、加氢反应以及产品吸附提纯流程于一体,提纯后的氨基腈类有机物杂质含量低,后续制备有机二胺产品时副产物少,产品提纯容易,得到的有机二胺产品纯度高,该流程催化剂使用寿命长,再生方式合理,降低了工业化生产的成本。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:本发明提供的吸附剂由于具有与氮杂卓类化合物相匹配的印迹空腔,能够对氮杂卓类化合物进行特异性吸附,应用在氮杂卓类化合物分离过程中,具有优异的选择性分离效果。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种吸附剂,其特征在于,所述吸附剂包括载体以及负载在载体上的表面分子,所述表面分子为分子印迹聚合物;
    所述表面分子之间形成印迹空腔,所述印迹空腔与氮杂卓类化合物相匹配。
  2. 根据权利要求1所述的吸附剂,其特征在于,所述载体包括三氧化二铝、二氧化硅、活性炭、ZSM-5分子筛或蒙脱石中的任意一种或至少两种的组合;
    优选地,所述吸附剂的粒径为50nm~5μm;
    优选地,所述吸附剂的比表面积为100~1000m 2/g;
    优选地,所述氮杂卓类化合物选自3,4,5,6-四氢-2H-氮杂卓;
    优选地,所述载体为负载有氨基的载体;
    优选地,所述表面分子包括以功能单体、交联剂和氮杂卓类化合物聚合后再去除氮杂卓类化合物的聚合分子;
    优选地,所述功能单体选自胺类物质和/或吡啶类,优选包括丙烯酰胺、邻苯二胺或2-乙烯基吡啶中的任意一种或至少两种的组合;
    优选地,所述交联剂包括乙二醇二缩水甘油醚、乙二醇二甲基丙烯酸酯或N,N-亚甲基双丙烯酰胺中的任意一种或至少两种的组合。
  3. 一种根据权利要求1或2所述的表面分子印迹功能化的吸附剂的制备方法,其特征在于,所述制备方法包括如下步骤:
    (1)功能单体和氮杂卓类化合物模板预聚合,得到预聚合反应料;
    (2)所述预聚合反应料与载体、交联剂和引发剂进行聚合反应,得到聚合物颗粒;
    (3)所述聚合物颗粒经去除氮杂卓类化合物模板后,得到所述表面分子印迹功能化的吸附剂。
  4. 根据权利要求3所述的制备方法,其特征在于,所述步骤(1)中,所述氮杂卓类化合物模板选自3,4,5,6-四氢-2H-氮杂卓;
    优选地,所述功能单体选自胺类物质和/或吡啶类,优选包括丙烯酰胺、邻苯二胺或2-乙烯基吡啶中的任意一种或至少两种的组合;
    优选地,所述功能单体与氮杂卓类化合物模板的摩尔比为1~6:1;
    优选地,所述预聚合在第一有机溶剂中进行;
    优选地,所述氮杂卓类化合物模板与所述第一有机溶剂的配比为0.5~10g:1L;
    优选地,所述第一有机溶剂为醇类溶剂,优选甲醇、乙醇或丙醇中的一种或两种, 更优选为乙醇;
    优选地,所述预聚合的反应温度为10~40℃;所述预聚合的反应时间为1~20h;
    优选地,所述预聚合在搅拌条件下进行。
  5. 根据权利要求3或4所述的制备方法,其特征在于,所述步骤(2)中,所述载体与第一有机溶剂的配比为5~30g:1L;
    优选地,所述交联剂与氮杂卓类化合物模板的摩尔比为18~22:1;
    优选地,所述引发剂与所述第一有机溶剂的配比为0.1~1g:1L;
    优选地,所述引发剂包括偶氮二异丁腈和/或过硫酸铵;
    优选地,所述交联剂包括乙二醇二缩水甘油醚、乙二醇二甲基丙烯酸酯或N,N-亚甲基双丙烯酰胺中的任意一种或至少两种的组合;
    优选地,所述聚合反应的温度为40~80℃;
    优选地,所述聚合反应的时间为10~48h;
    优选地,所述聚合反应包括:先通过第一分散混合预聚合反应料和载体,所述第一分散后再加入所述交联剂和所述引发剂,进行所述聚合反应;
    优选地,所述第一分散后,在第一保护气氛中再加入所述交联剂和所述引发剂;
    优选地,所述第一保护气氛包括氮气、氦气或氩气中的任意一种或至少两种的组合。
  6. 根据权利要求3~5任一项所述的制备方法,其特征在于,所述步骤(3)中,所述去除氮杂卓类化合物模板的步骤包括:采用混合酸液提取所述聚合物颗粒中的氮杂卓类化合物模板;
    优选地,所述混合酸液中含有甲酸和乙酸;
    优选地,所述甲酸和乙酸的体积比为5~10:1;
    优选地,所述提取为索式提取。
  7. 根据权利要求3~6任一项所述的制备方法,其特征在于,所述载体经改性后再加入所述步骤(2)中;
    优选地,所述载体的改性方法包括:混合初载体、第二有机溶剂和含氨基的有机物,进行改性反应,得到的改性反应物料依次经固液分离、洗涤和第二干燥,得到改性载体;
    优选地,所述初载体包括三氧化二铝、二氧化硅、活性炭、ZSM-5分子筛或蒙脱石 中任意一种或至少两种的组合;
    优选地,所述第二有机溶剂包括甲苯;
    优选地,所述含氨基的有机物包括氨基硅烷,优选为3-氨丙基三乙氧基硅烷;
    优选地,所述改性反应的温度为80~100℃;
    优选地,所述含氨基的有机物与初载体的质量比为1~10:1;
    优选地,所述初载体与第二有机溶剂的配比为15~30g:1L;
    优选地,混合初载体、第二有机溶剂和含氨基的有机物的顺序包括:先通过第二分散混合初载体和第二有机溶剂,所述第二分散后,再加入含氨基的有机物;
    优选地,所述第二分散后,在第二保护气氛下加入含氨基的有机物;
    优选地,所述第二保护气氛包括氮气、氩气或氦气中的任意一种或至少两种的组合;
    优选地,所述洗涤包括依次进行的甲苯洗涤和甲醇洗涤。
  8. 一种根据权利要求1或2所述的表面分子印迹功能化的吸附剂的应用,其特征在于,所述吸附剂应用于分离氮杂卓类化合物,优选应用于氮杂卓类化合物杂质的脱除。
  9. 一种己二胺的提纯方法,其特征在于,所述提纯方法采用权利要求1或2所述的表面分子印迹功能化的吸附剂进行杂质的吸附分离。
  10. 根据权利要求9所述的提纯方法,其特征在于,所述提纯方法包括:利用所述吸附剂吸附粗己二胺中的氮杂卓类化合物杂质;
    优选地,所述粗己二胺与吸附剂的质量比为300~600:1。
  11. 一种有机二胺的制备方法,其特征在于,所述制备方法包括:
    氨基腈类有机物和氢气在加氢催化剂作用下进行加氢反应,得到含有机二胺的反应后料;
    所述反应后料经过第二精制和第二吸附,得到所述有机二胺,所述第二吸附采用权利要求1或2所述的表面分子印迹功能化的吸附剂,所述第二精制为第二精馏处理。
  12. 根据权利要求11所述的制备方法,其特征在于,所述加氢催化剂包括γ-Fe 2O 3/SiO 2、Rh/SiO 2、Pt-Rh/Al 2O 3、Fe 3O 4-SiO 2-Ag、Ru-Fe 2O 3-Al 2O 3、雷尼镍、非晶态镍或碳基钴催化剂中的一种或多种;优选所述碳基钴催化剂为氮磷共掺杂的碳基钴催化剂;优选所述碳基钴催化剂的组分包括活性组分和主体组分,所述活性组分包括钴、磷、氮,所述主体组分包括碳,所述碳基钴催化剂中所述钴的含量为0.5~15%、所述磷的含量为0.1~5%、所述氮的含量为1~10%;优选所述碳基钴催化剂的比表面积为50~1000m 2/g;优选所述碳 基钴催化剂中的磷和氮的质量比为1:0.5~20;优选所述碳基钴催化剂中具有包覆结构的碳层。
  13. 根据权利要求11或12所述的制备方法,其特征在于,所述加氢反应在磁稳定反应装置中进行;优选所述加氢反应的压力为0.1~5MPa,优选所述加氢反应的温度为25~200℃,优选所述加氢反应中磁场强度为1000~8000A·m -1;优选所述氨基腈类有机物的空速为0.01~20h -1;优选所述氢气与氨基腈类有机物的摩尔比为2~100:1。
  14. 根据权利要求11至13中任一项所述的制备方法,其特征在于,所述第二吸附包括:经第二精制后的粗有机二胺经第二吸附剂吸附杂质,得到所述有机二胺;优选所述粗有机二胺与所述表面分子印迹功能化的吸附剂的质量比为300~600:1;优选所述有机二胺的碳原子数为3~18的自然数,优选为3~10的自然数,更优选为己二胺。
  15. 根据权利要求11至14中任一项所述的制备方法,其特征在于,所述制备方法还包括氨基腈类有机物的制备过程,所述制备过程包括:
    步骤A,将氨气与有机酰胺混合气化,得到气化物料;所述气化物料在氨化催剂作用下进行氨化反应,得到第一反应物料;
    步骤B,所述第一反应物料经第一精制和第一吸附,得到氨基腈类有机物。
  16. 根据权利要求15所述的制备方法,其特征在于,所述第一吸附采用第一吸附剂,所述第一吸附剂为负载金属元素的吸附剂;优选所述第一吸附剂选自蒙脱石、ZSM-5沸石分子筛、SiO 2、Al 2O 3或活性炭中的一种或多种;所述金属元素包括过渡金属元素;优选所述过渡金属元素选自Ag、Cu、Cd、Cr、Fe、Zn、Ni、Zr或Mn中的一种或多种。
  17. 根据权利要求15或16所述的制备方法,其特征在于,所述第一吸附的杂质含有碳碳双键和/或碳碳三键;优选所述第一吸附剂的空速为0.5~3h -1;优选所述第一吸附的温度为20~60℃;优选所述第一吸附的压力为0.1~1MPa;优选所述氨化反应和/或第一精制中产生的聚合物残渣依次经解聚反应、负压脱水和负压蒸馏,分别得到氨基腈类有机物和有机酰胺。
  18. 根据权利要求15至17中任一项所述的制备方法,其特征在于,所述步骤A还加入助剂,所述助剂中含有与氨化催化剂的相应元素中的一种或多种,所述相应元素包括铝元素、硅元素、硼元素、氮元素、碱土元素、过渡金属元素、磷元素;
    优选所述助剂的添加量为氨气重量的0.1~100ppm;
    优选所述助剂与氨气混合后进行预热处理,得到混合气后再与所述有机酰胺混合;
    优选,所述有机酰胺有机内酰胺;优选所述有机酰胺的碳原子数为3~18的自然数,进一步优选为3~10的自然数;更优选所述有机酰胺包括己内酰胺。
  19. 根据权利要求15至18中任一项所述的制备方法,其特征在于,所述步骤A包括:氨气与第1部分有机酰胺混合气化后通入第1段固定床反应器,在第1反应温度、第1反应压力以及第1氨化催化剂作用下进行氨反应,得到第1反应出料;
    第i反应出料与第i+1部分有机酰胺通入第i+1段固定床反应器,i的取值范围为1≤i≤n-1且i为自然数,n选自n≥2的自然数;在第i+1反应温度、第i+1反应压力以及第i+1氨化催化剂作用下进行氨化反应,得到第i+1反应出料;其中,所述第i+1反应出料循环作为下一步的第i反应进料进行氨化至i+1=n;
    优选所述第i+1反应温度>第i反应温度;
    优选所述第i+1反应压力>第i反应压力;
    优选所述第i+1氨化催化剂中活性组分与载体元素的摩尔比>第i氨化催化剂中活性组分与载体元素的摩尔比;优选所述活性组分含有磷元素,优选所述载体元素包括硅;
    优选所述第i+1氨化催化剂中活性组分与硅的摩尔比为(0.1~2):1;
    优选所述第i氨化催化剂中活性组分与载体元素的摩尔比为T,第i+1氨化催化剂中活性组分与载体元素的摩尔比为S,所述T与所述S的比值为1:1.2~3;
    优选所述第1氨化催化剂至第n催化剂各自独立地含有第一类孔道;所述催化剂内还含有第二类孔道和/或所述催化剂还包括突出部;
    优选地,在同一维度上,所述第二类孔道的孔长度为所述氨化催化剂长度的0.15~0.6倍和/或所述突出部的突出长度为所述氨化催化剂长度的0.1~0.6倍;
    优选所述第i+1反应温度比第i反应温度高10~50℃;
    优选所述第i+1反应压力比第i反应压力高0.1~0.5MPa;
    优选所述第i部分有机酰胺和第i+1部分有机酰胺的量相同;
    优选所述第1催化剂至第n催化剂的再生方法各自独立地包括:含氧气体通入装有失活氨化催化剂的再生装置中,所述再生装置设置有m个均匀分布的入口或包括有m个串联的再生器;并自第2个至第m个入口或自第2个入口或自第2个至第m个再生器内通入补充含氧气体,进行失活催化剂的再生;其中,m为≥2的自然数;
    优选所述再生的过程中含氧气体的氧含量随再生时间进行梯度提升,所述再生的温度随再生时间进行梯度提升。
  20. 根据权利要求15至19中任一项所述的制备方法,其特征在于,所述步骤A所述混合气化在文丘里气化装置中进行;优选地,所述混合气化之前,液相状态的有机酰胺温度为0~300℃;优选地,所述气化后的温度为300~500℃。
  21. 一种权利要求11~20任一项所述有机二胺的制备方法所用的装置,其特征在于,所述装置包括一次连接的气化单元、氨化反应单元、第一精制单元、第一吸附单元、加氢反应单元、第二精制单元和第二吸附单元。
  22. 根据权利要求21所述的装置,其特征在于,所述气化单元包括文丘里气化装置;优选所述氨化反应单元包括固定床反应装置;优选所述加氢反应单元包括磁稳定反应装置。
PCT/CN2022/104898 2021-08-02 2022-07-11 吸附剂及其制备方法、己二胺的提纯方法、有机二胺的制备方法及所用的装置 WO2023011117A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110881293.9A CN113441118B (zh) 2021-08-02 2021-08-02 一种表面分子印迹功能化的吸附剂及其制备方法和己二胺的提纯方法
CN202110882630.6A CN113582853B (zh) 2021-08-02 2021-08-02 一种从有机酰胺制备有机二胺的方法及装置
CN202110881293.9 2021-08-02
CN202110882630.6 2021-08-02

Publications (1)

Publication Number Publication Date
WO2023011117A1 true WO2023011117A1 (zh) 2023-02-09

Family

ID=85155088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104898 WO2023011117A1 (zh) 2021-08-02 2022-07-11 吸附剂及其制备方法、己二胺的提纯方法、有机二胺的制备方法及所用的装置

Country Status (1)

Country Link
WO (1) WO2023011117A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724118A (zh) * 2009-12-04 2010-06-09 江苏警官学院 一种分子印迹材料及其制备方法和用途
CN102827321A (zh) * 2012-09-06 2012-12-19 同济大学 一种选择性分离卡马西平的磁性分子印迹聚合物的制备方法及应用
CN112812020A (zh) * 2021-02-08 2021-05-18 陈天然 一种由己内酰胺生产己二胺的方法及其装置
CN113441118A (zh) * 2021-08-02 2021-09-28 江苏扬农化工集团有限公司 一种表面分子印迹功能化的吸附剂及其制备方法和己二胺的提纯方法
CN113461539A (zh) * 2021-08-02 2021-10-01 江苏扬农化工集团有限公司 一种从氨基腈类有机物制备有机二胺的方法
CN113582853A (zh) * 2021-08-02 2021-11-02 江苏扬农化工集团有限公司 一种从有机酰胺制备有机二胺的方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724118A (zh) * 2009-12-04 2010-06-09 江苏警官学院 一种分子印迹材料及其制备方法和用途
CN102827321A (zh) * 2012-09-06 2012-12-19 同济大学 一种选择性分离卡马西平的磁性分子印迹聚合物的制备方法及应用
CN112812020A (zh) * 2021-02-08 2021-05-18 陈天然 一种由己内酰胺生产己二胺的方法及其装置
CN113441118A (zh) * 2021-08-02 2021-09-28 江苏扬农化工集团有限公司 一种表面分子印迹功能化的吸附剂及其制备方法和己二胺的提纯方法
CN113461539A (zh) * 2021-08-02 2021-10-01 江苏扬农化工集团有限公司 一种从氨基腈类有机物制备有机二胺的方法
CN113582853A (zh) * 2021-08-02 2021-11-02 江苏扬农化工集团有限公司 一种从有机酰胺制备有机二胺的方法及装置

Similar Documents

Publication Publication Date Title
CN113582853B (zh) 一种从有机酰胺制备有机二胺的方法及装置
CN104401942B (zh) 制备含氢气体和纳米碳产品的系统和方法以及该系统的用途和加油站设备
CN113461539B (zh) 一种从氨基腈类有机物制备有机二胺的方法
CN112387295B (zh) 一种氮掺杂碳负载钌单原子催化剂及其制备方法和应用
CN101300191A (zh) 制氢方法的用途
CN111375399B (zh) 一种重油加氢处理催化剂及其制备方法
CN107354536B (zh) 一种纳米碳纤维的工业化生产方法
CN111135850A (zh) 三维有序大孔氮化碳负载钯催化剂在苯乙烯类不饱和共聚物催化加氢中的应用
CN107754845A (zh) 高寿命重整油降烯烃催化剂
WO2023011117A1 (zh) 吸附剂及其制备方法、己二胺的提纯方法、有机二胺的制备方法及所用的装置
Wu et al. Enhancing the selective hydrogenation of benzene to cyclohexene over Ru/TiO 2 catalyst in the presence of a very small amount of ZnO
CN101596461A (zh) 一种轻烃芳构化催化剂及其制备方法
KR101201523B1 (ko) 연속식 카본나노튜브 제조장치 및 제조방법
CN113441118B (zh) 一种表面分子印迹功能化的吸附剂及其制备方法和己二胺的提纯方法
US2992283A (en) Preparation of aromatic and saturated hydrocarbons
CN113582876B (zh) 一种气相法制备氨基腈类有机物的方法
CN1923965A (zh) 催化裂化汽油制取乙烯、丙烯和芳烃的方法
CN1178904C (zh) 氨基腈的生产
CN108102692A (zh) 一种煤基原料生产针状焦的工艺方法
CN108102708A (zh) 一种煤焦油生产针状焦的组合工艺方法
CN111097445A (zh) 选择性加氢催化剂及其制备方法和应用以及异戊二烯选择性加氢除炔的方法
CN111686811B (zh) 一种钛负载型催化剂及催化氢化已二腈制已二胺的方法
CN113797908B (zh) 一种催化剂载体材料及其制备方法和应用
CN113307715B (zh) 一种乙炔生产方法
KR102473017B1 (ko) 탄소나노튜브의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023577930

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE