WO2023010876A1 - 原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用 - Google Patents

原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用 Download PDF

Info

Publication number
WO2023010876A1
WO2023010876A1 PCT/CN2022/085067 CN2022085067W WO2023010876A1 WO 2023010876 A1 WO2023010876 A1 WO 2023010876A1 CN 2022085067 W CN2022085067 W CN 2022085067W WO 2023010876 A1 WO2023010876 A1 WO 2023010876A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
hydrophobically modified
aramid
aramid nano
situ
Prior art date
Application number
PCT/CN2022/085067
Other languages
English (en)
French (fr)
Inventor
张学同
包雅倩
刘增伟
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Priority to EP22839609.9A priority Critical patent/EP4170087A1/en
Priority to JP2022563210A priority patent/JP7448261B2/ja
Priority to US18/011,536 priority patent/US11828004B2/en
Publication of WO2023010876A1 publication Critical patent/WO2023010876A1/zh
Priority to US18/378,677 priority patent/US20240200231A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • D01F6/605Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides from aromatic polyamides
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/10Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
    • D06M13/144Alcohols; Metal alcoholates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • B29K2077/10Aromatic polyamides [polyaramides] or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0061Gel or sol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0012Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular thermal properties
    • B29K2995/0013Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0077Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0093Other properties hydrophobic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/34Polyamides
    • D06M2101/36Aromatic polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • D10B2331/021Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides aromatic polyamides, e.g. aramides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Definitions

  • This application relates to a new type of functional fiber and its modified preparation method, especially to an aramid nano-airgel fiber modified in situ hydrophobically during the spinning process and its preparation method and application, belonging to nanoporous materials and Functional fiber technology field.
  • airgel materials have been applied in many aspects. It is a nanoporous solid material with colloidal particles or polymer molecules accumulated into a network structure, and its dispersion medium is gas. Generally, airgel materials have extremely low apparent density, large specific surface area, high porosity and low thermal conductivity. The most important thing is that airgel materials have rich mesoporous structures, and mesoporous pores with a pore size of 2-50 nm are ideal functional material carriers, but it is precisely because of the existence of porous structures that the mechanical properties of airgel are generally poor. And brittle, the most common form of airgel is block, and it is technically very difficult to obtain continuous fiber airgel (that is, airgel fiber).
  • Aramid nano-airgel fibers have been reported earlier, which is composed of aramid nanofibers stacked into a three-dimensional network structure.
  • Aramid nanofibers are a type of one-dimensional organic nano-particles composed of nano-scale polyterephthalamide (PPTA). material, is one of the strongest polymer materials. They not only possess characteristic nanostructures with large aspect ratios and specific surface areas, but also maintain the excellent mechanical, chemical and thermal properties derived from PPTA fibers, which makes them play an important role in the construction of advanced composite materials" Building blocks" with great potential.
  • Aramid nano-airgel fibers have relatively excellent mechanical properties, high specific surface area and large porosity, and are the airgel fibers closest to practical applications at present.
  • the airgel fiber is hydrophilic, and the general contact angle is about 67°. It must be used in a dry and anhydrous environment, otherwise the porous structure of the airgel will be damaged at room temperature. Under normal pressure, it is easy to absorb water and cause the skeleton to shrink and collapse, so it is necessary to hydrophobically modify the aramid nano-airgel fiber.
  • fluorocarbons are used to modify the surface of fibers hydrophobically, but fluorocarbons are easy to fall off during use, resulting in unsustainable performance, and it is a post-treatment process, which makes the preparation more complicated. Therefore, it is a challenge to realize the hydrophobic modification of porous materials in situ without destroying the bulk properties of porous materials.
  • the main purpose of this application is to provide an in-situ hydrophobically modified aramid nano-airgel fiber and its preparation method in the spinning process, so as to overcome the deficiencies in the prior art.
  • Another object of the present application is to provide the application of the in-situ hydrophobically modified aramid nano-airgel fiber.
  • the embodiment of the present application provides a method for preparing in-situ hydrophobically modified aramid nano-airgel fibers, which includes:
  • Hydrophobic modified aramid nanogel fibers are prepared by spinning technology
  • the coagulation bath used in the spinning technology includes a combination of the first organic solvent and a halogenation reagent
  • the halogenation reagent includes monobrominated alkane, monochlorinated Any one or a combination of two or more of alkanes, dibromoalkanes, dichloroalkanes, and trichloroalkanes;
  • the hydrophobically modified aramid nano-gel fiber is dried to obtain the in-situ hydrophobically modified aramid nano-airgel fiber.
  • the volume ratio of the halogenated reagent to the first organic solvent is 20:1 ⁇ 1:20.
  • the embodiment of the present application also provides the in-situ hydrophobically modified aramid nano-airgel fiber prepared by the aforementioned method, which has a connected three-dimensional porous network structure, and the three-dimensional porous network structure is composed of graft-modified aramid nanostructure Formed by overlapping, the size of the aramid fiber nanostructure is 8nm-300nm.
  • thermal conductivity of the in-situ hydrophobically modified aramid nano-airgel fiber is lower than 50mW/(m ⁇ K).
  • the tensile strength of the in-situ hydrophobically modified aramid nano-airgel fiber is 3-35 MPa, and the elongation at break is 10-50%.
  • the contact angle between the surface of the in-situ hydrophobically modified aramid nano-airgel fiber and water is 90°-150°, and the degree of graft substitution is 0.01-20%.
  • the embodiment of the present application also provides the application of the in-situ hydrophobically modified aramid nano-airgel fiber in the fields of oil-water separation, waterproof self-cleaning fabric, composite material, hydrophobic fiber flake, filter material or thermal insulation material, etc. in the application.
  • the hydrophobically modified aramid nano-airgel fiber provided by this application has a unique three-dimensional porous network structure, low thermal conductivity, high porosity, high tensile strength and elongation at break, certain Spinnability and excellent skeleton structure stability can meet practical applications, such as in textile and other fields, and the fabric woven with the hydrophobic fiber has a certain self-cleaning ability.
  • the hydrophobically modified aramid nano-airgel fiber provided by this application can further be used as a carrier of functional materials, and the multifunctional airgel fiber obtained has great application prospects;
  • the preparation process of the hydrophobically modified aramid nano-airgel fiber provided by this application is simple, and the modification treatment can be completed in one step during the spinning or printing process in situ, without post-processing steps, and the reaction conditions are mild.
  • the hydrophobic modification method provided by this application can realize large-scale production of hydrophobic aramid nano-airgel fibers and airgel fiber flakes, which are suitable for common liquids, such as red wine, coffee, milk, fruit juice, tea, etc. , Coke, etc. show non-stick characteristics and good hydrophobic performance.
  • Fig. 1 is the scanning electron microscope picture of the in-situ hydrophobically modified aramid nano-airgel fiber obtained in Example 1 of the present application;
  • Fig. 2 is the photo of the contact angle of the in-situ hydrophobically modified aramid nano-airgel fiber obtained in Example 1 of the present application;
  • Fig. 3 is the photo of the contact angle of the in-situ hydrophobically modified aramid nano-airgel fiber obtained in Example 2 of the present application;
  • Fig. 4 is the photo of the contact angle of the in-situ hydrophobically modified aramid nano-airgel fiber obtained in Example 3 of the present application;
  • Fig. 5 is a picture of non-sticking to common liquids of in-situ hydrophobically modified aramid nano-airgel fiber flakes obtained in Example 5 of the present application.
  • the inventor of the present case was able to propose the technical solution of the present application after long-term research and extensive practice.
  • the inventors of this case discovered unexpectedly in the experiment that when terephthalamide (PPTA) is dissolved and dispersed in an organic alkaline solvent, many N-reactive sites will be generated on the molecular chain, and these active sites are responsible for the occurrence of graft modification reactions. offers the possibility.
  • PPTA terephthalamide
  • halogenated hydrocarbon reagents are easy to undergo nucleophilic substitution reactions with N- under alkaline conditions, which provides the possibility of graft modification; on the other hand, when enough alkanes are grafted due to their own hydrophobic properties, It will make the whole aramid nanofiber have a certain hydrophobic property on the macroscopic scale, so that the in-situ hydrophobic modification of the aramid fiber can be realized by using the chemical reaction process.
  • An aspect of the embodiments of the present application provides a method for preparing in-situ hydrophobically modified aramid nano-airgel fibers during the spinning process, including:
  • Hydrophobic modified aramid nanogel fibers are prepared by spinning technology
  • the coagulation bath used in the spinning technology includes a combination of the first organic solvent and a halogenation reagent
  • the halogenation reagent includes monobrominated alkane, monochlorinated Any one or a combination of two or more of alkanes, dibromoalkanes, dichloroalkanes, and trichloroalkanes;
  • the hydrophobically modified aramid nano-gel fiber is dried to obtain the in-situ hydrophobically modified aramid nano-airgel fiber.
  • the preparation method specifically includes the following steps:
  • the hydrophobically modified aramid nanogel fiber is prepared from the aramid nano spinning solution
  • the preparation method includes:
  • the aramid nanogel fiber is repeatedly replaced with a certain proportion of solvent to obtain an alcohol gel fiber or a hydrogel fiber; and then the above-mentioned aramid nanogel fiber is dried by a special drying technique to obtain a hydrophobic modification.
  • Aramid nano-airgel fibers Aramid nano-airgel fibers.
  • composition of the coagulation bath used in the spinning process includes mixing the first organic solvent and the halogenating agent in a certain proportion.
  • the volume ratio of the halogenated reagent to the first organic solvent is 20:1 ⁇ 1:20.
  • halogenation reagent may include bromobutane, dibromobutane, etc., but is not limited thereto.
  • the halogenation reagent may include any one or a combination of two or more of monobromobutane, monobromoethane, monochloroethane, dibromobutane, dichlorobutane, chloroform, etc. , but not limited to this.
  • the first organic solvent includes any one or a combination of two or more of DMSO, methanol, ethanol, propanol, butanol, formic acid, acetic acid, etc., but is not limited thereto.
  • the aramid nano-spinning solution is composed of a second organic solvent and polyparaphenylene terephthalamide macromolecule, and the composition of the organic solvent includes but not limited to DMF, DMSO, NMP and One or a combination of two or more of methanol and the like.
  • poly-p-phenylene terephthalamide macromolecules include but are not limited to aramid 1313, aramid 1414 (aramid nano) and poly-p-phenylene terephthalamide modified polymers, etc. any one or a combination of two or more.
  • poly-p-phenylene terephthalamide polymer concentration in the aramid nano-spinning solution is 1-30 wt%.
  • the aramid nano-spinning solution also includes alkaline substances.
  • the alkaline substance includes any one or a combination of two or more of KOH, NaOH, KTB (potassium tert-butoxide), etc.
  • PPTA terephthalamide
  • an organic alkaline solvent many N-reactive sites will be generated on the molecular chain, and these active sites provide the possibility for grafting modification.
  • halogenated hydrocarbon reagents can easily undergo nucleophilic substitution reactions with N- under alkaline conditions, providing the possibility of graft modification.
  • the preparation method of the hydrophobically modified aramid nanogel fiber includes but is not limited to any one or a combination of wet spinning technology and 3D printing technology, etc., especially preferably wet spinning silk method.
  • the wet spinning technology includes: the aramid nano spinning solution is a polymer solution with a selected concentration, extruding the spinning solution into the coagulation bath through a syringe pump, and adjusting the coagulation bath used for spinning
  • the composition and ratio of the aramid nano-spinning solution make the poly-p-phenylene terephthalamide macromolecule physically cross-linked or/and chemically cross-linked to form a hydrophobically modified aramid nano-gel fiber.
  • the process conditions adopted by the wet spinning technology include: providing aramid nano-spinning solution with a selected concentration, the concentration of the aramid nano-spinning solution is 1-30wt%; and then extruding through a syringe pump The spinning solution is put into the coagulation bath, and the diameter of the extruding needle is 10 ⁇ m to 2 mm.
  • the 3D printing technology includes: using a certain concentration of aramid nano-spinning solution as the printing ink, and using the mixed solution of the second organic solvent and the halogenated reagent as a coagulation bath environment to make the printed fibers pass physical cross-linking Or chemically cross-linked to form hydrophobically modified aramid nanogel fibers.
  • the preparation method includes: first replacing the difficult-to-dry solvent in the hydrophobically modified aramid nanogel fiber with an easy-to-dry solvent for many times, and then replacing the hydrophobically modified aramid nanogel fiber after replacement.
  • the fibers are dried.
  • the easy-to-dry solvent includes any one or a combination of two or more of water, methanol, ethanol, tert-butanol, acetone, cyclohexane, and n-hexane, but is not limited thereto.
  • the drying treatment includes any one or a combination of two or more of supercritical fluid drying, vacuum freeze drying and normal pressure drying, preferably supercritical fluid drying, but not limited thereto .
  • the supercritical fluid drying method includes: using a supercritical fluid to replace the liquid component inside the hydrophobically modified aramid nanogel fiber in a supercritical environment of a specific fluid to obtain a hydrophobically modified aramid nanoairgel fiber ,
  • the supercritical fluid used includes but not limited to any one of supercritical CO 2 , supercritical methanol, supercritical ethanol and supercritical acetone.
  • the vacuum freeze-drying technology is also called sublimation drying, which includes: freezing the hydrophobically modified aramid nanogel fiber below the freezing point, and then removing the solvent by sublimation under a relatively high vacuum to obtain the hydrophobically modified aramid nanogel fiber.
  • sublimation drying includes: freezing the hydrophobically modified aramid nanogel fiber below the freezing point, and then removing the solvent by sublimation under a relatively high vacuum to obtain the hydrophobically modified aramid nanogel fiber.
  • Gel fiber material includes: freezing the hydrophobically modified aramid nanogel fiber below the freezing point, and then removing the solvent by sublimation under a relatively high vacuum to obtain the hydrophobically modified aramid nanogel fiber.
  • the freezing method includes: freezing in a freezing device in advance and freezing directly in a drying chamber through rapid vacuuming.
  • the vacuum freeze-drying cold trap temperature is -80 ⁇ -45°C, the vacuum degree is less than 0.1kPa, and the vacuum freeze-drying method is especially preferred.
  • the atmospheric pressure drying technique includes: placing the hydrophobically modified aramid nano-gel fiber material under normal pressure or a relatively low vacuum and increasing the temperature to volatilize the solvent to obtain the hydrophobically modified aramid nano-airgel fiber material.
  • the preparation process of the hydrophobically modified aramid nano-airgel fiber provided by this application is simple, and the modification treatment can be completed in situ during the spinning or printing process, without post-processing steps, and the reaction conditions are mild.
  • large-scale production including but not limited to large-scale production of hydrophobic airgel fiber batts using this modification method.
  • Another aspect of the embodiment of the present application provides the in-situ hydrophobically modified aramid nano-airgel fiber prepared by the aforementioned method, which has a connected three-dimensional porous network structure, and the three-dimensional porous network structure is composed of graft-modified aramid fiber.
  • the aramid fiber nanostructure is overlapped, and the size of the aramid fiber nanostructure is 8nm-300nm.
  • the material of the in-situ hydrophobically modified aramid nano airgel fiber includes aramid nano (poly-p-phenylene terephthalamide) fiber, specifically including aramid 1313, aramid 1414 and polyparaphenylene Any one or a combination of two or more of the polymers modified by diformyl-p-phenylenediamide.
  • the three-dimensional porous network structure is composed of micropores below 2 nm, mesopores of 2-50 nm and macropores of 50 nm-500 ⁇ m.
  • the porosity of the three-dimensional porous network structure is 60%-99%, preferably 70%-99%, and the specific surface area is 100-1000m 2 /g.
  • the diameter of the in-situ hydrophobically modified aramid nano-airgel fiber is 10 ⁇ m-2 mm, preferably 50 ⁇ m-1 mm, especially preferably 50 ⁇ m-500 ⁇ m, and the aspect ratio is greater than 10.
  • the in-situ hydrophobically modified aramid nano-airgel fiber has low thermal conductivity (thermal conductivity lower than 50mW/(m ⁇ K)), excellent mechanical properties and certain spinnability.
  • the tensile strength of the in-situ hydrophobically modified aramid nano-airgel fiber is 3-35 MPa, and the elongation at break is 10-50%.
  • the contact angle between the surface of the in-situ hydrophobically modified aramid nano-airgel fiber and water can be adjusted between 90° and 150°, and the fabric woven with the hydrophobic fiber has a certain self-cleaning ability, and its The branch substitution degree is 0.01-20%.
  • hydrophobically modified aramid nano-airgel fibers provided by this application undergo sol-gel transformation in different coagulation bath compositions, and then the airgel fibers made by drying have different hydrophobic angles, represented by bromine Taking butane as an example, the hydrophobic angle can be adjusted between 90° and 150°.
  • the in-situ hydrophobically modified aramid nano-airgel fiber can be used as a carrier for functional materials, and further obtaining multifunctional airgel fibers has great application prospects.
  • the in-situ hydrophobically modified aramid nano-airgel fiber can be applied in the fields of oil-water separation, waterproof self-cleaning fabrics, composite materials, hydrophobic fiber flakes, filter materials, and thermal insulation materials.
  • the in-situ hydrophobically modified aramid nano-airgel fibers can be used to make hydrophobic airgel fibers and flocs thereof on a large scale, and the flocs are suitable for common liquids, such as red wine, coffee, milk, fruit juice , tea, cola, etc. show non-stick characteristics and good hydrophobic performance.
  • the use of the in-situ hydrophobically modified aramid nano-airgel fiber specifically includes:
  • the in-situ hydrophobically modified aramid nano-airgel fiber uses aramid nano-materials as a skeleton, so it exhibits good mechanical strength and excellent flexibility, and has certain spinnability; and the made Hydrophobic fabrics can not only meet practical applications, but also have the ability of self-cleaning, so they can be widely used in the textile field;
  • the open-pore structure of the in-situ hydrophobically modified aramid nano-airgel fiber can be applied to oil-water separation, waterproof self-cleaning fabrics, composite materials, hydrophobic fiber flakes, filter materials, heat insulation materials, etc. or Various fields of application, but not limited thereto.
  • the in-situ hydrophobically modified aramid nano-airgel fiber provided by this application has a three-dimensional network structure with open pores and a stable skeleton structure. , filter materials, thermal insulation materials and other fields have great application prospects.
  • Figure 1 shows the SEM photo of the hydrophobically modified aramid nano-airgel fiber obtained in this example
  • Figure 2 shows the contact angle of the hydrophobically modified aramid nano-airgel fiber obtained in this example.
  • Table 1 shows the SEM photo of the hydrophobically modified aramid nano-airgel fiber obtained in this example.
  • Fig. 3 shows the contact angle of the aramid nano-airgel fiber after hydrophobic modification obtained in this example.
  • Table 1 For other parameters of the hydrophobically modified aramid nano-airgel fibers obtained in this example, please refer to Table 1.
  • Fig. 4 shows the contact angle of the aramid nano-airgel fiber after hydrophobic modification obtained in this example.
  • Fig. 5 shows the photo of the hydrophobically modified aramid nano-airgel fiber flakes obtained in this example not sticking to common liquids.
  • the fiber pore volume after drying is 0.28cm3/g, the tensile strength is 6MPa, the elongation at break is 23%, and the contact angle with water is 67°.
  • the comparative example without hydrophobic modification has the characteristics of hydrophilicity, and the contact angle is 67°; while the contact angle of the fiber obtained in Example 1 after modification is significantly improved, as shown in Table 1, it is 125° °, has a good hydrophobic effect.
  • the in-situ hydrophobically modified aramid nano-airgel fiber obtained by the above-mentioned technical scheme of the present application has a continuous and stable three-dimensional porous network structure, high porosity, and good tensile strength and elongation at break, stable skeleton structure; and the preparation process is simple, the modification treatment can be completed in situ during the spinning process, no post-processing steps are required, the reaction conditions are mild, and it can be used for large-scale production; finally, the hydrophobic gas Gel fiber can be used as a carrier of functional materials, and further multifunctional airgel fibers can be obtained, which has great application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

一种原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用。所述制备方法包括:提供芳纶纳米纺丝溶液;采用纺丝技术制备疏水改性芳纶纳米凝胶纤维,所述纺丝技术采用的凝固浴包括第一有机溶剂和卤代试剂,所述卤代试剂包括一溴代烷烃、一氯代烷烃、二溴代烷烃、二氯代烷烃、三氯代烷烃等;再进行干燥处理,获得原位疏水改性芳纶纳米气凝胶纤维。该方案制备的原位疏水改性芳纶纳米气凝胶纤维具有独特的三维多孔网络结构、较低的热导率、较高孔隙率、较高的拉伸强度和断裂伸长率,一定的可纺性和结构稳定性,可应用于纺织领域,用该疏水纤维编织的织物具有自清洁能力,还可制作疏水芳纶纳米气凝胶纤维絮片,表现出良好疏水性能。

Description

原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用
本申请基于并要求于2021年8月2日递交的申请号为202110880290.3、发明名称为“原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用”的中国专利申请的优先权。
技术领域
本申请涉及一种新型的功能性纤维及其改性制备方法,尤其涉及一种在纺丝过程中原位疏水改性的芳纶纳米气凝胶纤维及其制备方法与应用,属于纳米多孔材料及功能纤维技术领域。
背景技术
随着科技的发展,气凝胶材料已经在很多方面得到应用,它是由胶体粒子或高聚物分子相互聚积成网络结构的纳米多孔性固体材料,其分散介质为气体。一般气凝胶材料具有极低的表观密度、较大的比表面积、高孔隙率和低热导率。最重要的是气凝胶材料具有丰富的介孔结构,孔径为2-50nm的介孔是理想的功能化材料载体,但也正是由于多孔结构的存在,气凝胶的力学性能一般较差且脆性大,目前最常见的气凝胶形态为块状,获取连续纤维状的气凝胶(也就是气凝胶纤维)在技术上难度很大。
前期已经报道过芳纶纳米气凝胶纤维,它是由芳纶纳米纤维堆积成三维网络结构,芳纶纳米纤维是一类由纳米级别聚对苯二甲酰胺(PPTA)组成的一维有机纳米材料,是最强的高分子材料之一。它们不仅具有特征的纳米结构,具有大的纵横比和比表面积,而且还保持了由PPTA纤维衍生的优异的机械、化学和耐热性能,这使得它们在构建先进复合材料方面发挥着重要的“积木”作用,具有巨大的潜力。芳纶纳米气凝胶纤维具有相对优秀的力学性能,同时具有较高的比表面积和大的孔隙率,是目前最接近实际应用的气凝胶纤维。但是由于芳纶结构中大量酰胺键的存在,该气凝胶纤维是亲水的,一般接触角约为67°,必须保证在干燥无水的环境中使用,否则气凝胶的多孔结构在常温常压下很容易吸水造成骨架收缩坍塌,因此很有必要对芳纶纳米气凝胶纤维进行疏水改性。
目前报道过使用氟碳对纤维表面疏水改性,但是在使用过程中氟碳易脱落造成性能不持久,而且属于后处理工艺,造成制备比较复杂。因此,在不破坏多孔材料本体性能的情况下,原位实现多孔材料的疏水改性具有一定挑战。
发明内容
本申请的主要目的在于提供一种在纺丝过程中原位疏水改性芳纶纳米气凝胶纤维及其制备方法,以克服现有技术中的不足。
本申请的另一目的还在于提供所述原位疏水改性芳纶纳米气凝胶纤维的应用。
为实现前述发明目的,本申请采用的技术方案包括:
本申请实施例提供了一种原位疏水改性芳纶纳米气凝胶纤维的制备方法,其包括:
提供芳纶纳米纺丝溶液;
采用纺丝技术制备疏水改性芳纶纳米凝胶纤维,所述纺丝技术采用的凝固浴包括第一有机溶剂和卤代试剂的组合,所述卤代试剂包括一溴代烷烃、一氯代烷烃、二溴代烷烃、二氯代烷烃、三氯代烷烃中的任意一种或两种以上的组合;
对所述疏水改性芳纶纳米凝胶纤维进行干燥处理,获得原位疏水改性芳纶纳米气凝胶纤维。
在一些实施例中,所述卤代试剂与第一有机溶剂的体积比为20∶1~1∶20。
本申请实施例还提供了由前述方法制备的原位疏水改性芳纶纳米气凝胶纤维,它具有连通的三维多孔网络结构,所述三维多孔网络结构由接枝改性的芳纶纳米结构搭接而成,所述芳纶纳米结构的尺寸为8nm~300nm。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维的热导率低于50mW/(m·K)。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维的拉伸强度为3~35MPa,断裂伸长率为10~50%。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维表面与水的接触角为90°~150°,接枝取代度为0.01~20%。
相应的,本申请实施例还提供了所述原位疏水改性芳纶纳米气凝胶纤维于油水分离、防水自清洁面料、复合材料、疏水纤维絮片、过滤材料或隔热保温材料等领域中的应用。
与现有技术相比,本申请的优点包括:
1)本申请提供的疏水改性芳纶纳米气凝胶纤维具有独特的三维多孔网络结构、较低的热导率、较高孔隙率、较高的拉伸强度和断裂伸长率,一定的可纺性和优异的骨架结构稳定性,可以满足实际应用,如应用于纺织等领域中等,用该疏水纤维编织的织物具有一定的自清洁能力。本申请提供的疏水改性的芳纶纳米气凝胶纤维进一步可作为功能材料材料的载体,得到多功能的气凝胶纤维具有巨大的应用前景;
2)本申请提供的疏水改性的芳纶纳米气凝胶纤维的制备工艺简单,在纺丝或打印过程原位即可一步完成改性处理,无需后处理步骤,反应条件温和。另外,本申请提供的疏水改性方法可以实现大规模制作疏水的芳纶纳米气凝胶纤维及气凝胶纤维絮片,该絮片对于常见的液体,如红酒、咖啡、牛奶、果汁、茶、可乐等表现出不沾的特点,表现良好的疏水性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1所获原位疏水改性芳纶纳米气凝胶纤维的扫描电子显微镜图片;
图2是本申请实施例1所获原位疏水改性芳纶纳米气凝胶纤维的接触角照片;
图3是本申请实施例2所获原位疏水改性芳纶纳米气凝胶纤维的接触角照片;
图4是本申请实施例3所获原位疏水改性芳纶纳米气凝胶纤维的接触角照片;
图5是本申请实施例5所获原位疏水改性芳纶纳米气凝胶纤维絮片的对常见液体不沾的图片。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案。本案发明人在实验中意外发现,对苯二甲酰胺(PPTA)溶解分散在有机碱性溶剂中,分子链上会产生很多N-反应位点,这些活性位点为接枝改性反应的发生提供了可能。一方面卤代烃类试剂就很容易在碱性条件下与N-发生亲核取代反应,提供了接枝改性的可能;另一方面当足够的烷烃被接枝上去由于自身的疏水性质,会使得整个芳纶纳米纤维在宏观上具有一定的疏水性能,这样就可以利用化学反应过程实现芳纶纤维的原位疏水改性。
如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本申请实施例的一个方面提供的一种在纺丝过程中原位疏水改性芳纶纳米气凝胶纤维的制备方法包括:
提供芳纶纳米纺丝溶液;
采用纺丝技术制备疏水改性芳纶纳米凝胶纤维,所述纺丝技术采用的凝固浴包括第一有机溶剂和卤代试剂的组合,所述卤代试剂包括一溴代烷烃、一氯代烷烃、二溴代烷烃、二氯 代烷烃、三氯代烷烃中的任意一种或两种以上的组合;
对所述疏水改性芳纶纳米凝胶纤维进行干燥处理,获得原位疏水改性芳纶纳米气凝胶纤维。
在一些实施案例之中,所述制备方法具体包括如下步骤:
(1)提供芳纶纳米纺丝溶液;
(2)选择并调整纺丝凝固浴化学组成及比例;
(3)在特定的凝固浴中,通过一定的纺丝工艺,由芳纶纳米纺丝溶液制备疏水改性的芳纶纳米凝胶纤维;
(4)对所述疏水改性的芳纶纳米凝胶纤维进行特殊干燥处理,获得疏水化改性的芳纶纳米气凝胶纤维。
其中,在更为具体的典型实施案例之中,所述制备方法包括:
(1)选择合适的聚对苯二甲酰对苯二胺(商品名为芳纶纳米)材料,溶解配制成不同浓度的纺丝液,优选的,所用聚对苯二甲酰对苯二胺材料可以溶解于某种溶剂;
(2)选择合适的凝固浴组成,并调节合适的比例;
(3)将所述纺丝液通过纺丝技术在特定凝固浴中经过溶胶-凝胶转变得到疏水改性处理的芳纶纳米凝胶纤维;
(4)用一定配比的溶剂多次置换所述芳纶纳米凝胶纤维,得到醇凝胶纤维或水凝胶纤维;再将上述芳纶纳米凝胶纤维通过特殊干燥技术干燥后得到疏水改性的芳纶纳米气凝胶纤维。
进一步地,所述纺丝工艺所用凝固浴组成包括第一有机溶剂和卤代试剂按照一定比例混合。
在一些实施例中,所述卤代试剂与第一有机溶剂的体积比为20∶1~1∶20。
进一步地,所述卤代试剂可以包括溴代丁烷、二溴代丁烷等,但不限于此。
具体地,所述卤代试剂可以包括一溴丁烷、一溴乙烷、一氯乙烷、二溴丁烷、二氯丁烷、三氯甲烷等中的任意一种或两种以上的组合,但不限于此。
在一些实施例中,所述第一有机溶剂包括DMSO、甲醇、乙醇、丙醇、丁醇、甲酸、乙酸等中的任意一种或两种以上的组合,但不限于此。
在一些实施例中,所述芳纶纳米纺丝溶液组成为第二有机溶剂与聚对苯二甲酰对苯二胺高分子,所述有机溶剂的组成包括但不限于DMF、DMSO、NMP和甲醇等中的一种或两种以上的组合。
进一步地,所述聚对苯二甲酰对苯二胺高分子包括但不限于芳纶1313、芳纶1414(芳纶 纳米)以及聚对苯二甲酰对苯二胺改性高分子等中的任意一种或两种以上的组合。
进一步地,所述芳纶纳米纺丝溶液中聚对苯二甲酰对苯二胺高分子的浓度为1~30wt%。
进一步地,所述芳纶纳米纺丝溶还包括碱性物质。所述碱性物质包括KOH、NaOH、KTB(叔丁醇钾)等中的任意一种或两种以上的组合。对苯二甲酰胺(PPTA)溶解分散在有机碱性溶剂中,分子链上会产生很多N-反应位点,这些活性位点为接枝改性提供了可能。而且,卤代烃类试剂就很容易在碱性条件下与N-发生亲核取代反应,提供了接枝改性的可能。
作为优选方案之一,所述疏水改性芳纶纳米凝胶纤维的制备方法包括但不限于湿法纺丝技术和3D打印技术等中的任意一种或两种组合,尤其优选为湿法纺丝法。
作为优选方案之一,所述湿法纺丝技术包括:芳纶纳米纺丝溶液为选定浓度的高分子溶液,通过注射泵挤出纺丝液到凝固浴中,以及调整纺丝所用凝固浴的组成和比例,使芳纶纳米纺丝溶液中的聚对苯二甲酰对苯二胺高分子物理交联或/和化学交联形成疏水改性芳纶纳米凝胶纤维。
进一步地,所述湿法纺丝技术采用的工艺条件包括:提供选定浓度的芳纶纳米纺丝溶液,所述芳纶纳米纺丝溶液的浓度为1~30wt%;再通过注射泵挤出纺丝液到凝固浴中,所述挤出针头的直径为10μm~2mm。
进一步地,所述3D打印技术包括:采用一定浓度的芳纶纳米纺丝溶液作为打印墨水,于第二有机溶剂与卤代试剂的混合溶液为凝固浴环境中使打印出的纤维通过物理交联或化学交联形成疏水改性芳纶纳米凝胶纤维。
作为优选方案之一,所述制备方法包括:先采用易干燥溶剂多次置换所述疏水改性芳纶纳米凝胶纤维中的不易干燥溶剂,再对置换后的疏水改性芳纶纳米凝胶纤维进行干燥处理。
进一步地,所述易干燥溶剂包括水、甲醇、乙醇、叔丁醇、丙酮、环己烷和正己烷等中的任意一种或两种以上的组合,但不限于此。
作为优选方案之一,所述干燥处理包括超临界流体干燥法、真空冷冻干燥法和常压干燥法中的任意一种或两种以上的组合,优选为超临界流体干燥法,但不限于此。
进一步地,所述超临界流体干燥法包括:在特定流体的超临界环境下使用超临界流体置换疏水改性芳纶纳米凝胶纤维内部的液体成分,得到疏水改性芳纶纳米气凝胶纤维,所使用超临界流体包括但不限于超临界CO 2、超临界甲醇,超临界乙醇和超临界丙酮中的任意一种。
进一步地,所述真空冷冻干燥技术又称升华干燥,其包括:将疏水改性芳纶纳米凝胶纤维冷冻到冰点以下,然后在较高真空下使溶剂升华除去得到疏水改性芳纶纳米气凝胶纤维材料。
更进一步地,所述冷冻方法包括:预先于冷冻装置内冷冻和直接在干燥室内经迅速抽真空而冷冻。真空冷冻干燥冷阱温度为-80~-45℃,真空度小于0.1kPa,尤其优选为真空冷冻干燥法。
进一步地,所述常压干燥技术包括:将疏水改性芳纶纳米凝胶纤维材料放置于常压或较低真空下提高温度使溶剂挥发得到疏水改性芳纶纳米气凝胶纤维材料。
综上所述,本申请提供的疏水改性芳纶纳米气凝胶纤维的制备工艺简单,在纺丝或打印过程中即可原位完成改性处理,无需后处理步骤,反应条件温和,可以用来大规模生产,包括但不限于使用此改性方法大规模制作疏水的气凝胶纤维絮片。
本申请实施例的另一个方面提供了由前述方法制备的原位疏水改性芳纶纳米气凝胶纤维,它具有连通的三维多孔网络结构,所述三维多孔网络结构由接枝改性的芳纶纳米结构搭接而成,所述芳纶纳米结构的尺寸为8nm~300nm。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维的材质包括芳纶纳米(聚对苯二甲酰对苯二胺)纤维,具体包括芳纶1313、芳纶1414和聚对苯二甲酰对苯二胺改性高分子中的任意一种或两种以上的组合。
进一步地,所述三维多孔网络结构由2nm以下的微孔、2~50nm的介孔和50nm~500μm的大孔组成。
进一步地,所述三维多孔网络结构的孔隙率为60%~99%,优选为70%~99%,比表面积为100~1000m 2/g。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维的直径为10μm~2mm,优选为50μm~1mm,尤其优选为50μm~500μm,长径比大于10。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维较低的热导率(热导率低于50mW/(m·K))、优异的力学性能一定的可纺性。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维的拉伸强度为3~35MPa,断裂伸长率为10~50%。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维表面与水的接触角可在90°~150°之间调节,用该疏水纤维编织的织物具有一定的自清洁能力,其接枝取代度为0.01~20%。
更进一步地,本申请提供的疏水改性芳纶纳米气凝胶纤维,在不同凝固浴组成中经过溶胶-凝胶转变,再经过干燥制成的气凝胶纤维具有不同的疏水角度,以溴代丁烷为例,疏水角度可在90°~150°之间调节。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维可作为功能材料的载体,进一步得到 多功能的气凝胶纤维具有巨大的应用前景。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维可应用于油水分离、防水自清洁面料、复合材料、疏水纤维絮片、过滤材料、隔热保温材料等领域中的应用。
进一步地,所述原位疏水改性芳纶纳米气凝胶纤维可以用来大规模制作疏水的气凝胶纤维及其絮片,该絮片对于常见的液体,如红酒、咖啡、牛奶、果汁、茶、可乐等表现出不沾的特点,表现良好的疏水性能。
作为优选方案之一,所述原位疏水改性芳纶纳米气凝胶纤维的用途具体包括:
1)所述原位疏水改性芳纶纳米气凝胶纤维,因为使用芳纶纳米材料作为骨架,因此表现出良好的机械强度和极好的柔性,具备一定的可纺性;而且制成的疏水织物不仅可以满足实际应用场合,还具有自清洁的能力,因此可以广泛用于纺织领域;
2)该原位疏水改性芳纶纳米气凝胶纤维的三维网络结构赋予其极大的孔隙率与非常高的空气含量,用该方法制成的纤维絮片具有较低的导热系数,可以用作保温隔热材料;
3)所述原位疏水改性芳纶纳米气凝胶纤维的开孔结构可应用于油水分离,防水自清洁面料,复合材料,疏水纤维絮片,过滤材料,隔热保温材料等一种或多种应用领域,但不限于此。
藉由上述技术方案,本申请提供的原位疏水改性芳纶纳米气凝胶纤维具有开孔的三维网络结构、骨架结构稳定,在油水分离,防水自清洁面料,复合材料,疏水纤维絮片,过滤材料,隔热保温材料等领域中具有巨大的应用前景。
下面结合若干优选实施例及附图对本申请的技术方案做进一步详细说明,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件,或按照制造厂商所建议的条件。
实施例1
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KOH,溶解于DMSO中,形成1%的纺丝溶液;
(2)将纺丝液通过注射泵挤出到一溴丁烷∶乙醇(体积比)=1∶3的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为250μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为乙醇;
(4)将置换后的醇凝胶纤维放入超临界CO 2干燥机中,干燥直至纤维无溶剂成分存在。 图1示出了本实施例所得疏水改性后芳纶纳米气凝胶纤维的SEM照片,图2示出了本实施例所获得疏水改性后芳纶纳米气凝胶纤维的接触角。本实施例所得疏水改性后的芳纶纳米气凝胶纤维的其他参数请参见表1。
实施例2
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KOH,溶解于DMSO中,形成2%的纺丝液;
(2)将纺丝液通过注射泵挤出到二溴丁烷∶乙醇(体积比)=2∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为250μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为乙醇;
(4)将置换后的醇凝胶纤维放入超临界CO 2干燥机中,干燥直至纤维无溶剂成分存在。图3示出了本实施例所获得疏水改性后芳纶纳米气凝胶纤维的接触角。本实施例所得疏水改性后的芳纶纳米气凝胶纤维的其他参数请参见表1。
实施例3
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KOH,溶解于DMSO中,形成2%的纺丝液;
(2)将纺丝液通过注射泵挤出到二溴丁烷∶乙醇(体积比)=3∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为250μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为丙酮;
(4)将置换后的醇凝胶纤维放入超临界CO 2干燥机中,干燥直至纤维无溶剂成分存在。
图4示出了本实施例所获得疏水改性后芳纶纳米气凝胶纤维的接触角。
本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
实施例4
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KOH,溶解于NMP中,形成3%的纺丝液;
(2)将纺丝液通过注射泵挤出到一溴丁烷∶乙醇(体积比)=2∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为250μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为去离子水;
(4)将置换后的水凝胶纤维在-12℃下冷冻8小时后,放入真空冷冻干燥机中,干燥直至纤维无溶剂成分存在。本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
实施例5
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KTB,溶解于DMF中,形成1%的纺丝液;
(2)将纺丝液通过注射泵挤出到二氯丁烷∶乙醇(体积比)=2∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维絮片,其中挤出针头直径为250μm;
(3)对上述疏水改性芳纶纳米凝胶纤维絮片进行多次溶剂置换,置换溶剂为乙醇;
(4)将置换后的醇凝胶纤维絮片放入超临界CO 2干燥机中,干燥直至纤维无溶剂成分存在。图5示出了本实施例所得疏水改性后芳纶纳米气凝胶纤维絮片对于常见液体不沾的照片。
实施例6
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KOH,溶解于DMSO中,形成2%的纺丝液;
(2)将纺丝液通过注射泵挤出到一溴丁烷∶乙醇(体积比)=1∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为250μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为叔丁醇;
(4)将置换后的水凝胶纤维在-12℃下冷冻8小时后,放入真空冷冻干燥机中,冷阱温度为-50℃,干燥直至纤维无溶剂成分存在。本实施例所获得疏水改性后芳纶纳米气凝胶纤维的参数请参见表1。
实施例7
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KOH,溶解于DMSO中,形成8%的纺丝液;
(2)将纺丝液通过注射泵挤出到一溴乙烷∶甲醇(体积比)=2∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为300μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为乙醇;
(4)将置换后的醇凝胶纤维放入超临界CO 2干燥机中,干燥直至纤维无溶剂成分存在。本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
实施例8
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KOH,溶解于NMP中,形成10%的纺丝液;
(2)将纺丝液通过注射泵挤出到二氯丁烷∶乙醇(体积比)=1∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为500μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为乙醇;
(4)将置换后的醇凝胶纤维放入超临界乙醇干燥机中,干燥直至纤维无溶剂成分存在。本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
实施例9
(1)选择聚芳纶1313纤维,加入等量NaOH,溶解于DMSO中,形成5%的纺丝液;
(2)将纺丝液通过注射泵挤出到二氯丁烷∶乙醇(体积比)=20∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为10μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为乙醇;
(4)将置换后的醇凝胶纤维放入超临界CO 2干燥机中,干燥直至纤维无溶剂成分存在。本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
实施例10
(1)选择芳纶1414纤维,加入等量NaOH,溶解于DMSO中,形成2%的纺丝液;
(2)将纺丝液通过注射泵挤出到一溴丁烷∶二溴丁烷∶乙醇(体积比)=2∶2∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为2mm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为环己烷;
(4)将置换后的醇凝胶纤维放入超临界CO 2干燥机中,干燥直至纤维无溶剂成分存在。本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
实施例11
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KOH,溶解于DMSO中,形成8%的纺丝液;
(2)将纺丝液通过注射泵挤出到一氯乙烷∶甲醇(体积比)=2∶2的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为250μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为叔丁醇水溶液;
(4)将置换后的凝胶纤维放入真空冷冻干燥机中,冷阱温度为-45℃,干燥直至纤维无溶剂成分存在。本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
实施例12
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KTB,溶解于DMSO中,形成30%的纺丝液;
(2)将纺丝液通过注射泵挤出到二氯丁烷∶丙醇(体积比)=2∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为2mm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为叔丁醇;
(4)将置换后的凝胶纤维放入真空冷冻干燥机中,冷阱温度为-80℃,干燥直至纤维无溶剂成分存在。本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
实施例13
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KOH,溶解于DMF中,形成2%的纺丝液;
(2)将纺丝液通过注射泵挤出到二溴丁烷∶丁醇(体积比)=1∶20的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为250μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为甲醇;
(4)将置换后的醇凝胶纤维放入超临界CO 2干燥机中,干燥直至纤维无溶剂成分存在。本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
实施例14
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KTB,溶解于DMSO和甲醇中,形成15%的纺丝液;
(2)将纺丝液通过注射泵挤出到二溴丁烷∶甲酸(体积比)=1∶1的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为100μm;
(3对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为丙酮;
(4)将置换后的醇凝胶纤维放入超临界CO 2干燥机中,干燥直至纤维无溶剂成分存在,本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
实施例15
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KTB,溶解于DMF和甲醇中,形成10%的纺丝液;
(2)将纺丝液通过注射泵挤出到三氯甲烷∶乙酸(体积比)=1∶3的凝固浴中,反应形成疏水改性芳纶纳米凝胶纤维,其中挤出针头直径为500μm;
(3)对上述疏水改性芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为正己烷;
(4)将置换后的醇凝胶纤维放入60℃烘箱中,常压干燥直至纤维无溶剂成分存在。
本实施例所得疏水改性后的芳纶纳米气凝胶纤维的参数请参见表1。
表1.实施例1-15中所获得疏水改性芳纶纳米气凝胶纤维的结构与性能参数
Figure PCTCN2022085067-appb-000001
Figure PCTCN2022085067-appb-000002
对照例1
(1)选择聚对苯二甲酰对苯二胺纤维,加入等量KOH,溶解于DMSO中,形成1%的纺丝液;
(2)将纺丝液通过注射泵挤出到乙醇凝固浴中,反应形成芳纶纳米凝胶纤维,其中挤出针头直径为250μm;
(3)对上述芳纶纳米凝胶纤维进行多次溶剂置换,置换溶剂为乙醇;
(4)将置换后的醇凝胶纤维放入超临界CO 2干燥机中,干燥直至纤维无溶剂成分存在。
干燥后的纤维孔容为0.28cm3/g,拉伸强度6MPa,拉断伸长率为23%,与水的接触角为67°。
与前述实施例进行对比,未进行疏水改性的该对照例具有亲水的特点,接触角为67°;而改性后实施例1所获纤维的接触角显著提高,由表1可知为125°,具有很好的疏水效果。
通过实施例1-15,可以发现,本申请的上述技术方案获得的原位疏水改性的芳纶纳米气凝胶纤维具有连续稳定的三维多孔网络结构,较高孔隙率、良好的拉伸强度和断裂伸长率,骨架结构稳定性;且制备工艺简单,在纺丝过程原位即可完成改性处理,无需后处理步骤,反应条件温和,可以用来大规模生产;最后,该疏水气凝胶纤维可作为功能材料材料的载体, 进一步得到多功能的气凝胶纤维,具有巨大的应用前景。
此外,本案发明人还参照实施例1-实施例15的方式,以本说明书中列出的其他原料和条件进行了实验,并同样制得了具有独特连续三维多孔网络结构且骨架结构稳定性优异的疏水改性芳纶纳米气凝胶纤维。
应当理解,以上所述的仅是本申请的一些实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本申请的创造构思的前提下,还可以做出其它变形和改进,这些都属于本申请的保护范围。

Claims (10)

  1. 一种原位疏水改性芳纶纳米气凝胶纤维的制备方法,其特征在于包括:
    提供芳纶纳米纺丝溶液;
    采用纺丝技术制备疏水改性芳纶纳米凝胶纤维,所述纺丝技术采用的凝固浴包括第一有机溶剂和卤代试剂的组合,所述卤代试剂包括一溴代烷烃、一氯代烷烃、二溴代烷烃、二氯代烷烃、三氯代烷烃中的任意一种或两种以上的组合;
    对所述疏水改性芳纶纳米凝胶纤维进行干燥处理,获得原位疏水改性芳纶纳米气凝胶纤维。
  2. 根据权利要求1所述的制备方法,其特征在于:所述卤代试剂与第一有机溶剂的体积比为20∶1~1∶20;和/或,所述第一有机溶剂包括DMSO、甲醇、乙醇、丙醇、丁醇、甲酸、乙酸中的任意一种或两种以上的组合;和/或,所述卤代试剂包括一溴丁烷、一溴乙烷、一氯乙烷、二溴丁烷、二氯丁烷、三氯甲烷中的任意一种或两种以上的组合。
  3. 根据权利要求1所述的制备方法,其特征在于:所述芳纶纳米纺丝溶液包括第二有机溶剂与聚对苯二甲酰对苯二胺高分子;优选的,所述第二有机溶剂包括DMF、DMSO、NMP和甲醇中的任意一种或两种以上的组合;优选的,所述聚对苯二甲酰对苯二胺高分子包括芳纶1313、芳纶1414和聚对苯二甲酰对苯二胺改性高分子中的任意一种或两种以上的组合;优选的,所述芳纶纳米纺丝溶液中聚对苯二甲酰对苯二胺高分子的浓度为1~30wt%;
    优选的,所述芳纶纳米纺丝溶还包括碱性物质;优选的,所述碱性物质包括KOH、NaOH、叔丁醇钾中的任意一种或两种以上的组合。
  4. 根据权利要求1所述的制备方法,其特征在于:所述纺丝技术包括湿法纺丝技术和3D打印技术中的任意一种或两种的组合,优选为湿法纺丝技术。
  5. 根据权利要求4所述的制备方法,其特征在于,所述湿法纺丝技术包括:提供选定浓度的芳纶纳米纺丝溶液,以及控制凝固浴的组成,使芳纶纳米纺丝溶液中的聚对苯二甲酰对苯二胺高分子交联形成疏水改性芳纶纳米凝胶纤维;
    优选的,所述湿法纺丝技术采用的工艺条件包括:所述芳纶纳米纺丝溶液的浓度为1~30wt%,通过注射泵挤出纺丝液到凝固浴中,所述挤出针头的直径为10μm~2mm。
  6. 根据权利要求4所述的制备方法,其特征在于,所述3D打印技术包括:采用芳纶纳米纺丝溶液作为打印墨水,于第二有机溶剂与卤代试剂的混合溶液为凝固浴环境中使打印出的纤维通过物理交联或化学交联形成疏水改性芳纶纳米凝胶纤维。
  7. 根据权利要求1所述的制备方法,其特征在于包括:先采用易干燥溶剂置换所述疏水 改性芳纶纳米凝胶纤维中的不易干燥溶剂,再对置换后的疏水改性芳纶纳米凝胶纤维进行干燥处理,优选的,所述易干燥溶剂包括水、甲醇、乙醇、叔丁醇、丙酮、环己烷和正己烷中的任意一种或两种以上的组合;
    和/或,所述干燥处理包括超临界流体干燥法、真空冷冻干燥法和常压干燥法中的任意一种或两种以上的组合。
  8. 由权利要求1-7中任一项所述方法制备的原位疏水改性芳纶纳米气凝胶纤维,它具有连通的三维多孔网络结构,所述三维多孔网络结构由接枝改性的芳纶纳米结构搭接而成,所述芳纶纳米结构的尺寸为8nm~300nm;优选的,所述三维多孔网络结构由2nm以下的微孔、2~50nm的介孔和50nm~500μm的大孔组成;优选的,所述三维多孔网络结构的孔隙率为60%~99%,优选为70%~99%,比表面积为100~1000m 2/g;优选的,所述原位疏水改性芳纶纳米气凝胶纤维的直径为10μm~2mm,优选为50μm~1mm,尤其优选为50μm~500μm,长径比大于10;优选的,所述原位疏水改性芳纶纳米气凝胶纤维的热导率低于50mW/(m·K),拉伸强度为3~35MPa,断裂伸长率为10~50%。
  9. 根据权利要求8所述的原位疏水改性芳纶纳米气凝胶纤维,其特征在于:所述原位疏水改性芳纶纳米气凝胶纤维表面与水的接触角为90°~150°,其接枝取代度为0.01~20%。
  10. 权利要求8或9所述的原位疏水改性芳纶纳米气凝胶纤维于油水分离、防水自清洁面料、复合材料、疏水纤维絮片、过滤材料或隔热保温材料领域中的应用。
PCT/CN2022/085067 2021-08-02 2022-04-02 原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用 WO2023010876A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22839609.9A EP4170087A1 (en) 2021-08-02 2022-04-02 Aramid nano-aerogel fiber hydrophobically modified in situ, and preparation method therefor and use thereof
JP2022563210A JP7448261B2 (ja) 2021-08-02 2022-04-02 原位置疎水性変性アラミドナノエアロゲル繊維、その製造方法及び使用
US18/011,536 US11828004B2 (en) 2021-08-02 2022-04-02 In-situ hydrophobically modified aramid nano aerogel fiber as well as preparation method and uses thereof
US18/378,677 US20240200231A1 (en) 2021-08-02 2023-10-11 In-situ hydrophobically modified aramid nano aerogel fiber and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110880290.3A CN113463375B (zh) 2021-08-02 2021-08-02 原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用
CN202110880290.3 2021-08-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US18/011,536 A-371-Of-International US11828004B2 (en) 2021-08-02 2022-04-02 In-situ hydrophobically modified aramid nano aerogel fiber as well as preparation method and uses thereof
US18/378,677 Division US20240200231A1 (en) 2021-08-02 2023-10-11 In-situ hydrophobically modified aramid nano aerogel fiber and uses thereof

Publications (1)

Publication Number Publication Date
WO2023010876A1 true WO2023010876A1 (zh) 2023-02-09

Family

ID=77883502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/085067 WO2023010876A1 (zh) 2021-08-02 2022-04-02 原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用

Country Status (5)

Country Link
US (2) US11828004B2 (zh)
EP (1) EP4170087A1 (zh)
JP (1) JP7448261B2 (zh)
CN (1) CN113463375B (zh)
WO (1) WO2023010876A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113463375B (zh) * 2021-08-02 2022-09-20 中国科学院苏州纳米技术与纳米仿生研究所 原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用
CN114481680B (zh) * 2022-03-10 2023-08-22 咸宁优维科技有限公司 一种芳纶纤维材料的制备方法及气凝胶和抽滤膜材料
CN115073803B (zh) * 2022-07-08 2023-09-29 东华大学 一种高韧性芳纶气凝胶纤维及其制备方法及应用
CN115522285B (zh) * 2022-09-19 2023-10-17 中国科学院苏州纳米技术与纳米仿生研究所 一种芳香族聚酰胺气凝胶纤维的制备方法
CN115368625B (zh) * 2022-09-23 2023-07-25 中国科学院苏州纳米技术与纳米仿生研究所 一种芳纶辅助的聚乙烯醇气凝胶、其制备方法及应用
CN116102774A (zh) * 2022-12-27 2023-05-12 东华大学 一种聚对苯二甲酰对苯二胺ppta气凝胶及其制备方法
CN116005286B (zh) * 2023-02-03 2024-06-04 中国科学院苏州纳米技术与纳米仿生研究所 一种气凝胶纤维的制备方法及应用
CN117779230B (zh) * 2024-02-23 2024-05-17 山东华诚高科胶粘剂有限公司 一种气凝胶纤维的制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190062517A1 (en) * 2015-02-05 2019-02-28 Aerogel Technologies, Llc Systems and methods for producing aerogel material
US20190085139A1 (en) * 2015-12-30 2019-03-21 The Regents Of The University Of Michigan Gels and nanocomposites containing anfs
CN110257946A (zh) * 2019-05-28 2019-09-20 江苏康溢臣生命科技有限公司 一种气凝胶纤维及其制备方法
CN110468461A (zh) * 2018-05-10 2019-11-19 中国科学院苏州纳米技术与纳米仿生研究所 聚酰胺气凝胶纤维、其制备方法及应用
CN110982111A (zh) * 2019-12-16 2020-04-10 中国科学院苏州纳米技术与纳米仿生研究所 3d打印芳纶气凝胶、其制备方法及应用
CN110982114A (zh) * 2019-12-11 2020-04-10 中国科学院苏州纳米技术与纳米仿生研究所 芳纶/碳纳米管杂化气凝胶薄膜、其制备方法及应用
CN113463375A (zh) * 2021-08-02 2021-10-01 中国科学院苏州纳米技术与纳米仿生研究所 原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0284508A (ja) * 1988-06-14 1990-03-26 Asahi Chem Ind Co Ltd 吸湿性の改良されたパラ配向芳香族ポリアミド繊維の製造法
EP0585456B1 (en) * 1992-02-18 1997-05-07 Matsushita Electric Works Ltd Process for producing hydrophobic aerogel
JP6398721B2 (ja) 2012-10-17 2018-10-03 凸版印刷株式会社 マルチマイクロニードルデバイス使用流体注入器操作器具
US10801131B2 (en) 2016-05-24 2020-10-13 The Johns Hopkins University Electrospinning aramid nanofibers
CN106977763B (zh) * 2017-04-20 2019-10-08 哈尔滨工业大学 一种芳纶纳米纤维气凝胶的制备方法
CN111593578A (zh) 2019-02-20 2020-08-28 江苏唐工纺实业有限公司 一种超疏水芳纶织物的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190062517A1 (en) * 2015-02-05 2019-02-28 Aerogel Technologies, Llc Systems and methods for producing aerogel material
US20190085139A1 (en) * 2015-12-30 2019-03-21 The Regents Of The University Of Michigan Gels and nanocomposites containing anfs
CN110468461A (zh) * 2018-05-10 2019-11-19 中国科学院苏州纳米技术与纳米仿生研究所 聚酰胺气凝胶纤维、其制备方法及应用
CN110257946A (zh) * 2019-05-28 2019-09-20 江苏康溢臣生命科技有限公司 一种气凝胶纤维及其制备方法
CN110982114A (zh) * 2019-12-11 2020-04-10 中国科学院苏州纳米技术与纳米仿生研究所 芳纶/碳纳米管杂化气凝胶薄膜、其制备方法及应用
CN110982111A (zh) * 2019-12-16 2020-04-10 中国科学院苏州纳米技术与纳米仿生研究所 3d打印芳纶气凝胶、其制备方法及应用
CN113463375A (zh) * 2021-08-02 2021-10-01 中国科学院苏州纳米技术与纳米仿生研究所 原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用

Also Published As

Publication number Publication date
EP4170087A1 (en) 2023-04-26
JP2023536381A (ja) 2023-08-25
US11828004B2 (en) 2023-11-28
CN113463375B (zh) 2022-09-20
JP7448261B2 (ja) 2024-03-12
US20230212789A1 (en) 2023-07-06
CN113463375A (zh) 2021-10-01
US20240200231A1 (en) 2024-06-20

Similar Documents

Publication Publication Date Title
WO2023010876A1 (zh) 原位疏水改性芳纶纳米气凝胶纤维及其制备方法与应用
CN110982114B (zh) 芳纶/碳纳米管杂化气凝胶薄膜、其制备方法及应用
CN110468461B (zh) 聚酰胺气凝胶纤维、其制备方法及应用
Yang et al. Timesaving, high-efficiency approaches to fabricate aramid nanofibers
JP2018524482A (ja) グラフェン繊維不織布及びその製造方法
US20210046445A1 (en) Free-standing porous carbon fibrous mats and applications thereof
CN108607365B (zh) 一种膜蒸馏用超疏水纳米纤维复合膜及其制备方法
Yang et al. Evaluation of membrane preparation method on the performance of alkaline polymer electrolyte: Comparison between poly (vinyl alcohol)/chitosan blended membrane and poly (vinyl alcohol)/chitosan electrospun nanofiber composite membranes
Yang et al. Polymer blend techniques for designing carbon materials
CN110983490B (zh) 透明度与疏水性可调的二氧化硅气凝胶纤维、制法及应用
CN112980044B (zh) 一种高性能大块芳纶纳米纤维气凝胶及其制备方法和应用
JP2020122253A (ja) 多孔性カーボンナノファイバー及びその製造方法
WO2021179232A1 (zh) 一种溶剂塑化发泡制备气凝胶的方法
CN113527753B (zh) 一种常压制备的生物基泡沫材料及其制备方法和应用
CN112500565B (zh) 一种功能化交联型聚酰亚胺气凝胶隔热材料的制备方法
CN114350010B (zh) 纳米纤维增强、半互穿网络结构聚酰亚胺复合气凝胶及其制备方法
CN114907609A (zh) 一种超弹芳纶纳米纤维气凝胶、其制备方法及应用
CN114773684A (zh) 一种化学交联的纤维素基复合泡沫及其制备方法和应用
CN114989606A (zh) 一种轻质聚酰亚胺气凝胶防寒保暖材料、制备方法及应用
CN115522285B (zh) 一种芳香族聚酰胺气凝胶纤维的制备方法
Kim et al. Preparation of polyacrylonitrile nanofibers as a precursor of carbon nanofibers by supercritical fluid process
CN102704351B (zh) 一种碳纳米管无纺布的制备方法
CN112500605A (zh) MnO2纤维/CNT@聚苯并噁嗪气凝胶及其制备方法
CN108751170B (zh) 一种多孔层状石墨烯框架材料及其制备方法和应用
KR20200117903A (ko) 그래핀계 섬유 및 이의 제조방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022563210

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022839609

Country of ref document: EP

Effective date: 20230117

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22839609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE