WO2023010773A1 - Cof保护的电解制氢电极的制备方法 - Google Patents

Cof保护的电解制氢电极的制备方法 Download PDF

Info

Publication number
WO2023010773A1
WO2023010773A1 PCT/CN2021/140999 CN2021140999W WO2023010773A1 WO 2023010773 A1 WO2023010773 A1 WO 2023010773A1 CN 2021140999 W CN2021140999 W CN 2021140999W WO 2023010773 A1 WO2023010773 A1 WO 2023010773A1
Authority
WO
WIPO (PCT)
Prior art keywords
cof
protective layer
film
organic
substrate
Prior art date
Application number
PCT/CN2021/140999
Other languages
English (en)
French (fr)
Inventor
张畅
王金意
任志博
王鹏杰
徐显明
张欢
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Priority to US18/256,075 priority Critical patent/US11965257B2/en
Publication of WO2023010773A1 publication Critical patent/WO2023010773A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • C25B11/085Organic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present application relates to the technical field of electrolytic hydrogen production, in particular to a method for preparing a COF-protected electrode and the prepared electrode.
  • Non-precious metal HER catalysts have poor stability under acidic conditions, which limits the scope of application. Therefore, the stability of the catalytic metal plate on the electrode in the electrolytic hydrogen production is poor.
  • Using carbon layer coating for protection is a commonly used strategy at present.
  • the formation process of the carbon layer is often accompanied by high-temperature calcination, which will have an adverse effect on the electrode activity; from the perspective of increasing proton conduction, enhancing stability, and interfacial charge synergy, it is still not common to regulate the structure of the protective layer itself.
  • Adaptation rules can be followed; for shaped electrodes, it is difficult to obtain a protective layer that can be peeled off and assembled freely.
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • the COF film/protective layer film is transferred to the electrode surface, and the protective layer is removed.
  • the organic skeleton and the small molecule organic acid are added in a molar ratio of 0.5-1:1.
  • the organic skeleton is selected from monocyclic or polycyclic aromatic substances, heterocycles, and derivatives modified by various groups.
  • the small molecule organic acid is one of sulfonic acid organic compounds, phosphoric acid organic compounds, amino organic compounds, silicic acid organic compounds or boric acid organic compounds.
  • the ratio between the mass of the organic framework and the small molecule organic acid and the volume of the solvent is 10-30 g: 1 L.
  • the solvent is prepared by mixing a strong polar solvent and a weak polar solvent at a volume ratio of 1:0-5.
  • the volume ratio of the polar aqueous solution to the solvent is 1:4-6.
  • the content of the substrate in the polar aqueous solution is 20-60 g/L.
  • the polar aqueous solution is an aqueous solution of small molecule alcohols or acidic organic substances, with a carbon content not greater than 4, and organic substances and water are added in a volume ratio of 1-2:1 in the aqueous solution of organic substances.
  • the substrate is one of an inert organic material, an inorganic oxide or a metal.
  • the method further comprises: pre-treating the substrate, the pre-treating comprising:
  • the soaked substrate is washed with water and then dried.
  • the heating temperature is 100-150° C.
  • the heating time is 72 hours.
  • the formed precipitate is collected by filtration, and residual monomers are removed with an organic solvent.
  • the protective layer material is polymethyl methacrylate, polysulfone, polyether, polytetrafluoroethylene or Nafion membrane solution.
  • the protective layer has a thickness of 10-100 nm.
  • the thickness of the COF film is 10-100 nm.
  • the etching away the substrate includes: immersing the substrate/COF/protective layer film in an etching solution for 12-24 hours, and then washing with water and ethanol solution for 2-3 times respectively.
  • the removing the protective layer includes: soaking and washing the protective layer/COF membrane/electrode in an organic solvent for 2-3 times, and then washing with ethanol and deionized water for 2-3 times respectively.
  • the method further includes: vacuum-drying the obtained COF membrane/electrode at 80-120° C. for 1-3 hours, so as to remove residual liquid between the COF membrane and the electrode.
  • an electrode is proposed, which is prepared by the above-mentioned method for preparing a COF-protected electrode.
  • FIG. 1 is a flowchart of a method for preparing a COF-protected electrode according to an embodiment of the present application.
  • Fig. 2 is a flowchart of a method for preparing a COF-protected electrode according to another embodiment of the present application.
  • this application coats one side of the electrode surface with a COF (covalent organic framework) film, through which the COF film can effectively protect the electrode, and the specific preparation of the electrode protected by the COF film
  • COF covalent organic framework
  • the purpose of this application is to propose a method for preparing a COF-protected electrode, wherein the electrode can be an electrolytic hydrogen production electrode.
  • the electrode can be an electrolytic hydrogen production electrode.
  • COF has good proton transport ability, which can effectively transfer protons from the electrolyte to the surface of the metal particles while coating and protecting the internal metal without affecting the metal.
  • the catalytic performance of the particles, and the coating layer formed on the surface of the metal plate can avoid the passivation of the internal active layer during use and improve the HER catalytic effect.
  • the present application proposes a method for preparing a COF-protected electrode. As shown in Figure 1, the method includes:
  • a protective layer is applied to protect the COF film during the substrate etching process and prevent the COF film from degrading under the action of the substrate etchant.
  • the obtained COF membrane/electrode system is vacuum-dried at 80-120° C. for 1-3 hours, so as to drive off the residual liquid between the COF membrane and the electrode, and make the COF membrane fully contact with the electrode surface.
  • the substrate-loaded COF film is prepared by reacting on the substrate, and then the substrate is etched away to form a free COF film.
  • the COF film is directly attached to the surface of the metal plate of the electrode, which plays a protective role and can protect the electrode from Corroded by the acidic environment, it can avoid the passivation of the internal active layer during use, so as to maintain stable catalytic performance in the long-term work; the carbon skeleton of the COF film can introduce various coordination atoms such as S, P, N, B, etc.
  • the multi-level porous structure of COF is conducive to good gas diffusion, it can avoid the additional resistance caused by the accumulation of gas on the electrode surface, and can improve the electrocatalytic reaction effect;
  • the multi-level pore structure of COF makes the proton pass rate high and has little effect on the catalytic performance of the core metal plate, and because COF has good proton transport ability, it can effectively transfer protons from the electrolyte while coating and protecting the internal metal to the surface of the metal particles without affecting the catalytic performance of the metal particles.
  • the organic skeleton and the small molecule organic acid are added in a molar ratio of 0.5-1:1.
  • the organic skeleton is a monocyclic or polycyclic aromatic-based substance and its heterocyclic, derivatives modified by various groups, that is, the organic skeleton is a monocyclic aromatic-based substance, a polycyclic aromatic-based substance, a heterocyclic Derivatives of modified monocyclic aromatic substances, derivatives of heterocyclic modified polycyclic aromatic substances, derivatives of monocyclic aromatic substances modified by various groups, polycyclic aromatic substances modified by various groups one of its derivatives.
  • the organic skeleton may be organic substances such as benzenes, anthracenes, phenols, pyridines, pyrimidines, and triazines.
  • the small molecule organic acid is one of sulfonic acid organic compounds, phosphoric acid organic compounds, amino organic compounds, silicic acid organic compounds or boric acid organic compounds.
  • the COF membrane is to build an ordered porous structure with carbon and oxygen connected by covalent bonds.
  • the precursor unit organic framework and the type of small molecule organic acid
  • the COF membrane can be Doping nitrogen, sulfur, phosphorus, and boron elements can realize the regulation of local electron density distribution and enhance the charge transfer effect by doping heteroatoms, thereby promoting the electrocatalytic performance of HER.
  • the ratio between the mass of the organic framework and the small molecule organic acid and the volume of the solvent is 10-30 g: 1 L.
  • the solvent is prepared by mixing a strong polar solvent and a weak polar solvent at a volume ratio of 1:0-5.
  • the solvent is a common organic solvent, such as nitriles, alcohols, acids, esters, amines, alkyl halides, benzene and their derivatives.
  • the adjustment of the COF membrane structure can be realized by adjusting the type and content ratio of organic framework and small molecule organic acid.
  • the thickness of the COF film can be adjusted by adjusting the ratio between the mass of the organic framework and the small molecule organic acid and the volume of the solvent, and then the adjustment of the charge transfer effect of the COF film can be realized, so that the COF film can not only have a higher protective effect on the electrode,
  • the composition and thickness of the film skeleton are highly adjustable, and can be designed according to the chemical properties and physical morphology of the core metal sheet to achieve the purpose of interface regulation and enhanced HER charge transport.
  • the volume ratio of the polar aqueous solution to the solvent is 1:4-6.
  • the content of the substrate in the polar aqueous solution is 20-60 g/L.
  • the polar aqueous solution is an aqueous solution of small molecule alcohols or acidic organic substances, with a carbon content not greater than 4, and organic substances and water are added in a volume ratio of 1-2:1 in the aqueous solution of organic substances.
  • the substrate is one of inert organic materials, inorganic oxides or metals, such as polymethyl methacrylate, polydimethylsiloxane, silicon dioxide, silicon wafers, copper wafers etc.
  • the substrate provides space for COF growth and film formation, is cheap, has a certain affinity with the COF preparation precursor, and is easy to remove.
  • the method of the present application further includes: S206, performing pretreatment on the substrate.
  • Steps S201-S205 in FIG. 2 are basically the same as steps S101-S105 in FIG. 1 , and will not be repeated here.
  • the above pretreatment includes: cleaning the base material with water and organic solvent in sequence; pickling under heating conditions; the heating temperature can be selected at 80-120 ° C, and then washing with water, washing 2-3 times during the washing process, Then soak in an acetone solution of 3-aminopropyltrimethoxysilane under an inert atmosphere (argon, nitrogen); wash the soaked base material with water and then dry it. During the drying process, vacuum drying can be used.
  • the heating temperature is 100-150° C.
  • the heating time is 72 hours.
  • the formed precipitate is collected by filtration, and residual monomers are removed with an organic solvent.
  • the organic solvent is a combination of 1-2 weak polar solvents and 1-2 strong polar solvents, such as nitriles, alcohols, acids, esters, amines, haloalkanes, benzenes and their derivatives.
  • the protective layer material is polymethyl methacrylate, polysulfone, polyether, polytetrafluoroethylene or Nafion membrane solution; it has good stability in the etching environment and can protect the COF Unaffected by etchant degradation.
  • the thickness of the protective layer is 10-100nm; the thickness of the COF film is 10-100nm. The setting of the thickness of the protective layer can not only play the role of strict protection, but also save the material of the protective layer, which is convenient for the subsequent removal of the protective layer.
  • the etching away the substrate includes: immersing the substrate/COF/protective layer film in an etching solution for 12-24 hours, and then washing with water and ethanol solution for 2-3 times respectively.
  • the etching solution is a strong acid solution, 2% HF aqueous solution or aqua regia solution can be selected.
  • removing the protective layer includes: soaking and washing the protective layer/COF membrane/electrode in an organic solvent for 2-3 times, and then washing with ethanol and deionized water for 2-3 times respectively.
  • the organic solvent is a common organic solvent, such as nitriles, alcohols, acids, esters, amines, haloalkanes, benzenes and derivatives thereof.
  • Another aspect of the present application also proposes an electrode prepared by the above-mentioned method for preparing a COF-protected electrode.
  • Pretreatment of the substrate select silicon wafers as the substrate, wash with water, ethanol, and ethyl acetate in sequence; wash with 98% concentrated sulfuric acid under heating conditions, and the temperature is 80-120°C; after fully washing 2-3 times, in Soak in acetone solution of 3-aminopropyltrimethoxysilane under an inert atmosphere (such as argon, nitrogen) for 2-3 days; finally fully wash with water and dry in vacuum;
  • an inert atmosphere such as argon, nitrogen
  • Synthesize COF film on the surface of the substrate Add the organic framework 2,4,6-triformylphloroglucinol and the small molecule organic acid 2,5-diaminobenzenesulfonic acid into a heat-resistant container at a molar ratio of 0.5:1 At the same time, add solvent (n-butanol and o-dichlorobenzene mixed according to the volume ratio of 1:1) to the heat-resistant container, and control the addition of 2,4,6-triformylphloroglucinol and The mass sum of 2,5-diaminobenzenesulfonic acid is 15g, then the base material after pretreatment in step S1 is added in the ethanol aqueous solution (the volume ratio of ethanol and water is 1:1), controls the pretreatment in the polar aqueous solution The content of base material is 30g/L, then the ethanol aqueous solution containing base material is added in the heat-resistant container, the volume ratio of control ethanol aqueous solution and solvent is
  • a protective layer on the COF film to form the substrate/COF film/protective layer film apply a layer of protective layer material on the surface of the COF film by spin coating, and the protective layer material can be polymethyl methacrylate , polysulfone, polyether, polytetrafluoroethylene or Nafion membrane solution, the thickness of the protective layer is controlled at 10-100nm;
  • Etch the substrate to obtain the COF film/protective layer film soak the substrate/COF film/protective layer film in the etching solution of 2% HF aqueous solution for 12-24h, and then wash with water and ethanol solution for 2-3 times respectively;
  • Example 2 The specific preparation process is the same as in Example 1, and the organic skeleton and small molecule organic acid in Example 1 are replaced by 1,4,5,8-tetrahydroxyanthraquinone and tetramethylorthosilicate, respectively.
  • Electrochemical experiment In the standard three-electrode system connected to the electrochemical workstation, the hydrogen evolution overpotential of the electrolytic hydrogen production electrode was tested, with the platinum electrode as the auxiliary electrode and the mercury-mercury oxide electrode as the reference electrode. All tests were carried out at 25°C, and the electrolyte was a 0.5M H2SO4 solution .
  • the voltage scanning speed was 10mV/s, and the current density was set to 10mA/cm 2 or 100mA/cm 2 .
  • the performance attenuation of the electrode is judged by the rate of change of the hydrogen evolution overpotential after working at a constant current density for a period of time.
  • the current density was set at 100 mA/cm 2 .
  • Working time t 12h.
  • Table 1 shows the performance test results of different types of electrodes composed of COF-protected electrolytic hydrogen production electrodes prepared in Example 1.
  • Table 2 Performance test results of different types of electrodes composed of COF-protected electrolytic hydrogen production electrodes prepared in Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Fuel Cell (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inert Electrodes (AREA)

Abstract

本申请提出一种用于制备COF保护的电极的方法和所制备的电极。所述方法包括将有机骨架、小分子有机酸和溶剂混合后,向其中添加含有基材的极性水溶液,混合均匀后在惰性气氛下进行低温加热,然后进行过滤洗涤干燥,得到生长在基材表面的COF膜;在所述COF膜上涂布一层保护层,得到基材/COF膜/保护层薄膜;刻蚀掉基材,得到COF膜/保护层薄膜;将所述COF膜/保护层薄膜转移到电极表面,去除保护层。

Description

COF保护的电解制氢电极的制备方法
相关申请的交叉引用
本申请基于申请号为202110877174.6、申请日为2021年7月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及电解制氢技术领域,尤其涉及一种COF保护的电极的制备方法和所制备的电极。
背景技术
非贵金属HER催化剂在酸性条件下稳定性较差,限制了应用范围,因此造成电解制氢中电极上的催化金属板材稳定性较差,采用碳层包覆进行保护是目前常用的一种策略,但是碳层的形成过程往往伴随着高温煅烧,会对电极活性产生不利影响;从增加质子传导和增强稳定性,以及界面电荷协同作用几个方面的目的出发对保护层本身进行结构调控尚无普适规律可循;针对成型电极,可自由剥离和组装的保护层难以获得。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,在本申请的第一方面提出了一种用于制备COF保护的电极的方法,包括:
将有机骨架、小分子有机酸和溶剂混合后,向其中添加含有基材的极性水溶液,混合均匀后在惰性气氛下进行低温加热,然后进行过滤洗涤干燥,得到生长在基材表面的COF膜;
在所述COF膜上涂布一层保护层,得到基材/COF膜/保护层薄膜;
刻蚀掉基材,得到COF膜/保护层薄膜;
用去离子水洗涤数次,得到含有COF膜/保护层薄膜的混合液,COF膜/保护层薄膜漂浮在混合液表面;和
将所述COF膜/保护层薄膜转移到电极表面,去除保护层。
在实施例中,所述有机骨架和小分子有机酸按照摩尔比为0.5-1:1的比例加入。
在实施例中,所述有机骨架选自单环或多环芳香基物质及其杂环、多种基团修饰的衍生物。
在实施例中,所述小分子有机酸为磺酸类有机物、磷酸类有机物、氨基类有机物、硅酸 类有机物或硼酸类有机物中的一种。
在实施例中,所述有机骨架和小分子有机酸的质量与溶剂体积之间的比为10-30g:1L。
在实施例中,所述溶剂由强极性溶剂和弱极性溶剂按照体积比为1:0-5混合制备得到。
在实施例中,所述极性水溶液和溶剂的体积比为1:4-6。
在实施例中,所述极性水溶液中基材的含量为20-60g/L。
在实施例中,所述极性水溶液为小分子醇类或酸类有机物的水溶液,碳含量不大于4,所述有机物的水溶液中有机物和水按照体积比为1-2:1的比例加入。
在实施例中,所述基材为惰性的有机材料、无机氧化物或金属中的一种。
在实施例中,所述方法还包括:对所述基材进行预处理,所述预处理包括:
依次用水、有机溶剂对基材进行清洗;
在加热条件下进行酸洗;
酸洗后再进行水洗,接着在惰性气氛下用3-氨丙基三甲氧基硅烷的丙酮溶液浸泡;和
将浸泡后的基材水洗后干燥。
在实施例中,所述混合均匀后在惰性气氛下进行低温加热时,加热温度为100-150℃,加热时间为72h。
在实施例中,所述过滤洗涤干燥过程中,通过过滤收集形成的沉淀,用有机溶剂去除残留单体。
在实施例中,所述保护层材料为聚甲基丙烯酸甲酯、聚砜、聚醚、聚四氟乙烯或Nafion膜溶液。
在实施例中,所述保护层厚度为10-100nm。
在实施例中,所述COF膜的厚度为10-100nm。
在实施例中,所述刻蚀掉基材包括:将基材/COF/保护层薄膜在刻蚀液中浸泡12-24h,然后用水和乙醇溶液分别洗涤2-3次。
在实施例中,所述去除保护层包括:将保护层/COF膜/电极在有机溶剂中浸泡洗涤2-3次,再用乙醇、去离子水分别洗涤2-3次。
在实施例中,所述方法还包括:将获得的COF膜/电极在80-120℃下真空干燥1-3h,从而去除COF膜与电极之间残余的液体。
在本申请的第二方面提出了一种电极,由上述用于制备COF保护的电极的方法制备。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一实施例提出的COF保护的电极的制备方法的流程图。
图2是根据本申请另一实施例提出的COF保护的电极的制备方法的流程图。
具体实施方式
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
下面将结合实施例对本发明的方案进行解释。本领域技术人员将会理解,下面的实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
为了对电极进行保护,本申请通过在电极表面包覆一侧COF(covalent organic framework,共价有机骨架)膜,通过COF膜的能够有效实现对电极的防护作用,COF膜保护的电极的具体制备过程通过如下实施例和附图进行详细阐述。
本申请的目的在于提出一种COF保护的电极的制备方法,其中该电极可以是电解制氢电极。通过在电极的核心催化金属板材表面包覆一层COF膜,COF具有良好的质子传输能力,能够在包覆保护内部金属的同时,使质子有效地从电解液传递到金属颗粒表面,不影响金属颗粒的催化性能,并且在金属板材表面形成的包覆层可避免内部活性层在使用过程中的钝化,提高HER催化效果。
为达到上述目的,本申请提出的一种COF保护的电极的制备方法。如图1所示,该方法包括:
S101,将有机骨架、小分子有机酸和溶剂混合后,向其中添加含有基材的极性水溶液,混合均匀后在惰性气氛下进行低温加热,然后进行过滤洗涤干燥,得到生长在基材表面的COF膜;
S102,在所述COF膜上涂布一层保护层,得到基材/COF膜/保护层薄膜;
S103,刻蚀掉基材,得到COF膜/保护层薄膜;
S104,用去离子水洗涤数次,得到含有COF膜/保护层薄膜的混合液,COF膜/保护层薄膜漂浮在混合液表面;和
S105,将所述COF膜/保护层薄膜手动转移到电极表面,去除保护层。
在本申请中,涂布一层保护层在基材刻蚀过程中对COF膜起到保护作用,防止COF膜在基材刻蚀剂作用下发生降解。
进一步地,获得的COF膜/电极体系在80-120℃下真空干燥1-3h,从而赶走COF膜与电极之间残余的液体,使COF膜与电极表面充分接触。
通过在基材上进行反应制备基材负载的COF膜,然后将基材刻蚀掉后形成自由的COF膜,COF膜直接贴合在电极的金属板材表面,起到保护作用,可保护电极不受酸性环境的腐蚀,可避免内部活性层在使用过程中的钝化,从而在长期工作中维持稳定的催化性能;COF膜的碳骨架可引入S、P、N、B等多种配位原子,增强电荷传递效应,可对HER电催化性能起到促进作用;由于COF的多级孔结构有利于良好的气体扩散,避免气体在电极表面的积聚造成的附加电阻,能够改善电催化反应效果;COF的多级孔结构使得质子通过率高,对核心金属板材的催化性能影响小,并且由于COF具有良好的质子传输能力,能够在包覆保护内部金属的同时,使质子有效地从电解液传递到金属颗粒表面,不影响金属颗粒的催化性能。
在实施例中,所述有机骨架和小分子有机酸按照摩尔比为0.5-1:1的比例加入。
在实施例中,所述有机骨架为单环或多环芳香基物质及其杂环、多种基团修饰的衍生物,即有机骨架为单环芳香基物质、多环芳香基物质、杂环修饰的单环芳香基物质的衍生物、杂环修饰的多环芳香基物质的衍生物、多种基团修饰的单环芳香基物质的衍生物、多种基团修饰的多环芳香基物质的衍生物中的一种。详细来说,有机骨架可以为苯类、蒽类、酚类、吡啶类、嘧啶类、三嗪类等有机物。
在实施例中,所述小分子有机酸为磺酸类有机物、磷酸类有机物、氨基类有机物、硅酸类有机物或硼酸类有机物中的一种。
具体来说,COF膜是以碳、氧,以共价键连接构建有序多孔结构,通过改变COF膜制备过程中前驱体单元(有机骨架和小分子有机酸的种类),使得COF膜中可掺杂氮,硫,磷,硼元素,通过掺杂杂原子实现局部电子密度分布的调控,增强电荷传递效应,从而可对HER电催化性能起到促进作用。
在实施例中,所述有机骨架和小分子有机酸的质量与溶剂体积之间的比为10-30g:1L。
在实施例中,所述溶剂由强极性溶剂和弱极性溶剂按照体积比为1:0-5混合制备得到。
在实施例中,溶剂为常见有机溶剂,如腈类、醇类、酸类、酯类、胺类、卤代烷、苯类及其衍生物。
通过调节有机骨架和小分子有机酸的种类以及含量比例能够实现COF膜结构的调节。通过调节有机骨架和小分子有机酸的质量与溶剂体积之间的比可以实现COF膜厚度的调节,进而实现COF膜电荷转移效果的调节,使得COF膜不仅能够对电极具有较高的防护效果,薄膜骨架成分和厚度可调控性强,可根据核心金属板材的化学特性和物理形貌进行设计,达到界面调控增强HER电荷传输的目的。
在实施例中,所述极性水溶液和溶剂的体积比为1:4-6。
在实施例中,所述极性水溶液中基材的含量为20-60g/L。
在实施例中,所述极性水溶液为小分子醇类或酸类有机物的水溶液,碳含量不大于4,所述有机物的水溶液中有机物和水按照体积比为1-2:1的比例加入。
在实施例中,所述基材为惰性的有机材料、无机氧化物或金属中的一种,如聚甲基丙烯酸甲酯、聚二甲基硅氧烷、二氧化硅、硅片、铜片等,基材提供了COF生长和成膜的空间,价格便宜,与COF制备前体具有一定亲和力,并且容易去除。
如图2所示,本申请的方法还包括:S206,对所述基材进行预处理过。其中图2中的步骤S201-S205与图1中的S101-S105基本相同,在此不再赘述。
上述预处理包括:依次用水、有机溶剂对基材进行清洗;在加热条件下进行酸洗;其中加热温度可选择80-120℃,酸洗后再进行水洗,水洗过程中洗涤2-3次,接着在惰性气氛下(氩气、氮气)用3-氨丙基三甲氧基硅烷的丙酮溶液浸泡;将浸泡后的基材水洗后干燥,干燥过程中可以通过真空干燥。
在实施例中,所述混合均匀后在惰性气氛下进行低温加热时,加热温度为100-150℃,加热时间为72h。
在实施例中,所述过滤洗涤干燥过程中,通过过滤收集形成的沉淀,用有机溶剂去除残留单体。所述有机溶剂为1-2种弱极性溶剂和1-2种强极性溶剂的组合,如腈类、醇类、酸类、酯类、胺类、卤代烷、苯类及其衍生物。
在实施例中,所述保护层材料为聚甲基丙烯酸甲酯、聚砜、聚醚、聚四氟乙烯或Nafion膜溶液;其在刻蚀环境下具有良好的稳定性,可起到保护COF不受刻蚀剂降解的作用。所述保护层厚度为10-100nm;所述COF膜的厚度为10-100nm。所述保护层厚度的设置既能够起到严密保护的作用,又节省保护层材料,便于后续保护层的去除。
在实施例中,所述刻蚀掉基材包括:将基材/COF/保护层薄膜在刻蚀液中浸泡12-24h,然后用水和乙醇溶液分别洗涤2-3次。其中刻蚀液为强酸溶液,可选择2%HF水溶液或王水溶液。
在实施例中,去除保护层包括:将保护层/COF膜/电极在有机溶剂中浸泡洗涤2-3次,再用乙醇、去离子水分别洗涤2-3次。所述有机溶剂为常见有机溶剂,如腈类、醇类、酸类、酯类、胺类、卤代烷、苯类及其衍生物。
在本申请的另一方面还提出了一种电极,由上述用于制备COF保护的电极的方法制备。
应当理解的是,本申请方法实施例中描述的技术特征和技术效果同样适用于本申请的电极,在此不在赘述。
下面通过具体实施例进一步对本申请进行说明。
实施例1:
对基材进行预处理:选择硅片作为基材,依次用水、乙醇、乙酸乙酯清洗;加热条件下用98%浓硫酸洗涤,温度为80-120℃;充分水洗2-3次后,在惰性气氛下(如氩气、氮气)用3-氨丙基三甲氧基硅烷的丙酮溶液浸泡2-3天;最后充分水洗后真空干燥;
在基材表面合成COF膜:将有机骨架2,4,6-三甲酰基间苯三酚、小分子有机酸2,5-二氨基苯磺酸按照摩尔比为0.5:1的比例加入耐热容器中,同时向耐热容器中加入溶剂(正丁醇和邻二氯苯按照体积比为1:1混合配置而成),控制每升溶剂中加入2,4,6-三甲酰基间苯三酚和2,5-二氨基苯磺酸的质量和为15g,然后将步骤S1中预处理后的基材加入乙醇水溶液(乙醇和水的体积比为1:1)中,控制极性水溶液中预处理基材的含量为30g/L,接着将含基材的乙醇水溶液加入耐热容器中,控制乙醇水溶液和溶剂的体积比为1:4,然后将反应混合物超声处理以获得均匀的悬浮液;将得到的悬浮液在在惰性气氛下将容器低温加热一段时间将反应管加热至100℃,持续72h,然后进行过滤收集形成的沉淀,用有机溶剂二恶烷、乙醇和丙酮去除残留单体,在100℃下真空干燥12小时以上,得到生长在基材上的COF膜,其中COF膜的厚度控制在10-100nm;
在COF薄膜上合成一层保护层,形成得到基材/COF膜/保护层薄膜:通过旋涂法在COF膜表面涂布一层保护层材料,其中保护层材料可选择聚甲基丙烯酸甲酯、聚砜、聚醚、聚四氟乙烯或Nafion膜溶液,保护层的厚度控制在10-100nm;
刻蚀掉基板,得到COF膜/保护层薄膜:将基材/COF膜/保护层薄膜在2%HF水溶液的刻蚀液中浸泡12-24h,然后用水和乙醇溶液分别洗涤2-3次;
用去离子水洗涤数次,得到含有COF膜/保护层薄膜的混合液,COF膜/保护层薄膜漂浮在混合液表面;
将COF膜/保护层薄膜手动转移到电极表面,去除保护层:将获得的COF/保护层薄膜手动转移到电极的金属板材表面,然后用丙酮浸泡12-24h,用水和乙醇溶液分别洗涤2-3次,能够去掉保护层,获得自由的保护膜,此时在电极的金属板材表面直接复合一层COF膜,获得的COF膜/电极体系在80-120℃下真空干燥1-3h,从而赶走COF膜与电极之间残余的液体,使COF膜与电极表面充分接触。
实施例2:
具体制备过程与实施例1相同,将实施例1中的有机骨架和小分子有机酸分别替换为1,4,5,8-四羟基蒽醌和原硅酸四甲酯。
对实施例1和实施例2中制备的COF保护的电解制氢电极进行性能测试实验,具体测试如下,具体测试结果如表1和表2所示。
电化学实验:在连接电化学工作站的标准三电极体系中测试电解制氢电极的析氢过电位,以铂电极为辅助电极,汞-氧化汞电极为参比电极。所有测试均在25℃下进行,电解液为0.5M H 2SO 4溶液。电压扫描速度为10mV/s,电流密度设定为10mA/cm 2或100mA/cm 2。另外,通过在恒电流密度下工作一段时间后析氢过电位的变化率判断电极的性能衰减,具体方法为:在t=0时测得析氢过电位η 0;保持在一定电流密度下工作一段时间后,测得析氢过电位η t;性能衰减率计算:(η t-η 0)/η 0t。性能衰减率实验中,电流密度设定为100mA/cm 2。工作时间t=12h。
表1实施例1中制备的COF保护的电解制氢电极组成的不同类型的电极的性能测试结果。
电极类型 η 10,mV η 100,mV 性能衰减率,%/1000h
Ni/COF 443 1621 0.5
Ni 436 1597 6.7
Fe/COF 791 2363 1.2
Fe 782 2354 15.3
NiFe/COF 384 1221 0.4
NiFe 383 1216 7.8
表2:实施例2中制备的COF保护的电解制氢电极组成的不同类型的电极的性能测试结果。
电极类型 η 10,mV η 100,mV 性能衰减率,%/1000h
Ni/COF 252 809 0.4
Ni 236 797 6.7
Fe/COF 299 982 1.5
Fe 282 954 15.3
NiFe/COF 194 837 0.3
NiFe 183 816 7.8
由表1和表2中记载可知,经过COF保护的电解制氢电极电压衰减率均不高于1.5%/1000h。
需要说明的是,在本申请的描述中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。此外,在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所 属技术领域的技术人员所理解。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (19)

  1. 一种用于制备COF保护的电极的方法,包括:
    将有机骨架、小分子有机酸和溶剂混合后,向其中添加含有基材的极性水溶液,混合均匀后在惰性气氛下进行低温加热,然后进行过滤洗涤干燥,得到生长在基材表面的COF膜;
    在所述COF膜上涂布一层保护层,得到基材/COF膜/保护层薄膜;
    刻蚀掉基材,得到COF膜/保护层薄膜;
    用去离子水洗涤数次,得到含有COF膜/保护层薄膜的混合液,COF膜/保护层薄膜漂浮在混合液表面;和
    将所述COF膜/保护层薄膜转移到电极表面,去除保护层。
  2. 如权利要求1所述的方法,其中所述有机骨架和小分子有机酸按照摩尔比为0.5-1:1的比例加入。
  3. 如权利要求1或2所述的方法,其中所述有机骨架选自单环或多环芳香基物质及其杂环、多种基团修饰的衍生物。
  4. 如权利要求1-3中任一项所述的方法,其中所述小分子有机酸为磺酸类有机物、磷酸类有机物、氨基类有机物、硅酸类有机物或硼酸类有机物中的一种。
  5. 如权利要求1-4中任一项所述的方法,其中所述有机骨架和小分子有机酸的质量与溶剂体积之间的比为10-30g:1L。
  6. 如权利要求1-5中任一项所述的方法,其中所述溶剂由强极性溶剂和弱极性溶剂按照体积比为1:0-5混合制备得到。
  7. 如权利要求1-6中任一项所述的方法,其中所述极性水溶液和溶剂的体积比为1:4-6。
  8. 如权利要求1-7中任一项所述的方法,其中所述极性水溶液中基材的含量为20-60g/L。
  9. 如权利要求1-8中任一项所述的方法,其中所述极性水溶液为小分子醇类或酸类有机物的水溶液,碳含量不大于4,所述有机物的水溶液中有机物和水按照体积比为1-2:1的比例加入。
  10. 如权利要求1-9中任一项所述的方法,其中所述基材为惰性的有机材料、无机氧化物或金属中的一种。
  11. 如权利要求1-10中任一项所述的方法,其中所述方法还包括:对所述基材进行预处理,所述预处理包括:
    依次用水、有机溶剂对基材进行清洗;
    在加热条件下进行酸洗;
    酸洗后再进行水洗,接着在惰性气氛下用3-氨丙基三甲氧基硅烷的丙酮溶液浸泡;和
    将浸泡后的基材水洗后干燥。
  12. 如权利要求1-11中任一项所述的方法,其中所述混合均匀后在惰性气氛下进行低温加热时,加热温度为100-150℃,加热时间为72h。
  13. 如权利要求1-12中任一项所述的方法,其中所述过滤洗涤干燥过程中,通过过滤收集形成的沉淀,用有机溶剂去除残留单体。
  14. 如权利要求1-13中任一项所述的方法,其中所述保护层材料为聚甲基丙烯酸甲酯、聚砜、聚醚、聚四氟乙烯或Nafion膜溶液;和/或
    所述保护层厚度为10-100nm。
  15. 如权利要求1-14中任一项所述的方法,其中所述COF膜的厚度为10-100nm。
  16. 如权利要求1-15中任一项所述的方法,其中所述刻蚀掉基材包括:
    将基材/COF/保护层薄膜在刻蚀液中浸泡12-24h,然后用水和乙醇溶液分别洗涤2-3次。
  17. 如权利要求1-16中任一项所述的方法,其中所述去除保护层包括:将保护层/COF膜/电极在有机溶剂中浸泡洗涤2-3次,再用乙醇、去离子水分别洗涤2-3次。
  18. 如权利要求1-17中任一项所述的方法,其中所述方法还包括:
    将获得的COF膜/电极在80-120℃下真空干燥1-3h,从而去除COF膜与电极之间残余的液体。
  19. 一种电极,由权利要求1-18中任一项所述的用于制备COF保护的电极的方法制备。
PCT/CN2021/140999 2021-07-31 2021-12-23 Cof保护的电解制氢电极的制备方法 WO2023010773A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/256,075 US11965257B2 (en) 2021-07-31 2021-12-23 Method for preparing COF-protected electrolytic hydrogen production electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110877174.6 2021-07-31
CN202110877174.6A CN113668006B (zh) 2021-07-31 2021-07-31 一种cof保护的电解制氢电极的制备方法

Publications (1)

Publication Number Publication Date
WO2023010773A1 true WO2023010773A1 (zh) 2023-02-09

Family

ID=78541074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140999 WO2023010773A1 (zh) 2021-07-31 2021-12-23 Cof保护的电解制氢电极的制备方法

Country Status (3)

Country Link
US (1) US11965257B2 (zh)
CN (1) CN113668006B (zh)
WO (1) WO2023010773A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113668006B (zh) 2021-07-31 2022-11-01 中国华能集团清洁能源技术研究院有限公司 一种cof保护的电解制氢电极的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170130349A1 (en) * 2015-11-10 2017-05-11 Indian Educational and Research Institute Covalent organic frameworks as porous supports for non-noble metal based water splitting electrocatalysts
CN108997590A (zh) * 2018-07-16 2018-12-14 东华理工大学 一种含有磺酸基团的二维层状有机共价骨架材料及其制备方法
CN111087615A (zh) * 2018-10-23 2020-05-01 国家纳米科学中心 一种cof膜,其制备方法、转移方法、用途和含有其的芯片
CN111540620A (zh) * 2020-01-08 2020-08-14 中南民族大学 共价有机框架复合膜超级电容器及制备方法
CN112679781A (zh) * 2020-12-04 2021-04-20 北京理工大学 一种通过合成后修饰使COFs薄膜实现高效分离气体的方法
CN113668006A (zh) * 2021-07-31 2021-11-19 中国华能集团清洁能源技术研究院有限公司 一种cof保护的电解制氢电极的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019034914A1 (en) * 2017-08-16 2019-02-21 King Abdullah University Of Science And Technology PROTECTION OF METALLIC SURFACES FOR SELECTIVE ELECTROCATALYSIS AND INHIBITION OF CORROSION
CN108479813A (zh) 2018-04-18 2018-09-04 成都新柯力化工科技有限公司 一种电解水制氢用碳纳米管包覆硒基催化剂的制备方法
CN108671962B (zh) * 2018-05-29 2021-12-21 北京化工大学 一种基于石墨烯负载改性COFs基电催化剂催化性能的方法
CN111333852A (zh) 2020-03-10 2020-06-26 吉林大学 一种基于醌基的共价有机框架材料、制备方法及其应用
CN112403519B (zh) * 2020-12-09 2021-11-16 兰州大学 COF-300/PPy/Au(G)纳米酶催化剂的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170130349A1 (en) * 2015-11-10 2017-05-11 Indian Educational and Research Institute Covalent organic frameworks as porous supports for non-noble metal based water splitting electrocatalysts
CN108997590A (zh) * 2018-07-16 2018-12-14 东华理工大学 一种含有磺酸基团的二维层状有机共价骨架材料及其制备方法
CN111087615A (zh) * 2018-10-23 2020-05-01 国家纳米科学中心 一种cof膜,其制备方法、转移方法、用途和含有其的芯片
CN111540620A (zh) * 2020-01-08 2020-08-14 中南民族大学 共价有机框架复合膜超级电容器及制备方法
CN112679781A (zh) * 2020-12-04 2021-04-20 北京理工大学 一种通过合成后修饰使COFs薄膜实现高效分离气体的方法
CN113668006A (zh) * 2021-07-31 2021-11-19 中国华能集团清洁能源技术研究院有限公司 一种cof保护的电解制氢电极的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PARK EUNSOL, JACK JOSHUA, HU YIMING, WAN SHUN, HUANG SHAOFENG, JIN YINGHUA, MANESS PIN-CHING, YAZDI SADEGH, REN ZHIYONG, ZHANG WEI: "Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction", NANOSCALE, ROYAL SOCIETY OF CHEMISTRY, UNITED KINGDOM, vol. 12, no. 4, 30 January 2020 (2020-01-30), United Kingdom , pages 2596 - 2602, XP093031932, ISSN: 2040-3364, DOI: 10.1039/C9NR09112B *

Also Published As

Publication number Publication date
US11965257B2 (en) 2024-04-23
US20240035178A1 (en) 2024-02-01
CN113668006B (zh) 2022-11-01
CN113668006A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
CN108736028B (zh) 一种多孔氮掺杂碳负载钴纳米材料、制备方法及其应用
KR102436377B1 (ko) 라디칼 스캐빈저, 그 제조방법, 및 그것을 포함하는 막-전극 접합체
CN101740785B (zh) 一种钯/石墨烯纳米电催化剂及其制备方法
CN106188590A (zh) 金属有机骨架结构改性的聚合物杂化质子交换膜及其制备方法
KR20060133577A (ko) 탄소나노튜브 페이스트 및 이의 사용 방법
CN109004048A (zh) 一种铯铅溴无机钙钛矿量子点薄膜的制备方法及基于其的光伏器件
CN106058276B (zh) 一种二氧化硅修饰的多球腔碳材料的制法及其在燃料电池膜电极中的应用
CN104505523B (zh) 一种铂基催化剂/石墨烯复合材料及其制备方法
WO2023010773A1 (zh) Cof保护的电解制氢电极的制备方法
CN109390592A (zh) 一种膜电极及其制备方法
CN110272100A (zh) Ti4O7涂层的陶瓷微滤膜电极的制备方法
CN107904570B (zh) 一种制备镍纳米粒子-石墨烯-泡沫镍材料的方法
JP4336777B2 (ja) 表面改質無機多孔体及び該多孔体を電解質とする燃料電池
CN111229223A (zh) 氧化铁掺杂混合晶型二氧化钛纳米网光催化复合材料
CN109888348A (zh) 燃料电池质子膜材料固体超强酸/氮杂环氧化石墨烯/2,5-聚苯并咪唑的制备方法
CN103700873B (zh) 一种无机纳米粒子原位改性聚苯并咪唑衍生物质子交换膜及其制备方法
CN110518075A (zh) 一种黑硅钝化膜、其制备方法及应用
CN107221692A (zh) 一种具有高抗氧化能力的聚苯并咪唑/磷酸多层复合高温质子交换膜及其制备方法
CN115881993A (zh) 一种膜电极催化层及其制备方法和膜电极
WO2023010772A1 (zh) 含有保护层的her催化剂及其制备的电极
Chen et al. Synthesis and electrocatalysis application of hybrid platinum/cerium oxide/multi-walled carbon nanotubes
CN110371968A (zh) 一种低析出物石墨原板的制备方法
CN112002916A (zh) 一种过渡金属掺杂的阳极催化剂及其制备方法和应用
CN100365830C (zh) 纳晶敏化太阳能电池中纳米载铂催化电极的制备方法
CN115477778B (zh) 质子交换膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18256075

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21952636

Country of ref document: EP

Kind code of ref document: A1