WO2023008491A1 - 酵素含有組成物、乳の製造方法及び発酵乳の製造方法 - Google Patents

酵素含有組成物、乳の製造方法及び発酵乳の製造方法 Download PDF

Info

Publication number
WO2023008491A1
WO2023008491A1 PCT/JP2022/028982 JP2022028982W WO2023008491A1 WO 2023008491 A1 WO2023008491 A1 WO 2023008491A1 JP 2022028982 W JP2022028982 W JP 2022028982W WO 2023008491 A1 WO2023008491 A1 WO 2023008491A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
containing composition
milk
peroxidase
activity
Prior art date
Application number
PCT/JP2022/028982
Other languages
English (en)
French (fr)
Inventor
森江 恭子 飯坂
奈保 荒谷
一磨 塩田
Original Assignee
合同酒精株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同酒精株式会社 filed Critical 合同酒精株式会社
Priority to CN202280052744.0A priority Critical patent/CN117730148A/zh
Priority to EP22849552.9A priority patent/EP4379049A1/en
Priority to JP2023538602A priority patent/JPWO2023008491A1/ja
Priority to US18/291,003 priority patent/US20240324618A1/en
Publication of WO2023008491A1 publication Critical patent/WO2023008491A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/1203Addition of, or treatment with, enzymes or microorganisms other than lactobacteriaceae
    • A23C9/1213Oxidation or reduction enzymes, e.g. peroxidase, catalase, dehydrogenase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/1203Addition of, or treatment with, enzymes or microorganisms other than lactobacteriaceae
    • A23C9/1209Proteolytic or milk coagulating enzymes, e.g. trypsine
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/127Fermented milk preparations; Treatment using microorganisms or enzymes using microorganisms of the genus lactobacteriaceae and other microorganisms or enzymes, e.g. kefir, koumiss
    • A23C9/1275Fermented milk preparations; Treatment using microorganisms or enzymes using microorganisms of the genus lactobacteriaceae and other microorganisms or enzymes, e.g. kefir, koumiss using only lactobacteriaceae for fermentation in combination with enzyme treatment of the milk product; using enzyme treated milk products for fermentation with lactobacteriaceae
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes
    • A23C9/13Fermented milk preparations; Treatment using microorganisms or enzymes using additives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/152Milk preparations; Milk powder or milk powder preparations containing additives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0065Oxidoreductases (1.) acting on hydrogen peroxide as acceptor (1.11)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01021Catalase-peroxidase (1.11.1.21)
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C7/00Other dairy technology
    • A23C7/04Removing unwanted substances other than lactose or milk proteins from milk

Definitions

  • the present invention relates to an enzyme-containing composition having peroxidase activity, a method for producing milk using the enzyme-containing composition, and a method for producing fermented milk.
  • the milk manufacturing process is generally as follows. (1) Milking livestock such as cows (2) Collecting the milked raw milk and transporting it to the factory (3) Conducting acceptance inspections at the factory (4) Cooling the raw milk (5) Storing the cooled raw milk (6) Remove dust from raw milk and preheat it (7) Heat sterilize the preheated milk (8) Store the heat sterilized milk after cooling (9) Fill and package (10) Ship after inspection Consumption A person can purchase milk that has undergone the above steps at a retail store or the like.
  • Filled and packaged milk and yogurt are known to contain peroxides (see Patent Document 1, for example). This patent document 1 describes that this peroxide can be reduced by acting peroxidase.
  • Patent Document 1 describes adding peroxidase to commercially available milk and yogurt and performing an enzymatic reaction at room temperature or 25°C for 15 minutes (eg, Examples 1 and 2). However, Patent Document 1 does not describe adding peroxidase to a commercially available dairy product and performing an enzymatic reaction for a long period of time.
  • An object of the present invention is to provide an enzyme-containing composition, a method for producing milk, and a method for producing fermented milk that are less likely to cause curdling even when peroxidase is allowed to react with milk for a long period of time.
  • the present inventors found that if an enzyme-containing composition having a certain ratio of peroxidase activity and protease activity is allowed to act for a long time in the process of producing milk or fermented milk, coagulation will occur.
  • the inventors have found that milk or fermented milk that does not produce milk can be obtained, and completed the present invention.
  • the present invention provides the following inventions [1] to [14].
  • the enzyme-containing composition according to [10], wherein the catalase-peroxidase is an enzyme derived from actinomycetes.
  • a method for producing fermented milk comprising A method for producing fermented milk, wherein the enzyme-containing composition according to [2] is added to the sterilized raw material milk after the heat sterilization step and before the filling step is completed.
  • the present invention it is possible to provide an enzyme-containing composition that is less likely to cause milk curdling due to the action of peroxidase even when peroxidase is allowed to react with milk for a long period of time.
  • the enzyme-containing composition of the present invention the invention of the method for producing milk, and the invention of the method for producing fermented milk, the amount of hydrogen peroxide contained in dairy products can be reduced.
  • the method for producing fermented milk of the present invention the effect of promoting the growth of lactic acid bacteria and the effect of promoting fermentation can be obtained.
  • FIG. 3 is a diagram showing the concentration of hydrogen peroxide after reacting commercially available milk and the same milk to which 10 ⁇ M hydrogen peroxide has been added with peroxidase at a predetermined concentration.
  • FIG. 2 is a diagram showing the concentration of hydrogen peroxide after the reaction of peroxidase at a given concentration for a given period of time in commercially available milk and the same milk to which 10 ⁇ M hydrogen peroxide has been added.
  • FIG. 3 shows that the use of the enzyme-containing composition of the present invention for producing fermented milk has been confirmed to increase the number of lactic acid bacteria, promote fermentation, and reduce the amount of hydrogen peroxide during fermentation.
  • FIG. 1 is a diagram showing the concentration of hydrogen peroxide after reacting commercially available milk and the same milk to which 10 ⁇ M hydrogen peroxide has been added with peroxidase at a predetermined concentration.
  • FIG. 2 is a diagram showing the concentration of hydrogen peroxide after the reaction of peroxidase at a given concentration for a
  • FIG. 4 is a diagram showing changes in the numbers of lactic acid bacteria and bifidobacteria when YC380+BB12 fermented milk is produced by adding the enzyme-containing composition (HP-I) of the present invention.
  • FIG. 4 is a diagram showing changes in pH during production of YC380+BB12 fermented milk by adding the enzyme-containing composition (HP-I) of the present invention and changes in the number of bifidobacteria during storage of the fermented milk.
  • FIG. 2 is a diagram showing changes in hydrogen peroxide concentration during production of YC380+BB12 fermented milk by adding the enzyme-containing composition (HP-I) of the present invention and changes in hydrogen peroxide concentration during storage of the fermented milk.
  • FIG. 1 is a diagram showing changes in the numbers of lactic acid bacteria and bifidobacteria when YC380+BB12 fermented milk is produced by adding the enzyme-containing composition (HP-I) of the present invention.
  • FIG. 4 is a diagram showing changes in the number of lactic acid bacteria and the number of bifidobacteria when the enzyme-containing composition (HP-I) of the present invention is added to produce bifidus fermented milk.
  • FIG. 2 is a diagram showing changes in pH when the enzyme-containing composition (HP-I) of the present invention is added to prepare bifidus fermented milk and changes in the number of bifidobacteria during storage of the fermented milk.
  • FIG. 2 is a diagram showing changes in hydrogen peroxide concentration during preparation of Bifidus fermented milk by adding the enzyme-containing composition (HP-I) of the present invention and changes in hydrogen peroxide concentration during storage of the fermented milk.
  • FIG. 3 is a diagram showing changes in the number of lactic acid bacteria and the number of bifidobacteria when the enzyme-containing composition (HP-I) of the present invention is added to produce Nature's fermented milk.
  • FIG. 2 is a diagram showing changes in pH when the enzyme-containing composition (HP-I) of the present invention is added to prepare Nature Kei fermented milk and changes in the number of bifidobacteria during storage of the fermented milk.
  • FIG. 2 is a diagram showing changes in hydrogen peroxide concentration during preparation of Nature Kei fermented milk by adding the enzyme-containing composition (HP-I) of the present invention and changes in hydrogen peroxide concentration during storage of the fermented milk.
  • FIG. 2 is a diagram showing changes in the number of lactic acid bacteria and the number of bifidobacteria when the enzyme-containing composition (HP-I) of the present invention is added to produce Mil-Mil+YC380 fermented milk.
  • FIG. 2 is a diagram showing changes in pH when the enzyme-containing composition (HP-I) of the present invention is added to prepare Mil-Mil+YC380 fermented milk, and changes in the number of bifidobacteria during storage of the fermented milk.
  • FIG. 2 is a diagram showing changes in hydrogen peroxide concentration when producing Mil-Mil+YC380 fermented milk by adding the enzyme-containing composition (HP-I) of the present invention and changes in hydrogen peroxide concentration during storage of the fermented milk.
  • FIG. 4 is a diagram showing changes in the numbers of lactic acid bacteria and bifidobacteria when the enzyme-containing composition (HP-I) of the present invention is added to produce delicious fermented yogurt milk.
  • FIG. 2 is a diagram showing the transition of pH during preparation of delicious yogurt fermented milk by adding the enzyme-containing composition (HP-I) of the present invention.
  • FIG. 2 is a diagram showing changes in hydrogen peroxide concentration when producing delicious fermented yogurt milk by adding the enzyme-containing composition (HP-I) of the present invention.
  • FIG. 2 is a diagram showing changes in the numbers of lactic acid bacteria and bifidobacteria when the enzyme-containing composition (HP-I) of the present invention is added to produce fermented milk for mild yogurt.
  • FIG. 2 is a diagram showing the transition of pH during production of milk mild yogurt fermented milk by adding the enzyme-containing composition (HP-I) of the present invention.
  • FIG. 2 is a diagram showing changes in hydrogen peroxide concentration during production of milk mild yogurt fermented milk by adding the enzyme-containing composition (HP-I) of the present invention.
  • One aspect of the enzyme-containing composition of the present invention is characterized in that the ratio of protease activity to peroxidase activity is 10 or less. With a ratio of protease activity to peroxidase activity of 10 or less, hydrogen peroxide can be reduced without causing unexpected curdling even when the enzyme-containing composition is added to dairy products. If the above ratio is greater than 10, there is an increased risk of leading to unexpected curdling of the dairy product. Unexpected curdling increases with increasing storage temperatures and storage days of dairy products to which the enzyme-containing composition is added. The above ratio is preferably 8 or less, more preferably 5 or less, and even more preferably 2.5 or less. When the enzyme-containing composition is used in a method for producing milk, the ratio of protease activity to peroxidase activity is preferably 10 or less. Preferably, the protease activity ratio is 2.5 or less.
  • the lower limit of the above ratio is not particularly limited, but from the viewpoint of preventing unexpected curdling and considering the production of the enzyme-containing composition, high-level refining results in poor economic efficiency, so it is 0.01 or more. It is preferably 0.05 or more, more preferably 0.1 or more, and particularly preferably 0.5 or more. This makes it easier to increase the number of lactic acid bacteria and obtain the effect of promoting fermentation in the method for producing fermented milk.
  • a preferred aspect of the present invention is an enzyme-containing composition having a ratio of protease activity to peroxidase activity of 0.01 or more and 10 or less.
  • Another preferred aspect of the present invention is an enzyme-containing composition having a ratio of protease activity to peroxidase activity of 0.01 or more and 2.5 or less.
  • the enzyme-containing composition having a ratio of protease activity to peroxidase activity of 0.01 or more and 10 or less includes a composition containing an enzyme having peroxidase activity and protease activity and a composition containing peroxidase and protease. Aspects are conceivable. Another preferred aspect of the present invention is an enzyme-containing composition containing an enzyme having peroxidase activity and protease activity, or peroxidase and protease, and having a ratio of protease activity to peroxidase activity of 0.01 to 10. is.
  • Another preferred embodiment of the present invention contains an enzyme having peroxidase activity and protease activity, or peroxidase and protease, and the ratio of protease activity to peroxidase activity is 0.01 or more and 2.5 or less.
  • An enzyme-containing composition contains an enzyme having peroxidase activity and protease activity, or peroxidase and protease, and the ratio of protease activity to peroxidase activity is 0.01 or more and 2.5 or less.
  • the peroxidase activity contained in the enzyme-containing composition of the present invention is preferably 1 U/mL or more, more preferably 10 U/mL or more. The higher the peroxidase activity, the better the ability to remove hydrogen peroxide.
  • the peroxidase activity contained in the enzyme-containing composition of the present invention means the value measured by the measuring method described below.
  • the protease activity contained in the enzyme-containing composition of the present invention is not particularly limited, it is preferably 250 U/mL or less. The lower the protease activity, the less likely the dairy product will develop unexpected curdling.
  • the protease activity contained in the enzyme-containing composition of the present invention is preferably 250 U/mL or less, preferably 100 U/mL or less, more preferably 40 U/mL or less.
  • the lower limit of the protease activity contained in the enzyme-containing composition of the present invention is determined from the viewpoint of preventing unexpected milk curdling, and considering the production of the enzyme-containing composition, the economical efficiency is deteriorated if a high degree of purification is performed.
  • the protease activity contained in the enzyme-containing composition of the present invention means the value measured by the measuring method described below.
  • One aspect of the enzyme-containing composition of the present invention is characterized in that it contains an enzyme having peroxidase activity and protease activity, or peroxidase and protease, and the ratio of peroxidase activity to protease activity is within the above range. be. That is, the enzyme contained in the composition of the present invention contains an enzyme having peroxidase activity and protease activity, or two enzymes, peroxidase and protease.
  • the enzymes used in the composition of the present invention include one or two proteins having these enzymatic activities, and are added to foods or raw materials of foods mainly to impart enzymatic activity.
  • the peroxidase activity in an enzyme having peroxidase activity and protease activity or in peroxidase and protease can be confirmed by the peroxidase activity measurement method described below.
  • the protease activity can be confirmed by the protease activity measurement method described below.
  • Enzymes that can be used in the present invention include, for example, catalase, peroxidase, catalase-peroxidase, manganese peroxidase, lactoperoxidase. One or more of these can be used in combination. Among these, it is more preferable to use catalase-peroxidase. On the other hand, a commercially available protease can be used as long as the protease activity can be confirmed by the protease activity assay method described below.
  • the origin of the enzyme that can be used in the present invention is not limited, and may be animal-derived, plant-derived, or microbial-derived. It is preferable to use a microorganism-derived enzyme having peroxidase activity because it is easy to use in terms of production.
  • Microorganisms having peroxidase activity can be searched from nature by using the method for measuring peroxidase activity described below.
  • Examples of microorganisms that produce enzymes having peroxidase activity include filamentous fungi, actinomycetes, and bacteria. Among these, it is preferable to use actinomycete-derived catalase-peroxidase.
  • catalase-peroxidase As catalase-peroxidase, (a) catalase-peroxidase consisting of the amino acid sequence represented by SEQ ID NO: 1, or (b) 1 to several amino acid residues are deleted in the amino acid sequence represented by SEQ ID NO: 1. , a substituted or inserted amino acid sequence, catalase-peroxidase consisting of an amino acid sequence having a sequence identity of 80% or more with the amino acid sequence represented by SEQ ID NO:1.
  • SEQ ID NO: 2 shows the gene sequence of the amino acid sequence of SEQ ID NO: 1.
  • the amino acid sequence represented by SEQ ID NO: 1 is catalase-peroxidase produced by Streptomyces achromogenes.
  • This catalase-peroxidase also includes catalase-peroxidases not derived from Streptomyces achromogenes as long as they have amino acid sequences that are identical or have a sequence identity of 80% or greater. Not only polypeptides but also glycopeptides are included as long as they have amino acid sequences that are identical or have 80% or more sequence identity.
  • the number of amino acid residue deletions, substitutions or insertions in catalase-peroxidase in which one to several amino acid sequences are deleted, substituted or inserted in the amino acid sequence represented by SEQ ID NO: 1 is SEQ ID NO: 1
  • it is not limited as long as it exhibits an enzymatic activity equivalent to that of catalase-peroxidase consisting of the amino acid sequence represented it is preferably 1 to 20, more preferably 1 to 10, and even more preferably 1 to 8.
  • the sequence identity between the deleted, substituted or inserted catalase-peroxidase and the amino acid sequence of SEQ ID NO: 1 is preferably 80% or more, more preferably 85% or more, even more preferably 90% or more.
  • sequence identity percentages can be calculated using published or commercially available software whose algorithms compare a reference sequence as a query sequence. For example, BLAST, FASTA, GENETYX (manufactured by Software Development Co., Ltd.), or the like can be used.
  • a method of breeding the microorganism or the like to further increase the peroxidase activity, and a method of production using other microorganisms or the like can be mentioned.
  • a method for breeding the microorganisms a method of promoting mutation of the microorganisms using ultraviolet rays, radiation, chemical substances, or the like can be used.
  • a method of introducing the gene into a host microorganism is exemplified.
  • a protein having peroxidase activity can be obtained by culturing a host microorganism into which the gene has been introduced.
  • Any vector may be used as the vector to be introduced into the host microorganism. Any host microorganism can be used.
  • the host microorganism is not particularly limited as long as it can produce a protein having peroxidase activity.
  • the genera Shizosaccharomyces, Kluyveromyces, Pichia, Aspergillus, Penicillium, Trichoderma, as well as edible microorganisms such as lactobacilli and acetic acid bacteria may be targeted.
  • the form of the enzyme-containing composition of the present invention may be solid or liquid. Whether the enzyme-containing composition in the present invention is a solid enzyme-containing composition or a liquid enzyme-containing composition can be appropriately changed depending on the intended use. If the object to which the enzyme is added is a solid, it is preferable to use a solid enzyme-containing composition. This is because the target substance is less likely to be diluted by the enzyme-containing composition. Even if the enzyme-containing composition is liquid, it can be preferably used even if the object to be added is solid if the enzyme activity is enhanced. If the object to which the enzyme is added is liquid, it is preferable to use a liquid enzyme-containing composition. Increased workability when adding the enzyme-containing composition to a subject.
  • the enzyme-containing composition of the present invention preferably contains a stabilizer.
  • Stabilizers used in the enzyme-containing composition of the present invention include, for example, sugar alcohols such as glycerin and sorbitol; monosaccharides and oligosaccharides such as glucose, sucrose and trehalose; and salts such as common salt.
  • sugar alcohols such as sorbitol, monosaccharides or oligosaccharides such as glucose, sucrose and trehalose; and salts such as common salt can be used.
  • a liquid enzyme-containing composition contains a stabilizer
  • a stabilizer that is liquid at room temperature (20° C.) or a solid stabilizer that is highly soluble in water.
  • sugar alcohols such as glycerin and sorbitol can be used.
  • the amount of stabilizer contained in the enzyme-containing composition of the present invention is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, even more preferably 25 to 75% by mass. . Containing the stabilizer within this range maintains the storage stability of peroxidase and is economically advantageous.
  • the pH of the enzyme-containing composition of the present invention is preferably 5.0 to 9.0, more preferably 5.5 to 8.5, and 6.0. ⁇ 8.0 is more preferred. If the enzyme-containing composition is liquid, the pH may be measured as it is. The pH of the solid enzyme-containing composition can be measured by dissolving it in water.
  • the storage temperature of the enzyme-containing composition of the present invention is preferably as low as possible, more preferably 30°C or lower, and even more preferably 10°C or lower.
  • the enzyme-containing composition of the present invention may contain various components as necessary. Specific examples include metal salts that contribute to the stabilization of peroxidase, various sugars, ascorbic acid, starch and dextrin that are excipients for improving usability, and inorganic salts that have a buffering action.
  • the invention related to the method for producing milk of the present invention is a method for producing milk having a sterilization step of sterilizing raw material milk and a filling step of sealing the container after filling the raw material milk after sterilization into a container,
  • the enzyme-containing composition is added to the sterilized raw material after the sterilization step and before the filling step is completed.
  • the ratio of protease activity to peroxidase activity of the enzyme-containing composition used in the method for producing milk is 10 or less.
  • the temperature conditions in the sterilization step are heat sterilization at 120 to 150° C. for 1 to 3 seconds, or heat sterilization by a method having an equivalent or higher sterilization effect.
  • raw material milk after sterilization refers to one having substantially zero lactoperoxidase activity and catalase activity. Specifically, it means that the concentration of hydrogen peroxide does not decrease after adding hydrogen peroxide to raw material milk after sterilization and allowing it to stand still.
  • the period from the sterilization step to the completion of the filling step means the time when the peroxidase activity derived from the enzyme-containing composition can be present in the filled and packaged milk. .
  • the peroxidase contained in the enzyme-containing composition is deactivated by the heat of the sterilized milk, which is not preferable.
  • After the sterilization step it may be added after cooling to such an extent that all or part of the peroxidase activity is not deactivated.
  • the period until the filling step is completed may be before the milk after filling is sealed.
  • the enzyme-containing composition may be added at the same time as the filling step, or the enzyme-containing composition may be added after the container is filled with milk and sealed.
  • the raw material milk after sterilization is filled in a container and the container is sealed.
  • the enzyme-containing composition in (1) may be added to raw milk after sterilization.
  • the invention related to the method for producing fermented milk of the present invention includes a heat sterilization step of heat sterilizing the raw material milk, an addition step of adding yeast or lactic acid bacteria to the raw material milk after heat sterilization, a fermentation step of obtaining fermented milk, and the obtained and a filling step of filling the fermented milk into a container, wherein the enzyme-containing composition is added after the heat sterilization after the heat sterilization step until the filling step is completed. It is characterized by adding to the raw material of Here, it is preferable that the ratio of protease activity to peroxidase activity of the enzyme-containing composition used in the method for producing milk is 2.5 or less.
  • the temperature conditions in the heat sterilization step may be sterilization at 70 to 110 ° C. for 30 seconds to 10 minutes.
  • the heating temperature is preferably in the range of 75°C to 105°C, more preferably in the range of 80°C to 100°C, still more preferably in the range of 85°C to 95°C.
  • a preferable heating time is in the range of 1 minute to 10 minutes, more preferably 2 minutes to 8 minutes, and still more preferably 3 minutes to 7 minutes.
  • the above heating temperature and heating time in the upper heat sterilization step can be used in combination.
  • yeast or lactic acid bacteria are added.
  • the yeast fermentation temperature is preferably in the range of 25°C to 40°C, more preferably in the range of 30°C to 37°C.
  • the fermentation temperature of lactic acid bacteria is preferably in the range of 30°C to 43°C, more preferably 37°C to 43°C.
  • the number of yeast or lactic acid bacteria added to raw milk after heat sterilization can be adjusted as appropriate.
  • the amount of yeast or lactic acid bacteria added to the raw material milk after heat sterilization is 1 ⁇ 10 4 to 1 ⁇ 10 10 per 1 mL from the viewpoint of maintaining the fermentation rate and suppressing the increase in production costs. preferable.
  • yeast there are no particular restrictions on the type of yeast used in the method for producing fermented milk of the present invention.
  • yeast lactose-fermentative yeast or lactose-non-fermentative yeast is used.
  • lactose non-fermentative yeast it is preferable to add 0.1 to 10% of a fermentable sugar source such as sucrose or glucose in advance to the raw material milk.
  • Examples of lactic acid bacteria used in the method for producing fermented milk of the present invention include microorganisms belonging to the genus Lactobacillus and Streptococcus.
  • Lactococcus lactis Lactococcus lactis subsp. cremoris
  • Lactobacillus casei Lactobacillus rum
  • Lactobacillus gasseri Lacobacillus rhamnosus
  • Lactobacillus acidophilus ⁇ (Lactobacillus plantarum) ⁇ (Lactobacillus brevis) ⁇ (Lactobacillus delbrueckii subsp. bulgaricus
  • Streptococcus thermophilus Lactococcus lactis, Lactococcus lactis subsp. cremoris, Lactobacillus casei, Lactobacillus rum, Lactobacillus gasseri (Lactobacillus rhamnosus) ⁇ (Lactobacillus acidophilus) ⁇ (Lacto
  • Bifidobacteria belonging to the genus Bifidobacterium may be used as lactic acid bacteria. These lactic acid bacteria (including bifidobacteria) may be used alone, or two or more of them may be used in combination. Among the above lactic acid bacteria, yoghurt in the narrow sense is yogurt using Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus.
  • the period from after the heat sterilization step to the completion of the filling step means the time when the peroxidase activity derived from the enzyme-containing composition can be present in the filled and packaged milk. do.
  • the timing of adding the enzyme-containing composition until the filling step is completed is no limitation on the timing of adding the enzyme-containing composition until the filling step is completed, as long as it is before the milk after filling is sealed.
  • the enzyme-containing composition may be added after allowing the raw material milk after heat sterilization to cool, and the enzyme-containing composition may be added substantially at the same time as adding the yeast or lactic acid bacteria after allowing the raw material milk after heat sterilization to cool. You may add.
  • substantially simultaneously means that the yeast or lactic acid bacterium to be used falls under the induction period, which varies depending on the growth rate of the yeast or lactic acid bacterium to be used. In order to prevent unexpected curdling, it is preferable to add the enzyme-containing composition during the induction period of the yeast or lactic acid bacteria used.
  • the raw material milk to which the enzyme-containing composition has been added has a lower pH as the fermentation progresses.
  • the pH of raw material milk (fermented milk) after fermentation is preferably in the range of 3.5 to 5.5, more preferably in the range of pH 4.0 to 5.0, pH 4.2 to More preferably, it is in the range of 4.7. It is preferable that the peroxidase activity contained in the enzyme-containing composition added to the raw material milk decreases as the fermentation of the raw material milk progresses.
  • ⁇ Evaluation method> (Method for measuring peroxidase activity) Weigh 13.61 g of potassium dihydrogen phosphate, add water to dissolve it, adjust the pH to 6.5 with sodium hydroxide test solution (1 mol / L), add water to make 1 L, and make a potassium phosphate buffer solution (100 mmol/L) was produced.
  • a hydrochloric acid test solution (0.1 mol/L) was prepared by weighing 100 mL of 1 mol/L hydrochloric acid and adding water to make 1000 mL. 1.1 g of hydrogen peroxide solution (30%) was weighed out, and water was added to make 100 mL to prepare a hydrogen peroxide test solution (100 mmol/L).
  • Tris-HCl buffer pH 7.5
  • a 0.1 M Tris solution was prepared by dissolving 12.11 g of tris(hydroxymethyl)aminomethane in purified water to make 1 L.
  • a 0.2 M calcium acetate solution was prepared by dissolving 3.52 g of calcium acetate monohydrate (MW 176.18) in purified water to make 100 mL.
  • the precipitation reagent was prepared by dissolving 18.0 g of trichloroacetic acid and 18.0 g of anhydrous sodium acetate in 700 mL of distilled water, and adding 19.8 g (18.9 mL) of acetic acid to pH 4 ⁇ 0.05 (1N NaOH if outside the range). Or adjusted with HCl) After confirmation, the volume was adjusted to 1 L with purified water.
  • Substrate solution (prepared for use): Approximately 20 mL of purified water was stirred, and 1.2 g of milk casein (manufactured by CALBIOCHEM, product number 218682) was precisely weighed and sprinkled little by little to suspend it to 0.1M.
  • Example 1 Production by commercial strain
  • the NRRL B-2120 strain described above was cultured to obtain a culture broth that reached stationary phase. Specifically, 80 mL medium (1% glucose, 1% yeast extract KAT, 0.2% ammonium dihydrogen phosphate, 0.1% magnesium sulfate) was prepared in a 500 mL flask and cultured at 210 rpm and 30°C. 4 mL of the culture broth was inoculated into the same medium and cultured under the same conditions for 72 hours. The culture medium was centrifuged at 15,000 rpm ⁇ 10 min at 4° C., and the centrifugal sediment was suspended in 0.1 M phosphate buffer (pH 6.5) and sonicated for 15 min.
  • 0.1 M phosphate buffer pH 6.5
  • the homogenate was centrifuged at 15,000 rpm ⁇ 10 min at 4° C., and 9.5 mL of the resulting centrifugation supernatant was dialyzed against 20 mM phosphate buffer overnight (fractional molecular weight 12,000 to 14,000). 10 mL of the dialyzed sample was applied to a DEAE-toyopearl column ( ⁇ 15 x 110 mm, volume of about 20 mL) equilibrated with the same buffer, and a NaCl stepwise gradient (0.1, 0.15, 0.1 mL/min) was applied at a flow rate of 1 mL/min. 2M). A 0.2 M fraction was collected and dialyzed again against 20 mM phosphate buffer (pH 6.5).
  • primers 1 and 2 were used as primers for amplifying the gene sequence of SEQ ID NO: 2.
  • Primer 1 5'-TAGAATTCCATATGACTGAGAACCACGAC-3' (SEQ ID NO: 3)
  • Primer 2 5'-CCCCAAGCTTTCAATGATGATGATGATGATGGACGAGGTCGAAGCG-3' (SEQ ID NO: 4)
  • the amplified gene was ligated into the PET28a vector, and the resulting plasmid was introduced into Escherichia coli BL21 strain.
  • the transformant was induced in LB medium and cultured.
  • the cells were recovered by centrifugation, and the cell extract obtained by ultrasonic disruption was purified with a Ni column to obtain a liquid enzyme-containing composition.
  • the peroxidase activity of the enzyme-containing composition was 2.0 U/mL, and no protease activity was detected.
  • Example 3 12-5 strains selected by irradiating the NRRL B-2120 strain with ultraviolet light are placed in a 500 mL flask with 100 mL soy flour medium (1% glycerin, 1% soy flour, 0.5% yeast extract, 0.5% casamino acid, 0.4% calcium carbonate, 0.1% metal salt solution, 0.1% iron sulfate heptahydrate, 0.09% zinc sulfate, 0.02% manganese sulfate aqueous solution) Sterilization followed by separate sterilization 1% glucose was added), and cultured at 210 rpm and 30° C. for 2 to 3 days. The culture solution was centrifuged at 15,000 rpm ⁇ 10 min at 4° C.
  • soy flour medium 1% glycerin, 1% soy flour, 0.5% yeast extract, 0.5% casamino acid, 0.4% calcium carbonate, 0.1% metal salt solution, 0.1% iron sulfate heptahydrate, 0.09% zinc sulfate, 0.02% manganes
  • the frozen cells were dissolved in a pH 6.5 potassium phosphate buffer solution to a concentration of 0.15 g/mL and egg white lysozyme 0.21%, and the enzyme was extracted by stirring at 37°C for 5 hours.
  • the peroxidase activity was 1.2 U/mL
  • the protease activity was 138 U/mL
  • the ratio of protease activity to peroxidase activity was 115. This is sometimes referred to as a pre-purification enzyme-containing composition.
  • Silica 300S was mixed with 1% and filtration was performed using a filter paper coated with about 1.5 mm of silica 300S. The filtrate was mixed with 2% activated carbon PL-CPS2 (manufactured by Dainen) and stirred at room temperature for 2 hours to remove protease by adsorption. 1% silica 100F was mixed and filtration was performed using a filter paper coated with silica 100F to about 1.5 mm.
  • a liquid enzyme-containing composition After concentrating the filtrate by ultrafiltration or the like so as to have an arbitrary activity, 25% (w/w) glycerin was added as a stabilizer to obtain a liquid enzyme-containing composition.
  • This enzyme-containing composition had a peroxidase activity of 42 U/mL, a protease activity of 53 U/mL, and a ratio of protease activity to peroxidase activity of 1.3. This is sometimes referred to as a post-purification enzyme-containing composition.
  • an enzyme-containing composition having an arbitrary ratio of protease activity to peroxidase activity can be prepared.
  • Example 3 Commercially available milk (trade name: Meiji Oishii Milk) and 10 ⁇ M hydrogen peroxide added to the same milk were added with the peroxidase (enzyme-containing composition before purification) of Example 3 at final concentrations of 0.05, 0.025, The mixture was mixed to 0.005 U/mL and allowed to stand at 4°C for 30, 60, 90, 120, and 240 minutes. As a result, hydrogen peroxide was almost completely decomposed with an activity of 0.05 U/mL final concentration ( 0.05 U/mL in the left of FIG. 2, 0.025 U/mL in the center of FIG. 2, and 0.005 U/mL in the right of FIG. 2).
  • Peroxidase activity was fixed at a final concentration of 0.04 U / mL in commercially available pasteurized milk (trade name: Takanashi pasteurized milk) mixed with 2% skim milk, and the pre-purified enzyme-containing composition of Example 3 and the example 2 were mixed to adjust the protease activity to final concentrations of 2.45, 0.52, 0.25 and 0.049 U/mL (the ratio of protease activity to peroxidase activity was , 61.3, 13, 6.3, 1.2 in order). These enzyme-containing compositions were observed at 43° C. for 7 hours while being observed every hour.
  • curdling due to protease effects was not visually observed. In other words, it was found that unexpected curdling was not observed when the ratio of protease activity to peroxidase activity was 2.5 or less.
  • this yogurt stock solution was dispensed into two sterilized medium bottles, and the enzyme-containing composition (ratio of protease activity to peroxidase activity was 1.3) was mixed well with the same amount of 0.1 M potassium phosphate buffer (pH 6.5) as a control. 13 mL portions of these were dispensed into seven 15 mL tubes for 0-4 hour fermentation and fermentation was initiated at 43°C. Samples were taken from the tubes over time, serially diluted, then seeded in appropriate amounts on BCP plates (Eiken), allowed to stand at 37° C. for 48 hours, and cultured to count the number of bacteria. Next, the hydrogen peroxide concentration and pH of the yogurt remaining in the 15 mL tube were measured.
  • the enzyme-containing composition ratio of protease activity to peroxidase activity was 1.3
  • the addition of the enzyme-containing composition suppressed the rate of decrease in the number of bifidobacteria during storage of fermented milk (Fig. 5). It was confirmed that the hydrogen peroxide content decreased during the fermentation and that curdling did not occur due to the action of the enzyme-containing composition (Fig. 6).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Dairy Products (AREA)

Abstract

乳にパーオキシダーゼを長時間反応させても、当該パーオキシダーゼの作用により凝乳を生じさせるおそれの少ない酵素含有組成物、乳の製造方法及び発酵乳の製造方法を提供することを目的とする。 パーオキシダーゼ活性に対するプロテアーゼ活性の比が10以下である酵素含有組成物。

Description

酵素含有組成物、乳の製造方法及び発酵乳の製造方法
 本発明は、パーオキシダーゼ活性を有する酵素含有組成物、当該酵素含有組成物を使用した乳の製造方法及び発酵乳の製造方法に関する。
 乳の製造工程は概ね以下のとおりである。
 (1)牛等の家畜から搾乳する
 (2)搾乳した生乳を集乳し工場へ運搬する
 (3)工場で受入検査を行う
 (4)生乳を冷却する
 (5)冷却した生乳を貯乳する
 (6)生乳からゴミを取り除き予備加熱する
 (7)予備加熱した乳を加熱殺菌する
 (8)加熱殺菌した乳を冷却後貯乳する
 (9)充填包装する
 (10)検査後、出荷する
 消費者は、上記の工程を経た乳を小売店等において購入することができる。
 充填包装された乳及びヨーグルトには、過酸化物が含まれることが知られている(例えば、特許文献1参照)。この特許文献1においては、この過酸化物はパーオキシダーゼを作用させることで低減できると記載されている。
特公平8-4453号公報
 特許文献1には、市販の乳及びヨーグルトにパーオキシダーゼを添加し、室温又は25℃で15分間酵素反応を行うことが記載されている(例えば、実施例1、2)。しかしながら、特許文献1には市販の乳製品にパーオキシダーゼを添加し、長時間酵素反応を行うことについては何ら記載が無い。
 乳製品にパーオキシダーゼを添加した後、添加したパーオキシダーゼを失活させる処理を行うことは当該乳製品の味などに影響を与える可能性があることから、追加の処理をしないことが好ましい。そこで、本発明者らが市販の乳にパーオキシダーゼ(後述する実施例3の精製前酵素含有組成物)を添加し、長時間酵素反応を行ったところ、市販の乳が凝乳することが確認された。これは予期しない現象であった。
 本発明は、乳にパーオキシダーゼを長時間反応させても、凝乳を生じさせるおそれの少ない酵素含有組成物、乳の製造方法及び発酵乳の製造方法を提供することを課題とする。
 本発明者は、前記課題を解決すべく種々検討したところ、乳又は発酵乳の製造過程で、パーオキシダーゼ活性とプロテアーゼ活性が一定の比を有する酵素含有組成物を長時間作用させれば、凝乳を生じない乳又発酵乳が得られることを見出し、本発明を完成した。
 すなわち、本発明は、下記の発明[1]~[14]を提供するものである。
[1]パーオキシダーゼ活性に対するプロテアーゼ活性の比が10以下である酵素含有組成物。
[2]パーオキシダーゼ活性に対するプロテアーゼ活性の比が2.5以下である[1]記載の酵素含有組成物。
[3]パーオキシダーゼ活性に対するプロテアーゼ活性の比が0.01以上である[1]又は[2]記載の酵素含有組成物。
[4]パーオキシダーゼ活性及びプロテアーゼ活性を有する酵素、又はパーオキシダーゼとプロテアーゼを含有し、パーオキシダーゼ活性に対するプロテアーゼ活性の比が0.01以上10以下である[1]記載の酵素含有組成物。
[5]パーオキシダーゼ活性が、1U/mL以上100U/mL以下である[1]又は[2]記載の酵素含有組成物。
[6]プロテアーゼ活性が、0.01U/mL以上250U/mL以下である[1]又は[2]記載の酵素含有組成物。
[7]さらに、安定剤を含有する[1]又は[2]記載の酵素含有組成物。[8]安定化剤が、糖アルコール、単糖、少糖類及び塩類から選ばれる1種以上である[7]記載の酵素含有組成物。
[9]含有する酵素が、カタラーゼ、パーオキシダーゼ、カタラーゼ‐パーオキシダーゼ、マンガンパーオキシダーゼ、及びラクトパーオキシダーゼから選択される少なくとも一つである[1]又は[2]記載の酵素含有組成物。
[10]含有する酵素が、カタラーゼ‐パーオキシダーゼである[1]又は[2]記載の酵素含有組成物。
[11]前記カタラーゼ‐パーオキシダーゼが放線菌に由来する酵素である[10]に記載の酵素含有組成物。
[12]前記カタラーゼ‐パーオキシダーゼが下記(a)又は(b)である[10]又は[11]に記載の酵素含有組成物。
(a)配列番号1で表されるアミノ酸配列からなるカタラーゼ‐パーオキシダーゼ
(b)配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列であって、配列番号1で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなるカタラーゼ‐パーオキシダーゼ
[13]原料乳を殺菌する殺菌工程と、殺菌後の原料乳を容器に充填後、当該容器を密閉する充填工程とを有する乳の製造方法であって、
 前記殺菌工程後から前記充填工程が完了するまでの間に、[1]記載の酵素含有組成物を前記殺菌後の原料乳に添加する乳の製造方法。
[14]原料乳を殺菌する加熱殺菌工程と、加熱殺菌後の原料乳に酵母又は乳酸菌を添加する添加工程と、発酵乳を得る発酵工程と、得られた発酵乳を容器に充填する充填工程とを有する発酵乳の製造方法であって、
 前記加熱殺菌工程後から前記充填工程が完了するまでの間に、[2]記載の酵素含有組成物を前記殺菌後の原料乳に添加する発酵乳の製造方法。
 本発明によれば、乳にパーオキシダーゼを長時間反応させても、当該パーオキシダーゼの作用により凝乳を生じさせるおそれの少ない酵素含有組成物を提供することができる。
 本発明の酵素含有組成物、乳の製造方法の発明及び発酵乳の製造方法の発明によれば、乳製品中に含まれる過酸化水素量を低減させることができる。
 本発明の発酵乳の製造方法によれば、乳酸菌増殖促進効果及び発酵促進効果を得ることができる。
市販の牛乳および同牛乳に10μM過酸化水素を加えたものに、パーオキシダーゼを所定濃度で反応させた後の過酸化水素濃度を示す図である。 市販の牛乳および同牛乳に10μM過酸化水素を加えたものに、パーオキシダーゼを所定濃度で所定時間反応させた後の過酸化水素濃度を示す図である。 本発明の酵素含有組成物を発酵乳の製造に使用することにより、乳酸菌数の増加、発酵促進効果及び発酵中における過酸化水素量の低減を確認したことを示す図である。 本発明の酵素含有組成物(HP-I)を添加してYC380+BB12発酵乳作製時の乳酸菌数及びビフィズス菌数の推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してYC380+BB12発酵乳作製時のpHの推移及び当該発酵乳保存中のビフィズス菌数の推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してYC380+BB12発酵乳作製時の過酸化水素濃度推移及び当該発酵乳保存時の過酸化水素濃度推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してビヒダス発酵乳作製時の乳酸菌数及びビフィズス菌数の推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してビヒダス発酵乳作製時のpHの推移及び当該発酵乳保存中のビフィズス菌数の推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してビヒダス発酵乳作製時の過酸化水素濃度推移及び当該発酵乳保存時の過酸化水素濃度推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してナチュレ惠発酵乳作製時の乳酸菌数及びビフィズス菌数の推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してナチュレ惠発酵乳作製時のpHの推移及び当該発酵乳保存中のビフィズス菌数の推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してナチュレ惠発酵乳作製時の過酸化水素濃度推移及び当該発酵乳保存時の過酸化水素濃度推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してミルミル+YC380発酵乳作製時の乳酸菌数及びビフィズス菌数の推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してミルミル+YC380発酵乳作製時のpHの推移及び当該発酵乳保存中のビフィズス菌数の推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加してミルミル+YC380発酵乳作製時の過酸化水素濃度推移及び当該発酵乳保存時の過酸化水素濃度推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加しておいしいヨーグルト発酵乳作製時の乳酸菌数及びビフィズス菌数の推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加しておいしいヨーグルト発酵乳作製時のpHの推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加しておいしいヨーグルト発酵乳作製時の過酸化水素濃度推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加して乳マイルドヨーグルト発酵乳作製時の乳酸菌数及びビフィズス菌数の推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加して乳マイルドヨーグルト発酵乳作製時のpHの推移を示す図である。 本発明の酵素含有組成物(HP-I)を添加して乳マイルドヨーグルト発酵乳作製時の過酸化水素濃度推移を示す図である。
<酵素含有組成物>
 本発明の酵素含有組成物の一態様は、パーオキシダーゼ活性に対するプロテアーゼ活性の比が10以下であることを特徴とする。
 パーオキシダーゼ活性に対するプロテアーゼ活性の比が10以下であることによって、当該酵素含有組成物を乳製品に添加しても、予期しない凝乳を生じさせずに過酸化水素を低減することができる。
 上記の比が10より大きいと、乳製品に予期しない凝乳を生じさせることにつながるおそれが高まる。予期しない凝乳は、上記酵素含有組成物を添加した乳製品の保存温度及び保存日数が増えるほど高まる。
 上記の比は、8以下であることが好ましく、5以下であることがより好ましく、2.5以下であることがさらに好ましい。
 酵素含有組成物を乳の製造法に用いる場合は、パーオキシダーゼ活性に対するプロテアーゼ活性の比が10以下であるのが好ましく、酵素含有組成物を発酵乳の製造法に用いる場合は、パーオキシダーゼ活性に対するプロテアーゼ活性の比が2.5以下であるのが好ましい。
 上記の比の下限は、特に限定されないが、予期しない凝乳を生じさせない観点、酵素含有組成物の製造を考えると、高度な精製を行うと経済性が悪くなることから、0.01以上であることが好ましく、0.05以上であることがより好ましく、0.1以上であることがさらに好ましく、0.5以上であることが特に好ましい。これによって、発酵乳の製造方法において、乳酸菌数の増加及び発酵促進効果を得やすくなる。
 本発明の好ましい一態様は、パーオキシダーゼ活性に対するプロテアーゼ活性の比が0.01以上10以下である酵素含有組成物である。また、本発明の好ましい他の一態様は、パーオキシダーゼ活性に対するプロテアーゼ活性の比が0.01以上2.5以下である酵素含有組成物である。
 パーオキシダーゼ活性に対するプロテアーゼ活性の比が0.01以上10以下である酵素含有組成物においては、パーオキシダーゼ活性及びプロテアーゼ活性を有する酵素を含有する組成物と、パーオキシダーゼとプロテアーゼを含有する組成物の態様が考えられる。
 本発明の好ましい別の一態様は、パーオキシダーゼ活性及びプロテアーゼ活性を有する酵素、又はパーオキシダーゼとプロテアーゼを含有し、パーオキシダーゼ活性に対するプロテアーゼ活性の比が0.01以上10以下である酵素含有組成物である。また、本発明の好ましい別の一態様は、パーオキシダーゼ活性及びプロテアーゼ活性を有する酵素、又はパーオキシダーゼとプロテアーゼを含有し、パーオキシダーゼ活性に対するプロテアーゼ活性の比が0.01以上2.5以下である酵素含有組成物である。
 本発明の酵素含有組成物に含まれるパーオキシダーゼ活性は、1U/mL以上であることが好ましく、10U/mL以上がさらに好ましい。パーオキシダーゼ活性が高いほど過酸化水素除去能に優れるが、濃縮しすぎると流動性等に問題が生じるため、1~100U/mLが好ましい。
 本発明の酵素含有組成物に含まれるパーオキシダーゼ活性は、後述する測定方法で測定した値を意味する。
 本発明の酵素含有組成物に含まれるプロテアーゼ活性は、特に限定されないが、250U/mL以下であることが好ましい。プロテアーゼ活性が低いほど乳製品に予期しない凝乳を生じさせにくくなる。本発明の酵素含有組成物に含まれるプロテアーゼ活性は250U/mL以下であることが好ましく、100U/mL以下であることが好ましく、40以下U/mLであることがさらに好ましい。
 本発明の酵素含有組成物に含まれるプロテアーゼ活性の下限値は、予期しない凝乳を生じさせなくする観点、酵素含有組成物の製造を考えると、高度な精製を行うと経済性が悪くなることから、0.01U/mL以上であることが好ましく、0.05U/mL以上であることがより好ましく、0.1U/mL以上であることがさらに好ましく、0.5U/mL以上であることが特に好ましい。これによって、発酵乳の製造方法において、乳酸菌数の増加及び発酵促進効果を得やすくなる。
 本発明の酵素含有組成物に含まれるプロテアーゼ活性は、後述する測定方法で測定した値を意味する。
 本発明の酵素含有組成物の一態様においては、パーオキシダーゼ活性及びプロテアーゼ活性を有する酵素、又はパーオキシダーゼとプロテアーゼを含有し、パーオキシダーゼ活性とプロテアーゼ活性との比が前記範囲にあることが特徴である。すなわち、本発明の組成物に含まれる酵素は、パーオキシダーゼ活性及びプロテアーゼ活性を有する酵素、又は、パーオキシダーゼとプロテアーゼの2種の酵素を含有する。本発明の組成物に用いられる酵素は、これらの酵素活性を有する1種又は2種のタンパク質を含み、主として酵素活性を付与するために食品や食品の原材料に対して添加するものをいう。
 パーオキシダーゼ活性及びプロテアーゼ活性を有する酵素又はパーオキシダーゼとプロテアーゼにおける、パーオキシダーゼ活性は、後述のパーオキシダーゼ活性測定法により確認することができる。また、プロテアーゼ活性は、後述のプロテアーゼ活性測定法により確認することができる。
 本発明に使用することができる酵素としては、例えば、カタラーゼ、パーオキシダーゼ、カタラーゼ‐パーオキシダーゼ、マンガンパーオキシダーゼ、ラクトパーオキシダーゼが挙げられる。これらのうち一つ又は複数を組み合わせて使用することができる。これらのうち、カタラーゼ-パーオキシダーゼを用いるのがより好ましい。
 一方、プロテアーゼとしては、後述のプロテアーゼ活性測定法によりプロテアーゼ活性が確認することができれば、市販のものを使用することができる。
 本発明に使用することができる酵素の由来に制限はなく、動物由来、植物由来、微生物由来であってもよい。微生物由来のパーオキシダーゼ活性を有する酵素を使用することが製造上使用しやすいことから好ましい。
 後述するパーオキシダーゼの活性測定方法を使用することで、パーオキシダーゼ活性を有する微生物等を自然界から探索することができる。
 パーオキシダーゼ活性を有する酵素を産生する微生物としては、例えば、糸状菌、放線菌、細菌などがある。
 これらのなかでも、放線菌由来のカタラーゼ‐パーオキシダーゼを使用することが好ましい。
 カタラーゼ‐パーオキシダーゼとして、(a)配列番号1で表されるアミノ酸配列からなるカタラーゼ‐パーオキシダーゼ、又は(b)配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列であって、配列番号1で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなるカタラーゼ‐パーオキシダーゼ、を使用することが好ましい。
 配列番号1のアミノ酸配列の遺伝子配列を示したものが配列番号2である。
 配列番号1で表されるアミノ酸配列は、Streptomyces achromogenesが産生するカタラーゼ‐パーオキシダーゼである。このカタラーゼ‐パーオキシダーゼには、同一又は80%以上の配列同一性を有するアミノ酸配列を有する限り、Streptomyces achromogenes由来でないカタラーゼ‐パーオキシダーゼも含まれる。同一又は80%以上の配列同一性を有するアミノ酸配列を有する限り、ポリペプチドだけではなく、糖ペプチドも含まれる。
 配列番号1で表されるアミノ酸配列において1~数個のアミノ酸配列が欠失、置換又は挿入されたカタラーゼ‐パーオキシダーゼにおける、アミノ酸残基の欠失、置換又は挿入の数は、配列番号1で表されるアミノ酸配列からなるカタラーゼ‐パーオキシダーゼと同等の酵素活性を示すものであれば限定されないが、1~20個が好ましく、1~10個がさらに好ましく、1~8個がさらに好ましい。
 また、当該欠失、置換又は挿入されたカタラーゼ‐パーオキシダーゼと配列番号1のアミノ酸配列との配列同一性は、80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましく、95%以上がさらに好ましく、99%以上がさらに好ましい。このような配列の同一性パーセンテージは、基準配列を照会配列として比較するアルゴリズムをもった公開又は市販されているソフトウエアを用いて計算することができる。例として、BLAST、FASTA又はGENETYX(ソフトウエア開発社製)などを用いることができる。
 自然界からパーオキシダーゼ活性の高い微生物等を見つけた場合、当該微生物等を育種してパーオキシダーゼ活性を更に高める方法と、他の微生物等を利用して生産する方法が挙げられる。
 当該微生物等を育種する方法としては、紫外線、放射線、化学物質等を使用して、当該微生物等の変異を促す方法を使用することができる。
 他の微生物等を利用して生産する方法としては、パーオキシダーゼ活性を有するタンパク質を精製・同定した後、当該パーオキシダーゼの遺伝子情報を取得し、当該遺伝子をPCR等の方法によって増幅・取得後、その遺伝子を宿主微生物に導入する方法が挙げられる。遺伝子を導入した宿主微生物を培養することで、パーオキシダーゼ活性を有するタンパク質を得ることができる。宿主微生物に導入するベクターは任意の物を使用すればよい。宿主微生物は任意のものを使用することができる。
 宿主微生物は、パーオキシダーゼ活性を有するタンパク質を生産することができれば特に制限はされないが、例えば、Bacillus属、Paenibacillus属、Brevibacillus属(例えばBrevibacillus chosinensis)、Escherichia属(例えばEscherichia coli)、Corynebacterium属、Saccharomyces属、Shizosaccharomyces属、Kluyveromyces属、Pichia属、Aspergillus属、Penicillium属、Trichoderma属、ならびに乳酸菌や酢酸菌といった食経験のある微生物をターゲットにしてもよい。
 本発明の酵素含有組成物の形態は固体であっても良く、液体であっても良い。本発明における酵素含有組成物を固体酵素含有組成物又は液体酵素含有組成物にするかは、使用する用途によって適宜変更することが出きる。
 酵素を添加する対象が固体であれば、固体状の酵素含有組成物を使用することが好ましい。対象物が酵素含有組成物によって希釈されにくいためである。液体状の酵素含有組成物であっても、酵素活性を高めれば添加対象が固体であっても、好ましく使用することができる。
 酵素を添加する対象が液体であれば、液体状の酵素含有組成物を使用することが好ましい。対象に酵素含有組成物を添加するときの作業性が増す。
 本発明の酵素含有組成物は、安定剤を含有することが好ましい。
 本発明の酵素含有組成物に使用する安定剤としては、例えば、グリセリン、ソルビトールなどの糖アルコール;グルコース、スクロース、トレハロースなどの単糖又は少糖類;食塩などの塩類が挙げられる。
 固体酵素含有組成物に安定剤を含有させる場合は、室温(20℃)において固体である安定剤を使用することが好ましい。これに該当するものとしては、例えば、ソルビトールなどの糖アルコール、グルコース、スクロース、トレハロースなどの単糖又は少糖類;食塩などの塩類を使用することができる。
 液体状の酵素含有組成物に安定剤を含有させる場合は、室温(20℃)において液体である安定剤又は水への溶解性が優れる固体安定剤を使用することが好ましい。これに該当するものとしては、グリセリン、ソルビトールなどの糖アルコールを使用することができる。
 本発明の酵素含有組成物に含ませる安定剤の量は、10~90質量%であることが好ましく、20~80質量%であることがより好ましく、25~75質量%であることがさらに好ましい。この範囲で安定剤を含有させることにより、パーオキシダーゼの保存安定性が維持され、経済的にも有利である。
 本発明の酵素含有組成物のpHは、長期間パーオキシダーゼ維持する観点から、5.0~9.0であることが好ましく、5.5~8.5であることがより好ましく、6.0~8.0であることがさらに好ましい。液体状の酵素含有組成物であれば、そのままの状態でpHを測定すれば良い。固体状の酵素含有組成物は、水に溶解することで、pHを測定することができる。
 本発明の酵素含有組成物の保存温度は、パーオキシダーゼ活性の低下防止の観点から、できるだけ低温であることが好ましく、30℃以下であることがより好ましく、10℃以下であることがさらに好ましい。
 本発明の酵素含有組成物は、必要に応じ、各種成分を含有していてもよい。具体例としては、パーオキシダーゼの安定化に寄与する金属塩類、各種糖類、アスコルビン酸、使い勝手をよくするための賦形剤である澱粉、デキストリン、緩衝作用を有する無機塩類等を挙げることができる。
<乳の製造方法>
 本発明の乳の製造方法に関する発明は、原料乳を殺菌する殺菌工程と、殺菌後の原料乳を容器に充填後、当該容器を密閉する充填工程と、を有する乳の製造方法であって、上記殺菌工程後から上記充填工程が完了するまでの間に、前記酵素含有組成物を上記殺菌後の原料に添加することを特徴とする。ここで、乳の製造法に用いる酵素含有組成物のパーオキシダーゼ活性に対するプロテアーゼ活性の比が10以下であるのが好ましい。
 本発明において、上記殺菌工程における温度条件は、120~150℃で1~3秒間加熱殺菌するか、又はこれと同等以上の殺菌効果を有する方法で加熱殺菌することをいう。当該条件よりも低い温度の場合、原料乳に含まれるラクトパーオキシダーゼ又はカタラーゼから選択される少なくとも一つが一部活性状態のままで残存するため、乳中の過酸化水素を当該ラクトパーオキシダーゼ又はカタラーゼで除去することができ、本発明の酵素含有組成物を使用しても効果はほとんど得られない。
 本発明において、殺菌後の原料乳とは、ラクトパーオキシダーゼ活性及びカタラーゼ活性が実質的にゼロのものをいう。具体的には、殺菌後の原料乳中に過酸化水素を加えて、静置した後、過酸化水素濃度が減少しないものをいう。
 上記殺菌工程後から上記充填工程が完了するまでの間とは、充填包装された乳の中に、酵素含有組成物に由来するパーオキシダーゼ活性が有る状態で存在させることが可能なときを意味する。例えば、上記殺菌工程直後に酵素含有組成物を添加しても、殺菌乳が有する熱で当該酵素含有組成物に含まれるパーオキシダーゼが失活してしまうため好ましくない。殺菌工程後パーオキシダーゼ活性の全部または一部が失活しない程度まで冷却した後に添加すればよい。
 上記充填工程が完了するまでの間とは、充填後の乳が密閉される前であれば良い。充填工程と同時に酵素含有組成物を添加しても良いし、容器に乳を充填した後に酵素含有組成物を添加し、密閉しても良い。
 すなわち、原料乳に含まれていたラクトパーオキシダーゼ活性及びカタラーゼ活性を殺菌工程において失活させた後、殺菌後の原料乳を容器内に充填し、当該容器を密閉するまでの間に、本発明の酵素含有組成物を殺菌後の原料乳に添加すればよい。
<発酵乳の製造方法>
 本発明の発酵乳の製造方法に関する発明は、原料乳を加熱殺菌する加熱殺菌工程と、加熱殺菌後の原料乳に酵母または乳酸菌を添加する添加工程と、発酵乳を得る発酵工程と、得られた発酵乳を容器に充填する充填工程と、を有する発酵乳の製造方法であって、上記加熱殺菌工程後から上記充填工程が完了するまでの間に、前記酵素含有組成物を上記加熱殺菌後の原料に添加することを特徴とする。ここで、乳の製造法に用いる酵素含有組成物のパーオキシダーゼ活性に対するプロテアーゼ活性の比が2.5以下であるのが好ましい。
 本発明の発酵乳の製造方法において、加熱殺菌工程における温度条件は、70~110℃で30秒間~10分間の殺菌を行うものであればよく、これと同等以上の殺菌効果を有する方法であってもよい。
 好ましい加熱温度は75℃~105℃の範囲内であり、より好ましくは80℃~100℃の範囲内であり、さらに好ましくは85℃~95℃の範囲内である。
 好ましい加熱時間は1分間~10分間の範囲内であり、より好ましくは2分間~8分間であり、さらに好ましくは3分間~7分間である。
 上加熱殺菌工程における上記の加熱温度及び加熱時間は上記を組み合わせて使用することができる。
 加熱殺菌後の原料乳を酵母又は乳酸菌の発酵に適した温度(25℃~43℃)まで放冷した後、酵母又は乳酸菌を添加する。
 酵母の発酵温度は25℃~40℃の範囲内であることが好ましく、30℃~37℃の範囲内であることがより好ましい。
 乳酸菌の発酵温度は30℃~43℃の範囲内であることが好ましく、37℃~43℃であることがより好ましい。
 加熱殺菌後の原料乳に添加する酵母又は乳酸菌の数は適宜調整することができる。加熱殺菌後の原料乳への酵母又は乳酸菌の添加量は、発酵速度の維持及び製造コストの増加抑制の観点から、1mLあたり1×10の4乗~1×10の10乗個であることが好ましい。
  本発明の発酵乳の製造方法に酵母を使用するにあたって、酵母の種類に特に制限はない。酵母としては、乳糖発酵性酵母又は乳糖非発酵性酵母などが用いられる。乳糖非発酵性酵母を用いる場合には、原料乳に予めショ糖、ブドウ糖などの発酵可能な糖源を0.1~10%添加することが好ましい。
 本発明の発酵乳の製造方法に使用する乳酸菌としては、ラクトバチルス(Lactobacillus)属、ストレプトコッカス(Streptococcus)属に属する微生物を例示できる。
 例えば、ラクトコッカス・ラクティス(Lactococcus lactis)、ラクトコッカス・ラクティス・サブスピーシーズ・クレモリス(Lactococcus lactis subsp.cremoris)、ラクトバチルス・カゼイ(Lactobacillus casei)、ラクトバチルス・ガセリ(Lactobacillus gasseri)、ラクトバチルス・ラムノーサス(Lactobacillus rhamnosus)、ラクトバチルス・アシドフィルス(Lactobacillus acidophilus)、ラクトバチルス・プランタラム(Lactobacillus plantarum)、ラクトバチルス・ブレビス(Lactobacillus brevis)、ラクトバチルス・デルブルッキー・サブスピーシーズ・ブルガリカス(Lactobacillus delbrueckii subsp. bulgaricus)、ストレプトコッカス・サーモフィラス(Streptococcus thermophilus)が挙げられる。ビフィドバクテリウム(Bifidobacterium)属に属するビフィズス菌を乳酸菌として使用しても良い。これらの乳酸菌(ビフィズス菌を含む)は単独で使用しても良いし、2以上を組み合わせて使用しても良い。
 なお、上記の乳酸菌のうち、ラクトバチルス・デルブルッキー・サブスピーシーズ・ブルガリカス(Lactobacillus delbrueckii subsp. bulgaricus)及びストレプトコッカス・サーモフィラス(Streptococcus thermophilus)を使用したものが狭義のヨーグルトである。
 上記加熱殺菌工程後から上記充填工程が完了するまでの間とは、充填包装された乳の中に、酵素含有組成物に由来するパーオキシダーゼ活性が有る状態で存在させることが可能なときを意味する。
 上記充填工程が完了するまでの間とは、充填後の乳が密閉される前であれば酵素含有組成物を添加するタイミングに制限はない。例えば、加熱殺菌後の原料乳を放冷した後に酵素含有組成物を添加しても良く、加熱殺菌後の原料乳を放冷した後に酵母または乳酸菌を添加するときと略同時に酵素含有組成物を添加しても良い。
 本発明において、略同時とは、使用する酵母又は乳酸菌の生育速度によって変化する相対的なものであって、使用する酵母又は乳酸菌が誘導期に該当することを意味する。予期せぬ凝乳を防ぐには、使用する酵母又は乳酸菌が誘導期に該当する時期に酵素含有組成物を添加することが好ましい。
  酵素含有組成物を添加した原料乳は、発酵が進むにつれ、pHが低下する。発酵が終了した原料乳(発酵乳)のpHは3.5~5.5の範囲内にあることが好ましく、pH4.0~5.0の範囲内にあることがより好ましく、pH4.2~4.7の範囲内にあることがさらに好ましい。
 原料乳の発酵が進むにつれ、原料乳に添加した酵素含有組成物に含まれるパーオキシダーゼ活性は低下することが好ましい。
 以下、本発明を実施例を挙げて説明するが、本発明はこれに制限されるものではない。
<評価方法>
(パーオキシダーゼ活性の測定方法)
 リン酸二水素カリウム13.61gを量り、水を加えて溶かし、水酸化ナトリウム試液(1mol/L)でpHを6.5に調整し、水を加えて1Lとすることでリン酸カリウム緩衝液(100mmol/L)を作製した。
 1mol/Lの塩酸を100mLを量り取り、水を加えて1000mLとすることで塩酸試液(0.1mol/L)を作製した。
 過酸化水素水(30%)を1.1g量り取り、水を加えて100mLとすることで過酸化水素試液(100mmol/L)を作製した。これを1mL量り取り、水を加えて4mLとすることで過酸化水素試液(25mmol/L)を作製し、この240nmの波長の吸光度を測定し、100×測定値÷理論上の数値(1.09)によりファクターを算出した。次に、100/Factor×1.1gの過酸化水素水(30%)を量り取り、水を加えて100mLにすることで、正確に100mmol/Lの過酸化水素試液を調製した。
 ピロガロール0.5gを量り取り、水を加えて溶かし10mLとすることでピロガロール試薬(396.5mmol/L)を作製した。
 試験管(Thick=0.8mm)にリン酸カリウム緩衝液を405μL、ピロガロール試液(396.5mmol/L)を270μL、過酸化水素試液(100mmol/L)を135μL、水を1.79mL加え混合し、30℃で10分プレインキュベーションした。
 適宜希釈した酵素含有組成物(液体状の酵素含有組成物)を100μL添加して混合し、30℃で10分間インキュベートした。
 Blankは酵素の代わりにMQを100μL添加したものを使用した。
 反応10分後に塩酸試液(0.1mol/L)を300μL添加し混合して酵素反応を停止させ、420nmの波長の吸光度を測定した。
 ユニットの定義は、pH6.5,30℃,20秒間にプルプロガリンを1mg生成する酵素量とした。
 U/mL=ΔOD(ODtest-ODblank)/12×3/0.1×希釈倍率×20/600
(プロテアーゼ活性の測定方法)
 酵素含有組成物の希釈用緩衝液は2mM酢酸カルシウム含有50mMトリス―塩酸緩衝液(pH7.5)を使用した。
 0.1Mトリス溶液は、トリス(ヒドロキシメチル)アミノメタン12.11gを精製水に溶解し、1Lとした。
 0.2M酢酸カルシウム溶液は、酢酸カルシウム・1水塩(MW176.18)3.52gを精製水に溶解し100mLとした。
 沈殿試薬は、トリクロロ酢酸18.0g及び無水酢酸ナトリウム18.0gを蒸留水700mLに溶解し、これに酢酸19.8g(18.9mL)を加えpH4±0.05(範囲外の場合は1N NaOH又はHClで調整)確認後精製水で1Lとした。
 基質溶液(用事調製):精製水約20mLを撹拌しておき、これにミルクガゼイン(CALBIOCHEM社製,製品番号218682)を1.2gを精秤し、少量ずつ振り入れ懸濁させ、0.1Mトリス溶液100mL加え十分撹拌した後に60℃、10分間加温し、水浴し冷却後、酢酸カルシウム溶液を2mL添加し、1N塩酸にてpH7.5に調整し精製水で200mLとした。
 試験管に試料溶液(液体状の酵素含有組成物)を0.5mL入れ、30℃で3~5分インキュベートした。基質溶液を2.5mL添加混合し、30℃で10分反応後、沈殿試薬を2.5mL加え混合し、30℃で30分静置した。次に、No.4Aろ紙にてろ過(30分以上)し、ろ液の吸光度を275nmで測定した。ブランクは、基質溶液と沈殿試薬の入れる順番を逆にして行った。
 U/mL=ΔOD×F×希釈倍率
Fはチロシン検量線より求めた換算ファクター。
(過酸化水素濃度の測定方法)
 乳試料(乳または発酵乳(適宜混合))900μLに20%スルホサリチルサンを100μL混合した後、遠心(14800rpm,4℃)上清を使用した。上清20μLに発色試薬を180μL添加し、室温で30分静置した後、595nmにおける吸光度を測定した。別に濃度既知の過酸化水素溶液を用いて検量線を作成し、これより試料中の過酸化水素濃度を算出した。
 発色試薬:R1※:R2※※=1:100で混合
R1(25mM硫酸アンモニウム鉄(II)6水和物,2.5M硫酸)
R2(100mMソルビトール,125μMキシレノールオレンジ)
[参考例1:微生物の探索]
 合同酒精が保有する微生物菌株を用いて、パーオキシダーゼ活性を有する微生物を探索したところ、放線菌の培養物にパーオキシダーゼ活性を確認した。当該培養物を精製した、配列番号1のタンパク質(以下、HP-Iという場合がある)にパーオキシダーゼ活性を確認し、Streptomyces achromogenes subsp. achromogenes(Strain:NRRL B-2120、ゲノム情報有)のcatalase/peroxidase HPI(WP_030611371.1)の配列番号2の遺伝子配列を取得した。
[実施例1:市販株による生産]
 上記のNRRL B-2120株を培養し、定常期に達した培養ブロスを取得した。すなわち500mL容フラスコに80mL培地(1%グルコース,1%酵母エキスKAT,0.2%リン酸二水素アンモニウム,0.1%硫酸マグネシウム)を調製し、210rpm、30℃で培養した。同培地に培養ブロスを4mL植菌し、同条件で72hrs培養した。培養液を15,000rpm×10min、4℃で遠心し、遠心沈殿物を0.1Mリン酸緩衝液(pH6.5)で懸濁した後、15min超音波破砕を行った。破砕液を15,000rpm×10min、4℃で遠心し、得られた遠心上清9.5mLを20mMリン酸緩衝液で透析を一晩行った(分画分子量12,000~14,000)。同緩衝液にて平衡化したDEAE-toyopearlカラム(φ15×110mm,体積約20mL)に透析サンプル10mLを供し、流速1mL/minの条件においてNaClステップワイズグラジエント(0.1,0.15,0.2M)で溶出した。0.2M画分を回収し,再度20mMリン酸緩衝液(pH6.5)に対して透析を行った。NGC Enrich-Q(陰イオン交換カラム)を使用し、透析サンプル1mLを添加し、流速1mL/minにて,0-0.8M NaCl リニアグラジエントでの精製を行うことにより、液体状の酵素含有組成物を得た。
 当該酵素含有組成物のパーオキシダーゼ活性は0.01U/mL、プロテアーゼ活性は検出されなかった。
[実施例2:宿主による生産]
 配列番号2の遺伝子配列を増幅するためのプライマーとして、下記のプライマー1及び2を使用した。
 プライマー1:5’-TAGAATTCCATATGACTGAGAACCACGAC-3’(配列番号3)
 プライマー2:5’-CCCCAAGCTTTCAATGATGATGATGATGATGGACGAGGTCGAAGCG-3’(配列番号4)
 増幅した遺伝子をPET28aベクターにライゲーションし、得られたプラスミドを大腸菌BL21株に導入した。形質転換体をLB培地中で発現誘導し、培養を行った。遠心により菌体を回収し、超音波破砕により得られた菌体抽出液をNiカラムにより精製し、液体状の酵素含有組成物を得た。
 当該酵素含有組成物のパーオキシダーゼ活性は2.0U/mL、プロテアーゼ活性は検出されなかった。
[実施例3]
 NRRL B-2120株に紫外線照射を行い選別した12-5株を、500mL容フラスコに100mL大豆粉培地(1%グリセリン,1%大豆粉,0.5%酵母エキス,0.5%カザミノ酸、0.4%炭酸カルシウム、金属塩溶液0.1%、金属塩溶液は0.1%硫酸鉄七水和物、0.09%硫酸亜鉛、0.02%硫酸マンガンの水溶液)滅菌後に別滅菌グルコースを1%添加となるよう添加したもの)に植菌し、210rpm、30℃で2~3日培養した。培養液を15,000rpm×10min、4℃で遠心して集菌し、使用まで凍結保管した。
 凍結菌体0.15g/mL,卵白リゾチーム0.21%になるようにpH6.5リン酸カリウム緩衝液で溶かし、37℃で5時間撹拌することで酵素を抽出した。
 この段階では、パーオキシダーゼ活性1.2U/mL、プロテアーゼ活性138U/mL、パーオキシダーゼ活性に対するプロテアーゼ活性の比が115であった。これを精製前酵素含有組成物という場合がある。
 このリゾチーム抽出液:9.6%K2HPO4溶液:11.52%CaCl2・2H2O溶液=100:10:10の割合で混ぜ、K2HPO4はFinal 0.8%、CaCl2・2H2OはFinal0.96%になるようにし、リン酸カルシウムゲルを生成させた。シリカ300Sを1%混ぜ、シリカ300Sを約1.5mmコートしたろ紙を用いてろ過を行った。このろ液に活性炭PL-CPS2(ダイネン社製)を2%混ぜ、室温で2時間撹拌することでプロテアーゼを吸着除去した。シリカ100Fを1%混ぜ、シリカ100Fを約1.5mmコートしたろ紙を用いてろ過を行った。ろ液を任意の活性となるよう限外ろ過等で濃縮後、安定剤として25%(w/w)グリセリンを加えることで、液体状の酵素含有組成物を得た。
 この酵素含有組成物は、パーオキシダーゼ活性42U/mL、プロテアーゼ活性53U/mL、パーオキシダーゼ活性に対するプロテアーゼ活性の比が1.3であった。これを精製後酵素含有組成物という場合がある。
 実施例2の酵素含有組成物と、実施例3の精製前後の酵素含有組成物を用いて任意のパーオキシダーゼ活性に対するプロテアーゼ活性の比を有する酵素含有組成物を調整できる。
<評価:乳中の過酸化水素の分解>
 市販の牛乳(商品名:明治おいしい牛乳)および同牛乳に10μM過酸化水素を加えたものに、実施例3のパーオキシダーゼ(精製前酵素含有組成物)を終濃度0.00005、0.00025、0.0005、0.005、0.05、0.25U/mLになるように加えて混ぜ、4℃で90分間静置した結果、0.05U/mL以上の活性で過酸化水素濃度が約1μM(定量限界付近)になった(図1)。
 市販の牛乳(商品名:明治おいしい牛乳)および同牛乳に10μM過酸化水素を加えたものに、実施例3のパーオキシダーゼ(精製前酵素含有組成物)を終濃度0.05,0.025,0.005U/mLになるように混ぜ、4℃で30、60、90、120、240分間静置した結果、終濃度0.05U/mLの活性でほぼ完全に過酸化水素が分解できた(定量限界以下、図2左が0.05U/mL、図2中央が0.025U/mL、図2右が0.005U/mL)。
<乳に影響しないプロテアーゼ濃度>
 スキムミルク2%を混ぜた市販の低温殺菌牛乳(商品名:タカナシ低温殺菌牛乳)に、パーオキシダーゼ活性は終濃度0.04U/mLで固定し、実施例3の精製前酵素含有組成物と実施例2の酵素含有組成物を混合することで、プロテアーゼ活性を終濃度2.45,0.52,0.25,0.049U/mLになるように調整した(パーオキシダーゼ活性に対するプロテアーゼ活性の比は、順に61.3、13、6.3、1.2)。これらの酵素含有組成物を43℃で1時間おきに観察しながら7時間静置し観察した。2.45U/mLは2時間、0.52U/mLは5~6時間で凝乳し、0.25U/mLと0.049U/mLでは凝乳は見られなかった。次に、同様にしてプロテアーゼ活性を0.25,0.35,0.45,0.52U/mL(パーオキシダーゼ活性に対するプロテアーゼ活性の比は、順に6.3、8.8、11.3、13)で検討した結果、0.52U/mLは5時間、0.45U/mLは7時間で凝乳が見られ、それ以外では凝乳は見られなかった。さらに、プロテアーゼ活性を0.35,0.4,0.45U/mL(パーオキシダーゼ活性に対するプロテアーゼ活性の比は、順に8.8、10、11.3)で検討した結果、いずれにおいても凝乳は見られなかった。つまり、パーオキシダーゼ活性に対するプロテアーゼ活性の比が10以下であれば予期せぬ凝乳が見られないことが分かった。
<発酵乳に影響しないプロテアーゼ濃度>
 スキムミルクを2%になるように市販の低温殺菌牛乳(商品名:タカナシ低温殺菌牛乳)に混ぜ、20分間沸騰しているお湯に入れ殺菌した。殺菌後43℃で冷却し、室温にもどしたスターター(YC380クリスチャンハンセン社製)を10mg/100gになるように添加し、よく撹拌した。次に、このヨーグルト原液に、パーオキシダーゼ活性は終濃度0.04U/mLで固定し、実施例3の精製前酵素含有組成物と実施例2の酵素含有組成物を混合することで、プロテアーゼ活性を終濃度0.5,0.4,0.3,0.2,0.1,0.05U/mLになるように調整した(パーオキシダーゼ活性に対するプロテアーゼ活性の比は、順に12.5、10、7.5、5、2.5)。これらの酵素含有組成物を43℃で0~5時間静置することで、コントロールが発酵により凝乳する前に牛乳を凝乳させない最大Protease活性を検討した。コントロールは酵素を添加していないものとした。その結果、0.5U/mLと0.4U/mLは2時間で、0.3U/mLと0.2U/mLは3時間で凝乳した。これらは酵素を添加していないコントロールよりも早く凝乳した。0.1U/mLと0.05U/mLでは目視ではプロテアーゼの影響による凝乳は見られなかった。
 つまり、パーオキシダーゼ活性に対するプロテアーゼ活性の比が2.5以下であれば予期せぬ凝乳が見られないことが分かった。
<評価:発酵乳への添加1>
 スキムミルク濃度が2%になるように市販の低温殺菌牛乳(商品名:低温殺菌牛乳(タカナシ乳業製))392gに8g混ぜ、20分間沸騰しているお湯に入れ殺菌した。殺菌後43℃まで冷却し、スターター(YC380:クリスチャンハンセン製)を10mg/100gになるように添加しよく撹拌した。このヨーグルト原液を滅菌メジュームビン2本に99.9gずつ分注し、1本に終濃度0.04U/gのパーオキシダーゼ活性を含むように酵素含有組成物(パーオキシダーゼ活性に対するプロテアーゼ活性の比は1.3)を、1本に0.1Mリン酸カリウムBuffer(pH6.5)をコントロールとして同量加えてよく混合した。これらを0~4時間の発酵用に15mLチューブ7本に13mLずつ分注し、43℃で発酵を開始した。経時的にチューブからサンプリングし、段階希釈した後BCPプレート(栄研)に適量播種し、37℃で48時間静置し培養後菌数をカウントした。次に、15mLチューブに残ったヨーグルトの過酸化水素濃度とpH測定を行った。
 図3に結果を示した。酵素含有組成物を添加することで、乳酸菌数が2時間の発酵時間では3.8倍になった。発酵中のpH低下も早く、20~30分程度の発酵促進効果を得た。発酵中における過酸化水素含有量が低下していること及び酵素含有組成物の作用により凝乳が発生しないことを確認した。
<評価:発酵乳への添加2>
 スキムミルク濃度が2%になるように市販の低温殺菌牛乳(商品名:低温殺菌牛乳(タカナシ乳業製))に混ぜ、20分間沸騰しているお湯に入れ殺菌した。殺菌後43℃まで冷却し、スターター(YC380:クリスチャンハンセン製)を10mg/100g,ビフィズス菌(BB12:クリスチャンハンセン製)5mg/100gになるように添加しよく撹拌した。
 このヨーグルト原液を滅菌メジュームビン2本に99.9gずつ分注し、1本に終濃度0.04U/gのパーオキシダーゼ活性を含むように実施例3の精製後酵素含有組成物(パーオキシダーゼ活性に対するプロテアーゼ活性の比は1.3)を、1本に滅菌済みMilliQをコントロールとして同量加えてよく混合した。これらを0~4時間の発酵用及び保存試験用に15mLチューブに13mLずつ分注し、43℃で発酵を開始した。経時的にチューブからサンプリングし、段階希釈した後乳酸菌数カウント用にBCPプレート(栄研)、ビフィズス菌数カウント用にTOSプレート(ヤクルト薬品)に適量播種し、37℃で72時間静置し培養後菌数をカウントした。さらに、発酵終了後10℃で15mLチューブの発酵乳を保存し、経日的にチューブからサンプリングし、段階希釈した後乳酸菌数カウント用にBCPプレート(栄研)、ビフィズス菌数カウント用にTOSプレート(ヤクルト薬品)に適量播種し、37℃で72時間静置し培養後菌数をカウントした。
 各試験に使用後に15mLチューブに残った発酵乳の過酸化水素濃度とpH測定を行った。
 図4~6に結果を示した。実施例3の精製後酵素含有組成物(HP-I)を添加することで、乳酸菌数が3.25時間の発酵時間では1.7倍になった(図4)。また、酵素含有組成物を添加することで、ビフィズス菌数が3.25時間の発酵時間では1.3倍になった(図4)。発酵中のpH低下も早く、数分程度の発酵促進効果を得た(図5)。また、酵素含有組成物を添加することで、発酵乳保存中のビフィズス菌数の低下速度が抑制された(図5)。発酵中における過酸化水素含有量が低下していること及び酵素含有組成物の作用により凝乳が発生しないことを確認した(図6)。
<市販発酵乳を用いて作製した発酵乳>(保存試験はビヒダス、ナチュレ恵、ミルミルで実施)
 スキムミルク濃度が2%になるように市販の低温殺菌牛乳(商品名:低温殺菌牛乳(タカナシ乳業製))に混ぜ、20分間沸騰しているお湯に入れ殺菌した。殺菌後43℃まで冷却し、表1に示した市販発酵乳を表の通りの重量で添加しよく撹拌した。このヨーグルト原液を滅菌メジュームビン2本に99.9gずつ分注し、1本に終濃度0.04U/gのパーオキシダーゼ活性を含むように実施例3の精製後酵素含有組成物(パーオキシダーゼ活性に対するプロテアーゼ活性の比は1.3)を、1本に滅菌済みMilliQをコントロールとして同量加えてよく混合した。
 これらを0~4時間の発酵用及び保存試験用に15mLチューブに13mLずつ分注し、43℃で発酵を開始した。経時的にチューブからサンプリングし、段階希釈した後乳酸菌数カウント用にBCPプレート(栄研)、ビフィズス菌数カウント用にTOSプレート(ヤクルト薬品)に適量播種し、37℃で72時間静置し培養後菌数をカウントした。さらに、発酵終了後10℃で15mLチューブの発酵乳を保存し、経日的にチューブからサンプリングし、段階希釈した後乳酸菌数カウント用にBCPプレート(栄研)、ビフィズス菌数カウント用にTOSプレート(ヤクルト薬品)に適量播種し、37℃で72時間静置し培養後菌数をカウントした。各試験に使用後に15mLチューブに残った発酵乳の過酸化水素濃度とpH測定を行った。
 図7~21に結果を示した。実施例3の精製後酵素含有組成物(HP-I)を添加することで、乳酸菌数及びビフィズス菌の増殖が促進した(図7、10、13、16、19)。発酵中のpH低下も早く、数分程度の発酵促進効果を得た(図8、11、14、17、20)。また、酵素含有組成物を添加することで、発酵乳保存中のビフィズス菌数の低下速度が抑制された(図8、11、14、17、19)。発酵中における過酸化水素含有量が低下していること及び酵素含有組成物の作用により凝乳が発生しないことを確認した(図9、12、15、18、21)。
Figure JPOXMLDOC01-appb-T000001

Claims (14)

  1.  パーオキシダーゼ活性に対するプロテアーゼ活性の比が10以下である酵素含有組成物。
  2.  パーオキシダーゼ活性に対するプロテアーゼ活性の比が2.5以下である請求項1記載の酵素含有組成物。
  3.  パーオキシダーゼ活性に対するプロテアーゼ活性の比が0.01以上である請求項1又は2記載の酵素含有組成物。
  4.  パーオキシダーゼ活性及びプロテアーゼ活性を有する酵素、又はパーオキシダーゼとプロテアーゼを含有し、パーオキシダーゼ活性に対するプロテアーゼ活性の比が0.01以上10以下である請求項1記載の酵素含有組成物。
  5.  パーオキシダーゼ活性が、1U/mL以上100U/mL以下である請求項1又は2記載の酵素含有組成物。
  6.  プロテアーゼ活性が、0.01U/mL以上250U/mL以下である請求項1又は2記載の酵素含有組成物。
  7.  さらに、安定剤を含有する請求項1又は2記載の酵素含有組成物。
  8.  安定化剤が、糖アルコール、単糖、少糖類及び塩類から選ばれる1種以上である請求項7記載の酵素含有組成物。
  9.  前記含有する酵素が、カタラーゼ、パーオキシダーゼ、カタラーゼ‐パーオキシダーゼ、マンガンパーオキシダーゼ、及びラクトパーオキシダーゼから選択される少なくとも一つである請求項1又は2記載の酵素含有組成物。
  10.  前記含有する酵素が、カタラーゼ‐パーオキシダーゼである請求項1又は2記載の酵素含有組成物。
  11.  前記カタラーゼ‐パーオキシダーゼが放線菌に由来する酵素である請求項10に記載の酵素含有組成物。
  12.  前記カタラーゼ‐パーオキシダーゼが下記(a)または(b)である請求項10又は11に記載の酵素含有組成物。
    (a)配列番号1で表されるアミノ酸配列からなるカタラーゼ‐パーオキシダーゼ
    (b)配列番号1で表されるアミノ酸配列において1~数個のアミノ酸残基が欠失、置換又は挿入されたアミノ酸配列であって、配列番号1で表されるアミノ酸配列と80%以上の配列同一性を有するアミノ酸配列からなるカタラーゼ‐パーオキシダーゼ
  13.  原料乳を殺菌する殺菌工程と、殺菌後の原料乳を容器に充填後、当該容器を密閉する充填工程と、を有する乳の製造方法であって、
     前記殺菌工程後から前記充填工程が完了するまでの間に、請求項1記載の酵素含有組成物を前記殺菌後の原料乳に添加する乳の製造方法。
  14.  原料乳を殺菌する加熱殺菌工程と、加熱殺菌後の原料乳に酵母又は乳酸菌を添加する添加工程と、発酵乳を得る発酵工程と、得られた発酵乳を容器に充填する充填工程と、を有する発酵乳の製造方法であって、
     前記加熱殺菌工程後から前記充填工程が完了するまでの間に、請求項2記載の酵素含有組成物を前記殺菌後の原料乳に添加する発酵乳の製造方法。
PCT/JP2022/028982 2021-07-27 2022-07-27 酵素含有組成物、乳の製造方法及び発酵乳の製造方法 WO2023008491A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280052744.0A CN117730148A (zh) 2021-07-27 2022-07-27 含酶组合物、乳的制造方法和发酵乳的制造方法
EP22849552.9A EP4379049A1 (en) 2021-07-27 2022-07-27 Enzyme-containing composition, method for producing milk and method for producing fermented milk
JP2023538602A JPWO2023008491A1 (ja) 2021-07-27 2022-07-27
US18/291,003 US20240324618A1 (en) 2021-07-27 2022-07-27 Enzyme-containing composition, method for producing milk and method for producing fermented milk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-122089 2021-07-27
JP2021122089 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023008491A1 true WO2023008491A1 (ja) 2023-02-02

Family

ID=85086898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028982 WO2023008491A1 (ja) 2021-07-27 2022-07-27 酵素含有組成物、乳の製造方法及び発酵乳の製造方法

Country Status (5)

Country Link
US (1) US20240324618A1 (ja)
EP (1) EP4379049A1 (ja)
JP (1) JPWO2023008491A1 (ja)
CN (1) CN117730148A (ja)
WO (1) WO2023008491A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420150A (en) * 1977-07-12 1979-02-15 Snam Progetti Sterilizaion and disinfection of milk and liquid or aqueous suspension type food
US4657864A (en) * 1985-06-18 1987-04-14 Westvaco Corporation Method for stabilizing peroxidase solutions
JPS62228224A (ja) * 1985-03-06 1987-10-07 Glyco Kyodo Nyugyo Kk 乳酸菌醗酵食品の製造法
JPS63226243A (ja) * 1987-03-16 1988-09-20 Amano Seiyaku Kk 変異原性物質の除去法
WO1992013064A1 (en) * 1991-01-23 1992-08-06 Snow Brand Milk Products Co., Ltd. Lactic acid bacterium starter, containing peroxidase, fermented milk product, and production thereof
JP2009517061A (ja) * 2005-11-28 2009-04-30 ディーエスエム アイピー アセッツ ビー.ブイ. クリーンな味を産み出す酵素調製物
CN102660512A (zh) * 2012-04-17 2012-09-12 苏州昆蓝生物科技有限公司 一种用于水稻的酶制剂组合物及其应用
JP2013540447A (ja) * 2010-10-29 2013-11-07 ヴァリオ・リミテッド 乳製品および調製方法
WO2014185364A1 (ja) * 2013-05-13 2014-11-20 合同酒精株式会社 ラクターゼ含有組成物の製造法
WO2017104729A1 (ja) * 2015-12-16 2017-06-22 合同酒精株式会社 発酵乳製品及びその製造方法
CN111903761A (zh) * 2020-08-18 2020-11-10 四川东坡中国泡菜产业技术研究院 一种具有抗氧化功能酸奶及其制备方法
JP2020188724A (ja) * 2019-05-22 2020-11-26 長谷川香料株式会社 乳原料発酵品およびその製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5420150A (en) * 1977-07-12 1979-02-15 Snam Progetti Sterilizaion and disinfection of milk and liquid or aqueous suspension type food
JPS62228224A (ja) * 1985-03-06 1987-10-07 Glyco Kyodo Nyugyo Kk 乳酸菌醗酵食品の製造法
US4657864A (en) * 1985-06-18 1987-04-14 Westvaco Corporation Method for stabilizing peroxidase solutions
JPS63226243A (ja) * 1987-03-16 1988-09-20 Amano Seiyaku Kk 変異原性物質の除去法
JPH084453B2 (ja) 1987-03-16 1996-01-24 天野製薬株式会社 変異原性物質の除去法
WO1992013064A1 (en) * 1991-01-23 1992-08-06 Snow Brand Milk Products Co., Ltd. Lactic acid bacterium starter, containing peroxidase, fermented milk product, and production thereof
JP2009517061A (ja) * 2005-11-28 2009-04-30 ディーエスエム アイピー アセッツ ビー.ブイ. クリーンな味を産み出す酵素調製物
JP2013540447A (ja) * 2010-10-29 2013-11-07 ヴァリオ・リミテッド 乳製品および調製方法
CN102660512A (zh) * 2012-04-17 2012-09-12 苏州昆蓝生物科技有限公司 一种用于水稻的酶制剂组合物及其应用
WO2014185364A1 (ja) * 2013-05-13 2014-11-20 合同酒精株式会社 ラクターゼ含有組成物の製造法
WO2017104729A1 (ja) * 2015-12-16 2017-06-22 合同酒精株式会社 発酵乳製品及びその製造方法
JP2020188724A (ja) * 2019-05-22 2020-11-26 長谷川香料株式会社 乳原料発酵品およびその製造方法
CN111903761A (zh) * 2020-08-18 2020-11-10 四川东坡中国泡菜产业技术研究院 一种具有抗氧化功能酸奶及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE UNIPROT ANONYMOUS : "A0A0S2PC13 · A0A0S2PC13_STRHL", XP093029102, retrieved from UNIPROT *
DATABASE UNIPROT ANONYMOUS : "A0A6H0CXF6 · A0A6H0CXF6_9ACTN", XP093029100, retrieved from UNIPROT *

Also Published As

Publication number Publication date
JPWO2023008491A1 (ja) 2023-02-02
CN117730148A (zh) 2024-03-19
US20240324618A1 (en) 2024-10-03
EP4379049A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
US11896024B2 (en) Method of glycation of a polypeptide
JP5995835B2 (ja) 物性が改良された発酵乳の製造方法
JP4802216B2 (ja) ビフィドバクテリウム属菌含有組成物及びビフィドバクテリウム属菌含有組成物の製造方法
JP4448896B2 (ja) 発酵乳の製造方法
CN110121267A (zh) 产生发酵乳制品的方法
JP2824821B2 (ja) 乳酸菌及び発酵乳製品
CN108882718A (zh) 使用干酪乳杆菌生产发酵乳制品的方法
US20120207878A1 (en) Low-fat or fat-free yoghurt, and process for production thereof
JPWO2019194062A1 (ja) Paenibacillus pabuli由来のガラクトオリゴ糖を製造可能な酵素、およびガラクトオリゴ糖を製造する方法
JP7535620B2 (ja) ガラクトオリゴ糖の製造方法
Rabha et al. Effect of some fermentation substrates and growth temperature on exopolysaccharide production by Streptococcus thermophilus BN1
CN114981406A (zh) 制备乳酸菌培养物的方法
CN110117315B (zh) 一种保加利亚乳杆菌后酸化相关基因及其在酸奶中的应用
Chen et al. Cloning, purification, and characterization of branched-chain α-keto acid decarboxylases from Lactococcus lactis strains with different 3-methylbutanal production abilities
MX2012009975A (es) Un metodo para producir un alimento fermentado que contiene bifidobacterias.
WO2023008491A1 (ja) 酵素含有組成物、乳の製造方法及び発酵乳の製造方法
US6833260B1 (en) Lactose hydrolysis
JP2023014396A (ja) ビフィズス菌生残性向上用組成物
ES2352633B1 (es) Cepa mutante de lactococcus lactis lactis y método para la producción industrial de acetoína.
CN102782120A (zh) 改进的发酵方法
Zhang et al. Optimization of culture conditions for high-level expression of dextransucrase in Escherichia coli
WO2009150888A1 (ja) 乳タンパク質分解物、乳タンパク質分解物の製造方法及びビフィズス菌増殖促進剤
US20220304323A1 (en) Production of lactase enzymes using altered regulation strains
Kaur et al. Development of lactose hydrolyzed milk using micro fluidization assisted crude β-galactosidase enzyme of Lactobacillus acidophilus
Al-Zahrani et al. Isolation and identification of Lactobacillus plantarum KM5 from camel milk for β-galactosidase production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849552

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538602

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18291003

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280052744.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022849552

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849552

Country of ref document: EP

Effective date: 20240227