WO2023008432A1 - 相変化材料 - Google Patents

相変化材料 Download PDF

Info

Publication number
WO2023008432A1
WO2023008432A1 PCT/JP2022/028790 JP2022028790W WO2023008432A1 WO 2023008432 A1 WO2023008432 A1 WO 2023008432A1 JP 2022028790 W JP2022028790 W JP 2022028790W WO 2023008432 A1 WO2023008432 A1 WO 2023008432A1
Authority
WO
WIPO (PCT)
Prior art keywords
change material
phase change
less
phase
state
Prior art date
Application number
PCT/JP2022/028790
Other languages
English (en)
French (fr)
Inventor
佳雅 松下
史雄 佐藤
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020237024548A priority Critical patent/KR20240032696A/ko
Priority to CN202280029238.XA priority patent/CN117204144A/zh
Priority to JP2023538555A priority patent/JPWO2023008432A1/ja
Publication of WO2023008432A1 publication Critical patent/WO2023008432A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/105Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including field-effect components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/20Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having two electrodes, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices

Definitions

  • the present invention relates to phase change materials.
  • phase change memory is a non-volatile memory that records information by utilizing the electrical resistance difference between the amorphous state and the crystalline state of the phase change material used. Phase change memory is attracting attention because of its high speed and large capacity.
  • Ge--Sb--Te based phase-change materials such as Ge 22 Sb 22 Te 56 (GST) have been widely used for phase-change memories (Patent Document 1).
  • an object of the present invention is to provide a phase change material suitable for increasing capacity.
  • the phase change material of aspect 1 contains, in atomic %, 1% to 40% Ge, 40% to 90% Te, 0% to less than 5% Sb, and further Si, Al, Ga, Sn, Bi, Cu, It is characterized by containing 1% to 59% of one or more selected from Ag, Zn, Y, In, Ca and Mg.
  • the ratio Te/Ge of the contents of Te and Ge is 2-8.
  • the phase change material of mode 3 preferably contains 0% to less than 5% of Sb+As in mode 1 or mode 2.
  • the phase change material of Mode 4 preferably has a crystallization temperature Tx of 150°C or higher.
  • the phase change material of aspect 5 preferably has a crystalline melting point Tm of 600° C. or lower.
  • the phase change material of the aspect 6 preferably has a difference ⁇ (Tm ⁇ Tx) between the crystalline melting point Tm and the crystallization temperature Tx of 400° C. or less.
  • the phase change material of aspect 7 contains, in atomic %, Ge 1% to 40%, Te 40% to 90%, Ge+Te 41% to 99%, Sb 0% to less than 5%, and has a crystalline melting point Tm and crystallization
  • Tm crystalline melting point
  • the difference ⁇ (Tm ⁇ Tx) from the temperature Tx is 400° C. or less.
  • the phase change material of embodiment 8 contains, in atomic %, 1% to 40% Ge, 40% to 90% Te, 41% to 99% Ge+Te, 0% to less than 5% Sb, and 0% to 59% Ga. , at least one crystal selected from GeTe 4 , GeTe, Te and Ga 2 Te 3 in a crystalline state.
  • the target of aspect 9 is characterized by using the phase change material of any one of aspects 1 to 8.
  • the thin film of mode 10 is characterized by using the phase change material of any one of modes 1 to 8.
  • the memory element of Mode 11 is characterized by including the phase change material of any one of Modes 1 to 8.
  • a storage device is characterized by comprising the storage element according to aspect 11.
  • the method of aspect 13 is a method of recording information, comprising the step of applying a voltage to a storage layer made of a phase change material to change the phase of the storage layer from a first state to a second state to record information.
  • the memory layer contains, in atomic %, Ge 1% to 40%, Te 40% to 90%, Sb 0% to less than 5%, and further Si, Al, Ga, Sn, Bi, Cu, Ag, It is characterized by including a phase change material containing 1% to 59% of one or more of Zn, Y, In, Ca, and Mg.
  • At least one crystal selected from GeTe 4 , GeTe, Te and Ga 2 Te 3 is preferably precipitated.
  • FIG. 1 is a schematic cross-sectional view of a memory element according to the first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view of a memory element according to a second embodiment of the invention.
  • FIG. 3 is a schematic cross-sectional view of a memory element according to a third embodiment of the invention.
  • FIG. 4 is a schematic cross-sectional view of a memory element according to a fourth embodiment of the invention.
  • FIG. 5 is a schematic cross-sectional view of a memory element according to a fifth embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view of a memory element according to a sixth embodiment of the invention.
  • FIG. 7 is a schematic cross-sectional view of a memory element according to a seventh embodiment of the invention.
  • FIG. 1 is a schematic cross-sectional view of a memory element according to the first embodiment of the invention.
  • FIG. 2 is a schematic cross-sectional view of a memory element according to a second embodiment of
  • FIG. 8 is a schematic cross-sectional view of a memory element according to an eighth embodiment of the invention.
  • FIG. 9 is a schematic cross-sectional view of a memory element according to a ninth embodiment of the invention.
  • FIG. 10 is a schematic cross-sectional view of a memory element according to the tenth embodiment of the invention.
  • FIG. 11 is a schematic cross-sectional view of a memory element according to the eleventh embodiment of the invention.
  • FIG. 12 is a schematic cross-sectional view of a memory element according to a twelfth embodiment of the invention.
  • FIG. 13 is a schematic cross-sectional view of a memory element according to a thirteenth embodiment of the invention.
  • FIG. 14 is a schematic cross-sectional view of a memory element according to a fourteenth embodiment of the invention.
  • FIG. 15 is a schematic cross-sectional view of a memory element according to a fifteenth embodiment of the invention.
  • FIG. 16 is a schematic cross-sectional view of a memory element according to the sixteenth embodiment of the invention.
  • FIG. 17 is a schematic cross-sectional view of a memory element according to the seventeenth embodiment of the invention.
  • FIG. 18 is a schematic cross-sectional view of a memory element according to an eighteenth embodiment of the invention.
  • FIG. 19 is a schematic cross-sectional view of a memory element according to the nineteenth embodiment of the invention.
  • FIG. 20 is a schematic three-dimensional view of a memory element according to one embodiment of the invention.
  • phase change material of the present invention contains, in atomic %, 1% to 40% Ge, 40% to 90% Te, 0% to less than 5% Sb, and further Si, Al, Ga, Sn, Bi, Cu, It is characterized by containing 1% to 59% of one or more selected from Ag, Zn, Y, In, Ca and Mg.
  • % means “atomic %” unless otherwise specified.
  • Ge is an essential component that raises the crystallization temperature of the phase change material and stabilizes the amorphous state.
  • the content of Ge is 1% to 40%, 1% to 39%, 2% to 35%, 2% to 30%, 5% to 30%, 7.5% to 30%, 7.5% ⁇ 25%, preferably 10% to 25%, especially 10% to 20%. If the Ge content is too low, the amorphous state tends to be unstable. In addition, GeTe 4 crystals, which will be described later, are less likely to precipitate. If the Ge content is too high, the crystalline melting point tends to be too high.
  • Te is an essential component that constitutes the phase change material. Te content is 40% to 90%, 45% to 90%, 47% to 90%, 50% to 85%, 50% to 82.5%, 55% to 82.5%, 60% ⁇ 82.5%, 60% to 80%, 62.5% to 80%, preferably 65% to 80%. If the Te content is too low, the crystallization temperature tends to decrease and the amorphous state tends to become unstable. If the Te content is too high, the crystallization temperature tends to decrease and the amorphous state tends to become unstable.
  • the content of Ge + Te (total amount of Ge and Te) is 41% to 99%, 45% to 99%, 50% to 99%, 50% to 98%, 55% to 97%, 60% to 96%, It is preferably 65% to 95%, 70% to 95%, especially 75% to 95%.
  • the phase change material of the present invention contains one or more components selected from Si, Al, Ga, Sn, Bi, Cu, Ag, Zn, Y, In, Ca, and Mg at 1% to Contains 59%, 1%-58%, 1%-55%, 1%-50%, 1%-45%, 1%-40%, 1%-35%, 1%-30%, 1%- A content of 25%, 1% to 20%, 1% to 15%, 2% to 15%, 2.5% to 15%, especially 2.5% to 10% is particularly preferred.
  • the content of Si + Al + Ga + Sn + Bi + Cu + Ag + Zn + Y + In + Ca + Mg (the total amount of Si, Al, Ga, Sn, Bi, Cu, Ag, Zn, Y, In, Ca, and Mg) is 1% to 59%, 1% to 58%, 1%-55%, 1%-50%, 1%-45%, 1%-40%, 1%-35%, 1%-30%, 1%-25%, 1%-20%, 1% ⁇ 15%, 2% to 15%, 2.5% to 15%, especially 2.5% to 10%.
  • "x+y+z+" means the total amount of content of each component.
  • each component does not necessarily have to be contained as an essential component, and there may be components that are not contained (0% content).
  • Ga is a component that raises the crystallization temperature and tends to stabilize the amorphous state. Further, as will be described later, it is also a component that tends to reduce the temperature difference ⁇ (Tm ⁇ Tx) between the crystallization temperature Tx and the crystal melting point Tm.
  • the content of Ga is 0% to 59%, 1% to 59%, 1% to 58%, 1% to 55%, 1% to 50%, 1% to 45%, 1% to 40%, 1% ⁇ 35%, 1% to 30%, 1% to 25%, 1% to 20%, 1% to 15%, 2% to 15%, 2.5% to 15%, especially 2.5% to 10% is preferably If the Ga content is too high, the amorphous state tends to become unstable.
  • Ag is a component that easily stabilizes the amorphous state. Further, as will be described later, it is also a component that tends to reduce the temperature difference ⁇ (Tm ⁇ Tx) between the crystallization temperature Tx and the crystal melting point Tm.
  • Ag content is 0% to 59%, 1% to 59%, 1% to 58%, 1% to 55%, 1% to 50%, 1% to 45%, 1% to 40%, 1% ⁇ 35%, 1% to 30%, 1% to 25%, 1% to 20%, 1% to 15%, 2% to 15%, 2.5% to 15%, especially 2.5% to 10% is preferably If the Ag content is too high, the amorphous state tends to become unstable.
  • the content of Ga + Ag (total amount of Ga and Ag) is 1% to 59%, 1% to 58%, 1% to 55%, 1% to 50%, 1% to 45%, 1% to 40%, 1% to 35%, 1% to 30%, 1% to 25%, 1% to 20%, 1% to 15%, 2% to 15%, 2.5% to 15%, especially 2.5% to 10% is preferred. This makes it easier to stabilize the amorphous state, raise the crystallization temperature, and reduce ⁇ (Tm ⁇ Tx).
  • the Sb is a component that easily lowers the crystallization temperature of the phase change material. Therefore, the Sb content is 0% to less than 5%, preferably 0% to 4%, 0% to 3%, and particularly 0% to 2%.
  • phase change material of the present invention may contain the following components in addition to the above components.
  • F, Cl, Br and I are components that easily stabilize the amorphous state of the phase change material.
  • the content of F+Cl+Br+I (total amount of F, Cl, Br and I) is preferably 0% to 40%, 0% to 30%, 0% to 20%, particularly 0% to 10%. If the content of F+Cl+Br+I is too high, the amorphous state tends to be rather unstable. In addition, the weather resistance tends to decrease.
  • the content of each component of F, Cl, Br and I is preferably 0% to 40%, 0% to 30%, 0% to 20%, particularly 0% to 10%.
  • B + C + Cr + Mn + Ti + Fe total amount of B, C, Cr, Mn, Ti and Fe
  • total amount of B, C, Cr, Mn, Ti and Fe is 0% to 40%, 0% to 30%, 0% to 20%, 0% to 10%, 0% to 5 %, 0% to 1%, especially 0% to less than 1%. If the content of these components is too high, the amorphous state tends to be rather unstable.
  • the content of each component of B, C, Cr, Mn, Ti, and Fe is 0% to 10%, 0% to 5%, 0% to 1%, particularly 0% to less than 1%. preferable.
  • the content of As should be 30% or less, 25% or less, 20% or less, 10% or less, 5% or less, 3% or less, especially It is preferable not to contain substantially.
  • "it does not contain substantially” means that content is 0.1% or less.
  • the content of Sb+As (total amount of Sb and As) is preferably 0% to less than 5%, 0% to 4%, 0% to 3%, particularly 0% to 2%. This makes it easier to reduce the environmental load while suppressing a decrease in the crystallization temperature.
  • Cd, Tl and Pb are not substantially contained. As a result, the environmental load can be further reduced.
  • the phase-change material of the present invention has the above structure, so that the crystallization temperature can be easily increased.
  • the crystallization temperature Tx is 150° C. or higher, 160° C. or higher, 170° C. or higher, 175° C. or higher, 180° C. or higher, 185° C. or higher, 190° C. or higher, 195° C. or higher, 200° C. or higher, 205° C. or higher, In particular, it can be 210° C. or higher. This makes it easier to stabilize the amorphous state and improve the heat resistance of the phase-change material.
  • the upper limit of the crystallization temperature Tx can be set to, for example, 400° C. or lower, 350° C. or lower, and particularly 300° C. or lower.
  • the phase-change material of the present invention tends to lower the crystalline melting point by having the above configuration.
  • the crystal melting point Tm is preferably 600° C. or lower, 550° C. or lower, 500° C. or lower, 450° C. or lower, 430° C. or lower, 410° C. or lower, particularly 400° C. or lower. This makes it easier to reduce the energy required for phase change.
  • the lower limit of the crystal melting point Tm is, for example, 250° C. or higher, 260° C. or higher, 280° C. or higher, 300° C. or higher, 320° C. or higher, 340° C. or higher, 360° C. °C or higher, particularly preferably 370°C or higher.
  • the phase-change material of the present invention can achieve both a high crystallization temperature and a low crystal melting point by having the above configuration. Therefore, the difference ⁇ (Tm ⁇ Tx) between the crystal melting point Tm and the crystallization temperature Tx is 400° C. or less, 350° C. or less, 300° C. or less, 250° C. or less, 200° C. or less, 190° C. or less, 180° C. or less, 170° C. 160° C. or lower, particularly 150° C. or lower.
  • the lower limit of ⁇ (Tm ⁇ Tx) can be, for example, 50° C. or higher, particularly 80° C. or higher.
  • the phase change material of the present invention preferably has a Te/Ge content ratio Te/Ge of 2 to 8, 3 to 7, 4 to 7, particularly 4 to 6.5.
  • Te/Ge satisfies the above value, the phase change material tends to contain GeTe 4 crystals in the crystalline state.
  • the phase-change material preferably contains at least one crystal selected from GeTe 4 , GeTe, Te and Ga 2 Te 3 as a main component in a crystalline state, and particularly preferably contains GeTe 4 crystal as a main component.
  • "contains crystals as a main component” means a state in which the intensity of the first peak in XRD is twice or more the intensity of the first peaks of other crystal components.
  • the crystalline melting point of GeTe 4 crystals is around 380° C., which is lower than the crystalline melting point (630° C.) of crystals precipitated by conventional GST. Therefore, the phase-change material containing GeTe4 crystals requires less energy for the phase transition from the crystalline state to the amorphous state, so power consumption can be reduced.
  • the phase change material may contain crystals other than the main component. For example, it may contain GeTe4 crystal as a main component and at least one crystal selected from GeTe , Te and Ga2Te3 .
  • the phase change material of the present invention is preferably used as a target. Moreover, it is preferable to use the phase-change material of the present invention for a thin film.
  • the target is, for example, a sputtering target.
  • the thin film is preferably, for example, a memory layer of a memory element to be described later.
  • the phase change material of the present invention can be produced, for example, as follows. First, raw materials are blended so as to have a desired composition. Next, the prepared raw materials are put into a quartz glass ampoule which has been evacuated while being heated, and the tube is sealed with an oxygen burner while being evacuated. Next, the sealed quartz glass ampoule is held at about 650° C. to 1000° C. for 6 hours to 12 hours. Then, by rapidly cooling to room temperature, an amorphous bulk phase change material can be obtained.
  • phase change material of the present invention is not limited to being amorphous and bulk.
  • raw materials are mixed so as to have a desired composition to obtain a uniform mixture, and then the mixture is hot-press molded to obtain a phase-change material that is a sintered powder.
  • element raw materials Ga, Si, Te, Ag, I, etc.
  • compound raw materials Ga 2 Te 3 , AgI, etc.
  • phase-change material for example, by using the obtained phase-change material as a sputtering target, a thin film (storage layer) having the composition described above can be formed.
  • a powder sintered body of a phase change material can be used as the sputtering target.
  • the sputtering target may be used in an amorphous state or in a crystalline state.
  • the bulk phase-change material is pulverized in an inert atmosphere to produce a fine powder, and then the fine powder is hot-press molded to sinter the powder. You can make a body.
  • an amorphous phase-change material it becomes easier to obtain a sputtering target in which the components are uniformly dispersed.
  • a pure element target (Ge, Te, Sb, Si, Al, Ga, Sn, Bi, Cu, Ag, Zn, Y, In, Ca and Mg) may be used as the sputtering target.
  • a thin film having the composition described above may be formed by adjusting the composition by appropriately adjusting the film formation output by a multi-target sputtering method using a binary alloy target or a ternary or higher alloy target.
  • the thin film manufacturing method is not particularly limited, and in addition to the sputtering method, a CVD (Chemical Vapor Deposition) method, an ALD (Atomic Layer Deposition) method, etc. can be selected. In particular, it is preferable to use the sputtering method because composition control and film thickness control are simple.
  • the phase change material of the present invention contains, in atomic %, 1% to 40% Ge, 40% to 90% Te, 0% to less than 5% Sb, and further Si, Al, Ga, Sn, One or two or more selected from Bi, Cu, Ag, Zn, Y, In, Ca, and Mg are contained at 1% to 59%.
  • the phase-change material of the present invention can stabilize the amorphous state and improve the heat resistance.
  • the energy required for the phase change from the crystalline state to the amorphous state can be reduced. Therefore, it is suitable for increasing the capacity.
  • FIG. 1 is a schematic cross-sectional view of a memory element according to the first embodiment of the invention.
  • the memory element 10 comprises a first electrode 1 , a second electrode 2 , a memory layer 3 and an insulator 4 .
  • Storage layer 3 comprises the phase change material of the present invention.
  • a first electrode 1 is formed on the upper surface of the memory layer 3 .
  • the second electrode 2 is formed on the lower surface of the memory layer 3 and arranged at a position facing the first electrode 1 .
  • a peripheral portion of the second electrode 2 is covered with an insulator 4 .
  • the storage layer 3 is arranged between the first electrode 1 and the second electrode 2 in this embodiment.
  • An insulator 4 is arranged on the side surface of the second electrode 2 .
  • An inorganic material can be used for the first electrode 1 and the second electrode 2 .
  • Metal materials and ceramic materials can be used as inorganic materials.
  • the metal material it is preferable to use, for example, tungsten, titanium, copper, platinum, or the like.
  • tungsten nitride and titanium nitride as the ceramic material.
  • the thickness of the first electrode 1 and the second electrode 2 can be appropriately designed. For example, it is preferably 200 nm or less, 100 nm or less, 80 nm or less, 60 nm or less, particularly 50 nm or less. A smaller thickness tends to be advantageous for increasing the capacity of a memory device.
  • the lower limit of the thickness is preferably 1 nm or more and 2 nm or more, for example.
  • the resistance state can be changed to record information. More specifically, it includes the step of recording information by applying a voltage to the storage layer 3 made of a phase change material to change the phase of the storage layer 3 from the first state to the second state.
  • the first state and/or the second state mean a crystalline state or an amorphous state.
  • the crystalline state has a lower resistance than the amorphous state.
  • the crystalline state when the memory layer 3 is in a crystalline state, the crystalline state can be changed to an amorphous state by applying a high voltage to the memory layer 3 and performing rapid heating and rapid cooling (first phase change ). Thereby, the phase of the memory layer 3 can be changed to an amorphous state having a high resistance.
  • the first state is the crystalline state
  • the second state is the amorphous state.
  • the memory layer 3 when the memory layer 3 is in an amorphous state, a voltage lower than that in the first phase change is applied to the memory layer 3, and gentle heating and cooling are performed to change the amorphous state to a crystalline state. can be changed (second phase change). Thereby, the phase of the memory layer 3 can be changed to a crystalline state with low resistance.
  • the first state is the amorphous state
  • the second state is the crystalline state.
  • the resistance state can be changed by changing the phase of the memory layer 3 . Thereby, information can be recorded.
  • At least one crystal selected from GeTe 4 , GeTe, Te and Ga 2 Te 3 is preferably deposited.
  • a phase change material including GeTe 4 crystals can reduce the power consumption of the storage element because the amount of energy required for the phase transition from the crystalline state to the amorphous state is reduced.
  • the structure of the memory element is not limited to that shown in FIG. 2 to 19 are schematic cross-sectional views of memory elements according to second to nineteenth embodiments of the present invention.
  • the memory layer 3 also contains the phase change material of the invention. Information can be recorded by changing the resistance state of the memory layer 3 .
  • FIG. 2 is a schematic cross-sectional view of a memory element according to the second embodiment of the invention.
  • an insulator 4 is arranged on the side surfaces of the first electrode 1 and the memory layer 3 .
  • information can be recorded by changing the resistance state of the storage layer 3 .
  • FIG. 20 is a schematic three-dimensional view of a storage device according to one embodiment of the present invention.
  • the memory device 100 includes memory elements 10 , switch elements 20 , word lines 30 and bit lines 40 .
  • the bit lines 40 are orthogonal to the word lines 30 in plan view.
  • the memory elements 10 are arranged at intersections of the word lines 30 and the bit lines 40 in plan view.
  • the storage device 100 of this embodiment is a so-called cross-point storage device.
  • Tables 1 to 14 show Examples 1 to 21, 23 to 113 and Comparative Example 22 of the present invention.
  • the sample of the example was produced as follows. First, after heating and evacuating a quartz glass ampoule, raw materials were prepared so as to have the compositions shown in Tables 1 to 7, and placed in the quartz glass ampoule. Next, the quartz glass ampoule was sealed with an oxygen burner. Next, the sealed quartz glass ampoule was placed in a melting furnace, heated to 650° C. to 1000° C. at a rate of 10° C. to 40° C./hour, and held for 6 to 12 hours. During the holding time, the quartz glass ampoule was turned upside down to stir the melt. Finally, the quartz glass ampoule was removed from the melting furnace and rapidly cooled to room temperature to obtain a sample.
  • the crystallization temperature Tx and the crystal melting point Tm were measured by DTA. Also, the difference ⁇ (Tm ⁇ Tx) between Tm and Tx was obtained.
  • a resistance change material was deposited to a thickness of 150 nm to prepare a thin film.
  • the composition after film formation was determined by SEM-EDX.
  • the determined film formation compositions are shown in Tables 8 to 14.
  • the film formation was performed by Ar sputtering under a reduced pressure atmosphere.
  • the phase change materials of Examples 1 to 21 and 23 to 57 had a higher crystallization temperature Tx and a lower crystal melting point Tm than GST. Also, ⁇ (Tm ⁇ Tx) was smaller than that of GST. Also, the thin films of Examples 58 to 113 shown in Tables 8 to 14 were produced.
  • phase-change material of the present invention can be suitably used for memory elements, memory devices, and sputtering targets applicable to their manufacture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Glass Compositions (AREA)
  • Conductive Materials (AREA)
  • Contacts (AREA)

Abstract

大容量化に好適な相変化材料を提供する。 原子%で、Ge 1%~40%、Te 40%~90%、Sb 0%~5%未満を含有し、さらにSi、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、Ca、Mgから選択される1種類又は2種類以上を1%~59%含有する、相変化材料。

Description

相変化材料
 本発明は、相変化材料に関する。
 次世代メモリである相変化メモリの開発が進んでいる。相変化メモリは、使用される相変化材料の非晶質状態と結晶状態の電気抵抗差を利用して情報を記録する不揮発性メモリである。相変化メモリは高速かつ大容量という点で注目が高まっている。
 従来、相変化メモリには、Ge22Sb22Te56(GST)などのGe-Sb-Te系の相変化材料が広く使用されてきた(特許文献1)。
特表2013-536983号公報
 GSTは結晶化温度が低いため、高温下において非晶質状態が不安定になりやすい。また、結晶状態の融点が高く、結晶状態から非晶質状態への相変化に大きなエネルギーが必要になるため、消費電力が大きくなりやすい。消費電力が大きくなると、GSTが高温になりやすくなるため、非晶質状態が一層不安定になりやすい。そのため、GSTを用いた相変化メモリは、さらなる大容量化が難しいという問題がある。
 以上に鑑み、本発明は大容量化に好適な相変化材料を提供することを目的とする。
 上記課題を解決する相変化材料の各態様について説明する。
 態様1の相変化材料は、原子%で、Ge 1%~40%、Te 40%~90%、Sb 0%~5%未満を含有し、さらにSi、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、Ca、Mgから選択される1種類又は2種類以上を1%~59%含有することを特徴とする。
 態様2の相変化材料は、態様1において、TeとGeの含有量の比Te/Geが2~8であることが好ましい。
 態様3の相変化材料は、態様1又は態様2において、Sb+As 0%~5%未満を含有することが好ましい。
 態様4の相変化材料は、態様1から態様3のいずれか一つの態様において、結晶化温度Txが150℃以上であることが好ましい。
 態様5の相変化材料は、態様1から態様4のいずれか一つの態様において、結晶融点Tmが600℃以下であることが好ましい。
 態様6の相変化材料は、態様1から態様5のいずれか一つの態様において、結晶融点Tmと結晶化温度Txとの差Δ(Tm-Tx)が400℃以下であることが好ましい。
 態様7の相変化材料は、原子%で、Ge 1%~40%、Te 40%~90%、Ge+Te 41%~99%、Sb 0%~5%未満を含有し、結晶融点Tmと結晶化温度Txとの差Δ(Tm-Tx)が400℃以下であることを特徴とする。
 態様8の相変化材料は、原子%で、Ge 1%~40%、Te 40%~90%、Ge+Te 41%~99%、Sb 0%~5%未満、Ga 0%~59%を含有し、結晶状態においてGeTe、GeTe、Te及びGaTeから選択される少なくとも一種の結晶を含むことを特徴とする。
 態様9のターゲットは、態様1から態様8のいずれか一つの態様における相変化材料を用いることを特徴とする。
 態様10の薄膜は、態様1から態様8のいずれか一つの態様における相変化材料を用いることを特徴とする。
 態様11の記憶素子は、態様1から態様8のいずれか一つの態様における相変化材料を含むことを特徴とする。
 態様12の記憶装置は、態様11における記憶素子を備えることを特徴とする。
 態様13の方法は、情報を記録する方法であって、相変化材料からなる記憶層に電圧を印加し、記憶層を第1状態から第2状態に相変化させることにより情報を記録するステップを含み、記憶層が、原子%で、Ge 1%~40%、Te 40%~90%、Sb 0%~5%未満を含有し、さらにSi、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、Ca、Mgから選択される1種類又は2種類以上を1%~59%含有する相変化材料を含むことを特徴とする。
 態様14の方法は、態様13において、情報を記録するステップにおいて、GeTe4、GeTe、Te及びGaTeから選択される少なくとも一種の結晶が析出することが好ましい。
 本発明によれば、大容量化に好適な相変化材料を提供することができる。
図1は、本発明の第1の実施形態に係る記憶素子の模式的断面図である。 図2は、本発明の第2の実施形態に係る記憶素子の模式的断面図である。 図3は、本発明の第3の実施形態に係る記憶素子の模式的断面図である。 図4は、本発明の第4の実施形態に係る記憶素子の模式的断面図である。 図5は、本発明の第5の実施形態に係る記憶素子の模式的断面図である。 図6は、本発明の第6の実施形態に係る記憶素子の模式的断面図である。 図7は、本発明の第7の実施形態に係る記憶素子の模式的断面図である。 図8は、本発明の第8の実施形態に係る記憶素子の模式的断面図である。 図9は、本発明の第9の実施形態に係る記憶素子の模式的断面図である。 図10は、本発明の第10の実施形態に係る記憶素子の模式的断面図である。 図11は、本発明の第11の実施形態に係る記憶素子の模式的断面図である。 図12は、本発明の第12の実施形態に係る記憶素子の模式的断面図である。 図13は、本発明の第13の実施形態に係る記憶素子の模式的断面図である。 図14は、本発明の第14の実施形態に係る記憶素子の模式的断面図である。 図15は、本発明の第15の実施形態に係る記憶素子の模式的断面図である。 図16は、本発明の第16の実施形態に係る記憶素子の模式的断面図である。 図17は、本発明の第17の実施形態に係る記憶素子の模式的断面図である。 図18は、本発明の第18の実施形態に係る記憶素子の模式的断面図である。 図19は、本発明の第19の実施形態に係る記憶素子の模式的断面図である。 図20は、本発明の一実施形態に係る記憶素子の模式的立体図である。
 以下、好ましい実施態様について説明する。ただし、以下の実施態様は単なる例示であり、本発明は以下の実施態様に限定されるものではない。
 <相変化材料>
 本発明の相変化材料は、原子%で、Ge 1%~40%、Te 40%~90%、Sb 0%~5%未満を含有し、さらにSi、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、Ca、Mgから選択される1種類又は2種類以上を1%~59%含有することを特徴とする。このように組成を規定した理由、及び各成分の含有量について以下で説明する。なお、以下の説明において、特に断りのない限り「%」は「原子%」を意味する。
 Geは相変化材料の結晶化温度を高め、非晶質状態を安定化させる必須成分である。Geの含有量は、1%~40%であり、1%~39%、2%~35%、2%~30%、5%~30%、7.5%~30%、7.5%~25%、10%~25%、特に10%~20%であることが好ましい。Geの含有量が少なすぎると、非晶質状態が不安定になりやすい。また、後述するGeTe結晶が析出しにくくなる。Geの含有量が多すぎると、結晶融点が高くなりすぎやすい。
 Teは相変化材料を構成する必須成分である。Teの含有量は、40%~90%であり、45%~90%、47%~90%、50%~85%、50%~82.5%、55%~82.5%、60%~82.5%、60%~80%、62.5%~80%、特に65%~80%であることが好ましい。Teの含有量が少なすぎると、結晶化温度が低下して、非晶質状態が不安定になりやすい。Teの含有量が多すぎても、結晶化温度が低下して、非晶質状態が不安定になりやすい。
 Ge+Te(GeとTeの合量)の含有量は、41%~99%、45%~99%、50%~99%、50%~98%、55%~97%、60%~96%、65%~95%、70%~95%、特に75%~95%であることが好ましい。
 Si、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、Ca、Mgは、相変化材料の非晶質状態を安定化させやすい成分である。そのため、本発明の相変化材料は、Si、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、Ca、Mgから選択される成分の1種類又は2種類以上を、1%~59%含有し、1%~58%、1%~55%、1%~50%、1%~45%、1%~40%、1%~35%、1%~30%、1%~25%、1%~20%、1%~15%、2%~15%、2.5%~15%、特に2.5%~10%含有することが特に好ましい。これらの成分の含有量が多すぎると、非晶質状態が不安定になりやすい。また、Si+Al+Ga+Sn+Bi+Cu+Ag+Zn+Y+In+Ca+Mg(Si、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、Ca、Mgの合量)の含有量は、1%~59%含有し、1%~58%、1%~55%、1%~50%、1%~45%、1%~40%、1%~35%、1%~30%、1%~25%、1%~20%、1%~15%、2%~15%、2.5%~15%、特に2.5%~10%であることが好ましい。なお、本発明において、「x+y+z+・・・」は各成分の含有量の合量を意味する。ここで、必ずしも各成分を必須成分として含有しなくてもよく、含有しない(含有量0%)成分が存在しても構わない。また「x+y+z+・・・ A%~B%」は、例えば「x=0%、y+z+・・・ A%~B%」や「x=0%、y=0%、z+・・・ A%~B%」の場合を含む。
 上記成分のうち、Gaは、結晶化温度を高め、非晶質状態を安定化させやすい成分である。また、後述するように、結晶化温度Txと結晶融点Tmの温度差Δ(Tm-Tx)を小さくしやすい成分でもある。Gaの含有量は、0%~59%、1%~59%、1%~58%、1%~55%、1%~50%、1%~45%、1%~40%、1%~35%、1%~30%、1%~25%、1%~20%、1%~15%、2%~15%、2.5%~15%、特に2.5%~10%であることが好ましい。Gaの含有量が多すぎると、非晶質状態が不安定になりやすい。
 上記成分のうち、Agは、非晶質状態を安定化させやすい成分である。また、後述するように、結晶化温度Txと結晶融点Tmの温度差Δ(Tm-Tx)を小さくしやすい成分でもある。Agの含有量は、0%~59%、1%~59%、1%~58%、1%~55%、1%~50%、1%~45%、1%~40%、1%~35%、1%~30%、1%~25%、1%~20%、1%~15%、2%~15%、2.5%~15%、特に2.5%~10%であることが好ましい。Agの含有量が多すぎると、非晶質状態が不安定になりやすい。
 Ga+Ag(GaとAgの合量)の含有量は、1%~59%、1%~58%、1%~55%、1%~50%、1%~45%、1%~40%、1%~35%、1%~30%、1%~25%、1%~20%、1%~15%、2%~15%、2.5%~15%、特に2.5%~10%であることが好ましい。これにより、非晶質状態を安定させ、結晶化温度を高め、かつΔ(Tm-Tx)を小さくしやすくなる。
 Sbは相変化材料の結晶化温度を低下させやすい成分である。そのため、Sbの含有量は0%~5%未満であり、0%~4%、0%~3%、特に0%~2%とすることが好ましい。
 本発明の相変化材料は、上記成分に加えて、下記成分を含有させてもよい。
 F、Cl、Br及びIは、相変化材料の非晶質状態を安定化させやすい成分である。F+Cl+Br+Iの含有量(F、Cl、Br及びIの合量)は、0%~40%、0%~30%、0%~20%、特に0%~10%であることが好ましい。F+Cl+Br+Iの含有量が多すぎると、かえって非晶質状態が不安定になりやすい。また、耐候性が低下しやすい。なお、F、Cl、Br及びIの各成分の含有量は、0%~40%、0%~30%、0%~20%、特に0%~10%であることが好ましい。
 B、C、Cr、Mn、Ti、Fe等を含有してもよい。B+C+Cr+Mn+Ti+Feの含有量(B、C、Cr、Mn、Ti及びFeの合量)は、0%~40%、0%~30%、0%~20%、0%~10%、0%~5%、0%~1%、特に0%~1%未満であることが好ましい。これらの成分の含有量が多すぎると、かえって非晶質状態が不安定になりやすい。なお、B、C、Cr、Mn、Ti、Feの各成分の含有量は、0%~10%、0%~5%、0%~1%、特に0%~1%未満であることが好ましい。
 Asは、相変化材料の非晶質状態を安定化させやすい成分である。ただし、Asは毒性成分であるため、環境負荷を低減するという観点からは、Asの含有量は30%以下、25%以下、20%以下、10%以下、5%以下、3%以下、特に実質的に含有しないことが好ましい。なお、本明細書において「実質的に含有しない」とは、含有量が0.1%以下であることをいう。
 Sb+As(SbとAsの合量)の含有量は、0%~5%未満、0%~4%、0%~3%、特に0%~2%とすることが好ましい。これにより、結晶化温度の低下を抑制しつつ、かつ環境負荷を低減しやすくなる。
 Cd、Tl及びPbは実質的に含有しないことが好ましい。これにより、環境負荷を一層低減することができる。
 本発明の相変化材料は、上記構成を有することにより、結晶化温度を高めやすい。具体的には、結晶化温度Txを150℃以上、160℃以上、170℃以上、175℃以上、180℃以上、185℃以上、190℃以上、195℃以上、200℃以上、205℃以上、特に210℃以上とすることができる。これにより、非晶質状態を安定化させ、相変化材料の耐熱性を向上させやすくなる。なお、Δ(Tm-Tx)を所望の値とするために、結晶化温度Txの上限は、例えば、400℃以下、350℃以下、特に300℃以下とすることができる。
 本発明の相変化材料は、上記構成を有することにより、結晶融点を低下させやすい。具体的には、結晶融点Tmを600℃以下、550℃以下、500℃以下、450℃以下、430℃以下、410℃以下、特に400℃以下とすることが好ましい。これにより、相変化に必要なエネルギーを低下させやすくなる。なお、Δ(Tm-Tx)を所望の値とするために、結晶融点Tmの下限は、例えば250℃以上、260℃以上、280℃以上、300℃以上、320℃以上、340℃以上、360℃以上、特に370℃以上とすることが好ましい。
 本発明の相変化材料は、上記構成を有することにより、高い結晶化温度と、低い結晶融点を両立することができる。そのため、結晶融点Tmと結晶化温度Txとの差Δ(Tm-Tx)を400℃以下、350℃以下、300℃以下、250℃以下、200℃以下、190℃以下、180℃以下、170℃以下、160℃以下、特に150℃以下とすることができる。Δ(Tm-Tx)の下限は、例えば50℃以上、特に80℃以上とすることができる。
 本発明の相変化材料は、TeとGeの含有量の比Te/Geが2~8、3~7、4~7、特に4~6.5であることが好ましい。Te/Geが上記値を満たすことにより、相変化材料が結晶状態においてGeTe結晶を含みやすくなる。
 相変化材料は、結晶状態においてGeTe、GeTe、Te及びGaTeから選択される少なくとも一種の結晶を主成分として含むことが好ましく、GeTe結晶を主成分として含むことが特に好ましい。ここで、「結晶を主成分として含む」とは、XRDにおける第1ピークの強度が、他の結晶成分の第1ピーク強度の2倍以上である状態を意味する。GeTe結晶の結晶融点は380℃前後であり、従来のGSTで析出する結晶の結晶融点(630℃)よりも低い。そのため、GeTe結晶を含む相変化材料は、結晶状態から非晶質状態への相転移に必要なエネルギー量が少なくなるため、消費電力を低減することができる。なお、相変化材料は、主成分以外の結晶を含んでもよい。例えば、GeTe結晶を主成分として含み、かつGeTe、Te及びGaTeから選択される少なくとも一種の結晶を含んでもよい。
 本発明の相変化材料は、ターゲットに用いることが好ましい。また、本発明の相変化材料は、薄膜に用いることが好ましい。ターゲットは、例えば、スパッタリングターゲットであることが好ましい。薄膜は、例えば、後述する記憶素子の記憶層であることが好ましい。これらの用途に本発明の相変化材料を用いることにより、相変化メモリの大容量化に好適に寄与することができる。言い換えると、本発明の相変化材料を用いたターゲット及び薄膜は、相変化メモリの大容量化に好適に寄与することができる。
 本発明の相変化材料は、例えば、以下のように作製することができる。はじめに、所望の組成となるように原料を調合する。次に、加熱しながら真空排気を行った石英ガラスアンプルに調合した原料を入れ、真空排気を行いながら酸素バーナーで封管する。次に、封管された石英ガラスアンプルを650℃~1000℃程度で6時間~12時間保持する。その後、室温まで急冷することにより、非晶質かつバルク状の相変化材料を得ることができる。
 なお、本発明の相変化材料は、非晶質かつバルク状であることに限定されない。例えば、所望の組成となるように原料を混合して均一な混合物とした後、混合物をホットプレス成型することにより、粉末焼結体である相変化材料を得ることができる。
 原料には、元素原料(Ge、Ga、Si、Te、Ag、I等)を用いてもよく、化合物原料(GeTe、GaTe、AgI等)を用いても良い。また、これらを併用してもよい。
 例えば、得られた相変化材料をスパッタリングターゲットとして用いることにより、上述した組成を有する薄膜(記憶層)を形成することができる。スパッタリングターゲットは、相変化材料の粉末焼結体を用いることができる。スパッタリングターゲットは、非晶質状態で用いてもよく、結晶状態で用いてもよい。例えば、バルク状の相変化材料をスパッタリングターゲットとして用いる場合、バルク状の相変化材料を不活性雰囲気で粉砕して微粉末を作製した後、当該微粉末をホットプレス成型することにより、粉末焼結体を作製することができる。なお、非晶質の相変化材料を用いることで、成分が均一に分散したスパッタリングターゲットが得やすくなる。
 なお、スパッタリングターゲットとして純元素ターゲット(Ge、Te、Sb、Si、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、CaおよびMg)を用いてもよい。また、2元系合金ターゲット、3元系以上の合金ターゲットを用いた多元スパッタリング法により、適宜成膜出力を調整することにより成分調整し、上述した組成を有する薄膜を形成してもよい。
 薄膜の製造方法は特に限定されず、スパッタリング法以外にも、CVD(Chemical Vapor Deposition)法、ALD(Atomic Layer Deposition)法等を選択することができる。特に、組成制御や膜厚制御が簡便なため、スパッタリング法を用いることが好ましい。
 このように、本発明の相変化材料は、原子%で、Ge 1%~40%、Te 40%~90%、Sb 0%~5%未満を含有し、さらにSi、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、Ca、Mgから選択される1種類又は2種類以上を1%~59%含有する。上記構成を有することにより、本発明の相変化材料は、非晶質状態を安定化させて耐熱性を向上させることができる。また、結晶状態の融点を下げて、結晶状態から非晶質状態への相変化に必要なエネルギーを低下させることができる。よって、大容量化に好適である。
 <記憶素子>
 図1は、本発明の第1の実施形態に係る記憶素子の模式的断面図である。記憶素子10は、第1電極1と、第2電極2と、記憶層3と、絶縁体4を備える。記憶層3は本発明の相変化材料を含む。第1電極1は、記憶層3の上面に形成されている。第2電極2は、記憶層3の下面に形成されており、第1電極1と対向する位置に配置される。第2電極2の周囲部は絶縁体4で覆われている。記憶層3は、本実施形態において、第1電極1及び第2電極2の間に配置されている。また、第2電極2の側面には絶縁体4が配置されている。
 第1電極1及び第2電極2には、無機材料を用いることができる。無機材料としては、金属材料、セラミック材料を用いることができる。金属材料としては、例えば、タングステン、チタン、銅、プラチナ等を使用することが好ましい。また、セラミック材料としては、例えば、窒化タングステン、窒化チタンを用いることが好ましい。
 第1電極1及び第2電極2の厚みは適宜設計することができる。例えば、200nm以下、100nm以下、80nm以下、60nm以下、特に50nm以下とすることが好ましい。厚みが小さいほど、メモリデバイスの大容量化に有利になりやすい。厚みの下限は、例えば、1nm以上、2nm以上であることが好ましい。
 図1に示すように、記憶素子10では、記憶層3に所定の電圧を印加することで抵抗状態を変化させ、情報を記録することができる。より詳細に述べると、相変化材料からなる記憶層3に電圧を印加し、記憶層3を第1状態から第2状態に相変化させることにより情報を記録するステップを含む。ここで、第1状態及び/又は第2状態は、結晶状態又は非晶質状態を意味する。また、結晶状態は、非晶質状態に比べて抵抗が低い。
 例えば、記憶層3が結晶状態である場合、記憶層3に高電圧を印加し、急加熱及び急冷を行うことにより、結晶状態を非晶質状態に変化させることができる(第1の相変化)。これにより、記憶層3を抵抗が高い非晶質状態に相変化させることができる。なお、この場合、第1状態が結晶状態、第2状態が非晶質状態である。
 また、記憶層3が非晶質状態である場合、記憶層3に第1の相変化に比べて低い電圧を印加し、穏やかな加熱及び冷却を行うことにより、非晶質状態を結晶状態に変化させることができる(第2の相変化)。これにより、記憶層3を抵抗が低い結晶状態に相変化させることができる。なお、この場合、第1状態が非晶質状態、第2状態が結晶状態である。
 このように、記憶層3を相変化させることで抵抗状態を変化させることができる。これにより、情報を記録することができる。
 情報を記録するステップにおいて、GeTe、GeTe、Te及びGaTeから選択される少なくとも一種の結晶が析出することが好ましい。GeTe結晶を含む相変化材料は、結晶状態から非晶質状態への相転移に必要なエネルギー量が少なくなるため、記憶素子の消費電力を低減することができる。
 なお、記憶素子の構造は図1に限定されない。図2~図19は、本発明の第2~第19の実施形態に係る記憶素子の模式的断面図である。図2~図19に示す記憶素子の変形例においても、記憶層3は本発明の相変化材料を含む。また、記憶層3の抵抗状態を変化させることにより、情報を記録することができる。
 例えば、図2は本発明の第2の実施形態に係る記憶素子の模式的断面図である。図2に示す記憶素子は、第1電極1及び記憶層3の側面に絶縁体4が配置されている。本実施形態においても、記憶層3の抵抗状態を変化させることにより、情報を記録することができる。
 <記憶装置>
 図20は本発明の一実施形態に係る記憶装置の模式的立体図である。図20に示すように、記憶装置100は、記憶素子10、スイッチ素子20、ワード線30、ビット線40を含む。ビット線40は、平面視でワード線30に対して直交する。及び記憶素子10は、平面視におけるワード線30及びビット線40の交点に配置される。本実施形態の記憶装置100は、いわゆるクロスポイント型記憶装置である。
 以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。
 表1~14は本発明の実施例1~21、23~113及び比較例22を示している。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
Figure JPOXMLDOC01-appb-T000008
 
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 
Figure JPOXMLDOC01-appb-T000013
 
Figure JPOXMLDOC01-appb-T000014
 
 実施例の試料は以下のように作製した。はじめに、石英ガラスアンプルを加熱しながら真空排気した後、表1~7に示す組成となるよう原料を調合し、石英ガラスアンプルに入れた。次に、石英ガラスアンプルを酸素バーナーで封管した。次に、封管された石英ガラスアンプルを溶融炉に入れ、10℃~40℃/時間の速度で650℃~1000℃まで昇温後、6時間~12時間保持した。保持時間中、石英ガラスアンプルの上下を反転し、溶融物を攪拌した。最後に、石英ガラスアンプルを溶融炉から取り出し、室温まで急冷することにより試料を得た。
 得られた試料について、DTAにより結晶化温度Tx及び結晶融点Tmを測定した。また、TmとTxの差Δ(Tm-Tx)を求めた。
 比較例はGe22Sb22Te56(GST)の結晶化温度Tx及び結晶融点Tmの文献値とした。
 次に、抵抗変化材料を厚み150nmとなるよう成膜し、薄膜を作製した。成膜後の組成はSEM-EDXにより求めた。求めた成膜組成を表8~14に示す。なお、成膜は減圧雰囲気下、Arスパッタリングで行った。
 表1~7から明らかなように、実施例1~21、23~57の相変化材料は、GSTに比べて結晶化温度Txが高く、かつ結晶融点Tmが低かった。また、GSTに比べてΔ(Tm-Tx)が小さかった。また、表8~14に示す実施例58~113の薄膜を作製できた。
 本発明の相変化材料は、記憶素子、記憶装置及びそれらの製造に適用できるスパッタリングターゲット等に好適に用いることができる。
1  第1電極
2  第2電極
3  記憶層
4  絶縁体
10 記憶素子
20 スイッチ素子
30 ワード線
40 ビット線
100 記憶装置

Claims (14)

  1.  原子%で、Ge 1%~40%、Te 40%~90%、Sb 0%~5%未満を含有し、
     さらにSi、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、Ca、Mgから選択される1種類又は2種類以上を1%~59%含有する、相変化材料。
  2.  TeとGeの含有量の比Te/Geが2~8である、請求項1に記載の相変化材料。
  3.  Sb+As 0%~5%未満を含有する、請求項1または2に記載の相変化材料。
  4.  結晶化温度Txが150℃以上である、請求項1または2に記載の相変化材料。
  5.  結晶融点Tmが600℃以下である、請求項1または2に記載の相変化材料。
  6.  結晶融点Tmと結晶化温度Txとの差Δ(Tm-Tx)が400℃以下である、請求項1または2に記載の相変化材料。
  7.  原子%で、Ge 1%~40%、Te 40%~90%、Ge+Te 41%~99%、Sb 0%~5%未満を含有し、
     結晶融点Tmと結晶化温度Txとの差Δ(Tm-Tx)が400℃以下である、相変化材料。
  8.  原子%で、Ge 1%~40%、Te 40%~90%、Ge+Te 41%~99%、Sb 0%~5%未満、Ga 0%~59%を含有し、
     結晶状態においてGeTe、GeTe、Te及びGaTeから選択される少なくとも一種の結晶を含む、相変化材料。
  9.  請求項1、7または8に記載の相変化材料を用いた、ターゲット。
  10.  請求項1、7または8に記載の相変化材料を用いた、薄膜。
  11.  請求項1、7または8に記載の相変化材料を含む、記憶素子。
  12.  請求項11の記憶素子を備える、記憶装置。
  13.  情報を記録する方法であって、
     相変化材料からなる記憶層に電圧を印加し、前記記憶層を第1状態から第2状態に相変化させることにより情報を記録するステップを含み、
     前記記憶層が、原子%で、Ge 1%~40%、Te 40%~90%、Sb 0%~5%未満を含有し、さらにSi、Al、Ga、Sn、Bi、Cu、Ag、Zn、Y、In、Ca、Mgから選択される1種類又は2種類以上を1%~59%含有する相変化材料を含む、方法。
  14.  情報を記録するステップにおいて、GeTe4、GeTe、Te及びGaTeから選択される少なくとも一種の結晶が析出する、請求項13に記載の方法。
PCT/JP2022/028790 2021-07-29 2022-07-26 相変化材料 WO2023008432A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237024548A KR20240032696A (ko) 2021-07-29 2022-07-26 상변화 재료
CN202280029238.XA CN117204144A (zh) 2021-07-29 2022-07-26 相变材料
JP2023538555A JPWO2023008432A1 (ja) 2021-07-29 2022-07-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021124132 2021-07-29
JP2021-124132 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008432A1 true WO2023008432A1 (ja) 2023-02-02

Family

ID=85087618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028790 WO2023008432A1 (ja) 2021-07-29 2022-07-26 相変化材料

Country Status (5)

Country Link
JP (1) JPWO2023008432A1 (ja)
KR (1) KR20240032696A (ja)
CN (1) CN117204144A (ja)
TW (1) TW202314002A (ja)
WO (1) WO2023008432A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238882A (ja) * 1990-02-16 1991-10-24 Hitachi Ltd 情報の記憶用素子
JP2004005879A (ja) * 2002-03-27 2004-01-08 Hitachi Ltd 情報記録媒体、情報記録方法及び媒体製造方法
WO2006057163A1 (ja) * 2004-11-26 2006-06-01 Matsushita Electric Industrial Co., Ltd. 光学情報記録媒体および光学情報記録媒体の記録方法
WO2006112344A1 (ja) * 2005-04-15 2006-10-26 Matsushita Electric Industrial Co., Ltd. 光学情報記録媒体および光学情報記録媒体への記録方法
JP2007184086A (ja) * 2006-01-04 2007-07-19 Samsung Electronics Co Ltd 相変化メモリ装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8574954B2 (en) 2010-08-31 2013-11-05 Micron Technology, Inc. Phase change memory structures and methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238882A (ja) * 1990-02-16 1991-10-24 Hitachi Ltd 情報の記憶用素子
JP2004005879A (ja) * 2002-03-27 2004-01-08 Hitachi Ltd 情報記録媒体、情報記録方法及び媒体製造方法
WO2006057163A1 (ja) * 2004-11-26 2006-06-01 Matsushita Electric Industrial Co., Ltd. 光学情報記録媒体および光学情報記録媒体の記録方法
WO2006112344A1 (ja) * 2005-04-15 2006-10-26 Matsushita Electric Industrial Co., Ltd. 光学情報記録媒体および光学情報記録媒体への記録方法
JP2007184086A (ja) * 2006-01-04 2007-07-19 Samsung Electronics Co Ltd 相変化メモリ装置

Also Published As

Publication number Publication date
CN117204144A (zh) 2023-12-08
JPWO2023008432A1 (ja) 2023-02-02
TW202314002A (zh) 2023-04-01
KR20240032696A (ko) 2024-03-12

Similar Documents

Publication Publication Date Title
US20070010082A1 (en) Structure and method for manufacturing phase change memories with particular switching characteristics
CN110061131B (zh) 一种相变材料、相变存储单元及其制备方法
CN103247757B (zh) 一种用于相变存储器的Zn-Sb-Te相变存储薄膜材料及其制备方法
CN108075039B (zh) 一种纳米复合ZnO-ZnSb相变存储薄膜材料及其制备方法
KR20130088175A (ko) 칼코겐화물 소자 및 감소된 저매늄 또는 텔러륨 함량을 갖는 재료
WO2011030916A1 (ja) 相変化材料および相変化型メモリ素子
US8920684B2 (en) Al-Sb-Te phase change material used for phase change memory and fabrication method thereof
US20070053786A1 (en) Phase change film for semiconductor nonvolatile memory and sputtering target for forming phase change film
JP2006245251A (ja) 非晶質状態が安定な相変化記録膜およびこの相変化記録膜を形成するためのスパッタリングターゲット
WO2023008432A1 (ja) 相変化材料
CN100582002C (zh) 一种无碲存储材料、制备方法及应用
US8379440B2 (en) Metallic-glass-based phase-change memory
JP6053041B2 (ja) 相変化記憶材料
CN107946460B (zh) 一种用于多态相变存储器的Zn-Sb-Bi薄膜材料及其制备方法
JP6598166B2 (ja) 相変化材料および相変化型メモリ素子
JP2005117030A (ja) 半導体不揮発メモリー用相変化膜およびこの相変化膜を形成するためのスパッタリングターゲット
CN102610745B (zh) 用于相变存储器的Si-Sb-Te基硫族化合物相变材料
WO2023145795A1 (ja) 抵抗変化材料、スイッチ素子用材料、スイッチ層、スイッチ素子及び記憶装置
CN104810475B (zh) 一种纳米复合TiO2‑Sb2Te相变存储薄膜材料及其制备方法
JP2004311728A (ja) 電気抵抗が高い相変化記録膜
Sun et al. Crystallization behavior of non-stoichiometric Ge–Bi–Te ternary phase change materials for PRAM application
CN106960907A (zh) 一种稀土Er掺杂Ge2Sb2Te5相变存储薄膜材料及其制备方法
Saito et al. Electrical Resistance and Structural Changes on Crystallizaiton Process of Amorphous Ge-Te Thin Films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849493

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280029238.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18576757

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023538555

Country of ref document: JP

Kind code of ref document: A