WO2023007979A1 - ハイブリッド車両 - Google Patents

ハイブリッド車両 Download PDF

Info

Publication number
WO2023007979A1
WO2023007979A1 PCT/JP2022/024214 JP2022024214W WO2023007979A1 WO 2023007979 A1 WO2023007979 A1 WO 2023007979A1 JP 2022024214 W JP2022024214 W JP 2022024214W WO 2023007979 A1 WO2023007979 A1 WO 2023007979A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
torque
hybrid vehicle
generator
determination threshold
Prior art date
Application number
PCT/JP2022/024214
Other languages
English (en)
French (fr)
Inventor
剛太 那須
孝弘 小熊
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to CN202280006471.6A priority Critical patent/CN117597248A/zh
Priority to JP2023502632A priority patent/JP7401021B2/ja
Publication of WO2023007979A1 publication Critical patent/WO2023007979A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to control technology for a hybrid vehicle having a motor (electric motor) and an engine (internal combustion engine).
  • Patent Document 1 discloses that when the driver requests an output larger than a predetermined value by operating the accelerator at low temperatures when the output performance of the battery is reduced, the engine torque is temporarily reduced. A control method has been proposed in which the power is increased exponentially to increase the amount of power generated by the generator.
  • the engine may be started to generate electricity regardless of the driver's accelerator operation.
  • the rotational speed of the engine cannot be maintained at the target value, and the rotational speed decreases, which may cause an engine stall (engine stall).
  • engine stall engine stall
  • the present inventor found that this decrease in engine rotation speed was caused by the torque error between the engine and the generator caused by the difference in the rate of increase of the engine water temperature and oil temperature (Fig. 3). ).
  • the accelerator is not operated, the required engine output is maintained at a predetermined value, so if the power running output of the generator is sufficient, the power running assist of the generator can maintain normal control with an output exceeding the torque error.
  • the power running output of the generator takes power from the battery to drive the generator and increase the rotational speed of the engine. Zero when degraded.
  • the power running output of the generator decreases in this way, the total value of the engine required output and the power running output of the generator becomes smaller than the torque error, the engine rotation speed decreases, and eventually the engine stalls.
  • FIG. 1 it is assumed that the engine is started at time t1 and the vehicle shifts to series running at time t2 while traveling in the EV traveling mode.
  • the generator drives the motor so that the engine rotation speed increases and reaches the target rotation speed.
  • the required engine output is a constant value.
  • the total value with the power running output of the machine begins to fall below the torque error.
  • the engine rotation speed cannot be maintained at the target and begins to gradually decrease, causing the engine to stop and stall at time tx.
  • Such an engine stall cannot be prevented with a control method that depends on the driver's accelerator operation, such as the above-mentioned Patent Document 1.
  • an engine a generator mechanically connected to the output shaft of the engine and capable of regenerative operation or power running operation, and generating power during the regenerative operation of the generator.
  • a battery that stores the generated electric power and supplies electric power during the power running operation of the generator;
  • a motor that converts the electric power supplied from the battery into driving force for driving wheels; the engine, the generator, and the motor; and
  • a control unit wherein when the control unit starts the engine, the total value of the required output of the engine and the maximum power running output of the generator is smaller than a predetermined determination threshold.
  • the predetermined determination threshold value may be set in advance depending on the cooling water temperature of the engine for each target rotational speed of the engine.
  • the control unit further determines whether or not the total value is smaller than the sum of the predetermined determination threshold value and the hysteresis setting value, and determines whether the total value is If it is smaller than the value obtained by adding the hysteresis set value to the predetermined determination threshold, a torque feedback correction amount of the engine is calculated according to a deviation from the target rotation speed of the engine, and the required torque of the engine is controlled. can be done.
  • the control section can decrease the torque feedback correction amount of the engine at a predetermined rate at least at the end of the required torque control of the engine.
  • the predetermined determination threshold may be an output value corresponding to a maximum torque error including a friction torque error of the output shaft of the engine.
  • the required engine torque is controlled by the torque feedback correction amount of the engine.
  • the predetermined determination threshold value is set in advance depending on the engine water temperature for each target rotation speed of the engine. This is advantageous in terms of preventive and reliable prevention.
  • the torque feedback correction amount is gradually decreased at least at the end of the engine demand torque control, which is advantageous in terms of alleviating vehicle vibration and driver discomfort.
  • 1 is a time chart showing changes in engine demand torque, rotation speed, and generator torque when battery output decreases in a hybrid vehicle according to the background art
  • 1 is a block diagram showing a schematic configuration of a control system in a hybrid vehicle according to one embodiment of the invention
  • FIG. 4 is a graph showing an example of changes over time in engine water temperature, oil temperature, and the temperature difference therebetween.
  • 1 is a schematic block diagram showing energy flow between an engine, a generator and a battery in a hybrid vehicle
  • FIG. FIG. 5 is a schematic diagram for explaining determination threshold values used for control according to the present embodiment
  • 4 is a flowchart showing a control method according to this embodiment
  • 4 is a time chart showing an example of the operation of the control device according to the embodiment
  • a battery 100 is connected to inverters 101 , 102 and 103 , each of which powers a front motor 104 , a rear motor 105 and a generator 106 . It is connected. Inverters 101 and 102 convert DC power supplied from battery 100 into three-phase AC power and supply the same to front motor 104 and rear motor 105, respectively.
  • the inverter 103 converts the three-phase AC power generated by the generator 106 into DC power, which is used to charge the battery 100 and as a power source for auxiliary equipment (not shown).
  • front motor 104 and rear motor 105 function as generators, and three-phase AC power generated by each motor is converted into DC power by inverters 101 and 102, and battery 100 is charged. used for
  • the rotor shaft of the generator 106 is mechanically connected to the output shaft of the engine 107, and the rotation of the engine 107 generates electricity.
  • the rotational speeds of the engine 107 and the generator 106 are the same.
  • the generator 106 also operates as a motor. Specifically, it can be operated as a starter for starting the engine 107, or can be used for waste electricity by rotating the engine 107 as a load.
  • the battery 100 may be charged via a charging device (not shown) with electric power supplied from a domestic commercial power source, a quick charging power source of a charging stand, or the like. .
  • the clutch CL mechanically disconnects or connects transmission of rotational torque of the engine 107 to the gear mechanism 108 .
  • the output shaft of the engine 107 is mechanically connected only to the generator 106, and the hybrid vehicle 10 enters the EV running mode or the series running mode.
  • the clutch CL By connecting the clutch CL, the output shaft of the engine 107 is connected not only to the generator 106 but also to the gear mechanism 108 .
  • the gear mechanism 108 transmits the driving torque of the front motor 104 to the front wheels 109, and can also transmit the driving torque of the engine 107 to the front wheels 109 if the clutch CL is engaged.
  • the rear motor 105 transmits drive torque to the rear wheels 111 via the gear mechanism 110 .
  • An electronic control unit (ECU) 112 constitutes a control section of the hybrid vehicle 10 .
  • the vehicle required output necessary for running the hybrid vehicle 10 is calculated based on various detected amounts and various operation information, and the clutch CL and the inverters 101, 102 and 103 are controlled to determine the running mode (EV mode, series mode). ), and executes output control of the engine 107, output control of the front motor 104 and the rear motor 105, output control of the generator 106, and the like.
  • the running modes of the hybrid vehicle 10 are as follows.
  • the clutch CL is disengaged, the engine 107 is stopped, and electric power supplied from the battery 100 drives the front motor 104 and the rear motor 105 to run the vehicle.
  • the series mode which will be described below, is switched to start the engine 107 and the electric power generated by the generator 106 is also used to drive the front motor 104 and the rear motor 105.
  • the clutch CL is disengaged and all the driving force of the engine 107 is applied to the generator 106 . Electric power generated by the generator 106 drives the front motor 104 and the rear motor 105 to run the vehicle.
  • the power stored in the battery 100 is also used to drive the front motor 104 and the rear motor 105 . Also, when the power generated by the generator 106 is greater than the required output, the surplus power is used to charge the battery 100 .
  • the ECU 112 inputs the determination threshold stored in the determination threshold table 113 described later and the following sensor signals to execute the engine torque control according to the present embodiment: ⁇ Operation amount and operation of the accelerator pedal operated by the driver An accelerator opening signal from an accelerator position sensor (not shown) that detects speed; An engine rotation speed signal from a rotation speed sensor (not shown) that detects the rotation speed [rpm] of the output shaft of the engine 107; An engine water temperature signal from a water temperature sensor (not shown) that detects the temperature of the cooling water of the engine 107; and an SOC (State Of Charge) sensor (not shown) that detects the battery level and state of charge of the battery 100 of the SOC signal.
  • SOC State Of Charge
  • the ECU 112 includes a processor such as a CPU (Central Processing Unit), a ROM (Read-only memory) for storing control programs and the like executed by the processor, a RAM (Random Access Memory) as an operation area for the control program, peripheral circuits, and the like. It is configured including an interface section with The determination threshold table 113 may be stored in an erasable and rewritable ROM.
  • the control method according to this embodiment can be implemented by executing a program on the processor of the ECU 112 .
  • the control method according to the present embodiment will be explained in detail.
  • the engine water temperature (ENG water temperature) and oil temperature (ENG oil temperature) have different temperature rise rates, so the temperature difference changes over time. Especially under conditions where the engine starts and stops repeatedly in a short period of time, the difference between the water temperature and the oil temperature tends to increase.
  • the friction torque caused by the friction acting on the output shaft of the engine is determined by the oil temperature and the engine rotation speed, and the lower the oil temperature, the larger the friction torque value.
  • the maximum torque error amount is calculated by adding the error with respect to the engine command and the friction torque of the speed reducer connected to the engine to this. Therefore, control is required to increase the required engine output so as to prevent the engine speed from decreasing due to the maximum torque error amount.
  • Engine Torque Control As shown in FIG. 4A , during regenerative operation, rotational torque of engine 107 is transmitted to generator 106 , and generator 106 generates power to charge battery 100 .
  • power is supplied from the battery 100 to the generator 106 , and the generator 106 rotates the engine 107 as a motor.
  • ECU 112 can maintain the rotational speed of engine 107 near the target value by controlling generator 106 to operate as a motor.
  • the battery 100 is in a low output state, the power running output of the generator 106 cannot be sufficiently increased. In other words, the potential power output of the generator 106 corresponds to the potential output of the battery 100 .
  • the total value of the required output P ENG-RQ of engine 107 and the power running maximum output P GEN-DRV of generator 106 is calculated as torque error. It is necessary to do the above. Therefore, the sum of the required engine output P ENG-RQ and the generator powering maximum output P GEN-DRV , which does not reduce the rotation speed of the engine 107 when the maximum torque error occurs, is defined as the determination threshold value P TH .
  • the determination threshold value PTH may be preset depending on the engine water temperature for each target rotation speed of the engine 107, and may be stored in a table format in the determination threshold table 113 in the ECU 112 or in a separate storage device. By storing a plurality of assumed determination threshold values PTH in the determination threshold value table 113, the ECU 112 can quickly obtain the determination threshold value PTH necessary for accurate determination from sensor data of the engine target rotation speed and water temperature. .
  • the unit of the engine required output P ENG-RQ , the generator power running maximum output P GEN-DRV and the determination threshold P TH is power [kW]
  • the engine required output P ENG-RQ is the engine required power generation output.
  • the determination is made by adding the hysteresis set value ⁇ H to the determination threshold value PTH.
  • the addition of the hysteresis set value ⁇ H is for absorbing fluctuations due to power consumption in auxiliary equipment (such as an air conditioner) in the vehicle 10 . That is, since the power consumption of the auxiliary equipment is included in the normal required engine output value, the power consumption fluctuates depending on whether the auxiliary equipment is turned on or off. Therefore, the total value of the engine required output P ENG-RQ and the generator powering maximum output P GEN-DRV exceeds or falls below the determination threshold value P TH each time the auxiliary equipment is turned on and off, causing control hunting.
  • the addition of the hysteresis set value ⁇ H is for preventing control hunting.
  • the ECU 112 determines that the engine rotation speed is different from the target rotation speed when the total value of the engine required output P ENG-RQ and the generator powering maximum output P GEN-DRV is lower than the determination threshold value P TH .
  • the engine torque correction amount is fed back (F/B) according to the deviation, and the engine torque is controlled so as to follow the engine target rotation speed.
  • the ECU 112 determines whether or not the current running mode is the series mode (step 201). input to obtain the determination threshold value P TH from the determination threshold table 113, and determines whether or not the total value of the current engine demand output P ENG-RQ and the generator power running maximum output P GEN-DRV is smaller than the determination threshold value P TH . A determination is made (step 202).
  • the engine 107 is The rotation speed may decrease and the engine may stall. Therefore, the ECU 112 calculates an engine torque F/B correction amount according to the difference between the current engine rotation speed and the target rotation speed so as to avoid the engine stall, and the engine torque F/B correction amount of the engine 107 is calculated according to the calculated engine torque F/B correction amount. Torque is controlled (step 203). At this time, it is desirable to moderate the fluctuation of the engine torque due to the engine torque F/B correction amount. For example, vibration of the vehicle 10 and driver discomfort can be reduced by setting a predetermined rate of increase instead of abruptly increasing at the start of the engine torque F/B correction.
  • the engine torque F/B correction amount is calculated by PI (Proportional-Integral) control consisting of an integral term and a proportional term.
  • PI Proportional-Integral
  • a proportional correction is added to stabilize the control because the integral correction alone causes rotation speed hunting.
  • the unit of the engine torque F/B correction amount is [Nm].
  • the ECU 112 determines whether or not the total value of the controlled engine demand output P ENG-RQ and generator powering maximum output P GEN-DRV is smaller than the sum of the determination threshold value P TH and the hysteresis set term ⁇ H. A decision is made (step 204). If P ENG-RQ +P GEN-DRV ⁇ P TH + ⁇ H (YES in step 204), the ECU 112 repeats the engine torque F/B correction control (step 203).
  • step 205 Vibration of the vehicle 10 and discomfort felt by the driver can be reduced by setting a predetermined reduction rate instead of creating an illusion abruptly at the end of the engine torque F/B correction. At this point, the possibility of the engine stalling of the engine 107 is considered to be low, so the rate of decrease in the engine torque F/B correction amount can be made smaller than the rate of increase in the engine torque F/B correction amount in step 203, thereby further reducing the vibration of the vehicle 10 and the uncomfortable feeling of the driver. can.
  • step 206 If the running mode is other than the series mode (NO in step 201), the control according to the present embodiment is terminated and normal control is continued.
  • the ECU 112 inputs the required engine output P ENG-RQ , the generator maximum power running output P GEN-DRV , the engine rotation speed, and the engine water temperature, and determines the determination threshold value.
  • P TH is determined, and it is determined that P ENG - RQ + P GEN - DRV ⁇ P TH + ⁇ H, that is, the power running output of generator 106 is insufficient.
  • the ECU 112 adjusts the proportional correction amount shown in (d1) of FIG. (engine torque F/B correction amount (P term) [Nm]) and the integral correction amount (engine torque F/B correction amount (I term) [Nm]) shown in (d2) of FIG. Calculate the required engine torque F/B correction amount shown in (D) of FIG. do.
  • the required engine torque F/B correction amount shows a negative value because the engine rotation speed slightly overshoots the target rotation speed after time t2 ((F) in FIG. 6), but increases thereafter as indicated by curve 301. to maintain a positive value.
  • the engine required torque increases and is maintained in an increased state, and the actual torque 302 follows it.
  • the engine rotation speed 303 changes while substantially maintaining the target value even after time t2, and the rotation speed changes like the conventional curve 401. This prevents a drop and engine stall 402 from occurring.
  • the generator 106 can operate as a generator or as a motor as needed since the power running output has been restored after time t3.
  • time chart illustrated in FIG. 6 shows a case where the driver operates the accelerator to run in series without increasing the output. becomes operational. That is, the control according to the present embodiment is applied when the hybrid vehicle 10 is stopped or running at low output.

Abstract

ハイブリッド車両(10)であって、制御部(112)が、エンジン(107)を起動した時にエンジンの要求出力PENG-RQと発電機の力行最大出力PGEN-DRVとの合計値が所定の判定閾値PTHより小さいか否かを判定し、合計値が所定の判定閾値より小さい場合エンジンの目標回転速度との偏差に応じてエンジンのトルクフィードバック補正量を算出しエンジンの要求トルクを制御する。

Description

ハイブリッド車両
 本発明はモータ(電動機)とエンジン(内燃機関)とを備えるハイブリッド車両の制御技術に関する。
 充電可能な二次電池(バッテリ)は低温時に出力性能が低下することが知られており、特にプラグインタイプやシリーズ方式のハイブリッド車両ではバッテリ出力低下による駆動力不足が重要な課題として認識されている。このような駆動力不足を解決するために、たとえば特許文献1には、バッテリの出力性能が低下する低温時において運転者がアクセル操作により所定値よりも大きい出力を要求した場合、エンジントルクを一時的に増大させ、発電機での発電量を増大させる制御方法が提案されている。
日本国特開2019-162930号公報
 特許文献1に開示された制御方法では、低温時に運転者が要求出力を所定値以上に増大させた場合、動力性能低下を抑制するようにエンジントルクを増大させる。したがって制御動作は運転者のアクセル操作に依存しており、走行中にしか作動しない。
 しかしながら、EVモードで走行中に、あるいは停車中に、運転者のアクセル操作とは関係なくエンジンを起動して発電を行う場合がある。このときにバッテリ出力が低下した状態ではエンジンの回転速度を目標値に維持できず、回転速度が低下してエンジンストール(エンスト)が発生し得る。詳しくは後述するが、本発明者は、このエンジン回転速度の低下がエンジンの水温と油温の上昇率の差により発生するエンジン-発電機間のトルク誤差に起因することを見いだした(図3を参照)。アクセル操作をしていない場合にはエンジン要求出力は所定値に維持されているので、発電機の力行出力が十分であれば発電機の力行アシストによりトルク誤差を上回る出力で通常制御を維持できる。
 ところが、発電機の力行出力はバッテリから電力を持ち出して発電機をモータ駆動し、エンジンの回転速度を上昇させるので、バッテリ出力が低下するにつれて発電機の力行出力も低下し、極低温あるいはバッテリの劣化時にはゼロとなる。このように発電機の力行出力が低下すると、エンジン要求出力と発電機の力行出力との合計値がトルク誤差より小さくなり、エンジン回転速度が低下して最終的にはエンストを発生する。以下、図1を参照しながら説明する。
 図1において、EV走行モードで走行中に、時点t1でエンジンが起動し時点t2でシリーズ走行に移行したとする。エンジン起動時には発電機がモータ駆動することでエンジン回転速度が上昇し目標回転速度に到達する。しかしながら、運転者がアクセル操作していない場合にはエンジン要求出力が一定値であり、バッテリ出力の低下に伴って発電機の力行出力が低下し発電機のアシストが小さくなると、エンジン要求出力と発電機の力行出力との合計値がトルク誤差を下回りはじめる。これによりエンジン回転速度が目標を維持できず徐々に低下しはじめ、時点txでエンジンが停止しエンストを発生する。上述した特許文献1のように運転者のアクセル操作に依存した制御方法では、このようなエンストを防止できない。
 本発明は前記事情に鑑み案出されたものであって、本発明の目的は、バッテリが出力低下状態であってもエンジン回転速度を維持してエンストを防止できるハイブリッド車両を提供することにある。
 前記目的を達成するため本発明の一実施の形態によれば、エンジンと、前記エンジンの出力軸と機械的に連結され回生動作あるいは力行動作可能な発電機と、前記発電機の回生動作時に発電した電力を蓄え、前記発電機の力行動作時に電力を供給するバッテリと、前記バッテリから供給される電力を駆動輪の駆動力に変換するモータと、前記エンジン、前記発電機および前記モータを制御する制御部と、を備えたハイブリッド車両であって、前記制御部が、前記エンジンを起動した時に前記エンジンの要求出力と前記発電機の力行最大出力との合計値が所定の判定閾値より小さいか否かを判定し、前記合計値が前記所定の判定閾値より小さい場合、前記エンジンの目標回転速度との偏差に応じて前記エンジンのトルクフィードバック補正量を算出し前記エンジンの要求トルクを制御する、ことを特徴とする。
 また、本発明の一実施の形態によれば、前記所定の判定閾値は、前記エンジンの目標回転速度ごとに前記エンジンの冷却水温に依存して予め設定されてもよい。
 また、本発明の一実施の形態によれば、前記制御部はさらに、前記合計値が、前記所定の判定閾値にヒステリシス設定値を加えた値より小さいか否かを判定し、前記合計値が前記所定の判定閾値にヒステリシス設定値を加えた値より小さい場合には、前記エンジンの目標回転速度との偏差に応じて前記エンジンのトルクフィードバック補正量を算出し前記エンジンの要求トルクを制御することができる。
 また、本発明の一実施の形態によれば、前記制御部が、前記エンジンの要求トルク制御の少なくとも終了時に前記エンジンのトルクフィードバック補正量を所定のレートで減少させることができる。
 また、本発明の一実施の形態によれば、前記所定の判定閾値は、前記エンジンの出力軸のフリクショントルク誤差を含む最大トルク誤差に対応した出力値であり得る。
 本発明の一実施の形態によれば、エンジンの要求出力と発電機の力行最大出力との合計値が所定の判定閾値より小さい場合にエンジンのトルクフィードバック補正量によりエンジン要求トルクを制御するので、たとえば低温時でバッテリが出力低下状態であっても、運転者の操作に依存することなく、エンジン回転速度を維持してエンストを防止する上で有利となる。
 また、本発明の一実施の形態によれば、所定の判定閾値がエンジンの目標回転速度ごとにエンジン水温に依存して予め設定されることで、高速で正確な判定処理が可能となり、エンストを未然にかつ確実に防止する上で有利となる。
 また、本発明の一実施の形態によれば、エンジンの要求出力と発電機の力行最大出力との合計値が所定の判定閾値にヒステリシス設定値を加えた値より小さいか否かを判定してエンジン要求トルクを制御するので、ハイブリッド車両の補機等のオンオフに依存した消費電力の増減による制御ハンチングを防止できる。
 また、本発明の一実施の形態によれば、エンジン要求トルク制御の少なくとも終了時にトルクフィードバック補正量を徐々に減少させるので、車両の振動や運転者の違和感を緩和できる上で有利となる。
 また、本発明の一実施の形態によれば、所定の判定閾値をエンジンの出力軸のフリクショントルク誤差を含む最大トルク誤差に対応した出力値にすることで、最大トルク誤差を考慮してトルクフィードバック補正量を算出しエンストを防止する上で有利となる。
背景技術によるハイブリッド車両におけるバッテリ出力低下時のエンジン要求トルク、回転速度および発電機トルクの変化を示すタイムチャートである。 本発明の一実施形態によるハイブリッド車両における制御系の概略的構成を示すブロック図である。 エンジンの水温、油温およびそれらの温度差の時間変化の一例を示すグラフである。 ハイブリッド車両におけるエンジン、発電機およびバッテリ間のエネルギの流れを示す模式的ブロック図である。 本実施形態による制御に用いられる判定閾値を説明するための模式図である。 本実施形態による制御方法を示すフローチャートである。 本実施形態による制御装置の動作の一例を示すタイムチャートである。
 1.車両構成
 図2に例示するように、本発明の一実施形態によるハイブリッド車両10において、バッテリ100はインバータ101、102および103に接続され、それぞれのインバータがフロントモータ104、リアモータ105および発電機106に接続されている。インバータ101および102は、バッテリ100から供給される直流電力を三相交流電力に変換してフロントモータ104およびリアモータ105へそれぞれ供給する。
 インバータ103は発電機106により発電された三相交流電力を直流電力に変換し、バッテリ100の充電や図示しない補機の電源として利用される。なお、ハイブリッド車両10の回生制動時には、フロントモータ104およびリアモータ105が発電機として機能し、それぞれのモータで発電された三相交流電力がインバータ101および102により直流電力に変換され、バッテリ100の充電に利用される。
 発電機106の回転子軸はエンジン107の出力軸と機械的に連結され、エンジン107の回転により発電を行う。ここではエンジン107と発電機106の回転速度は一致している。また発電機106はモータとしても動作する。具体的にはエンジン107の始動用のスタータとして動作させたり、あるいはエンジン107を負荷として回転させて廃電に利用したりすることもできる。
 なお、ハイブリッド車両10がプラグインタイプであれば、バッテリ100は、図示しない充電装置を介して、家庭用の商用電源あるいは充電スタンドの急速充電用電源などから供給される電力によって充電されてもよい。
 クラッチCLはエンジン107の回転トルクのギア機構108への伝達を機械的に切断あるいは連結する。クラッチCLを切断することでエンジン107の出力軸は発電機106のみに機械的に接続され、ハイブリッド車両10はEV走行モードあるいはシリーズ走行モードとなる。クラッチCLを連結することでエンジン107の出力軸は発電機106だけでなくギア機構108にも接続される。ギア機構108はフロントモータ104の駆動トルクを前輪109へ伝達し、またクラッチCLが連結状態であればエンジン107の駆動トルクも前輪109へ伝達することもできる。またリアモータ105はギア機構110を介して後輪111に駆動トルクを伝達する。
 電子制御ユニット(ECU)112はハイブリッド車両10の制御部を構成する。詳しくは、各種検出量及び各種作動情報に基づいてハイブリッド車両10の走行に必要な車両要求出力を算出し、クラッチCLおよびインバータ101,102および103を制御することで走行モード(EVモード、シリーズモード)を切り換えるとともに、エンジン107の出力制御、フロントモータ104およびリアモータ105の出力制御、発電機106の出力制御等を実行する。
 なお、ハイブリッド車両10の走行モードについては以下の通りである。
 ・EVモードでは、クラッチCLを切断するとともにエンジン107を停止し、バッテリ100から供給される電力によってフロントモータ104およびリアモータ105を駆動して走行させる。また、バッテリ100から供給される電力が要求出力に足りない場合は、次に説明するシリーズモードに切り替えてエンジン107を始動し発電機106によって発電された電力もフロントモータ104およびリアモータ105の駆動に用いる。
 ・シリーズモードでは、クラッチCLを切断し、エンジン107の駆動力を全て発電機106に付与する。そして、発電機106によって発電された電力によりフロントモータ104およびリアモータ105を駆動して走行させる。この時、発電機106の発電電力が要求出力に足りない場合は、バッテリ100に蓄電された電力もフロントモータ104およびリアモータ105の駆動に用いる。また、発電機106の発電電力が要求出力よりも大きい場合には、余剰電力をバッテリ100の充電に利用する。
 さらにECU112は、後述する判定閾値テーブル113に保存された判定閾値と以下のセンサ信号とを入力して本実施形態によるエンジントルク制御を実行する:・運転者が操作するアクセルペダルの操作量や操作速度を検出するアクセルポジションセンサ(図示せず)からのアクセル開度信号;・エンジン107の出力軸の回転速度[rpm]を検出する回転速度センサ(図示せず)からのエンジン回転速度信号;・エンジン107の冷却水の温度を検出する水温センサ(図示せず)からのエンジン水温信号;および・バッテリ100の電池残量や充電状態を検出するSOC(State Of Charge)センサ(図示せず)からのSOC信号。
 なお、ECU112は、CPU(Central Processing Unit)等のプロセッサ、プロセッサが実行する制御プログラム等を格納するROM(Read-only memory)、制御プログラムの作動領域としてのRAM(Random access memory)、周辺回路等とのインターフェース部などを含んで構成される。上記判定閾値テーブル113は消去可能書換可能なROMに保存されてもよい。本実施形態による制御方法はECU112のプロセッサ上でプログラムを実行することによりに実装され得る。以下、エンジンと発電機との間のトルク誤差について説明した後、本実施形態による制御方法について詳細に説明する。
 2.トルク誤差の算出
 既に述べたように、低温時あるいはバッテリの劣化時にバッテリ出力が低下して発電機の力行アシストがなくなると、運転者がエンジン要求出力を増大させない限り、トルク誤差によりエンジンの回転速度が目標値を維持できない現象が生じ得る。このトルク誤差は次に述べるようにエンジンの水温と油温が乖離することにより発生する。
 図3に示すように、エンジンの水温(ENG水温)と油温(ENG油温)とは温度の上昇率が異なるので時間と共に温度差が変化する。特に短時間にエンジン始動とエンジン停止を繰り替えされる状況下では,水温と油温の乖離が大きくなる傾向にある。エンジンの出力軸に作用する摩擦に起因するフリクショントルクは油温とエンジン回転速度により決まり、油温が低い程フリクショントルク値は大きくなる。油温は水温から推定される場合、水温と油温の乖離が大きくなると実際のフリクショントルク値と水温から算出するフリクショントルク値に誤差が発生してしまう。これにエンジン指令に対する誤差やエンジンと接続している減速機のフリクショントルクなどを加算することで最大トルク誤差量が算出される。したがって、この最大トルク誤差量によるエンジン回転速度の減少を防止するようにエンジン要求出力を増大させる制御が必要となる。
 3.エンジントルク制御
 図4Aに示すように、回生動作時にはエンジン107の回転トルクが発電機106に伝達され、発電機106が発電してバッテリ100を充電する。また力行動作時にはバッテリ100から発電機106へ電力が供給され、発電機106がモータとしてエンジン107を回転させる。たとえばエンジン107の回転速度が目標値より低下すると、ECU112は発電機106を制御してモータとして動作させることでエンジン107の回転速度を目標値近傍に維持できる。しかしながらバッテリ100が出力低下状態であれば、発電機106の力行出力を十分に増加させることができなくなる。言い換えれば、発電機106の力行出力の可能値はバッテリ100の出力可能値に対応する。
 図4Bに示すように、トルク誤差によりエンジン107の回転速度を低下させないためには、エンジン107の要求出力PENG-RQと発電機106の力行最大出力PGEN-DRVとの合計値をトルク誤差以上にすることが必要である。そこで、最大トルク誤差が発生した際にエンジン107の回転速度を低下させないエンジン要求出力PENG-RQと発電機力行最大出力PGEN-DRVとの合計値を判定閾値PTHとする。
 判定閾値PTHはエンジン107の目標回転速度毎にエンジン水温に依存して予め設定され、ECU112内の判定閾値テーブル113あるいは別個の記憶装置にテーブル形式で保存されてもよい。判定閾値テーブル113に想定された複数の判定閾値PTHを保存しておくことで、ECU112はエンジンの目標回転速度と水温のセンサデータから正確な判定に必要な判定閾値PTHを高速に取得できる。なお、エンジン要求出力PENG-RQ、発電機力行最大出力PGEN-DRVおよび判定閾値PTHの単位はパワー[kW]であり、エンジン要求出力PENG-RQはエンジン要求発電出力である。
 望ましくは、判定閾値PTHにヒステリシス設定値ΔHを加算して判定する。ヒステリシス設定値ΔHの加算は、車両10内の補機(エアコンなど)での消費電力による変動を吸収するためである。すなわち、通常のエンジン要求出力値には補機の消費電力も含まれるために、補機のオンオフにより消費電力が変動する。したがって補機のオンオフの度にエンジン要求出力PENG-RQと発電機力行最大出力PGEN-DRVとの合計値が判定閾値PTHを上回ったり下回ったりして制御のハンチングが発生する。ヒステリシス設定値ΔHの加算は制御のハンチング防止のためである。
 ECU112は、次に述べるように、エンジン要求出力PENG-RQと発電機力行最大出力PGEN-DRVとの合計値が判定閾値PTHを下回る場合には、エンジン回転速度の目標回転速度との偏差に応じてエンジントルク補正量をフィードバック(F/B)し、エンジン目標回転速度に追従するようにエンジントルクを制御する。
 図5に示すように、ECU112は現在の走行モードがシリーズモードであるか否かを判断し(ステップ201)、シリーズモードであれば(ステップ201のYES)、エンジンの目標回転速度とエンジン水温を入力して判定閾値テーブル113から判定閾値PTHを取得し、現在のエンジン要求出力PENG-RQと発電機力行最大出力PGEN-DRVとの合計値が判定閾値PTHより小さいか否かを判断する(ステップ202)。
 現在のエンジン要求出力PENG-RQと発電機力行最大出力PGEN-DRVとの合計値が判定閾値PTHより小さい場合には(ステップ202のYES)、上述したようにトルク誤差によりエンジン107の回転速度が低下してエンストが発生する可能性がある。そこでECU112はエンストを回避するように現在のエンジン回転速度と目標回転速度との差に応じたエンジントルクF/B補正量を算出し、算出されたエンジントルクF/B補正量に従ってエンジン107のエンジントルクを制御する(ステップ203)。このときエンジントルクF/B補正量によるエンジントルクの変動を緩やかにすることが望ましい。たとえばエンジントルクF/B補正の開始時に急激に増加させるのではなく、所定の増加レートを設定して車両10の振動や運転者の違和感を軽減できる。
 なお、エンジントルクF/B補正量は、後述するように、積分項と比例項とからなるPI(Proportional-Integral)制御により算出される。積分補正だけでは回転速度のハンチングが生じるために、制御の安定化のために比例補正が追加される。なおエンジントルクF/B補正量の単位は[Nm]である。
 続いて、ECU112は、上記制御されたエンジン要求出力PENG-RQと発電機力行最大出力PGEN-DRVとの合計値が判定閾値PTHとヒステリシス設定項ΔHとの和より小さいか否かを判断する(ステップ204)。PENG-RQ+PGEN-DRV<PTH+ΔHであれば(ステップ204のYES)、ECU112は、上記エンジントルクF/B補正制御(ステップ203)を繰り返す。
 PENG-RQ+PGEN-DRVがPTH+ΔH以上になれば(ステップ204のNO)、ECU211は、エンジントルク補正制御を終了するが、そのときにエンジントルクF/B補正量によるエンジントルクの変動を緩やかにするテーリング処理を実行する(ステップ205)。エンジントルクF/B補正の終了時に急激に幻想させるのではなく、所定の減少レートを設定することで車両10の振動や運転者の違和感を軽減できる。この時点ではエンジン107のエンストの可能性は少ないと考えられるので、ステップ203におけるエンジントルクF/B補正量の増加レートよりも減少レートを小さくでき、車両10の振動や運転者の違和感をさらに軽減できる。
 ステップ202においてPENG-RQ+PGEN-DRVがPTH以上の場合(ステップ202のNO)あるいはテーリング処理(ステップ205)が完了した場合には、ECU112は通常のシリーズモード走行時の制御を実行し(ステップ206)、走行モードがシリーズモード以外であれば(ステップ201のNO)、本実施形態による制御を終了し通常の制御が続行される。
 4.動作
 次に図6を参照しながら本実施形態によるハイブリッド車両10の動作について詳細に説明する。
 まず、図6の(B)および(C)に示すように、ECU112は、エンジン要求出力PENG-RQ、発電機力行最大出力PGEN-DRV、エンジン回転速度およびエンジン水温を入力して判定閾値PTHを決定し、PENG-RQ+PGEN-DRV<PTH+ΔHの状態、すなわち発電機106の力行出力が不足状態であると判定したものとする。
 図6(A)に示すように、発電機106の力行出力不足状態でEV走行中に時点t1でエンジン107が起動し、時点t2でシリーズ走行に移行したとする。エンジン起動時には、図6(F)および(G)に示すように、発電機106の力行によりエンジンが回転しはじめ目標回転速度に到達する。
 時点t2でシリーズ走行に移行すると、ECU112は、図6の(F)に示すようにエンジン107の回転速度と目標回転速度との偏差を参照しながら、図6の(d1)に示す比例補正量(エンジントルクF/B補正量(P項)[Nm])と図6の(d2)に示す積分補正量(エンジントルクF/B補正量(I項)[Nm])とを算出し、比例補正量と積分補正量との和に立ち上がりの増加レートを用いた切替係数(図6の(d3))を乗算することで図6の(D)に示す要求エンジントルクF/B補正量を算出する。
 要求エンジントルクF/B補正量は、時点t2後にエンジン回転速度が目標回転速度を若干オーバーシュートするので(図6の(F))負の値を示すが、その後は曲線301に示すように増加して正の値が維持される。その結果、図6の(E)に示すようにエンジン要求トルクが増加し、増加した状態で維持され、それに実トルク302が追従している。
 エンジン要求トルクが増加することで、図6の(F)に示すように、エンジン回転速度303は時点t2の後も目標値をほぼ維持しながら推移し、従来の曲線401のような回転速度の低下、そしてエンスト402の発生を防止している。
 以上のシリーズ走行が継続し、図6の(B)および(C)に示すように、時点t3でPENG-RQ+PGEN-DRVがPTH+ΔH以上になると、ECU112は発電機106の力行出力が復帰したと判定し、図6の(d3)に示すように切替係数304を時点t3から時点t4にかけて徐々に低下させる。これに伴い、図6の(D)に示すように、要求エンジントルクF/B補正量も時点t3から低下し始め時点t4でゼロになる。
 要求エンジントルクF/B補正量がゼロになることで、図6の(E)に示すように、そのときのエンジン要求トルクの値がそれ以降も維持され、それによって図6の(F)に示すようにエンジン回転速度も維持される。また発電機106は、図6の(G)に示すように、時点t3以降は力行出力が復帰したので、必要に応じて発電機あるいはモータとして動作可能となる。
 なお、図6に例示するタイムチャートは、運転者がアクセル操作により出力を増大させないでシリーズ走行する場合を示しており、運転者がエンジン要求出力を増加させる場合には本実施形態による制御は非作動になる。すなわち、本実施形態による制御は、ハイブリッド車両10が停車時あるいは低出力での走行時に適用される。
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。
 なお、本出願は、2021年7月28日出願の日本特許出願(特願2021-123380)に基づくものであり、その内容は本出願の中に参照として援用される。
10 ハイブリッド車両
100 バッテリ
101、102、103 インバータ
104 フロントモータ
105 リアモータ
106 発電機
107 エンジン
108 ギア機構
109 前輪
110 ギア機構
111 後輪
112 電子制御ユニット(ECU)

Claims (9)

  1.  エンジンと、前記エンジンの出力軸と機械的に連結され回生動作あるいは力行動作可能な発電機と、前記発電機の回生動作時に発電した電力を蓄え、前記発電機の力行動作時に電力を供給するバッテリと、前記バッテリから供給される電力を駆動輪の駆動力に変換するモータと、前記エンジン、前記発電機および前記モータを制御する制御部と、を備えたハイブリッド車両であって、
     前記制御部が、
     前記エンジンを起動した時に前記エンジンの要求出力と前記発電機の力行最大出力との合計値が所定の判定閾値より小さいか否かを判定し、
     前記合計値が前記所定の判定閾値より小さい場合、前記エンジンの目標回転速度との偏差に応じて前記エンジンのトルクフィードバック補正量を算出し前記エンジンの要求トルクを制御する、
     ことを特徴とするハイブリッド車両。
  2.  前記所定の判定閾値は、前記エンジンの目標回転速度ごとに前記エンジンの冷却水温に依存して予め設定されたことを特徴とする請求項1に記載のハイブリッド車両。
  3.  前記制御部はさらに、
     前記合計値が、前記所定の判定閾値にヒステリシス設定値を加えた値より小さいか否かを判定し、
     前記合計値が前記所定の判定閾値にヒステリシス設定値を加えた値より小さい場合には、前記エンジンの目標回転速度との偏差に応じて前記エンジンのトルクフィードバック補正量を算出し前記エンジンの要求トルクを制御する、
     ことを特徴とする請求項1に記載のハイブリッド車両。
  4.  前記制御部はさらに、
     前記合計値が、前記所定の判定閾値にヒステリシス設定値を加えた値より小さいか否かを判定し、
     前記合計値が前記所定の判定閾値にヒステリシス設定値を加えた値より小さい場合には、前記エンジンの目標回転速度との偏差に応じて前記エンジンのトルクフィードバック補正量を算出し前記エンジンの要求トルクを制御する、
     ことを特徴とする請求項2に記載のハイブリッド車両。
  5.  前記制御部が、前記エンジンの要求トルク制御の少なくとも終了時に前記エンジンのトルクフィードバック補正量を所定のレートで減少させることを特徴とする請求項1に記載のハイブリッド車両。
  6.  前記制御部が、前記エンジンの要求トルク制御の少なくとも終了時に前記エンジンのトルクフィードバック補正量を所定のレートで減少させることを特徴とする請求項2に記載のハイブリッド車両。
  7.  前記制御部が、前記エンジンの要求トルク制御の少なくとも終了時に前記エンジンのトルクフィードバック補正量を所定のレートで減少させることを特徴とする請求項3に記載のハイブリッド車両。
  8.  前記制御部が、前記エンジンの要求トルク制御の少なくとも終了時に前記エンジンのトルクフィードバック補正量を所定のレートで減少させることを特徴とする請求項4に記載のハイブリッド車両。
  9.  前記所定の判定閾値は、前記エンジンの出力軸のフリクショントルク誤差を含む最大トルク誤差に対応した出力値であることを特徴とする請求項1から8のいずれか1項に記載のハイブリッド車両。
PCT/JP2022/024214 2021-07-28 2022-06-16 ハイブリッド車両 WO2023007979A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280006471.6A CN117597248A (zh) 2021-07-28 2022-06-16 混合动力车辆
JP2023502632A JP7401021B2 (ja) 2021-07-28 2022-06-16 ハイブリッド車両

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-123380 2021-07-28
JP2021123380 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023007979A1 true WO2023007979A1 (ja) 2023-02-02

Family

ID=85086689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024214 WO2023007979A1 (ja) 2021-07-28 2022-06-16 ハイブリッド車両

Country Status (3)

Country Link
JP (1) JP7401021B2 (ja)
CN (1) CN117597248A (ja)
WO (1) WO2023007979A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057704A (ja) * 1999-08-09 2001-02-27 Mazda Motor Corp ハイブリッド車両の駆動装置
JP2009214641A (ja) * 2008-03-10 2009-09-24 Nissan Motor Co Ltd ハイブリッド車両の制御装置
WO2012114509A1 (ja) * 2011-02-25 2012-08-30 スズキ株式会社 ハイブリッド車両のエンジン始動制御装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015116944A (ja) 2013-12-18 2015-06-25 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001057704A (ja) * 1999-08-09 2001-02-27 Mazda Motor Corp ハイブリッド車両の駆動装置
JP2009214641A (ja) * 2008-03-10 2009-09-24 Nissan Motor Co Ltd ハイブリッド車両の制御装置
WO2012114509A1 (ja) * 2011-02-25 2012-08-30 スズキ株式会社 ハイブリッド車両のエンジン始動制御装置

Also Published As

Publication number Publication date
JP7401021B2 (ja) 2023-12-19
JPWO2023007979A1 (ja) 2023-02-02
CN117597248A (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
JP5799127B2 (ja) ハイブリッド車両の制御装置
JP3536820B2 (ja) ハイブリッド式車両制御装置
JP5510116B2 (ja) ハイブリッド車の回生制御装置
JP5141305B2 (ja) ハイブリッド車両の制御装置
JP2013071551A (ja) ハイブリッド車両の制御装置
US5893895A (en) Control system for hybrid vehicle
JP2014196101A (ja) 制御装置
JP2009166513A (ja) 電源装置およびその放電制御方法
JP5051117B2 (ja) ハイブリッド車両の発進制御装置
JP2007221885A (ja) 二次電池の制御装置および制御方法
JP5233652B2 (ja) ハイブリッド車両の発進制御装置
JP2008295300A (ja) 蓄電器を備えた車両の電力制限装置
JP5692140B2 (ja) 駆動制御装置
JP7459752B2 (ja) 回生制御方法及び回生制御装置
US9643597B2 (en) Control apparatus for hybrid vehicle
WO2023007979A1 (ja) ハイブリッド車両
JP2000219062A (ja) ハイブリッド型車両
JP6636840B2 (ja) ハイブリッド車両の制御装置及びハイブリッド車両システム
JP5223378B2 (ja) 車両の発進制御装置
JP2007191078A (ja) 車両およびその制御方法
US11458950B2 (en) Drive force control system for hybrid vehicle
JPH0819112A (ja) シリーズハイブリッド車の制御装置
JP2011167030A (ja) 電動車両の制御装置
WO2021235300A1 (ja) ハイブリッド車両の制御装置
WO2023157167A1 (ja) ハイブリッド車両

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023502632

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE