WO2023003012A1 - 多芯ケーブル - Google Patents

多芯ケーブル Download PDF

Info

Publication number
WO2023003012A1
WO2023003012A1 PCT/JP2022/028182 JP2022028182W WO2023003012A1 WO 2023003012 A1 WO2023003012 A1 WO 2023003012A1 JP 2022028182 W JP2022028182 W JP 2022028182W WO 2023003012 A1 WO2023003012 A1 WO 2023003012A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
multicore cable
insulated wires
insulated
insulated wire
Prior art date
Application number
PCT/JP2022/028182
Other languages
English (en)
French (fr)
Inventor
峻明 岡本
祐司 越智
龍太 古屋敷
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN202280042523.5A priority Critical patent/CN117501387A/zh
Priority to JP2023536775A priority patent/JPWO2023003012A1/ja
Publication of WO2023003012A1 publication Critical patent/WO2023003012A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors

Definitions

  • the present disclosure relates to multicore cables.
  • Patent Document 1 a main wire portion having a plurality of core wires and a covering portion covering the plurality of core wires, and one end of the main wire portion is fixed so as to be in a horizontal posture, and the other end is vertically downwardly fixed at a predetermined position.
  • a pressure contact tool attached to a boundary position between a curved portion generated when a force is applied and a straight portion extending in the vertical direction, and for crushing the main wire portion so as to press the covering portion and the plurality of core wires;
  • a multicore cable is disclosed.
  • a multicore cable of the present disclosure includes a core including a plurality of insulated wires; a jacket that covers the outer surface of the core, The jacket is arranged between the insulated wires positioned on the outer peripheral side of the core, and has a convex portion in contact with at least part of the surface of the insulated wire.
  • FIG. 1 is a cross-sectional view along a plane perpendicular to the longitudinal direction of a multicore cable according to one aspect of the present disclosure.
  • FIG. 2 is another configuration example of a cross-sectional view along a plane perpendicular to the longitudinal direction of the multicore cable according to one aspect of the present disclosure.
  • FIG. 3 is another configuration example of a cross-sectional view along a plane perpendicular to the longitudinal direction of the multicore cable according to one aspect of the present disclosure.
  • FIG. 4 is another configuration example of a cross-sectional view along a plane perpendicular to the longitudinal direction of the multicore cable according to one aspect of the present disclosure.
  • FIG. 1 is a cross-sectional view along a plane perpendicular to the longitudinal direction of a multicore cable according to one aspect of the present disclosure.
  • FIG. 2 is another configuration example of a cross-sectional view along a plane perpendicular to the longitudinal direction of the multicore cable according to one aspect of the present disclosure.
  • FIG. 5 is another configuration example of a cross-sectional view along a plane perpendicular to the longitudinal direction of the multicore cable according to one aspect of the present disclosure.
  • FIG. 6 is an explanatory diagram of the noise test.
  • FIG. 7A is a cross-sectional photograph of the multi-core cable produced in Experimental Example 1-1, taken along a plane perpendicular to the longitudinal direction.
  • FIG. 7B is a cross-sectional photograph of the multi-core cable produced in Experimental Example 1-2, taken along a plane perpendicular to the longitudinal direction.
  • FIG. 7C is a cross-sectional photograph of the multi-core cable produced in Experimental Example 1-3 taken along a plane perpendicular to the longitudinal direction.
  • multi-core cables that integrate multiple insulated wires have been used.
  • headphones and earphones which are audio equipment
  • multi-core cables are used as cables for connecting electronic equipment, plugs, and headphone units that output sound.
  • the multi-core cable when using a device to which a multi-core cable is connected, the multi-core cable may be bent by applying force to the multi-core cable, causing a rubbing sound or noise from the multi-core cable.
  • the equipment used is an audio equipment or the like, there has been a demand for suppression of noise generated when the multi-core cable is bent.
  • an object of the present disclosure is to provide a multicore cable that suppresses noise when bent.
  • a multicore cable includes a core including a plurality of insulated wires, a jacket that covers the outer surface of the core, The jacket is arranged between the insulated wires positioned on the outer peripheral side of the core, and has a convex portion in contact with at least part of the surface of the insulated wire.
  • the inventor of the present invention investigated the cause of noise when bending a multi-core cable.
  • the core hits the jacket, and in a cross section perpendicular to the longitudinal direction of the multicore cable, the core is pushed along the inner circumference of the jacket. It was presumed that the noise was caused by the core rubbing against the outer cover.
  • the jacket of the multicore cable can have a convex portion that is arranged between the insulated wires positioned on the outer peripheral side of the core and contacts at least part of the surface of the insulated wires.
  • the jacket is disposed between the insulated wires positioned on the outer peripheral side of the core, and has a convex portion in contact with at least a part of the surface of the insulated wire, so that the jacket is positioned between the insulated wires positioned on the outer peripheral side of the core.
  • the convex portion functions as an anchor for the jacket, and when the multi-core cable is bent, the core moves along the inner periphery of the jacket, and it is possible to suppress noise caused by rubbing between the two members. Therefore, it is possible to suppress the friction between the outer cover and the core, and to suppress the occurrence of noise, as compared with the case where the outer cover does not have a convex portion.
  • the height of the convex portion may be 0.05 mm or more.
  • the height of the protrusion By setting the height of the protrusion to 0.05 mm or more, the effect of regulating the movement of the core when the multicore cable is bent is enhanced, and the occurrence of noise can be particularly suppressed.
  • the plurality of insulated wires include a first insulated wire and a second insulated wire having an outer diameter larger than that of the first insulated wire;
  • the second insulated wire may be arranged on the outer peripheral side of the core.
  • the second insulated wire By arranging the second insulated wire with a large outer diameter on the outer peripheral side of the core, it is possible to suppress the outer diameter of the core and reduce the diameter of the multicore cable.
  • first insulated wire and the second insulated wire are arranged on the outer peripheral side of the core; In a cross section perpendicular to the longitudinal direction of the core, first regions including the first insulating wires and second regions including the second insulating wires may be alternately arranged along the outer circumference of the core. .
  • the second insulated wires having a large outer diameter are dispersed on the outer circumference of the core.
  • the shape of the cross section perpendicular to the longitudinal direction of the core can be brought closer to a circular shape.
  • the height of the convex portion arranged between the first insulating wire and the second insulating wire that are adjacent to each other can be particularly increased, and noise can be particularly suppressed.
  • the core may include a twisted pair insulated wire obtained by twisting two of the insulated wires.
  • the core By including a twisted pair insulated wire in the core, it can be applied to a wider range of applications.
  • the core since the core includes the twisted pair insulated wire, it is possible to improve the handleability when performing wiring or the like.
  • the insulated wire positioned on the outer peripheral side of the core may be in direct contact with the jacket.
  • the insulated wire is in direct contact with the outer cover including the protrusions, so both members can be brought into close contact. Therefore, when the multi-core cable is bent, the cores are prevented from moving along the inner periphery of the jacket, and noise generation can be particularly suppressed.
  • the insulated wire arranged on the outer peripheral side of the core may be in contact with the convex portion at least partially in the bent portion.
  • the insulated wire arranged on the outer peripheral side of the core and the convex portion are in contact at least partially in the bent portion, so that the multicore cable Movement of the core along the inner circumference of the jacket can be restricted when the cable is bent. Therefore, it is possible to suppress the generation of noise when the multi-core cable is bent.
  • the insulated wire has a central conductor and an insulator covering the outer surface of the central conductor;
  • the insulator may contain a fluororesin.
  • the core can easily move along the inner circumference of the jacket.
  • the insulator is a fluororesin, it is possible to suppress the movement of the core along the inner periphery of the jacket and prevent noise. Therefore, when the fluorine-based resin is used as the insulator of the insulated wire, a particularly high effect can be exhibited.
  • the thickness of the insulator can be reduced, and the diameter of the insulated wire and the entire multi-core cable of the present embodiment including the insulated wire can be reduced.
  • the jacket may contain a thermoplastic resin.
  • thermoplastic resin By including the thermoplastic resin in the outer cover, it is possible to easily form a convex portion between the insulating wires located on the outer peripheral side of the core.
  • the core may have a gap between at least one pair of adjacent insulated wires among the insulated wires positioned on the outer peripheral side of the core.
  • a void may be present inside the core in a cross section perpendicular to the longitudinal direction.
  • FIGS. 1 to 5 schematically show each member in order to explain the configuration and the like of the multicore cable of this embodiment, and the sizes and the like are limited to the forms of FIGS. 1 to 5. not something. Due to space limitations, only some of the same members in the figures are given reference numerals, and the reference numerals may be omitted.
  • FIG. 1 shows a cross-sectional view of the multi-core cable 10 of this embodiment in a plane perpendicular to the longitudinal direction.
  • the direction perpendicular to the paper surface in FIG. 1 is the longitudinal direction of the multicore cable.
  • the multicore cable 10 of this embodiment has a core 13 including a plurality of insulated wires 11 and a jacket 12 covering an outer surface 13A of the core 13 .
  • Core (1-1) Member of Core Core 13 can include a plurality of insulated wires 11 .
  • (1-1-1) Insulated Wire The insulated wire 11 can have a central conductor 111 and an insulator 112 covering the outer surface of the central conductor 111 .
  • the central conductor 111 can be composed of a single metal strand or a plurality of metal strands. When the central conductor 111 has a plurality of metal strands, the plurality of metal strands can be twisted together. That is, when the center conductor 111 has a plurality of metal strands, the center conductor 111 can also be a twisted wire of a plurality of metal strands.
  • the material of the central conductor 111 is not particularly limited, but one or more selected from, for example, copper, annealed copper, and copper alloy can be used as the base material. Copper alloys include tin-containing copper and silver-containing copper.
  • the central conductor 111 can be made of only the base material, but the surface thereof may be plated with silver-plated annealed copper, nickel-plated annealed copper, tin-plated annealed copper, or the like. When the surface of the base material is plated, one or more selected from, for example, silver, tin, nickel, etc., can be suitably used as the plating material.
  • the material constituting the insulator 112 is not particularly limited, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), It can contain one or more resins selected from fluorine-based resins such as ethylene-tetrafluoroethylene copolymer (ETFE) and polyester resins such as polyethylene terephthalate (PET).
  • the insulator 112 preferably contains a fluororesin.
  • the insulator 112 can be composed of only the above resin, but the insulator 112 can also contain various additives such as a flame retardant as necessary. Also, the insulator 112 may or may not be crosslinked.
  • the core 13 hits the jacket 12 and the noise is generated.
  • the core 13 moves along the inner circumference of the jacket 12 as indicated by the double arrow A in FIG. It is thought that there are When a fluorocarbon resin is used as the insulator 112 that covers the outer circumference of the insulated wire 11 , the core 13 can easily move along the inner circumference of the jacket 12 .
  • the multi-core cable of the present embodiment even when the insulator 112 is made of fluorine-based resin, the movement of the core 13 along the inner periphery of the jacket 12 can be suppressed and noise can be prevented. Therefore, when a fluororesin is used as the insulator 112 of the insulated wire 11, a particularly high effect can be exhibited.
  • the thickness of the insulator 112 can be reduced, and the diameter of the insulated wire 11 and the entire multicore cable of the present embodiment including the insulated wire 11 can be reduced.
  • the multicore cable of this embodiment can also have insulated wires with different outer diameters.
  • the insulated wires may include a first insulated wire 11 and a second insulated wire 21 having an outer diameter different from that of the first insulated wire 11.
  • each insulated wire can have a central conductor and an insulator, and each member can have the above configuration. That is, the first insulated wire 11 and the second insulated wire 21 can have a central conductor 111, a central conductor 211, an insulator 112, and an insulator 212, respectively.
  • Each central conductor and insulator can be configured as described above.
  • (1-1-2) Twisted Pair Insulated Wire Like the multicore cables 30 to 50 shown in FIGS. can also include
  • Each insulated wire 311 of the twisted pair insulated wire 31 can also be configured in the same manner as the insulated wire 11 described above. That is, the insulated wire 311 can also have a central conductor 3111 and an insulator 3112, and each member can have the above-described structure. Therefore, the description is omitted here.
  • the twist pitch when twisting the insulated wires 311 constituting the twisted pair insulated wire 31 is not particularly limited, but is preferably 4 mm or more and 15 mm or less, more preferably 7 mm or more and 11 mm or less.
  • (1-1-3) Interposition For example, like the multicore cable 30 shown in FIG. 3, the core 33 may further have an interposition 34 as required.
  • the interposition 34 can be made of fiber such as staple thread or nylon thread.
  • the interposer may be composed of tensile strength fibers.
  • Interposition 34 can be placed in a gap surrounded by an insulating wire.
  • the core Since the core has an interposition, it is possible to easily perform the work of twisting the insulated wires to form the core.
  • the core can have multiple insulated wires, and the number and configuration of the insulated wires are selected according to the application of the multicore cable including the core. It is possible and not particularly limited. Configuration examples of cores of a multicore cable will be described with reference to FIGS. 1 to 5. FIG. However, the configuration of the insulated wire forming the core is not limited to the cases of FIGS. 1 to 5.
  • FIG. (1-2-1) First configuration example As a first configuration example, like the multicore cable 10 shown in FIG.
  • a configuration consisting of only one type of insulated wire 11 is exemplified.
  • the core 13 of the multicore cable 10 shown in FIG. 1 has 14 insulated wires 11, but it is not limited to such a form, and any number of insulated wires 11 can be used depending on the equipment to which the multicore cable 10 is connected. It can have insulated wires.
  • a plurality of insulated wires 11 of the multicore cable 10 can be twisted together in the longitudinal direction to form a core 13 .
  • each insulated wire 11 can be separated. Instead, they move integrally as the core 13.
  • the twisting direction of the plurality of insulated wires 11 is not particularly limited, and can be any direction.
  • the twist pitch of the plurality of insulated wires 11 of the core 13 is not particularly limited, it is preferably 15 mm or more and 50 mm or less, more preferably 25 mm or more and 40 mm or less.
  • the productivity of the multicore cable can be particularly enhanced.
  • the shape of the cross section perpendicular to the longitudinal direction of the core 13 can be made close to a circular shape, and the shape of the cross section perpendicular to the longitudinal direction of the multicore cable 10 can also approximate a circular shape.
  • twist pitch of the plurality of insulated wires of the core is within the above range.
  • the core 13 preferably has a gap 14 between at least a pair of adjacent insulated wires 11 among the insulated wires 11 positioned on the outer peripheral side of the core 13 . That is, among the insulated wires 11 positioned on the outer peripheral side of the core 13, at least a pair of adjacent insulated wires 11 are preferably arranged with a gap therebetween.
  • the outer peripheral side of the core 13 can also be said to be the outer surface 13A side of the core 13, and the insulated wire 11 positioned on the outer peripheral side of the core can constitute the outer surface 13A of the core 13.
  • a pair of adjacent insulated wires 11 means two insulated wires 11 adjacent along the outer periphery of the core in a cross section perpendicular to the longitudinal direction of the multicore cable 10 .
  • the gap 14 is provided between at least a pair of adjacent insulated wires 11, so that when the multicore cable 10 is bent, the pair of insulated wires Even if the insulated wires are displaced, it is possible to prevent the pair of insulated wires from being pressed against each other. For this reason, when the multicore cable 10 is bent, the force applied to the later-described projections 121 disposed between the pair of insulated wires 11 is suppressed, the anchoring effect of the projections 121 is enhanced, and the noise is reduced. It is possible to suppress the occurrence of ringing.
  • all the insulated wires 11 located on the outer peripheral side of the core 13 may have gaps between adjacent insulated wires 11 .
  • whether or not there is a gap 14 between at least one pair of adjacent insulated wires 11 can be evaluated in any cross section perpendicular to the longitudinal direction of the multicore cable 10 .
  • the core 13 preferably includes one or more, more preferably two or more, portions where the distance L11 between the insulated wires 11 located on the outer peripheral side of the core 13 is 0.01 mm or more.
  • the core 13 includes one or more portions where the distance L11 between the insulated wires 11 located on the outer peripheral side of the core 13 is 0.01 mm or more, so that the protrusions 121, which will be described later, are formed between the insulated wires 11.
  • the height H121 can be made sufficiently high. Therefore, when the multicore cable 10 is bent, the effect of restricting the movement of the cores 13 is enhanced, and the generation of noise can be particularly suppressed.
  • the distance between the insulated wires 11 positioned on the outer peripheral side of the core 13 can be set to 0.01 mm or more for all the insulated wires 11 positioned on the outer peripheral side of the core 13, the distance between the insulated wires 11 positioned on the outer peripheral side of the core 13 is The upper limit of the number of portions satisfying the above range is not particularly limited.
  • the upper limit of the distance L11 between the insulated wires 11 located on the outer peripheral side of the core 13 is not particularly limited, but if it is excessively increased, the outer diameter of the core 13 and the outer diameter of the multicore cable 10 will increase. It is preferably 0.03 mm or less.
  • the distance L11 between the insulated wires 11 located on the outer peripheral side of the core 13 means the shortest distance between the adjacent insulated wires 11A and 11B, as shown in FIG. 1, for example.
  • (1-2-2) Second Configuration Example As a second configuration example, there is a configuration in which the core 23 has insulated wires with different outer diameters, like the multicore cable 20 shown in FIG.
  • the core 23 of the multicore cable 20 shown in FIG. 2 includes, as a plurality of insulated wires, first insulated wires 11 and second insulated wires 21 having an outer diameter larger than that of the first insulated wires 11 . That is, the outer diameter D11 of the first insulated wire 11 and the outer diameter D21 of the second insulated wire 21 have a relationship of D11 ⁇ D21.
  • the second insulated wire 21 with the larger outer diameter is placed on the outer peripheral side of the core 23, that is, the core 23 is preferably arranged on the outer surface 23A side.
  • the second insulated wire 21 having a large outer diameter By arranging the second insulated wire 21 having a large outer diameter on the outer peripheral side of the core 23, the outer diameter of the core 23 can be suppressed and the diameter of the multicore cable 20 can be reduced. It should be noted that the second insulated wire 21 having a large outer diameter, which the core 23 has, can also be arranged entirely on the outer peripheral side of the core 23 .
  • a plurality of first regions 231 and second regions 232 can be provided along the outer circumference of the core 23 .
  • the core 23 has three first regions 231 and three second regions 232 .
  • the core 23 has shown a form including two types of insulated wires, the first insulated wire 11 and the second insulated wire 21, as insulated wires, but is limited to such a form. not.
  • the core of the multicore cable of this embodiment may include three or more types of insulated wires having different configurations such as outer diameter.
  • the core 23 of the multicore cable 20 shown in FIG. 2 has 12 insulated wires. insulated wire.
  • a plurality of insulated wires of the multicore cable 20 that is, the first insulated wires 11 and the second insulated wires 21 can be twisted together in the longitudinal direction to form a core 23 .
  • the twisting direction of the plurality of insulated wires is not particularly limited, and can be any direction.
  • (1-2-3) Third Configuration Example to Fifth Configuration Example for example, like the multicore cable 30 shown in FIG.
  • some of the insulated wires may be a twisted pair insulated wire 31 in which two insulated wires 311 are pre-twisted along the longitudinal direction. That is, the core can also include a twisted pair insulated wire in which two insulated wires are twisted together. Including the twisted pair insulated wire in the core allows for a wider range of applications.
  • the core since the core includes the twisted pair insulated wire, it is possible to improve the handleability when performing wiring or the like.
  • the position where the twisted pair insulated wires are arranged is not particularly limited, but at least a part of the twisted pair insulated wires can be arranged on the outer peripheral side of the core, that is, on the outer surface side of the core. Alternatively, all the twisted pair insulated wires can be arranged on the outer peripheral side of the core.
  • it is not limited to such a form, and may have one set or three or more sets of twisted pair insulated wires.
  • the core of the multicore cable may include two or more types of twisted pair insulated wires having different outer diameters of the insulated wires constituting the twisted pair insulated wires.
  • the core 33 of the multicore cable 30 shown in FIG. 3 has 11 insulated wires 11 in addition to the twisted pair insulated wires 31, but is not limited to such a form.
  • 11 insulated wires 11 in addition to the twisted pair insulated wires 31, but is not limited to such a form.
  • a plurality of insulated wires 11 and twisted pair insulated wires 31 of multicore cables 30 to 50 can be twisted together in the longitudinal direction to form cores 33 to 53 .
  • the twisting direction of the plurality of insulated wires 11 and the twisted pair of insulated wires 31 is not particularly limited, and can be any direction.
  • Jacket The multicore cable 10 of this embodiment can have a jacket 12 that covers the outer surface of the core 13 .
  • the inventor of the present invention investigated the cause of noise when bending a multi-core cable.
  • the core hits the jacket, and in a cross section perpendicular to the longitudinal direction of the multicore cable, as indicated by a double arrow A in FIG.
  • the core 13 moved along the inner circumference of the outer cover 12 and the core 13 rubbed against the outer cover 12 to generate the noise.
  • the sheath 12 of the multicore cable 10 of the present embodiment can have a convex portion 121 which is arranged between the insulated wires positioned on the outer peripheral side of the core 13 and contacts at least part of the surface of the insulated wire 11 . .
  • the outer cover 12 is arranged between the insulated wires positioned on the outer peripheral side of the core 13 and has a convex portion 121 that contacts at least a part of the surface of the insulated wire 11 , so that the outer cover 12 is positioned on the outer peripheral side of the core 13 . It can be configured to bite into between the insulated wires 11 located. Therefore, when the convex portion 121 functions as an anchor for the jacket 12, and the multicore cable 10 is bent, the core 13 moves along the inner circumference of the jacket 12, and the two members rub against each other, resulting in noise. can be suppressed.
  • the protrusions 121 are arranged between the insulated wires 11 positioned on the outer peripheral side of the core 13, and may be in contact with at least part of the surface of the insulated wires. not.
  • the upper limit of the height of the projection 121 is not particularly limited, it is preferably 0.5 mm or less, more preferably 0.4 mm or less.
  • the outer cover 12 can be formed, for example, by solid extrusion.
  • the height of the portion 121 can be selected. At this time, it is preferable to adjust the pressure when the resin is injected so that the resin of the outer cover 12 does not fill the inside 131 of the core 13 and to push out the resin.
  • the height of the projections 121 By setting the height of the projections 121 to 0.5 mm or less, it is not necessary to excessively increase the pressure and temperature applied to the resin when forming the outer cover 12, and productivity can be improved.
  • the core 13 is not filled with the resin of the jacket 12 even inside. In other words, it is preferable to have a gap 130 inside the core 13 in the above cross section.
  • a configuration in which there is a gap 130 inside the core 13, that is, a configuration in which the region surrounded by the plurality of insulated wires 11 inside the core 13 includes a portion where the outer cover 12 does not enter, enables a multi-core structure.
  • the force applied to the multiple insulated wires 11 included in the core 13 can be suppressed. Therefore, even when the multi-core cable 10 is repeatedly bent, it is possible to prevent the plurality of insulated wires 11 from breaking or the like. That is, the bending resistance of the multicore cable 10 can be enhanced.
  • the multicore cables 20-50 shown in FIGS. 2-5 also preferably have voids 230-530 inside the cores 23-53.
  • a straight line L2 that is parallel to the common tangent line L1 and passes through the end of the protrusion 121 on the inner peripheral side of the core 13 is drawn.
  • the height H121 of the convex portion 121 is the distance between the common tangent line L1 and the straight line L2.
  • protrusions 121 arranged between the insulated wires 11 located on the outer peripheral side of the core 13 can also be measured in the same manner.
  • ten insulated wires 11 are arranged on the outer peripheral side of the core 13, and ten convex portions 121 are arranged therebetween.
  • the height H121 of any of the ten projections 121 satisfies the above range.
  • the twisted pair insulated wire 31 is provided like the multicore cable 30 shown in FIG. Measurements can be made in the same manner as described above. First, in a cross section perpendicular to the longitudinal direction of the multicore cable 30, a common tangent line L31 between the adjacent insulated wire 11 and the circumscribed circle 31C of the twisted pair insulated wire 31 is drawn. Next, a straight line L32 that is parallel to the common tangent line L31 and passes through the end of the protrusion 121 on the inner peripheral side of the core 33 is drawn. In this case, the height H121 of the convex portion 121 is the distance between the common tangent line L31 and the straight line L32.
  • the multicore cable of the present embodiment is preferably configured such that the jacket follows the insulated wires arranged on the outer peripheral side of the core when the multicore cable is bent.
  • the insulated wire 11 arranged on the outer peripheral side of the core 13 is in contact with the convex portion 121 so as not to slip between the outer cover 12, for example, the insulated wire 11 and the convex portion 121 It means that they are in close contact with each other at least partially.
  • the insulated wire 11 arranged on the outer peripheral side of the core 13 and the convex portion 121 are in contact at least partially at the bent portion.
  • the cross-sectional shape of the multicore cable 10 at the bent portion can be confirmed, for example, as follows. First, when the multi-core cable 10 is bent so that the angle between the multi-core cables 10 sandwiching the bent portion is 90 degrees, that is, the bending angle is 90 degrees, the multi-core cable 10 at the bent portion The maximum value of the thickness of the core cable 10 in the bending direction is measured. Then, for the separately prepared multicore cable 10, the cross section perpendicular to the longitudinal direction is pressed along an arbitrary uniaxial direction along the diameter of the cross section, and the maximum thickness of the multicore cable 10 along the pressed direction is measured. The value should be the maximum measured thickness of the multi-core cable at the bend.
  • the cross-sectional state of the bent portion of the multicore cable 10 can be evaluated by evaluating the state of the cross section. .
  • the insulated wire 11 located on the outer peripheral side of the core 13 is in direct contact with the jacket 12 .
  • the insulated wire 11 is in direct contact with the jacket 12 including the projections 121, so that both members can be brought into close contact. Therefore, when the multicore cable 10 is bent, the movement of the core 13 along the inner circumference of the jacket 12 can be suppressed, and the generation of noise can be particularly suppressed.
  • the direct contact between the insulated wire 11 and the jacket 12 means that the two members are in direct contact with each other without intervening other members, and a member such as a tape or various layers are arranged between the two members. means no.
  • the material of the outer cover 12 is not particularly limited, but since it is preferably formed by solid extrusion, it preferably contains a thermoplastic resin, for example, one or more selected from polyethylene, polyvinyl chloride (PVC), etc. is preferred.
  • a thermoplastic resin for example, one or more selected from polyethylene, polyvinyl chloride (PVC), etc. is preferred.
  • thermoplastic resin By including the thermoplastic resin in the outer cover 12 , it is possible to easily form a convex portion between the insulating wires 11 located on the outer peripheral side of the core 13 .
  • the jacket 12 can be made of only thermoplastic resin, the jacket 12 can also contain various additives such as flame retardants as necessary. Also, the jacket 12 may be crosslinked or not crosslinked.
  • the jacket 12 contains a thermoplastic resin as a resin component, the above-described convex portion can be formed, and when the multicore cable 10 is bent, the core 13 slides on the jacket 12. can be particularly prevented, and the occurrence of ringing can be particularly suppressed.
  • a straight line L2 that is parallel to the common tangent line L1 and passes through the end of the protrusion 121 on the inner peripheral side of the core 13 is drawn.
  • the distance between the common tangent line L1 and the straight line L2 was measured, and the height H121 of the convex portion 121 was obtained.
  • twisting pitch of the insulated wires forming the core and the twisting pitch of the insulated wires forming the twisted pair insulated wire were measured by the method described in JIS C 3002 (1992).
  • Outer diameters of the central conductor, insulator, and jacket The outer diameters of the central conductor and insulator of the insulated wires used in the multicore cables prepared in the following experimental examples, and the outer diameter of the jacket of the multicore cable was measured using a micrometer according to the method described in JIS C 3002 (1992).
  • the outer diameter of the core of the multicore cable was also measured in the same manner.
  • Noise test The multicore cables obtained in the following experimental examples were repeatedly bent at arbitrary positions in the longitudinal direction. That is, the ends of the multicore cable were moved as indicated by the double arrows in FIG. 6 to repeatedly change between the state of the multicore cable 600 before bending and the state of the multicore cable 601 after bending. . Then, it was tested whether or not a sound was generated when bent, that is, whether or not a sound was produced.
  • the same tester performed the test for all multi-core cables.
  • Multicore cables of the following Experimental Examples 1-1 to 1-3 were produced.
  • Experimental Examples 1-1 and 1-2 are comparative examples, and Experimental Example 1-3 is an example.
  • Table 1 summarizes the specifications of the manufactured multicore cable.
  • 14C in Table 1 means having 14 insulated wires.
  • the jacket shown in Table 1 was formed on the outer periphery of the core by pipe extrusion in Experimental Examples 1-1 and 1-2.
  • the jacket 12 shown in Table 1 was formed so as to cover the outer surface 13A of the core 13 by solid extrusion.
  • 7A to 7C show cross-sectional photographs of the obtained multicore cable in a cross section perpendicular to the longitudinal direction.
  • 7A shows the multicore cable of Experimental Example 1-1
  • FIG. 7B shows the multicore cable of Experimental Example 1-2
  • FIG. 7C shows the multicore cable of Experimental Example 1-3.
  • the jacket 12 has a convex portion 121, and the convex portion 121 is at least part of the surface of the insulated wire 11.
  • I was able to confirm that I was in contact with It was confirmed that the insulated wire 11 and the convex portion 121 were in close contact with each other, and that the insulated wire 11 and the convex portion 121 were in direct contact.
  • the minimum height of the projection was 0.101 mm, and the maximum height was 0.132 mm.
  • the insulated wire 11 located on the outer peripheral side of the core was in direct contact with the jacket 12 .
  • the multicore cable 10 of Experimental Example 1-3 had voids 130 inside the cores without penetration of the jacket resin.
  • Table 2 summarizes the specifications of the manufactured multi-core cable. "(A) ⁇ 9 + (B) ⁇ 3" in the set (core) column in Table 2 means the number of each cable, and the first insulated wire (A) is nine and the second insulated wire It means that three (B) are included.
  • Tables 3 to 5 are also indicated with the same meaning.
  • a jacket was formed on the outer circumference of the core by pipe extrusion.
  • the jacket 12 was formed so as to cover the outer surface 23A of the core 23 by solid extrusion.
  • the multi-core cable of Experimental Example 2-1 did not have the convex portion 121 on the jacket, as in Experimental Examples 1-1 and 1-2.
  • the jacket 12 has a convex portion 121, the insulated wire 11 and the convex portion 121 are in close contact, and It was confirmed that the insulated wire 11 and the protrusion 121 were in direct contact.
  • the minimum height of the projection was 0.094 mm, and the maximum height was 0.152 mm.
  • the insulated wires located on the outer peripheral side of the core were in direct contact with the jacket.
  • the multicore cable 20 of Experimental Example 2-2 had a gap 230 inside the core without penetration of the jacket resin.
  • Table 3 summarizes the specifications of the manufactured multi-core cable.
  • a jacket was formed on the outer circumference of the core by pipe extrusion.
  • the jacket 12 was formed so as to cover the outer surface 33A of the core 33 by solid extrusion.
  • the multi-core cable of Experimental Example 3-1 did not have the projecting portion 121 on the jacket, as in Experimental Examples 1-1 and 1-2.
  • the jacket 12 has a convex portion 121, the insulated wire 11 and the convex portion 121 are in close contact, and the insulated wire 11 and the convex portion 121 are in contact with each other. were found to be in direct contact with each other.
  • the minimum height of the protrusion was 0.096 mm, and the maximum height was 0.131 mm.
  • the insulated wires located on the outer peripheral side of the core were in direct contact with the jacket.
  • the multicore cable 30 of Experimental Example 3-2 had voids 330 inside the cores without penetration of the jacket resin.
  • the distance between adjacent insulated wires means the distance between insulated wires 11 and the distance between circumscribed circle 31C of twisted pair insulated wire 31 and insulated wire 11 .
  • Table 3 The results are shown in Table 3.
  • Table 4 summarizes the specifications of the manufactured multi-core cable.
  • Example 4-1 a jacket was formed on the outer periphery of the core by pipe extrusion.
  • the jacket 12 was formed so as to cover the outer surface 43A of the core 43 by solid extrusion.
  • the multi-core cable of Experimental Example 4-1 did not have the convex portion 121 on the jacket, as in Experimental Examples 1-1 and 1-2.
  • the jacket 12 has a convex portion 121, the insulated wire 11 and the convex portion 121 are in close contact, and the insulated wire 11 and the convex portion 121 are in contact with each other. were found to be in direct contact with each other.
  • the minimum height of the protrusion was 0.081 mm, and the maximum height was 0.179 mm.
  • the insulated wires located on the outer peripheral side of the core were in direct contact with the jacket.
  • the multicore cable 40 of Experimental Example 4-2 had voids 430 inside the cores without penetration of the jacket resin.
  • the distance between adjacent insulated wires means the distance between insulated wires 11 and the distance between circumscribed circle 31C of twisted pair insulated wire 31 and insulated wire 11 .
  • the results are shown in Table 4.
  • Table 5 summarizes the specifications of the manufactured multicore cable.
  • a jacket was formed on the outer periphery of the core by pipe extrusion.
  • the jacket 12 was formed so as to cover the outer surface 53A of the core 53 by solid extrusion.
  • the multi-core cable of Experimental Example 5-1 did not have the convex portion 121 on the jacket, as in Experimental Examples 1-1 and 1-2.
  • the jacket 12 has a convex portion 121, the insulated wire 11 and the convex portion 121 are in close contact, and the insulated wire 11 and the convex portion 121 are in contact with each other. were found to be in direct contact with each other.
  • the minimum height of the projection was 0.077 mm, and the maximum height was 0.132 mm.
  • the insulated wires located on the outer peripheral side of the core were in direct contact with the jacket.
  • the multicore cable 50 of Experimental Example 5-2 had voids 530 inside the cores without penetration of the jacket resin.
  • the distance between adjacent insulated wires means the distance between insulated wires 11 and the distance between circumscribed circle 31C of twisted pair insulated wire 31 and insulated wire 11 .
  • the results are shown in Table 5.
  • Multicore cables 11 11A to 11D Insulated wire (first insulated wire) D11 Outer diameter of first insulated wire 21 Second insulated wire D21 Outer diameter of second insulated wire 31 Twisted pair insulated wire 311 Insulated wire 31C Circumscribed circles 111, 211, 3111 Center conductors 112, 212, 3112 Insulator 12 Jacket 121 Projection H121 Projection height L11 Distance 13, 23, 33, 43, 53 between insulated wires positioned on the outer peripheral side of the core Cores 13A, 23A, 33A, 43A, 53A Core outer surfaces 130, 230, 330, 430, 530 Gap 14 Gap A Double arrow 231 First region 232 Second region 34 Interposition L1, L31 Common tangents L2, L32 Straight line 600 Multicore cable before bending 601 Multicore cable after bending

Landscapes

  • Insulated Conductors (AREA)

Abstract

複数本の絶縁線を含むコアと、 前記コアの外表面を覆う外被と、を有し、 前記外被は、前記コアの外周側に位置する前記絶縁線間に配置され、前記絶縁線の表面の少なくとも一部に接する凸部を有している多芯ケーブル。

Description

多芯ケーブル
 本開示は、多芯ケーブルに関する。
 本出願は、2021年7月21日出願の日本出願第2021-120532号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、複数の芯線と、前記複数の芯線を覆う被覆部と、を有する本線部と、前記本線部の一端を水平姿勢となるよう固定し他端側に鉛直下方への所定の力を付与したときに生じる湾曲部と鉛直方向に延びる直状部との境界位置に取り付けられ、前記本線部を、前記被覆部と前記複数の芯線とを圧接させるように押し潰す圧接具と、を備えた多芯ケーブルが開示されている。
特開2016-178067号公報
 本開示の多芯ケーブルは、複数本の絶縁線を含むコアと、
 前記コアの外表面を覆う外被と、を有し、
 前記外被は、前記コアの外周側に位置する前記絶縁線間に配置され、前記絶縁線の表面の少なくとも一部に接する凸部を有している。
図1は、本開示の一態様に係る多芯ケーブルの長手方向と垂直な面での断面図である。 図2は、本開示の一態様に係る多芯ケーブルの長手方向と垂直な面での断面図の他の構成例である。 図3は、本開示の一態様に係る多芯ケーブルの長手方向と垂直な面での断面図の他の構成例である。 図4は、本開示の一態様に係る多芯ケーブルの長手方向と垂直な面での断面図の他の構成例である。 図5は、本開示の一態様に係る多芯ケーブルの長手方向と垂直な面での断面図の他の構成例である。 図6は、音鳴り試験の説明図である。 図7Aは、実験例1-1で作成した多芯ケーブルの長手方向と垂直な面での断面写真である。 図7Bは、実験例1-2で作成した多芯ケーブルの長手方向と垂直な面での断面写真である。 図7Cは、実験例1-3で作成した多芯ケーブルの長手方向と垂直な面での断面写真である。
[本開示が解決しようとする課題]
 従来から各種用途において、複数本の絶縁線等を集合一体化させた多芯ケーブルが用いられている。例えば、音響機器であるヘッドホンや、イヤホンにおいて、電子機器や、プラグと、音を出力するヘッドホンユニット等との間を接続するケーブルとして、多芯ケーブルが用いられている。
 ところで、多芯ケーブルを接続した機器の使用時等に多芯ケーブルに力が加わることで、多芯ケーブルが屈曲し、多芯ケーブルから擦れ音が生じる、音鳴りが生じる場合があった。そして、使用する機器が音響機器等の場合には、多芯ケーブルを屈曲させた際の音鳴りの抑制が求められることもあった。
 そこで、本開示は、屈曲させた際の音鳴りを抑制した多芯ケーブルを提供することを目的とする。
[本開示の効果]
 本開示によれば、屈曲させた際の音鳴りを抑制した多芯ケーブルを提供できる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
 (1)本開示の一態様に係る多芯ケーブルは、複数本の絶縁線を含むコアと、
 前記コアの外表面を覆う外被と、を有し、
 前記外被は、前記コアの外周側に位置する前記絶縁線間に配置され、前記絶縁線の表面の少なくとも一部に接する凸部を有している。
 本発明の発明者は、多芯ケーブルを屈曲させた場合に、音鳴りがする原因について検討した。そして、コアと外被との間に隙間がある多芯ケーブルを屈曲させた場合、コアが外被に当たり、さらに多芯ケーブルの長手方向と垂直な断面において、コアが外被の内周に沿って動き、コアが外被と擦れることで音鳴りが生じていると推認した。
 そこで、本開示の一態様に係る多芯ケーブルの外被は、コアの外周側に位置する絶縁線間に配置され、絶縁線の表面の少なくとも一部に接する凸部を有することができる。
 外被が、コアの外周側に位置する絶縁線間に配置され、絶縁線の表面の少なくとも一部に接する凸部を有することで、外被が、コアの外周側に位置する絶縁線間に食い込むように構成できる。このため、凸部が、外被のアンカーとして働き、多芯ケーブルを屈曲させた場合に、コアが外被の内周に沿って動き、両部材が擦れることで生じる音鳴りを抑制できる。従って、外被が凸部を有しない場合と比較して、外被とコアとの擦れを抑制し、音鳴りが生じることを抑制できる。
 (2)前記凸部の高さが、0.05mm以上であってもよい。
 凸部の高さを0.05mm以上とすることで、多芯ケーブルを屈曲させた際の、コアの移動を規制する効果が高くなり、音鳴りの発生を特に抑制できる。
 (3)前記複数本の絶縁線は、第1絶縁線と、前記第1絶縁線よりも外径の大きい第2絶縁線とを含み、
 前記第2絶縁線が、前記コアの外周側に配置されていてもよい。
 外径の大きい第2絶縁線をコアの外周側に配置することで、コアの外径を抑制し、多芯ケーブルの細径化を図ることができる。
 (4)前記コアの外周側に、前記第1絶縁線と前記第2絶縁線とが配置され、
 前記コアの長手方向と垂直な断面において、前記コアの外周に沿って、前記第1絶縁線を含む第1領域と、前記第2絶縁線を含む第2領域とが交互に配置されてもよい。
 コアの外周に沿って、第1絶縁線を含む第1領域と、第2絶縁線を含む第2領域とを交互に配置することで、外径の大きい第2絶縁線をコアの外周において分散できる。このため、コアの長手方向と垂直な断面の形状を円形形状に近づけることができる。また、隣接する第1絶縁線と、第2絶縁線との間に配置される、凸部の高さを特に高くすることができ、音鳴りを特に抑制できる。
 (5)前記コアは、前記絶縁線を2本撚り合わせた対撚絶縁線を含んでもよい。
 コアが対撚絶縁線を含むことで、より広範な用途に適用することが可能になる。また、コアが対撚絶縁線を含むことで、配線等を行う際の取り扱い性を高めることができる。
 (6)前記コアの外周側に位置する前記絶縁線は、前記外被と直接接してもよい。
 絶縁線が凸部を含む外被と直接接することで、両部材を密着させることができる。このため、多芯ケーブルを屈曲させた場合に、コアが外被の内周に沿って動くことを抑制し、音鳴りの発生を特に抑制できる。
 (7)前記多芯ケーブルを屈曲させたときに、屈曲部において、前記コアの外周側に配置されている前記絶縁線と、前記凸部とが少なくとも一部で接していてもよい。
 本開示の一態様に係る多芯ケーブルを屈曲させたときに、屈曲部において、コアの外周側に配置されている絶縁線と、凸部とが少なくとも一部で接していることで、多芯ケーブルを屈曲させた際に、外被の内周に沿った、コアの移動を規制できる。このため、多芯ケーブルを屈曲させた際の音鳴りの発生を抑制できる。
 (8)前記絶縁線は中心導体と、前記中心導体の外表面を覆う絶縁体とを有しており、
 前記絶縁体がフッ素系樹脂を含んでいてもよい。
 絶縁線の外周被覆である絶縁体としてフッ素系樹脂を用いる場合、コアは、外被の内周に沿って動きやすくなる。しかし、本開示の一態様に係る多芯ケーブルによれば、絶縁体がフッ素系樹脂の場合でも、コアが外被の内周に沿って動くことを抑制し、音鳴りを防止できる。このため、絶縁線の絶縁体としてフッ素系樹脂を用いた場合、特に高い効果を発揮できる。
 また、絶縁体の材料としてフッ素系樹脂を用いることで、絶縁体の肉厚を薄くでき、絶縁線や、該絶縁線を含む本実施形態の多芯ケーブル全体を細径化することもできる。
 (9)前記外被が熱可塑性樹脂を含んでいてもよい。
 外被が熱可塑性樹脂を含むことで、コアの外周側に位置する絶縁線間に容易に凸部を形成することができる。
 (10)前記コアは、前記コアの外周側に位置する前記絶縁線のうち、少なくとも隣接する1対の前記絶縁線間に隙間を有していてもよい。
 コアの外周側に位置する絶縁線のうち、少なくとも隣接する1対の絶縁線間に隙間を有することで、多芯ケーブルを屈曲させた際に、該1対の絶縁線が変位した場合でも、該1対の絶縁線に互いに押し合うように力が加わることを抑制できる。このため、多芯ケーブルを屈曲させた際に、該1対の絶縁線間に配置される凸部に対して加わる力を抑制し、凸部によるアンカー効果を高め、音鳴りの発生を抑制できる。
 (11) 長手方向と垂直な断面において、前記コア内部に空隙を有していてもよい。
 コア内部に空隙を有する、すなわちコア内部にまで外被が侵入していない構成とすることで、多芯ケーブルを屈曲させた際に、コアに含まれる複数本の絶縁線に加わる力を抑制できる。このため、多芯ケーブルを繰り返し屈曲させた場合でも、該複数本の絶縁線が断線等することを抑制できる。
 [本開示の実施形態の詳細]
 本開示の一実施形態(以下「本実施形態」と記す)に係る多芯ケーブルの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
(多芯ケーブル)
 図1~図5に、本実施形態の多芯ケーブルの長手方向と垂直な断面の構成例を示す。以下、図1を主に用いながら本実施形態の多芯ケーブルの構成の説明を行い、図2~図5の多芯ケーブルについては、図1の多芯ケーブル10と構成の相違する点について必要に応じて説明する。このため、図1を用いて説明している事項は、特に断らない限り、図2~図5の多芯ケーブルにも共通する事項となる。図1~図5はいずれも本実施形態の多芯ケーブルの構成等を説明するために、各部材を模式的に示したものであり、サイズ等について、図1~図5の形態に限定されるものではない。紙幅の都合上、図中の同じ部材については、一部についてのみ符号を付し、符号の記載を省略する場合もある。
 図1に本実施形態の多芯ケーブル10の長手方向と垂直な面での断面図を示す。図1における紙面と垂直な方向が多芯ケーブルの長手方向になる。
 図1に示すように、本実施形態の多芯ケーブル10は、複数本の絶縁線11を含むコア13と、コア13の外表面13Aを覆う外被12とを有する。
 本実施形態の多芯ケーブルが含有する各部材について説明する。
(1)コア
(1-1)コアが有する部材について
 コア13は、複数本の絶縁線11を含むことができる。
(1-1-1)絶縁線について
 絶縁線11は、中心導体111と、中心導体111の外表面を覆う絶縁体112とを有することができる。
(中心導体)
 中心導体111は、単線の金属素線、あるいは複数本の金属素線より構成できる。中心導体111が、複数本の金属素線を有する場合、該複数本の金属素線を撚り合せておくこともできる。すなわち、中心導体111が複数の金属素線を有する場合、中心導体111は、複数本の金属素線の撚線とすることもできる。
 中心導体111の材料は特に限定されないが、母材として例えば銅、軟銅、銅合金から選択された1種類以上を用いることができる。銅合金としては、錫入銅や、銀入銅が挙げられる。中心導体111は、上記母材のみから構成することもできるが、銀めっき軟銅、ニッケルめっき軟銅、錫めっき軟銅等のように表面にめっき処理を施しても良い。母材の表面にめっきを行う場合、めっきの材料としては、例えば銀、錫、ニッケル等から選択された1種類以上を好適に用いることができる。
(絶縁体)
 絶縁体112を構成する材料は特に限定されないが、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)などのフッ素系樹脂や、ポリエチレンテレフタレート(PET)などのポリエステル樹脂等から選択された1種類以上の樹脂を含有できる。特に、絶縁体112はフッ素系樹脂を含むことが好ましい。
 なお、絶縁体112は上記樹脂のみから構成することもできるが、絶縁体112は必要に応じて難燃剤等の各種添加剤を含有することもできる。また、絶縁体112は架橋されていても良く、架橋されていなくても良い。
 後述するように、多芯ケーブルを屈曲させた際の音鳴りは、コア13と外被12との間に隙間がある多芯ケーブルを屈曲させた際に、コア13が外被12に当たり、多芯ケーブル10の長手方向と垂直な断面において、図1中に両矢印Aで示すように、コア13が外被12の内周に沿って動き、コア13が外被12と擦れることで生じていると考えられる。絶縁線11の外周被覆である絶縁体112としてフッ素系樹脂を用いる場合、コア13は、外被12の内周に沿って動きやすくなる。しかし、本実施形態の多芯ケーブルによれば、絶縁体112がフッ素系樹脂の場合でも、コア13が外被12の内周に沿って動くことを抑制し、音鳴りを防止できる。このため、絶縁線11の絶縁体112としてフッ素系樹脂を用いた場合、特に高い効果を発揮できる。
 また、絶縁体112の材料としてフッ素系樹脂を用いることで、絶縁体112の肉厚を薄くでき、絶縁線11や、該絶縁線11を含む本実施形態の多芯ケーブル全体を細径化することもできる。
 なお、後述するように本実施形態の多芯ケーブルは、外径の異なる絶縁線を有することもできる。具体的には例えば図2に示した多芯ケーブル20の様に、絶縁線として、第1絶縁線11と、第1絶縁線11と外径の異なる第2絶縁線21とを有することができる。この場合でも、各絶縁線については、それぞれ中心導体と絶縁体とを有することができ、各部材は上記構成とすることができる。すなわち、第1絶縁線11、第2絶縁線21はそれぞれ、中心導体111、中心導体211と、絶縁体112、絶縁体212と、を有することができる。そして、各中心導体、絶縁体は上記構成とすることができる。
(1-1-2)対撚絶縁線について
 図3~図5に示した多芯ケーブル30~多芯ケーブル50のように、コアは、絶縁線311を2本撚り合わせた対撚絶縁線31を含むこともできる。
 対撚絶縁線31が有する各絶縁線311についても、上記絶縁線11の場合と同様に構成できる。すなわち絶縁線311についても、それぞれ中心導体3111と絶縁体3112とを有することができ、各部材は上記構成とすることができる。このため、ここでは説明を省略する。
 対撚絶縁線31を構成する絶縁線311を撚り合わせる際の撚りピッチは特に限定されないが、例えば4mm以上15mm以下とすることが好ましく、7mm以上11mm以下とすることがより好ましい。
(1-1-3)介在について
 例えば、図3に示した多芯ケーブル30のように、コア33は、必要に応じて介在34をさらに有することもできる。
 介在34は、スフ糸やナイロン糸などの繊維で構成することができる。介在は、抗張力繊維で構成してもよい。
 介在34は、絶縁線で囲まれた隙間に配置できる。
 コアが介在を有することで、絶縁線を撚り合わせてコアを形成する際の作業を容易に行うことができる。
 なお、多芯ケーブル10~多芯ケーブル50のうち、多芯ケーブル30のみに介在34を配置した例を示したが、多芯ケーブル30以外についても、必要に応じて介在を有することができる。
(1-2)コアの構成について
 上述のように、コアは複数本の絶縁線を有することができ、絶縁線の本数や、構成は、該コアを含む多芯ケーブルの用途等に応じて選択でき、特に限定されない。多芯ケーブルが有するコアの構成例について、図1~図5を用いて説明する。ただし、コアを構成する絶縁線の構成について図1~図5の場合に限定されるものではない。
(1-2-1)第1の構成例
 第1の構成例として、図1に示した多芯ケーブル10の様に、コア13が有する複数本の絶縁線が、外径等の構成が同じ1種類の絶縁線11のみからなる構成が挙げられる。図1に示した多芯ケーブル10のコア13は、14本の絶縁線11を有しているが、係る形態に限定されず、多芯ケーブル10を接続する機器等に応じて任意の本数の絶縁線を有することができる。
 多芯ケーブル10が有する複数本の絶縁線11は、長手方向に沿って撚り合わせ、コア13とすることができる。このように、複数本の絶縁線11を撚り合わせてコア13とすることで、例えば多芯ケーブル10を屈曲させることで、各絶縁線11に力が加わった場合において、各絶縁線11が個別に動くのではなく、コア13として一体的に動くようになる。複数本の絶縁線11の撚り方向は特に限定されず、任意の方向とすることができる。コア13が有する複数本の絶縁線11の撚りピッチは特に限定されないが、例えば15mm以上50mm以下とすることが好ましく、25mm以上40mm以下とすることがより好ましい。複数本の絶縁線の撚りピッチを15mm以上とすることで、多芯ケーブルの生産性を特に高めることができる。複数本の絶縁線の撚りピッチを50mm以下とすることで、コア13の長手方向と垂直な断面の形状を円形形状に近づけることができ、多芯ケーブル10の長手方向と垂直な断面の形状についても円形形状に近づけることができる。
 なお、以下の他の構成例においても、コアが有する複数本の絶縁線の撚りピッチは上記範囲とすることが好ましい。
 コア13は、コア13の外周側に位置する絶縁線11のうち、少なくとも隣接する1対の絶縁線11間に隙間14を有することが好ましい。すなわち、コア13の外周側に位置する絶縁線11のうち、少なくとも隣接する1対の絶縁線11は、互いに隙間を設けて配置されていることが好ましい。
 なお、コア13の外周側とは、コア13の外表面13A側ということもでき、コアの外周側に位置する絶縁線11はコア13の外表面13Aを構成できる。また、隣接する1対の絶縁線11とは、多芯ケーブル10の長手方向と垂直な断面において、コアの外周に沿って隣接する2本の絶縁線11を意味する。
 コア13の外周側に位置する絶縁線11のうち、少なくとも隣接する1対の絶縁線11間に隙間14を有することで、多芯ケーブル10を屈曲させた際に、該1対の絶縁線が変位した場合でも、該1対の絶縁線に、互いに押し合うように力が加わることを抑制できる。このため、多芯ケーブル10を屈曲させた際に、該1対の絶縁線11間に配置される後述する凸部121に対して加わる力を抑制し、凸部121によるアンカー効果を高め、音鳴りの発生を抑制できる。
 なお、コア13の外周側に位置する絶縁線11全てについて、隣接する絶縁線11との間に隙間を有していても良い。コア13の外周側に位置する絶縁線11のうち、少なくとも隣接する1対の絶縁線11間に隙間14を有することは、多芯ケーブル10の長手方向と垂直な任意の一断面で評価できる。
 また、コア13は、コア13の外周側に位置する絶縁線11間の距離L11が0.01mm以上である部分を1カ所以上含むことが好ましく、2カ所以上含むことがより好ましい。
 コア13が、コア13の外周側に位置する絶縁線11間の距離L11が0.01mm以上である部分を1カ所以上含むことで、該絶縁線11間に形成される後述する凸部121の高さH121を十分に高くできる。このため、多芯ケーブル10を屈曲させた際の、コア13の移動を規制する効果が高くなり、音鳴りの発生を特に抑制できる。
 なお、コア13の外周側に位置する絶縁線11間全てについて、絶縁線11間の距離を0.01mm以上とすることもできるため、コア13の外周側に位置する絶縁線11間の距離が上記範囲を充足する部分の数の上限値は特に限定されない。
 コア13の外周側に位置する絶縁線11間の距離L11の上限値は特に限定されないが、過度に大きくすると、コア13の外径や、多芯ケーブル10の外径が大きくなるため、例えば0.03mm以下であることが好ましい。
 コア13の外周側に位置する絶縁線11間の距離L11は、例えば図1に示すように、隣接する絶縁線11Aと、絶縁線11Bとの間の最短距離を意味する。
 なお、以下のコアについての他の構成例では、主に第1の構成例と異なる点を説明する。
(1-2-2)第2の構成例
 第2の構成例として、図2に示した多芯ケーブル20の様に、コア23が、外径の異なる絶縁線を有する構成が挙げられる。図2に示した多芯ケーブル20のコア23は、複数本の絶縁線として、第1絶縁線11と、第1絶縁線11よりも外径の大きい第2絶縁線21とを含む。すなわち、第1絶縁線11の外径D11と、第2絶縁線21の外径D21とがD11<D21の関係にある。
 上述のように、コア23が、外径の異なる第1絶縁線11と、第2絶縁線21とを有する場合、外径の大きい第2絶縁線21を、コア23の外周側、すなわちコア23の外表面23A側に配置することが好ましい。
 外径の大きい第2絶縁線21をコア23の外周側に配置することで、コア23の外径を抑制し、多芯ケーブル20の細径化を図ることができる。なお、コア23が有する、外径の大きい第2絶縁線21は、全てをコア23の外周側に配置することもできる。
 また、コア23の外周側に、第1絶縁線11と、第2絶縁線21とを配置することもできる。そして、コア23の長手方向と垂直な断面において、コア23の外周に沿って、第1絶縁線11と、第2絶縁線21とを交互に配置することが好ましい。なお、図2に示すように、第1絶縁線11、第2絶縁線21のいずれか、または両方について複数本ずつ配置することもでき、例えば第1絶縁線11を含む第1領域231と、第2絶縁線21を含む第2領域232とが交互に配置されているということもできる。コア23の外周に沿って、第1絶縁線11を含む第1領域231と、第2絶縁線21を含む第2領域232とを交互に配置することで、外径の大きい第2絶縁線21をコア23の外周において分散できる。このため、コア23の長手方向と垂直な断面の形状を円形形状に近づけることができる。また、隣接する第1絶縁線11と、第2絶縁線21との間に配置される、後述する凸部の高さを特に高くすることができ、音鳴りを特に抑制できる。
 なお、第1領域231と、第2領域232とは、コア23の外周に沿ってそれぞれ複数設けることができる。図2に示した多芯ケーブル20においては、コア23が第1領域231と、第2領域232とを3つずつ有している。
 図2に示した多芯ケーブル20では、コア23が、絶縁線として、第1絶縁線11と、第2絶縁線21との2種類の絶縁線を含む形態を示したが、係る形態に限定されない。本実施形態の多芯ケーブルのコアは、外径等の構成が異なる絶縁線を3種類以上含んでいてもよい。
 また、図2に示した多芯ケーブル20のコア23は、12本の絶縁線を有しているが、係る形態に限定されず、多芯ケーブル20を接続する機器等に応じて任意の本数の絶縁線を有することができる。
 多芯ケーブル20が有する複数本の絶縁線、すなわち第1絶縁線11と第2絶縁線21とは、長手方向に沿って撚り合わせ、コア23とすることができる。複数本の絶縁線の撚り方向は特に限定されず、任意の方向とすることができる。
(1-2-3)第3の構成例~第5の構成例
 第3の構成例~第5の構成例として、例えば図3に示した多芯ケーブル30の様に、コア33が有する複数本の絶縁線のうち、一部の絶縁線について、2本の絶縁線311を予め長手方向に沿って撚り合わせた対撚絶縁線31とした構成例が挙げられる。すなわち、コアが、絶縁線を2本撚り合わせた対撚絶縁線を含むこともできる。コアが対撚絶縁線を含むことで、より広範な用途に適用することが可能になる。また、コアが対撚絶縁線を含むことで、配線等を行う際の取り扱い性を高めることができる。
 対撚絶縁線を配置する位置は特に限定されないが、少なくとも一部の対撚絶縁線はコアの外周側、すなわちコアの外表面側に配置することもでき、例えば図3~図5に示すように、全ての対撚絶縁線をコアの外周側に配置することもできる。
 図3~図5に示した多芯ケーブル30、多芯ケーブル40、多芯ケーブル50は、コア33、コア43、コア53が、いずれも2組の対撚絶縁線31を有する例を示しているが、係る形態に限定されず、1組、もしくは3組以上の対撚絶縁線を有していても良い。また、多芯ケーブルが有するコアは、対撚絶縁線を構成する絶縁線の外径等が異なる2種類以上の対撚絶縁線を含むこともできる。
 図3に示した多芯ケーブル30のコア33は、対撚絶縁線31以外に11本の絶縁線11を有しているが、係る形態に限定されない。例えば図4に示した多芯ケーブル40のコア43の様に13本の絶縁線11や、図5に示した多芯ケーブル50のコア53の様に15本の絶縁線11を有することもできる。また、上記いずれの形態にも限定されず、多芯ケーブルを接続する機器等に応じて任意の本数の絶縁線を有することや、外径等の構成が異なる絶縁線を有することもできる。
 多芯ケーブル30~多芯ケーブル50が有する複数本の絶縁線11、および対撚絶縁線31は、長手方向に沿って撚り合わせ、コア33~コア53とすることができる。複数本の絶縁線11、および対撚絶縁線31の撚り方向は特に限定されず、任意の方向とすることができる。
(2)外被
 本実施形態の多芯ケーブル10は、コア13の外表面を覆う外被12を有することができる。
 本発明の発明者は、多芯ケーブルを屈曲させた場合に、音鳴りがする原因について検討した。そして、コアと外被との間に隙間がある多芯ケーブルを屈曲させた場合、コアが外被に当たり、さらに多芯ケーブルの長手方向と垂直な断面において、図1に両矢印Aで示すように、コア13が、外被12の内周に沿って動き、コア13が外被12と擦れることで音鳴りが生じていると推認した。
 そこで、本実施形態の多芯ケーブル10の外被12は、コア13の外周側に位置する絶縁線間に配置され、絶縁線11の表面の少なくとも一部に接する凸部121を有することができる。
 外被12が、コア13の外周側に位置する絶縁線間に配置され、絶縁線11の表面の少なくとも一部に接する凸部121を有することで、外被12が、コア13の外周側に位置する絶縁線11間に食い込むように構成できる。このため、凸部121が、外被12のアンカーとして働き、多芯ケーブル10を屈曲させた場合に、コア13が外被12の内周に沿って動き、両部材が擦れることで生じる音鳴りを抑制できる。従って、外被12が凸部121を有しない場合と比較して、外被12とコア13との擦れを抑制し、音鳴りが生じることを抑制できる。
(2-1)凸部について
 凸部121は、コア13の外周側に位置する絶縁線11間に配置され、絶縁線の表面の少なくとも一部と接していればよく、その形状等は特に限定されない。
 凸部121の高さは0.05mm以上であることが好ましく、0.07mm以上であることがより好ましい。凸部121の高さを0.05mm以上とすることで、多芯ケーブル10を屈曲させた際の、コア13の移動を規制する効果が高くなり、音鳴りの発生を特に抑制できる。
 凸部121の高さの上限は特に限定されないが、例えば0.5mm以下であることが好ましく、0.4mm以下であることがより好ましい。
 外被12は例えば充実押出しにより形成することができ、例えばダイスの形状や、樹脂を圧入する際の圧力、温度、コア13を構成する絶縁線11間の距離等を調整することで、上記凸部121の高さを選択できる。この際、外被12の樹脂が、コア13の内部131を満たさないように樹脂を圧入する際の圧力等を調整し、樹脂を押し出すことが好ましい。
 凸部121の高さを0.5mm以下とすることで、外被12を形成する際に樹脂に加える圧力や温度を過度に高める必要がなくなり、生産性を高められる。
 上述のように、本実施形態の多芯ケーブル10の長手方向と垂直な断面において、コア13は、内部にまで外被12の樹脂が充填されていないことが好ましい。すなわち、上記断面において、コア13内部に空隙130を有することが好ましい。
 コア13内部に空隙130を有する構成、すなわちコア13の内部である複数本の絶縁線11で囲まれた領域内において、外被12が侵入していない部分を含む構成とすることで、多芯ケーブル10を屈曲させた際に、コア13に含まれる複数本の絶縁線11に加わる力を抑制できる。このため、多芯ケーブル10を繰り返し屈曲させた場合でも、複数本の絶縁線11が断線等することを抑制できる。すなわち多芯ケーブル10の耐屈曲性を高められる。図2~図5に示した多芯ケーブル20~50においても、同様にコア23~53内部に空隙230~530を有することが好ましい。
 ここで凸部121の高さの測定方法について説明する。ここでは、図1に示した多芯ケーブル10の長手方向と垂直な断面において、隣接する絶縁線11Cと、絶縁線11Dとの間に位置する凸部121の高さH121を求める場合を例に説明する。
 まず、多芯ケーブル10の長手方向と垂直な断面において、隣接する絶縁線である絶縁線11Cと、絶縁線11Dとの共通接線L1を引く。次いで、共通接線L1と平行であり、かつ凸部121のうちコア13の内周側の端部を通る直線L2を引く。この場合、共通接線L1と、直線L2との間の距離が、凸部121の高さH121になる。
 コア13の外周側に位置する絶縁線11間に配置された他の凸部121についても、同様にして測定することができる。図1に示した多芯ケーブル10の場合、コア13の外周側に10本の絶縁線11が配置され、その間に10個の凸部121が配置されている。この場合、10個の凸部121のいずれについても高さH121が上記範囲を充足することが好ましい。
 なお、図3に示した多芯ケーブル30のように、対撚絶縁線31を有する場合において、対撚絶縁線31と、隣接する絶縁線11との間に位置する凸部121の高さは上述の場合と同様に測定できる。まず、多芯ケーブル30の長手方向と垂直な断面において、隣接する絶縁線である絶縁線11と、対撚絶縁線31の外接円31Cとの共通接線L31を引く。次いで、共通接線L31と平行であり、かつ凸部121のうちコア33の内周側の端部を通る直線L32を引く。この場合、共通接線L31と、直線L32との間の距離が、凸部121の高さH121になる。
 本実施形態の多芯ケーブルは、多芯ケーブルを屈曲させたときに、コアの外周側に配置されている絶縁線に外被が追随するように構成されていることが好ましい。
 具体的には例えば、コア13の外周側に配置されている絶縁線11は、コア13が、外被12に対して滑らないように、凸部121と接していることが好ましい。
 コア13の外周側に配置されている絶縁線11が、外被12との間で滑らないように、凸部121と接しているとは、例えば上記絶縁線11と、凸部121とが、少なくとも一部で密着していることを意味する。
 特に、多芯ケーブル10を屈曲させたときに、屈曲部において、コア13の外周側に配置されている絶縁線11と、凸部121とが少なくとも一部で接していることが好ましい。
 上記構成とすることで、多芯ケーブル10を屈曲させた際に、図1中に両矢印Aで示した、外被12の内周に沿った、コア13の移動を規制できる。このため、多芯ケーブルを屈曲させた際の音鳴りの発生を抑制できる。
 上記屈曲部における、多芯ケーブル10の断面形状は、例えば以下のようにして確認できる。まず、多芯ケーブル10を、屈曲部を挟んだ多芯ケーブル10間の角度が90度となるように、すなわち屈曲角度が90度となるように、屈曲させた際の、該屈曲部における多芯ケーブル10の屈曲方向の厚さの最大値を測定する。そして、別に用意した多芯ケーブル10について、長手方向と垂直な断面を該断面の直径に沿った任意の一軸方向に沿って押圧し、押圧した方向に沿った多芯ケーブル10の厚さの最大値が、測定した上記屈曲部における多芯ケーブルの厚さの最大値となるようにする。この際の多芯ケーブル10の断面形状が、多芯ケーブル10の屈曲部における断面形状に相当するため、該断面の状態を評価することで、多芯ケーブル10の屈曲部における断面状態を評価できる。
 コア13の外周側に位置する絶縁線11は、外被12と直接接していることが好ましい。絶縁線11が凸部121を含む外被12と直接接することで、両部材を密着させることができる。このため、多芯ケーブル10を屈曲させた場合に、コア13が外被12の内周に沿って動くことを抑制し、音鳴りの発生を特に抑制できる。
 絶縁線11と外被12とが直接接しているとは、両部材が他の部材を介することなく直接接していることを意味し、両部材間にテープ等の部材や各種層が配置されていないことを意味する。
 外被12の材料は特に限定されないが、充実押出しにより形成することが好ましいため、熱可塑性樹脂を含むことが好ましく、例えばポリエチレンや、ポリ塩化ビニル(PVC)等から選択された1種類以上を含むことが好ましい。
 外被12が熱可塑性樹脂を含むことで、コア13の外周側に位置する絶縁線11間に容易に凸部を形成することができる。
 なお、外被12は熱可塑性樹脂のみから構成することもできるが、外被12は必要に応じて難燃剤等の各種添加剤を含有することもできる。また、外被12は架橋されていても良く、架橋されていなくても良い。
 外被12が樹脂成分として熱可塑性樹脂を含むことで、既述の凸部を形成することができ、多芯ケーブル10を屈曲させた場合に、コア13が、外被12に対して滑ることを特に防止し、音鳴りの発生を特に抑制できる。
 以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
 まず、以下の実験例において作製した多芯ケーブルの評価方法について説明する。
(1)凸部の高さ
 図1に示した多芯ケーブル10の場合を例に、凸部121の高さH121の求め方を説明する。
 まず、多芯ケーブル10の長手方向と垂直な断面において、隣接する絶縁線である絶縁線11Cと、絶縁線11Dとの共通接線L1を引く。次いで、共通接線L1と平行であり、かつ凸部121のうちコア13の内周側の端部を通る直線L2を引く。そして、共通接線L1と、直線L2との間の距離を測定し、凸部121の高さH121とした。
 なお、以下の各実験例で作製した多芯ケーブルの任意の一断面において、コアの外周側に位置する絶縁線間に形成された全ての凸部について上記測定を行い、最小値と最大値とを求めた。
(2)コアの外周側に配置された絶縁線間の距離
 以下の実験例で作製した多芯ケーブルの長手方向と垂直な断面において、コアの外周側に配置された絶縁線について、隣接する絶縁線間の最短距離を測定し、絶縁線間の距離が0.01mm以上になっている隙間の数を数えた。また、絶縁線間の距離の最小値と最大値とを求めた。
(3)撚りピッチ
 コアを構成する絶縁線の撚りピッチ、および対撚絶縁線を構成する絶縁線の撚りピッチは、JIS C 3002(1992)に記載の方法により測定した。
(4)中心導体、絶縁体、外被の外径
 以下の実験例において作製した多芯ケーブルに用いた絶縁線が有する中心導体、絶縁体の外径、および多芯ケーブルの外被の外径は、JIS C 3002(1992)に記載の方法によりマイクロメータを用いて測定した。
 また、多芯ケーブルが有するコアの外径も同様にして測定し、多芯ケーブルの外被の外径からコアの外径を引き、2で割ったものを外被の厚さとした。
(5)音鳴り試験
 以下の各実験例で得られた多芯ケーブルについて、長手方向の任意の位置で繰り返し屈曲させた。すなわち、図6に両矢印で示すように多芯ケーブルの端部を移動させ、屈曲前の多芯ケーブル600の状態と、屈曲後の多芯ケーブル601の状態と、の間を繰り返し変化させた。そして、屈曲させた際に音鳴りが生じるか、すなわち音が出るかを試験した。
 試験者による評価基準の変化を防止するため、全ての多芯ケーブルについて、同一の試験者が試験を行った。
 以下に各実験例における多芯ケーブルを説明する。
[実験例1]
 以下の実験例1-1~実験例1-3の多芯ケーブルを作製した。実験例1-1、実験例1-2が比較例、実験例1-3が実施例になる。
 実験例1-1~実験例1-3では、いずれも長手方向と垂直な断面において、コア13の構成が図1に示した多芯ケーブル10と同じになるように多芯ケーブルを作製した。
 作製した多芯ケーブルの仕様は、表1にまとめて示す。表1中の14Cは、14本の絶縁線を有することを意味する。なお、後述する表3の対撚絶縁線(C)における2Cとの表記についても2本の絶縁線を有することを意味する。
 そして、コアの外周に実験例1-1、実験例1-2ではパイプ押出により表1に示した外被を形成した。実験例1-3では充実押出により、コア13の外表面13Aを覆うように、表1に示した外被12を形成した。
Figure JPOXMLDOC01-appb-T000001
 
 
 得られた多芯ケーブルの長手方向と垂直な断面における断面写真を図7A~図7Cに示す。図7Aが実験例1-1の多芯ケーブルを、図7Bが実験例1-2の多芯ケーブルを、図7Cが実験例1-3の多芯ケーブルをそれぞれ示す。
 図7A、図7Bに示すように、実験例1-1、実験例1-2の多芯ケーブルはいずれも外被12が凸部121を有していなかった。
 これに対して、図7Cに示すように、実験例1-3の多芯ケーブル10は、外被12が凸部121を有しており、凸部121は絶縁線11の表面の少なくとも一部と接していることを確認できた。絶縁線11と凸部121とは密着し、また絶縁線11と凸部121とは直接接触していることを確認できた。凸部の高さの最小値は0.101mm、最大値は0.132mmであった。実験例1-3の多芯ケーブル10は、コアの外周側に位置する絶縁線11は外被12と直接接していた。また、実験例1-3の多芯ケーブル10は、コアの内部には、外被の樹脂が侵入せず、空隙130を有することが確認できた。
 実験例1-3の多芯ケーブル10は、屈曲させたときに、屈曲部において、コアの外周側に配置されている絶縁線と、凸部とが少なくとも一部で接していることも確認できた。
 また、実験例1-3について、多芯ケーブルの長手方向と垂直な一断面において、コア13の外周側に配置された隣接する絶縁線間の距離L11が0.01mm以上である隙間14について、その数、および係る距離L11の最小値、最大値を測定した。結果を表1中に示す。
 実験例1-1~実験例1-3の多芯ケーブルについて、既述の音鳴り試験を実施したところ、実験例1-1、実験例1-2では音鳴りが確認された。これに対して、実験例1-3の多芯ケーブルでは音鳴りが確認されなかった。
[実験例2]
 以下の実験例2-1、実験例2-2の多芯ケーブルを作製した。実験例2-1が比較例、実験例2-2が実施例になる。
 実験例2-1、実験例2-2では、いずれも長手方向と垂直な断面において、コアの構成が図2に示した多芯ケーブル20のコア23と同じになるように多芯ケーブルを作製した。
 作製した多芯ケーブルの仕様は、表2にまとめて示す。表2中の集合(コア)欄中の「(A)×9+(B)×3」は、それぞれのケーブルの本数を意味し、第1絶縁線(A)を9本と、第2絶縁線(B)を3本含むことを意味する。以下の表3~表5においても同様の趣旨で表記している。
 コアの外周に実験例2-1ではパイプ押出により、外被を形成した。実験例2-2では充実押出により、コア23の外表面23Aを覆うように外被12を形成した。
Figure JPOXMLDOC01-appb-T000002
 
 実験例2-1の多芯ケーブルは、実験例1-1や、実験例1-2の場合と同様に、外被が凸部121を有していなかった。
 これに対して、図2に示すように、実験例2-2の多芯ケーブル20は、外被12が凸部121を有しており、絶縁線11と凸部121とは密着し、また絶縁線11と凸部121とは直接接触していることを確認できた。凸部の高さの最小値は0.094mm、最大値は0.152mmであった。実験例2-2の多芯ケーブル20は、コアの外周側に位置する絶縁線は外被と直接接していた。また、実験例2-2の多芯ケーブル20は、コアの内部には、外被の樹脂が侵入せず、空隙230を有することが確認できた。
 実験例2-2の多芯ケーブル20は、屈曲させたときに、屈曲部において、コアの外周側に配置されている絶縁線と、凸部とが少なくとも一部で接していることも確認できた。
 また、実験例2-2について、多芯ケーブルの長手方向と垂直な一断面において、コア23の外周側に配置された隣接する絶縁線間の距離L11が0.01mm以上である隙間14について、その数、および係る距離L11の最小値、最大値を測定した。結果を表2中に示す。
 実験例2-1、実験例2-2の多芯ケーブルについて、既述の音鳴り試験を実施したところ、実験例2-1では音鳴りが確認された。これに対して、実験例2-2の多芯ケーブルでは音鳴りが確認されなかった。
[実験例3]
 以下の実験例3-1、実験例3-2の多芯ケーブルを作製した。実験例3-1が比較例、実験例3-2が実施例になる。
 実験例3-1、実験例3-2では、いずれも長手方向と垂直な断面において、コアの構成が図3に示した多芯ケーブル30のコア33と同じになるように多芯ケーブルを作製した。
 作製した多芯ケーブルの仕様は、表3にまとめて示す。
 コアの外周に実験例3-1ではパイプ押出により、外被を形成した。実験例3-2では充実押出により、コア33の外表面33Aを覆うように外被12を形成した。
Figure JPOXMLDOC01-appb-T000003
 
 
 実験例3-1の多芯ケーブルは、実験例1-1や、実験例1-2の場合と同様に、外被が凸部121を有していなかった。
 これに対して、実験例3-2の多芯ケーブルは、外被12が凸部121を有しており、絶縁線11と凸部121とは密着し、また絶縁線11と凸部121とは直接接触していることを確認できた。凸部の高さの最小値は0.096mm、最大値は0.131mmであった。実験例3-2の多芯ケーブル30は、コアの外周側に位置する絶縁線は外被と直接接していた。また、実験例3-2の多芯ケーブル30は、コアの内部には、外被の樹脂が侵入せず、空隙330を有することが確認できた。
 実験例3-2の多芯ケーブル30は、屈曲させたときに、屈曲部において、コアの外周側に配置されている絶縁線と、凸部とが少なくとも一部で接していることも確認できた。
 実験例3-2の多芯ケーブルの長手方向と垂直な一断面において、コア33の外周側に配置された隣接する絶縁線間の距離L11が0.01mm以上である隙間14について、その数、および係る距離L11の最小値、最大値を測定した。なお、隣接する絶縁線間の距離とは、絶縁線11間の距離、および対撚絶縁線31の外接円31Cと絶縁線11との間の距離を意味する。結果を表3中に示す。
 実験例3-1、実験例3-2の多芯ケーブルについて、既述の音鳴り試験を実施したところ、実験例3-1では音鳴りが確認された。これに対して、実験例3-2の多芯ケーブルでは音鳴りが確認されなかった。
[実験例4]
 以下の実験例4-1、実験例4-2の多芯ケーブルを作製した。実験例4-1が比較例、実験例4-2が実施例になる。
 実験例4-1、実験例4-2では、いずれも長手方向と垂直な断面において、コアの構成が図4に示した多芯ケーブル40のコア43と同じになるように多芯ケーブルを作製した。
 作製した多芯ケーブルの仕様は、表4にまとめて示す。
 コアの外周に実験例4-1ではパイプ押出により、外被を形成した。実験例4-2では充実押出により、コア43の外表面43Aを覆うように外被12を形成した。
Figure JPOXMLDOC01-appb-T000004
 
 
 実験例4-1の多芯ケーブルは、実験例1-1や、実験例1-2の場合と同様に、外被が凸部121を有していなかった。
 これに対して、実験例4-2の多芯ケーブルは、外被12が凸部121を有しており、絶縁線11と凸部121とは密着し、また絶縁線11と凸部121とは直接接触していることを確認できた。凸部の高さの最小値は0.081mm、最大値は0.179mmであった。実験例4-2の多芯ケーブル40は、コアの外周側に位置する絶縁線は外被と直接接していた。また、実験例4-2の多芯ケーブル40は、コアの内部には、外被の樹脂が侵入せず、空隙430を有することが確認できた。
 実験例4-2の多芯ケーブル40は、屈曲させたときに、屈曲部において、コアの外周側に配置されている絶縁線と、凸部とが少なくとも一部で接していることも確認できた。
 実験例4-2の多芯ケーブルの長手方向と垂直な一断面において、コア43の外周側に配置された隣接する絶縁線間の距離L11が0.01mm以上である隙間14について、その数、および係る距離L11の最小値、最大値を測定した。なお、隣接する絶縁線間の距離とは、絶縁線11間の距離、および対撚絶縁線31の外接円31Cと絶縁線11との間の距離を意味する。結果を表4中に示す。
 実験例4-1、実験例4-2の多芯ケーブルについて、既述の音鳴り試験を実施したところ、実験例4-1では音鳴りが確認された。これに対して、実験例4-2の多芯ケーブルでは音鳴りが確認されなかった。
[実験例5]
 以下の実験例5-1、実験例5-2の多芯ケーブルを作製した。実験例5-1が比較例、実験例5-2が実施例になる。
 実験例5-1、実験例5-2では、いずれも長手方向と垂直な断面において、コアの構成が図5に示した多芯ケーブル50のコア53と同じになるように多芯ケーブルを作製した。
 作製した多芯ケーブルの仕様は、表5にまとめて示す。
 コアの外周に実験例5-1ではパイプ押出により、外被を形成した。実験例5-2では充実押出により、コア53の外表面53Aを覆うように外被12を形成した。
Figure JPOXMLDOC01-appb-T000005
 
 
 実験例5-1の多芯ケーブルは、実験例1-1や、実験例1-2の場合と同様に、外被が凸部121を有していなかった。
 これに対して、実験例5-2の多芯ケーブルは、外被12が凸部121を有しており、絶縁線11と凸部121とは密着し、また絶縁線11と凸部121とは直接接触していることを確認できた。凸部の高さの最小値は0.077mm、最大値は0.132mmであった。実験例5-2の多芯ケーブル50は、コアの外周側に位置する絶縁線は外被と直接接していた。また、実験例5-2の多芯ケーブル50は、コアの内部には、外被の樹脂が侵入せず、空隙530を有することが確認できた。
 実験例5-2の多芯ケーブル50は、屈曲させたときに、屈曲部において、コアの外周側に配置されている絶縁線と、凸部とが少なくとも一部で接していることも確認できた。
 実験例5-2の多芯ケーブルの長手方向と垂直な一断面において、コア53の外周側に配置された隣接する絶縁線間の距離L11が0.01mm以上である隙間14について、その数、および係る距離L11の最小値、最大値を測定した。なお、隣接する絶縁線間の距離とは、絶縁線11間の距離、および対撚絶縁線31の外接円31Cと絶縁線11との間の距離を意味する。結果を表5中に示す。
 実験例5-1、実験例5-2の多芯ケーブルについて、既述の音鳴り試験を実施したところ、実験例5-1では音鳴りが確認された。これに対して、実験例5-2の多芯ケーブルでは音鳴りが確認されなかった。
10、20、30、40、50      多芯ケーブル
11、11A~11D          絶縁線(第1絶縁線)
D11                 第1絶縁線の外径
21                  第2絶縁線
D21                 第2絶縁線の外径
31                  対撚絶縁線
311                 絶縁線
31C                 外接円
111、211、3111        中心導体
112、212、3112        絶縁体
12                  外被
121                 凸部
H121                凸部の高さ
L11                 コアの外周側に位置する絶縁線間の距離
13、23、33、43、53      コア
13A、23A、33A、43A、53A コアの外表面
130、230、330、430、530 空隙
14                  隙間
A                   両矢印
231                 第1領域
232                 第2領域
34                  介在
L1、L31              共通接線
L2、L32              直線
600                 屈曲前の多芯ケーブル
601                 屈曲後の多芯ケーブル

Claims (11)

  1.  複数本の絶縁線を含むコアと、
     前記コアの外表面を覆う外被と、を有し、
     前記外被は、前記コアの外周側に位置する前記絶縁線間に配置され、前記絶縁線の表面の少なくとも一部に接する凸部を有している多芯ケーブル。
  2.  前記凸部の高さが、0.05mm以上である請求項1に記載の多芯ケーブル。
  3.  前記複数本の絶縁線は、第1絶縁線と、前記第1絶縁線よりも外径の大きい第2絶縁線とを含み、
     前記第2絶縁線が、前記コアの外周側に配置されている請求項1または請求項2に記載の多芯ケーブル。
  4.  前記コアの外周側に、前記第1絶縁線と前記第2絶縁線とが配置され、
     前記コアの長手方向と垂直な断面において、前記コアの外周に沿って、前記第1絶縁線を含む第1領域と、前記第2絶縁線を含む第2領域とが交互に配置されている請求項3に記載の多芯ケーブル。
  5.  前記コアは、前記絶縁線を2本撚り合わせた対撚絶縁線を含む請求項1から請求項4のいずれか1項に記載の多芯ケーブル。
  6.  前記コアの外周側に位置する前記絶縁線は、前記外被と直接接している請求項1から請求項5のいずれか1項に記載の多芯ケーブル。
  7.  前記多芯ケーブルを屈曲させたときに、屈曲部において、前記コアの外周側に配置されている前記絶縁線と、前記凸部とが少なくとも一部で接している請求項1から請求項6のいずれか1項に記載の多芯ケーブル。
  8.  前記絶縁線は中心導体と、前記中心導体の外表面を覆う絶縁体とを有しており、
     前記絶縁体がフッ素系樹脂を含む請求項1から請求項7のいずれか1項に記載の多芯ケーブル。
  9.  前記外被が熱可塑性樹脂を含む請求項1から請求項8のいずれか1項に記載の多芯ケーブル。
  10.  前記コアは、前記コアの外周側に位置する前記絶縁線のうち、少なくとも隣接する1対の前記絶縁線間に隙間を有する請求項1から請求項9のいずれか1項に記載の多芯ケーブル。
  11.  長手方向と垂直な断面において、前記コア内部に空隙を有する請求項1から請求項10のいずれか1項に記載の多芯ケーブル。
PCT/JP2022/028182 2021-07-21 2022-07-20 多芯ケーブル WO2023003012A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280042523.5A CN117501387A (zh) 2021-07-21 2022-07-20 多芯电缆
JP2023536775A JPWO2023003012A1 (ja) 2021-07-21 2022-07-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-120532 2021-07-21
JP2021120532 2021-07-21

Publications (1)

Publication Number Publication Date
WO2023003012A1 true WO2023003012A1 (ja) 2023-01-26

Family

ID=84980005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028182 WO2023003012A1 (ja) 2021-07-21 2022-07-20 多芯ケーブル

Country Status (3)

Country Link
JP (1) JPWO2023003012A1 (ja)
CN (1) CN117501387A (ja)
WO (1) WO2023003012A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132744A (ja) * 2001-10-29 2003-05-09 Nippon Telegr & Teleph Corp <Ntt> 通信ケーブル
JP2013012396A (ja) * 2011-06-29 2013-01-17 Sdk Kk シース電線
JP2014078390A (ja) * 2012-10-10 2014-05-01 Hitachi Cable Fine Tech Ltd イヤホンケーブル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003132744A (ja) * 2001-10-29 2003-05-09 Nippon Telegr & Teleph Corp <Ntt> 通信ケーブル
JP2013012396A (ja) * 2011-06-29 2013-01-17 Sdk Kk シース電線
JP2014078390A (ja) * 2012-10-10 2014-05-01 Hitachi Cable Fine Tech Ltd イヤホンケーブル

Also Published As

Publication number Publication date
CN117501387A (zh) 2024-02-02
JPWO2023003012A1 (ja) 2023-01-26

Similar Documents

Publication Publication Date Title
JP5761226B2 (ja) 多芯ケーブルおよびその製造方法
JP5614428B2 (ja) 多芯ケーブルおよびその製造方法
JP5836554B2 (ja) 電源用ケーブル
JP5900275B2 (ja) 多対差動信号伝送用ケーブル
JP2016207658A (ja) 多芯ケーブル
JP6164844B2 (ja) 絶縁電線、同軸ケーブル及び多心ケーブル
JP2011124117A (ja) 可動部用ケーブル
JP6893496B2 (ja) 同軸ケーブル
JP2005251608A (ja) 撚線導体の製造方法、撚線導体及び電線
JP6380872B1 (ja) 編組シールド付ケーブル
US20160078981A1 (en) Signal cable and wire harness
JP7265324B2 (ja) 絶縁電線、ケーブル
WO2023003012A1 (ja) 多芯ケーブル
CN110268483B (zh) 同轴电缆
WO2022059406A1 (ja) 同軸ケーブル
JP6713712B2 (ja) 多芯ケーブル
JP6569923B2 (ja) 編組シールド付ケーブル
JP6979796B2 (ja) 多芯ケーブル
JP6519324B2 (ja) 多芯ケーブル
JP7424221B2 (ja) 電線
JP2008218273A (ja) 絶縁電線
JP2003234026A (ja) 高精度発泡同軸ケーブル
US11869681B2 (en) Multicore cable
JP7334629B2 (ja) 対撚りケーブル及び多心ケーブル
JP4134714B2 (ja) 2重横巻2心平行極細同軸ケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845945

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18568532

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280042523.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023536775

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE