WO2022059406A1 - 同軸ケーブル - Google Patents

同軸ケーブル Download PDF

Info

Publication number
WO2022059406A1
WO2022059406A1 PCT/JP2021/030219 JP2021030219W WO2022059406A1 WO 2022059406 A1 WO2022059406 A1 WO 2022059406A1 JP 2021030219 W JP2021030219 W JP 2021030219W WO 2022059406 A1 WO2022059406 A1 WO 2022059406A1
Authority
WO
WIPO (PCT)
Prior art keywords
coaxial cable
inner conductor
region
insulator
area
Prior art date
Application number
PCT/JP2021/030219
Other languages
English (en)
French (fr)
Inventor
峻明 岡本
祐司 越智
龍太 古屋敷
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US17/597,447 priority Critical patent/US11978573B2/en
Priority to CN202180004787.7A priority patent/CN115066732A/zh
Priority to JP2021577002A priority patent/JPWO2022059406A1/ja
Publication of WO2022059406A1 publication Critical patent/WO2022059406A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/016Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • H01B11/1821Co-axial cables with at least one wire-wound conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1891Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor comprising auxiliary conductors

Definitions

  • This disclosure relates to coaxial cables.
  • Patent Document 1 describes the internal conductor and An insulator provided so as to cover the outer periphery of the inner conductor, and An external conductor provided so as to cover the outer periphery of the insulator is provided.
  • the outer conductor is A first outer conductor composed of a horizontal winding shield in which a first wire is spirally wound around the outer circumference of the insulator,
  • a shielded cable is disclosed which is provided so as to cover the outer periphery of the first outer conductor and has a second outer conductor composed of a braided shield in which a second wire is woven.
  • the coaxial cable of the present disclosure is a coaxial cable and is a coaxial cable.
  • An internal conductor obtained by twisting one central wire and six outer peripheral wires arranged around the central wire,
  • An insulator that covers the outer circumference of the inner conductor and
  • a shield conductor covering the outer circumference of the insulator is provided.
  • the ratio of the total area of the first region, which is a gap formed between the central wire and the two adjacent outer peripheral wires, to the area of the circumscribed circle of the inner conductor is 0.5%.
  • the ratio of the total area of the second region, which is a gap formed between the surfaces of the two adjacent outer peripheral wires and the surface of the insulator, to the area of the circumscribed circle of the inner conductor is 2.0. % Or more and 5.0% or less.
  • FIG. 1 is a cross-sectional view of the coaxial cable according to one aspect of the present disclosure in a plane perpendicular to the longitudinal direction.
  • FIG. 2 is a cross-sectional view taken along the plane perpendicular to the longitudinal direction of the internal conductor of the coaxial cable according to one aspect of the present disclosure.
  • FIG. 3 is an enlarged view of the region A in FIG.
  • FIG. 4 is an explanatory diagram of the bending test.
  • FIG. 5 is a photograph of the internal conductor used in Experimental Example 1 in a cross section perpendicular to the longitudinal direction.
  • FIG. 6 is a photograph of the internal conductor used in Experimental Example 2 in a cross section perpendicular to the longitudinal direction.
  • FIG. 7 is a photograph of the internal conductor used in Experimental Example 3 in a cross section perpendicular to the longitudinal direction.
  • Patent Document 1 a coaxial cable for transmitting a high-speed signal has been conventionally studied.
  • the data transfer speed between electronic devices is increasing day by day.
  • the required transmission speed and frequency band of the coaxial cable connecting electronic devices are gradually increasing and increasing in frequency.
  • Skew As a characteristic value for evaluating a coaxial cable for high-speed transmission, Skew, which is a value defined by the difference in delay time between two coaxial cables of the same length and the same type, is known.
  • Thunderbolt registered trademark 3 which is one of the high-speed general-purpose data transfer technologies and has already been put into practical use
  • the required skew is less than 10 ps / m.
  • a data transfer standard faster than Thunderbolt 3 there is a high possibility that a skew of a value smaller than 10 ps / m is required.
  • the coaxial cable may be repeatedly bent depending on the installation location and usage mode, it is also required to have excellent bending resistance.
  • an object of the present disclosure is to provide a coaxial cable having excellent bending resistance and suppressing skew variation.
  • the coaxial cable according to one aspect of the present disclosure is a coaxial cable.
  • An internal conductor obtained by twisting one central wire and six outer peripheral wires arranged around the central wire,
  • An insulator that covers the outer circumference of the inner conductor and
  • a shield conductor covering the outer circumference of the insulator is provided.
  • the ratio of the total area of the first region, which is a gap formed between the central wire and the two adjacent outer peripheral wires, to the area of the circumscribed circle of the inner conductor is 0.5%.
  • the ratio of the total area of the second region, which is a gap formed between the surfaces of the two adjacent outer peripheral wires and the surface of the insulator, to the area of the circumscribed circle of the inner conductor is 2.0. % Or more and 5.0% or less.
  • the ratio of the total area of the first region, which is a gap formed between the central wire and the two adjacent outer peripheral wires, to the area of the circumscribed circle of the inner conductor is defined as the area ratio of the first region. do.
  • the inner conductor is sufficiently compressed, and the unevenness generated on the outer surface of the inner conductor can be suppressed. Therefore, when the insulator is arranged on the outer periphery of the inner conductor, it is possible to suppress the generation of voids between the inner conductor and the insulator and to suppress the variation in the amount of voids. As a result, it is possible to suppress variations in the capacitance of the coaxial cable and suppress variations in skew.
  • the area ratio of the first region is preferably 0.5% or more.
  • Productivity can be improved by setting the area ratio of the first region to 0.5% or more.
  • the ratio of the total area of the second region, which is a void formed by the surface of two adjacent outer peripheral wires and the surface of the insulator, to the area of the circumscribed circle of the inner conductor is defined as the area ratio of the second region. do.
  • the area ratio of the second region indicates the degree to which the unevenness of the surface of the inner conductor is filled with an insulator. Therefore, by setting the area ratio of the second region to 5.0% or less, it is shown that the amount of voids between the internal conductor and the insulator is sufficiently suppressed. As a result, it is possible to suppress variations in the capacitance of the coaxial cable and suppress variations in skew.
  • the area ratio of the second region is preferably 2.0% or more.
  • Productivity can be improved by setting the area ratio of the second region to 2.0% or more.
  • the total ratio of the total length of the contact portion between the circumference of the circumscribed circle and the internal conductor to the circumference of the circumscribed circle of the internal conductor may be 40% or more and 70% or less. ..
  • the ratio of the total length of the contact portion where the circumference of the circumscribed circle and the internal conductor are in contact with each other in the circumference of the circumscribed circle of the internal conductor is defined as the ratio of the contact portion.
  • the cross section perpendicular to the longitudinal direction becomes circular and completely overlaps with the circumscribed circle. That is, the ratio of the contact portion is 100%.
  • the ratio of the contact portion is preferably 70% or less.
  • Productivity can be improved by setting the ratio of the contact portion to 70% or less.
  • the ratio of the contact part is set to 40% or more, it means that the internal conductor is sufficiently compressed. Therefore, when the insulator is arranged on the outer periphery of the inner conductor, the amount of voids between the inner conductor and the insulator can be sufficiently suppressed. As a result, it is possible to suppress variations in the capacitance of the coaxial cable and suppress variations in skew.
  • the outer diameter of the circumscribed circle of the inner conductor may be 0.1 mm or more and 0.4 mm or less.
  • the outer diameter of the circumscribed circle of the inner conductor By setting the outer diameter (diameter) of the circumscribed circle of the inner conductor to 0.4 mm or less, the outer diameter of the coaxial cable can be suppressed and the coaxial cable can be made with excellent handleability. Further, by setting the outer diameter of the circumscribed circle of the inner conductor to 0.1 mm or more, a highly reliable coaxial cable can be obtained.
  • the outer diameter of the insulator may be 0.25 mm or more and 1.5 mm or less.
  • Bending resistance can be particularly improved by setting the outer diameter of the insulator to 0.25 mm or more. Further, by setting the outer diameter of the insulator to 1.5 mm or less, a coaxial cable having a small diameter can be obtained, and the handleability can be improved.
  • the central wire and the outer peripheral wire may be silver-plated annealed copper wire.
  • the shield conductor may be horizontally wound.
  • the total area of the third region which is a region surrounded by the circumscribed circle of the inner conductor and the surfaces of the two adjacent outer peripheral strands, with respect to the area of the circumscribed circle of the inner conductor.
  • the ratio may be 7% or more and 14% or less.
  • the ratio of the total area of the third region, which is the area surrounded by the circumscribed circle of the inner conductor and the surfaces of the two adjacent outer peripheral strands, to the area of the circumscribed circle of the inner conductor is the area ratio of the third region.
  • the area ratio of the third region is an index of the degree of unevenness of the outer surface of the inner conductor. Further, the area ratio of the third region is also an index of the degree of compression of the internal conductor, and the higher the degree of compression, the smaller the area ratio.
  • the inner conductor is sufficiently compressed, and unevenness generated on the outer surface of the inner conductor can be suppressed. Therefore, when the insulator is arranged on the outer periphery of the inner conductor, it is possible to suppress the generation of voids between the inner conductor and the insulator and to suppress the variation in the amount of voids. As a result, it is possible to suppress variations in the capacitance of the coaxial cable and suppress variations in skew.
  • the area ratio of the third region is preferably 7% or more.
  • Productivity can be improved by setting the area ratio of the third region to 7% or more.
  • the area ratio of the third region is set to 7% or more, it is possible to leave appropriate unevenness on the surface of the inner conductor. Therefore, when the insulator is arranged on the outer periphery of the inner conductor, the inner conductor and the insulator are arranged. Adhesion with can be improved.
  • the insulator may contain a fluororesin.
  • the coaxial cable can be easily bent while having heat resistance and oil resistance.
  • FIG. 1 shows an example of a configuration having a cross section perpendicular to the longitudinal direction of the coaxial cable of the present embodiment.
  • FIG. 2 shows an enlarged view of the inner conductor 11.
  • FIG. 3 shows an enlarged view of the region A of FIG. 1.
  • the coaxial cable 10 of the present embodiment can include an inner conductor 11, an insulator 14 that covers the outer periphery of the inner conductor 11, and a shield conductor 15 that covers the outer periphery of the insulator 14.
  • the inner conductor 11 has one central wire 12 and six outer peripheral wires 13 arranged around the central wire 12.
  • the inner conductor 11 can be a stranded wire obtained by twisting one central wire 12 and six outer peripheral wires 13.
  • the material of the central wire 12 and the outer wire 13 constituting the inner conductor 11 is not particularly limited, but a silver-plated annealed copper wire can be preferably used.
  • the inner conductor 11 can be a compressed conductor compressed from the outer peripheral side.
  • each strand is schematically shown in a circular shape, but since it is compressed as described above, it has a compressed and distorted shape instead of a perfect circle.
  • the delay time of a coaxial cable is generally determined by three parameters: the outer diameter of the inner conductor, the outer diameter of the insulator, and the capacitance of the coaxial cable. Then, in order to suppress the variation in the skew of the coaxial cable, it is necessary to suppress the variation in the delay time of the coaxial cable. However, there is little room for adjustment in the outer diameter of the inner conductor and the outer diameter of the insulator due to restrictions such as the standards for the coaxial cable. Therefore, in order to reduce the variation in skew, the variation in the capacitance of the coaxial cable is suppressed. It is conceivable to do.
  • the variation in the capacitance of the coaxial cable is caused by the irregularities on the surface of the stranded wire causing random voids to be generated between the internal conductor 11 and the insulator 14. Therefore, it is possible to suppress the variation in the capacitance of the coaxial cable by suppressing the variation in the amount of the voids generated while suppressing the generation of the voids.
  • the outer diameter D11 of the circumscribed circle C11 of the inner conductor 11 is not particularly limited, but is preferably 0.1 mm or more and 0.4 mm or less, and more preferably 0.15 mm or more and 0.3 mm or less.
  • the outer diameter D11 of the circumscribed circle C11 of the inner conductor 11 is preferably 0.1 mm or more and 0.4 mm or less, and more preferably 0.15 mm or more and 0.3 mm or less.
  • the outer diameter D11 of the circumscribed circle C11 of the inner conductor 11 corresponds to the outer diameter of the inner conductor 11.
  • (1-2-1) Area ratio of the first region
  • the ratio of the total area of the first region 21 (see FIG. 2), which is a void, to the area of the circumscribed circle C11 of the inner conductor 11 is defined as the area ratio of the first region.
  • the area of the first region 21 and the area of the circumscribed circle C11 are the areas obtained in the cross section perpendicular to the longitudinal direction of the coaxial cable 10 as described above.
  • the area of the circumscribed circle C11 is the area of the circle calculated from the outer diameter D11 of the circumscribed circle C11.
  • the area ratio of the first region is preferably 0.5% or more and 2.0% or less, and more preferably 0.6% or more and 1.9% or less.
  • the gap formed between the central wire 12 and the two adjacent outer peripheral wires 131 and 132 is defined as the first region 21.
  • the inner conductor 11 possesses six first regions 21 along the circumferential direction of the central strand 12, and the total area of the first regions 21 at the six locations is the total area of the first region 21. become.
  • the area ratio of the first region can be calculated by the following formula (1).
  • (Area ratio of the first area) (Total area of the first area) ⁇ (Area of circumscribed circle C11) ⁇ 100 ...
  • the area ratio of the first region is 2.0% or less, the inner conductor 11 is sufficiently compressed, and unevenness generated on the outer surface of the inner conductor 11 can be suppressed. Therefore, when the insulator 14 is arranged on the outer periphery of the inner conductor 11, it is possible to suppress the generation of voids between the inner conductor 11 and the insulator 14, and to suppress the variation in the amount of voids. As a result, it is possible to suppress variations in the capacitance of the coaxial cable and suppress variations in skew.
  • the area ratio of the first region is preferably 0.5% or more.
  • Productivity can be improved by setting the area ratio of the first region to 0.5% or more.
  • the second region 31 (see FIG. 3), which is a gap formed by the surfaces of the two adjacent peripheral strands 131 and 132 and the surface of the insulator 14. ) Is the ratio of the total area of the inner conductor 11 to the area of the circumscribed circle C11 of the inner conductor 11 as the area ratio of the second region.
  • the area of the second region 31 is an area obtained in a cross section perpendicular to the longitudinal direction of the coaxial cable 10.
  • the area ratio of the second region is preferably 2.0% or more and 5.0% or less, and more preferably 2.5% or more and 4.5% or less.
  • the gap formed by the surfaces of the two adjacent outer peripheral strands 131 and 132 and the insulator 14 is defined as the second region 31. ..
  • the inner conductor 11 possesses six such second regions along the circumferential direction of the inner conductor 11, and the total area of the second regions 31 at the six locations becomes the total area of the second region 31. ..
  • the area ratio of the second region can be calculated by the following formula (2).
  • (Area ratio of the second area) (Total area of the second area) ⁇ (Area of circumscribed circle C11) ⁇ 100 ...
  • the area ratio of the second region indicates the degree to which the insulator 14 is filled in the unevenness of the surface of the inner conductor 11. Therefore, by setting the area ratio of the second region to 5.0% or less, it is shown that the amount of voids between the internal conductor 11 and the insulator 14 is sufficiently suppressed. As a result, it is possible to suppress variations in the capacitance of the coaxial cable and suppress variations in skew.
  • the area ratio of the second region is preferably 2.0% or more.
  • Productivity can be improved by setting the area ratio of the second region to 2.0% or more.
  • (1-2-3) Area ratio of the third region
  • the total area of the third region which is the region surrounded by the circumscribed circle C11 of the inner conductor 11 and the surfaces of the two adjacent outer peripheral strands 13, The ratio of the inner conductor 11 to the area of the circumscribed circle C11 is defined as the area ratio of the third region.
  • the area of the third region 22 is an area obtained in a cross section perpendicular to the longitudinal direction of the coaxial cable 10. In the coaxial cable of the present embodiment, the area ratio of the third region is preferably 7% or more and 14% or less, and more preferably 9% or more and 13.5% or less.
  • the third region 22 the region surrounded by the circumscribed circle C11 of the inner conductor 11 and the surfaces of the two adjacent outer peripheral strands 131 and 132 is referred to as the third region 22.
  • the inner conductor 11 possesses six such third regions along the circumferential direction of the inner conductor 11, and the total area of the third regions 22 at the six locations becomes the total area of the third region 22. ..
  • the area ratio of the third region can be calculated by the following formula (3).
  • (Area ratio of the third area) (Total area of the third area) ⁇ (Area of circumscribed circle C11) ⁇ 100 ...
  • the area ratio of the third region 22 is an index of the degree of unevenness of the outer surface of the inner conductor 11. Further, the area ratio of the third region 22 is also an index of the degree of compression of the internal conductor 11, and the higher the degree of compression, the smaller the area ratio.
  • the inner conductor 11 is sufficiently compressed, and unevenness generated on the outer surface of the inner conductor 11 can be suppressed. Therefore, when the insulator 14 is arranged on the outer periphery of the inner conductor 11, it is possible to suppress the generation of voids between the inner conductor 11 and the insulator 14, and to suppress the variation in the amount of voids. As a result, it is possible to suppress variations in the capacitance of the coaxial cable and suppress variations in skew.
  • the area ratio of the third region is preferably 7% or more. Productivity can be improved by setting the area ratio of the third region to 7% or more.
  • the area ratio of the third region is 7% or more, it is possible to leave appropriate unevenness on the surface of the inner conductor. Therefore, when the insulator 14 is arranged on the outer periphery of the inner conductor 11, the inner conductor 11 is placed. And the insulation 14 can be improved. (1-2-4) Ratio of the total length of the contact portion where the circumference of the extrinsic circle and the internal conductor are in contact with the circumference of the circumscribed circle of the internal conductor. It is preferable that the total ratio of the total lengths of the contact portions 23 in which the circumference of the outer circle C11 and the inner conductor 11 are in contact is 40% or more and 70% or less. The length of the contact portion 23 is a length obtained in a cross section perpendicular to the longitudinal direction of the coaxial cable 10.
  • the contact portion 23 means a portion where the circumference of the circumscribed circle C11 of the inner conductor 11 and the inner conductor 11 are in contact with each other.
  • the inner conductor 11 possesses six such contact portions along the circumferential direction of the circumscribed circle C11. Therefore, the total length of the contact portions 23 at the six locations is the total length of the contact portions 23 in which the circumference of the circumscribed circle C11 and the internal conductor 11 are in contact with each other (hereinafter, “total lengths of the contact portions"). Also described).
  • the ratio of the total length of the contact portion where the circumference of the circumscribed circle and the internal conductor are in contact with the circumference of the circumscribed circle of the internal conductor (hereinafter, also referred to as "the ratio of the contact portion") is the following formula. It can be calculated by (4).
  • the ratio of the contact portion is preferably 70% or less. Productivity can be improved by setting the ratio of the contact portion to 70% or less.
  • the material of the insulator 14 is not particularly limited, but for example, a fluororesin can be used. That is, the insulator 14 can contain a fluororesin.
  • fluororesin As the material of the insulator 14, it can be easily bent while having heat resistance and oil resistance.
  • fluororesin examples include ethylene-tetrafluoroethylene copolymer (ETFE), polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), and fluorinated ethylene / hexafluoride.
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • FEP propylene copolymer
  • PVDF vinylidene fluoride resin
  • the insulator 14 can be coated on the inner conductor 11 by, for example, pull-down molding.
  • the outer diameter D14 of the insulator 14 is not particularly limited, but is preferably 0.25 mm or more and 1.5 mm or less, and more preferably 0.4 mm or more and 1.2 mm or less.
  • the shielded conductor 15 has a structure in which a shielded wire 151 is horizontally wound or braided on the outer periphery of an insulator 14.
  • the shield conductor 15 is preferably horizontally wound. By winding the shield conductor 15 horizontally, it is possible to make a coaxial cable more flexible than in the case of a braided structure, and it is possible to improve the bending resistance.
  • Copper, aluminum, copper alloy, or the like can be used as the material of the shielded wire 151 of the shield conductor 15. Therefore, a hard copper wire or the like can be used as the material of the shielded wire 151.
  • the surface of the shielded wire 151 may be plated with silver or tin. Therefore, as the material of the metal wire of the shield conductor, for example, a silver-plated copper alloy, a tin-plated copper alloy, or the like can be used.
  • the shield conductor 15 can be formed by, for example, laminating a copper-deposited polyester tape or the like on the outer surface of the insulator 14. (4) Outer cover The coaxial cable 10 may be provided with an outer cover 16 on the outer periphery of the shield conductor 15.
  • the material of the jacket 16 is not particularly limited, but polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluorinated ethylene / hexafluoropropylene copolymer (FEP), etc.
  • Fluororesin such as ethylene-tetrafluoroethylene copolymer (ETFE) and resin such as polyester resin such as polyethylene terephthalate (PET) can be used.
  • the outer cover 16 can be formed by wrapping a polyester tape or the like around the outer circumference of the shield conductor 15.
  • the outer diameter D14 of the insulator 14 was also obtained by observing with a microscope in the above cross section, drawing an circumscribed circle of the insulator 14, and measuring the diameter thereof.
  • the following area ratio of the first region, area ratio of the second region, area ratio of the third region, and ratio of the contact portion are also measured with the same cross section.
  • (2) Area ratio of the first region, area ratio of the second region, area ratio of the third region, ratio of the contact portion For any one cross section perpendicular to the longitudinal direction of the coaxial cable produced in the following experimental example, micro.
  • the area of the first region, the area of the second region, and the area of the third region were measured by observing with a scope.
  • the upper end of the coaxial cable 10 is bent 90 ° horizontally so as to abut on the upper side of one mandrel 411, and then bent 90 ° horizontally so as to abut on the upper side of the other mandrel 412. Was repeated.
  • the number of bends is one after bending the coaxial cable to the left, bending it to the right, and then returning it to the left.
  • the number of bendings which is the result of the bending test, means that the greater the number of bendings, the better the bending resistance.
  • the stranded wire has a configuration in which six outer peripheral strands are arranged around one central strand. The same strand is used for the center strand and the outer strand.
  • An insulator 14 made of FEP was placed on the outer circumference of the inner conductor 11. The thickness of the insulator 14 was adjusted so that the outer diameter of the insulator 14 was 0.79 mm.
  • a tin-plated annealed copper wire was arranged horizontally on the outer circumference of the insulator 14 to form a shield conductor.
  • Example 2 a coaxial cable was produced and evaluated in the same manner as in Experimental Example 1 except that the degree of compression of the stranded wire was changed.
  • Example 3 A coaxial cable was produced and evaluated in the same manner as in Experimental Example 1 except that an uncompressed stranded wire was used for the inner conductor 11.
  • the coaxial cables of Experimental Examples 1 and 2 had a bending test result of 4500 times or more, and it was confirmed that they had sufficient bending resistance.
  • Coaxial cable 11 Inner conductor 12 Central wire 13, 131, 132 Outer wire 14 Insulator 15 Shield conductor 151 Shield wire 16 Outer cover 21 1st area 22 3rd area 23 Contact part 31 2nd area 411, 412 Mandrel Area C11 Circumscribed circle D11 Outer diameter D14 Outer diameter

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Communication Cables (AREA)

Abstract

同軸ケーブルであって、 1本の中心素線と、前記中心素線の周りに配置された6本の外周素線とを撚り合わせた内部導体と、 前記内部導体の外周を覆う絶縁体と、 前記絶縁体の外周を覆うシールド導体を備え、 前記同軸ケーブルの長手方向と垂直な断面において、 前記中心素線と、隣接する2本の前記外周素線との間に形成される空隙である第1領域の面積の合計の、前記内部導体の外径から算出される円の面積に対する割合が、0.5%以上2.0%以下であり、 隣接する2本の前記外周素線の表面と、前記絶縁体の表面とで形成される空隙である第2領域の面積の合計の、前記内部導体の前記外接円の面積に対する割合が2.0%以上5.0%以下である同軸ケーブル。

Description

同軸ケーブル
 本開示は、同軸ケーブルに関する。
 本出願は、2020年9月16日出願の日本出願第2020-155643号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、内部導体と、
 前記内部導体の外周を覆うように設けられた絶縁体と、
 前記絶縁体の外周を覆うように設けられた外部導体と、を備え、
 前記外部導体は、
 前記絶縁体の外周に第1素線を螺旋状に巻き付けた横巻きシールドからなる第1外部導体と、
 前記第1外部導体の外周を覆うように設けられ、第2素線を編み合わせた編組シールドからなる第2外部導体と、を有する、シールドケーブルが開示されている。
特開2019-175781号公報
 本開示の同軸ケーブルは、同軸ケーブルであって、
 1本の中心素線と、前記中心素線の周りに配置された6本の外周素線とを撚り合わせた内部導体と、
 前記内部導体の外周を覆う絶縁体と、
 前記絶縁体の外周を覆うシールド導体を備え、
 前記同軸ケーブルの長手方向と垂直な断面において、
 前記中心素線と、隣接する2本の前記外周素線との間に形成される空隙である第1領域の面積の合計の、前記内部導体の外接円の面積に対する割合が、0.5%以上2.0%以下であり、
 隣接する2本の前記外周素線の表面と、前記絶縁体の表面とで形成される空隙である第2領域の面積の合計の、前記内部導体の前記外接円の面積に対する割合が2.0%以上5.0%以下である。
図1は、本開示の一態様に係る同軸ケーブルの長手方向と垂直な面での断面図である。 図2は、本開示の一態様に係る同軸ケーブルが有する内部導体の長手方向と垂直な面での断面図である。 図3は、図1における領域Aの拡大図である。 図4は、屈曲試験の説明図である。 図5は、実験例1で用いた内部導体の長手方向と垂直な断面での写真である。 図6は、実験例2で用いた内部導体の長手方向と垂直な断面での写真である。 図7は、実験例3で用いた内部導体の長手方向と垂直な断面での写真である。
 [本開示が解決しようとする課題]
 特許文献1に開示されているように、従来から高速信号を伝送する同軸ケーブルが検討されてきた。しかし、電子機器間のデータ転送速度は、日々高速化している。これに伴い、電子機器間を接続する同軸ケーブルに関しても、要求される伝送速度および周波数帯も次第に高速化および高周波化してきている。
 高速伝送用の同軸ケーブルを評価する特性値として、同じ長さで同種の2本の同軸ケーブルの遅延時間の差で定義される値であるスキュー(Skew)が知られている。
 高速汎用データ搬送技術の一つであり既に実用化されているThunderbolt(登録商標)3では、要求されているスキューが10ps/m未満である。そして、Thunderbolt3より高速なデータ転送規格では、10ps/mよりも小さい値のスキューが要求される可能性が高い。
 係るスキューを達成するためには、同軸ケーブルにおけるスキューのばらつきについても、従来の要求値よりも小さくする必要がある。
 また、同軸ケーブルは設置場所や、使用態様によっては繰り返し曲げられる場合もあることから、耐屈曲性に優れていることも求められる。
 そこで、本開示は、耐屈曲性に優れ、スキューのばらつきを抑制した同軸ケーブルを提供することを目的とする。
 [本開示の効果]
 本開示によれば、耐屈曲性に優れ、スキューのばらつきを抑制した同軸ケーブルを提供できる。
 実施するための形態について、以下に説明する。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
 (1)本開示の一態様に係る同軸ケーブルは、同軸ケーブルであって、
 1本の中心素線と、前記中心素線の周りに配置された6本の外周素線とを撚り合わせた内部導体と、
 前記内部導体の外周を覆う絶縁体と、
 前記絶縁体の外周を覆うシールド導体を備え、
 前記同軸ケーブルの長手方向と垂直な断面において、
 前記中心素線と、隣接する2本の前記外周素線との間に形成される空隙である第1領域の面積の合計の、前記内部導体の外接円の面積に対する割合が、0.5%以上2.0%以下であり、
 隣接する2本の前記外周素線の表面と、前記絶縁体の表面とで形成される空隙である第2領域の面積の合計の、前記内部導体の前記外接円の面積に対する割合が2.0%以上5.0%以下である。
 上記中心素線と、隣接する2本の外周素線との間に形成される空隙である第1領域の面積の合計の、内部導体の外接円の面積に対する割合を第1領域の面積割合とする。
 この場合、第1領域の面積割合を2.0%以下とすることで、内部導体が十分に圧縮されており、内部導体の外表面に生じる凹凸を抑制できる。このため、内部導体の外周に絶縁体を配置した際に、内部導体と絶縁体との間における空隙の発生を抑制しつつ、空隙の量のばらつきを抑制できる。その結果、同軸ケーブルの有する静電容量のばらつきを抑制し、スキューのばらつきを抑制できる。
 ただし、内部導体を過度に圧縮しようとすると、複数の工程が必要となり、生産性が低下する恐れがある。このため、第1領域の面積割合は、0.5%以上であることが好ましい。第1領域の面積割合を0.5%以上とすることで生産性を高めることができる。
 隣接する2本の外周素線の表面と、絶縁体の表面とで形成される空隙である第2領域の面積の合計の、内部導体の外接円の面積に対する割合を第2領域の面積割合とする。
 第2領域の面積割合は、内部導体の表面の凹凸に絶縁体を充填している程度を示している。このため、第2領域の面積割合を5.0%以下とすることで、内部導体と、絶縁体との間の空隙の量を十分に抑制していることを示している。その結果、同軸ケーブルの有する静電容量のばらつきを抑制し、スキューのばらつきを抑制できる。
 ただし、内部導体の表面の凹凸に絶縁体を完全に充填することは困難である。このため、第2領域の面積割合は2.0%以上であることが好ましい。第2領域の面積割合を2.0%以上とすることで生産性を高めることができる。
 (2)前記内部導体の前記外接円の円周に占める、前記外接円の円周と前記内部導体とが接する接触部の長さの合計の割合が40%以上70%以下であってもよい。
 上記内部導体の外接円の円周に占める、外接円の円周と内部導体とが接する接触部の長さの合計の割合を接触部の割合とする。
 内部導体を完全に圧縮すると、長手方向と垂直な断面が円形状となり、外接円と完全に重なることになる。すなわち上記接触部の割合は100%になる。
 ただし、内部導体を過度に圧縮しようとすると工程数が増え、生産性が低下する恐れがある。そこで、上記接触部の割合は、70%以下であることが好ましい。接触部の割合を70%以下とすることで、生産性を高めることができる。
 また、接触部の割合を40%以上とすることで、内部導体を十分に圧縮していることを意味する。このため、内部導体の外周に絶縁体を配置した場合に、内部導体と、絶縁体との間の空隙の量を十分に抑制できる。その結果、同軸ケーブルの有する静電容量のばらつきを抑制し、スキューのばらつきを抑制できる。
 (3)前記内部導体の外接円の外径が0.1mm以上0.4mm以下であってもよい。
 内部導体の外接円の外径(直径)を0.4mm以下とすることで同軸ケーブルの外径を抑制し、取り扱い性に優れた同軸ケーブルにできる。また、内部導体の外接円の外径を0.1mm以上とすることで信頼性の高い同軸ケーブルにできる。
 (4)前記絶縁体の外径が0.25mm以上1.5mm以下であってもよい。
 絶縁体の外径を0.25mm以上とすることで耐屈曲性を特に高めることができる。また、絶縁体の外径を1.5mm以下とすることで、細径の同軸ケーブルとすることができ、取り扱い性を高めることができる。
 (5)前記中心素線および前記外周素線が、銀めっき軟銅線であってもよい。
 内部導体を構成する中心素線、外周素線の材料として銀めっき軟銅線を用いることで、高い信頼性を有し、高周波特性に優れた同軸ケーブルとすることができる。
 (6)前記シールド導体は横巻であってもよい。
 シールド導体を横巻とすることで、編組構造とした場合よりも柔軟な同軸ケーブルとすることができ、耐屈曲性を高めることができる。
 (7)前記内部導体の前記外接円と、隣接する2本の前記外周素線の表面とで囲まれた領域である第3領域の面積の合計の、前記内部導体の前記外接円の面積に対する割合が7%以上14%以下であってもよい。
 内部導体の外接円と、隣接する2本の外周素線の表面とで囲まれた領域である第3領域の面積の合計の、内部導体の外接円の面積に対する割合を第3領域の面積割合とする。
 上記第3領域の面積割合は、内部導体が有する外表面の凹凸の程度の指標となっている。また、第3領域の面積割合は、内部導体の圧縮の程度の指標にもなっており、圧縮の程度が高いほど小さくなる。
 第3領域の面積割合を14%以下とすることで、内部導体が十分に圧縮されており、内部導体の外表面に生じる凹凸を抑制できる。このため、内部導体の外周に絶縁体を配置した際に、内部導体と絶縁体との間における空隙の発生を抑制しつつ、空隙の量のばらつきを抑制できる。その結果、同軸ケーブルの有する静電容量のばらつきを抑制し、スキューのばらつきを抑制できる。
 ただし、内部導体を過度に圧縮しようとすると工程数が増え、生産性が低下する恐れがある。そこで、第3領域の面積割合は、7%以上であることが好ましい。第3領域の面積割合を7%以上とすることで、生産性を高めることができる。
 また、第3領域の面積割合を7%以上とすることで、内部導体の表面に適度な凹凸を残すことができるため、内部導体の外周に絶縁体を配置した際に、内部導体と絶縁体との密着性を高められる。
 (8)前記絶縁体がフッ素樹脂を含んでいてもよい。
 絶縁体の材料としてフッ素樹脂を用いることで、同軸ケーブルについて、耐熱性および耐油性を備えつつ、曲げやすくできる。
 [本開示の実施形態の詳細]
 本開示の一実施形態(以下「本実施形態」と記す)に係る同軸ケーブルの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
(同軸ケーブル)
 図1に、本実施形態の同軸ケーブルの長手方向と垂直な断面の一構成例を示す。図2に内部導体11を拡大した図を示す。また、図3に図1の領域Aを拡大した図を示す。
 図1に示す様に、本実施形態の同軸ケーブル10は、内部導体11と、内部導体11の外周を覆う絶縁体14と、絶縁体14の外周を覆うシールド導体15とを備えることができる。
 内部導体11は、1本の中心素線12と、中心素線12の周りに配置された6本の外周素線13とを有する。内部導体11は、1本の中心素線12と、6本の外周素線13とを撚り合わせた撚線とすることができる。
 各部材について以下に説明する。
(1)内部導体
(1-1)材料について
 内部導体11を構成する中心素線12および外周素線13の材料は特に限定されないが、銀めっき軟銅線を好適に用いることができる。
 内部導体11を構成する中心素線12、外周素線13の材料として銀めっき軟銅線を用いることで、高い信頼性を有し、高周波特性に優れた同軸ケーブルとすることができる。
(1-2)構造について
 内部導体11は、外周側から圧縮した圧縮導体とすることができる。図1、図2では、各素線を模式的に円形状で示しているが、上述のように圧縮しているため、真円ではなく圧縮され歪んだ形状を有する。
 同軸ケーブルの遅延時間は、一般に、内部導体の外径、絶縁体の外径、同軸ケーブルの有する静電容量の3つのパラメータにより決定される。そして、同軸ケーブルのスキューのばらつきを抑制するためには、同軸ケーブルの遅延時間のばらつきを抑制する必要がある。しかし、同軸ケーブルについての規格等の制約により内部導体の外径および絶縁体の外径には調整の余地が少ないため、スキューのばらつきを小さくするには同軸ケーブルの有する静電容量のばらつきを抑制することが考えられる。
 内部導体11として撚線を用いる場合、同軸ケーブルの有する静電容量のばらつきは、撚線の表面の凹凸により、内部導体11と絶縁体14との間にランダムに空隙が生じることに起因する。そこで、係る空隙の発生を抑制しつつ、生じる空隙の量のばらつきを抑制することで同軸ケーブルの有する静電容量のばらつきを抑制できる。
 そして、内部導体11として撚線の圧縮導体を用いることで、内部導体の外表面に生じる凹凸を抑制できる。このため、内部導体11と絶縁体14との間における空隙の発生を抑制しつつ、生じる空隙の量のばらつきを抑制できる。また、上述のように内部導体11として撚線を用いることで、耐屈曲性に優れた同軸ケーブルとすることができる。
 内部導体11の外接円C11の外径D11は特に限定されないが、0.1mm以上0.4mm以下であることが好ましく、0.15mm以上0.3mm以下であることがより好ましい。内部導体11の外接円C11の外径D11を0.4mm以下とすることで同軸ケーブルの外径を抑制し、取り扱い性に優れた同軸ケーブルにできる。また、内部導体11の外接円C11の外径D11を0.1mm以上とすることで信頼性の高い同軸ケーブルにできる。
 なお、内部導体11の外接円C11の外径D11は、内部導体11の外径に相当する。
(1-2-1)第1領域の面積割合
 ここで、同軸ケーブル10の長手方向と垂直な断面において、中心素線12と、隣接する2本の外周素線13との間に形成される空隙である第1領域21(図2を参照)の面積の合計の、内部導体11の外接円C11の面積に対する割合を第1領域の面積割合とする。なお、第1領域21の面積、および外接円C11の面積は、上述のように同軸ケーブル10の長手方向と垂直な断面において求められる面積である。また、外接円C11の面積は、外接円C11の外径D11から算出される円の面積である。本実施形態の同軸ケーブルにおいては、第1領域の面積割合が0.5%以上2.0%以下であることが好ましく、0.6%以上1.9%以下であることがより好ましい。
 図2に示したように、中心素線12と、隣接する2本の外周素線131、132との間に形成される空隙を第1領域21とする。内部導体11は、係る第1領域21を中心素線12の周方向に沿って6か所有しており、6か所の第1領域21の面積の合計が上記第1領域21の面積の合計になる。
 そして、上記第1領域の面積割合は、以下の式(1)により算出できる。
(第1領域の面積割合)=(第1領域の面積の合計)÷(外接円C11の面積)×100・・・(1)
 上記第1領域の面積割合を2.0%以下とすることで、内部導体11が十分に圧縮されており、内部導体11の外表面に生じる凹凸を抑制できる。このため、内部導体11の外周に絶縁体14を配置した際に、内部導体11と絶縁体14との間における空隙の発生を抑制しつつ、空隙の量のばらつきを抑制できる。その結果、同軸ケーブルの有する静電容量のばらつきを抑制し、スキューのばらつきを抑制できる。
 ただし、内部導体11を過度に圧縮しようとすると、複数の工程が必要となり、生産性が低下する恐れがある。このため、第1領域の面積割合は、0.5%以上であることが好ましい。第1領域の面積割合を0.5%以上とすることで生産性を高めることができる。
(1-2-2)第2領域の面積割合
 隣接する2本の外周素線131、132の表面と、絶縁体14の表面とで形成される空隙である第2領域31(図3を参照)の面積の合計の、内部導体11の外接円C11の面積に対する割合を第2領域の面積割合とする。なお、第2領域31の面積は、同軸ケーブル10の長手方向と垂直な断面において求められる面積である。本実施形態の同軸ケーブルにおいては、第2領域の面積割合が2.0%以上5.0%以下であることが好ましく、2.5%以上4.5%以下であることがより好ましい。
 図1の領域Aを拡大した図である図3に示したように、隣接する2本の外周素線131、132の表面と、絶縁体14とで形成される空隙を第2領域31とする。内部導体11は、係る第2領域を内部導体11の周方向に沿って6か所有しており、6か所の第2領域31の面積の合計が上記第2領域31の面積の合計になる。
 そして、上記第2領域の面積割合は、以下の式(2)により算出できる。
(第2領域の面積割合)=(第2領域の面積の合計)÷(外接円C11の面積)×100・・・(2)
 第2領域の面積割合は、内部導体11の表面の凹凸に絶縁体14を充填している程度を示している。このため、第2領域の面積割合を5.0%以下とすることで、内部導体11と、絶縁体14との間の空隙の量を十分に抑制していることを示している。その結果、同軸ケーブルの有する静電容量のばらつきを抑制し、スキューのばらつきを抑制できる。
 ただし、内部導体11の表面の凹凸に絶縁体14を完全に充填することは困難である。このため、第2領域の面積割合は2.0%以上であることが好ましい。第2領域の面積割合を2.0%以上とすることで生産性を高めることができる。
(1-2-3)第3領域の面積割合
 内部導体11の外接円C11と、隣接する2本の外周素線13の表面とで囲まれた領域である第3領域の面積の合計の、内部導体11の外接円C11の面積に対する割合を第3領域の面積割合とする。なお、第3領域22の面積は、同軸ケーブル10の長手方向と垂直な断面において求められる面積である。本実施形態の同軸ケーブルにおいては、第3領域の面積割合が7%以上14%以下であることが好ましく、9%以上13.5%以下であることがより好ましい。
 図2に示したように、内部導体11の外接円C11と、隣接する2本の外周素線131、132の表面とで囲まれた領域を第3領域22とする。内部導体11は、係る第3領域を内部導体11の周方向に沿って6か所有しており、6か所の第3領域22の面積の合計が上記第3領域22の面積の合計になる。
 そして、上記第3領域の面積割合は、以下の式(3)により算出できる。
(第3領域の面積割合)=(第3領域の面積の合計)÷(外接円C11の面積)×100・・・(3)
 第3領域22の面積割合は、内部導体11が有する外表面の凹凸の程度の指標となっている。また、第3領域22の面積割合は、内部導体11の圧縮の程度の指標にもなっており、圧縮の程度が高いほど小さくなる。
 第3領域の面積割合を14%以下とすることで、内部導体11が十分に圧縮されており、内部導体11の外表面に生じる凹凸を抑制できる。このため、内部導体11の外周に絶縁体14を配置した際に、内部導体11と絶縁体14との間における空隙の発生を抑制しつつ、空隙の量のばらつきを抑制できる。その結果、同軸ケーブルの有する静電容量のばらつきを抑制し、スキューのばらつきを抑制できる。
 ただし、内部導体11を過度に圧縮しようとすると工程数が増え、生産性が低下する恐れがある。そこで、第3領域の面積割合は、7%以上であることが好ましい。第3領域の面積割合を7%以上とすることで、生産性を高めることができる。
 また、第3領域の面積割合を7%以上とすることで、内部導体の表面に適度な凹凸を残すことができるため、内部導体11の外周に絶縁体14を配置した際に、内部導体11と絶縁体14との密着性を高められる。
(1-2-4)内部導体の外接円の円周に占める、外接円の円周と内部導体とが接する接触部の長さの合計の割合
 内部導体11の外接円C11の円周に占める、外接円C11の円周と内部導体11とが接する接触部23の長さの合計の割合が40%以上70%以下であることが好ましい。なお、接触部23の長さは、同軸ケーブル10の長手方向と垂直な断面において求められる長さである。
 例えば図2に示すように、接触部23は、内部導体11の外接円C11の円周と、内部導体11とが接する部分を意味する。内部導体11は、係る接触部を外接円C11の周方向に沿って6か所有している。このため、係る6か所の接触部23の長さの合計が、外接円C11の円周と内部導体11が接する接触部23の長さの合計(以下、「接触部の長さの合計」とも記載する)となる。
 上記内部導体の外接円の円周に占める、外接円の円周と内部導体とが接する接触部の長さの合計の割合(以下、「接触部の割合」とも記載する)は、以下の式(4)により算出できる。
 (接触部の割合)=(接触部の長さの合計)÷(外接円C11の円周長さ)×100・・・(4)
 内部導体11を完全に圧縮すると、長手方向と垂直な断面が円形状となり、外接円C11と完全に重なることになる。すなわち上記接触部の割合は100%になる。
 ただし、既述のように内部導体11を過度に圧縮しようとすると工程数が増え、生産性が低下する恐れがある。そこで、上記接触部の割合は、70%以下であることが好ましい。接触部の割合を70%以下とすることで、生産性を高めることができる。
 また、接触部の割合を40%以上とすることで、内部導体を十分に圧縮していることを意味する。このため、内部導体11の外周に絶縁体14を配置した場合に、内部導体11と、絶縁体14との間の空隙の量を十分に抑制できる。その結果、同軸ケーブルの有する静電容量のばらつきを抑制し、スキューのばらつきを抑制できる。
(2)絶縁体
(2-1)材料について
 絶縁体14の材料は特に限定されないが、例えばフッ素樹脂を用いることができる。すなわち、絶縁体14はフッ素樹脂を含むことができる。
 絶縁体14の材料としてフッ素樹脂を用いることで耐熱性および耐油性を備えつつ、曲げやすくできる。
 フッ素樹脂としては、例えば、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、フッ化ビニリデン樹脂(PVDF)等から選択された1種類以上を用いることができる。
 絶縁体14は、例えば引き落とし成形により、内部導体11に被覆できる。
(2-2)外径について
 絶縁体14の外径D14は特に限定されないが、0.25mm以上1.5mm以下であることが好ましく、0.4mm以上1.2mm以下であることがより好ましい。
 絶縁体14の外径D14を0.25mm以上とすることで耐屈曲性を特に高めることができる。また、絶縁体14の外径D14を1.5mm以下とすることで、細径の同軸ケーブルとすることができ、取り扱い性を高めることができる。
(3)シールド導体
 シールド導体15は、絶縁体14の外周にシールド素線151を横巻、または編組構造で配置した構造を有する。シールド導体15は横巻であることが好ましい。シールド導体15を横巻とすることで、編組構造とした場合よりも柔軟な同軸ケーブルとすることができ、耐屈曲性を高めることができる。
 シールド導体15が有するシールド素線151の材料としては、銅や、アルミニウム、銅合金等を用いることができる。このため、シールド素線151の材料としては、硬銅線等を用いることもできる。シールド素線151は、表面に銀やスズのめっき処理が施されていてもよい。このため、シールド導体の金属線の材料としては、例えば銀めっき銅合金や、錫めっき銅合金等を用いることもできる。
 シールド導体15は、例えば銅蒸着ポリエステルテープ等を絶縁体14の外表面に重ね巻することで形成できる。
(4)外被
 同軸ケーブル10は、シールド導体15の外周に外被16を備えることもできる。
 外被16の材料は特に限定されないが、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)などのフッ素樹脂や、ポリエチレンテレフタレート(PET)などのポリエステル樹脂等の樹脂を用いることができる。
 例えば、外被16は、シールド導体15の外周にポリエステルテープ等を巻くことで形成できる。
 以上、実施形態について詳述したが、特定の実施形態に限定されるものではなく、請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
 以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
 まず、以下の実験例において作製した同軸ケーブルの評価方法について説明する。
(1)内部導体11の外接円C11の外径D11、絶縁体の外径D14
 内部導体11の外接円C11の外径D11は、同軸ケーブルの長手方向と垂直な任意の一断面について、マイクロスコープで観察し、内部導体11の外接円C11を描き、その直径を測定することで求めた。なお、内部導体11の外接円C11の外径D11は、内部導体11の外径に相当する。
 絶縁体14の外径D14についても、上記断面において、マイクロスコープで観察し、絶縁体14の外接円を描き、その直径を測定することで求めた。
 以下の第1領域の面積割合、第2領域の面積割合、第3領域の面積割合、接触部の割合も、同じ断面で測定している。
(2)第1領域の面積割合、第2領域の面積割合、第3領域の面積割合、接触部の割合
 以下の実験例において作製した同軸ケーブルの長手方向と垂直な任意の一断面について、マイクロスコープで観察し、第1領域の面積、第2領域の面積、第3領域の面積を測定した。そして、予め測定しておいた、内部導体11の外接円C11の外径D11から求めた外接円C11の面積に占める、第1領域の面積割合、第2領域の面積割合、第3領域の面積割合をそれぞれ算出した。
 また、観察画像中の、内部導体11の外接円C11の円周に占める、外接円C11の円周と内部導体11とが接する接触部の長さの合計を測定し、接触部の割合を算出した。
(3)スキューの最大値
 以下の実験例で作製した同軸ケーブルを1サンプルにつき2本用意した。そして、デジタルシリアルアナライザーで2本の所定長さの高周波同軸ケーブルに対して電気パルスを送り、1m当たりの遅延時間を計測した。
 10サンプルについての遅延時間の測定結果の中から、最大遅延時間から最小遅延時間を引いた値を求め、この値を「Skewの最大値」として表1に示す。
(4)屈曲試験
 図4に示すように、水平かつ互いに平行に配置された直径4mmの2本のマンドレル411、412の間に、評価を行う同軸ケーブル10を配置して挟み、同軸ケーブル10に対して鉛直下方に200gの荷重をかけた。係る状態で、同軸ケーブル10の上端を一方のマンドレル411の上側に当接するように水平方向に90°屈曲させた後、他方のマンドレル412の上側に当接するように水平方向に90°屈曲させることを繰り返した。
 そして、同軸ケーブルが破断するまでの屈曲回数をカウントした。なお、同軸ケーブルを左側に曲げてから、右側に曲げた後、左側に戻ってくるまでを屈曲回数1回とする。係る屈曲試験の結果である屈曲回数は、多いほど耐屈曲性に優れることを意味する。
 以下に各実験例における同軸ケーブルを説明する。実験例1、実験例2が実施例、実験例3が比較例となる。
(実験例1)
 以下の手順により、同軸ケーブルを作製した。
 銀めっき軟銅線であり、素線径が0.102mmである素線を7本撚り合わせた撚線を用意した。そして、係る撚線を圧縮した圧縮導体を内部導体11とした。
 なお、撚線は、1本の中心素線の周りに6本の外周素線が配置された構成を有している。中心素線と、外周素線とは同じ素線を用いている。
 内部導体11の外周にFEP製の絶縁体14を配置した。絶縁体14の外径が0.79mmとなるように、絶縁体14の厚さを調整した。
 次いで、絶縁体14の外周に錫めっき軟銅線を横巻で配置し、シールド導体を形成した。
 さらに、シールド導体15の外周にポリエステルテープを貼り付け、外被16を形成し、本実験例の同軸ケーブルを製造した。
 得られた同軸ケーブルについて既述の評価を行った。評価結果を表1に示す。また、内部導体の長手方向と垂直な断面の写真を図5に示す。
(実験例2)
 内部導体11について、撚線を圧縮する程度を変更した点以外は実験例1と同様にして同軸ケーブルを作製し評価を行った。
 結果を表1に示す。また、内部導体の長手方向と垂直な断面の写真を図6に示す。
(実験例3)
 内部導体11について圧縮していない撚線を用いた点以外は実験例1と同様にして同軸ケーブルを作製し評価を行った。
 結果を表1に示す。また、内部導体の長手方向と垂直な断面の写真を図7に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示した結果によると、第1領域の面積割合が0.5%以上2.0%以下、第2領域の面積割合が2.0%以上5.0%以下である実験例1、2の同軸ケーブルはSkewの最大値が、7.5ps/m以下であることを確認できた。すなわち、第1領域の面積割合等を充足しない実験例3の同軸ケーブルと比較してスキューのばらつきを抑制できることを確認できた。
 また、実験例1、2の同軸ケーブルは屈曲試験の結果も4500回以上であり、十分な耐屈曲性を有することを確認できた。
10         同軸ケーブル
11         内部導体
12         中心素線
13、131、132 外周素線
14         絶縁体
15         シールド導体
151        シールド素線
16         外被
21         第1領域
22         第3領域
23         接触部
31         第2領域
411、412    マンドレル
A          領域
C11        外接円
D11        外径
D14        外径

Claims (8)

  1.  同軸ケーブルであって、
     1本の中心素線と、前記中心素線の周りに配置された6本の外周素線とを撚り合わせた内部導体と、
     前記内部導体の外周を覆う絶縁体と、
     前記絶縁体の外周を覆うシールド導体を備え、
     前記同軸ケーブルの長手方向と垂直な断面において、
     前記中心素線と、隣接する2本の前記外周素線との間に形成される空隙である第1領域の面積の合計の、前記内部導体の外接円の面積に対する割合が、0.5%以上2.0%以下であり、
     隣接する2本の前記外周素線の表面と、前記絶縁体の表面とで形成される空隙である第2領域の面積の合計の、前記内部導体の前記外接円の面積に対する割合が2.0%以上5.0%以下である同軸ケーブル。
  2.  前記内部導体の前記外接円の円周に占める、前記外接円の円周と前記内部導体とが接する接触部の長さの合計の割合が40%以上70%以下である請求項1に記載の同軸ケーブル。
  3.  前記内部導体の前記外接円の外径が0.1mm以上0.4mm以下である請求項1または請求項2に記載の同軸ケーブル。
  4.  前記絶縁体の外径が0.25mm以上1.5mm以下である請求項1から請求項3のいずれか1項に記載の同軸ケーブル。
  5.  前記中心素線および前記外周素線が、銀めっき軟銅線である請求項1から請求項4のいずれか1項に記載の同軸ケーブル。
  6.  前記シールド導体は横巻である請求項1から請求項5のいずれか1項に記載の同軸ケーブル。
  7.  前記内部導体の前記外接円と、隣接する2本の前記外周素線の表面とで囲まれた領域である第3領域の面積の合計の、前記内部導体の前記外接円の面積に対する割合が7%以上14%以下である請求項1から請求項6のいずれか1項に記載の同軸ケーブル。
  8.  前記絶縁体がフッ素樹脂を含む請求項1から請求項7のいずれか1項に記載の同軸ケーブル。
PCT/JP2021/030219 2020-09-16 2021-08-18 同軸ケーブル WO2022059406A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/597,447 US11978573B2 (en) 2020-09-16 2021-08-18 Coaxial cable
CN202180004787.7A CN115066732A (zh) 2020-09-16 2021-08-18 同轴电缆
JP2021577002A JPWO2022059406A1 (ja) 2020-09-16 2021-08-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-155643 2020-09-16
JP2020155643 2020-09-16

Publications (1)

Publication Number Publication Date
WO2022059406A1 true WO2022059406A1 (ja) 2022-03-24

Family

ID=80776894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030219 WO2022059406A1 (ja) 2020-09-16 2021-08-18 同軸ケーブル

Country Status (5)

Country Link
US (1) US11978573B2 (ja)
JP (1) JPWO2022059406A1 (ja)
CN (1) CN115066732A (ja)
TW (1) TW202213395A (ja)
WO (1) WO2022059406A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214689B2 (ja) * 2020-08-28 2023-01-30 矢崎総業株式会社 圧縮撚線導体、圧縮撚線導体の製造方法、絶縁電線及びワイヤーハーネス

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126207A (en) * 1980-03-06 1981-10-03 Sumitomo Electric Industries Twisted conductor
JP2015130280A (ja) * 2014-01-08 2015-07-16 矢崎エナジーシステム株式会社 絶縁電線及びケーブル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408116B2 (en) * 2006-06-23 2008-08-05 Delphi Technologies, Inc. Insulated non-halogenated heavy metal free vehicular cable
JP2016076398A (ja) * 2014-10-07 2016-05-12 日立金属株式会社 同軸ケーブル
JP6409993B1 (ja) 2018-03-29 2018-10-24 日立金属株式会社 シールドケーブル
JP7140074B2 (ja) * 2019-08-27 2022-09-21 日立金属株式会社 同軸ケーブル
KR20210156736A (ko) * 2020-06-18 2021-12-27 히타치 긴조쿠 가부시키가이샤 동축 케이블 및 케이블 어셈블리

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126207A (en) * 1980-03-06 1981-10-03 Sumitomo Electric Industries Twisted conductor
JP2015130280A (ja) * 2014-01-08 2015-07-16 矢崎エナジーシステム株式会社 絶縁電線及びケーブル

Also Published As

Publication number Publication date
JPWO2022059406A1 (ja) 2022-03-24
TW202213395A (zh) 2022-04-01
US11978573B2 (en) 2024-05-07
US20220319742A1 (en) 2022-10-06
CN115066732A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
JP3678179B2 (ja) 2重横巻2心平行極細同軸ケーブル
JP5900275B2 (ja) 多対差動信号伝送用ケーブル
JP3900864B2 (ja) 2心平行極細同軸ケーブル
WO2022059406A1 (ja) 同軸ケーブル
JP6893496B2 (ja) 同軸ケーブル
CN111724929A (zh) 用于可动部的同轴电缆
JP6380872B1 (ja) 編組シールド付ケーブル
JP2017188225A (ja) Lanケーブル
US10825583B2 (en) Coaxial cable
JP4686931B2 (ja) 超極細同軸ケーブル
EP3813081A1 (en) Communication cable and wire harness
JP7340384B2 (ja) 屈曲性に優れる細径同軸ケーブル
JP6569923B2 (ja) 編組シールド付ケーブル
US20220028582A1 (en) High-frequency coaxial cable
WO2022138898A1 (ja) 通信ケーブルおよびその製造方法
WO2023090417A1 (ja) 通信ケーブルおよびその製造方法
WO2022131258A1 (ja) 通信ケーブルおよびその製造方法
JP7167505B2 (ja) 高周波ケーブル
JP2003031046A (ja) 蒸着テープ縦添え2心平行極細同軸ケーブル
JP2023180907A (ja) ケーブル
WO2015016232A1 (ja) 同軸ケーブル
JP2024061310A (ja) 通信ケーブルおよびその製造方法
JP2023009377A (ja) 信号伝送用ケーブル
JP2021111555A (ja) 同軸ケーブル
JP2003031045A (ja) 蒸着テープ縦添え2心平行極細同軸ケーブル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021577002

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21869093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21869093

Country of ref document: EP

Kind code of ref document: A1