WO2016195018A1 - 多芯ケーブル - Google Patents
多芯ケーブル Download PDFInfo
- Publication number
- WO2016195018A1 WO2016195018A1 PCT/JP2016/066407 JP2016066407W WO2016195018A1 WO 2016195018 A1 WO2016195018 A1 WO 2016195018A1 JP 2016066407 W JP2016066407 W JP 2016066407W WO 2016195018 A1 WO2016195018 A1 WO 2016195018A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire
- wires
- insulated
- coaxial
- pair
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/17—Protection against damage caused by external factors, e.g. sheaths or armouring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/20—Cables having a multiplicity of coaxial lines
Definitions
- the present invention relates to a multicore cable.
- a cable in which coaxial wires and insulated wires are mixedly arranged in the cable is known (for example, see Patent Document 1).
- An object of the present invention is to provide a multicore cable that can realize high-speed signal transmission and suppress crosstalk between insulated wires and crosstalk between differential transmission wire pairs.
- the multi-core cable of the present invention is At least two pairs of wires composed of two wires; At least two insulated wires; A sheath covering the periphery of the wire pair and the insulated wire, In the cross section perpendicular to the length direction of the cable, the wire pairs are arranged on the same circumference, Between each said electric wire pair, each insulated electric wire is arrange
- the present invention it is possible to provide a multicore cable capable of realizing high-speed differential signal transmission and suppressing crosstalk between insulated wires and crosstalk between a pair of differential transmission wires.
- FIG. 1 is a cross-sectional view showing an example of a multicore cable according to an embodiment of the present invention.
- 2A is a graph showing evaluation results of crosstalk between insulated wires constituting the multicore cable of FIG.
- FIG. 2B is a graph showing the evaluation result of crosstalk between insulated wires constituting the conventional multicore cable.
- FIG. 3A is a graph showing the evaluation result of crosstalk between coaxial wires constituting the multicore cable of FIG. 1.
- FIG. 3B is a graph showing the evaluation result of crosstalk between coaxial wires constituting the conventional multicore cable. It is sectional drawing of the multicore cable which concerns on the prior art example shown in FIG. 2B and FIG. 3B.
- FIG. 1 is a cross-sectional view showing an example of a multicore cable according to an embodiment of the present invention.
- 2A is a graph showing evaluation results of crosstalk between insulated wires constituting the multicore cable of FIG.
- FIG. 2B is a graph showing the evaluation result of crosstalk
- FIG. 5A is a cross-sectional view showing a modification of the multicore cable according to the embodiment of the present invention.
- FIG. 5B is a cross-sectional view showing another modification of the multicore cable according to the embodiment of the present invention.
- FIG. 5C is a cross-sectional view showing still another modification of the multicore cable according to the embodiment of the present invention.
- the multi-core cable according to the embodiment of the present invention is (1) At least two pairs of wires composed of two wires, At least two insulated wires; A sheath covering the periphery of the wire pair and the insulated wire, In the cross section perpendicular to the length direction of the cable, the wire pairs are arranged on the same circumference, Between each said electric wire pair, each insulated electric wire is arrange
- the insulated wire is arrange
- the collective shield layer which covers the said electric wire pair and the said insulated wire is provided inside the said sheath. According to this configuration, accurate high-speed signal transmission free from errors due to noise can be realized. In addition, there is no influence of noise on external equipment.
- a holding roll that covers the wire pair and the insulated wire is provided, It is preferable that the restraining winding is in contact with the wire pair and the insulated wire.
- a collective shield layer a braided or horizontally wound thin metal wire
- the jacket of the wire pair or the insulated layer of the insulated wire is broken and There is no risk of exposing the conductor. Therefore, it is possible to prevent the conductor exposed when the cable is used from coming into contact with the collective shield layer and sparking.
- an insulated wire different from the at least two insulated wires is disposed closer to the cable center side than the wire pair. According to this configuration, it is ensured that at least the wire pair and the insulated wire between them are arranged on the circumference, and skew can be suppressed.
- the wire pair is integrally covered with a shielding layer in the wire pair. Since the noise is not applied to the differential transmission signal by the shielding layer, high-speed signal transmission can be realized.
- the said electric wire pair is a two-core parallel electric wire, and each electric wire which comprises the said two-core parallel electric wire is parallel along the circumferential direction of the said multi-core cable. According to this configuration, signal attenuation, differential signal skew, and crosstalk can be reduced.
- each of the two electric wires constituting the electric wire pair is a coaxial electric wire. Since each line of the coaxial cable is shielded, high-speed signal transmission can be realized without adding noise to the differential transmission signal.
- the coaxial electric wires are arranged in parallel along the circumferential direction of the multicore cable. According to this configuration, signal attenuation, differential signal skew, and crosstalk can be reduced.
- the multi-core cable according to the present invention has a plurality of wire pairs and a plurality of insulated wires.
- the wire pair is used to transmit a differential transmission signal.
- the multi-core cable 1 according to the present embodiment includes a plurality of coaxial cables 11 (differential transmission) for high-speed signal transmission inside an outer jacket 30 (an example of a sheath) that is an outermost layer.
- This multi-core cable 1 contains two coaxial cables 11 in a set so as to be suitable for differential transmission.
- four pairs of a coaxial cable pair 10A, a coaxial cable pair 10B, a coaxial cable pair 10C, and a coaxial cable pair 10D are accommodated as a coaxial cable pair composed of a pair of coaxial cables 11. ing.
- the coaxial electric wires 11 that are paired with each other are arranged close to each other.
- the coaxial electric wires 11 which comprise a pair are not twisted.
- Each coaxial cable 11 has a coaxial structure in which a central conductor 12 is covered with an insulator 13, an outer conductor 14 is arranged on the outer periphery of the insulator 13, and the outer conductor 14 is covered with a jacket 15. .
- the coaxial cable 11 is preferably thinner than AWG (American Wire Gauge) 28 in order to perform high-speed digital transmission.
- AWG 28 to 40 thin coaxial cables (conductor cross-sectional area 0) 098 mm 2 to 0.004 mm 2 ).
- the central conductor 12 for example, a single wire of an annealed copper wire or a copper alloy wire (which may be tin-plated or silver-plated) or a twisted wire in which a plurality of wires are twisted is used.
- a stranded wire obtained by twisting tinned annealed copper wires can be used as the central conductor 12.
- the outer diameter of the center conductor 12 is, for example, 0.09 mm to 0.4 mm.
- the insulator 13 includes, for example, a fluororesin such as polyethylene, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-ethylene copolymer (ETFE), polytetrafluoroethylene (PFA), or the like. Methylpentene is used, and the insulator 13 is formed by extruding such a resin material around the center conductor 12.
- the outer diameter of the insulator 13 is, for example, 0.2 mm to 1.0 mm.
- the outer conductor 14 is formed, for example, by winding a plurality of fine metal wires on the outer periphery of the insulator 13 in a horizontal manner (spirally wound).
- a thin metal wire an annealed copper wire or an alloy wire can be used, and it may be plated.
- the outer conductor 14 can be wound horizontally, for example, with a tinned annealed copper wire at a winding angle (angle with respect to the central axis of the coaxial cable 11) of, for example, 5 degrees or more and 10 degrees or less.
- the outer jacket 15 is formed by extrusion-coating a fluororesin such as polyethylene, polyvinyl chloride (PVC), FEP or the like on the outer periphery of the outer conductor 14 or winding a resin tape (for example, polyethylene terephthalate) around the outer conductor 14. It is formed by that.
- the outer diameter of the jacket 15 is, for example, 0.3 mm to 1.2 mm.
- the multi-core cable 1 accommodates a plurality (seven in this example) of insulated wires 21.
- some of the plurality (seven in this example) of insulated wires 21 (hereinafter referred to as first insulated wires 21A) are respectively disposed between the coaxial wire pairs 10A to 10D.
- the first insulated wire 21A is arranged in contact with one coaxial wire 11 of each coaxial wire pair 10A to 10D.
- a plurality of insulated wires 21 (hereinafter referred to as second insulated wires 21B) different from the first insulated wires 21A are formed by the coaxial wire pairs 10A to 10D and the first insulated wires 21A. Located inside the circle.
- the insulated wires 21 ⁇ / b> A and 21 ⁇ / b> B are both wires in which the conductor 22 is covered with the jacket 23.
- the conductor 22 is formed from a single wire or a stranded wire.
- the outer diameter of the conductor 22 is, for example, 0.15 mm to 0.8 mm.
- a fluororesin such as polyethylene, polyvinyl chloride, FEP, etc.
- the outer diameter of the jacket 23 is, for example, 0.25 mm to 1.2 mm. As shown in FIG.
- the first insulated wire 21 ⁇ / b> A has a smaller diameter than the second insulated wire 21 ⁇ / b> B, but depending on the outer diameter and number of the coaxial wires 11 included in the multicore cable 1, The outer diameter and number of the insulated wires 21A and 21B can be changed as appropriate.
- the multi-core cable 1 having four pairs of coaxial wires 10A to 10D and a plurality of insulated wires 21A and 21B formed by a set of two coaxial wires 11, a cross section perpendicular to the length direction of the cable (FIG. 1), four pairs of coaxial electric wires 10A to 10D are arranged on the same circumference. It is preferable that the center conductor 12 of the coaxial cable 11 is disposed on the circumference. The center conductor 12 is allowed to slightly deviate from the circumference due to manufacturing errors and movement of the electric wire in use. In addition, the circle in which the coaxial cable 11 is disposed is allowed to be slightly elliptical.
- the first insulated wires 21A are arranged one by one between the four pairs of coaxial wires 10A to 10D. Each first insulated wire 21A is arranged in contact with the coaxial wire 11 of adjacent coaxial wire pairs 10A to 10D, that is, one coaxial wire 11 of each of the coaxial wire pairs 10A to 10D. It is preferable that the distance from the center of the multicore cable 1 to each insulated wire 21A in the cross section of FIG. 1 is the same.
- a plurality of second insulated wires 21B are arranged inside a circle formed by the coaxial wire pairs 10A to 10D and the first insulated wires 21A.
- the second insulated wire 21B ensures that the coaxial wire pairs 10A to 10D and the first insulated wire 21A between them are arranged on the same circumference, thereby suppressing skew.
- a tensile strength fiber 31 made of a large number of aramid fibers and a filler 32 made of a suf yarn are arranged.
- the coaxial cables 11 constituting each of the coaxial cable pairs 10A to 10D are not twisted together, and the four pairs of coaxial cables 10A to 10D and the first and second insulated wires 21A and 21B are Together with the tensile strength fibers 31 and the like, they are twisted together and assembled together (so-called layer twist method).
- layer twist method the coaxial wire pair is configured by a so-called twisted pair method in which the coaxial wires are twisted together as in the prior art, the crosstalk between the coaxial wires 11 is likely to increase.
- a restraining winding 41 is wound around the coaxial wire pairs 10A to 10D and the insulated wires 21A and 21B.
- the coaxial wire pairs 10A to 10D and the insulated wires 21A and 21B are covered with the collective shield layer 42 through the restraining winding 41 at the periphery thereof.
- the outer peripheral side of the collective shield layer 42 is covered with an outer cover 30.
- a conductive resin tape is used as the restraining roll 41.
- the resin tape constituting the conductive resin tape is a fluororesin such as polytetrafluoroethylene (PTFE) resin having excellent heat resistance and abrasion resistance, a polyester resin such as polyethylene terephthalate (PET) resin, or polyethylene ( PE) or the like.
- the conductive resin tape used as the restraining roll 41 is mixed so that a conductive material such as carbon is dispersed in the resin constituting the resin tape so as to have conductivity.
- the restraining roll 41 is formed in a film shape having a predetermined thickness.
- the winding direction of the restraining winding 41 may be the same direction as the twist direction when the coaxial wire pairs 10A to 10D and the insulated wires 21A and 21B are gathered together, or may be in the opposite direction. Note that a metal tape made of copper foil, aluminum foil, or the like may be used as the hold-down winding 41.
- the restraining winding 41 is a metal tape, it is difficult to be affected by noise from or to an external device (external device) of the multicore cable 1. Further, if the holding winding 41 is a conductive tape, the signal attenuation can be reduced.
- the collective shield layer 42 is configured by horizontally winding or braiding metal fine wires.
- the collective shield layer 42 is configured by braiding tin-plated annealed copper wire having an outer diameter of 0.03 mm to 0.08 mm, for example. Since the collective shield layer 42 does not cause noise on signals propagating through the coaxial wire pairs 10A to 10D, accurate high-speed signal transmission without error due to the influence of noise is realized. In addition, there is no influence of noise on external equipment.
- the jacket 30 is made of, for example, polyvinyl chloride or polyolefin resin. The outer diameter of the jacket 30 is, for example, 2.0 mm to 6.0 mm.
- a plurality of (three in this example) second insulated wires 21B are arranged at the center of the cross section of the cable 1.
- four pairs of coaxial wires 10A to 10D are arranged on the same circumference around the second insulated wire 21B.
- one first insulated wire 21A is arranged on the same circumference as the coaxial wire pairs 10A to 10D so as to be in contact with the coaxial wire 11 between the coaxial wire pairs 10A to 10D.
- the tensile strength fiber 31 or the filler 32 is disposed in the gap between the coaxial wire pairs 10A to 10D and the insulated wires 21A and 21B.
- the coaxial wire pairs 10A to 10D and the insulated wires 21A and 21B are twisted together with the tensile strength fiber 31 or the filler 32 together.
- the restraining winding 41 is wound around what has been twisted in this manner, and the outer periphery thereof is covered with the collective shield layer 42.
- the outer cover 30 is extruded and covered on the outer periphery of the collective shield layer 42.
- a differential transmission signal can be transmitted by each of the coaxial wire pairs 10A to 10D.
- the insulated wire 21A is disposed between the coaxial wire pairs 10A to 10D arranged on the same circumference, the crosstalk between the insulated wires 21A and the differential transmission wire pair (coaxial wire pairs 10A to 10D). ) Can be suppressed.
- the coaxial wire pairs 10A to 10D are separated from each other and the distance is stabilized, and crosstalk can be further suppressed.
- Example 1 As Example 1 which is an example, an evaluation test of crosstalk between insulated wires and between coaxial wire pairs was performed using the multicore cable shown in FIG. In the evaluation test, three multicore cables shown in FIG. 1 were prepared, and crosstalk was evaluated for each cable. The results are shown in FIGS. 2A and 3A.
- Example 2 which is a comparative example, a multi-core cable including a plurality of coaxial cable pairs and a plurality of insulated cables, in which insulated cables are not arranged between adjacent coaxial cable pairs. Using this, an evaluation test of crosstalk between insulated wires and between coaxial wire pairs was performed. In the evaluation test, three multicore cables shown in FIG. 4 were prepared, and crosstalk was evaluated for each cable.
- FIGS. 2B and 3B The results are shown in FIGS. 2B and 3B.
- 4 is a cross-sectional view of the multicore cable 100 according to Example 2 (comparative example) shown in FIGS. 2B and 3B.
- the insulated wire 121 is not disposed between the plurality of coaxial wire pairs 110A to 110D disposed on the same circumference.
- the insulated wire 121 is accommodated inside the circumference formed by the coaxial wire pairs 110A to 110D.
- Example 1 the crosstalk between the insulated wires was about ⁇ 30 to ⁇ 50 dB in the frequency band of 100 MHz to 500 MHz.
- Example 2 the crosstalk between the insulated wires was about ⁇ 20 to ⁇ 40 dB in the same frequency band.
- Example 1 the crosstalk between the coaxial cable pairs was about ⁇ 50 to ⁇ 80 dB in the frequency band of 100 MHz to 500 MHz.
- Example 2 the crosstalk between the coaxial wire pairs was about ⁇ 30 to ⁇ 60 dB in the same frequency band.
- the number and arrangement of the coaxial wire pairs 10A to 11D and the insulated wires 21 in the multi-core cable 1 of the above embodiment are not limited to this embodiment. It is sufficient that at least two pairs of coaxial electric wires and at least two insulated wires are accommodated in the multicore cable.
- the multi-core cable can be arranged as in the modification shown in FIGS. 5A to 5C.
- a configuration may be adopted in which two first insulated wires 21A are arranged in parallel between the coaxial wire pairs 10A to 10D.
- These multicore cables 1A and 1B are used for applications that do not require consideration of crosstalk.
- the outer diameter of the first insulated wire 21A disposed between the coaxial wire pairs 10A to 10D may be larger than that of the coaxial wire 11.
- This large-diameter insulated wire 21A is a power supply line that supplies current, and there is no need to consider crosstalk with other wires.
- the thick-diameter insulated wire 21A has a center conductor located near the center of the multicore cable 1B in the cross section of FIG. 5B, but on the circumference where the coaxial wire pairs 10A to 10D are arranged. As long as the central conductor of the insulated wire 21 ⁇ / b> A is applied to this, the deviation is allowed. If the thick insulated wire 21 ⁇ / b> A is in contact with the adjacent coaxial wire 11 and the holding winding 41, it can be regarded as being on the same circumference as the coaxial wire 11. Further, as in the multi-core cable 1C shown in FIG.
- the second insulated wires 21B housed in the circle formed by the coaxial wire pairs 10A to 10D arranged on the same circumference are connected to the respective coaxial wires.
- a configuration may be adopted in which the electric wire pairs 10A to 10D are disposed between the pair of coaxial electric wires 11 constituting the electric wire pairs 10A to 10D.
- the coaxial wire pairs 10A to 10D configured by the pair of coaxial wires 11 are used as the differential signal transmission wire pairs included in the multicore cable 1.
- the present invention is not limited to this example.
- a wire pair for differential signal transmission high-speed signal transmission
- You may use the two-core parallel (Twinax) electric wire which made the pair and shielded the circumference
- the centers of the STPs are on the same circumference in the cross section of FIG.
- the wires constituting the two-core parallel wire are arranged side by side along the circumferential direction of the multi-core cable, similarly to the arrangement of the coaxial wire 11 shown in FIG. It is preferably layer-twisted with the two-core parallel wire and the insulated wire. As a result, the position of the wires constituting the multi-core cable is not easily displaced, and the signal attenuation, the differential signal skew, and the crosstalk can be reduced.
- the feature of the coaxial cable is that there is less risk of disconnection when the cable is repeatedly bent.
- a feature of the STP and the two-core parallel wire is that the skew is small.
- it is possible to determine the wire to be used for the differential signal transmission wire pair by taking advantage of each wire (simultaneous wire, STP, two-core parallel wire).
- Multi-core cable 10A to 10D Coaxial wire pair (an example of a wire pair)
- 11 Coaxial wire (an example of differential transmission wire)
- 12 Center conductor 13: Insulating layer 14: External conductor 15: Outer sheath 21: Insulated wire (21A: first insulated wire, 21B: second insulated wire)
- 22 Conductor 23: Outer jacket 30: Outer jacket (an example of a sheath)
Landscapes
- Communication Cables (AREA)
- Insulated Conductors (AREA)
Abstract
多芯ケーブル1は、2本の電線11から構成される電線対10A~10Dを少なくとも二対と、少なくとも2本の絶縁電線21と、電線対10A~10Dと絶縁電線21との周囲を覆うシース30と、を備えている。ケーブル1の長さ方向に垂直な断面において、電線対10A~10Dが同一円周上に配置され、各電線対10A~10Dの間において、各絶縁電線21が電線対10A~10Dの片方の電線11と接触して配置されている。
Description
本発明は、多芯ケーブルに関する。
多芯ケーブルとして、ケーブル内に同軸電線と絶縁電線とが混在して配置されたものが知られている(例えば、特許文献1参照)。
上記のような多芯ケーブルについては、さらなる高速信号伝送を実現するとともに、多芯ケーブル内に含まれる電線間のクロストークを最小限に抑えることが要求されている。
本発明は、高速信号伝送を実現できるとともに、絶縁電線間のクロストークおよび差動伝送電線対間のクロストークを抑制可能な多芯ケーブルを提供することを目的とする。
本発明の多芯ケーブルは、
2本の電線から構成される電線対を少なくとも二対と、
少なくとも2本の絶縁電線と、
前記電線対と前記絶縁電線との周囲を覆うシースと、を備え、
ケーブルの長さ方向に垂直な断面において、前記電線対が同一円周上に配置され、
各前記電線対の間において、各絶縁電線が前記電線対の片方の電線と接触して配置されている。
2本の電線から構成される電線対を少なくとも二対と、
少なくとも2本の絶縁電線と、
前記電線対と前記絶縁電線との周囲を覆うシースと、を備え、
ケーブルの長さ方向に垂直な断面において、前記電線対が同一円周上に配置され、
各前記電線対の間において、各絶縁電線が前記電線対の片方の電線と接触して配置されている。
本発明によれば、高速の差動信号伝送を実現できるとともに、絶縁電線間のクロストークおよび差動伝送電線対間のクロストークを抑制可能な多芯ケーブルを提供することができる。
[本願発明の実施形態の説明]
最初に本願発明の実施形態の内容を列記して説明する。
本願発明の実施形態に係る多芯ケーブルは、
(1)2本の電線から構成される電線対を少なくとも二対と、
少なくとも2本の絶縁電線と、
前記電線対と前記絶縁電線との周囲を覆うシースと、を備え、
ケーブルの長さ方向に垂直な断面において、前記電線対が同一円周上に配置され、
各前記電線対の間において、各絶縁電線が前記電線対の片方の電線と接触して配置されている。
この構成によれば、一つの電線対が差動伝送信号を伝送することができる。また、同一円周上に配置された電線対の間に、絶縁電線が配置されているため、絶縁電線間のクロストークおよび差動伝送電線対間のクロストークを抑制させることができる。さらに、絶縁電線が電線対(の片方の電線)と接触しているので、電線対同士が離れかつその距離が安定し、一層クロストークを抑制できる。
最初に本願発明の実施形態の内容を列記して説明する。
本願発明の実施形態に係る多芯ケーブルは、
(1)2本の電線から構成される電線対を少なくとも二対と、
少なくとも2本の絶縁電線と、
前記電線対と前記絶縁電線との周囲を覆うシースと、を備え、
ケーブルの長さ方向に垂直な断面において、前記電線対が同一円周上に配置され、
各前記電線対の間において、各絶縁電線が前記電線対の片方の電線と接触して配置されている。
この構成によれば、一つの電線対が差動伝送信号を伝送することができる。また、同一円周上に配置された電線対の間に、絶縁電線が配置されているため、絶縁電線間のクロストークおよび差動伝送電線対間のクロストークを抑制させることができる。さらに、絶縁電線が電線対(の片方の電線)と接触しているので、電線対同士が離れかつその距離が安定し、一層クロストークを抑制できる。
(2)前記シースの内側に、前記電線対および前記絶縁電線を覆う一括シールド層が設けられていることが好ましい。
この構成によれば、ノイズの影響によるエラーのない正確な高速信号伝送を実現することができる。また、外部の機器へノイズの影響を与えることもない。
この構成によれば、ノイズの影響によるエラーのない正確な高速信号伝送を実現することができる。また、外部の機器へノイズの影響を与えることもない。
(3)前記シースの内側に、前記電線対および前記絶縁電線を覆う抑え巻が設けられ、
前記抑え巻は、前記電線対および前記絶縁電線と接触していることが好ましい。
この構成によれば、電線対や絶縁電線の上に一括シールド層(金属細線を編組または横巻きしたもの)を付けるときに、電線対の外被や絶縁電線の絶縁層が破れて、その下の導体が露出するおそれがない。そのため、ケーブル使用時に露出された導体が一括シールド層と接触してスパークしてしまうことを防止することができる。
前記抑え巻は、前記電線対および前記絶縁電線と接触していることが好ましい。
この構成によれば、電線対や絶縁電線の上に一括シールド層(金属細線を編組または横巻きしたもの)を付けるときに、電線対の外被や絶縁電線の絶縁層が破れて、その下の導体が露出するおそれがない。そのため、ケーブル使用時に露出された導体が一括シールド層と接触してスパークしてしまうことを防止することができる。
(4)前記断面において、前記電線対よりもケーブル中心側に前記少なくとも2本の絶縁電線とは異なる絶縁電線が配置されていることが好ましい。
この構成によれば、少なくとも電線対とそれらの間の絶縁電線とを円周上に配置することが確保され、スキューを抑制することができる。
この構成によれば、少なくとも電線対とそれらの間の絶縁電線とを円周上に配置することが確保され、スキューを抑制することができる。
(5)前記電線対は、前記2本の電線が一体となって遮蔽層に覆われていることが好ましい。
遮蔽層により差動伝送信号にノイズが乗らないため、高速信号伝送を実現できる。
遮蔽層により差動伝送信号にノイズが乗らないため、高速信号伝送を実現できる。
(6)前記電線対が二芯平行電線であって、当該二芯平行電線を構成する各電線が前記多芯ケーブルの周方向に沿って並列していることが好ましい。
この構成によれば、信号の減衰量、差動信号のスキューおよびクロストークを小さくすることができる。
この構成によれば、信号の減衰量、差動信号のスキューおよびクロストークを小さくすることができる。
(7)前記電線対を構成する前記2本の電線はそれぞれ同軸電線であることが好ましい。
同軸電線は各線が遮蔽されているので差動伝送信号にノイズが乗らず高速信号伝送を実現できる。
同軸電線は各線が遮蔽されているので差動伝送信号にノイズが乗らず高速信号伝送を実現できる。
(8)各前記同軸電線が、前記多芯ケーブルの周方向に沿って並列していることが好ましい。
この構成によれば、信号の減衰量、差動信号のスキューおよびクロストークを小さくすることができる。
この構成によれば、信号の減衰量、差動信号のスキューおよびクロストークを小さくすることができる。
[本願発明の実施形態の詳細]
以下、本発明に係る多芯ケーブルの例を、図面を参照して説明する。本発明に係る多芯ケーブルは、複数本の電線対と複数本の絶縁電線を有する。電線対は差動伝送信号を伝送するのに使用される。
図1に示すように、本実施形態に係る多芯ケーブル1は、最外層である外被30(シースの一例)の内側に、高速信号伝送用である複数本の同軸電線11(差動伝送電線の一例)と、低速信号伝送用あるいは電力供給用の複数本(少なくとも2本)の絶縁電線21とを有している。
以下、本発明に係る多芯ケーブルの例を、図面を参照して説明する。本発明に係る多芯ケーブルは、複数本の電線対と複数本の絶縁電線を有する。電線対は差動伝送信号を伝送するのに使用される。
図1に示すように、本実施形態に係る多芯ケーブル1は、最外層である外被30(シースの一例)の内側に、高速信号伝送用である複数本の同軸電線11(差動伝送電線の一例)と、低速信号伝送用あるいは電力供給用の複数本(少なくとも2本)の絶縁電線21とを有している。
この多芯ケーブル1は、差動伝送用途に適したものとするために、同軸電線11が2本一組で収容されている。本例の多芯ケーブル1内には、一対の同軸電線11から構成される同軸電線対として、同軸電線対10A、同軸電線対10B、同軸電線対10Cおよび同軸電線対10Dの四対が収容されている。それぞれの対となった同軸電線11同士(例えば同軸電線対10Aの同軸電線11同士)は近接して配置されていることが好ましい。なお、一対を構成する同軸電線11同士は撚られていないことが好ましい。
各同軸電線11は、中心導体12が絶縁体13で覆われ、絶縁体13の外周に外部導体14が配され、外部導体14の周囲が外被15で覆われた同軸構造を有している。同軸電線11は、高速デジタル伝送を行うために、AWG(American Wire Gauge)28番より細いものであることが好ましく、本例では、例えばAWG28番~40番の細径同軸電線(導体断面積0.098mm2~0.004mm2)を用いている。
中心導体12としては、例えば、軟銅線や銅合金線(錫メッキや銀メッキがされていてもよい)の単線、または複数本撚った撚線が用いられる。本例においては、中心導体12として、例えば錫メッキ軟銅線を撚り合わせた撚線を用いることができる。中心導体12の外径は、例えば0.09mm~0.4mmである。
絶縁体13には、例えば、ポリエチレンやテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)、ポリテトラフルオロエチレン(PFA)等からなるフッ素樹脂やポリメチルペンテンが用いられ、絶縁体13は、このような樹脂材料を中心導体12の周囲に押出成形することにより形成される。絶縁体13の外径は、例えば0.2mm~1.0mmである。
外部導体14は、例えば、複数本の金属細線を絶縁体13の外周に横巻きで配して(螺旋状に巻き付けて)形成される。金属細線としては、軟銅線や合金線を用いることができ、メッキされていてもよい。外部導体14は、例えば錫メッキ軟銅線を巻き角度(同軸電線11の中心軸線に対する角度)が例えば5度以上10度以下で横巻きすることができる。錫メッキ軟銅線の巻き角度を5度以上10度以下の範囲としておくことで、同軸電線11における減衰量の増加を十分に抑制することができる。
また、外被15は、ポリエチレンやポリ塩化ビニル(PVC)やFEP等のフッ素樹脂を外部導体14の外周に押出被覆することで、または樹脂テープ(例えばポリエチレンテレフタレート)を外部導体14の外周に巻き付けることで形成されている。外被15の外径は、例えば0.3mm~1.2mmである。
また、多芯ケーブル1には、複数本(本例では、7本)の絶縁電線21が収容されている。本実施形態においては、複数本(本例では、7本)の絶縁電線21のうちの一部(以下、第一の絶縁電線21Aとする)は、同軸電線対10A~10D同士の間にそれぞれ配置されている。第一の絶縁電線21Aは、各同軸電線対10A~10Dの片方の同軸電線11と接触して配置されている。また、第一の絶縁電線21Aとは別の複数本の絶縁電線21(以下、第二の絶縁電線21Bとする)は、同軸電線対10A~10Dと第一の絶縁電線21Aとで形成される円の内部に配置されている。
絶縁電線21A,21Bは、何れも導体22を外被23によって覆った電線である。
導体22は、単線または撚線から形成されている。導体22の外径は、例えば0.15mm~0.8mmである。また、導体22を覆う外被23の材料としては、ポリエチレンやポリ塩化ビニルやFEP等のフッ素樹脂を用いることが好ましく、外被23の外径は、例えば0.25mm~1.2mmである。図1に示されるように、第一の絶縁電線21Aは第二の絶縁電線21Bよりも小径であるが、多芯ケーブル1に含まれる同軸電線11の外径や数により、第一および第二の絶縁電線21A,21Bの外径や数は適宜変更可能である。
導体22は、単線または撚線から形成されている。導体22の外径は、例えば0.15mm~0.8mmである。また、導体22を覆う外被23の材料としては、ポリエチレンやポリ塩化ビニルやFEP等のフッ素樹脂を用いることが好ましく、外被23の外径は、例えば0.25mm~1.2mmである。図1に示されるように、第一の絶縁電線21Aは第二の絶縁電線21Bよりも小径であるが、多芯ケーブル1に含まれる同軸電線11の外径や数により、第一および第二の絶縁電線21A,21Bの外径や数は適宜変更可能である。
2本一組の同軸電線11により構成された四対の同軸電線対10A~10Dと複数本の絶縁電線21A,21Bとを有する多芯ケーブル1では、ケーブルの長さ方向に垂直な断面(図1の断面)において、四対の同軸電線対10A~10Dが同一円周上に配置されている。同軸電線11はその中心導体12が前記の円周上に配置されることが好ましい。製造上の誤差や使用中の電線の動きにより中心導体12が前記の円周上から少しずれることは許容される。また、同軸電線11が配置される前記の円が少し楕円形状となることも許容される。四対の同軸電線対10A~10Dの間には、1本ずつ第一の絶縁電線21Aが配置されている。各第一の絶縁電線21Aは、隣り合う同軸電線対10A~10Dの同軸電線11、すなわち各同軸電線対10A~10Dの片方の同軸電線11と接触して配置されている。図1の断面における多芯ケーブル1の中心から各絶縁電線21Aまでの距離が同じであることが好ましい。
同軸電線対10A~10Dと第一の絶縁電線21Aとで形成される円の内部には、複数本の第二の絶縁電線21Bが配置されている。第二の絶縁電線21Bにより、同軸電線対10A~10Dとそれらの間の第一の絶縁電線21Aとを同一円周上に配置することが確保され、スキューを抑制することができる。
このように配置された同軸電線対10A~10Dや絶縁電線21A,21Bの隙間には、多数本のアラミド繊維からなる抗張力繊維31やスフ糸等からなるフィラー32が配置されている。
本実施形態においては、各同軸電線対10A~10Dを構成する同軸電線11同士は撚り合わされずに、四対の同軸電線対10A~10Dと第一および第二の絶縁電線21A,21Bとが、抗張力繊維31等とともに一括して螺旋状に撚り合わされて集合されている(いわゆる層撚り方式)。従来のように同軸電線同士が撚り合わされたいわゆる対撚り方式により同軸電線対が構成されると、同軸電線11間のクロストークが増加しやすいためである。
層撚り方式で集合された同軸電線対10A~10Dおよび絶縁電線21A,21Bの周囲には、抑え巻41が巻き付けられており、これにより、同軸電線対10A~10Dおよび絶縁電線21A,21Bの配置が崩れることなく束ねられている。
また、同軸電線対10A~10Dおよび絶縁電線21A,21Bは、その周囲が抑え巻41を介して一括シールド層42によって覆われている。そして、この一括シールド層42のさらに外周側が、外被30によって覆われている。
また、同軸電線対10A~10Dおよび絶縁電線21A,21Bは、その周囲が抑え巻41を介して一括シールド層42によって覆われている。そして、この一括シールド層42のさらに外周側が、外被30によって覆われている。
抑え巻41としては、例えば、導電性樹脂テープが用いられている。この導電性樹脂テープを構成する樹脂テープは、耐熱性、耐摩耗性などに優れたポリテトラフルオロエチレン(PTFE)樹脂等のフッ素系樹脂、ポリエチレンテレフタレート(PET)樹脂等のポリエステル系樹脂またはポリエチレン(PE)等から形成されている。この抑え巻41として用いられる導電性樹脂テープは、導電性を持たせるために、樹脂テープを構成する樹脂にカーボン等の導電性物質がテープ全体に分散するように混入されている。この抑え巻41は、所定の厚さを有するフィルム状に形成されている。抑え巻41の巻き方向は、同軸電線対10A~10Dおよび絶縁電線21A,21Bを一括撚りにて集合するときの撚り方向と同一方向でもよく、逆方向でもよい。なお、抑え巻41として、銅箔やアルミ箔等からなる金属テープを用いてもよい。
このように、抑え巻41を設けることで同軸電線対10A~10Dや絶縁電線21Aの周囲に一括シールド層42を作製するときに、同軸電線対10A~10Dの外被15や絶縁電線21Aの外被23が破れて、その下の導体14,22が露出するおそれがない。これらの導体14,22が露出すると一括シールド層42と接触して、多芯ケーブルが使用時にスパークしてしまう場合がある。抑え巻41が金属テープであれば、多芯ケーブル1外の機器(外部機器)へのまたは外部機器からのノイズの影響を受けにくい。また、抑え巻41が導電性テープであれば、信号の減衰量を減らすことができる。
一括シールド層42は、金属細線を横巻きまたは編組して構成される。一括シールド層42は、例えば、外径0.03mm~0.08mmの錫メッキ軟銅線を編組して構成されている。一括シールド層42により、同軸電線対10A~10Dを伝搬する信号にノイズが乗らないので、ノイズの影響によるエラーのない正確な高速信号伝送が実現される。また、外部の機器へノイズの影響を与えることもない。
また、外被30は、例えばポリ塩化ビニルやポリオレフィン系樹脂等から形成されている。外被30の外径は例えば2.0mm~6.0mmである。
また、外被30は、例えばポリ塩化ビニルやポリオレフィン系樹脂等から形成されている。外被30の外径は例えば2.0mm~6.0mmである。
このように構成された本実施形態の多芯ケーブル1を製造するには、まず、ケーブル1の横断面中心部に複数本(本例では3本)の第二の絶縁電線21Bを配置する。そして、この第二の絶縁電線21Bの周囲に、四対の同軸電線対10A~10Dを同一円周上に配置する。このとき、同軸電線対10A~10Dと同一円周上であって同軸電線対10A~10Dの間にそれぞれ1本の第一の絶縁電線21Aを同軸電線11と接触するように配置する。そして、同軸電線対10A~10Dおよび絶縁電線21A,21Bの隙間に抗張力繊維31あるいはフィラー32を配置する。その後、同軸電線対10A~10Dおよび絶縁電線21A,21Bを抗張力繊維31あるいはフィラー32ともに一括して撚り合わせる。次に、このようにして撚り合わされたものの周囲に抑え巻41を巻き付け、さらにその外周を一括シールド層42により覆う。最後に、この一括シールド層42の外周に、外被30を押し出し被覆する。
本実施形態の構成によれば、同軸電線対10A~10Dのそれぞれの電線対により差動伝送信号を伝送することができる。また、同一円周上に配置された同軸電線対10A~10Dの間に、絶縁電線21Aが配置されているため、絶縁電線21A間のクロストークおよび差動伝送電線対(同軸電線対10A~10D)間のクロストークを抑制させることができる。さらに、絶縁電線21Aが各同軸電線対10A~10Dの片方の電線11と接触しているので、同軸電線対10A~10D同士が離れかつその距離が安定し、一層クロストークを抑制できる。
(実施例)
実施例である例1として、図1に示す多芯ケーブルを用いて、絶縁電線間および同軸電線対間のクロストークの評価試験を行った。当該評価試験においては、図1に示す多芯ケーブルを3本用意し、各ケーブルに対してクロストークの評価を行った。その結果を図2Aおよび図3Aに示す。
一方、比較例である例2として、複数の同軸電線対および複数本の絶縁電線を含む多芯ケーブルであって、隣り合う同軸電線対の間には絶縁電線が配置されていない多芯ケーブルを用いて、絶縁電線間および同軸電線対間のクロストークの評価試験を行った。当該評価試験においては、図4に示す多芯ケーブルを3本用意し、各ケーブルに対してクロストークの評価を行った。その結果を図2Bおよび図3Bに示す。図4は、図2Bおよび図3Bで示した例2(比較例)に係る多芯ケーブル100の断面図である。多芯ケーブル100においては、同一円周上に配置された複数の同軸電線対110A~110Dの間には絶縁電線121は配置されていない。絶縁電線121は、同軸電線対110A~110Dで形成される円周の内側に収容されている。
実施例である例1として、図1に示す多芯ケーブルを用いて、絶縁電線間および同軸電線対間のクロストークの評価試験を行った。当該評価試験においては、図1に示す多芯ケーブルを3本用意し、各ケーブルに対してクロストークの評価を行った。その結果を図2Aおよび図3Aに示す。
一方、比較例である例2として、複数の同軸電線対および複数本の絶縁電線を含む多芯ケーブルであって、隣り合う同軸電線対の間には絶縁電線が配置されていない多芯ケーブルを用いて、絶縁電線間および同軸電線対間のクロストークの評価試験を行った。当該評価試験においては、図4に示す多芯ケーブルを3本用意し、各ケーブルに対してクロストークの評価を行った。その結果を図2Bおよび図3Bに示す。図4は、図2Bおよび図3Bで示した例2(比較例)に係る多芯ケーブル100の断面図である。多芯ケーブル100においては、同一円周上に配置された複数の同軸電線対110A~110Dの間には絶縁電線121は配置されていない。絶縁電線121は、同軸電線対110A~110Dで形成される円周の内側に収容されている。
図2Aおよび図2Bに示されるように、例1においては、絶縁電線間のクロストークは100MHz~500MHzの周波数帯域において、-30~-50dB程度であった。一方、例2においては、絶縁電線間のクロストークは同一の周波数帯域において、-20~-40dB程度であった。このように、上記の実施形態に係る多芯ケーブルを用いることで、絶縁電線間のクロストークが抑制できることが確認された。
また、図3Aおよび図3Bに示されるように、例1においては、同軸電線対間のクロストークは100MHz~500MHzの周波数帯域において、-50~-80dB程度であった。一方、例2においては、同軸電線対間のクロストークは同一の周波数帯域において、-30~-60dB程度であった。このように、上記の実施形態に係る多芯ケーブルを用いることで、同軸電線対間のクロストークも抑制できることが確認された。
以上、本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。また、上記説明した構成部材の数、位置、形状等は上記実施の形態に限定されず、本発明を実施する上で好適な数、位置、形状等に変更することができる。
上記実施形態の多芯ケーブル1における同軸電線対10A~11Dおよび絶縁電線21の本数や配置は、本実施形態に限定されない。同軸電線対は少なくとも2対、絶縁電線は少なくとも2本が多芯ケーブル内に収容されていればよい。
多芯ケーブルは、例えば、図5A~図5Cに示される変形例のような配置関係とすることができる。
図5Aおよび図5Bに示される多芯ケーブル1A,1Bのように、同軸電線対10A~10Dの間には2本の第一の絶縁電線21Aが並列して配置される構成であってもよい。これらの多芯ケーブル1A,1Bはクロストークを考慮する必要のない用途に使用される。
また、図5Bに示されるように、同軸電線対10A~10Dの間に配置される第一の絶縁電線21Aの外径は、同軸電線11よりも大径であってもよい。この大径の絶縁電線21Aは電流を供給する給電線であり他の電線とのクロストークを考慮する必要がない。太径の絶縁電線21Aは、他の絶縁電線に比べて、図5Bの断面において中心導体の位置が多芯ケーブル1Bの中心寄りにずれるが、同軸電線対10A~10Dが配置される円周上に絶縁電線21Aの中心導体がかかる程度であれば、そのずれが許容される。太径の絶縁電線21Aが隣接する同軸電線11および抑え巻41に接すれば、同軸電線11と同一円周上にあると見なすことができる。
さらに、図5Cに示される多芯ケーブル1Cのように、同一円周上に配置される同軸電線対10A~10Dにより形成される円の内部に収容される第二の絶縁電線21Bは、各同軸電線対10A~10Dを構成する一対の同軸電線11の間に配置される構成としてもよい。
図5Aおよび図5Bに示される多芯ケーブル1A,1Bのように、同軸電線対10A~10Dの間には2本の第一の絶縁電線21Aが並列して配置される構成であってもよい。これらの多芯ケーブル1A,1Bはクロストークを考慮する必要のない用途に使用される。
また、図5Bに示されるように、同軸電線対10A~10Dの間に配置される第一の絶縁電線21Aの外径は、同軸電線11よりも大径であってもよい。この大径の絶縁電線21Aは電流を供給する給電線であり他の電線とのクロストークを考慮する必要がない。太径の絶縁電線21Aは、他の絶縁電線に比べて、図5Bの断面において中心導体の位置が多芯ケーブル1Bの中心寄りにずれるが、同軸電線対10A~10Dが配置される円周上に絶縁電線21Aの中心導体がかかる程度であれば、そのずれが許容される。太径の絶縁電線21Aが隣接する同軸電線11および抑え巻41に接すれば、同軸電線11と同一円周上にあると見なすことができる。
さらに、図5Cに示される多芯ケーブル1Cのように、同一円周上に配置される同軸電線対10A~10Dにより形成される円の内部に収容される第二の絶縁電線21Bは、各同軸電線対10A~10Dを構成する一対の同軸電線11の間に配置される構成としてもよい。
また、上記の実施形態においては多芯ケーブル1に含まれる差動信号伝送用の電線対として一対の同軸電線11から構成される同軸電線対10A~10Dを用いているがこの例に限られない。例えば、差動信号伝送用(高速信号伝送)の電線対として、2本の絶縁電線を撚り合せて対にしてその周囲をシールドしたSTP(Shielded Twisted Pair)と呼ばれるツイストペアケーブルや、2本の絶縁電線を撚らずに並行にした状態で対にしてその周囲をシールドした二芯平行(ツイナックス)電線を用いてもよい。STPを使用する場合は、図1の断面において各STPの中心が同一円周上にあると見なせればよい。二芯平行電線を使用する場合は、図1に示した同軸電線11の配置と同様に、二芯平行電線を構成する各電線が多芯ケーブルの周方向に沿って並んで配置され、他の二芯平行電線および絶縁電線と層撚りされるのが好ましい。これにより多芯ケーブルを構成する電線の位置ずれが起こりにくく、信号の減衰量、差動信号のスキューおよびクロストークを小さくすることができる。
なお、同軸電線の特長は、ケーブルを繰り返し屈曲させた場合に断線のおそれが少ないことである。一方、STPおよび二芯平行電線の特長は、スキューが小さいことである。
ケーブルの使用環境により各線(同時電線、STP、二芯平行電線)の長所を活かして差動信号伝送用の電線対に採用する電線を決定することができる。
ケーブルの使用環境により各線(同時電線、STP、二芯平行電線)の長所を活かして差動信号伝送用の電線対に採用する電線を決定することができる。
本出願は、2015年6月4日出願の日本特許出願である特願2015-113750に基づくものであり、その内容はここに参照として取り込まれる。
1:多芯ケーブル
10A~10D:同軸電線対(電線対の一例)
11:同軸電線(差動伝送電線の一例)
12:中心導体
13:絶縁層
14:外部導体
15:外被
21:絶縁電線(21A:第一の絶縁電線、21B:第二の絶縁電線)
22:導体
23:外被
30:外被(シースの一例)
31:抗張力繊維
32:フィラー
41:抑え巻
42:シールド層
10A~10D:同軸電線対(電線対の一例)
11:同軸電線(差動伝送電線の一例)
12:中心導体
13:絶縁層
14:外部導体
15:外被
21:絶縁電線(21A:第一の絶縁電線、21B:第二の絶縁電線)
22:導体
23:外被
30:外被(シースの一例)
31:抗張力繊維
32:フィラー
41:抑え巻
42:シールド層
Claims (8)
- 2本の電線から構成される電線対を少なくとも二対と、
少なくとも2本の絶縁電線と、
前記電線対と前記絶縁電線との周囲を覆うシースと、を備え、
ケーブルの長さ方向に垂直な断面において、前記電線対が同一円周上に配置され、
各前記電線対の間において、各絶縁電線が前記電線対の片方の電線と接触して配置されている、多芯ケーブル。 - 前記シースの内側に、前記電線対および前記絶縁電線を覆う一括シールド層が設けられている、請求項1に記載の多芯ケーブル。
- 前記シースの内側に、前記電線対および前記絶縁電線を覆う抑え巻が設けられ、
前記抑え巻は、前記電線対および前記絶縁電線と接触している、請求項2に記載の多芯ケーブル。 - 前記断面において、前記電線対よりもケーブル中心側に前記少なくとも2本の絶縁電線とは異なる絶縁電線が配置されている、請求項1から請求項3のいずれか一項に記載の多芯ケーブル。
- 前記電線対は、前記2本の電線が一体となって遮蔽層に覆われている、請求項1から請求項4のいずれか一項に記載の多芯ケーブル。
- 前記電線対が二芯平行電線であって、当該二芯平行電線を構成する各電線が前記多芯ケーブルの周方向に沿って並列している、請求項5に記載の多芯ケーブル。
- 前記電線対を構成する前記2本の電線はそれぞれ同軸電線である、請求項1から4のいずれか一項に記載の多芯ケーブル。
- 各前記同軸電線が、前記多芯ケーブルの周方向に沿って並列している、請求項7に記載の多芯ケーブル。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201690000162.8U CN206460801U (zh) | 2015-06-04 | 2016-06-02 | 多芯线缆 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015113750A JP6519324B2 (ja) | 2015-06-04 | 2015-06-04 | 多芯ケーブル |
JP2015-113750 | 2015-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016195018A1 true WO2016195018A1 (ja) | 2016-12-08 |
Family
ID=57440455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/066407 WO2016195018A1 (ja) | 2015-06-04 | 2016-06-02 | 多芯ケーブル |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6519324B2 (ja) |
TW (1) | TWM545343U (ja) |
WO (1) | WO2016195018A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024096079A1 (ja) * | 2022-11-02 | 2024-05-10 | 住友電気工業株式会社 | コネクタ付きケーブル |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012146409A (ja) * | 2011-01-07 | 2012-08-02 | Sumitomo Electric Ind Ltd | 多心信号ケーブルとその製造方法 |
-
2015
- 2015-06-04 JP JP2015113750A patent/JP6519324B2/ja active Active
-
2016
- 2016-06-02 WO PCT/JP2016/066407 patent/WO2016195018A1/ja active Application Filing
- 2016-06-03 TW TW105208375U patent/TWM545343U/zh unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012146409A (ja) * | 2011-01-07 | 2012-08-02 | Sumitomo Electric Ind Ltd | 多心信号ケーブルとその製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024096079A1 (ja) * | 2022-11-02 | 2024-05-10 | 住友電気工業株式会社 | コネクタ付きケーブル |
Also Published As
Publication number | Publication date |
---|---|
JP2017004594A (ja) | 2017-01-05 |
JP6519324B2 (ja) | 2019-05-29 |
TWM545343U (zh) | 2017-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5761226B2 (ja) | 多芯ケーブルおよびその製造方法 | |
JP5614428B2 (ja) | 多芯ケーブルおよびその製造方法 | |
US9805844B2 (en) | Twisted pair cable with shielding arrangement | |
US9349508B2 (en) | Multi-pair differential signal transmission cable | |
JP6269718B2 (ja) | 多芯ケーブル | |
JP5900275B2 (ja) | 多対差動信号伝送用ケーブル | |
JP2014029846A (ja) | 多芯ケーブル | |
JP5825270B2 (ja) | 多芯ケーブル | |
JP5870979B2 (ja) | 多芯ケーブル | |
US20190074110A1 (en) | Multicore cable | |
JP2017033837A (ja) | フラットケーブルおよびコネクタ付フラットケーブル | |
WO2016195018A1 (ja) | 多芯ケーブル | |
JP2013235693A (ja) | 多芯ケーブル及びその製造方法 | |
JP2011129261A (ja) | 高速差動用クワッドケーブル | |
JP6979796B2 (ja) | 多芯ケーブル | |
US11664138B2 (en) | Composite cable including collective braided shield | |
JP2014143015A (ja) | 多芯ケーブル | |
WO2024096079A1 (ja) | コネクタ付きケーブル | |
JP2019204732A (ja) | シールドケーブル | |
US11373783B1 (en) | Hybrid cables for use with sensitive detectors | |
CN117275808A (zh) | 双绞线屏蔽电缆和线束 | |
JP2017010707A (ja) | 差動伝送用信号ケーブル | |
JP2023009377A (ja) | 信号伝送用ケーブル | |
JP2024036856A (ja) | 2芯ツイストシールドケーブル及びワイヤーハーネス | |
JP2024148544A (ja) | 複合ケーブル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16803452 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16803452 Country of ref document: EP Kind code of ref document: A1 |