WO2023002570A1 - Wiring board and production method for same - Google Patents

Wiring board and production method for same Download PDF

Info

Publication number
WO2023002570A1
WO2023002570A1 PCT/JP2021/027165 JP2021027165W WO2023002570A1 WO 2023002570 A1 WO2023002570 A1 WO 2023002570A1 JP 2021027165 W JP2021027165 W JP 2021027165W WO 2023002570 A1 WO2023002570 A1 WO 2023002570A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
conductive pattern
wiring board
region
shaping
Prior art date
Application number
PCT/JP2021/027165
Other languages
French (fr)
Japanese (ja)
Inventor
崇 中島
稔 飯塚
英明 横山
雄一 老田
清 藤巻
Original Assignee
エレファンテック株式会社
タカハタプレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エレファンテック株式会社, タカハタプレシジョン株式会社 filed Critical エレファンテック株式会社
Priority to JP2021569472A priority Critical patent/JP7026367B1/en
Priority to PCT/JP2021/027165 priority patent/WO2023002570A1/en
Publication of WO2023002570A1 publication Critical patent/WO2023002570A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • the present invention relates to a wiring board and its manufacturing method.
  • a flexible conductive base material having a conductive layer is arranged in series and/or in parallel along the direction of current flow of the conductive layer, and has cross-linked necks that are pierced through by slits and/or holes, respectively. and at least a part of the conductive base material is sealed and covered without being exposed by a rubber elastic sheet piece, and at least one of the crosslinked neck rows in the middle of the row consisting of a plurality of crosslinked necks
  • the width of one bridge neck is shorter than the width of the bridge neck at the end of the row, and the insulating rubber elastic sheet piece has a through slit and/or a through hole smaller than the punch hole and the punch slit in accordance with the punched peripheral edge part.
  • the conductive base material has gaps between the plurality of punched peripheral edge portions, respectively, and the rubber elastic sheet piece has cut slits smaller than the gaps corresponding to the punched gaps.
  • Patent Document 1 a stretchable elastic sheet having cut holes penetrating therethrough is known.
  • the present invention provides a wiring board and a method of manufacturing the same that can suppress disconnection associated with shaping a circuit pattern formed on a deformable base material into a three-dimensional shape.
  • the wiring board according to claim 1 A wiring board in which a conductive pattern is arranged on one surface of a base material, Compared to the first region where the conductive pattern is arranged in the region where the base material is subjected to shaping into a three-dimensional shape, the second region where the conductive pattern is not arranged is the above in the shaping.
  • the elongation rate of the base material is large, It is characterized by
  • the invention according to claim 2 is the wiring board according to claim 1, In the second region of the base material, a cut is formed in the thickness direction of the base material, It is characterized by
  • the invention according to claim 3 is the wiring board according to claim 2,
  • the cut has a longitudinal direction in a direction intersecting with the direction in which the conductive pattern extends, It is characterized by
  • the invention according to claim 4 is the wiring board according to claim 2 or 3,
  • the cut is formed with a depth that penetrates the base material in the thickness direction, It is characterized by
  • the invention according to claim 5 is the wiring board according to claim 2 or 3,
  • the cut is formed to a depth that does not penetrate the base material in the thickness direction, It is characterized by
  • the invention according to claim 6 is the wiring board according to any one of claims 2 to 5,
  • the conductive pattern is arranged in the first region so as to extend in a direction intersecting with the stretching direction of the base material due to shaping, and the cut is in the second region close to the conductive pattern. formed, It is characterized by
  • the invention according to claim 7 is the wiring board according to any one of claims 2 to 5,
  • the conductive pattern is bent in the first region in a direction intersecting the elongation direction of the base material due to shaping and arranged in a meandering shape, and the cut is bent in the meandering shape in the second region. At least one is formed between the conductive patterns that It is characterized by
  • the invention according to claim 8 is the wiring board according to any one of claims 1 to 7, wherein the substrate is a deformable film made of a synthetic resin material; It is characterized by
  • the invention according to claim 9 is the wiring board according to any one of claims 1 to 8,
  • the conductive pattern is a metal plating layer made of at least one metal selected from Cu, Ni, Ag, and Au. It is characterized by
  • the invention according to claim 10 is the wiring board according to any one of claims 1 to 9, Further comprising a resin layer covering at least one surface of the base material, It is characterized by
  • the wiring board manufacturing method comprises: A conductive pattern is arranged on one surface of a base material, and a first area where the conductive pattern is arranged in the area where the base material is formed into a three-dimensional shape and the conductive pattern is not arranged.
  • the invention according to claim 12 is the wiring board manufacturing method according to claim 11, After the shaping step, placing the shaped base material in a mold and injection molding a resin layer covering at least one surface of the base material. It is characterized by
  • the invention according to claim 13 is the wiring board manufacturing method according to claim 11 or 12, the notch is formed in the substrate using a laser, die cutting, or blade; It is characterized by
  • the cut is opened and extended, and the extension of the area where the conductive pattern is arranged is reduced.
  • air leakage can be suppressed when the substrate is vacuum-sucked.
  • the seventh aspect of the invention it is possible to suppress disconnection accompanying the shaping of the conductive pattern into a three-dimensional shape.
  • the base material can be shaped into a three-dimensional shape.
  • the base material on which the conductive pattern is arranged can be shaped into a three-dimensional shape.
  • the wiring board can be formed into a three-dimensional shape.
  • disconnection of the conductive pattern formed on the deformable base material can be suppressed.
  • the wiring board can have a three-dimensional shape.
  • the cut can be formed with high accuracy.
  • FIG. 1A is a schematic cross-sectional view showing an example of a wiring board according to this embodiment
  • FIG. 1B is a schematic plan view showing an example of the wiring board.
  • FIG. 2A is a schematic plan view for explaining the relationship between the cut S formed in the base material 2 and the conductive pattern 3
  • FIG. 2B is a cut when the base material 2 in which the cut S is formed is shaped into a three-dimensional shape. It is a figure explaining the opening of S.
  • FIG. FIG. 3A is a cross-sectional schematic diagram showing a cut formed with a depth that penetrates the base material in the thickness direction
  • FIG. 3B is a cross-sectional schematic diagram that shows a cut formed with a depth that does not penetrate the base material in the thickness direction.
  • FIG. 10 is a diagram showing a resin filling step of injection-molding a resin layer on a shaped base material
  • FIG. 1A is a schematic cross-sectional view showing an example of the wiring board 1 according to the present embodiment
  • FIG. 1B is a schematic plan view showing an example of the wiring board 1
  • FIG. 2B is a diagram for explaining the opening of the cut S when the base material 2 in which the cut S is formed is shaped into a three-dimensional shape
  • FIG. 3A is a cross-sectional schematic diagram showing a cut formed with a depth that penetrates the base material in the thickness direction
  • FIG. 3B is a cross-sectional schematic diagram that shows a cut formed with a depth that does not penetrate the base material in the thickness direction.
  • the wiring board 1 includes a substrate 2, a conductive pattern 3 arranged as wiring on one surface 2a of the substrate 2, an electronic component 4 electrically connected by the conductive pattern 3, and a substrate. and a resin layer 5 covering the other surface 2b of the material 2 opposite to the one surface 2a.
  • the base material 2 in this embodiment is a deformable insulating film-like base material made of a synthetic resin material.
  • a "deformable substrate” is one that can be deformed after placement of the conductive pattern 3, i.e. from a substantially flat two-dimensional shape to a substantially three-dimensional shape by thermoforming, vacuum forming or air pressure forming. It means a substrate that can be deformed into a shape.
  • Materials for the base material 2 include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyamides such as nylon 6-10 and nylon 46, polyetheretherketone (PEEK), ABS, PMMA, and polyvinyl chloride. and other thermoplastic resins.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PEEK polyetheretherketone
  • ABS polymethyl methacrylate
  • PMMA polyvinyl chloride
  • polyvinyl chloride polyvinyl chloride
  • polyester is more preferable, and among these, polyethylene terephthalate (PET) is most preferable because it has a good balance of economy, electrical insulation, chemical resistance, and the like.
  • a surface treatment to one surface 2a of the base material 2 in order to evenly apply catalyst ink such as metal nanoparticles.
  • catalyst ink such as metal nanoparticles.
  • the surface treatment for example, corona treatment, plasma treatment, solvent treatment, and primer treatment can be used.
  • the deformable base material 2 has a first region R1 (indicated by a dashed line in FIG. 2A) in which the conductive pattern 3 of the region W to be shaped into a three-dimensional shape is arranged, and the conductive pattern 3
  • the elongation rate of the base material 2 during shaping is different in the second regions R2 (indicated by a two-dot chain line in FIG. 2A) that are not arranged.
  • the second region R2 where the conductive pattern 3 is not arranged has a larger elongation rate of the base material 2 during shaping.
  • the cut S is formed in the thickness direction of the base material 2 in the second region R2.
  • the conductive pattern 3A (indicated by a broken line in FIG. 2A) extends in the direction of elongation of the base material 2 due to shaping ( 2) are bent in a direction (indicated by Y in FIG. 2) to form a meandering shape.
  • the conductive pattern 3A By forming the conductive pattern 3A into a meandering shape, it is possible to increase the wiring length in the region W where the base material 2 bends, and to reduce the load on the conductive pattern 3A caused by bending.
  • a notch S is formed in the second region R2 between the meandering conductive patterns 3A.
  • the cut S is formed to have a longitudinal direction (direction of arrow Y in FIG. 2) that intersects the direction in which the conductive pattern 3 extends (direction of arrow X in FIG. 2).
  • the cut S is formed with a predetermined depth in the thickness direction of the base material 2 (in the direction of arrow Z in FIG. 3).
  • the predetermined depth depends on the thickness of the base material 2. For example, when the thickness of the base material 2 is thin, as shown in FIG. If it is thick, it may be formed with a depth L2 that does not penetrate, as shown in FIG. 3B.
  • the formed base material 2 is placed on the injection mold K and, for example, vacuum-sucked as described later. air leakage from the notch S can be suppressed when the cavity shape of the mold K for injection molding is to be met.
  • the shape of the cut S in the cut depth direction includes a straight shape, a tapered shape, a wedge shape, and the like, but is not limited to these.
  • the conductive pattern 3B intersects the elongation direction of the base material 2 by shaping (the arrow X direction in FIG. 2A), as shown in FIG. 2A. It may be arranged to extend in the direction of Specifically, the conductive pattern 3B is arranged obliquely with respect to the extension direction of the base material 2 by shaping (the direction of the arrow X in FIG. 2A), thereby increasing the wiring length and by bending the conductive pattern 3B. It is possible to reduce the load on In this case, as shown in FIG. 2A, the cut S is formed so as to have a longitudinal direction in a direction intersecting with the extending direction of the conductive pattern 3B. Further, as shown in FIG.
  • the depth of the cut S is determined according to the thickness of the base material 2. For example, when the thickness of the base material 2 is thin, the cut depth is set to a depth that penetrates the base material 2. If it is thick, it may be formed to a depth that does not penetrate.
  • the number of cuts S to be formed may be adjusted according to the curvature of the shaping applied to the base material 2 . For example, when the curvature of shaping is large, the number may be increased compared to when the curvature is small. Moreover, it is desirable to form the cut S in the vicinity of the conductive pattern 3 . By opening the cut S formed adjacent to the conductive pattern S, the extension of the base material 2 in the portion (first region R1) where the conductive pattern 3 is arranged is reduced, and the conductive pattern 3 is disconnected. is suppressed.
  • the meander-shaped conductive pattern 3A and the conductive pattern 3B obliquely formed with respect to the extension direction of the base material 2 by shaping are arranged, and the conductive patterns 3A and 3B are not arranged.
  • the conductive patterns 3A and 3B are more easily stretched than when they are arranged linearly in the stretching direction of the base material 2, and disconnection due to shaping of the conductive patterns 3A and 3B as wiring is suppressed. can do.
  • the base material 2 is extended by opening the cuts S, thereby reducing the extension of the first region R1 in which the conductive patterns 3A and 3B are arranged, thereby preventing disconnection due to shaping of the conductive patterns 3A and 3B. can be suppressed.
  • the conductive pattern 3 (hereinafter referred to as the conductive pattern 3 when it is not necessary to distinguish between the meander-shaped conductive pattern 3A and the conductive pattern 3B arranged diagonally with respect to the extension direction of the base material) is , a linear conductive pattern 3 arranged in a region where shaping is not performed on the substrate 2, a meandering conductive pattern 3A arranged in a region W where shaping is performed on the substrate 2, and an oblique shape of the conductive pattern 3B.
  • the meandering conductive pattern 3A is formed so as to meander repeatedly in a direction intersecting with the direction in which the linear conductive pattern 3 extends, and has a longer wiring length.
  • the oblique conductive pattern 3B is obliquely formed in a direction crossing the extending direction of the linear conductive pattern 3, and has a long wiring length.
  • the meander-shaped conductive pattern 3A and the oblique-shaped conductive pattern 3B have a longer wiring length than the linear shape, so that the conductive pattern 3 tends to stretch when the base material 2 is shaped. Disconnection of the conductive pattern 3 is suppressed.
  • a base layer (not shown) made of a catalyst such as metal nanoparticles that triggers growth of the metal plating is formed in a predetermined pattern.
  • the predetermined pattern includes a meandering shape.
  • the base layer is formed by applying a catalyst ink such as metal nanoparticles on the substrate 2, followed by drying and baking.
  • the thickness ( ⁇ m) of the underlayer is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 5 ⁇ m, most preferably 0.5 to 2 ⁇ m. If the underlayer is too thin, the strength of the underlayer may decrease. Also, if the underlayer is too thick, the manufacturing cost may increase because metal nanoparticles are more expensive than ordinary metals.
  • gold, silver, copper, palladium, nickel, etc. are used, and gold, silver, and copper are preferred from the viewpoint of conductivity, and copper, which is cheaper than gold and silver, is most preferred.
  • the particle size (nm) of the catalyst is preferably 1-500 nm, more preferably 10-100 nm. If the particle size is too small, the reactivity of the particles increases, which may adversely affect the storability and stability of the ink. If the particle size is too large, it may become difficult to form a uniform thin film, and the particles of the ink may easily precipitate.
  • the conductive pattern 3 is formed on the underlying layer by electroplating or electroless plating.
  • the plating metal copper, nickel, tin, silver, gold, etc. can be used, but copper is most preferable from the viewpoint of extensibility, conductivity and cost.
  • the conductive pattern 3 is formed in a meandering shape and an oblique shape in the region W where the substrate 2 is shaped.
  • the thickness ( ⁇ m) of the plating layer is preferably 0.03-100 ⁇ m, more preferably 1-35 ⁇ m, and most preferably 3-18 ⁇ m. If the plated layer is too thin, the mechanical strength may be insufficient, and sufficient electrical conductivity may not be obtained for practical use. If the plating layer is too thick, the time required for plating will be long, and there is a risk that the manufacturing cost will increase.
  • a plurality of electronic components 4 may be attached to the conductive pattern 3 .
  • the electronic component 4 includes a control circuit, strain, resistance, capacitance, contact sensing such as TIR, light detection component, tactile component or vibration component such as piezoelectric actuator or vibration motor, light emission such as LED, OLED, LCD, etc. devices, sound generators such as microphones and speakers, device operating components such as memory chips, programmable logic chips and CPUs, digital signal processors (DSPs), ALS devices, PS devices, processing devices, MEMS, and the like.
  • DSPs digital signal processors
  • the conductive pattern 3 may be formed with a connector contact 7 at one end.
  • the connector contact 7 is formed on the substrate 2 as a part of the conductive pattern 3 so that one end 2c of the substrate 2 protrudes outward from the end of the resin layer 5 .
  • a plate member (not shown) is arranged on the other surface 2b side of the substrate 2 on which the connector contacts 7 are formed to form a connector for electrically connecting to an external device provided outside the wiring board 1.
  • An insulating layer 6 integrally covering the substrate 2 and the conductive pattern 3 may be provided on the surface 2a of the substrate 2 on which the conductive pattern 3 is arranged (shown in FIG. 1A). However, the insulating layer 6 is not provided on the joint portion of the conductive pattern 3 with the electronic component 4 .
  • a solder resist is applied to protect the conductive pattern 3 .
  • the solder resist prevents short circuits caused by solder adhering to areas other than joints for electrical connection when electronic components are mounted by soldering. In addition, it maintains insulation between the conductive patterns 3 and protects the conductive patterns 3 from the external environment such as dust, heat, and humidity.
  • the resin layer 5 is formed to cover at least one surface of the substrate 2 via the adhesive layer AD.
  • the adhesive layer AD may be toned to hide the conductive pattern 3 invisibly from the outside.
  • the resin layer 5 is formed by making the adhesive layer AD light-transmitting and then using a transparent resin material as the resin material. It can be visible.
  • the resin layer 5 is formed so as to cover the other surface 2b opposite to the surface 2a on which the conductive pattern 3 is arranged. After forming so as to cover, the electronic component 4 may be mounted later.
  • the resin layer 5 may be formed so as to cover both surfaces of the base material 2 depending on the function of the wiring board 1 .
  • the resin layer 5 is a thermoplastic resin made of a thermoplastic resin material that can be injection molded. Specifically, polycarbonate (PC), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polyamide (PA), acrylic butadiene styrene (ABS), polyethylene (PE), polypropylene (PP), modified polyphenylene ether (m -PPE), modified polyphenylene oxide (m-PPO), cycloolefin copolymer (COC), cycloolefin polymer (COP), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), or mixtures thereof.
  • a plastic resin can be used.
  • FIG. 4 is a flow chart showing an example of a schematic procedure of the wiring board 1 manufacturing method
  • FIG. 6 is an explanatory diagram for explaining each step of hot press molding for shaping the base material 2 into a three-dimensional shape
  • FIG. It is a figure which shows a filling process.
  • the wiring board 1 is manufactured through a preparation step S11 for the base material 2, a wiring plating step S12 for forming the conductive pattern 3 on the base material 2, and a three-dimensional shape on the base material 2.
  • a shaping step S14 for shaping the base material 2, and one surface 2a of the base material 2 on which the conductive pattern 3 is formed by placing the shaped base material 2 on the injection mold K. is manufactured through a resin filling step S15 for injection molding a resin layer 5 covering the other surface 2b on the opposite side.
  • Base material preparation step S11 Metal plating is first performed on the base material 2 in order to dispose the conductive pattern 3 on the substantially flat film-like base material 2 formed in a predetermined shape and size.
  • a base layer made of catalyst particles such as metal nanoparticles that trigger growth is formed in a predetermined pattern including a meandering shape.
  • the substrate 2 is preferably subjected to surface treatment such as corona treatment, plasma treatment, solvent treatment, and primer treatment.
  • Methods for applying a catalyst ink made of catalyst particles such as metal nanoparticles on the substrate 2 include an inkjet printing method, a silk screen printing method, a gravure printing method, an offset printing method, a flexographic printing method, a roller coater method, and a brush coating method.
  • Methods include spray method, knife jet coater method, pad printing method, gravure offset printing method, die coater method, bar coater method, spin coater method, comma coater method, impregnation coater method, dispenser method, and metal mask method.
  • an inkjet printing method is used.
  • the solvent is volatilized to leave only the metal nanoparticles.
  • the solvent is then removed (drying) and the metal nanoparticles are sintered (firing).
  • the firing temperature is preferably 100°C to 300°C, more preferably 150°C to 200°C. If the sintering temperature is too low, the sintering of the metal nanoparticles will be insufficient, and components other than the metal nanoparticles will remain, which may result in poor adhesion. Also, if the firing temperature is too high, the base material 2 may be deteriorated or distorted.
  • Electroplating or electroless plating is applied to the underlying layer formed on the base material 2 to deposit plating metal on the surface and inside of the underlying layer, thereby arranging the conductive pattern 3 (see FIG. 5A).
  • the plating method is the same as a known plating solution and plating treatment, specifically electroless copper plating and electrolytic copper plating.
  • a cut S is formed in the thickness direction of the substrate 2 in the second region R2 where the conductive pattern 3 is not arranged in the region W where the shaping of the substrate 2 where the conductive pattern 3 is arranged is performed ( (see Figure 5B).
  • a meander-shaped conductive pattern 3A is formed on the base material 2 so as to repeat meandering in a direction intersecting with the extending direction of the linear conductive pattern 3 in the shaped and bent region W,
  • a cut S is formed in the second region R2 between the meandering conductive patterns 3A.
  • a conductive pattern 3B is formed obliquely with respect to the extension direction of the base material 2 due to the shaping, and the conductive pattern 3B extends.
  • a cut S is formed to have a longitudinal direction in a direction transverse to the direction.
  • the incision S is formed with a depth that penetrates depending on the thickness of the base material 2, for example, if the thickness of the base material 2 is thin, using a laser device that irradiates a laser beam, die cutting, or a cutter blade. However, when the thickness of the base material 2 is thick, it is formed to a depth that does not penetrate.
  • shaping step S14 the base material 2 on which the conductive pattern 3 is arranged and the cut S is formed is formed into a three-dimensional shape by a forming means such as hot press forming, vacuum forming, pressure forming, vacuum pressure forming. shape.
  • the mold used for shaping is such that the outer surface of the shaped base material 2 conforms to the shape of the cavity CA of the injection mold K used for injection molding (in-mold molding) in the resin filling step S15 described later. formed to follow.
  • the substrate 2 is placed between the female mold 11 and the male mold 12 as shown in FIG. 6A.
  • the female mold 11 and the male mold 12 are heated to a predetermined temperature capable of softening the base material 2 .
  • FIG. 6B when the female mold 11 and the male mold 12 are clamped with a predetermined pressure, the base material 2 is sandwiched between the core portion 12a of the male mold 12 and the cavity portion 11a of the female mold 11. and shaped.
  • the female mold 11 and the male mold 12 are opened and cooled to obtain the base material 2 shaped into a predetermined three-dimensional shape before trimming. Then, the base material 2 is taken out from the female mold 11 and the male mold 12, and the unnecessary part is trimmed to obtain the base material 2 before the resin layer 5 is formed.
  • the base material 2 shaped in this way is used for injection molding (in-mold molding) in the resin filling step S15, and integrated with the resin layer 5 to form the wiring board 1.
  • the substrate 2 is placed on the other surface 2b opposite to the surface 2a on which the conductive pattern 3 of the substrate 2 which has been shaped into a three-dimensional shape in the shaping step S14 is arranged.
  • a binder ink for forming an adhesive layer AD is applied according to the combination of resin materials for the resin layer 5 (see FIG. 5C).
  • the binder ink contains an adhesive resin, is applied by screen printing, inkjet printing, spray coating, brush coating, or the like, and improves the adhesiveness between the base material 2 and the injection-molded resin layer 5 .
  • the binder ink is applied to the one surface 2a of the base material 2 without providing the insulating layer 6. .
  • the base material 2 that has been shaped into a three-dimensional shape is positioned and set in the injection mold K (see FIG. 5D).
  • the base material 2 which has been formed into a three-dimensional shape, is self-sucked on the surface of the cavity CA and is not displaced. , it may be fixed by sticking it on the surface of the cavity CA with a double-sided tape, vacuum-adhering it, or providing a projection (not shown) on the cavity CA and fitting it into the projection.
  • the base material 2 that has been shaped into a three-dimensional shape in the shaping step S14
  • the springback phenomenon that occurs due to the rigidity of the base material 2 after being removed from the mold is suppressed. Therefore, when it is set in the cavity CA of the injection molding die K, there is also an effect that the gap that tends to occur between the surface of the cavity CA is reduced.
  • the method for manufacturing the wiring board 1 according to the present embodiment, disconnection due to shaping into a three-dimensional shape of the conductive pattern 3 as the circuit pattern formed on the deformable base material 2 can be prevented.
  • the wiring board 1 can be formed into a three-dimensional shape while suppressing the deformation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

Provided are a wiring board capable of suppressing disconnection of wiring associated with shaping a circuit pattern formed on a deformable base material into a three-dimensional shape, and a production method therefor. The wiring board has a conductive pattern disposed on one surface of a base material, wherein: amongst regions of the base material that are to be shaped into a three-dimensional shape, the base material has a greater coefficient of extension in a second region in which a conductive pattern is not disposed than in a first region in which a conductive pattern is disposed, and in the second region a slit is formed in the base material in the thickness direction of the base material.

Description

配線基板及びその製造方法Wiring board and its manufacturing method
 本発明は、配線基板及びその製造方法に関する。 The present invention relates to a wiring board and its manufacturing method.
 導電層を有する可撓性の導電基材が、導電層の通電方向に沿って直列及び/又は並列に並ぶ抜きスリット及び/又は抜き穴で貫通した複数の抜き周縁部位を通電可能に夫々架橋ネックで繋ぎつつ有し、ゴム弾性シート片で導電基材の少なくとも一部を露出せずに封止されて被覆されており、架橋ネックの複数からなる架橋ネック列の内、列中程の少なくとも一つの架橋ネックの横幅が、列端の架橋ネックの横幅よりも短くなっており、絶縁性のゴム弾性シート片が、抜き周縁部位に合わせて、抜き穴及び抜きスリットより小さな貫通スリット及び/又は貫通穴で貫通しており、導電基材が、複数の抜き周縁部位同士の間に夫々、抜き間隙を有し、ゴム弾性シート片が、抜き間隙に合わせて、その抜き間隙より小さな切込スリット及び/又は切込穴で貫通している伸縮性弾性体シートが知られている(特許文献1)。 A flexible conductive base material having a conductive layer is arranged in series and/or in parallel along the direction of current flow of the conductive layer, and has cross-linked necks that are pierced through by slits and/or holes, respectively. and at least a part of the conductive base material is sealed and covered without being exposed by a rubber elastic sheet piece, and at least one of the crosslinked neck rows in the middle of the row consisting of a plurality of crosslinked necks The width of one bridge neck is shorter than the width of the bridge neck at the end of the row, and the insulating rubber elastic sheet piece has a through slit and/or a through hole smaller than the punch hole and the punch slit in accordance with the punched peripheral edge part. The conductive base material has gaps between the plurality of punched peripheral edge portions, respectively, and the rubber elastic sheet piece has cut slits smaller than the gaps corresponding to the punched gaps. / Or a stretchable elastic sheet having cut holes penetrating therethrough is known (Patent Document 1).
 ベース部に配線を設けたフレキシブル配線基板であって、ベース部に貫通して形成された孔部と、孔部の周囲を囲むベース部により形成され、引張力により伸張方向に湾曲して変形可能な変形可能部と、変形可能部に入力端から出力端に向かい孔部を避けて迂回して形成された配線部と、を備えるフレキシブル配線基板。も知られている(特許文献2)。 A flexible wiring board having a wiring provided in a base portion, which is formed by a hole penetrating through the base portion and a base portion surrounding the hole portion, and can be bent and deformed in an extension direction by a tensile force. and a wiring part formed in the deformable part from the input end to the output end so as to avoid the hole and detour around the flexible wiring board. is also known (Patent Document 2).
特開2020-72155号公報JP 2020-72155 A 特開2009-259929号公報JP 2009-259929 A
 本発明は、変形可能な基材上に形成された回路パターンの3次元形状への賦形に伴う断線を抑制することができる配線基板及びその製造方法を提供する。 The present invention provides a wiring board and a method of manufacturing the same that can suppress disconnection associated with shaping a circuit pattern formed on a deformable base material into a three-dimensional shape.
 前記課題を解決するために、請求項1に記載の配線基板は、
 基材の一面に導電性パターンが配置された配線基板であって、
 前記基材に3次元形状への賦形が施される領域の前記導電性パターンが配置された第1の領域に比べて前記導電性パターンが配置されていない第2の領域が賦形における前記基材の伸び率が大きい、
 ことを特徴とする。
In order to solve the above problems, the wiring board according to claim 1,
A wiring board in which a conductive pattern is arranged on one surface of a base material,
Compared to the first region where the conductive pattern is arranged in the region where the base material is subjected to shaping into a three-dimensional shape, the second region where the conductive pattern is not arranged is the above in the shaping. The elongation rate of the base material is large,
It is characterized by
 請求項2に記載の発明は、請求項1に記載の配線基板において、
 前記基材は、前記第2の領域で、前記基材の厚み方向に切り込みが形成されている、
 ことを特徴とする。
The invention according to claim 2 is the wiring board according to claim 1,
In the second region of the base material, a cut is formed in the thickness direction of the base material,
It is characterized by
 請求項3に記載の発明は、請求項2に記載の配線基板において、
 前記切り込みは、前記導電性パターンが延在する方向と交差する方向に長手方向を有する、
 ことを特徴とする。
The invention according to claim 3 is the wiring board according to claim 2,
The cut has a longitudinal direction in a direction intersecting with the direction in which the conductive pattern extends,
It is characterized by
 請求項4に記載の発明は、請求項2又は3に記載の配線基板において、
 前記切り込みは、前記基材の厚み方向に貫通する深さで形成されている、
 ことを特徴とする。
The invention according to claim 4 is the wiring board according to claim 2 or 3,
The cut is formed with a depth that penetrates the base material in the thickness direction,
It is characterized by
 請求項5に記載の発明は、請求項2又は3に記載の配線基板において、
 前記切り込みは、前記基材の厚み方向に貫通しない深さで形成されている、
 ことを特徴とする。
The invention according to claim 5 is the wiring board according to claim 2 or 3,
The cut is formed to a depth that does not penetrate the base material in the thickness direction,
It is characterized by
 請求項6に記載の発明は、請求項2ないし5のいずれか1項に記載の配線基板において、
 前記導電性パターンは、前記第1の領域で賦形による前記基材の伸び方向と交差する方向に延在して配置され、前記切り込みは、前記第2の領域で前記導電パターンに近接して形成されている、
 ことを特徴とする。
The invention according to claim 6 is the wiring board according to any one of claims 2 to 5,
The conductive pattern is arranged in the first region so as to extend in a direction intersecting with the stretching direction of the base material due to shaping, and the cut is in the second region close to the conductive pattern. formed,
It is characterized by
 請求項7に記載の発明は、請求項2ないし5のいずれか1項に記載の配線基板において、
 前記導電性パターンは、前記第1の領域で賦形による前記基材の伸び方向と交差する方向に屈曲してミアンダ形状に配置され、前記切り込みは、前記第2の領域で前記ミアンダ形状の屈曲した前記導電パターンの間に少なくとも一つ形成されている、
 ことを特徴とする。
The invention according to claim 7 is the wiring board according to any one of claims 2 to 5,
The conductive pattern is bent in the first region in a direction intersecting the elongation direction of the base material due to shaping and arranged in a meandering shape, and the cut is bent in the meandering shape in the second region. At least one is formed between the conductive patterns that
It is characterized by
 請求項8に記載の発明は、請求項1ないし7のいずれか1項に記載の配線基板において、
 前記基材が合成樹脂材料からなる変形可能なフィルムである、
 ことを特徴とする。
The invention according to claim 8 is the wiring board according to any one of claims 1 to 7,
wherein the substrate is a deformable film made of a synthetic resin material;
It is characterized by
 請求項9に記載の発明は、請求項1ないし8のいずれか1項に記載の配線基板において、
 前記導電性パターンは、Cu、Ni、Ag、Auの中から選択される少なくとも1種の金属よりなる金属めっき層である、
 ことを特徴とする。
The invention according to claim 9 is the wiring board according to any one of claims 1 to 8,
The conductive pattern is a metal plating layer made of at least one metal selected from Cu, Ni, Ag, and Au.
It is characterized by
 請求項10に記載の発明は、請求項1ないし9のいずれか1項に記載の配線基板において、
 前記基材の少なくとも一面を覆う樹脂層を更に備えた、
 ことを特徴とする。
The invention according to claim 10 is the wiring board according to any one of claims 1 to 9,
Further comprising a resin layer covering at least one surface of the base material,
It is characterized by
 前記課題を解決するために、請求項11に記載の配線基板の製造方法は、
 基材の一面に導電性パターンが配置され前記基材に3次元形状への賦形が施される領域の前記導電性パターンが配置された第1の領域と前記導電性パターンが配置されていない第2の領域で賦形における前記基材の伸び率が異なる配線基板の製造方法であって、
 前記基材を準備する工程と、
 前記基材の前記一面に前記導電性パターンを配置する工程と、
 前記導電性パターンが配置された前記基材の前記第2の領域に切り込みを形成する工程と、
 前記切り込みが形成された前記基材を型に載置して前記基材に3次元形状への賦形を施す賦形工程と、を含む、
 ことを特徴とする。
In order to solve the above problems, the wiring board manufacturing method according to claim 11 comprises:
A conductive pattern is arranged on one surface of a base material, and a first area where the conductive pattern is arranged in the area where the base material is formed into a three-dimensional shape and the conductive pattern is not arranged. A method for manufacturing a wiring board in which elongation rates of the base material during shaping are different in a second region,
preparing the substrate;
arranging the conductive pattern on the one surface of the substrate;
forming a notch in the second region of the substrate where the conductive pattern is disposed;
A shaping step of placing the base material with the cut formed in a mold and shaping the base material into a three-dimensional shape,
It is characterized by
 請求項12に記載の発明は、請求項11に記載の配線基板の製造方法において、
 前記賦形工程の後に、前記賦形が施された前記基材を金型に載置して前記基材の少なくとも一面を覆う樹脂層を射出成形する工程を更に含む、
 ことを特徴とする。
The invention according to claim 12 is the wiring board manufacturing method according to claim 11,
After the shaping step, placing the shaped base material in a mold and injection molding a resin layer covering at least one surface of the base material.
It is characterized by
 請求項13に記載の発明は、請求項11又は12に記載の配線基板の製造方法において、
 前記切り込みは、レーザー、型抜き、又は、刃を用いて、前記基材に形成されている、
 ことを特徴とする。
The invention according to claim 13 is the wiring board manufacturing method according to claim 11 or 12,
the notch is formed in the substrate using a laser, die cutting, or blade;
It is characterized by
 請求項1に記載の発明によれば、変形可能な基材上に形成された回路パターンの3次元形状への賦形に伴う断線を抑制することができる。 According to the invention of claim 1, it is possible to suppress disconnection that accompanies the shaping of the circuit pattern formed on the deformable base material into a three-dimensional shape.
 請求項2に記載の発明によれば、基材に賦形を施した場合に、切り込みが開いて伸び、導電性パターンが配置された領域の伸びが小さくなる。 According to the invention described in claim 2, when the base material is shaped, the cut is opened and extended, and the extension of the area where the conductive pattern is arranged is reduced.
 請求項3に記載の発明によれば、基材に賦形を施した場合に、切り込みが開きやすくなる。 According to the invention of claim 3, when the base material is shaped, the incisions are easily opened.
 請求項4に記載の発明によれば、基材に賦形を施した場合に、切り込みが開きやすくなる。 According to the invention of claim 4, when the substrate is shaped, the cuts are easily opened.
 請求項5に記載の発明によれば、基材を真空吸引した場合に、空気の漏れを抑制することができる。 According to the fifth aspect of the invention, air leakage can be suppressed when the substrate is vacuum-sucked.
 請求項6に記載の発明によれば、導電性パターンの3次元形状への賦形に伴う断線を抑制することができる。 According to the sixth aspect of the invention, it is possible to suppress disconnection accompanying the shaping of the conductive pattern into a three-dimensional shape.
 請求項7に記載の発明によれば、導電性パターンの3次元形状への賦形に伴う断線を抑制することができる。 According to the seventh aspect of the invention, it is possible to suppress disconnection accompanying the shaping of the conductive pattern into a three-dimensional shape.
 請求項8に記載の発明によれば、基材を3次元形状に賦形することができる。 According to the eighth aspect of the invention, the base material can be shaped into a three-dimensional shape.
 請求項9に記載の発明によれば、導電性パターンが配置された基材に3次元形状の賦形を施すことができる。 According to the ninth aspect of the invention, the base material on which the conductive pattern is arranged can be shaped into a three-dimensional shape.
 請求項10に記載の発明によれば、配線基板を立体的な形状とすることができる。 According to the tenth aspect of the invention, the wiring board can be formed into a three-dimensional shape.
 請求項11に記載の発明によれば、変形可能な基材上に形成された導電性パターンの断線を抑制することができる。 According to the eleventh aspect of the invention, disconnection of the conductive pattern formed on the deformable base material can be suppressed.
 請求項12に記載の発明によれば、配線基板を立体的な形状とすることができる。 According to the twelfth aspect of the invention, the wiring board can have a three-dimensional shape.
 請求項13に記載の発明によれば、切り込みを精度よく形成することができる。 According to the thirteenth aspect of the invention, the cut can be formed with high accuracy.
図1Aは本実施形態に係る配線基板の一例を示す断面模式図、図1Bは配線基板の一例を示す平面模式図である。FIG. 1A is a schematic cross-sectional view showing an example of a wiring board according to this embodiment, and FIG. 1B is a schematic plan view showing an example of the wiring board. 図2Aは基材2に形成される切り込みSを導電性パターン3との関係で説明する平面模式図、図2Bは切り込みSが形成された基材2を3次元形状に賦形した場合の切り込みSの開きを説明する図である。FIG. 2A is a schematic plan view for explaining the relationship between the cut S formed in the base material 2 and the conductive pattern 3, and FIG. 2B is a cut when the base material 2 in which the cut S is formed is shaped into a three-dimensional shape. It is a figure explaining the opening of S. FIG. 図3Aは基材の厚み方向に貫通する深さで形成された切り込みを示す断面模式図、図3Bは基材の厚み方向に貫通しない深さで形成された切り込みを示す断面模式図である。FIG. 3A is a cross-sectional schematic diagram showing a cut formed with a depth that penetrates the base material in the thickness direction, and FIG. 3B is a cross-sectional schematic diagram that shows a cut formed with a depth that does not penetrate the base material in the thickness direction. 配線基板の製造方法の概略の手順の一例を示すフローチャート図である。It is a flowchart figure which shows an example of the procedure of the outline of the manufacturing method of a wiring board. 配線基板の製造過程を説明するための配線基板の部分断面模式図である。It is a partial cross-sectional schematic diagram of a wiring board for demonstrating the manufacturing process of a wiring board. 基材を3次元形状に賦形するための熱プレス成形の各工程を説明するための説明図である。It is an explanatory view for explaining each process of hot press molding for shaping a base material into a three-dimensional shape. 賦形された基材に樹脂層を射出成形する樹脂充填工程を示す図ある。FIG. 10 is a diagram showing a resin filling step of injection-molding a resin layer on a shaped base material;
 次に図面を参照しながら、本発明の実施形態の具体例を説明するが、本発明は以下の実施形態に限定されるものではない。
 尚、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, specific examples of embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
It should be noted that in the following description using the drawings, the drawings are schematic, and the ratio of each dimension is different from the actual one. Illustrations other than members are omitted as appropriate.
 (1)配線基板の全体構成
 図1Aは本実施形態に係る配線基板1の一例を示す断面模式図、図1Bは配線基板1の一例を示す平面模式図、図2Aは基材2に形成される切り込みSを導電性パターン3との関係で説明する平面模式図、図2Bは切り込みSが形成された基材2を3次元形状に賦形した場合の切り込みSの開きを説明する図、図3Aは基材の厚み方向に貫通する深さで形成された切り込みを示す断面模式図、図3Bは基材の厚み方向に貫通しない深さで形成された切り込みを示す断面模式図である。
 以下、図面を参照しながら、本実施形態に係る配線基板1の構成について説明する。
(1) Overall configuration of wiring board FIG. 1A is a schematic cross-sectional view showing an example of the wiring board 1 according to the present embodiment, FIG. 1B is a schematic plan view showing an example of the wiring board 1, and FIG. 2B is a diagram for explaining the opening of the cut S when the base material 2 in which the cut S is formed is shaped into a three-dimensional shape, FIG. 3A is a cross-sectional schematic diagram showing a cut formed with a depth that penetrates the base material in the thickness direction, and FIG. 3B is a cross-sectional schematic diagram that shows a cut formed with a depth that does not penetrate the base material in the thickness direction.
The configuration of the wiring board 1 according to the present embodiment will be described below with reference to the drawings.
 配線基板1は、図1に示すように、基材2、基材2の一面2a上に配線として配置された導電性パターン3、導電性パターン3で電気的に接合された電子部品4、基材2の一面2aとは反対側の他面2bを覆う樹脂層5と、を備えて構成されている。 As shown in FIG. 1, the wiring board 1 includes a substrate 2, a conductive pattern 3 arranged as wiring on one surface 2a of the substrate 2, an electronic component 4 electrically connected by the conductive pattern 3, and a substrate. and a resin layer 5 covering the other surface 2b of the material 2 opposite to the one surface 2a.
 (基材)
  本実施形態における基材2は、合成樹脂材料からなり変形可能な絶縁性のフィルム状の基材である。ここで、「変形可能な基材」は、導電性パターン3を配置後に変形できる、すなわち、熱成形、真空成形または圧空成形によって実質的に平坦な2次元形状から実質的に立体的な3次元形状に変形することができる基材を意味する。
(Base material)
The base material 2 in this embodiment is a deformable insulating film-like base material made of a synthetic resin material. Here, a "deformable substrate" is one that can be deformed after placement of the conductive pattern 3, i.e. from a substantially flat two-dimensional shape to a substantially three-dimensional shape by thermoforming, vacuum forming or air pressure forming. It means a substrate that can be deformed into a shape.
  基材2の材質としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル、ナイロン6-10、ナイロン46などのポリアミド、ポリエーテルエーテルケトン(PEEK)、ABS、PMMA、ポリ塩化ビニルなどの熱可塑性樹脂が挙げられる。
 特にポリエステルがより好ましく、さらにその中でもポリエチレンテレフタレート(PET)が経済性、電気絶縁性、耐薬品性等のバランスが良く最も好ましい。
Materials for the base material 2 include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyamides such as nylon 6-10 and nylon 46, polyetheretherketone (PEEK), ABS, PMMA, and polyvinyl chloride. and other thermoplastic resins.
In particular, polyester is more preferable, and among these, polyethylene terephthalate (PET) is most preferable because it has a good balance of economy, electrical insulation, chemical resistance, and the like.
 基材2の一面2aには、金属ナノ粒子等の触媒インクを均一に塗布するために、表面処理を施すことが好ましい。表面処理としては、例えば、コロナ処理、プラズマ処理、溶剤処理、プライマー処理を用いることができる。 It is preferable to apply a surface treatment to one surface 2a of the base material 2 in order to evenly apply catalyst ink such as metal nanoparticles. As the surface treatment, for example, corona treatment, plasma treatment, solvent treatment, and primer treatment can be used.
 変形可能な基材2は、3次元形状への賦形が施される領域Wの導電性パターン3が配置された第1の領域R1(図2Aにおいて一点鎖線で示す)と導電性パターン3が配置されていない第2の領域R2(図2Aにおいて二点鎖線で示す)で賦形における基材2の伸び率が異なるようになっている。
 具体的には、導電性パターン3が配置された第1の領域R1に比べて、導電性パターン3が配置されていない第2の領域R2が、賦形における基材2の伸び率が大きくなるように、第2の領域R2で、基材2の厚み方向に切り込みSが形成されている。
The deformable base material 2 has a first region R1 (indicated by a dashed line in FIG. 2A) in which the conductive pattern 3 of the region W to be shaped into a three-dimensional shape is arranged, and the conductive pattern 3 The elongation rate of the base material 2 during shaping is different in the second regions R2 (indicated by a two-dot chain line in FIG. 2A) that are not arranged.
Specifically, compared to the first region R1 where the conductive pattern 3 is arranged, the second region R2 where the conductive pattern 3 is not arranged has a larger elongation rate of the base material 2 during shaping. Thus, the cut S is formed in the thickness direction of the base material 2 in the second region R2.
 図2Aに示すように、基材2には、賦形を施され屈曲する領域Wにおいては、導電性パターン3A(図2Aにおいては破線で示す)が、賦形による基材2の伸び方向(図2においてXで示す)と交差する方向(図2においてYで示す)に屈曲してミアンダ形状に配置されている。導電性パターン3Aをミアンダ形状とすることにより、基材2が屈曲する領域Wにおいて配線長を長くして、屈曲による導電性パターン3Aへの負荷を小さくすることが可能となる。そして、ミアンダ形状に屈曲した導電性パターン3Aの間となる第2の領域R2には、切り込みSが、形成されている。 As shown in FIG. 2A, in the region W where the base material 2 is shaped and bent, the conductive pattern 3A (indicated by a broken line in FIG. 2A) extends in the direction of elongation of the base material 2 due to shaping ( 2) are bent in a direction (indicated by Y in FIG. 2) to form a meandering shape. By forming the conductive pattern 3A into a meandering shape, it is possible to increase the wiring length in the region W where the base material 2 bends, and to reduce the load on the conductive pattern 3A caused by bending. A notch S is formed in the second region R2 between the meandering conductive patterns 3A.
 切り込みSは、図2Aに示すように、導電性パターン3が延在する方向(図2において矢印X方向)と交差する方向に長手方向(図2において矢印Y方向)を有するように形成されている。また、切り込みSは、図3に示すように、基材2の厚み方向(図3において矢印Z方向)に所定の深さで形成されている。所定の深さとしては、基材2の厚みに応じて、例えば、基材2の厚みが薄い場合は、図3Aに示すように、貫通する深さL1で形成し、基材2の厚みが厚い場合には、図3Bに示すように、貫通しない深さL2で形成してもよい。切り込みSを、基材2の厚み方向に貫通しない深さで形成することで、後述するように、賦形された基材2を射出成形用金型Kに載置して、例えば真空吸引して射出成形用金型Kのキャビティ形状に沿わせる場合、切り込みSからの空気の漏れを抑制することができる。
 また、切り込みSの切り込み深さ方向の形状としては、図3に示すように、ストレート、先細り形状、くさび形状等が挙げられるが、これらに限定されない。
As shown in FIG. 2A, the cut S is formed to have a longitudinal direction (direction of arrow Y in FIG. 2) that intersects the direction in which the conductive pattern 3 extends (direction of arrow X in FIG. 2). there is Moreover, as shown in FIG. 3, the cut S is formed with a predetermined depth in the thickness direction of the base material 2 (in the direction of arrow Z in FIG. 3). The predetermined depth depends on the thickness of the base material 2. For example, when the thickness of the base material 2 is thin, as shown in FIG. If it is thick, it may be formed with a depth L2 that does not penetrate, as shown in FIG. 3B. By forming the cut S with a depth that does not penetrate the base material 2 in the thickness direction, the formed base material 2 is placed on the injection mold K and, for example, vacuum-sucked as described later. air leakage from the notch S can be suppressed when the cavity shape of the mold K for injection molding is to be met.
Moreover, as shown in FIG. 3, the shape of the cut S in the cut depth direction includes a straight shape, a tapered shape, a wedge shape, and the like, but is not limited to these.
 また、基材2の賦形を施され屈曲する領域Wにおいては、導電性パターン3Bは、図2Aに示すように、賦形による基材2の伸び方向(図2Aにおいて矢印X方向)と交差する方向に延在して配置されてもよい。具体的には、導電性パターン3Bは、賦形による基材2の伸び方向(図2Aにおいて矢印X方向)に対して斜めに配置することで配線長を長くして、屈曲による導電性パターン3Bへの負荷を小さくすることが可能となる。
 この場合、切り込みSは、図2Aに示すように、導電性パターン3Bが延在する方向と交差する方向に長手方向を有するように形成される。
 また、切り込みSの切り込み深さは、図3に示すように、基材2の厚みに応じて、例えば、基材2の厚みが薄い場合は、貫通する深さで形成し、基材2の厚みが厚い場合には、貫通しない深さで形成してもよい。
In addition, in the region W where the base material 2 is shaped and bent, the conductive pattern 3B intersects the elongation direction of the base material 2 by shaping (the arrow X direction in FIG. 2A), as shown in FIG. 2A. It may be arranged to extend in the direction of Specifically, the conductive pattern 3B is arranged obliquely with respect to the extension direction of the base material 2 by shaping (the direction of the arrow X in FIG. 2A), thereby increasing the wiring length and by bending the conductive pattern 3B. It is possible to reduce the load on
In this case, as shown in FIG. 2A, the cut S is formed so as to have a longitudinal direction in a direction intersecting with the extending direction of the conductive pattern 3B.
Further, as shown in FIG. 3, the depth of the cut S is determined according to the thickness of the base material 2. For example, when the thickness of the base material 2 is thin, the cut depth is set to a depth that penetrates the base material 2. If it is thick, it may be formed to a depth that does not penetrate.
 切り込みSは、基材2に施される賦形の曲率に応じて、形成する個数を調整してもよい。例えば、賦形の曲率が大きい場合には、曲率が小さい場合に比べて、個数を多くしてもよい。また、切り込みSは、導電性パターン3に近接して形成するのが望ましい。導電性パターンSに近接して形成された切り込みSが開くことで、導電性パターン3が配置された部分(第1の領域R1)の基材2の伸びが小さくなり、導電性パターン3の断線が抑制される。 The number of cuts S to be formed may be adjusted according to the curvature of the shaping applied to the base material 2 . For example, when the curvature of shaping is large, the number may be increased compared to when the curvature is small. Moreover, it is desirable to form the cut S in the vicinity of the conductive pattern 3 . By opening the cut S formed adjacent to the conductive pattern S, the extension of the base material 2 in the portion (first region R1) where the conductive pattern 3 is arranged is reduced, and the conductive pattern 3 is disconnected. is suppressed.
 このように、ミアンダ形状の導電性パターン3Aと、賦形による基材2の伸び方向に対して斜めに形成された導電性パターン3Bが配置され、導電性パターン3A、3Bが配置されていない第2の領域R2で、厚み方向に切り込みSが形成されている基材2に賦形を施すと、図2Bに模式的に示すように、切り込みSは、賦形の曲率に応じて長手方向と交差する方向に開く。
 これにより、導電性パターン3A、3Bは、基材2の伸び方向に直線的に配置されている場合に比べて、伸びやすく、配線としての導電性パターン3A、3Bの賦形に伴う断線を抑制することができる。また、基材2は、切り込みSが開いて伸びることで、導電性パターン3A、3Bが配置された第1の領域R1の伸びを少なくして、導電性パターン3A、3Bの賦形に伴う断線を抑制することができる。
In this way, the meander-shaped conductive pattern 3A and the conductive pattern 3B obliquely formed with respect to the extension direction of the base material 2 by shaping are arranged, and the conductive patterns 3A and 3B are not arranged. 2, when the substrate 2 in which the incision S is formed in the thickness direction is shaped, as schematically shown in FIG. Open in a cross direction.
As a result, the conductive patterns 3A and 3B are more easily stretched than when they are arranged linearly in the stretching direction of the base material 2, and disconnection due to shaping of the conductive patterns 3A and 3B as wiring is suppressed. can do. In addition, the base material 2 is extended by opening the cuts S, thereby reducing the extension of the first region R1 in which the conductive patterns 3A and 3B are arranged, thereby preventing disconnection due to shaping of the conductive patterns 3A and 3B. can be suppressed.
 (導電性パターン)
 導電性パターン3(以下、ミアンダ形状の導電性パターン3Aと、基材の伸び方向に対して斜めに配置される導電性パターン3Bを区別する必要が無い場合は、導電性パターン3と記す)は、基材2に賦形が施されない領域に配置された直線形状の導電性パターン3と、基材2に賦形が施される領域Wに配置されたミアンダ形状の導電性パターン3A、斜め形状の導電性パターン3Bからなる。
(Conductive pattern)
The conductive pattern 3 (hereinafter referred to as the conductive pattern 3 when it is not necessary to distinguish between the meander-shaped conductive pattern 3A and the conductive pattern 3B arranged diagonally with respect to the extension direction of the base material) is , a linear conductive pattern 3 arranged in a region where shaping is not performed on the substrate 2, a meandering conductive pattern 3A arranged in a region W where shaping is performed on the substrate 2, and an oblique shape of the conductive pattern 3B.
 ミアンダ形状の導電性パターン3Aは、直線形状の導電性パターン3の延びる方向と交差する方向に蛇行を繰り返すように形成され、配線長が長くなっている。
 斜め形状の導電性パターン3Bは、直線形状の導電性パターン3の延びる方向と交差する方向に斜めに形成され、配線長が長くなっている。ミアンダ形状の導電性パターン3A及び斜め形状の導電性パターン3Bは、直線形状に比べて配線長が長くなることで、基材2に賦形を施された場合に、導電性パターン3が伸びやすく導電性パターン3の断線を抑制している。
The meandering conductive pattern 3A is formed so as to meander repeatedly in a direction intersecting with the direction in which the linear conductive pattern 3 extends, and has a longer wiring length.
The oblique conductive pattern 3B is obliquely formed in a direction crossing the extending direction of the linear conductive pattern 3, and has a long wiring length. The meander-shaped conductive pattern 3A and the oblique-shaped conductive pattern 3B have a longer wiring length than the linear shape, so that the conductive pattern 3 tends to stretch when the base material 2 is shaped. Disconnection of the conductive pattern 3 is suppressed.
 基材2の一面2aに導電性パターン3を配置する場合、さきに、金属めっき成長のきっかけとなる金属ナノ粒子等の触媒からなる下地層(不図示)を所定のパターン状に形成する。ここで、所定のパターン状としては、ミアンダ形状を含んでいる。下地層は、基材2上に金属ナノ粒子等の触媒インクを塗布したあと、乾燥および焼成を行うことにより形成する。 When arranging the conductive pattern 3 on the one surface 2a of the base material 2, first, a base layer (not shown) made of a catalyst such as metal nanoparticles that triggers growth of the metal plating is formed in a predetermined pattern. Here, the predetermined pattern includes a meandering shape. The base layer is formed by applying a catalyst ink such as metal nanoparticles on the substrate 2, followed by drying and baking.
  下地層の厚み(μm)は、0.1~20μmが好ましく、0.2~5μmがさらに好ましく、0.5~2μmが最も好ましい。下地層が薄すぎると、下地層の強度が低下するおそれがある。また、下地層が厚すぎると、金属ナノ粒子は通常の金属よりも高価であるため、製造コストが増大する虞がある。 The thickness (μm) of the underlayer is preferably 0.1 to 20 μm, more preferably 0.2 to 5 μm, most preferably 0.5 to 2 μm. If the underlayer is too thin, the strength of the underlayer may decrease. Also, if the underlayer is too thick, the manufacturing cost may increase because metal nanoparticles are more expensive than ordinary metals.
  触媒の材料としては、金、銀、銅、パラジウム、ニッケルなどが用いられ、導電性の観点から金、銀、銅が好ましく、金、銀に比べて安価な銅が最も好ましい。 As materials for the catalyst, gold, silver, copper, palladium, nickel, etc. are used, and gold, silver, and copper are preferred from the viewpoint of conductivity, and copper, which is cheaper than gold and silver, is most preferred.
  触媒の粒子径(nm)は1~500nmが好ましく、10~100nmがより好ましい。粒子径が小さすぎる場合、粒子の反応性が高くなりインクの保存性・安定性に悪影響を与える虞がある。粒子径が大きすぎる場合、薄膜の均一形成が困難になるとともに、インクの粒子の沈殿が起こりやすくなる虞がある。 The particle size (nm) of the catalyst is preferably 1-500 nm, more preferably 10-100 nm. If the particle size is too small, the reactivity of the particles increases, which may adversely affect the storability and stability of the ink. If the particle size is too large, it may become difficult to form a uniform thin film, and the particles of the ink may easily precipitate.
  導電性パターン3は、下地層の上に電解めっきまたは無電解めっきにより形成される。めっき金属としては、銅、ニッケル、錫、銀、金などを用いることができるが、伸長性、導電性および価格の観点から銅を用いることが最も好ましい。本実施形態においては、基材2に賦形が施される領域Wにおいては、導電性パターン3はミアンダ形状及び斜め形状に形成される。   The conductive pattern 3 is formed on the underlying layer by electroplating or electroless plating. As the plating metal, copper, nickel, tin, silver, gold, etc. can be used, but copper is most preferable from the viewpoint of extensibility, conductivity and cost. In the present embodiment, the conductive pattern 3 is formed in a meandering shape and an oblique shape in the region W where the substrate 2 is shaped.
  めっき層の厚さ(μm)は、0.03~100μmが好ましく、1~35μmがより好ましく、3~18μmが最も好ましい。めっき層が薄すぎると、機械的強度が不足するとともに、導電性が実用上十分に得られない虞がある。めっき層が厚すぎると、めっきに必要な時間が長くなり、製造コストが増大する虞がある。 The thickness (μm) of the plating layer is preferably 0.03-100 μm, more preferably 1-35 μm, and most preferably 3-18 μm. If the plated layer is too thin, the mechanical strength may be insufficient, and sufficient electrical conductivity may not be obtained for practical use. If the plating layer is too thick, the time required for plating will be long, and there is a risk that the manufacturing cost will increase.
 (電子部品)
 導電性パターン3には、複数の電子部品4が取り付けられてもよい。電子部品4としては、制御回路、歪み、抵抗、静電容量、TIRなどの接触感知、および光検出部品、圧電アクチュエータまたは振動モータなどの触知部品または振動部品、LED、OLED,LCDなどの発光素子、マイクおよびスピーカーなどの発音または受音、メモリチップ、プログラマブルロジックチップおよびCPUなどのデバイス操作部品、デジタル信号プロセッサ(DSP)、ALSデバイス、PSデバイス、処理デバイス、MEMS等が挙げられる。
(Electronic parts)
A plurality of electronic components 4 may be attached to the conductive pattern 3 . The electronic component 4 includes a control circuit, strain, resistance, capacitance, contact sensing such as TIR, light detection component, tactile component or vibration component such as piezoelectric actuator or vibration motor, light emission such as LED, OLED, LCD, etc. devices, sound generators such as microphones and speakers, device operating components such as memory chips, programmable logic chips and CPUs, digital signal processors (DSPs), ALS devices, PS devices, processing devices, MEMS, and the like.
 また、図1Bに示すように、導電性パターン3には、一端にコネクタ接点7が形成されてもよい。コネクタ接点7は導電性パターン3の一部として基材2の一端2cが樹脂層5の端部から外部に向かって突出するようになっている基材2上に形成されている。コネクタ接点7が形成された基材2の他面2b側には板材(不図示)が配置され、配線基板1の外部に設けられた外部装置と電気的に接続するためのコネクタを形成している。これにより、配線基板1のコネクタ構造を簡素化して外部に設けられた外部装置と電気的に接続することができるようになっている。 Also, as shown in FIG. 1B, the conductive pattern 3 may be formed with a connector contact 7 at one end. The connector contact 7 is formed on the substrate 2 as a part of the conductive pattern 3 so that one end 2c of the substrate 2 protrudes outward from the end of the resin layer 5 . A plate member (not shown) is arranged on the other surface 2b side of the substrate 2 on which the connector contacts 7 are formed to form a connector for electrically connecting to an external device provided outside the wiring board 1. there is As a result, the connector structure of the wiring board 1 can be simplified and electrically connected to an external device provided outside.
 (絶縁層)
 基材2の導電性パターン3が配置された一面2aには基材2と導電性パターン3とを一体的に覆う絶縁層6が設けられてもよい(図1Aに図示)。ただし、絶縁層6は、導電性パターン3における電子部品4との接合部分上には設けられていない。このような絶縁層6としては、具体的には、ソルダーレジストが塗布されて導電性パターン3を保護している。特に、ソルダーレジストは、電子部品をはんだ付けで実装する際に、電気的接続をとる接合部以外にはんだが付着して回路ショートを起こすのを防止している。また、導電性パターン3間の絶縁性を維持するとともに、ほこり、熱、湿気などの外部環境から導電性パターン3を保護している。
(insulating layer)
An insulating layer 6 integrally covering the substrate 2 and the conductive pattern 3 may be provided on the surface 2a of the substrate 2 on which the conductive pattern 3 is arranged (shown in FIG. 1A). However, the insulating layer 6 is not provided on the joint portion of the conductive pattern 3 with the electronic component 4 . As such an insulating layer 6 , specifically, a solder resist is applied to protect the conductive pattern 3 . In particular, the solder resist prevents short circuits caused by solder adhering to areas other than joints for electrical connection when electronic components are mounted by soldering. In addition, it maintains insulation between the conductive patterns 3 and protects the conductive patterns 3 from the external environment such as dust, heat, and humidity.
 (樹脂層)
 樹脂層5は、接着層ADを介して基材2の少なくとも一面を覆うように形成されている。接着層ADは、導電性パターン3を外部から不可視に覆い隠すように調色されてもよい。また、樹脂層5は接着層ADを透光性とした上で樹脂材料を透明樹脂材料とすることで、例えば配線基板1の内部に加飾が施された場合に、加飾を保護しながら視認可能とすることができる。本実施形態においては、樹脂層5は、導電性パターン3が配置された一面2aとは反対側の他面2bを覆うように形成されているが、導電性パターン3が配置された一面2aを覆うように形成したうえで、電子部品4は後実装してもよい。また、樹脂層5は、配線基板1の機能に応じて、基材2の両面を覆うように形成してもよい。
(resin layer)
The resin layer 5 is formed to cover at least one surface of the substrate 2 via the adhesive layer AD. The adhesive layer AD may be toned to hide the conductive pattern 3 invisibly from the outside. In addition, the resin layer 5 is formed by making the adhesive layer AD light-transmitting and then using a transparent resin material as the resin material. It can be visible. In this embodiment, the resin layer 5 is formed so as to cover the other surface 2b opposite to the surface 2a on which the conductive pattern 3 is arranged. After forming so as to cover, the electronic component 4 may be mounted later. Moreover, the resin layer 5 may be formed so as to cover both surfaces of the base material 2 depending on the function of the wiring board 1 .
 樹脂層5は、射出成形可能な熱可塑性樹脂材料からなる熱可塑性樹脂である。具体的には、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、ポリアミド(PA)、アクリルブタジエンスチレン(ABS)、ポリエチレン(PE)、ポリプロピレン(PP)、変性ポリフェニレンエーテル(m-PPE)、変性ポリフェニレンオキサイト(m-PPO)、シクロオレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニル(PVC)、またはこれらの混合物を含む熱可塑性樹脂を用いることができる。 The resin layer 5 is a thermoplastic resin made of a thermoplastic resin material that can be injection molded. Specifically, polycarbonate (PC), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), polyamide (PA), acrylic butadiene styrene (ABS), polyethylene (PE), polypropylene (PP), modified polyphenylene ether (m -PPE), modified polyphenylene oxide (m-PPO), cycloolefin copolymer (COC), cycloolefin polymer (COP), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), or mixtures thereof. A plastic resin can be used.
 (2)配線基板の製造方法
 図4は配線基板1の製造方法の概略の手順の一例を示すフローチャート図、図5は配線基板1の製造過程を説明するための配線基板1の部分断面模式図、図6は基材2を3次元形状に賦形するための熱プレス成形の各工程を説明するための説明図、図7は賦形された基材2に樹脂層5を射出成形する樹脂充填工程を示す図である。
(2) Wiring board manufacturing method FIG. 4 is a flow chart showing an example of a schematic procedure of the wiring board 1 manufacturing method, and FIG. 6 is an explanatory diagram for explaining each step of hot press molding for shaping the base material 2 into a three-dimensional shape, and FIG. It is a figure which shows a filling process.
 配線基板1は、図4に示すように、基材2の準備工程S11と、基材2上に導電性パターン3を形成する配線用めっき工程S12と、基材2に3次元形状への賦形が施される領域Wの導電性パターン3が配置されていない第2の領域R2に切り込みSを形成する切り込み形成工程S13と、切り込みSが形成された基材2を型に載置して基材2に賦形を施す賦形工程S14と、賦形が施された基材2を射出成形用金型Kに載置して基材2の導電性パターン3が形成された一面2aとは反対側の他面2bを覆う樹脂層5を射出成形する樹脂充填工程S15と、を経て製造される。 As shown in FIG. 4, the wiring board 1 is manufactured through a preparation step S11 for the base material 2, a wiring plating step S12 for forming the conductive pattern 3 on the base material 2, and a three-dimensional shape on the base material 2. A cut forming step S13 of forming a cut S in the second region R2 where the conductive pattern 3 of the region W to be shaped is not arranged, and placing the base material 2 in which the cut S is formed in a mold. A shaping step S14 for shaping the base material 2, and one surface 2a of the base material 2 on which the conductive pattern 3 is formed by placing the shaped base material 2 on the injection mold K. is manufactured through a resin filling step S15 for injection molding a resin layer 5 covering the other surface 2b on the opposite side.
 (基材の準備工程S11)
 基材の準備工程S11においては、まず、所定の形状及び大きさに形成された実質的に平坦なフィルム状の基材2に導電性パターン3を配置するために、基材2上に金属めっき成長のきっかけとなる金属ナノ粒子等の触媒粒子からなる下地層をミアンダ形状を含む所定のパターン状に形成する。尚、基材2には、金属ナノ粒子等の触媒粒子からなる触媒インクを均一に塗布するために、例えば、コロナ処理、プラズマ処理、溶剤処理、プライマー処理等の表面処理を施すことが好ましい。
(Base material preparation step S11)
In the base material preparation step S11, metal plating is first performed on the base material 2 in order to dispose the conductive pattern 3 on the substantially flat film-like base material 2 formed in a predetermined shape and size. A base layer made of catalyst particles such as metal nanoparticles that trigger growth is formed in a predetermined pattern including a meandering shape. In order to uniformly apply catalyst ink composed of catalyst particles such as metal nanoparticles, the substrate 2 is preferably subjected to surface treatment such as corona treatment, plasma treatment, solvent treatment, and primer treatment.
 基材2上に金属ナノ粒子等の触媒粒子からなる触媒インクを塗布する方法としては、インクジェット印刷方式、シルクスクリーン印刷方式、グラビア印刷方式、オフセット印刷方式、フレキソ印刷方式、ローラーコーター方式、刷毛塗り方式、スプレー方式、ナイフジェットコーター方式、パッド印刷方式、グラビアオフセット印刷方式、ダイコーター方式、バーコーター方式、スピンコーター方式、コンマコーター方式、含浸コーター方式、ディスペンサー方式、メタルマスク方式が挙げられるが、本実施形態においてはインクジェット印刷方式を用いている。 Methods for applying a catalyst ink made of catalyst particles such as metal nanoparticles on the substrate 2 include an inkjet printing method, a silk screen printing method, a gravure printing method, an offset printing method, a flexographic printing method, a roller coater method, and a brush coating method. Methods include spray method, knife jet coater method, pad printing method, gravure offset printing method, die coater method, bar coater method, spin coater method, comma coater method, impregnation coater method, dispenser method, and metal mask method. In this embodiment, an inkjet printing method is used.
 具体的には、1000cps以下、例えば、2cpsから30cpsの低粘度の触媒インクをインクジェット印刷方式で塗布した後、溶媒を揮発させ金属ナノ粒子のみを残す。その後、溶媒を除去し(乾燥)、金属ナノ粒子を焼結させる(焼成)。
 焼成温度は、100°C~300°Cが好ましく、150°C~200°Cがより好ましい。焼成温度が低すぎると、金属ナノ粒子同士の焼結が不十分となるとともに、金属ナノ粒子以外の成分が残ることで、密着性が得られない虞がある。また、焼成温度が高すぎると、基材2の劣化や歪みが発生する虞がある。
Specifically, after applying a low-viscosity catalyst ink of 1000 cps or less, for example, 2 cps to 30 cps, by an inkjet printing method, the solvent is volatilized to leave only the metal nanoparticles. The solvent is then removed (drying) and the metal nanoparticles are sintered (firing).
The firing temperature is preferably 100°C to 300°C, more preferably 150°C to 200°C. If the sintering temperature is too low, the sintering of the metal nanoparticles will be insufficient, and components other than the metal nanoparticles will remain, which may result in poor adhesion. Also, if the firing temperature is too high, the base material 2 may be deteriorated or distorted.
 (配線用めっき工程S12)
 基材2上に形成された下地層に対し、電解めっきまたは無電解めっきを行うことにより、下地層の表面および内部にめっき金属を析出させ導電性パターン3を配置する(図5A 参照)。めっき方法は公知のめっき液およびめっき処理と同様であり、具体的に無電解銅めっき、電解銅めっきが挙げられる。
(Wiring plating step S12)
Electroplating or electroless plating is applied to the underlying layer formed on the base material 2 to deposit plating metal on the surface and inside of the underlying layer, thereby arranging the conductive pattern 3 (see FIG. 5A). The plating method is the same as a known plating solution and plating treatment, specifically electroless copper plating and electrolytic copper plating.
 (切り込み形成工程S13)
 導電性パターン3が配置された基材2の賦形が施される領域Wの導電性パターン3が配置されていない第2の領域R2で、基材2の厚み方向に切り込みSを形成する(図5B 参照)。
 基材2には、賦形を施され屈曲する領域Wにおいては、直線形状の導電性パターン3の延びる方向と交差する方向に蛇行を繰り返すように、ミアンダ形状の導電性パターン3Aが形成され、ミアンダ形状に屈曲した導電性パターン3Aの間となる第2の領域R2に、切り込みSを形成する。
 また、基材2には、賦形を施され屈曲する領域Wにおいては、賦形による基材2の伸び方向に対して斜めに導電性パターン3Bが形成され、導電性パターン3Bが延在する方向と交差する方向に長手方向を有するように切り込みSを形成する。
(Incision forming step S13)
A cut S is formed in the thickness direction of the substrate 2 in the second region R2 where the conductive pattern 3 is not arranged in the region W where the shaping of the substrate 2 where the conductive pattern 3 is arranged is performed ( (see Figure 5B).
A meander-shaped conductive pattern 3A is formed on the base material 2 so as to repeat meandering in a direction intersecting with the extending direction of the linear conductive pattern 3 in the shaped and bent region W, A cut S is formed in the second region R2 between the meandering conductive patterns 3A.
In addition, in the region W where the base material 2 is shaped and bent, a conductive pattern 3B is formed obliquely with respect to the extension direction of the base material 2 due to the shaping, and the conductive pattern 3B extends. A cut S is formed to have a longitudinal direction in a direction transverse to the direction.
 切り込みSは、レーザー光を照射するレーザー装置、型抜き、又は、カッター刃を用いて、基材2の厚みに応じて、例えば、基材2の厚みが薄い場合は、貫通する深さで形成し、基材2の厚みが厚い場合には、貫通しない深さで形成される。 The incision S is formed with a depth that penetrates depending on the thickness of the base material 2, for example, if the thickness of the base material 2 is thin, using a laser device that irradiates a laser beam, die cutting, or a cutter blade. However, when the thickness of the base material 2 is thick, it is formed to a depth that does not penetrate.
 (賦形工程S14)
 賦形工程S14においては、導電性パターン3が配置され、切り込みSが形成された基材2を、熱プレス成形、真空成形、圧空成形、真空圧空成形、等の成形手段により、3次元形状に賦形する。
 賦形に用いられる型は、賦形が施された基材2の外表面が後述する樹脂充填工程S15における射出成形(インモールド成形)に用いられる射出成形用金型KのキャビティCAの形状に沿うように形成されている。
(Shaping step S14)
In the shaping step S14, the base material 2 on which the conductive pattern 3 is arranged and the cut S is formed is formed into a three-dimensional shape by a forming means such as hot press forming, vacuum forming, pressure forming, vacuum pressure forming. shape.
The mold used for shaping is such that the outer surface of the shaped base material 2 conforms to the shape of the cavity CA of the injection mold K used for injection molding (in-mold molding) in the resin filling step S15 described later. formed to follow.
  はじめに、図6Aに示すように、基材2を雌型11と雄型12との間に載置する。このとき、雌型11と雄型12とは基材2を軟化させることができる所定の温度に加熱されている。
 そして、図6Bに示すように、雌型11と雄型12とを所定の圧力で型締めすると、基材2は雄型12のコア部12aと雌型11のキャビティ部11aとの間に挟まれて賦形される。
First, the substrate 2 is placed between the female mold 11 and the male mold 12 as shown in FIG. 6A. At this time, the female mold 11 and the male mold 12 are heated to a predetermined temperature capable of softening the base material 2 .
Then, as shown in FIG. 6B, when the female mold 11 and the male mold 12 are clamped with a predetermined pressure, the base material 2 is sandwiched between the core portion 12a of the male mold 12 and the cavity portion 11a of the female mold 11. and shaped.
  そして、雌型11と雄型12とを型開きし、冷却することにより、トリミング前の所定の3次元形状に賦形された基材2が得られる。そして、雌型11及び雄型12から基材2を取り出し、不要部分をトリミングすることにより、樹脂層5が形成される前の基材2が得られる。 Then, the female mold 11 and the male mold 12 are opened and cooled to obtain the base material 2 shaped into a predetermined three-dimensional shape before trimming. Then, the base material 2 is taken out from the female mold 11 and the male mold 12, and the unnecessary part is trimmed to obtain the base material 2 before the resin layer 5 is formed.
  このようにして賦形された基材2は、樹脂充填工程S15における射出成形(インモールド成形)に用いられて、樹脂層5と一体化されて配線基板1とされる。 The base material 2 shaped in this way is used for injection molding (in-mold molding) in the resin filling step S15, and integrated with the resin layer 5 to form the wiring board 1.
 (樹脂充填工程S15)
 樹脂充填工程S15では、まず、賦形工程S14で3次元形状に賦形が施された基材2の導電性パターン3が配置された一面2aとは反対側の他面2bに基材2と樹脂層5の樹脂素材の組み合わせに応じて接着層ADを形成するバインダーインクを塗布する(図5C 参照)。バインダーインクは、接着性樹脂を含み、スクリーン印刷、インクジェット印刷、スプレーコート、筆塗り等で塗布され、基材2と射出成形される樹脂層5との接着性を向上させる。尚、樹脂層5を基材2の導電性パターン3が配置された一面2aを覆うように形成する場合には、絶縁層6を設けることなく、基材2の一面2aにバインダーインクを塗布する。
(Resin filling step S15)
In the resin filling step S15, first, the substrate 2 is placed on the other surface 2b opposite to the surface 2a on which the conductive pattern 3 of the substrate 2 which has been shaped into a three-dimensional shape in the shaping step S14 is arranged. A binder ink for forming an adhesive layer AD is applied according to the combination of resin materials for the resin layer 5 (see FIG. 5C). The binder ink contains an adhesive resin, is applied by screen printing, inkjet printing, spray coating, brush coating, or the like, and improves the adhesiveness between the base material 2 and the injection-molded resin layer 5 . When forming the resin layer 5 so as to cover the one surface 2a of the base material 2 on which the conductive pattern 3 is arranged, the binder ink is applied to the one surface 2a of the base material 2 without providing the insulating layer 6. .
 次に、3次元形状に賦形が施された基材2を射出成形用金型Kに位置決めしてセットする(図5D 参照)。基材2を射出成形用金型KのキャビティCAにセットする場合には、3次元形状に賦形が施された基材2をキャビティCAの表面に自己吸着させて配置しても位置ずれさせないように、キャビティCAの表面に両面テープで貼り付けたり、真空吸着させたり、キャビティCAに突起(不図示)を設け、突起に嵌め込むようにして固定してもよい。
 尚、本実施形態に係る配線基板1においては、賦形が施された基材2には、切り込みS形成されているために、賦形工程S14で3次元形状に賦形された基材2は型から取り出された後に基材2の剛性により発生するスプリングバック現象が抑制されている。そのために、射出成形用金型KのキャビティCAにセットした場合、キャビティCAの表面との間に発生しやすい隙間が少なくなるという効果も有している。
Next, the base material 2 that has been shaped into a three-dimensional shape is positioned and set in the injection mold K (see FIG. 5D). When the base material 2 is set in the cavity CA of the injection mold K, the base material 2, which has been formed into a three-dimensional shape, is self-sucked on the surface of the cavity CA and is not displaced. , it may be fixed by sticking it on the surface of the cavity CA with a double-sided tape, vacuum-adhering it, or providing a projection (not shown) on the cavity CA and fitting it into the projection.
In the wiring board 1 according to the present embodiment, since the cuts S are formed in the shaped base material 2, the base material 2 that has been shaped into a three-dimensional shape in the shaping step S14 The springback phenomenon that occurs due to the rigidity of the base material 2 after being removed from the mold is suppressed. Therefore, when it is set in the cavity CA of the injection molding die K, there is also an effect that the gap that tends to occur between the surface of the cavity CA is reduced.
 そして、図7に示すように、基材2を射出成形用金型Kに位置決めしてセットした状態で金型を閉じて樹脂をキャビティCAに充填する。キャビティCAに充填された樹脂により、基材2の他面2bを覆う樹脂層5が形成される。 Then, as shown in FIG. 7, in a state in which the base material 2 is positioned and set in the injection molding die K, the die is closed and the cavity CA is filled with resin. A resin layer 5 covering the other surface 2b of the substrate 2 is formed by the resin filled in the cavity CA.
 このように、本実施形態に係る配線基板1の製造方法によれば、変形可能な基材2上に形成された回路パターンとしての導電性パターン3の3次元形状への賦形に伴う断線を抑制しながら、配線基板1を立体的な形状とすることができる。 As described above, according to the method for manufacturing the wiring board 1 according to the present embodiment, disconnection due to shaping into a three-dimensional shape of the conductive pattern 3 as the circuit pattern formed on the deformable base material 2 can be prevented. The wiring board 1 can be formed into a three-dimensional shape while suppressing the deformation.
1・・・配線基板
 2・・・基材
  2a・・・一面(導電性パターン3側)
  2b・・・他面(樹脂層5側) 3・・・導電性パターン
  3A・・・ミアンダ形状の導電性パターン
  3B・・・斜め配置の導電性パターン
 4・・・電子部品
 5・・・樹脂層
 6・・・絶縁層
11・・・雌型
12・・・雄型
S・・・切り込み
AD・・・接着層
K・・・射出成形用金型
CA・・・キャビティ
DESCRIPTION OF SYMBOLS 1... Wiring board 2... Base material 2a... One surface (conductive pattern 3 side)
2b... other surface (resin layer 5 side) 3... conductive pattern 3A... meander-shaped conductive pattern 3B... obliquely arranged conductive pattern 4... electronic component 5... resin Layer 6... Insulating layer 11... Female mold 12... Male mold S... Notch AD... Adhesive layer K... Mold for injection molding CA... Cavity

Claims (13)

  1.  基材の一面に導電性パターンが配置された配線基板であって、
     前記基材に3次元形状への賦形が施される領域の前記導電性パターンが配置された第1の領域に比べて前記導電性パターンが配置されていない第2の領域が賦形における前記基材の伸び率が大きい、
     ことを特徴とする配線基板。
    A wiring board in which a conductive pattern is arranged on one surface of a base material,
    Compared to the first region where the conductive pattern is arranged in the region where the base material is subjected to shaping into a three-dimensional shape, the second region where the conductive pattern is not arranged is the above in the shaping. The elongation rate of the base material is large,
    A wiring board characterized by:
  2.  前記基材は、前記第2の領域で、前記基材の厚み方向に切り込みが形成されている、
     ことを特徴とする請求項1に記載の配線基板。
    In the second region of the base material, a cut is formed in the thickness direction of the base material,
    The wiring board according to claim 1, characterized in that:
  3.  前記切り込みは、前記導電性パターンが延在する方向と交差する方向に長手方向を有する、
     ことを特徴とする請求項2に記載の配線基板。
    The cut has a longitudinal direction in a direction intersecting with the direction in which the conductive pattern extends,
    3. The wiring board according to claim 2, wherein:
  4.  前記切り込みは、前記基材の厚み方向に貫通する深さで形成されている、
     ことを特徴とする請求項2又は3に記載の配線基板。
    The cut is formed with a depth that penetrates the base material in the thickness direction,
    4. The wiring board according to claim 2, wherein:
  5.  前記切り込みは、前記基材の厚み方向に貫通しない深さで形成されている、
     ことを特徴とする請求項2又は3に記載の配線基板。
    The cut is formed to a depth that does not penetrate the base material in the thickness direction,
    4. The wiring board according to claim 2, wherein:
  6.  前記導電性パターンは、前記第1の領域で賦形による前記基材の伸び方向と交差する方向に延在して配置され、前記切り込みは、前記第2の領域で前記導電パターンに近接して形成されている、
     ことを特徴とする請求項2ないし5のいずれか1項に記載の配線基板。
    The conductive pattern is arranged in the first region so as to extend in a direction intersecting with the stretching direction of the base material due to shaping, and the cut is in the second region close to the conductive pattern. formed,
    The wiring board according to any one of claims 2 to 5, characterized in that:
  7.  前記導電性パターンは、前記第1の領域で賦形による前記基材の伸び方向と交差する方向に屈曲してミアンダ形状に配置され、前記切り込みは、前記第2の領域で前記ミアンダ形状の屈曲した前記導電パターンの間に少なくとも一つ形成されている、
     ことを特徴とする請求項2ないし5のいずれか1項に記載の配線基板。
    The conductive pattern is bent in the first region in a direction intersecting the elongation direction of the base material due to shaping and arranged in a meandering shape, and the cut is bent in the meandering shape in the second region. At least one is formed between the conductive patterns that
    The wiring board according to any one of claims 2 to 5, characterized in that:
  8.  前記基材が合成樹脂材料からなる変形可能なフィルムである、
     ことを特徴とする請求項1ないし7のいずれか1項に記載の配線基板。
    wherein the substrate is a deformable film made of a synthetic resin material;
    The wiring board according to any one of claims 1 to 7, characterized in that:
  9.  前記導電性パターンは、Cu、Ni、Ag、Auの中から選択される少なくとも1種の金属よりなる金属めっき層である、
     ことを特徴とする請求項1ないし8のいずれか1項に記載の配線基板。
    The conductive pattern is a metal plating layer made of at least one metal selected from Cu, Ni, Ag, and Au.
    The wiring board according to any one of claims 1 to 8, characterized in that:
  10.  前記基材の少なくとも一面を覆う樹脂層を更に備えた、
     ことを特徴とする請求項1ないし9のいずれか1項に記載の配線基板。
    Further comprising a resin layer covering at least one surface of the base material,
    The wiring board according to any one of claims 1 to 9, characterized in that:
  11.  基材の一面に導電性パターンが配置され前記基材に3次元形状への賦形が施される領域の前記導電性パターンが配置された第1の領域と前記導電性パターンが配置されていない第2の領域で賦形における前記基材の伸び率が異なる配線基板の製造方法であって、
     前記基材を準備する工程と、
     前記基材の前記一面に前記導電性パターンを配置する工程と、
     前記導電性パターンが配置された前記基材の前記第2の領域に切り込みを形成する工程と、
     前記切り込みが形成された前記基材を型に載置して前記基材に3次元形状への賦形を施す賦形工程と、を含む、
     ことを特徴とする配線基板の製造方法。
    A conductive pattern is arranged on one surface of a base material, and a first area where the conductive pattern is arranged in the area where the base material is formed into a three-dimensional shape and the conductive pattern is not arranged. A method for manufacturing a wiring board in which elongation rates of the base material during shaping are different in a second region,
    preparing the substrate;
    arranging the conductive pattern on the one surface of the substrate;
    forming a notch in the second region of the substrate where the conductive pattern is disposed;
    A shaping step of placing the base material with the cut formed in a mold and shaping the base material into a three-dimensional shape,
    A method of manufacturing a wiring board, characterized by:
  12.  前記賦形工程の後に、前記賦形が施された前記基材を金型に載置して前記基材の少なくとも一面を覆う樹脂層を射出成形する工程を更に含む、
     ことを特徴とする請求項11に記載の配線基板の製造方法。
    After the shaping step, placing the shaped base material in a mold and injection molding a resin layer covering at least one surface of the base material.
    12. The method of manufacturing a wiring board according to claim 11, wherein:
  13.  前記切り込みは、レーザー、型抜き、又は、刃を用いて、前記基材に形成されている、
     ことを特徴とする請求項11又は12に記載の配線基板の製造方法。
    the notch is formed in the substrate using a laser, die cutting, or blade;
    13. The method of manufacturing a wiring board according to claim 11 or 12, characterized in that:
PCT/JP2021/027165 2021-07-20 2021-07-20 Wiring board and production method for same WO2023002570A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021569472A JP7026367B1 (en) 2021-07-20 2021-07-20 Wiring board and its manufacturing method
PCT/JP2021/027165 WO2023002570A1 (en) 2021-07-20 2021-07-20 Wiring board and production method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027165 WO2023002570A1 (en) 2021-07-20 2021-07-20 Wiring board and production method for same

Publications (1)

Publication Number Publication Date
WO2023002570A1 true WO2023002570A1 (en) 2023-01-26

Family

ID=81175172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027165 WO2023002570A1 (en) 2021-07-20 2021-07-20 Wiring board and production method for same

Country Status (2)

Country Link
JP (1) JP7026367B1 (en)
WO (1) WO2023002570A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150065840A1 (en) * 2013-08-30 2015-03-05 Thalmic Labs Inc. Systems, articles, and methods for stretchable printed circuit boards
JP2019075491A (en) * 2017-10-18 2019-05-16 株式会社フジクラ Stretchable substrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4412278A1 (en) * 1994-04-09 1995-10-12 Bosch Gmbh Robert Circuit board with both rigid and flexible regions
JP2016021555A (en) * 2014-05-27 2016-02-04 キヤノン・コンポーネンツ株式会社 Flexible printed wiring board and flexible circuit board
EP3294046B1 (en) * 2016-09-09 2023-08-02 TE Connectivity Germany GmbH Solid state lighting module and method of fabricating same
JP6554154B2 (en) * 2017-10-27 2019-07-31 株式会社スクウェア・エニックス Video game processing program and video game processing system
EP3731604A4 (en) * 2017-12-22 2021-08-04 ASAHI FR R&D Co., Ltd. Extensible electroconductive wiring material, and extensible electroconductive wiring module having same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150065840A1 (en) * 2013-08-30 2015-03-05 Thalmic Labs Inc. Systems, articles, and methods for stretchable printed circuit boards
JP2019075491A (en) * 2017-10-18 2019-05-16 株式会社フジクラ Stretchable substrate

Also Published As

Publication number Publication date
JPWO2023002570A1 (en) 2023-01-26
JP7026367B1 (en) 2022-02-28

Similar Documents

Publication Publication Date Title
CN113473742A (en) Method for manufacturing electronic product, related device and product
CN116872434A (en) Method for producing an electromechanical structure and device for carrying out the method
EP3756426B1 (en) Thermoforming an electronic device with surface curvature
WO2023002570A1 (en) Wiring board and production method for same
WO2021090785A1 (en) Electronic device
JP7117705B1 (en) electronic device
JP4830881B2 (en) Circuit board for molding and three-dimensional circuit board obtained by molding the same
WO2019098029A1 (en) Electronic device and manufacturing method thereof
JP2012148554A (en) Method of manufacturing ic tag-integrated molding
JP2014216201A (en) Contact and switch
JP7057987B1 (en) Electronic device and its manufacturing method
JP7233067B1 (en) Mounting component positioning and fixing structure and manufacturing method
JP7288286B1 (en) Electronic device manufacturing method
JP7165374B1 (en) Electronic device and its manufacturing method
CN113228834A (en) Printing of multilayer circuits on patterns
JP7117706B1 (en) Display device and manufacturing method thereof
JP6903300B1 (en) Electronic device and its manufacturing method
JP7178682B1 (en) Electronic device and its manufacturing method
JP7212340B1 (en) Connector connection structure and manufacturing method thereof
WO2022075192A1 (en) Injection molded article and method for producing same
US20220264742A1 (en) Module and manufacturing method of the same
JP5482300B2 (en) IC tag manufacturing method
JP2019079592A (en) Input device and manufacturing method thereof
TW202112190A (en) Touch module and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021569472

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950922

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE