WO2021090785A1 - Electronic device - Google Patents

Electronic device Download PDF

Info

Publication number
WO2021090785A1
WO2021090785A1 PCT/JP2020/040995 JP2020040995W WO2021090785A1 WO 2021090785 A1 WO2021090785 A1 WO 2021090785A1 JP 2020040995 W JP2020040995 W JP 2020040995W WO 2021090785 A1 WO2021090785 A1 WO 2021090785A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring pattern
metal wiring
base material
resin
electronic device
Prior art date
Application number
PCT/JP2020/040995
Other languages
French (fr)
Japanese (ja)
Inventor
雅明 杉本
将吏 登口
横山 英明
雄一 老田
Original Assignee
エレファンテック株式会社
タカハタプレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エレファンテック株式会社, タカハタプレシジョン株式会社 filed Critical エレファンテック株式会社
Publication of WO2021090785A1 publication Critical patent/WO2021090785A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/32Holders for supporting the complete device in operation, i.e. detachable fixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to an electronic device.
  • An electronic circuit that performs a predetermined process, a substrate on which the electronic circuit is arranged, and a pad provided on the substrate by bending one end thereof are joined and electrically connected to the electronic circuit via the pad.
  • the pin header used for positioning in the secondary molding with the other end serving as the connector terminal and one end of the electronic circuit, substrate and pin header are resin-sealed so that the connector terminal is exposed.
  • a module including the above-mentioned primary molded body is known (Patent Document 1).
  • a method for manufacturing electromechanical structures in relation to the process of making multiple conductors and / or multiple graphics on a substantially flat film and the desired three-dimensional shape of the film As an inserter in a step of mounting a plurality of electronic elements on a film, a step of forming a film accommodating an electronic element into a substantially three-dimensional shape, and an injection molding process by substantially molding on the film.
  • a method of forming an electromechanical structure by attaching a preferable layer of a material to the surface of the film which comprises a step of using a three-dimensional film (Patent Document 2).
  • the present invention suppresses melting due to heat and pressure of a joining means for conductively joining an electronic element to a metal wiring pattern formed on a deformable base material, and holds the electronic element on the metal wiring pattern with high positional accuracy and electricity.
  • a joining means for conductively joining an electronic element to a metal wiring pattern formed on a deformable base material and holds the electronic element on the metal wiring pattern with high positional accuracy and electricity.
  • an electronic device capable of maintaining a target bond.
  • the electronic device In order to solve the above problems, the electronic device according to claim 1 is used.
  • Deformable base material and The metal wiring pattern arranged on the base material and An electronic element bonded by a bonding means containing a heat-meltable conductive component to the metal wiring pattern, A resin layer covering one surface on which the metal wiring pattern of the base material is arranged, and A resin coating layer having a softening point higher than that of the resin layer and covering a part or all of the joining means so as to be separated from the resin layer is provided. It is characterized by that.
  • the electronic device In order to solve the above problems, the electronic device according to claim 2 is used.
  • Deformable base material and The metal wiring pattern arranged on the base material and An electronic element bonded by a bonding means containing a heat-meltable conductive component to the metal wiring pattern, A resin layer covering one surface on which the metal wiring pattern of the base material is arranged, and A resin coating layer that thermally and pressureally separates a part or all of the bonding means from the resin layer is provided. It is characterized by that.
  • the electronic device In order to solve the above problems, the electronic device according to claim 3 is used.
  • Deformable base material and The metal wiring pattern arranged on the base material and An electronic element bonded by a bonding means containing a heat-meltable conductive component to the metal wiring pattern, A resin layer covering one surface on which the metal wiring pattern of the base material is arranged, and A part or all of the joining means and a resin coating layer for thermally and pressure-separating the electronic element from the resin layer It is characterized by that.
  • the invention according to claim 4 is the electronic device according to any one of claims 1 to 3.
  • the metal wiring pattern is a metal plating layer made of at least one metal selected from copper (Cu), nickel (Ni), silver (Ag), and gold (Au). It is characterized by that.
  • the invention according to claim 5 is the electronic device according to any one of claims 1 to 3.
  • the joining means is a low-temperature solder having a melting temperature lower than the softening point of the base material. It is characterized by that.
  • the invention according to claim 6 is the electronic device according to any one of claims 1 to 3.
  • the resin layer is made of a thermoplastic material
  • the resin coating layer is made of a thermosetting resin material, a two-component curable resin material, a photocurable resin material, or a moisture-curable resin material. It is characterized by that.
  • the invention according to claim 7 is the electronic device according to any one of claims 1 to 6.
  • the surface of the base material opposite to the one on which the metal wiring pattern is arranged is covered with a thermoplastic resin layer. It is characterized by that.
  • the invention according to claim 8 is the electronic device according to any one of claims 1 to 7.
  • the electronic element includes an external connection terminal for electrically connecting an element electrically connected to the metal wiring pattern and an external element provided outside the resin layer, and at least the external connection terminal of the external connection terminal.
  • the terminal surface which is the surface, is exposed from the resin layer. It is characterized by that.
  • the electronic element is conductive on the metal wiring pattern formed on the deformable base material as compared with the configuration in which the resin coating layer covering a part or all of the joining means is not provided. It is possible to suppress leaching due to heat and pressure of the joining means to be joined.
  • the electronic element is placed on the metal wiring pattern by suppressing melting due to heat and pressure of the joining means for conductively joining the electronic element to the metal wiring pattern formed on the deformable base material. It is possible to maintain the position accuracy and maintain the electrical connection.
  • the heat and pressure of the molten resin layer are transmitted to the electronic element as compared with the configuration in which the bonding means and the electronic element are not provided with the resin coating layer that thermally separates the electronic element from the resin layer. Can be avoided.
  • the metal wiring pattern can be arranged along the three-dimensional shape of the deformed base material.
  • the electronic element can be conductively bonded to the metal wiring pattern arranged on the deformable base material.
  • softening of the resin coating layer can be suppressed when the high temperature molten resin comes into contact with the resin coating layer.
  • the strength of the electronic device can be improved.
  • FIG. 6A is a schematic partial plan view showing the connection between the metal wiring pattern and the pin header in the embodiment
  • FIG. 6B is a schematic cross-sectional view showing the connection between the metal wiring pattern and the pin header
  • FIG. 6C is a metal wiring pattern filled with a resin layer.
  • FIG. 6A is a schematic partial plan view showing the connection between the metal wiring pattern and the pin header in the embodiment
  • FIG. 6B is a schematic cross-sectional view showing the connection between the metal wiring pattern and the pin header
  • FIG. 6C is a metal wiring pattern filled with a resin layer.
  • FIG. 6C is a partial cross-sectional schematic diagram which shows the bonding state of a pin header. It is a figure which shows the lighting confirmation result of the LED in the electronic device which concerns on Example.
  • FIG. 1 is a schematic plan view showing an example of the electronic device according to the present embodiment with the resin layer not shown
  • FIG. 2 is a partial cross-sectional schematic showing an example of the electronic device according to the present embodiment
  • FIG. 3 is a schematic partial cross-sectional view showing an example of another aspect of the electronic device according to the present embodiment.
  • the electronic device 1 is formed into a wiring pattern by applying an insulating base material 2 made of a thermoplastic resin and a conductive ink containing metal nanoparticles on the base material 2.
  • a metal wiring pattern 3 formed by plating on the formed conductive layer 3a, a pin header 5 as an example of an electronic element bonded with low-temperature solder 4 as an example of bonding means on the metal wiring pattern 3, and a pin header 5. It is configured to include a resin coating layer 6 that covers a part or all of the low temperature solder 4, and a resin layer 7 that covers one surface 2a on which the metal wiring pattern 3 of the base material 2 is arranged.
  • the insulating base material 2 used in the present embodiment is not particularly limited to a film-like base material, but will be described below as a film-like base material.
  • the material of the base material 2 is an insulating and deformable thermoplastic resin, and when the melting point Tm is present, the temperature is preferably 150 ° C. or higher, more preferably 200 ° C. or higher.
  • the range of the glass transition point Tg of the base material 2 is preferably 20 ° C. to 250 ° C., more preferably 50 ° C. to 200 ° C., and most preferably 70 ° C. to 150 ° C. If the glass transition point Tg is too low, the strain of the base material 2 may increase when the metal nanoparticles are sintered.
  • the material of the base material 2 is not particularly limited as long as it meets the conditions of the melting point Tm and the glass transition point Tg as described above, but specifically, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) (PEN).
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) (PEN).
  • PA polyamide
  • PA polyamide
  • PE polyetheretherketone
  • ABS polyMMA
  • polyvinyl chloride polyvinyl chloride
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • the thickness of the base material 2 is preferably 5 ⁇ m to 3 mm, more preferably 12 ⁇ m to 1 mm, and most preferably 50 ⁇ m to 200 ⁇ m. If the thickness of the base material 2 is too thin, the strength may be insufficient and the distortion of the base material 2 may increase during the plating process of the metal wiring pattern 3. This thickness is a condition when the base material 2 is a film-like base material, and the insulating base material 2 to which the present invention is applied is not limited to the film-like base material.
  • the surface treatment for example, corona treatment, plasma treatment, solvent treatment, and primer treatment can be used.
  • the film-like base material 2 made of such a deformable thermoplastic resin has a substantially flat two-dimensional shape by thermoforming, vacuum forming, or pressure molding, depending on the required usage of the electronic device 1. Is formed into a three-dimensional shape.
  • the conductive layer 3a composed of metal nanoparticles is first applied.
  • the thickness of the conductive layer 3a is preferably 100 nm to 20 ⁇ m, more preferably 200 nm to 5 ⁇ m, and most preferably 500 nm to 2 ⁇ m. If the conductive layer 3a is too thin, the strength of the conductive layer 3a may decrease. Further, if the conductive layer 3a is too thick, the metal nanoparticles are more expensive than ordinary metals, which may increase the manufacturing cost.
  • gold (Au), silver (Ag), copper (Cu), palladium (Pd), nickel (Ni) and the like are used, and gold (Au) and silver (Ag) are used from the viewpoint of conductivity.
  • Copper (Cu) is preferable, and silver, which is less likely to be oxidized than copper (Cu) and is cheaper than gold (Au), is most preferable.
  • the particle size of the metal nanoparticles is preferably 1 nm to 500 nm, more preferably 10 nm to 100 nm. If the particle size is too small, it becomes difficult to generate voids for introducing the resin of the base material 2 by heating and pressurizing, and the reactivity of the particles becomes high, which may adversely affect the storage stability and stability of the ink. is there. If the particle size is too large, it becomes difficult to form a thin film uniformly, and there is a risk that ink particles are likely to precipitate.
  • the metal wiring pattern 3 is formed on the conductive layer 3a by electrolytic plating or electroless plating.
  • the plating metal copper (Cu), nickel (Ni), silver (Ag), gold (Au) and the like can be used, but copper (Cu) may be used from the viewpoint of extensibility, conductivity and price. Most preferred.
  • the thickness of the plating layer is preferably 0.03 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 35 ⁇ m, and most preferably 3 ⁇ m to 18 ⁇ m. If the plating layer is too thin, the mechanical strength may be insufficient and the conductivity may not be sufficiently obtained in practice. If the plating layer is too thick, the time required for plating becomes long, which may increase the manufacturing cost.
  • a plurality of electronic components are attached to the metal wiring pattern 3.
  • Electronic components include control circuits, distortion, resistance, capacitance, contact sensing such as TIR, and light detection components, tactile or vibrating components such as piezoelectric actuators or vibration motors, light emitting components such as LEDs, microphones and speakers. Sounds or sounds such as, memory chips, programmable logic chips and device operation components such as CPUs, digital signal processors (DSPs), ALS devices, PS devices, processing devices, MEMS and the like can be mentioned.
  • FIG. 1 shows, as an example of these electronic components, a heater 3A which is a resistor, an LED 3B which is a light emitting component, and a touch sensor 3C.
  • a pin header 5 as an example of an electronic element is joined on the metal wiring pattern 3.
  • the pin header 5 is an external connection terminal for electrically connecting a plurality of electronic components mounted on the electronic device 1 electrically connected to the metal wiring pattern 3 and an external element provided outside the electronic device 1. It has a 51 and a pin holding portion 52 that holds a plurality of external connection terminals 51 so as to be separated from each other by a predetermined distance.
  • the external connection terminal 51 is formed in a quadrangular prism shape using, for example, a copper alloy.
  • the surface of the external connection terminal 51 may be nickel-plated, and the nickel plating may be plated with a metal such as gold (AU) or tin (Sn) or an alloy containing these metals. good.
  • the pitch of the external connection terminal 51 corresponds to the standard of the connector to which it is connected.
  • the external connection terminal 51 is composed of, for example, a terminal portion 51a serving as a connector terminal and an anchor portion 51b joined to the metal wiring pattern 3, and the anchor portion 51b is joined to the metal wiring pattern 3.
  • the anchor portion 51b of the external connection terminal 51 of the pin header 5 is joined with a metal wiring pattern 3 and a low-temperature solder 4 as an example of a joining means containing a heat-meltable conductive component.
  • the low-temperature solder 4 is a solder having a melting temperature lower than the softening point of the base material 2, and is, for example, an alloy of tin (Sn) and bismuth (Bi) (SnBi), tin (Sn) and bismuth (Bi).
  • PET polyethylene terephthalate
  • examples of the solder paste of the low-temperature solder 4 include those represented by Sn-40Bi- (0 to 1.1) Cu-0.03Ni.
  • examples of such low-temperature solder 4 include the trade name “ECO SOLDER PASTE LT142” (manufactured by Senju Metal Industry Co., Ltd.).
  • the reflow process can be controlled so that the reflow temperature is higher than the melting point of the solder paste but lower than the softening point of the base material 2. ..
  • the base material 2 is polyethylene terephthalate (PET)
  • PET polyethylene terephthalate
  • the base material 2 does not melt or other deformation, while the solder paste melts. It becomes a state where it can be chemically and physically bonded to the metal wiring pattern 3.
  • the low-temperature solder 4 is solidified, and the pin header 5 as an example of the electronic element is joined to the metal wiring pattern 3 via the low-temperature solder 4.
  • the resin layer 7 is formed by performing secondary molding on one surface 2a of the base material 2 on which the metal wiring pattern 3 and the pin header 5 are arranged, and covers the one surface 2a on which the metal wiring pattern 3 is arranged. And a connector portion 72 having a tubular shape and having an external connection terminal 51 of the pin header 5 exposed inside the cylinder.
  • the resin layer 7 is a thermoplastic resin made of a thermoplastic resin material that can be secondarily molded. Specifically, polycarbonate (PC), polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polyamide (PA), acrylic butadiene styrene (ABS), polyethylene (PE), polypropylene (PP), modified polyphenylene ether (m). -PPE), modified polyphenylene oxide (m-PPO), cycloolefin copolymer (COC), cycloolefin polymer (COP), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), or a mixture thereof.
  • a plastic resin can be used.
  • the resin layer 7 may also be formed on the surface 2b opposite to the one surface 2a on which the metal wiring pattern 3 of the base material 2 is arranged.
  • the strength of the electronic device 1 can be improved by forming the resin layer 7 on the surface 2b opposite to the one surface 2a of the base material 2.
  • the resin coating layer 6 covers a part or all of the low-temperature solder 4 that joins the pin header 5 as an example of the electronic element on the metal wiring pattern 3, and the resin layer 7 is molded on one surface of the base material 2 by injection molding or the like. At that time, it comes into contact with the high-temperature molten resin and suppresses the melt-out of the molten resin of the low-temperature solder 4 due to heat and pressure. Therefore, the resin coating layer 6 is a material having a higher softening point than the material of the resin layer 7, and is made of a thermosetting resin material, a two-component curable resin material, a photocurable resin material, or a moisture-curable resin material. It is a curable resin.
  • various resins such as epoxy resin, urethane resin, acrylic resin, polyimide resin, polyamide resin, bismaleimide resin, phenol resin, polyester resin, silicone resin, and oxetane resin can be used. These may be used alone or in combination of two or more. Of these, epoxy resins are particularly suitable.
  • curable resin materials are also used as adhesives and paints, have high adhesion to various materials, and have low viscosity in the state of the monomer before curing, so that they are excellent in moldability, and the pin header 5 has excellent moldability. It is suitable for covering the entire low-temperature solder 4 for joining the anchor portion 51b onto the metal wiring pattern 3.
  • curable resins are excellent in heat resistance, chemical resistance and dimensional stability after curing, and when the resin layer 7 is secondarily molded by injection molding, the temperature of the molten resin is set to, for example, 280 ° C to 320 ° C.
  • the temperature is set to ° C.
  • softening of the resin coating layer 6 in contact with the molten resin forming the resin layer 7 can be suppressed, and melting of the molten resin of the low-temperature solder 4 due to heat and pressure can be suppressed.
  • the pin header 5 can be held on the metal wiring pattern 3 with high positional accuracy and the electrical connection can be maintained.
  • these curable resins may contain inorganic fillers such as glass fillers and mineral fillers, and these curable resins may be used alone or in combination of two or more. May be good.
  • the resin coating layer 6 is a resin formed by covering a part or all of a low-temperature solder 4 as a joining means and a pin header 5 as an example of an electronic element and filling the resin coating layer 6 by injection molding. It may be arranged so as to be thermally separated from the layer 7 and not affected by the pressure.
  • FIG. 4 is a flowchart showing an example of a schematic procedure of the manufacturing method of the electronic device 1 according to the present embodiment.
  • the electronic device 1 is a conductive ink coating step S1 in which a conductive ink (metal nanoparticle ink) containing metal nanoparticles is coated on a deformable base material 2 made of a thermoplastic resin by an inkjet method or flexo printing.
  • the plating step S2 for forming a metal wiring pattern on the conductive ink layer by the plating process, and the solder paste application for applying the solder paste for joining the pin header 5 as an example of the electronic element on the metal wiring pattern 3.
  • Step S3 joining step S4 in which the pin header 5 is placed on the metal wiring pattern 3 and joined by the reflow process, and coating step S5 in which a part or all of the low-temperature solder 4 solidified by the reflow process is covered with a thermosetting resin.
  • a resin filling step S6 is provided in which the thermoplastic resin is secondarily molded by injection molding so as to cover one surface of the base material 2 to which the pin header 5 is bonded on the metal wiring pattern 3.
  • Examples of the method of applying the metal nanoparticle ink to the base film include an inkjet method and flexographic printing, and the inkjet method is used in this embodiment. Specifically, after applying a low-viscosity metal nanoparticle ink of 1000 cps or less, for example, 2 cps to 30 cps by an inkjet method, the solvent is volatilized to leave only the metal nanoparticles. Then, the solvent is removed (drying) and the silver nanoparticles are sintered (baking).
  • the mass ratio is preferably 5% to 60%, more preferably 10% to 30%. If the content ratio is too low, the nanoparticles required to form the conductive layer of metal nanoparticles may be insufficient and pinholes may occur, and if the content ratio is too high, the particles tend to aggregate in the ink. There is a risk that stability will be impaired.
  • the metal nanoparticle layer formed on the base material 2 through the metal nanoparticle ink coating step is subjected to electrolytic plating or electroless plating to deposit plated metal on the surface and inside of the metal nanoparticle layer.
  • the plating method is the same as that of known plating solutions and plating treatments, and specific examples thereof include electrolytic copper plating and electrolytic copper plating.
  • solder paste application process In order to join the pin header 5 on the metal wiring pattern 3 formed on the base material 2, the solder paste of the low temperature solder 4 is applied to form the low temperature solder 4.
  • the solder paste can be printed using a known device such as a stencil printing device, a screen printing device, or a dispenser device. In this embodiment, the solder paste is applied using a dispenser device.
  • the pin header 5 After applying the solder paste on the metal wiring pattern 3 by the dispenser device, the pin header 5 is mounted using, for example, a device mounting device, the solder is melted and solidified, and the solder is melted and solidified on the metal wiring pattern 3 via the low temperature solder 4.
  • the anchor portion 51b of the pin header 5 is joined.
  • the base material 2 made of a thermoplastic resin that can be deformed by thermoforming or the like has a low softening point, but by executing the reflow process at 140 ° C. using the low-temperature solder 4, the base material 2 is in the joining process. It does not melt or otherwise deform due to heat.
  • the coating step S5 is a step of forming a resin coating layer 6 that covers a part or all of the low-temperature solder 4 and the pin header 5 by applying a curable resin.
  • the resin coating layer 6 formed in the coating step S5 is separated from the heat and pressure of the molten resin of the resin layer 7 to which the low temperature solder 4 is secondarily molded.
  • the resin filling step S6 In the resin filling step S6, the laminate of the base material 2, the metal wiring pattern 3, the pin header 5, the low temperature solder 4 and the resin coating layer 6 formed up to the coating step S5 was placed on the secondary molding die. The rear mold is closed and the thermoplastic resin is injection-molded so as to cover one surface of the base material 2. The low-temperature solder 4 that joins the metal wiring pattern 3 and the pin header 5 is subjected to a reflow process at, for example, 140 ° C., but is thermally and pressured by a resin coating layer 6 made of a curable resin having a softening point higher than that of the resin layer 7.
  • the resin temperature is set to 280 ° C. to 320 ° C., and ordinary thermoplastic resin injection molding is possible.
  • the thermoplastic resin is injected by injection molding with the mold and the pin header 5 positioned, and the resin layer 7 is formed.
  • FIG. 5 is a schematic plan view showing the electronic device 1 according to the embodiment with the resin layer 7 not shown
  • FIG. 6A is a schematic plan view showing a joint between the metal wiring pattern 3 and the pin header 5 in the embodiment
  • FIG. 6B is a metal diagram.
  • FIG. 6C is a schematic partial cross-sectional view showing the joining state of the metal wiring pattern 3 filled with the resin layer 7 and the pin header 5
  • FIG. 7 is an electron according to an embodiment. It is a figure which shows the lighting confirmation result of LED 3B in apparatus 1.
  • FIG. Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
  • the electronic device 1 was created as follows, and the lighting of the LED 3B was confirmed.
  • Base material A PET film having a thickness of 125 ⁇ m was cut out to a predetermined size and used as a base material 2.
  • a conductive layer 3a of metal nanoparticle ink was formed on the PET film by an inkjet device, and a metal wiring pattern 3 was formed using copper (Cu) by electroless plating. Further, as shown in FIG. 5, a part of the metal wiring pattern 3 was formed as a heater 3A and a touch sensor 3C. Further, a plurality of LEDs 3B are mounted on the metal wiring pattern 3 as an example of light emitting parts.
  • solder is low temperature solder, trade name "ECO SOLDER PASSE LT142" (manufactured by Senju Metal Industry Co., Ltd.), high temperature solder, trade name "ECO SOLDER PASSE M705-GRN360-K2-V” (manufactured by Senju Metal Industry Co., Ltd.) Bonding was performed by a reflow process controlled at 140 ° C. using the trade name "ECO SOLDER PASSE L20-JPP" (manufactured by Senju Metal Industry Co., Ltd.) consisting of solder and epoxy resin.
  • the resin coating layer 6 has a trade name "Super X” (Cemedine), which is an adhesive made of a moisture-curable resin, and a trade name "KE348", which is a moisture-curable silicone rubber adhesive. (Manufactured by Shin-Etsu Chemical Industry Co., Ltd.) was used to cover a part of the solder and the pin header 5.
  • the low temperature solder 4 (“ECO”). It is presumed that the melted resin of the low-temperature solder 4 is suppressed from melting due to heat and pressure because the SOLDER PASSE LT142 ”) is covered with the resin coating layer 6 having a softening point higher than that of the resin layer 7. Ru. As a result, the pin header 5 is held on the metal wiring pattern 3 with high positional accuracy, and the electrical connection is maintained.
  • the low-temperature solder 4 for joining the pin header 5 as an example of the electronic element on the metal wiring pattern 3 is injected before the resin layer 7 is injection-molded using the thermoplastic resin.
  • the base material 2 is deformable as compared with a configuration in which the resin coating layer 6 for covering the low-temperature solder 4 is not provided as an example of the joining means. It is possible to suppress melting due to heat and pressure of the low temperature solder 4 for conductively joining the electronic element to the metal wiring pattern 3 formed above.
  • the low-temperature solder 4 that conductively joins the electronic element to the metal wiring pattern 3 formed on the deformable base material 2 is suppressed from melting due to heat and pressure, and the electronic element is held on the metal wiring pattern 3 with high positional accuracy.
  • the electrical connection can be maintained.

Abstract

Provided is an electronic device capable of holding, with high positional accuracy, an electronic element on a metal wiring pattern formed on a deformable base material and maintaining electrical bondage by suppressing melting and flowing out of a joining means for conductively joining the electronic element to the metal wiring pattern, due to heat and pressure. This electronic device is provided with: a deformable base material; a metal wiring pattern disposed on the base material; an electronic element joined to the metal wiring pattern by a joining means which includes a thermally-fusible conductive component; a resin layer that covers one surface of the base material on which the metal wiring pattern is disposed; and a resin cover layer that has a higher softening point than the resin layer and that covers a part or the entirety of the joining means so as to be separated from the resin layer.

Description

電子装置Electronic device
 本発明は、電子装置に関する。 The present invention relates to an electronic device.
 予め定められた処理を行う電子回路と、電子回路が配置された基体と、一方端部が折り曲げられて基体に設けられたパッドと接合されると共にパッドを介して電子回路と電気的に接続され、また他方端部がコネクタ端子となって二次モールドの際の位置決めに使用されるピンヘッダと、コネクタ端子が露出するように、電子回路、基体及びピンヘッダの一方端部を樹脂封止して得られた一次モールド体と、を備えたモジュールが知られている(特許文献1)。 An electronic circuit that performs a predetermined process, a substrate on which the electronic circuit is arranged, and a pad provided on the substrate by bending one end thereof are joined and electrically connected to the electronic circuit via the pad. Also, the pin header used for positioning in the secondary molding with the other end serving as the connector terminal and one end of the electronic circuit, substrate and pin header are resin-sealed so that the connector terminal is exposed. A module including the above-mentioned primary molded body is known (Patent Document 1).
 電気機械的構造体を製造するための方法であって、実質的に平坦なフィルム上に、複数の導体および/または複数のグラフィック体を作る工程と、フィルムの所望の3次元形状に関連して、フィルム上に複数の電子素子を取り付ける工程と、電子素子を収容するフィルムを実質的な3次元形状に形成する工程と、フィルム上で実質的な成形による射出成形プロセスにおける挿入体として、実質的な3次元フィルムを使用する工程とを備え、フィルムの表面に材料の好ましい層が取り付けられて、電気機械的構造体を作り出す、方法も知られている(特許文献2)。 A method for manufacturing electromechanical structures in relation to the process of making multiple conductors and / or multiple graphics on a substantially flat film and the desired three-dimensional shape of the film. As an inserter in a step of mounting a plurality of electronic elements on a film, a step of forming a film accommodating an electronic element into a substantially three-dimensional shape, and an injection molding process by substantially molding on the film. There is also known a method of forming an electromechanical structure by attaching a preferable layer of a material to the surface of the film, which comprises a step of using a three-dimensional film (Patent Document 2).
特願2017-207318号公報Japanese Patent Application No. 2017-20713 特表2016-539034号公報Special Table 2016-539034
 本発明は、変形可能な基材上に形成された金属配線パターンに電子素子を導電接合する接合手段の熱と圧力による溶け出しを抑制し電子素子を金属配線パターン上に位置精度よく保持し電気的接合を維持することができる電子装置を提供する。 The present invention suppresses melting due to heat and pressure of a joining means for conductively joining an electronic element to a metal wiring pattern formed on a deformable base material, and holds the electronic element on the metal wiring pattern with high positional accuracy and electricity. Provided is an electronic device capable of maintaining a target bond.
 前記課題を解決するために、請求項1に記載の電子装置は、
 変形可能な基材と、
 前記基材上に配置された金属配線パターンと、
 前記金属配線パターンに熱溶融性の導電成分を含む接合手段で接合された電子素子と、
 前記基材の前記金属配線パターンが配置された一面を覆う樹脂層と、
 前記樹脂層よりも軟化点が高く前記接合手段の一部又は全部を前記樹脂層と離隔するように覆う樹脂被覆層と、を備えた、
 ことを特徴とする。
In order to solve the above problems, the electronic device according to claim 1 is used.
Deformable base material and
The metal wiring pattern arranged on the base material and
An electronic element bonded by a bonding means containing a heat-meltable conductive component to the metal wiring pattern,
A resin layer covering one surface on which the metal wiring pattern of the base material is arranged, and
A resin coating layer having a softening point higher than that of the resin layer and covering a part or all of the joining means so as to be separated from the resin layer is provided.
It is characterized by that.
 前記課題を解決するために、請求項2に記載の電子装置は、
 変形可能な基材と、
 前記基材上に配置された金属配線パターンと、
 前記金属配線パターンに熱溶融性の導電成分を含む接合手段で接合された電子素子と、
 前記基材の前記金属配線パターンが配置された一面を覆う樹脂層と、
 前記接合手段の一部又は全部を前記樹脂層と熱的及び圧力的に離隔する樹脂被覆層と、を備えた、
 ことを特徴とする。
In order to solve the above problems, the electronic device according to claim 2 is used.
Deformable base material and
The metal wiring pattern arranged on the base material and
An electronic element bonded by a bonding means containing a heat-meltable conductive component to the metal wiring pattern,
A resin layer covering one surface on which the metal wiring pattern of the base material is arranged, and
A resin coating layer that thermally and pressureally separates a part or all of the bonding means from the resin layer is provided.
It is characterized by that.
 前記課題を解決するために、請求項3に記載の電子装置は、
 変形可能な基材と、
 前記基材上に配置された金属配線パターンと、
 前記金属配線パターンに熱溶融性の導電成分を含む接合手段で接合された電子素子と、
 前記基材の前記金属配線パターンが配置された一面を覆う樹脂層と、
 前記接合手段の一部又は全部と前記電子素子を前記樹脂層と熱的及び圧力的に離隔する樹脂被覆層と、を備えた、
 ことを特徴とする。
In order to solve the above problems, the electronic device according to claim 3 is used.
Deformable base material and
The metal wiring pattern arranged on the base material and
An electronic element bonded by a bonding means containing a heat-meltable conductive component to the metal wiring pattern,
A resin layer covering one surface on which the metal wiring pattern of the base material is arranged, and
A part or all of the joining means and a resin coating layer for thermally and pressure-separating the electronic element from the resin layer are provided.
It is characterized by that.
 請求項4に記載の発明は、請求項1ないし3のいずれか1項に記載の電子装置において、
 前記金属配線パターンは、銅(Cu)、ニッケル(Ni)、銀(Ag)、金(Au)の中から選択される少なくとも1種の金属よりなる金属めっき層である、
 ことを特徴とする。
The invention according to claim 4 is the electronic device according to any one of claims 1 to 3.
The metal wiring pattern is a metal plating layer made of at least one metal selected from copper (Cu), nickel (Ni), silver (Ag), and gold (Au).
It is characterized by that.
 請求項5に記載の発明は、請求項1ないし3のいずれか1項に記載の電子装置において、
 前記接合手段は、前記基材の軟化点より低温の溶融温度を有する低温はんだである、
 ことを特徴とする。
The invention according to claim 5 is the electronic device according to any one of claims 1 to 3.
The joining means is a low-temperature solder having a melting temperature lower than the softening point of the base material.
It is characterized by that.
 請求項6に記載の発明は、請求項1ないし3のいずれか1項に記載の電子装置において、
 前記樹脂層は熱可塑性材料からなり、前記樹脂被覆層は熱硬化性樹脂材料、二液性硬化性樹脂材料、光硬化性樹脂材料、又は湿気硬化性樹脂材料からなる、
 ことを特徴とする。
The invention according to claim 6 is the electronic device according to any one of claims 1 to 3.
The resin layer is made of a thermoplastic material, and the resin coating layer is made of a thermosetting resin material, a two-component curable resin material, a photocurable resin material, or a moisture-curable resin material.
It is characterized by that.
 請求項7に記載の発明は、請求項1ないし6のいずれか1項に記載の電子装置において、
 前記基材の前記金属配線パターンが配置された一面と反対側の面が熱可塑性樹脂層で覆われている、
 ことを特徴とする。
The invention according to claim 7 is the electronic device according to any one of claims 1 to 6.
The surface of the base material opposite to the one on which the metal wiring pattern is arranged is covered with a thermoplastic resin layer.
It is characterized by that.
 請求項8に記載の発明は、請求項1ないし7のいずれか1項に記載の電子装置において、
 前記電子素子は、前記金属配線パターンと電気的に接続された素子と前記樹脂層の外部に設けられた外部素子とを電気的に接続するための外部接続端子を含み、少なくとも前記外部接続端子の表面である端子表面が前記樹脂層から露出している、
 ことを特徴とする。
The invention according to claim 8 is the electronic device according to any one of claims 1 to 7.
The electronic element includes an external connection terminal for electrically connecting an element electrically connected to the metal wiring pattern and an external element provided outside the resin layer, and at least the external connection terminal of the external connection terminal. The terminal surface, which is the surface, is exposed from the resin layer.
It is characterized by that.
 請求項1に記載の発明によれば、接合手段の一部又は全部を覆う樹脂被覆層を備えていない構成に比べて、変形可能な基材上に形成された金属配線パターンに電子素子を導電接合する接合手段の熱と圧力による溶け出しを抑制することができる。 According to the first aspect of the present invention, the electronic element is conductive on the metal wiring pattern formed on the deformable base material as compared with the configuration in which the resin coating layer covering a part or all of the joining means is not provided. It is possible to suppress leaching due to heat and pressure of the joining means to be joined.
 請求項2に記載の発明によれば、変形可能な基材上に形成された金属配線パターンに電子素子を導電接合する接合手段の熱及び圧力による溶け出しを抑制し電子素子を金属配線パターン上に位置精度よく保持し電気的接合を維持することができる。 According to the second aspect of the present invention, the electronic element is placed on the metal wiring pattern by suppressing melting due to heat and pressure of the joining means for conductively joining the electronic element to the metal wiring pattern formed on the deformable base material. It is possible to maintain the position accuracy and maintain the electrical connection.
 請求項3に記載の発明によれば、接合手段と電子素子を樹脂層と熱的に離隔する樹脂被覆層を備えていない構成に比べて、電子素子に溶融した樹脂層の熱及び圧力が伝わらないようにすることができる。 According to the third aspect of the present invention, the heat and pressure of the molten resin layer are transmitted to the electronic element as compared with the configuration in which the bonding means and the electronic element are not provided with the resin coating layer that thermally separates the electronic element from the resin layer. Can be avoided.
 請求項4に記載の発明によれば、金属配線パターンを変形された基材の3次元形状に沿って配置することができる。 According to the invention of claim 4, the metal wiring pattern can be arranged along the three-dimensional shape of the deformed base material.
 請求項5に記載の発明によれば、変形可能な基材上に配置された金属配線パターンに電子素子を導電接合することができる。 According to the invention of claim 5, the electronic element can be conductively bonded to the metal wiring pattern arranged on the deformable base material.
 請求項6に記載の発明によれば、高温の溶融樹脂が樹脂被覆層に接触した際に樹脂被覆層の軟化を抑制することができる。 According to the invention of claim 6, softening of the resin coating layer can be suppressed when the high temperature molten resin comes into contact with the resin coating layer.
 請求項7に記載の発明によれば、電子装置の強度を向上させることができる。 According to the invention of claim 7, the strength of the electronic device can be improved.
 請求項8に記載の発明によれば、電子素子に作用する応力を低減し、外部接続端子の破損を抑制することができる。 According to the invention of claim 8, it is possible to reduce the stress acting on the electronic element and suppress the damage of the external connection terminal.
本実施形態に係る電子装置の一例を樹脂層を不図示にして示す平面模式図である。It is a top view which shows an example of the electronic apparatus which concerns on this embodiment (the resin layer is not shown). 本実施形態に係る電子装置の一例を示す部分断面模式図である。It is a partial cross-sectional schematic diagram which shows an example of the electronic apparatus which concerns on this embodiment. 本実施形態に係る電子装置の他の態様の一例を示す部分断面模式図である。It is a partial cross-sectional schematic diagram which shows an example of another aspect of the electronic apparatus which concerns on this embodiment. 本実施形態に係る電子装置の製造方法の概略の手順の一例を示すフローチャート図である。It is a flowchart which shows an example of the schematic procedure of the manufacturing method of the electronic device which concerns on this embodiment. 実施例に係る電子装置を樹脂層を不図示にして示す平面模式図である。It is a top view which shows the electronic apparatus which concerns on Example, the resin layer is not shown. 図6Aは実施例における金属配線パターンとピンヘッダの接合を示す部分平面模式図、図6Bは金属配線パターンとピンヘッダの接合を示す部分断面模式図、図6Cは樹脂層が充填された金属配線パターンとピンヘッダの接合状態を示す部分断面模式図である。FIG. 6A is a schematic partial plan view showing the connection between the metal wiring pattern and the pin header in the embodiment, FIG. 6B is a schematic cross-sectional view showing the connection between the metal wiring pattern and the pin header, and FIG. 6C is a metal wiring pattern filled with a resin layer. It is a partial cross-sectional schematic diagram which shows the bonding state of a pin header. 実施例に係る電子装置におけるLEDの点灯確認結果を示す図である。It is a figure which shows the lighting confirmation result of the LED in the electronic device which concerns on Example.
 次に図面を参照しながら、本発明の実施形態の具体例を説明するが、本発明は以下の実施形態に限定されるものではない。
 尚、以下の図面を使用した説明において、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることに留意すべきであり、理解の容易のために説明に必要な部材以外の図示は適宜省略されている。
Next, a specific example of the embodiment of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
In the explanation using the following drawings, it should be noted that the drawings are schematic and the ratio of each dimension is different from the actual one, which is necessary for the explanation for easy understanding. Illustrations other than the members are omitted as appropriate.
 (1)電子装置の全体構成
 図1は本実施形態に係る電子装置の一例を樹脂層を不図示にして示す平面模式図、図2は本実施形態に係る電子装置の一例を示す部分断面模式図、図3は本実施形態に係る電子装置の他の態様の一例を示す部分断面模式図である。
 以下、図面を参照しながら、本実施形態に係る電子装置の構成について説明する。
(1) Overall Configuration of Electronic Device FIG. 1 is a schematic plan view showing an example of the electronic device according to the present embodiment with the resin layer not shown, and FIG. 2 is a partial cross-sectional schematic showing an example of the electronic device according to the present embodiment. FIG. 3 is a schematic partial cross-sectional view showing an example of another aspect of the electronic device according to the present embodiment.
Hereinafter, the configuration of the electronic device according to the present embodiment will be described with reference to the drawings.
 電子装置1は、図1、図2に示すように、熱可塑性樹脂により構成された絶縁性の基材2と、この基材2上に金属ナノ粒子を含む導電性インクの塗布により配線パターンとして形成された導電層3aの上にめっき処理により形成された金属配線パターン3と、金属配線パターン3上に接合手段の一例としての低温はんだ4で接合された電子素子の一例としてのピンヘッダ5と、低温はんだ4の一部又は全部を覆う樹脂被覆層6と、基材2の金属配線パターン3が配置された一面2aを覆う樹脂層7と、を備えて構成されている。 As shown in FIGS. 1 and 2, the electronic device 1 is formed into a wiring pattern by applying an insulating base material 2 made of a thermoplastic resin and a conductive ink containing metal nanoparticles on the base material 2. A metal wiring pattern 3 formed by plating on the formed conductive layer 3a, a pin header 5 as an example of an electronic element bonded with low-temperature solder 4 as an example of bonding means on the metal wiring pattern 3, and a pin header 5. It is configured to include a resin coating layer 6 that covers a part or all of the low temperature solder 4, and a resin layer 7 that covers one surface 2a on which the metal wiring pattern 3 of the base material 2 is arranged.
 (基材)
  本実施形態において使用する絶縁性の基材2は特にフィルム状の基材に限らないが、以下、フィルム状の基材として説明する。
  基材2の素材は、絶縁性の変形可能な熱可塑性樹脂であって、融点Tmが存在する場合は150℃以上であることが好ましく、200℃以上であることがより好ましい。
  また、基材2のガラス転移点Tgの範囲は20℃~250℃が好ましく、50℃~200℃がより好ましく、70℃~150℃が最も好ましい。ガラス転移点Tgが低すぎる場合、金属ナノ粒子の焼結時に基材2の歪みが大きくなる虞がある。
(Base material)
The insulating base material 2 used in the present embodiment is not particularly limited to a film-like base material, but will be described below as a film-like base material.
The material of the base material 2 is an insulating and deformable thermoplastic resin, and when the melting point Tm is present, the temperature is preferably 150 ° C. or higher, more preferably 200 ° C. or higher.
The range of the glass transition point Tg of the base material 2 is preferably 20 ° C. to 250 ° C., more preferably 50 ° C. to 200 ° C., and most preferably 70 ° C. to 150 ° C. If the glass transition point Tg is too low, the strain of the base material 2 may increase when the metal nanoparticles are sintered.
  基材2の材質は、上記のような融点Tmおよびガラス転移点Tgの条件に該当すれば特に限定されないが、具体的には、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル(PE)、ナイロン6-10、ナイロン46などのポリアミド(PA)、ポリエーテルエーテルケトン(PEEK)、ABS、PMMA、ポリ塩化ビニルなどの熱可塑性樹脂が挙げられる。
 特にポリエステル(PE)がより好ましく、さらにその中でもポリエチレンテレフタレート(PET)が経済性、電気絶縁性、耐薬品性等のバランスが良く最も好ましい。
The material of the base material 2 is not particularly limited as long as it meets the conditions of the melting point Tm and the glass transition point Tg as described above, but specifically, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) (PEN). Examples thereof include polyamide (PA) such as PE), nylon 6-10 and nylon 46, and thermoplastic resins such as polyetheretherketone (PEEK), ABS, PMMA, and polyvinyl chloride.
In particular, polyester (PE) is more preferable, and among them, polyethylene terephthalate (PET) is most preferable because it has a good balance of economy, electrical insulation, chemical resistance and the like.
  基材2の厚みは、5μm~3mmが好ましく、12μm~1mmがより好ましく、50μm~200μmが最も好ましい。基材2の厚みが薄すぎる場合、強度が不十分になるとともに、金属配線パターン3のめっき工程時に基材2の歪みが大きくなる虞がある。なお、この厚みは基材2がフィルム状の基材である場合の条件であり、本発明が適用される絶縁性の基材2はフィルム状の基材に限定されない。 The thickness of the base material 2 is preferably 5 μm to 3 mm, more preferably 12 μm to 1 mm, and most preferably 50 μm to 200 μm. If the thickness of the base material 2 is too thin, the strength may be insufficient and the distortion of the base material 2 may increase during the plating process of the metal wiring pattern 3. This thickness is a condition when the base material 2 is a film-like base material, and the insulating base material 2 to which the present invention is applied is not limited to the film-like base material.
 基材2の表面には、金属ナノ粒子を含む導電性インクを均一に塗るために、表面処理を施すことが好ましい。表面処理としては、例えば、コロナ処理、プラズマ処理、溶剤処理、プライマー処理を用いることができる。 It is preferable to perform surface treatment on the surface of the base material 2 in order to uniformly apply the conductive ink containing metal nanoparticles. As the surface treatment, for example, corona treatment, plasma treatment, solvent treatment, and primer treatment can be used.
 このような変形可能な熱可塑性樹脂からなるフィルム状の基材2は、電子装置1の要求される使用態様によって、熱成形、真空成形または圧空成形によって実質的に平坦な二次元形状から実質的に3次元形状に形成される。 The film-like base material 2 made of such a deformable thermoplastic resin has a substantially flat two-dimensional shape by thermoforming, vacuum forming, or pressure molding, depending on the required usage of the electronic device 1. Is formed into a three-dimensional shape.
 (金属配線パターン)
 基材2の表面に金属配線パターン3を配置する場合、さきに、金属ナノ粒子により構成される導電層3aを塗布する。
  導電層3aの厚みは、100nm~20μmが好ましく、200nm~5μmがさらに好ましく、500nm~2μmが最も好ましい。導電層3aが薄すぎると、導電層3aの強度が低下するおそれがある。また、導電層3aが厚すぎると、金属ナノ粒子は通常の金属よりも高価であるため、製造コストが増大する虞がある
(Metal wiring pattern)
When the metal wiring pattern 3 is arranged on the surface of the base material 2, the conductive layer 3a composed of metal nanoparticles is first applied.
The thickness of the conductive layer 3a is preferably 100 nm to 20 μm, more preferably 200 nm to 5 μm, and most preferably 500 nm to 2 μm. If the conductive layer 3a is too thin, the strength of the conductive layer 3a may decrease. Further, if the conductive layer 3a is too thick, the metal nanoparticles are more expensive than ordinary metals, which may increase the manufacturing cost.
  金属ナノ粒子の材料としては、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)、ニッケル(Ni)などが用いられ、導電性の観点から金(Au)、銀(Ag)、銅(Cu)が好ましく、銅(Cu)に比べて酸化されにくく、かつ金(Au)に比べて安価な銀が最も好ましい。 As the material of the metal nanoparticles, gold (Au), silver (Ag), copper (Cu), palladium (Pd), nickel (Ni) and the like are used, and gold (Au) and silver (Ag) are used from the viewpoint of conductivity. ), Copper (Cu) is preferable, and silver, which is less likely to be oxidized than copper (Cu) and is cheaper than gold (Au), is most preferable.
  金属ナノ粒子の粒子径は1nm~500nmが好ましく、10nm~100nmがより好ましい。粒子径が小さすぎる場合、基材2の樹脂を加熱・加圧により導入するための空隙が発生しづらくなると共に、粒子の反応性が高くなりインクの保存性・安定性に悪影響を与える虞がある。粒子径が大きすぎる場合、薄膜の均一形成が困難になるとともに、インクの粒子の沈殿が起こりやすくなる虞がある。 The particle size of the metal nanoparticles is preferably 1 nm to 500 nm, more preferably 10 nm to 100 nm. If the particle size is too small, it becomes difficult to generate voids for introducing the resin of the base material 2 by heating and pressurizing, and the reactivity of the particles becomes high, which may adversely affect the storage stability and stability of the ink. is there. If the particle size is too large, it becomes difficult to form a thin film uniformly, and there is a risk that ink particles are likely to precipitate.
  金属配線パターン3は、導電層3aの上に電解めっきまたは無電解めっきにより形成される。めっき金属としては、銅(Cu)、ニッケル(Ni)、銀(Ag)、金(Au)などを用いることができるが、伸長性、導電性および価格の観点から銅(Cu)を用いることが最も好ましい。 The metal wiring pattern 3 is formed on the conductive layer 3a by electrolytic plating or electroless plating. As the plating metal, copper (Cu), nickel (Ni), silver (Ag), gold (Au) and the like can be used, but copper (Cu) may be used from the viewpoint of extensibility, conductivity and price. Most preferred.
  めっき層の厚さは、0.03μm~100μmが好ましく、1μm~35μmがより好ましく、3μm~18μmが最も好ましい。めっき層が薄すぎると、機械的強度が不足するとともに、導電性が実用上十分に得られない虞がある。めっき層が厚すぎると、めっきに必要な時間が長くなり、製造コストが増大する虞がある。 The thickness of the plating layer is preferably 0.03 μm to 100 μm, more preferably 1 μm to 35 μm, and most preferably 3 μm to 18 μm. If the plating layer is too thin, the mechanical strength may be insufficient and the conductivity may not be sufficiently obtained in practice. If the plating layer is too thick, the time required for plating becomes long, which may increase the manufacturing cost.
 金属配線パターン3には、複数の電子部品が取り付けられる。電子部品としては、制御回路、歪み、抵抗、静電容量、TIRなどの接触感知、及び光検出部品、圧電アクチュエータまたは振動モータなどの触知部品または振動部品、LEDなどの発光部品、マイクおよびスピーカーなどの発音または受音、メモリチップ、プログラマブルロジックチップおよびCPUなどのデバイス操作部品、デジタル信号プロセッサ(DSP)、ALSデバイス、PSデバイス、処理デバイス、MEMS等が挙げられる。図1には、これらの電子部品の一例として、抵抗であるヒータ3A、発光部品であるLED3B、及びタッチセンサ3Cを示している。 A plurality of electronic components are attached to the metal wiring pattern 3. Electronic components include control circuits, distortion, resistance, capacitance, contact sensing such as TIR, and light detection components, tactile or vibrating components such as piezoelectric actuators or vibration motors, light emitting components such as LEDs, microphones and speakers. Sounds or sounds such as, memory chips, programmable logic chips and device operation components such as CPUs, digital signal processors (DSPs), ALS devices, PS devices, processing devices, MEMS and the like can be mentioned. FIG. 1 shows, as an example of these electronic components, a heater 3A which is a resistor, an LED 3B which is a light emitting component, and a touch sensor 3C.
 (電子素子)
 金属配線パターン3上には、電子素子の一例としてのピンヘッダ5が接合されている。ピンヘッダ5は、金属配線パターン3と電気的に接続された電子装置1に実装された複数の電子部品と電子装置1の外部に設けられた外部素子とを電気的に接続するための外部接続端子51と、複数の外部接続端子51が互いに所定の距離が離れるように保持するピン保持部52とを有する。
(Electronic element)
A pin header 5 as an example of an electronic element is joined on the metal wiring pattern 3. The pin header 5 is an external connection terminal for electrically connecting a plurality of electronic components mounted on the electronic device 1 electrically connected to the metal wiring pattern 3 and an external element provided outside the electronic device 1. It has a 51 and a pin holding portion 52 that holds a plurality of external connection terminals 51 so as to be separated from each other by a predetermined distance.
  外部接続端子51は、例えば、銅の合金などを用いて四角柱形状に形成されている。なお外部接続端子51は、一例として、表面にニッケルメッキを施し、そのニッケルメッキの上に、金(AU)、錫(Sn)などの金属やそれら金属を含む合金などのメッキが施されても良い。外部接続端子51のピッチは、接続先のコネクタの規格に応じている。外部接続端子51は、例えば、コネクタ端子となる端子部51aと、金属配線パターン3と接合されるアンカー部51bとからなり、アンカー部51bが金属配線パターン3に接合される。 The external connection terminal 51 is formed in a quadrangular prism shape using, for example, a copper alloy. As an example, the surface of the external connection terminal 51 may be nickel-plated, and the nickel plating may be plated with a metal such as gold (AU) or tin (Sn) or an alloy containing these metals. good. The pitch of the external connection terminal 51 corresponds to the standard of the connector to which it is connected. The external connection terminal 51 is composed of, for example, a terminal portion 51a serving as a connector terminal and an anchor portion 51b joined to the metal wiring pattern 3, and the anchor portion 51b is joined to the metal wiring pattern 3.
 (低温はんだ)
 ピンヘッダ5の外部接続端子51のアンカー部51bは金属配線パターン3と熱溶融性の導電成分を含む接合手段の一例としての低温はんだ4で接合されている。低温はんだ4は、基材2の軟化点より低温の溶融温度を有するはんだであり、例えば、錫(Sn)とビスマス(Bi)との合金(SnBi)、錫(Sn)とビスマス(Bi)とニッケル(Ni)と銅(Cu)との合金(SnBiNiCu)、錫(Sn)とビスマス(Bi)と銅(Cu)とアンチモン(Sb)との合金(SnBiCuSb)、錫(Sn)と銀(Ag)とビスマス(Bi)との合金(SnAgBi)、錫(Sn)とインジウム(In)との合金(SnIn)、錫(Sn)とインジウム(In)とビスマス(Bi)との合金(SnInBi)、又は、基材2の軟化点と比較して相対的に低い融点を持つその他の合金とビスマス(Bi)及び/又はインジウム(In)とのその他の組み合わせとすることができ、例えば基材2としてのポリエチレンテレフタレート(PET)の軟化点より低い120~140℃の融点を有することが望ましい。
(Low temperature solder)
The anchor portion 51b of the external connection terminal 51 of the pin header 5 is joined with a metal wiring pattern 3 and a low-temperature solder 4 as an example of a joining means containing a heat-meltable conductive component. The low-temperature solder 4 is a solder having a melting temperature lower than the softening point of the base material 2, and is, for example, an alloy of tin (Sn) and bismuth (Bi) (SnBi), tin (Sn) and bismuth (Bi). Alloy of nickel (Ni) and copper (Cu) (SnBiNiCu), alloy of tin (Sn) and bismuth (Bi) and copper (Cu) and antimony (Sb) (SnBiCuSb), tin (Sn) and silver (Ag) ) And an alloy of bismuth (Bi) (SnAgBi), an alloy of tin (Sn) and indium (In) (SnIn), an alloy of tin (Sn), indium (In) and bismuth (Bi) (SnInBi), Alternatively, another alloy having a melting point relatively low as compared with the softening point of the base material 2 and other combinations of bismuth (Bi) and / or indium (In) can be used, for example, as the base material 2. It is desirable to have a melting point of 120-140 ° C., which is lower than the softening point of polyethylene terephthalate (PET).
 具体的には、低温はんだ4のはんだペーストとして、Sn-40Bi-(0~1.1)Cu-0.03Niと表されるものが挙げられる。そのような低温はんだ4として、商品名「ECO  SOLDER PASTE LT142」(千住金属工業社製)などが挙げられる。 Specifically, examples of the solder paste of the low-temperature solder 4 include those represented by Sn-40Bi- (0 to 1.1) Cu-0.03Ni. Examples of such low-temperature solder 4 include the trade name “ECO SOLDER PASTE LT142” (manufactured by Senju Metal Industry Co., Ltd.).
 基材2の軟化点よりも低い融点を持つはんだペーストを用いることにより、リフロー温度がはんだペーストの融点よりも高いが、基材2の軟化点よりも低いようにリフロープロセスを制御することができる。具体的には、例えば、基材2がポリエチレンテレフタレート(PET)である場合、140℃でリフロープロセスを実行することで、基材2は溶融又はその他の変形をしない一方で、はんだペーストは溶融して金属配線パターン3と化学的かつ物理的に接合し得る状態になる。そして、低温はんだ4が固化して、低温はんだ4を介して金属配線パターン3に電子素子の一例としてのピンヘッダ5が接合される。 By using a solder paste having a melting point lower than the softening point of the base material 2, the reflow process can be controlled so that the reflow temperature is higher than the melting point of the solder paste but lower than the softening point of the base material 2. .. Specifically, for example, when the base material 2 is polyethylene terephthalate (PET), by executing the reflow process at 140 ° C., the base material 2 does not melt or other deformation, while the solder paste melts. It becomes a state where it can be chemically and physically bonded to the metal wiring pattern 3. Then, the low-temperature solder 4 is solidified, and the pin header 5 as an example of the electronic element is joined to the metal wiring pattern 3 via the low-temperature solder 4.
 (樹脂層)
 樹脂層7は、金属配線パターン3とピンヘッダ5が配置された基材2の一面2aに対して二次モールド成形を行って形成され、金属配線パターン3が配置された一面2aを覆う本体部71と、筒形状を有し、筒の内部にピンヘッダ5の外部接続端子51が露出するコネクタ部72と、を備えて構成されている。
(Resin layer)
The resin layer 7 is formed by performing secondary molding on one surface 2a of the base material 2 on which the metal wiring pattern 3 and the pin header 5 are arranged, and covers the one surface 2a on which the metal wiring pattern 3 is arranged. And a connector portion 72 having a tubular shape and having an external connection terminal 51 of the pin header 5 exposed inside the cylinder.
 樹脂層7は、二次モールド成形可能な熱可塑性樹脂材料からなる熱可塑性樹脂である。具体的には、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリメチルメタクリレート(PMMA)、ポリアミド(PA)、アクリルブタジエンスチレン(ABS)、ポリエチレン(PE)、ポリプロピレン(PP)、変性ポリフェニレンエーテル(m-PPE)、変性ポリフェニレンオキサイト(m-PPO)、シクロオレフィンコポリマー(COC)、シクロオレフィンポリマー(COP)、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニル(PVC)、またはこれらの混合物を含む熱可塑性樹脂を用いることができる。 The resin layer 7 is a thermoplastic resin made of a thermoplastic resin material that can be secondarily molded. Specifically, polycarbonate (PC), polyethylene terephthalate (PET), polymethylmethacrylate (PMMA), polyamide (PA), acrylic butadiene styrene (ABS), polyethylene (PE), polypropylene (PP), modified polyphenylene ether (m). -PPE), modified polyphenylene oxide (m-PPO), cycloolefin copolymer (COC), cycloolefin polymer (COP), polytetrafluoroethylene (PTFE), polyvinyl chloride (PVC), or a mixture thereof. A plastic resin can be used.
 樹脂層7は、図3Bに示すように、基材2の金属配線パターン3が配置された一面2aと反対側の面2bにも形成してもよい。基材2の一面2aと反対側の面2bにも樹脂層7を形成することで電子装置1の強度を向上させることができる。 As shown in FIG. 3B, the resin layer 7 may also be formed on the surface 2b opposite to the one surface 2a on which the metal wiring pattern 3 of the base material 2 is arranged. The strength of the electronic device 1 can be improved by forming the resin layer 7 on the surface 2b opposite to the one surface 2a of the base material 2.
 (樹脂被覆層)
 樹脂被覆層6は、電子素子の一例としてのピンヘッダ5を金属配線パターン3上に接合する低温はんだ4の一部または全部を覆って、樹脂層7が射出成形等によって基材2の一面にモールドされる際に、高温の溶融樹脂と接触して低温はんだ4の溶融樹脂の熱と圧力による溶け出しを抑制するものである。
 そのために、樹脂被覆層6は、樹脂層7の材料よりも軟化点が高い材料で、熱硬化性樹脂材料、二液性硬化性樹脂材料、光硬化性樹脂材料、又は湿気硬化性樹脂材料からなる硬化性樹脂である。具体的には、例えば、エポキシ樹脂、ウレタン樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂、ビスマレイミド樹脂、フェノール樹脂、ポリエステル樹脂、シリコーン樹脂、オキセタン樹脂など、様々な樹脂等を用いることができる。これらは単独もしくは2種以上を組み合わせて用いてもよい。これらの中では、特にエポキシ樹脂が好適である。
(Resin coating layer)
The resin coating layer 6 covers a part or all of the low-temperature solder 4 that joins the pin header 5 as an example of the electronic element on the metal wiring pattern 3, and the resin layer 7 is molded on one surface of the base material 2 by injection molding or the like. At that time, it comes into contact with the high-temperature molten resin and suppresses the melt-out of the molten resin of the low-temperature solder 4 due to heat and pressure.
Therefore, the resin coating layer 6 is a material having a higher softening point than the material of the resin layer 7, and is made of a thermosetting resin material, a two-component curable resin material, a photocurable resin material, or a moisture-curable resin material. It is a curable resin. Specifically, for example, various resins such as epoxy resin, urethane resin, acrylic resin, polyimide resin, polyamide resin, bismaleimide resin, phenol resin, polyester resin, silicone resin, and oxetane resin can be used. These may be used alone or in combination of two or more. Of these, epoxy resins are particularly suitable.
 これらの硬化性樹脂材料は、接着剤や塗料としても用いられ、種々の材料に対して高い密着性を有するとともに、硬化前のモノマーの状態では粘度が低いため、成形性に優れ、ピンヘッダ5のアンカー部51bを金属配線パターン3上に接合する低温はんだ4の全体を覆うのに好適である。 These curable resin materials are also used as adhesives and paints, have high adhesion to various materials, and have low viscosity in the state of the monomer before curing, so that they are excellent in moldability, and the pin header 5 has excellent moldability. It is suitable for covering the entire low-temperature solder 4 for joining the anchor portion 51b onto the metal wiring pattern 3.
 これらの硬化性樹脂は、硬化後の耐熱性、耐薬品性及び寸法安定性に優れ、樹脂層7を、射出成形によって二次成形する際に、溶融樹脂の温度を、例えば、280℃~320℃とした場合に、樹脂層7を形成する溶融樹脂と接触する樹脂被覆層6の軟化を抑制して、低温はんだ4の溶融樹脂の熱と圧力による溶け出しを抑制することができる。これにより、ピンヘッダ5を金属配線パターン3上に位置精度よく保持し電気的接合を維持することができる。
 なお、これらの硬化性樹脂は、ガラスフィラーやミネラルフィラー等の無機フィラーを含有してもよく、また、これらの硬化性樹脂は、単独で用いてもよく、2種類以上を混合して用いてもよい。
These curable resins are excellent in heat resistance, chemical resistance and dimensional stability after curing, and when the resin layer 7 is secondarily molded by injection molding, the temperature of the molten resin is set to, for example, 280 ° C to 320 ° C. When the temperature is set to ° C., softening of the resin coating layer 6 in contact with the molten resin forming the resin layer 7 can be suppressed, and melting of the molten resin of the low-temperature solder 4 due to heat and pressure can be suppressed. As a result, the pin header 5 can be held on the metal wiring pattern 3 with high positional accuracy and the electrical connection can be maintained.
In addition, these curable resins may contain inorganic fillers such as glass fillers and mineral fillers, and these curable resins may be used alone or in combination of two or more. May be good.
 樹脂被覆層6は、図3Aに模式的に示すように、接合手段である低温はんだ4と電子素子の一例としてのピンヘッダ5の一部または全部を覆って射出成形により充填されて形成される樹脂層7と熱的に離隔するとともに圧力の影響を受けないように配置されてもよい。 As schematically shown in FIG. 3A, the resin coating layer 6 is a resin formed by covering a part or all of a low-temperature solder 4 as a joining means and a pin header 5 as an example of an electronic element and filling the resin coating layer 6 by injection molding. It may be arranged so as to be thermally separated from the layer 7 and not affected by the pressure.
 (2)電子装置の製造方法
 図4は本実施形態に係る電子装置1の製造方法の概略の手順の一例を示すフローチャート図である。
 電子装置1は、熱可塑性樹脂により構成された変形可能な基材2上に、金属ナノ粒子を含む導電性インク(金属ナノ粒子インク)をインクジェット法またはフレキソ印刷で塗布する導電性インク塗布工程S1と、めっき処理により導電性インク層の上に金属配線パターンを形成するめっき工程S2と、金属配線パターン3上に電子素子の一例としてのピンヘッダ5を接合するためのはんだペーストを塗布するはんだペースト塗布工程S3と、ピンヘッダ5を金属配線パターン3上に載置してリフロープロセスで接合する接合工程S4と、リフロープロセスで固化した低温はんだ4の一部又は全部を熱硬化性樹脂で覆う被覆工程S5と、金属配線パターン3上にピンヘッダ5が接合された基材2の一面を覆うように射出成形により熱可塑性樹脂を二次モールドする樹脂充填工程S6とを備える。
(2) Manufacturing Method of Electronic Device FIG. 4 is a flowchart showing an example of a schematic procedure of the manufacturing method of the electronic device 1 according to the present embodiment.
The electronic device 1 is a conductive ink coating step S1 in which a conductive ink (metal nanoparticle ink) containing metal nanoparticles is coated on a deformable base material 2 made of a thermoplastic resin by an inkjet method or flexo printing. And the plating step S2 for forming a metal wiring pattern on the conductive ink layer by the plating process, and the solder paste application for applying the solder paste for joining the pin header 5 as an example of the electronic element on the metal wiring pattern 3. Step S3, joining step S4 in which the pin header 5 is placed on the metal wiring pattern 3 and joined by the reflow process, and coating step S5 in which a part or all of the low-temperature solder 4 solidified by the reflow process is covered with a thermosetting resin. A resin filling step S6 is provided in which the thermoplastic resin is secondarily molded by injection molding so as to cover one surface of the base material 2 to which the pin header 5 is bonded on the metal wiring pattern 3.
 (導電性インク塗布工程)
 金属ナノ粒子インクをベースフィルムに塗布する方法として、インクジェット法、フレキソ印刷が挙げられるが、本実施形態においてはインクジェット法を用いている。具体的には、1000cps以下、例えば、2cpsから30cpsの低粘度の金属ナノ粒子インクをインクジェット法で塗布した後、溶媒を揮発させ金属ナノ粒子のみを残す。その後、溶媒を除去し(乾燥)、銀ナノ粒子を焼結させる(焼成)。
(Conductive ink coating process)
Examples of the method of applying the metal nanoparticle ink to the base film include an inkjet method and flexographic printing, and the inkjet method is used in this embodiment. Specifically, after applying a low-viscosity metal nanoparticle ink of 1000 cps or less, for example, 2 cps to 30 cps by an inkjet method, the solvent is volatilized to leave only the metal nanoparticles. Then, the solvent is removed (drying) and the silver nanoparticles are sintered (baking).
 インク中の金属ナノ粒子の含有割合については、質量比で5%から60%が好ましく、10%から30%がさらに好ましい。含有割合が低すぎる場合、金属ナノ粒子による導電層を形成するのに必要なナノ粒子が足らずピンホールが発生するおそれがあり、含有割合が高過ぎるとインクの中で粒子同士が凝集しやすくなるなど安定性が損なわれる虞がある。 Regarding the content ratio of the metal nanoparticles in the ink, the mass ratio is preferably 5% to 60%, more preferably 10% to 30%. If the content ratio is too low, the nanoparticles required to form the conductive layer of metal nanoparticles may be insufficient and pinholes may occur, and if the content ratio is too high, the particles tend to aggregate in the ink. There is a risk that stability will be impaired.
 (めっき工程)
 金属ナノ粒子インク塗布工程を経て基材2上に形成された金属ナノ粒子層に対し、電解めっきまたは無電解めっきを行うことにより、金属ナノ粒子層の表面および内部にめっき金属を析出させる。めっき方法は公知のめっき液及びめっき処理と同様であり、具体的に無電解銅めっき、電解銅めっきが挙げられる。
(Plating process)
The metal nanoparticle layer formed on the base material 2 through the metal nanoparticle ink coating step is subjected to electrolytic plating or electroless plating to deposit plated metal on the surface and inside of the metal nanoparticle layer. The plating method is the same as that of known plating solutions and plating treatments, and specific examples thereof include electrolytic copper plating and electrolytic copper plating.
 (はんだペースト塗布工程)
 基材2上に形成された金属配線パターン3上にピンヘッダ5を接合するために、低温はんだ4のはんだペーストを塗布し、低温はんだ4を形成する。はんだペーストの印刷は、ステンシル印刷装置、スクリーン印刷装置、ディスペンサ装置等の公知の装置を用いて行うことができる。本実施形態においては、ディスペンサ装置を用いてはんだペーストを塗布する。
(Solder paste application process)
In order to join the pin header 5 on the metal wiring pattern 3 formed on the base material 2, the solder paste of the low temperature solder 4 is applied to form the low temperature solder 4. The solder paste can be printed using a known device such as a stencil printing device, a screen printing device, or a dispenser device. In this embodiment, the solder paste is applied using a dispenser device.
 (接合工程)
 ディスペンサ装置によって金属配線パターン3上にはんだペーストを塗布後、例えばデバイス搭載装置等を用いてピンヘッダ5を搭載して、はんだを溶融、固化させて、金属配線パターン3上に低温はんだ4を介してピンヘッダ5のアンカー部51bを接合する。例えば、熱成形等で変形可能な熱可塑性樹脂からなる基材2は、その軟化点が低いが、低温はんだ4を用いて140℃でリフロープロセスを実行することで、基材2は接合工程の熱によって溶融又はその他の変形をすることはない。
(Joining process)
After applying the solder paste on the metal wiring pattern 3 by the dispenser device, the pin header 5 is mounted using, for example, a device mounting device, the solder is melted and solidified, and the solder is melted and solidified on the metal wiring pattern 3 via the low temperature solder 4. The anchor portion 51b of the pin header 5 is joined. For example, the base material 2 made of a thermoplastic resin that can be deformed by thermoforming or the like has a low softening point, but by executing the reflow process at 140 ° C. using the low-temperature solder 4, the base material 2 is in the joining process. It does not melt or otherwise deform due to heat.
 (被覆工程)
 被覆工程S5は、硬化性樹脂を塗布することによって、低温はんだ4及びピンヘッダ5の一部または全部を覆う樹脂被覆層6を形成する工程である。この被覆工程S5で形成された樹脂被覆層6は、低温はんだ4を二次モールド成形される樹脂層7の溶融樹脂による熱および圧力から離隔している。
(Coating process)
The coating step S5 is a step of forming a resin coating layer 6 that covers a part or all of the low-temperature solder 4 and the pin header 5 by applying a curable resin. The resin coating layer 6 formed in the coating step S5 is separated from the heat and pressure of the molten resin of the resin layer 7 to which the low temperature solder 4 is secondarily molded.
 (樹脂充填工程)
 樹脂充填工程S6では、被覆工程S5までで形成された基材2、金属配線パターン3、ピンヘッダ5、低温はんだ4及び樹脂被覆層6の積層体を、二次モールド成形用金型に載置した後金型を閉じて熱可塑性樹脂を基材2の一面を覆うように射出成形する。
 金属配線パターン3とピンヘッダ5を接合する低温はんだ4は、例えば140℃でリフロープロセスが実行されるが、樹脂層7よりも軟化点が高い硬化性樹脂からなる樹脂被覆層6で熱的及び圧力的に離隔されているために、樹脂充填工程S6においては、樹脂温度を280℃~320℃として通常の熱可塑性樹脂の射出成形が可能となっている。
 この樹脂導入工程S6においては、金型とピンヘッダ5の位置決めを行った状態で熱可塑性樹脂が射出成形によって射出され樹脂層7が形成される。
(Resin filling process)
In the resin filling step S6, the laminate of the base material 2, the metal wiring pattern 3, the pin header 5, the low temperature solder 4 and the resin coating layer 6 formed up to the coating step S5 was placed on the secondary molding die. The rear mold is closed and the thermoplastic resin is injection-molded so as to cover one surface of the base material 2.
The low-temperature solder 4 that joins the metal wiring pattern 3 and the pin header 5 is subjected to a reflow process at, for example, 140 ° C., but is thermally and pressured by a resin coating layer 6 made of a curable resin having a softening point higher than that of the resin layer 7. In the resin filling step S6, the resin temperature is set to 280 ° C. to 320 ° C., and ordinary thermoplastic resin injection molding is possible.
In the resin introduction step S6, the thermoplastic resin is injected by injection molding with the mold and the pin header 5 positioned, and the resin layer 7 is formed.
 「実施例」
 図5は実施例に係る電子装置1を樹脂層7を不図示にして示す平面模式図、図6Aは実施例における金属配線パターン3とピンヘッダ5の接合を示す部分平面模式図、図6Bは金属配線パターン3とピンヘッダ5の接合を示す部分断面模式図、図6Cは樹脂層7が充填された金属配線パターン3とピンヘッダ5の接合状態を示す部分断面模式図、図7は実施例に係る電子装置1におけるLED3Bの点灯確認結果を示す図である。
 以下、本発明を実施例及び比較例により説明するが、本発明は、以下の実施例に限定されるものではない。
 本実施例においては、以下のようにして電子装置1を作成しLED3Bの点灯確認を行なった。
"Example"
FIG. 5 is a schematic plan view showing the electronic device 1 according to the embodiment with the resin layer 7 not shown, FIG. 6A is a schematic plan view showing a joint between the metal wiring pattern 3 and the pin header 5 in the embodiment, and FIG. 6B is a metal diagram. A schematic partial cross-sectional view showing the joining of the wiring pattern 3 and the pin header 5, FIG. 6C is a schematic partial cross-sectional view showing the joining state of the metal wiring pattern 3 filled with the resin layer 7 and the pin header 5, and FIG. 7 is an electron according to an embodiment. It is a figure which shows the lighting confirmation result of LED 3B in apparatus 1. FIG.
Hereinafter, the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
In this embodiment, the electronic device 1 was created as follows, and the lighting of the LED 3B was confirmed.
 (基材)
 厚さ125μmのPETフィルムを所定の大きさに切り抜き、基材2とした。
(Base material)
A PET film having a thickness of 125 μm was cut out to a predetermined size and used as a base material 2.
 (回路形成)
 PETフィルム上に、インクジェット装置で金属ナノ粒子インクの導電層3aを形成し、無電解めっきにより銅(Cu)を用いて金属配線パターン3を形成した。
 また、図5に示すように、金属配線パターン3の一部は、ヒータ3A、タッチセンサ3Cとして形成した。さらに、金属配線パターン3には、発光部品の一例としてLED3Bを複数実装した。
(Circuit formation)
A conductive layer 3a of metal nanoparticle ink was formed on the PET film by an inkjet device, and a metal wiring pattern 3 was formed using copper (Cu) by electroless plating.
Further, as shown in FIG. 5, a part of the metal wiring pattern 3 was formed as a heater 3A and a touch sensor 3C. Further, a plurality of LEDs 3B are mounted on the metal wiring pattern 3 as an example of light emitting parts.
 (電子素子)
 金属配線パターン3上に、電子装置1の外部に設けられた外部素子と電気的に接続するためのピンヘッダ5をはんだにて接合した。はんだは、低温はんだである商品名「ECO  SOLDER PASTE LT142」(千住金属工業社製)、高温はんだである商品名「ECO SOLDER PASTE M705-GRN360-K2-V」(千住金属工業社製)、低温はんだとエポキシ樹脂からなる商品名「ECO SOLDER PASTE L20-JPP」(千住金属工業社製)をそれぞれ用いて140℃に制御されたリフロープロセスで接合した。
(Electronic element)
On the metal wiring pattern 3, a pin header 5 for electrically connecting to an external element provided outside the electronic device 1 was joined by soldering. The solder is low temperature solder, trade name "ECO SOLDER PASSE LT142" (manufactured by Senju Metal Industry Co., Ltd.), high temperature solder, trade name "ECO SOLDER PASSE M705-GRN360-K2-V" (manufactured by Senju Metal Industry Co., Ltd.) Bonding was performed by a reflow process controlled at 140 ° C. using the trade name "ECO SOLDER PASSE L20-JPP" (manufactured by Senju Metal Industry Co., Ltd.) consisting of solder and epoxy resin.
 (樹脂被覆層)
 図6A、図6Bに示すように、樹脂被覆層6として、湿気硬化性樹脂からなる接着剤である商品名「スーパーX」(セメダイン社)、湿気硬化性シリコンゴム接着剤である商品名「KE348」(信越化学工業社製)をそれぞれ用いてはんだ及びピンヘッダ5の一部を被覆した。
(Resin coating layer)
As shown in FIGS. 6A and 6B, the resin coating layer 6 has a trade name "Super X" (Cemedine), which is an adhesive made of a moisture-curable resin, and a trade name "KE348", which is a moisture-curable silicone rubber adhesive. (Manufactured by Shin-Etsu Chemical Industry Co., Ltd.) was used to cover a part of the solder and the pin header 5.
 (樹脂層)
 図6Cに示すように、基材2、金属配線パターン3、ピンヘッダ5、低温はんだ4及び樹脂被覆層6の積層体を、二次モールド成形用金型に載置して樹脂層7として、ポリカーボネート(PC) 商品名「ユーピロン S-2000」(三菱エンジニアリングプラスチックス株式会社製)を用いて射出成形を行った。この射出成形によって、ピンヘッダ5を囲うようにコネクタ形状を形成した。
(Resin layer)
As shown in FIG. 6C, a laminate of a base material 2, a metal wiring pattern 3, a pin header 5, a low-temperature solder 4, and a resin coating layer 6 is placed on a mold for secondary molding to form a polycarbonate layer 7. (PC) Injection molding was performed using the product name "Iupilon S-2000" (manufactured by Mitsubishi Engineering Plastics Co., Ltd.). By this injection molding, a connector shape was formed so as to surround the pin header 5.
 (実施例1)
 はんだ:「ECO  SOLDER PASTE LT142」
 樹脂被覆層:「スーパーX」
 実施例1に係る電子装置1において、ピンヘッダ5を介して外部から給電した結果、図7に示すように、10回全てにおいてLED3Bの点灯が確認された。
(Example 1)
Solder: "ECO SOLDER PASTE LT142"
Resin coating layer: "Super X"
As a result of supplying power from the outside through the pin header 5 in the electronic device 1 according to the first embodiment, as shown in FIG. 7, the lighting of the LED 3B was confirmed in all 10 times.
 (実施例2)
 はんだ:「ECO  SOLDER PASTE LT142」
 樹脂被覆層:「KE348」
 実施例2に係る電子装置1においては、図7に示すように、5回全てにおいてLED3Bの点灯が確認された。
(Example 2)
Solder: "ECO SOLDER PASTE LT142"
Resin coating layer: "KE348"
In the electronic device 1 according to the second embodiment, as shown in FIG. 7, the lighting of the LED 3B was confirmed in all five times.
 (比較例1)
 はんだ:「ECO  SOLDER PASTE LT142」
 樹脂被覆層:なし
 比較例1に係る電子装置1においては、10回中、1回のみLED3Bの点灯が確認され、9回はLED3Bの点灯は確認されなかった。
(Comparative Example 1)
Solder: "ECO SOLDER PASTE LT142"
Resin coating layer: None In the electronic device 1 according to Comparative Example 1, the lighting of the LED 3B was confirmed only once out of 10 times, and the lighting of the LED 3B was not confirmed 9 times.
 (比較例2)
 はんだ:「ECO SOLDER PASTE M705-GRN360-K2-V」
 樹脂被覆層:なし
 比較例2に係る電子装置1においては、10回中、2回のみLED3Bの点灯が確認されたが不安定であった。また、8回はLED3Bの点灯は確認されなかった。
(Comparative Example 2)
Solder: "ECO SOLDER PASTE M705-GRN360-K2-V"
Resin coating layer: None In the electronic device 1 according to Comparative Example 2, it was confirmed that the LED 3B was lit only twice out of ten times, but it was unstable. Moreover, the lighting of LED3B was not confirmed eight times.
 (比較例3)
 はんだ: 「ECO SOLDER PASTE L20-JPP」
 樹脂被覆層:なし
 比較例3に係る電子装置1においては、10回中、3回でLED3Bの点灯が確認され、1回は不安定であった。また、6回はLED3Bの点灯は確認されなかった。
(Comparative Example 3)
Solder: "ECO SOLDER PASTE L20-JPP"
Resin coating layer: None In the electronic device 1 according to Comparative Example 3, the lighting of the LED 3B was confirmed three times out of ten times, and it was unstable once. In addition, the lighting of LED3B was not confirmed 6 times.
 このように、金属配線パターン3とピンヘッダ5の一部が樹脂被覆層6で覆われた状態で樹脂層7を二次モールド成形した実施例1、実施例2においては、低温はんだ4(「ECO  SOLDER PASTE LT142」)が樹脂層7よりも高い軟化点を有する樹脂被覆層6で覆われていることにより、低温はんだ4の溶融樹脂の熱及び圧力による溶け出しが抑制されていることが推察される。その結果、ピンヘッダ5が金属配線パターン3上に位置精度よく保持され電気的接合が維持されている。 In this way, in the first and second embodiments in which the resin layer 7 is secondarily molded with the metal wiring pattern 3 and a part of the pin header 5 covered with the resin coating layer 6, the low temperature solder 4 (“ECO”). It is presumed that the melted resin of the low-temperature solder 4 is suppressed from melting due to heat and pressure because the SOLDER PASSE LT142 ”) is covered with the resin coating layer 6 having a softening point higher than that of the resin layer 7. Ru. As a result, the pin header 5 is held on the metal wiring pattern 3 with high positional accuracy, and the electrical connection is maintained.
 本実施形態に係る電子装置1によれば、金属配線パターン3上に電子素子の一例としてのピンヘッダ5を接合する低温はんだ4を、熱可塑性樹脂を用いて樹脂層7を射出成形する前に、予め硬化性樹脂で被覆しておいた状態で二次モールド成形することにより、接合手段の一例としての低温はんだ4を覆う樹脂被覆層6を備えていない構成に比べて、変形可能な基材2上に形成された金属配線パターン3に電子素子を導電接合する低温はんだ4の熱及び圧力による溶け出しを抑制することができる。
 また、変形可能な基材2上に形成された金属配線パターン3に電子素子を導電接合する低温はんだ4の熱及び圧力による溶け出しを抑制し電子素子を金属配線パターン3上に位置精度よく保持し電気的接合を維持することができる。
According to the electronic device 1 according to the present embodiment, the low-temperature solder 4 for joining the pin header 5 as an example of the electronic element on the metal wiring pattern 3 is injected before the resin layer 7 is injection-molded using the thermoplastic resin. By secondary molding in a state of being coated with a curable resin in advance, the base material 2 is deformable as compared with a configuration in which the resin coating layer 6 for covering the low-temperature solder 4 is not provided as an example of the joining means. It is possible to suppress melting due to heat and pressure of the low temperature solder 4 for conductively joining the electronic element to the metal wiring pattern 3 formed above.
In addition, the low-temperature solder 4 that conductively joins the electronic element to the metal wiring pattern 3 formed on the deformable base material 2 is suppressed from melting due to heat and pressure, and the electronic element is held on the metal wiring pattern 3 with high positional accuracy. The electrical connection can be maintained.
1・・・電子装置
 2・・・基材
 3・・・金属配線パターン
 4・・・低温はんだ
 5・・・ピンヘッダ
 6・・・樹脂被覆層
 7・・・樹脂層
1 ... Electronic device 2 ... Base material 3 ... Metal wiring pattern 4 ... Low temperature solder 5 ... Pin header 6 ... Resin coating layer 7 ... Resin layer

Claims (8)

  1.  変形可能な基材と、
     前記基材上に配置された金属配線パターンと、
     前記金属配線パターンに熱溶融性の導電成分を含む接合手段で接合された電子素子と、
     前記基材の前記金属配線パターンが配置された一面を覆う樹脂層と、
     前記樹脂層よりも軟化点が高く前記接合手段の一部又は全部を前記樹脂層と離隔するように覆う樹脂被覆層と、を備えた、
     ことを特徴とする電子装置。
    Deformable base material and
    The metal wiring pattern arranged on the base material and
    An electronic element bonded by a bonding means containing a heat-meltable conductive component to the metal wiring pattern,
    A resin layer covering one surface on which the metal wiring pattern of the base material is arranged, and
    A resin coating layer having a softening point higher than that of the resin layer and covering a part or all of the joining means so as to be separated from the resin layer is provided.
    An electronic device characterized by that.
  2.  変形可能な基材と、
     前記基材上に配置された金属配線パターンと、
     前記金属配線パターンに熱溶融性の導電成分を含む接合手段で接合された電子素子と、
     前記基材の前記金属配線パターンが配置された一面を覆う樹脂層と、
     前記接合手段の一部又は全部を前記樹脂層と熱的及び圧力的に離隔する樹脂被覆層と、を備えた、
     ことを特徴とする電子装置。
    Deformable base material and
    The metal wiring pattern arranged on the base material and
    An electronic element bonded by a bonding means containing a heat-meltable conductive component to the metal wiring pattern,
    A resin layer covering one surface on which the metal wiring pattern of the base material is arranged, and
    A resin coating layer that thermally and pressureally separates a part or all of the bonding means from the resin layer is provided.
    An electronic device characterized by that.
  3.  変形可能な基材と、
     前記基材上に配置された金属配線パターンと、
     前記金属配線パターンに熱溶融性の導電成分を含む接合手段で接合された電子素子と、
     前記基材の前記金属配線パターンが配置された一面を覆う樹脂層と、
     前記接合手段の一部又は全部と前記電子素子を前記樹脂層と熱的及び圧力的に離隔する樹脂被覆層と、を備えた、
     ことを特徴とする電子装置。
    Deformable base material and
    The metal wiring pattern arranged on the base material and
    An electronic element bonded by a bonding means containing a heat-meltable conductive component to the metal wiring pattern,
    A resin layer covering one surface on which the metal wiring pattern of the base material is arranged, and
    A part or all of the joining means and a resin coating layer for thermally and pressure-separating the electronic element from the resin layer are provided.
    An electronic device characterized by that.
  4.  前記金属配線パターンは、銅(Cu)、ニッケル(Ni)、銀(Ag)、金(Au)の中から選択される少なくとも1種の金属よりなる金属めっき層である、
     ことを特徴とする請求項1ないし3のいずれか1項に記載の電子装置。
    The metal wiring pattern is a metal plating layer made of at least one metal selected from copper (Cu), nickel (Ni), silver (Ag), and gold (Au).
    The electronic device according to any one of claims 1 to 3, wherein the electronic device is characterized by the above.
  5.  前記接合手段は、前記基材の軟化点より低温の溶融温度を有する低温はんだである、
     ことを特徴とする請求項1ないし3のいずれか1項に記載の電子装置。
    The joining means is a low-temperature solder having a melting temperature lower than the softening point of the base material.
    The electronic device according to any one of claims 1 to 3, wherein the electronic device is characterized by the above.
  6.  前記樹脂層は熱可塑性材料からなり、前記樹脂被覆層は熱硬化性樹脂材料、二液性硬化性樹脂材料、光硬化性樹脂材料、又は湿気硬化性樹脂材料からなる、
     ことを特徴とする請求項1ないし3のいずれか1項に記載の電子装置。
    The resin layer is made of a thermoplastic material, and the resin coating layer is made of a thermosetting resin material, a two-component curable resin material, a photocurable resin material, or a moisture-curable resin material.
    The electronic device according to any one of claims 1 to 3, wherein the electronic device is characterized by the above.
  7.  前記基材の前記金属配線パターンが配置された一面と反対側の面が熱可塑性樹脂層で覆われている、
     ことを特徴とする請求項1ないし6のいずれか1項に記載の電子装置。
    The surface of the base material opposite to the one on which the metal wiring pattern is arranged is covered with a thermoplastic resin layer.
    The electronic device according to any one of claims 1 to 6, wherein the electronic device is characterized by the above.
  8.  前記電子素子は、前記金属配線パターンと電気的に接続された素子と前記樹脂層の外部に設けられた外部素子とを電気的に接続するための外部接続端子を含み、少なくとも前記外部接続端子の表面である端子表面が前記樹脂層から露出している、
     ことを特徴とする請求項1ないし7のいずれか1項に記載の電子装置。
    The electronic element includes an external connection terminal for electrically connecting an element electrically connected to the metal wiring pattern and an external element provided outside the resin layer, and at least the external connection terminal of the external connection terminal. The terminal surface, which is the surface, is exposed from the resin layer.
    The electronic device according to any one of claims 1 to 7.
PCT/JP2020/040995 2019-11-05 2020-10-31 Electronic device WO2021090785A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019200479A JP6738077B1 (en) 2019-11-05 2019-11-05 Electronic device
JP2019-200479 2019-11-05

Publications (1)

Publication Number Publication Date
WO2021090785A1 true WO2021090785A1 (en) 2021-05-14

Family

ID=71949280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040995 WO2021090785A1 (en) 2019-11-05 2020-10-31 Electronic device

Country Status (2)

Country Link
JP (1) JP6738077B1 (en)
WO (1) WO2021090785A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7011235B1 (en) * 2020-08-18 2022-01-26 エレファンテック株式会社 Electronic device
JP7233067B1 (en) * 2022-04-22 2023-03-06 エレファンテック株式会社 Mounting component positioning and fixing structure and manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288037A (en) * 1995-04-17 1996-11-01 Yamaichi Electron Co Ltd Contact medium substrate between ic socket and ic
JP2010067773A (en) * 2008-09-10 2010-03-25 Hitachi Ltd Electric and electronic control device and method for manufacturing the same
JP2016062768A (en) * 2014-09-18 2016-04-25 積水化学工業株式会社 Manufacturing method of connection structure, and connection structure
WO2019198404A1 (en) * 2018-04-12 2019-10-17 三菱電機株式会社 Printed circuit board covered with protective film and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007134473A (en) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd Flexible wiring board and its manufacturing method
JP6775240B2 (en) * 2016-06-10 2020-10-28 株式会社C−Ink Composition for plating base, method for forming plating base and metal film by it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288037A (en) * 1995-04-17 1996-11-01 Yamaichi Electron Co Ltd Contact medium substrate between ic socket and ic
JP2010067773A (en) * 2008-09-10 2010-03-25 Hitachi Ltd Electric and electronic control device and method for manufacturing the same
JP2016062768A (en) * 2014-09-18 2016-04-25 積水化学工業株式会社 Manufacturing method of connection structure, and connection structure
WO2019198404A1 (en) * 2018-04-12 2019-10-17 三菱電機株式会社 Printed circuit board covered with protective film and method for manufacturing same

Also Published As

Publication number Publication date
JP2021077663A (en) 2021-05-20
JP6738077B1 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
US10383233B2 (en) Method for utilizing surface mount technology on plastic substrates
WO2021090785A1 (en) Electronic device
JP4123998B2 (en) Electronic circuit device and manufacturing method thereof
CN111727667B (en) Techniques for thermoforming electronic devices with surface curvature
JP2004186645A (en) Circuit substrate and method of manufacturing the same
JP7117705B1 (en) electronic device
JP6839427B1 (en) Display device and its manufacturing method
WO2019098029A1 (en) Electronic device and manufacturing method thereof
JP6903300B1 (en) Electronic device and its manufacturing method
JP7011235B1 (en) Electronic device
JP2008211150A (en) Three-dimensional structure component and its manufacturing method
JP5024117B2 (en) Circuit member mounting method
JP6963267B1 (en) Well plate
US20070298630A1 (en) Connecting member for surface mounting circuit
JP2011009397A (en) Electronic component-mounting wiring board
JP7233067B1 (en) Mounting component positioning and fixing structure and manufacturing method
JP7288286B1 (en) Electronic device manufacturing method
JP7212340B1 (en) Connector connection structure and manufacturing method thereof
WO2023145028A1 (en) Electronic device and method for manufacturing same
JP7117706B1 (en) Display device and manufacturing method thereof
WO2022224413A1 (en) Electronic device and manufacturing method therefor
JP7054149B1 (en) Circuit board and its manufacturing method
JP6963269B1 (en) Heat dissipation board and its manufacturing method
WO2020124415A1 (en) Flexible panel and manufacturing method therefor
JPH09321427A (en) Manufacture of injection-molded printed-wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884560

Country of ref document: EP

Kind code of ref document: A1