WO2023001318A1 - 一种声共振强化化学反应的装置及方法 - Google Patents

一种声共振强化化学反应的装置及方法 Download PDF

Info

Publication number
WO2023001318A1
WO2023001318A1 PCT/CN2022/117548 CN2022117548W WO2023001318A1 WO 2023001318 A1 WO2023001318 A1 WO 2023001318A1 CN 2022117548 W CN2022117548 W CN 2022117548W WO 2023001318 A1 WO2023001318 A1 WO 2023001318A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
acoustic resonance
acceleration
reactor
chemical reaction
Prior art date
Application number
PCT/CN2022/117548
Other languages
English (en)
French (fr)
Inventor
陈松
廉鹏
张圣龙
王锡杰
张哲�
康超
张幺玄
马宁
Original Assignee
西安近代化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安近代化学研究所 filed Critical 西安近代化学研究所
Priority to EP22845481.5A priority Critical patent/EP4374960A1/en
Publication of WO2023001318A1 publication Critical patent/WO2023001318A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations

Definitions

  • the invention relates to the technical field of synthesis technology, in particular to a device and method for acoustic resonance enhanced chemical reaction.
  • the chemical reaction process is a transfer process of mass, heat and momentum.
  • the quality of the chemical reaction process, low heat transfer efficiency, and long reaction time are difficult to achieve.
  • Continuous; industrial production equipment is bulky, especially for the synthesis of dangerous chemicals (such as energetic materials), there are disadvantages such as large liquid holding capacity and high risk.
  • chemical synthesis researchers have been devoting themselves to the development of new chemical reaction processes and equipment, hoping to effectively strengthen the chemical reaction process, improve reaction efficiency, and achieve continuity.
  • Chemical reaction process enhancement is the use of new technologies and equipment to greatly reduce the volume of reaction equipment and significantly improve the efficiency of chemical reactions.
  • the mainstream technical methods used to strengthen the chemical reaction process include static mixed reaction technology, microchannel reaction technology and microwave reaction technology.
  • Static mixing reaction technology uses the mixing unit fixed in the tube to change the flow state of the fluid in the tube to achieve good dispersion and full mixing of different fluids. This method has the advantages of low energy consumption and simple equipment structure. The reason is that the mixing efficiency of the reaction system with high viscosity is very low; due to the small size of the internal channel of the microchannel reaction technology, the heat transfer and mass transfer performance of the chemical fluid in the microchannel is greatly improved compared with the conventional reaction system.
  • the reaction technology is mainly used for gas phase, liquid phase, gas-liquid and liquid-liquid two-phase reaction. The disadvantage is that the reaction system containing solid phase will cause pipeline blockage.
  • microchannel reaction technology is not suitable for the reaction system containing solid phase.
  • Microwave reaction technology is a reaction enhancement technology that uses microwave special heating method to speed up the reaction speed. It has a strengthening effect on endothermic reaction, but its disadvantages are: there is radiation pollution and it is not suitable for exothermic reaction.
  • the purpose of the present invention is to provide a device and method for acoustic resonance enhanced chemical reaction, to solve the lack of reaction system and exothermic reaction system chemistry suitable for solid-phase reaction materials in the prior art.
  • the technical problems of the reaction intensification method so as to improve the heat transfer and mass transfer efficiency of the reaction system, and accelerate the apparent reaction rate of the chemical reaction. Under the condition of resonance, the reaction material is loaded with a large acceleration, and the reaction material generates a mixture of macroscopic and microscopic coupling. Function, strengthen the mass transfer and heat transfer process of chemical reaction.
  • a method for acoustic resonance strengthening chemical reaction comprising the following steps,
  • Step 1 adding each component of the reaction material into a reactor, and the reactor is fixed on an acoustic resonance reaction platform;
  • Step 2 adjust the acceleration G of the acoustic resonance reaction platform through the phase difference, and sweep the frequency in the low frequency range, and determine that the frequency corresponding to the peak value of the acceleration G is the resonance frequency;
  • Step 3 making each component of the reaction material react under the conditions of the resonance frequency and the set acceleration G1, and sequentially filtering, drying, and drying the suspension obtained from the reaction to obtain a reaction product;
  • both the accelerations G and G1 are fixed values, and the value range is 1g ⁇ G ⁇ 90g, 1g ⁇ G1 ⁇ 90g, wherein g is the acceleration of gravity, and the value is 9.8m/s 2 .
  • the energetic material includes N-methyl-p-nitroaniline, glyoxime, 2-methyl-4,6-pyrimidinedione, nitroglycerin (NG), 2,4,6-trinitroaniline TNT, RDX, HMX, PETN, CL-20, 1,1-dinitro- 2,2-diaminoethylene (FOX-7), 5,5'-bistetrazolium-1,1'-dioxyhydroxyl ammonium salt (HATO), 3-nitro-124-triazole-5-ketone (NTO ), one or more of dinitramide ammonium salt (ADN), 1-oxo-2,6-diamino-3,5-dinitropyrazine (LLM-105).
  • NG 1,1-dinitro- 2,2-diaminoethylene
  • HATO 5,5'-bistetrazolium-1,1'-dioxyhydroxyl ammonium salt
  • NTO 3-nitro-124-triazole-5-ketone
  • ADN dinitramide ammonium salt
  • the value range of the phase difference is 0.01-0.2.
  • the low frequency range is 58-70 Hz
  • the frequency sweep step is 0.2-2 Hz
  • the dwell time of each frequency point is 1-3 s.
  • the adjustment range of the acceleration G1 is 30-90g
  • the adjustment range of the acceleration G1 is 1-90 g.
  • the frequency sweep step is 0.5 Hz, and the dwell time of each frequency point is 2 s.
  • a device for enhancing chemical reaction by acoustic resonance the device is used to realize the method for enhancing chemical reaction by acoustic resonance, including connecting a controller and an acoustic resonance reaction platform, and a reactor arranged on the acoustic resonance reaction platform;
  • the acoustic resonance reaction platform includes a support plate, an excitation source is arranged under the support plate, and the excitation source is connected to the controller, and is used to provide vibration for the acoustic resonance reaction platform to strengthen the chemical reaction in the reactor. reaction; the acoustic resonance reaction platform is also provided with an acceleration sensor, and the acceleration sensor is used to measure the acceleration of the acoustic resonance reaction platform in real time and transmit the measured acceleration value to the controller;
  • the controller is used to adjust the phase of the excitation source in real time according to the measured acceleration value, thereby realizing the acceleration adjustment of the acoustic resonance reaction platform;
  • the feed port of the reactor is respectively connected with the slurry pump and the liquid feed pump, and the discharge port of the reactor is connected with a filter, and the filter is respectively connected with a waste liquid tank and a drying box.
  • the excitation source is an oscillating motor, and the number of the oscillating motors is 2-6.
  • the reactor is also connected with a high and low temperature integrated machine.
  • an oscillating spring is also arranged between the supporting plate and the vibration source, one end of the oscillating spring is connected to the supporting plate, and the other end is connected to the vibration source.
  • the method of the present invention is applicable to various reaction systems including gas-liquid, liquid-liquid, solid-liquid and exothermic systems.
  • Tank reaction the reaction time is greatly shortened, because the method of the invention reduces the shear force on the material during the mixing process, and is especially suitable for the synthesis of hazardous chemicals that are highly sensitive to mechanical stimulation.
  • the device of the invention has simple structure, convenient operation and is suitable for popularization.
  • Figure 1 is a comparison diagram of the principle of mechanical stirring paddle strengthening reaction and acoustic resonance strengthening reaction
  • Fig. 2 is the structural representation of acoustic resonance enhanced chemical reaction device of the present invention
  • Fig. 3 is N-methyl-p-nitroaniline particle size test result
  • Fig. 4 is N-methyl-p-nitroaniline purity test result.
  • 1-controller 2-acoustic resonance reaction platform, 3-reactor, 4-slurry pump, 5-liquid material pump, 6-filter, 7-waste liquid tank, 8-drying box; 9-high and low temperature integration Machine, 10-vibration spring; 21-support plate, 22-excitation source, 23-acceleration sensor; 41-slurry tank, 51-liquid material tank.
  • a homogeneous reaction is a chemical reaction that occurs in only one phase (gas, liquid or solid).
  • Energetic material refers to a substance that can rapidly release a large amount of energy and perform work externally. Most of these substances are explosive and deflammable.
  • the invention discloses a method for acoustic resonance strengthening chemical reaction, comprising the following steps,
  • Step 1 adding each component of the reaction material into a reactor, and the reactor is fixed on an acoustic resonance reaction platform;
  • Step 2 adjust the acceleration G of the acoustic resonance reaction platform through the phase difference, and sweep the frequency in the low frequency range, and determine that the frequency corresponding to the peak value of the acceleration G is the resonance frequency;
  • Step 3 making each component of the reaction material react under the conditions of the resonance frequency and the set acceleration G1, and sequentially filtering, drying, and drying the suspension obtained from the reaction to obtain a reaction product;
  • both the accelerations G and G1 are fixed values, and the value range is 1g ⁇ G ⁇ 90g, 1g ⁇ G1 ⁇ 90g, wherein g is the acceleration of gravity, and the value is 9.8m/s 2 .
  • the value range of the phase difference is 0.01 ⁇ 0.2.
  • the low frequency range is 58-70 Hz
  • the frequency sweep step is 0.2-2 Hz
  • the dwell time of each frequency point is 1-3 s.
  • the adjustment range of the acceleration G1 is 30-90g
  • the adjustment range of the acceleration G1 is 1-90 g.
  • the energetic materials include N-methyl-p-nitroaniline, glyoxime, 2-methyl-4,6-pyrimidinedione, nitroglycerin (NG), 2,4,6-trinitrotoluene ( TNT), Hexogen (RDX), Octogen (HMX), Taian (PETN), Hexanitrohexaazaisowurtzitane (CL-20), 1,1-Dinitro-2,2 -diaminoethylene (FOX-7), 5,5'-tetrazole-1,1'-dioxyl ammonium salt (HATO), 3-nitro-124-triazole-5-ketone (NTO), di One or more of nitramide ammonium salt (ADN), 1-oxo-2,6-diamino-3,5-dinitropyrazine (LLM-105).
  • NG nitroglycerin
  • TNT 2,4,6-trinitrotoluene
  • RDX Hexogen
  • HMX Octogen
  • Taian PETN
  • reaction materials in the present invention also include other organic and inorganic substances, such as inorganic acids, metal oxides that can be used as catalysts, etc., and the reaction types mainly include gas phase/liquid phase, liquid phase/liquid phase, etc.
  • Phase, solid phase/synthetic reaction of liquid phase reaction materials is especially suitable for non-kinetic controlled organic chemical reactions, especially suitable for the synthesis of dangerous chemicals with high sensitivity to mechanical stimulation, such as in Example 1, nitrate
  • the ethanol solution of fluorobenzene and methylamine aqueous solution are synthesized to obtain N-methyl-p-nitroaniline, and the glyoxal aqueous solution, hydroxylamine hydrochloride aqueous solution and sodium hydroxide aqueous solution in Example 2 are synthesized to obtain glyoxime, etc. .
  • the present invention adjusts the vibration phase difference of the excitation source through the controller.
  • the scanning in the low frequency range starts from the set value, sets a small phase difference, increases the frequency value according to a certain step, and observes the acceleration G of the acoustic resonance reaction platform.
  • the acceleration G reaches its peak value, the corresponding frequency is the resonant frequency.
  • the resonance frequency will fluctuate within the set interval, so the frequency sweep must be carried out, and the resonance state is determined by the frequency, which in turn affects the acceleration of the acoustic resonance reaction platform.
  • the acceleration G1 of the acoustic resonance reaction platform and the value range of the resonance frequency are all feasible values determined for the existing reaction system formula, and are the values that allow the chemical reaction to achieve the highest effect and efficiency in the black box state.
  • the acceleration G1 of the acoustic resonance reaction platform is obtained by comprehensively considering the load required for the strengthening of the solid-liquid phase or homogeneous reaction system and the dispersion effect required for the strengthening reaction.
  • the minimum acceleration to produce obvious reaction strengthening effect is 1g, and the strengthening effect will no longer produce obvious improvement after greater than 80g.
  • the solid phase dispersion requires an additional load, therefore, a greater acceleration is required for the whole field enhanced dispersion. Since the acceleration required for the reaction system to produce an obvious strengthening effect is positively correlated with the solid content of the system, according to the required load of the system and multiple actual test verifications, the acceleration control range of the solid-liquid phase reaction system is 30-90g. Among them, as a preferred option, When the solid-liquid ratio is 30-40wt%, the acceleration G1 of the acoustic resonance reaction platform is 90g, and when the solid-liquid ratio is 25-30wt%, the acceleration G1 of the acoustic resonance reaction platform is 80g, and the solid-liquid ratio is 20-25wt%.
  • the method of the present invention uses a plurality of oscillating motors arranged in the acoustic resonance reaction platform as the excitation source, and when the excitation source reaches resonance, the reaction material is loaded with a large acceleration (1-90g), and a mixing effect of macroscopic and microscopic coupling occurs inside the material , which can enhance the chemical reaction mass transfer and heat transfer process.
  • the method of the present invention can realize the coupling of a large number of micron-scale turbulent flows and macroscopic eddy currents inside the reactants, and each local turbulent flow can exert a mixing effect similar to that of traditional stirring paddles.
  • the reactor of the present invention is a sealable reaction vessel that does not affect or interfere with the reaction of the present invention, such as a reactor with a sealed cover, more specifically a stainless steel hydrothermal reactor.
  • the mass of the solid phase is 89.7 grams
  • the solid-liquid ratio is 89.7/454 ⁇ 100% ⁇ 20%
  • the value of G1 is 70g
  • the resonance frequency of the acoustic resonance reaction platform is 66.7 Hz.
  • the components of the reaction material in the reactor were reacted for 10 minutes, and finally the resulting suspension was filtered and dried to obtain 89.7 grams of dry N-methyl-p-nitroaniline.
  • the conversion rate mass of reacted substances/total mass of reactants ⁇ 100%
  • the conversion rate can be calculated as 92.5%.
  • the particle size D50 of N-methyl-p-nitroaniline solid particles measured by a laser particle size analyzer was 49.685 ⁇ m. Utilize HPLC to test the N-methyl-p-nitroaniline purity, the results are shown in Table 1,
  • the retention time is the peak of the main product N-methyl-p-nitroaniline in the peak of 2.655 minutes, and the percentage of its peak area is the mass percentage (purity) that the main product occupies, by This shows that its purity is 99.12%.
  • the median particle size D50 of N-methyl-p-nitroaniline is 49.685 ⁇ m, that is to say, the average particle size is approximately 49.685 ⁇ m. From the perspective of particle size distribution width, 80% of the particle size Greater than 22.212 ⁇ m, less than 78.301 ⁇ m.
  • the main product N-methyl-p-nitroaniline peaked at 2.655 minutes, with a peak area of 6328.36mAU*s, which accounted for 99.12% of the total peak area, indicating that the main product N-methyl-p-nitroaniline
  • the purity of aniline is 99.12%.
  • the two by-products peaked at 2.938 minutes and 3.295 minutes respectively.
  • the peak areas were 46.64mAU*s and 9.64mAU*s respectively, and the proportions of the total peak area were 0.73% and 0.15% respectively. , indicating that the two by-products had a purity of 0.73% and 0.15%, respectively.
  • the reactor temperature is set to 35°C, use a metering pump to measure 80ml of glyoxal aqueous solution with a mass fraction of 40%, 77.9ml of a 39% hydroxylamine hydrochloride aqueous solution, and 80.3ml of a 35% mass fraction of
  • the sodium hydroxide aqueous solution is put into the reactor, and the reactor is fixed on the acoustic resonance reaction platform, and the resonance frequency is determined to be 67.5 Hz by sweeping in the range of 58-70 Hz.
  • the present embodiment provides a device for acoustic resonance enhanced chemical reaction, the device is used to realize the method for the above acoustic resonance enhanced chemical reaction, including connecting the set controller 1 and the acoustic resonance reaction platform 2, and setting The reactor 3 on the acoustic resonance reaction platform 2; in this embodiment, the reactor is fixed on the acoustic resonance reaction platform 2 through a fixed bracket.
  • the acoustic resonance reaction platform 2 includes a support plate 21, and an excitation source 22 is arranged under the support plate 21.
  • the excitation source 22 is connected to the controller 1, and is used to provide vibration for the acoustic resonance reaction platform 2 to strengthen the vibration in the reactor 3.
  • chemical reaction the acoustic resonance reaction platform 2 is also provided with an acceleration sensor 23, the acceleration sensor 23 is used to measure the acceleration of the acoustic resonance reaction platform 2 in real time and transmits the measured acceleration value to the controller 1;
  • the controller 1 is used to adjust the phase of the excitation source 22 in real time according to the measured acceleration value, thereby realizing the acceleration adjustment of the acoustic resonance reaction platform 2;
  • the feed port of the reactor 3 is connected with the slurry pump 4 and the liquid feed pump 5 respectively, and the discharge port of the reactor 3 is connected with the filter 6, and the filter 6 is respectively connected with a waste liquid tank 7 and a drying box 8, and the slurry
  • the pump 4 is used to add solid phase-containing raw materials to the reactor 3
  • the liquid material pump 5 is used to add liquid phase raw materials to the reactor 3.
  • the slurry pump 4 and the liquid material pump 5 are connected to the slurry tank 41 and the liquid material tank 51 respectively.
  • the excitation source 22 is an oscillating motor, and the number of oscillating motors is four.
  • a high and low temperature integrated machine 9 is also connected to the reactor 3 .
  • the high and low temperature integrated machine 9 is used to set the temperature in the reactor.
  • An oscillating spring 10 is also arranged between the supporting plate 21 and the exciting source 22. One end of the oscillating spring 10 is connected to the supporting plate 21, and the other end is connected to the exciting source 22. That is, the output shaft of the oscillating motor.
  • the oscillating motor works to drive the oscillating spring to move vertically, thereby transferring the vibration amount to the acoustic resonance reaction platform 2 .
  • the mechanism of the acoustic resonance enhanced chemical reaction in the reactor 3 is shown in FIG. 1 .
  • the use process of the inventive device is as follows:
  • the controller 1 and the high and low temperature integrated machine 9 set the temperature of the reactor 3, then use the slurry pump 4 and the liquid material pump 5 to send the raw materials into the reactor 3, and fix the reactor 3 on the acoustic resonance reaction platform 2, Sweep the frequency within the range of 58-70Hz, use the value measured by the acceleration sensor 23 to determine the frequency corresponding to the peak acceleration G as the resonance frequency, then set the phase difference through the controller 1, and set the strengthening chemical according to the reaction speed of the mixed material
  • the acceleration G1 of the reaction turns on the excitation source 22, so that a chemical reaction enhanced by acoustic resonance occurs in the reactor. After the reaction, the reaction product and waste liquid enter the drying box and the waste liquid tank through the filter 6 respectively.
  • the conversion rate and product purity in Comparative Example 2 are all lower than in Example 1, especially the conversion rate has a large difference with Example 2, and compared with Example 2, in this Comparative Example , in order to prevent overheating spraying, it is usually necessary to feed at a low temperature, and then raise the temperature to the temperature required for the reaction after the feeding is completed.
  • Example 3 Compared with Example 3, the product conversion rate is not much different, but there are many operating steps in this comparative example, it is necessary to feed under low temperature conditions, and after the feeding is completed, it is warming up to the temperature required for the reaction, and the method of the present invention can reduce Purification step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种声共振强化化学反应的方法,包括:步骤1、将反应物料各组分加入反应器,所述反应器固定在声共振反应平台上;步骤2、通过相位差调节声共振反应平台的加速度G,并在低频范围内扫频,确定加速度G达到峰值时所对应的频率为共振频率;步骤3、使反应物料各组分在共振频率和设定的加速度G1的条件下反应,对反应得到的悬浊液依次进行过滤、干燥、烘干,得到反应产物;其中,所述加速度G和G1均为定值,取值范围为1g≤G≤90g,1g≤G1≤90g,其中,g为重力加速度,取值为9.8m/s 2。本发明方法适用于包括气液、液液、固液及放热体系在内的多种反应体系,反应条件温和,特别适用于对机械刺激敏感度高的危险化学品的合成。

Description

一种声共振强化化学反应的装置及方法 技术领域
本发明涉及一种合成工艺技术领域,特别涉及一种声共振强化化学反应的装置及方法。
背景技术
化学反应过程是一个质量、热量和动量的传递过程,传统的釜式反应过程,由于搅拌桨对反应物料的混合效率低,导致化学反应过程的质量、热量传递效率低下、反应时间长,难以实现连续化;工业化生产的设备体积庞大,尤其对于危险化学品(如含能材料)的合成,存在持液量大、危险性大等缺点。为此,化学合成研究人员一直致力于开发新型化学化学反应工艺及设备,希望能有效强化化学反应过程,提高反应效率,实现连续化。化学反应过程强化就是运用新的技术和设备,极大地减小反应设备体积,显著提升化学反应效率。目前,主流的用于强化化学反应过程的技术方法有静态混合反应技术、微通道反应技术和微波反应技术等。静态混合反应技术是利用固定在管内的混合单元体改变流体在管内的流动状态,以达到不同流体之间良好分散和充分混合的目的,该方法具有能耗低、设备结构简单等优点,其缺陷在于:对于粘度较大反应体系混合效率很低;微通道反应技术由于内部通道尺寸小,所以微通道中化工流体的传热、传质性能相对于常规反应系统有较大程度的提高,微通道反应技术主要用于气相、液相、气液和液液两相反应,其缺陷在于:由于含固相反应体系会造成管路堵塞的问题,因此,微通道反应技术不适用于含固相的反应体系; 微波反应技术是一种利用微波的特殊加热方式加快反应速度的反应强化技术,对于吸热反应具有强化作用,但其缺点在于:有辐射污染且不适用放热反应。
发明内容
针对现有技术中存在的不足,本发明的目的在于提供一种声共振强化化学反应的装置及方法,以解决现有技术中缺少适用于含固相反应物料的反应体系及放热反应体系化学反应强化方法的技术问题,从而提高反应体系的传热、传质效率,加快化学反应的表观反应速率,在共振条件下,反应物料受到大加速度加载,反应物料内部产生宏观与微观耦合的混合作用,强化化学反应的传质、传热过程。
为实现上述目标,本发明采取如下的技术方案:
一种声共振强化化学反应的方法,包括以下步骤,
步骤1、将反应物料各组分加入反应器,所述反应器固定在声共振反应平台上;
步骤2、通过相位差调节声共振反应平台的加速度G,并在低频范围内扫频,确定加速度G达到峰值时所对应的频率为共振频率;
步骤3、使反应物料各组分在共振频率和设定的加速度G1的条件下反应,对反应得到的悬浊液依次进行过滤、干燥、烘干,得到反应产物;
其中,所述加速度G和G1均为定值,取值范围为1g≤G≤90g,1g≤G1≤90g,其中,g为重力加速度,取值为9.8m/s 2
本发明还具有以下技术特征:
具体的,所述含能材料包括N-甲基-对硝基苯胺、乙二肟、2-甲基-4,6-嘧啶二酮、硝化甘油(NG)、2,4,6-三硝基甲苯(TNT)、黑索今(RDX)、奥克托今(HMX)、太安(PETN)、六硝基六氮杂异伍兹烷(CL-20)、1,1-二硝基-2,2-二氨基乙烯(FOX-7)、5,5'-联四唑-1,1'-二氧羟铵盐(HATO)、3-硝基-124-三唑-5酮(NTO)、二硝酰胺铵盐(ADN)、1-氧-2,6-二氨基-3,5-二硝基吡嗪(LLM-105)中的一种或多种。
更进一步的,所述相位差的取值范围为0.01~0.2。
更进一步的,所述低频范围为58~70Hz,扫频步进为0.2~2Hz,每个频率点停留时间为1~3s。
更进一步的,对于固液反应,当反应物料中固体组分的质量百分比为0.1~40wt%时,所述加速度G1的调节范围为30~90g;
对于均相反应,所述加速度G1的调节范围为1~90g。
更进一步的,所述扫频步进为0.5Hz,每个频率点停留时间为2s。
一种声共振强化化学反应的装置,所述装置用于实现上述声共振强化化学反应的方法,包括连接设置的控制器和声共振反应平台,以及设置在声共振反应平台上的反应器;
所述声共振反应平台包括支撑板,所述支撑板下方设置有激振源,所述激振源与控制器相连,且用于为声共振反应平台提供振动量,以强化反应器内的化学反应;所述声共振反应平台上还设置有加速度传感器,所述加速度传感器用于实时测量声共振反应平台的加速度并将测得的加速度值传输给控制器;
所述控制器用于根据测得的加速度值实时调节激振源的相位,进而实现声共振反应平台的加速度调节;
所述反应器的进料口分别连接含浆料泵和液料泵,反应器的出料口连接过滤器,所述过滤器上分别连接有废液罐和干燥箱。
具体的,所述激振源为振荡电机,所述振荡电机的数量为2~6个。
更进一步的,所述反应器上还连接有高低温一体机。
更进一步的,所述支撑板与激振源之间还设置有振荡弹簧,所述振荡弹簧的一端连接支撑板,另一端连接激振源。
相较于现有技术,本发明的技术效果为:
本发明方法适用于包括气液、液液、固液及放热体系在内的多种反应体系,反应条件温和,即适用于管式连续反应,又适用于传统釜式反应,且相对于传统釜式反应,反应时间大幅度缩短,由于本发明方法降低了混合过程中物料受到的剪切力,特别适用于对机械刺激敏感度高的危险化学品的合成。
本发明装置结构简单,操作方便,适用于推广。
附图说明
图1是机械搅拌桨强化反应与声共振强化反应的原理对比图;
图2是本发明的声共振强化化学反应装置的结构示意图;
图3是N-甲基-对硝基苯胺粒度测试结果;
图4是N-甲基-对硝基苯胺纯度测试结果。
图中符号:
1-控制器,2-声共振反应平台,3-反应器,4-浆料泵,5-液料泵,6-过滤器,7-废液罐,8-干燥箱;9-高低温一体机,10-振荡弹簧;21-支撑板,22-激振源,23-加速度传感器;41-浆料罐,51-液料罐。
下面结合附图对本发明做出进一步解释说明。
具体实施方式
除非有特殊说明,本文中的术语或方法根据相关领域普通技术人员的常规认识理解或采用已有相关方法实现。
以下对本发明所涉及的技术术语予以解释:
均相反应是指只在一相(气相、液相或固相)内发生的化学反应。
含能材料:指能迅速释放大量能量并对外做功的物质。该类物质多具有爆炸性、爆燃性。
本发明公开了一种声共振强化化学反应的方法,包括以下步骤,
步骤1、将反应物料各组分加入反应器,所述反应器固定在声共振反应平台上;
步骤2、通过相位差调节声共振反应平台的加速度G,并在低频范围内扫频,确定加速度G达到峰值时所对应的频率为共振频率;
步骤3、使反应物料各组分在共振频率和设定的加速度G1的条件下反应,对反应得到的悬浊液依次进行过滤、干燥、烘干,得到反应产物;
其中,所述加速度G和G1均为定值,取值范围为1g≤G≤90g,1g≤G1≤90g,其中,g为重力加速度,取值为9.8m/s 2
所述相位差的取值范围为0.01~0.2。
所述低频范围为58~70Hz,扫频步进为0.2~2Hz,每个频率点停留时间为1~3s。
对于固液反应,当反应物料中固体组分的质量百分比为0.1~40wt%时,所述加速度G1的调节范围为30~90g;
对于均相反应,所述加速度G1的调节范围为1~90g。
所述含能材料包括N-甲基-对硝基苯胺、乙二肟、2-甲基-4,6-嘧啶二酮、硝化甘油(NG)、2,4,6-三硝基甲苯(TNT)、黑索今(RDX)、奥克托今(HMX)、太安(PETN)、六硝基六氮杂异伍兹烷(CL-20)、1,1-二硝基-2,2-二氨基乙烯(FOX-7)、5,5'-联四唑-1,1'-二氧羟铵盐(HATO)、3-硝基-124-三唑-5酮(NTO)、二硝酰胺铵盐(ADN)、1-氧-2,6-二氨基-3,5-二硝基吡嗪(LLM-105)中的一种或多种。
需要说明的是,本发明中反应物料除了上述原料,还包括其他有机物和无机物,如,无机酸,可作为催化剂的金属氧化物等,反应类型主要为包括气相/液相、液相/液相、固相/液相反应物料的合成反应,本方法尤其适用于非动力学控制的有机化学反应,特别适用于对机械刺激敏感度高的危险化学品的合成,例如实施例1中,硝基氟苯的乙醇溶液与甲胺水溶液通过合成反应得到N-甲基-对硝基苯胺,实施例2中的乙二醛水溶液、盐酸羟胺水溶液与氢氧化钠水溶液通过合成反应得到乙二肟等。
本发明通过控制器调节激振源的振动相位差,低频范围内扫描是从设定值开始,设定一个小相位差,按照一定的步进增加频率值,观察声共振反应平台的加速度G,当加速度G达到峰值时所对应的频率即为共振频率。因为声共振反应平台的负载和反应器内的反应体系不同,所以共振频 率会在设定的区间内波动,故必须进行扫频,由频率确定共振状态,进而影响声共振反应平台的加速度。
声共振反应平台的加速度G1、共振频率的取值范围均为针对现有反应体系配方确定的可行性数值,是可以让化学反应能够在黑匣子状态下达到效果和效率最高的数值。根据固液相或均相反应体系强化所需负载以及强化反应所需的分散效果进行综合考虑得到声共振反应平台的加速度G1。对于液液两相或均相反应,产生明显反应强化效果的最小加速度为1g,大于80g后强化效果不再产生明显提升。
对于固液两相反应,其固相分散需要额外的负载,因此,需要更大的加速度以进行整场强化分散。由于反应体系产生明显强化效果所需的加速度与体系固含量呈正相关,根据体系所需负载及多次实际试验验证,固液相反应体系的加速度控制区间为30~90g,其中,作为优选方案,在固液相比为30~40wt%时声共振反应平台的加速度G1取90g,固液相比为25~30wt%时声共振反应平台的加速度G1取80g,固液相比为20~25wt%时取70g,固液相比为15~20wt%时取60g,固液相比为10~15wt%时声共振反应平台的加速度G1取50g,固液相比为5~10wt%时声共振反应平台的加速度G1取40g,固液相比为0~5wt%时声共振反应平台的加速度G1取30g。
本发明方法以声共振反应平台内设置的多个振荡电机为激振源,当激振源达到共振时,反应物料受到大加速度(1~90g)加载,物料内部产生宏观与微观耦合的混合作用,从而可以强化化学反应传质、传热过程。相对于传统釜式反应中搅拌桨的宏观混合作用,本发明方法可在反应物内部实 现大量微米级湍流和宏观涡流的耦合,每个局部湍流都可发挥一个类似传统搅拌桨的混合作用,大幅度提高整个反应体系传热、传质效率,从而加快化学反应的表观反应速率。同时,在微米级湍流的剪切作用下,反应体系中产生的固体颗粒粒径能被控制在微米尺度,强大的湍流使固体颗粒始终悬浮在反应液中,可有效避免固体物料在反应体系中的堆积和堵塞。
依据本发明方法,本领域技术人员采用常规的实验方法对混合物料的物质种类、物质用量、反应温度、以及共振频率、加速度等相关参数或技术手段进行优化选择。
本发明所述的反应器为不影响或干扰本发明反应进行的可密封的反应容器,如带密封盖的反应釜,更具体如不锈钢水热反应釜。
下面通过实施例、对比例和附图对本发明进行具体描述。需要说明的是,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的研究人员可以根据上述发明内容对本发明做出一些非本质的改进和调整。
实施例1
在本实施例中,首先开启高低温一体机,设置反应器的温度为75℃,称量90克对硝基氟苯(0.64mol),将其溶解于450ml乙醇中,然后使用计量泵将配置好的上述溶液和108克质量浓度为40%的甲胺水溶液加入反应器,将反应器固定在声共振反应平台上。
设定相位差为0.07,在58~70Hz范围内扫频,扫频步进为0.5Hz,确定加速度G达到峰值时所对应的共振频率为66.7Hz。
对于本实施例,由于固相质量为89.7克,液相质量为450mL×0.77g/mL+108g=454g,固液比为89.7/454×100%≈20%,所以G1取值70g,设定声共振反应平台的共振频率为66.7Hz,使反应器内的反应物料各组分反应10分钟,最后将所得悬浊液过滤、干燥后获得N-甲基-对硝基苯胺干品89.7克。
按照转化率=发生反应的物质的质量/反应物总质量×100%,计算可得转化率为92.5%。
利用激光粒度仪测试N-甲基-对硝基苯胺固体颗粒粒径D50为49.685μm。利用HPLC测试N-甲基-对硝基苯胺纯度,结果如表1所示,
Figure PCTCN2022117548-appb-000001
表1 HPLC测试N-甲基-对硝基苯胺纯度结果
从表1中可以看出,保留时间为2.655分钟的峰为主产物N-甲基-对硝基苯胺的峰,其峰面积所占百分比即为主产物所占的质量百分比(纯度),由此可知,其纯度为99.12%。
如图3所示,N-甲基-对硝基苯胺中位粒径D50为49.685μm,也就是说,平均粒径近似为49.685μm,从粒径分布宽度来看,80%的颗粒粒径大于22.212μm,小于78.301μm。
如图4所示,主产物N-甲基-对硝基苯胺在2.655分钟时出峰,峰面积6328.36mAU*s,其占总峰面积的99.12%,表明主产物N-甲基-对硝基苯胺的纯度为99.12%,两个副产物分别在2.938分钟和3.295分钟出峰,峰面 积分别为46.64mAU*s和9.64mAU*s,相对总峰面积的占比分别为0.73%和0.15%,表明两个副产物纯度分别为0.73%和0.15%。
实施例2
开启高低温一体机,设置反应器温度为35℃,使用计量泵计量80ml质量分数为40%的乙二醛水溶液、77.9ml质量分数为39%的盐酸羟胺水溶液、80.3ml质量分数为35%的氢氧化钠水溶液至反应器中,将反应器固定在声共振反应平台,在58~70Hz范围内扫频确定共振频率为67.5Hz。
设定相位差为0.03,加速度G1为50g,在67.5Hz的共振频率下反应15分钟后,将所得悬浊液过滤、干燥后获得乙二肟干品44.8克,转化率为92.1%,利用HPLC测试乙二肟纯度99.9%。
与常规反应釜相比,由于声共振具有强大的强化传热能力,所以不用担心飞温喷料发生,无需低温加料,可直接设定反应温度。
实施例3
开启高低温一体机,设置反应器温度为58℃,使用计量泵计量盐酸乙脒36.6ml,丙二酸二乙酯76.8ml,甲醇钠的甲醇溶液(30wt%)181ml至反应器中,将反应器置于声共振反应平台,扫频确定共振频率为63.8Hz。
设定相位差为0.03,加速度G1为60g,在63.8Hz的共振频率下反应45分钟后,将悬浊液置于500ml去离子水中,加盐酸酸化至pH=2,过滤、干燥后获得2-甲基-4,6-嘧啶二酮产品,产品的转化率达到80.2%。
实施例4
如图2所示,本实施例提供了一种声共振强化化学反应的装置,装置用于实现上述声共振强化化学反应的方法,包括连接设置的控制器1和声 共振反应平台2,以及设置在声共振反应平台2上的反应器3;本实施例中,反应器通过固定支架固定在声共振反应平台2上。
声共振反应平台2包括支撑板21,支撑板21下方设置有激振源22,激振源22与控制器1相连,且用于为声共振反应平台2提供振动量,以强化反应器3内的化学反应;声共振反应平台2上还设置有加速度传感器23,加速度传感器23用于实时测量声共振反应平台2的加速度并将测得的加速度值传输给控制器1;
控制器1用于根据测得的加速度值实时调节激振源22的相位,进而实现声共振反应平台2的加速度调节;
反应器3的进料口分别连接含浆料泵4和液料泵5,反应器3的出料口连接过滤器6,过滤器6上分别连接有废液罐7和干燥箱8,浆料泵4用于向反应器3中添加含固相的原料,液料泵5用于向反应器3中添加液相原料。浆料泵4和液料泵5分别连接浆料罐41和液料罐51。
本实施例中,激振源22为振荡电机,振荡电机的数量为4个。反应器3上还连接有高低温一体机9。高低温一体机9用于设定反应器内的温度,支撑板21与激振源22之间还设置有振荡弹簧10,振荡弹簧10的一端连接支撑板21,另一端连接激振源22,即振荡电机的输出轴。振荡电机做功带动振荡弹簧沿竖向运动,从而将振动量传递给声共振反应平台2。
反应器3内发生声共振强化化学反应的机理如图1所示。
本实施例中,发明装置的使用过程如下:
开启控制器1、高低温一体机9,设置反应器3的温度,然后使用浆料泵4和液料泵5将原料送入反应器3,将反应器3固定在声共振反应平台2 上,在58~70Hz范围内扫频,借助加速度传感器23测得的数值确定加速度G达到峰值时所对应的频率为共振频率,通过控制器1然后设定相位差,根据混合物料的反应速度设置强化化学反应的加速度G1,开启激振源22,使得反应器内发生声共振强化的化学反应,反应结束后,反应产物和废液经过滤器6分别进入干燥箱和废液罐。
对比例1
在100ml装有机械搅拌和温度计的圆底玻璃烧瓶中加入5克对硝基氟苯,称量25ml乙醇加入烧瓶,开启搅拌使固体完全溶解,称量8.5克质量浓度为40%的甲胺水溶液加入烧瓶,水浴加热至75℃,反应6小时后降温至室温,过滤、干燥后得N-甲基-对硝基苯胺干品4.86克,转化率为90.3%,利用HPLC测试N-甲基-对硝基苯胺纯度为98.75%。
由以上数据可以看出,对比例1中的转化率和产品纯度均低于实施例1。
对比例2
在500ml装有机械搅拌和温度计的圆底玻璃烧瓶中加入30ml质量分数为35%的氢氧化钠水溶液,启动搅拌,降温至0℃,然后分几次缓慢加入盐酸羟胺27.8克,待充分溶解后,缓慢滴加质量分数为40%的乙二醛溶液22.8ml,反应30分钟后,升温至室温并保温12小时,过滤,用30ml冰水淋洗,干燥后得乙二肟干品13.8克,转化率为78%,利用HPLC测试乙二肟纯度98.13%。
由以上数据可以看出,对比例2中的转化率和产品纯度均低于实施例1,尤其是转化率与实施例2存在较大差异,而且与实施例2相比,在本对 比例中,为防止飞温喷料,通常需要在低温条件下加料,在加料完毕后再升温至反应所需的温度。
对比例3
0℃条件下,向500ml装有机械搅拌和温度计的圆底玻璃烧瓶中分别加入65ml甲醇钠的甲醇溶液(30wt%),18.9克盐酸乙脒和27.6ml丙二酸二乙酯。开启搅拌,油浴加热至90℃,反应3小时,降至室温。反应结束后将反应液倒入500ml冰水中,在10℃下将溶液的pH调至2,析出大量白色固体。抽滤并用水和乙醇洗涤滤饼,真空干燥,得2-甲基-4,6-嘧啶二酮干品21.5克产品的转化率为83.8%。
与实施例3相比,产品转化率相差不大,但是本对比例中的操作步骤多,需要低温条件下加料,在加料完毕后再升温至反应所需的温度,而采用本发明方法可以减少提纯步骤。

Claims (10)

  1. 一种声共振强化化学反应的方法,其特征在于,包括以下步骤,
    步骤1、将反应物料各组分加入反应器,所述反应器固定在声共振反应平台上;
    步骤2、通过相位差调节声共振反应平台的加速度G,并在低频范围内扫频,确定加速度G达到峰值时所对应的频率为共振频率;
    步骤3、使反应物料各组分在共振频率和设定的加速度G1的条件下反应,对反应得到的悬浊液依次进行过滤、干燥、烘干,得到反应产物;
    其中,所述加速度G和G1均为定值,取值范围为1g≤G≤90g,1g≤G1≤90g,其中,g为重力加速度,取值为9.8m/s 2
  2. 如权利要求1所述的声共振强化化学反应的方法,其特征在于,所述反应物料包括含能材料的制备原料,所述含能材料包括N-甲基-对硝基苯胺、乙二肟、2-甲基-4,6-嘧啶二酮、硝化甘油(NG)、2,4,6-三硝基甲苯(TNT)、黑索今(RDX)、奥克托今(HMX)、太安(PETN)、六硝基六氮杂异伍兹烷(CL-20)、1,1-二硝基-2,2-二氨基乙烯(FOX-7)、5,5'-联四唑-1,1'-二氧羟铵盐(HATO)、3-硝基-1,2,4-三唑-5酮(NTO)、二硝酰胺铵盐(ADN)、1-氧-2,6-二氨基-3,5-二硝基吡嗪(LLM-105)中的一种或多种。
  3. 如权利要求1所述的声共振强化化学反应的方法,其特征在于,所述相位差的取值范围为0.01~0.2。
  4. 如权利要求1所述的声共振强化化学反应的方法,其特征在于,所述低频范围为58~70Hz,扫频步进为0.2~2Hz,每个频率点停留时间为1~3s。
  5. 如权利要求1所述的声共振强化化学反应的方法,其特征在于,对于固液反应,当反应物料中固体组分的质量百分比为0.1~40wt%时,所述加速度G1的调节范围为30~90g;
    对于均相反应,所述加速度G1的调节范围为1~90g。
  6. 如权利要求4所述的声共振强化化学反应的方法,其特征在于,所述扫频步进为0.5Hz,每个频率点停留时间为2s。
  7. 一种声共振强化化学反应的装置,所述装置用于实现权利要求1~6任意一项所述的声共振强化化学反应的方法,其特征在于,包括连接设置的控制器(1)和声共振反应平台(2),以及设置在声共振反应平台(2)上的反应器(3);
    所述声共振反应平台(2)包括支撑板(21),所述支撑板(21)下方设置有激振源(22),所述激振源(22)与控制器(1)相连,且用于为声共振反应平台(2)提供振动量,以强化反应器(3)内的化学反应;所述声共振反应平台(2)上还设置有加速度传感器(23),所述加速度传感器(23)用于实时测量声共振反应平台(2)的加速度并将测得的加速度值传输给控制器(1);
    所述控制器(1)用于根据测得的加速度值实时调节激振源(22)的相位,进而实现声共振反应平台(2)的加速度调节;
    所述反应器(3)的进料口分别连接含浆料泵(4)和液料泵(5),反应器(3)的出料口连接过滤器(6),所述过滤器(6)上分别连接有废液罐(7)和干燥箱(8)。
  8. 如权利要求7所述的声共振强化化学反应的装置,其特征在于,所述激振源(22)为振荡电机,所述振荡电机的数量为2~6个。
  9. 如权利要求7所述的声共振强化化学反应的装置,其特征在于,所述反应器(3)上还连接有高低温一体机(9)。
  10. 如权利要求7所述的声共振强化化学反应的装置,其特征在于,所述支撑板(21)与激振源(22)之间还设置有振荡弹簧(10),所述振荡弹簧(10)的一端连接支撑板(21),另一端连接激振源(22)。
PCT/CN2022/117548 2021-07-22 2022-09-07 一种声共振强化化学反应的装置及方法 WO2023001318A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22845481.5A EP4374960A1 (en) 2021-07-22 2022-09-07 Apparatus and method for acoustic resonance enhanced chemical reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110829765.6A CN113441100A (zh) 2021-07-22 2021-07-22 一种声共振强化化学反应的装置及方法
CN202110829765.6 2021-07-22

Publications (1)

Publication Number Publication Date
WO2023001318A1 true WO2023001318A1 (zh) 2023-01-26

Family

ID=77817118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117548 WO2023001318A1 (zh) 2021-07-22 2022-09-07 一种声共振强化化学反应的装置及方法

Country Status (3)

Country Link
EP (1) EP4374960A1 (zh)
CN (1) CN113441100A (zh)
WO (1) WO2023001318A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113441100A (zh) * 2021-07-22 2021-09-28 西安近代化学研究所 一种声共振强化化学反应的装置及方法
CN114307792B (zh) * 2021-11-23 2023-08-11 西安近代化学研究所 带有迷宫形混合通道的声共振混合设备及炸药混合工艺
CN114394902A (zh) * 2021-12-07 2022-04-26 西安近代化学研究所 一种n-甲基-对硝基苯胺的生产工艺及生产系统
CN114392715A (zh) * 2021-12-07 2022-04-26 西安近代化学研究所 连续溢流反应器系统及2甲基-4,6嘧啶二酮的连续制备工艺
CN114456182B (zh) * 2021-12-27 2023-11-10 西安近代化学研究所 一种声共振强化实现hbiw氢解脱苄合成tadb的方法
CN114573596B (zh) * 2022-03-15 2023-05-09 西安近代化学研究所 一种声共振强化实现hbiw一步法连续合成haiw的方法
CN114634513B (zh) * 2022-03-15 2023-09-12 西安近代化学研究所 一种声共振强化hbiw连续氢解脱苄合成tadb的方法
CN114713265A (zh) * 2022-03-16 2022-07-08 西安近代化学研究所 一种声共振强化制备钯基催化剂的方法及应用
CN115301260B (zh) * 2022-07-19 2024-05-28 西安凯立新材料股份有限公司 一种活性炭的改性方法及其催化合成氯乙烯的应用
CN115430504A (zh) * 2022-09-02 2022-12-06 深圳声共振科技有限公司 一种骨骼及牙齿的粉碎方法及其粉碎用冷水循环研磨容器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160228836A1 (en) * 2009-08-20 2016-08-11 Resodyn Corporation Control of vibratory/oscillatory mixers
CN107051296A (zh) * 2017-01-23 2017-08-18 西安近代化学研究所 一种电磁激励共振混合装置及其控制方法
US20190367704A1 (en) * 2018-06-05 2019-12-05 Uchicago Argonne, Llc Methods of Producing Cellulose Nanocrystals
CN113441100A (zh) * 2021-07-22 2021-09-28 西安近代化学研究所 一种声共振强化化学反应的装置及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100547509C (zh) * 2008-04-02 2009-10-07 华南理工大学 基于加速度传感器的挠性悬臂板振动控制装置与控制方法
CN203370536U (zh) * 2013-06-14 2014-01-01 吴嘉 一种填充型振荡流管式反应器
CN105329930B (zh) * 2014-08-11 2017-04-05 北京化工大学 一种利用分子混合强化反应器制备纳米硫酸钡的方法
CN105158126A (zh) * 2015-08-25 2015-12-16 中国海洋石油总公司 一种微气泡性能测试评价实验平台及其测试评价方法
CN108393020B (zh) * 2018-04-24 2024-03-19 华中科技大学 一种适用于复合含能材料的两质体声共振混合装置
CN110609053A (zh) * 2018-06-15 2019-12-24 中国科学院大连化学物理研究所 原位化学反应器及其及与核磁共振的联用系统
CN109052895A (zh) * 2018-08-03 2018-12-21 袁颖宏 一种波共振电化学污泥深度脱水技术
CN212228979U (zh) * 2020-02-18 2020-12-25 中国科学技术大学 一种氮空位色心传感器
CN112263975B (zh) * 2020-10-26 2021-06-04 滕州华安虹江化工有限公司 一种自动封闭阻隔的防爆反应釜及其使用方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160228836A1 (en) * 2009-08-20 2016-08-11 Resodyn Corporation Control of vibratory/oscillatory mixers
CN107051296A (zh) * 2017-01-23 2017-08-18 西安近代化学研究所 一种电磁激励共振混合装置及其控制方法
US20190367704A1 (en) * 2018-06-05 2019-12-05 Uchicago Argonne, Llc Methods of Producing Cellulose Nanocrystals
CN113441100A (zh) * 2021-07-22 2021-09-28 西安近代化学研究所 一种声共振强化化学反应的装置及方法

Also Published As

Publication number Publication date
EP4374960A1 (en) 2024-05-29
CN113441100A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
WO2023001318A1 (zh) 一种声共振强化化学反应的装置及方法
Zhao et al. From discovery to scale-up: α-lipoic acid: nicotinamide co-crystals in a continuous oscillatory baffled crystalliser
CN106800513B (zh) 三硝基间苯三酚的合成方法
WO2008012520A1 (en) Mixing apparatus and process
JP2010126728A (ja) 微細多孔性ポリマーの製造方法、並びに微細多孔性ポリマーを製造するために用いられるマイクロリアクターの使用方法
Lee et al. Engineering reaction and crystallization and the impact on filtration, drying, and dissolution behaviors: the study of acetaminophen (paracetamol) by in-process controls
CN107987281A (zh) 一种合成气制甲醇催化剂Cu-UiO-66的制备方法
JP2980475B2 (ja) 長鎖ケテンダイマーの製造法
US8232413B2 (en) Process for the production of a crystalline glucagon receptor antagonist compound
CN109455749A (zh) 一种层状功能材料硫铝酸钙的制备方法
Hu et al. Development of an automated multi-stage continuous reactive crystallization system with in-line PATs for high viscosity process
Giri et al. Adding crystals to minimize clogging in continuous flow synthesis
PL224734B1 (pl) Sposób wytwarzania zeolitów
CN110418768B (zh) 用种晶剂合成沸石晶体的方法
AU2011319509B2 (en) Continuous process for nanomaterial synthesis from simultaneous emulsification and detonation of an emulsion
JP2002518356A (ja) アルカリ金属アルコキシドの製造方法
CN102453000A (zh) 一种双季铵盐的合成方法
JPH11128732A (ja) 沈殿による固体の製造方法
RU97936U1 (ru) Реактор для осуществления синтеза химических соединений
CN217661576U (zh) 一种加氢裂化钼镍催化剂蒸馏装置
CN105753733A (zh) Ahu377的晶型及其制备方法与用途
JPH07144102A (ja) 有機薬品の晶析方法
AU2021105992A4 (en) A Multi-gradient Continuous Crystallization Method Applicable for the Reactive Crystallization Process
CN101535370A (zh) 对苯二甲酸-烷撑二醇混合物的制备方法
JP2000302702A (ja) ガスハイドレートの製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845481

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022845481

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845481

Country of ref document: EP

Effective date: 20240222