WO2023000846A1 - 一种纳米片状磷酸铁及其制备方法和应用 - Google Patents

一种纳米片状磷酸铁及其制备方法和应用 Download PDF

Info

Publication number
WO2023000846A1
WO2023000846A1 PCT/CN2022/097182 CN2022097182W WO2023000846A1 WO 2023000846 A1 WO2023000846 A1 WO 2023000846A1 CN 2022097182 W CN2022097182 W CN 2022097182W WO 2023000846 A1 WO2023000846 A1 WO 2023000846A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
phosphate
iron phosphate
preparation
ferrophosphorus
Prior art date
Application number
PCT/CN2022/097182
Other languages
English (en)
French (fr)
Inventor
段金亮
李长东
夏阳
阮丁山
陈若葵
乔延超
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to DE112022002564.6T priority Critical patent/DE112022002564T5/de
Priority to GB2318497.1A priority patent/GB2621302A/en
Publication of WO2023000846A1 publication Critical patent/WO2023000846A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • C01B25/375Phosphates of heavy metals of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of battery materials, and in particular relates to a nano-flaky iron phosphate and a preparation method and application thereof.
  • iron phosphate As a good chemical product, iron phosphate is widely used in ceramics, pigments, additives, catalysts, food and other industries. Due to its unique chemical structure, in recent years, iron phosphate has been used in the production of lithium iron phosphate, the cathode material of lithium-ion batteries. .
  • one of the processes for synthesizing lithium iron phosphate is the iron phosphate process, which mainly uses iron phosphate as a precursor, mixes it with lithium source and carbon source through wet grinding, and uses the carbothermal reduction method to prepare lithium iron phosphate cathode material.
  • Iron phosphate can provide iron source and phosphorus source at the same time, only need to add lithium salt and carbon source in the batching process. Therefore, the chemical composition, structure, physical and chemical properties, and reactivity of the iron phosphate precursor determine the comprehensive performance of the obtained lithium iron phosphate cathode material to a large extent.
  • the hydrothermal method is the main preparation method for preparing nanomaterials, which refers to the chemical reaction using water as a solvent in a closed container under high pressure and high temperature conditions.
  • the equipment requirements are relatively high, and there are safety problems, so it is urgent to develop a method for preparing nano-scale iron phosphate with low cost, simple operation and safety.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. Therefore, the present invention proposes a nano-flaky iron phosphate and its preparation method and application, the method can regulate the morphology of the iron phosphate, and improve the specific surface area and compaction density of the iron phosphate.
  • the present invention adopts the following technical solutions:
  • the present invention provides a kind of preparation method of nano flake iron phosphate, comprises the following steps:
  • Precipitation aids are added after boiling and then the reaction is diluted with water, nucleation is stimulated by drastic changes in reaction conditions (temperature, free acid) during the addition of water.
  • step (3) it also includes filtering, washing and drying the ferric phosphate.
  • the iron source is at least one of iron element, iron salt, ferrous salt, magnetite or hematite.
  • the iron source is iron element and/or ferrous salt
  • an oxidizing agent is added to the ferrophosphorus solution.
  • the oxidizing agent is hydrogen peroxide.
  • the iron element is iron powder.
  • the iron salt is at least one of ferric phosphate, ferric sulfate, ferric nitrate or ferric chloride.
  • the ferrous salt is at least one of ferrous sulfate, ferrous chloride or ferrous nitrate.
  • the phosphorus source is at least one of phosphoric acid, dihydrogen phosphate, hydrogen phosphate, hydroxyethylene diphosphonate or aminotrimethylene phosphate.
  • the acidic solution is at least one of sulfuric acid, hydrochloric acid, and nitric acid.
  • the concentration of the acidic solution is 1-18 mol/L.
  • the concentration of the acidic solution is 2-10 mol/L.
  • the concentration of iron element in the ferrophosphorus liquid is 20-75 g/L, more preferably 30-65 g/L.
  • the concentration of phosphorus element in the phosphorus-iron liquid is 11-42 g/L, more preferably 17-36 g/L.
  • the iron-phosphorus ratio (molar ratio) in the phosphorus-iron solution is 1:(0.95-1.05).
  • the dilution reaction is diluted with water, wherein the volume ratio of the amount of added water to the amount of part of the ferrophosphorus liquid is (2-20): 1; more preferably (3 ⁇ 10):1.
  • the amount of water added to the dilution reaction is crucial for this reaction. If the amount of water added is too small, there will be too much free acid during the dilution process, and the concentration of ferrophosphorus will be too high, which is not conducive to the formation of crystal nuclei. When too much water is added , the concentration of ferrophosphorus in the ferrophosphorus solution is low, and crystal nuclei cannot be formed.
  • the precipitation aid is at least one of titanium chloride, titanium sulfate, titanium dioxide, aluminum chloride, aluminum sulfate, iron phosphate.
  • the addition amount of the precipitation aid is 0.1-50% of the total amount of ferrophosphorus in part of the ferrophosphorus liquid, more preferably 1-20%. Adding additives before dilution can not only promote the precipitation reaction, but also regulate the growth of the product and control the morphology.
  • the dilution reaction includes dilution with water and aging; the dilution reaction is divided into two steps, the first step is to continuously add water, and the time for adding water is 5 to 120min; the second step is Standing and aging, the aging time is 5-240 min, more preferably 10-180 min.
  • Crystal nuclei are formed during the dilution reaction, and after aging, the crystal nuclei gradually accumulate and grow, making them more stable.
  • step (3) before adding the remaining ferrophosphorus liquid to the primary ferric phosphate slurry, it also includes adding a precipitation aid to the remaining ferrophosphorus liquid, and the addition of the precipitation aid
  • the amount is 0.05-25% of the total amount of ferro-phosphorus in the remaining ferro-phosphorus liquid, more preferably 0.2-10%.
  • the time for adding the remaining ferrophosphorus liquid to the primary ferric phosphate slurry is 10-120 minutes.
  • the temperature of the heating reaction is 30-95°C, and the reaction time is 30-360min; further preferably, the reaction temperature is 40-95°C, and the reaction temperature has a greater influence on iron phosphate, As the temperature rises, more non-activated molecules will become activated molecules. The more activated molecules, the more effective collisions and the faster the reaction rate. However, when the temperature is too high, the evaporation of the solution will increase, making The increase of acidity in the system is not conducive to the growth of iron phosphate.
  • a nano-flaky iron phosphate is prepared by the preparation method, the particle diameter D50 of the nano-flaky iron phosphate is 200-300nm, the specific surface area is 40-43m 2 /g, and the compacted density is 2.4- 2.8 g/cm 3 .
  • a lithium iron phosphate is prepared from the nano-flaky iron phosphate.
  • the present invention uses phosphorus source and iron source as raw materials, prepares primary ferric phosphate through dilution precipitation reaction, and then adds precipitation aid for two-step precipitation to regulate the growth of ferric phosphate, thereby controlling the morphology of ferric phosphate.
  • the added precipitation aid It can not only control the morphology, but also can be used as a dopant to increase the specific surface area and compaction density of iron phosphate.
  • the D50 of the nano-flaky iron phosphate prepared by the present invention is 200-300nm, the specific surface area is 40-43m 2 /g, and the compacted density is 2.4-2.8g/cm 3 .
  • Fig. 1 is the SEM figure of the ferric phosphate product of the embodiment of the present invention 1;
  • Fig. 2 is the XRD figure of the iron phosphate product of embodiment 1 of the present invention.
  • Figure 1 is an SEM image of the iron phosphate product of Example 1 of the present invention. It can be seen from Figure 1 that the iron phosphate particles prepared in Example 1 are evenly distributed and have a sheet-like structure with a particle size of ⁇ 250 nm without agglomeration.
  • Fig. 2 is the XRD figure of the iron phosphate product of the embodiment 1 of the present invention, compared with the standard card (72-0471) spectrogram, the characteristic peaks of the iron phosphate XRD figure prepared as shown in Fig. 2 correspond one by one, and its diffraction peaks are sharp, The characteristic peaks are obvious, and there are no extra peaks, indicating that ferric phosphate with high crystallinity has been obtained.
  • the preparation method of the nano-flaky iron phosphate provided by this comparative example comprises the following steps:
  • Oxygen is passed into the acidic ferric phosphorus solution for 2 hours to oxidize Fe 2+ in the solution to Fe 3+ , add ammonia water to adjust the pH to 3, react at 90°C for 3 hours, and separate the liquid and solid to obtain ferric phosphate;
  • the preparation method of the nano-flaky iron phosphate provided by this comparative example comprises the following steps:
  • step (3) Carrying out of the synthetic reaction: under stirring condition, the phosphate raw material solution obtained in step (2) is gradually added to the step (1) In the obtained ferric sulfate raw material liquid, a mixed liquid is obtained. Afterwards, the temperature of the mixed solution was raised to 90° C., and reacted for 3 hours to obtain iron phosphate slurry.
  • the preparation method of the nano-flaky iron phosphate provided by this comparative example comprises the following steps:
  • the iron phosphate prepared by the embodiment 1-3 of table 1 is compared with the concrete detection data of the iron phosphate prepared by the comparative example
  • nanoscale ferric phosphate by the data of table 1, and what comparative example prepares is micron grade ferric phosphate, contrast data finds out that the nanometer grade ferric phosphate that prepares can significantly improve the specific surface area and the specific surface area of ferric phosphate compacted density.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Soft Magnetic Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种纳米片状磷酸铁及其制备方法和应用,该制备方法包括以下步骤:将磷源和铁源溶于酸性溶液中,加入氧化剂混合,得到磷铁液;向部分磷铁液中加入沉淀助剂,加热至沸腾后,稀释反应,得到一次磷酸铁浆料;将剩余的磷铁液滴入一次磷酸铁浆料中,加热反应,得到磷酸铁。本发明以磷源和铁源为原料,通过稀释沉淀反应制备出一次磷酸铁,再加入沉淀助剂进行两步沉淀调控磷酸铁的生长,从而控制磷酸铁形貌,加入的沉淀助剂既可以调控形貌,又可以作为掺杂剂,提高了磷酸铁的比表面积和压实密度。

Description

一种纳米片状磷酸铁及其制备方法和应用 技术领域
本发明属于电池材料技术领域,具体涉及一种纳米片状磷酸铁及其制备方法和应用。
背景技术
磷酸铁作为良好的化工产品,广泛应用于陶瓷、颜料、添加剂、催化剂、食品等行业中,由于其具有独特的化学结构,近年来,磷酸铁又被应用于生产锂离子电池正极材料磷酸铁锂。
目前合成磷酸铁锂的工艺之一是磷酸铁工艺,其工艺主要是以磷酸铁作为前驱体,与锂源、碳源经湿法研磨混合,利用碳热还原法制备磷酸铁锂正极材料。磷酸铁可以同时提供铁源和磷源,配料过程中只需要加入锂盐和碳源即可。因此,磷酸铁前驱体的化学成份、结构、物理化学性质、反应活性很大程度上决定了制得的磷酸铁锂正极材料的综合性能,同时在磷酸铁锂正极材料的生产成本中,磷酸铁前驱体占很大比例,且由于纯度高的磷酸铁电导率较低,在锂电池充放电过程中扩散缓慢,会影响磷酸铁锂电池的性能,故需对磷酸铁锂进行改性,经过研究发现将磷酸铁纳米化有利于增加材料电化学性能,而目前水热法是制备纳米材料的主要制备方法,是指在高压、高温等条件下密闭容器中以水作为溶剂的化学反应,故对设备要求较高,且存在安全问题,因此迫切需要开发一种成本低廉、操作简单安全的纳米级磷酸铁的制备方法。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种纳米片状磷酸铁及其制备方法和应用,该方法可以调控磷酸铁的形貌,提高了磷酸铁的比表面积和压实密度。
为实现上述目的,本发明采用以下技术方案:
本发明提供一种纳米片状磷酸铁的制备方法,包括以下步骤:
(1)将磷源和铁源溶于酸性溶液中,加入氧化剂混合,得到磷铁液;
(2)将部分所述磷铁液加热至沸腾后,加入沉淀助剂,稀释反应,得到一次磷酸铁浆料;
(3)将剩余的所述磷铁液滴入所述一次磷酸铁浆料中,加热反应,得到磷酸铁。
沸腾以后添加沉淀助剂,然后加水稀释反应,通过加水过程中反应条件的剧烈改变(温度、游离酸)来刺激成核。
优选地,步骤(3)中,还包括将所述磷酸铁进行过滤、洗涤、干燥。
优选地,步骤(1)中,所述铁源为铁单质、铁盐、亚铁盐、磁铁矿或赤铁矿中的至少一种。
进一步优选地,在所述铁源为铁单质和/或亚铁盐的情况下,所述磷铁液中还添加氧化剂。
更优选地,所述氧化剂为双氧水。
进一步优选地,所述铁单质为铁粉。
进一步优选地,所述铁盐为磷酸铁、硫酸铁、硝酸铁或氯化铁中的至少一种。
进一步优选地,所述亚铁盐为硫酸亚铁、氯化亚铁或硝酸亚铁中的至少一种。
优选地,步骤(1)中,所述磷源为磷酸、磷酸二氢盐、磷酸氢盐、羟基亚乙基二膦酸盐或氨基三亚甲基磷酸盐中的至少一种。
优选地,步骤(1)中,所述酸性溶液为硫酸、盐酸、硝酸中的至少一种。
优选地,步骤(1)中,所述酸性溶液的浓度为1~18mol/L。
进一步优选地,步骤(1)中,所述酸性溶液的浓度为2~10mol/L。
优选地,步骤(1)中,所述磷铁液中铁元素的浓度为20~75g/L,进一步优选为30~65g/L。
优选地,步骤(1)中,所述磷铁液中磷元素的浓度为11~42g/L,进一步优选为17~36g/L。
优选地,步骤(1)中,所述磷铁液中的铁磷比(摩尔比)为1∶(0.95~1.05)。
优选地,步骤(2)中,所述稀释反应中加水稀释,其中,所加入水的量与部分所述磷铁液的用量的体积比为(2~20)∶1;进一步优选为(3~10)∶1。
稀释反应加入水的量对于此反应来说至关重要,加入的水量太少则在稀释的过程中游离酸过多,磷铁浓度偏高,不利于晶核的生成,当加入的水过多时,则磷铁液中磷铁浓度偏低,无法形成晶核。
优选地,步骤(2)中,所述沉淀助剂为氯化钛、硫酸钛、二氧化钛、氯化铝、硫 酸铝、磷酸铁中的至少一种。
优选地,步骤(2)中,所述沉淀助剂的添加量为部分所述磷铁液中磷铁总量的0.1~50%,进一步优选为1~20%。在稀释前加入助剂不仅可以促进沉淀反应的进行,而且还可以调控产品生长,控制形貌。
优选地,步骤(2)中,所述稀释反应包括加水稀释和陈化;所述稀释反应分为两步,第一步为持续加入水,加入水的时间为5~120min;第二步为静置陈化,陈化时间为5~240min,进一步优选为10~180min。
在稀释反应过程中形成晶核,经过陈化使晶核逐渐积累长大,更加稳固。
优选地,步骤(3)中,将剩余的所述磷铁液加入所述一次磷酸铁浆料前,还包括向剩余的所述磷铁液中加入沉淀助剂,所述沉淀助剂的添加量为剩余的所述磷铁液中磷铁总量的0.05~25%,进一步优选为0.2~10%。
优选地,步骤(3)中,所述将剩余的所述磷铁液加入所述一次磷酸铁浆料的加入时间为10~120min。
优选地,步骤(3)中,所述加热反应的温度为30~95℃,反应的时间为30~360min;进一步优选反应的温度为40~95℃,反应温度对磷酸铁的影响较大,温度升高,将有更多的非活化分子变为活化分子,活化分子越多,有效碰撞越多,反应速率也越快,但当温度过高时,则溶液的蒸发量会增大,使得体系中的酸度增加则不利于磷酸铁的生长。
一种纳米片状磷酸铁,是由所述的制备方法制备得到,所述纳米片状磷酸铁的粒径D50为200-300nm,比表面积为40-43m 2/g,压实密度为2.4-2.8g/cm 3
一种磷酸铁锂,由所述的纳米片状磷酸铁制备得到。
相对于现有技术,本发明的有益效果如下:
1、本发明以磷源和铁源为原料,通过稀释沉淀反应制备出一次磷酸铁,再加入沉淀助剂进行两步沉淀调控磷酸铁的生长,从而控制磷酸铁形貌,加入的沉淀助剂既可以调控形貌,又可以作为掺杂剂,提高了磷酸铁的比表面积和压实密度,制备过程无高温高压及其他苛刻条件,安全简单,反应过程中无其他杂质引入,绿色环保、成本低廉。
2、本发明制备的纳米片状磷酸铁的D50为200-300nm,比表面积为40-43m 2/g,压实密度为2.4-2.8g/cm 3
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的磷酸铁产品的SEM图;
图2为本发明实施例1的磷酸铁产品的XRD图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例提供的纳米片状磷酸铁的制备方法,包括以下步骤:
(1)将磷酸钠和硝酸铁溶于2mol/L的硫酸溶液中得到铁浓度为45g/L,磷浓度为25g/L的磷铁液,将磷铁液分为两部分A和B(体积比为1∶1)备用;
(2)将磷铁液A加热至沸腾,加入磷铁液A中磷铁总量的5%的硫酸钛后,加水稀释反应,其中,加水时间为30min,加完水后静置陈化120min后,得到一次磷酸铁浆料;
(3)向磷铁液B中加入2%的硫酸钛,然后加入到一次磷酸铁浆料中,加料时间为60min,在80℃下加热搅拌反应120min后得到磷酸铁;
(4)将得到的磷酸铁进行过滤、洗涤、干燥,即得磷酸铁产品。
图1是本发明实施例1的磷酸铁产品的SEM图,由图1可以看出,实施例1制备得到的磷酸铁颗粒分布均匀,为粒度为~250nm的片状结构,无团聚现象。
图2是本发明实施例1的磷酸铁产品的XRD图,由图2可知制备的磷酸铁XRD图与标准卡片(72-0471)谱图相比,特征峰一一对应,其衍射峰尖锐,特征峰明显,且无多余杂峰,表明得到了结晶度高的磷酸铁。
实施例2
本实施例提供的纳米片状磷酸铁的制备方法,包括以下步骤:
(1)将磷酸氢钠和硫酸铁溶于3mol/L的硫酸溶液中得到铁浓度为53g/L,磷浓度为29g/L的磷铁液,将磷铁液分为两部分A和B(体积比为1∶1)备用;
(2)将磷铁液A加热至沸腾,加入磷铁总量的6%的硫酸铝后,持续加入磷铁液 体积6倍的水,加水时间为50min,加完水后静置陈化150min后得到一次磷酸铁浆料;
(3)向磷铁液B中加入2%的硫酸铝,然后持续加入到一次磷酸铁浆料中,加料时间为40min,在90℃下加热搅拌反应90min后得到磷酸铁产品;
(4)将得到的磷酸铁进行过滤、洗涤、干燥,即得磷酸铁产品。
实施例3
本实施例提供的纳米片状磷酸铁的制备方法,包括以下步骤:
(1)将磷酸钾和氯化铁溶于2mol/L的硫酸溶液中得到铁浓度为49g/L,磷浓度为26g/L的磷铁液,将磷铁液分为两部分A和B(体积比为1∶1)备用;
(2)将磷铁液A加热至沸腾,加入磷铁总量的3%的氯化钛后,持续加入磷铁液体积5倍的水,加水时间为40min,加完水后静置陈化120min后得到一次磷酸铁浆料;
(3)向磷铁液B中加入3%的氯化钛,然后持续加入到一次磷酸铁浆料中,加料时间为50min,在85℃下加热搅拌反应100min后得到磷酸铁产品;
(4)将得到的磷酸铁进行过滤、洗涤、干燥,即得磷酸铁产品。
对比例1
该对比例提供的纳米片状磷酸铁的制备方法,包括以下步骤:
(1)将磷酸钠和硫酸亚铁分别溶于2mol/L的硫酸中得到酸性铁溶液和酸性磷溶液,按铁磷比为1∶1.03配制成酸性磷铁液;
(2)向酸性磷铁液中通入氧气氧化2h至溶液中的Fe 2+氧化为Fe 3+,加入氨水调节pH至3,在90℃下反应3h,液固分离得到磷酸铁;
(3)将得到的磷酸铁进行洗涤、过滤、干燥,即得磷酸铁成品。
对比例2
该对比例提供的纳米片状磷酸铁的制备方法,包括以下步骤:
(1)铁原料液的配置:按摩尔比Fe 2(SO 4) 3:(H 2SO 4+H 3PO 4)=1:0.2,H 2SO 4:H 3PO 4=9:1,将硫酸铁溶液和硫酸溶液、磷酸溶液混合,得到硫酸铁原料液,其中,硫酸铁原料液的pH为1.03,硫酸铁原料液中铁元素的质量浓度为84g/L。
(2)磷酸盐原料液的配置:将磷酸铵在水中溶解,获得磷酸盐原料液,磷酸盐原料液中磷元素的质量浓度为45g/L。
(3)合成反应的进行:在搅拌条件下,按硫酸铁原料液中铁与磷酸盐溶液中磷的 摩尔比为1:1的比例将步骤(2)所得到的磷酸盐原料液逐渐添加至步骤(1)所得的硫酸铁原料液中,得到混合液。之后,将混合液升温至90℃,反应3h得到磷酸铁浆料。
(4)将得到的磷酸铁进行洗涤、过滤、干燥,即得磷酸铁成品。
对比例3
该对比例提供的纳米片状磷酸铁的制备方法,包括以下步骤:
(1)配制含硝酸铁0.05mol/L、磷酸0.05mol/L的水溶液,得到原料A;
(2)配制0.1mol/L的磷酸铵水溶液,得到原料B,使用膜分散微混合器将1L原料A和1L原料B快速混合,得到浆料C;
(3)对浆料C进行常压水热处理0.2小时,处理温度100℃,从浆料C过滤出沉淀,对沉淀进行洗涤、干燥,得到磷酸铁产品。
对比例4
该对比例与实施例1相比:步骤(2)中未添加沉淀助剂。
对比例5
该对比例与实施例1相比:步骤(2)中未加水稀释反应。
表1实施例1-3制备的磷酸铁与对比例制备的磷酸铁的具体检测数据对比
  粒径D50(nm) 压实密度(g/cm 3) 比表面积(m 2/g)
实施例1 249 2.57 41.32
实施例2 260 2.41 40.20
实施例3 255 2.47 40.63
对比例1 3200 2.19 22.96
对比例2 5300 1.96 17.63
对比例3 3700 2.11 20.42
对比例4 2980 1.97 24.3
对比例5 2200 2.15 30.65
由表1数据可以看出本发明实施例制备的为纳米级磷酸铁,而对比例制备的为微米级磷酸铁,对比数据看出制备得到的纳米级磷酸铁可以显著提高磷酸铁的比表面积和压实密度。
上面对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种纳米片状磷酸铁的制备方法,其特征在于,包括以下步骤:
    (1)将磷源和铁源溶于酸性溶液中,得到磷铁液;
    (2)将部分所述磷铁液加热至沸腾后,加入沉淀助剂,稀释反应,得到一次磷酸铁浆料;
    (3)将剩余的所述磷铁液滴入所述一次磷酸铁浆料中,加热反应,得到磷酸铁。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中,还包括将所述磷酸铁进行过滤、洗涤、干燥。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述铁源为铁单质、铁盐、亚铁盐、磁铁矿或赤铁矿中的至少一种;优选的,在所述铁源为铁单质和/或亚铁盐的情况下,所述磷铁液中还添加氧化剂。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述磷源为磷酸、磷酸二氢盐、磷酸氢盐、羟基亚乙基二膦酸盐或氨基三亚甲基磷酸盐中的至少一种。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述酸性溶液为硫酸、盐酸、硝酸中的至少一种。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述稀释反应中加水稀释,其中,所加入水的量与部分所述磷铁液的用量的体积比为(2~20)∶1;优选的,步骤(2)中,所述稀释反应包括加水稀释和陈化。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中,所述沉淀助剂为氯化钛、硫酸钛、二氧化钛、氯化铝、硫酸铝或磷酸铁中的至少一种。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤(3)中,将剩余的所述磷铁液加入所述一次磷酸铁浆料前,还包括向剩余的所述磷铁液中加入沉淀助剂。
  9. 一种纳米片状磷酸铁,其特征在于,是由权利要求1-8任一项所述的制备方法制备得到,所述纳米片状磷酸铁的片径D50为200-300nm,比表面积为40-43m 2/g,压实密度为2.4-2.8g/cm 3
  10. 一种磷酸铁锂,其特征在于,由权利要求9所述的纳米片状磷酸铁制备得到。
PCT/CN2022/097182 2021-07-23 2022-06-06 一种纳米片状磷酸铁及其制备方法和应用 WO2023000846A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112022002564.6T DE112022002564T5 (de) 2021-07-23 2022-06-06 Blattförmiges eisenphosphat im nanometerbereich, verfahren zu dessen herstellung und verwendung
GB2318497.1A GB2621302A (en) 2021-07-23 2022-06-06 Nanometer sheet-like iron phosphate, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110834587.6A CN113603071B (zh) 2021-07-23 2021-07-23 一种纳米片状磷酸铁及其制备方法和应用
CN202110834587.6 2021-07-23

Publications (1)

Publication Number Publication Date
WO2023000846A1 true WO2023000846A1 (zh) 2023-01-26

Family

ID=78305214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097182 WO2023000846A1 (zh) 2021-07-23 2022-06-06 一种纳米片状磷酸铁及其制备方法和应用

Country Status (5)

Country Link
CN (1) CN113603071B (zh)
DE (1) DE112022002564T5 (zh)
GB (1) GB2621302A (zh)
HU (1) HUP2400061A1 (zh)
WO (1) WO2023000846A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116946998A (zh) * 2023-08-11 2023-10-27 湖北洋丰美新能源科技有限公司 一种磷酸铁的合成工艺及其合成的磷酸铁

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113603071B (zh) * 2021-07-23 2023-11-03 广东邦普循环科技有限公司 一种纳米片状磷酸铁及其制备方法和应用
CN114988383B (zh) * 2022-07-12 2023-12-15 华辰环保能源(广州)有限责任公司 一种电池级的磷酸铁高效制备方法
CN115231539B (zh) * 2022-07-12 2023-10-10 国环电池科技(苏州)有限公司 一种高纯度磷酸铁的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321958A1 (en) * 2011-06-17 2012-12-20 National Tsing Hua University Ferrous phosphate (ii) powders, lithium iron phosphate powders for li-ion battery, and methods for manufacturing the same
CN104129770A (zh) * 2014-07-14 2014-11-05 常开军 一种纳米级磷酸铁及其制备方法
CN106876700A (zh) * 2016-11-02 2017-06-20 杨晓钢 两步共沉淀制备微‑纳多孔结构磷酸铁前驱体与磷酸铁锂正极材料的方法
CN110294466A (zh) * 2019-08-19 2019-10-01 四川轻化工大学 一种纳米片状磷酸铁的制备方法
CN110482512A (zh) * 2019-07-12 2019-11-22 乳源东阳光磁性材料有限公司 一种电池级磷酸铁的制备方法
CN110615418A (zh) * 2019-06-28 2019-12-27 湖北虹润高科新材料有限公司 一种铁粉制备电池级磷酸铁的制备方法
CN112645299A (zh) * 2020-12-03 2021-04-13 广东邦普循环科技有限公司 一种磷酸铁的制备方法和应用
CN113603071A (zh) * 2021-07-23 2021-11-05 广东邦普循环科技有限公司 一种纳米片状磷酸铁及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044823B (zh) * 2021-02-24 2022-05-06 湖南雅城新材料有限公司 一种磷酸铁材料及其制备方法与应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120321958A1 (en) * 2011-06-17 2012-12-20 National Tsing Hua University Ferrous phosphate (ii) powders, lithium iron phosphate powders for li-ion battery, and methods for manufacturing the same
CN104129770A (zh) * 2014-07-14 2014-11-05 常开军 一种纳米级磷酸铁及其制备方法
CN106876700A (zh) * 2016-11-02 2017-06-20 杨晓钢 两步共沉淀制备微‑纳多孔结构磷酸铁前驱体与磷酸铁锂正极材料的方法
CN110615418A (zh) * 2019-06-28 2019-12-27 湖北虹润高科新材料有限公司 一种铁粉制备电池级磷酸铁的制备方法
CN110482512A (zh) * 2019-07-12 2019-11-22 乳源东阳光磁性材料有限公司 一种电池级磷酸铁的制备方法
CN110294466A (zh) * 2019-08-19 2019-10-01 四川轻化工大学 一种纳米片状磷酸铁的制备方法
CN112645299A (zh) * 2020-12-03 2021-04-13 广东邦普循环科技有限公司 一种磷酸铁的制备方法和应用
CN113603071A (zh) * 2021-07-23 2021-11-05 广东邦普循环科技有限公司 一种纳米片状磷酸铁及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116946998A (zh) * 2023-08-11 2023-10-27 湖北洋丰美新能源科技有限公司 一种磷酸铁的合成工艺及其合成的磷酸铁
CN116946998B (zh) * 2023-08-11 2024-01-26 湖北洋丰美新能源科技有限公司 一种磷酸铁的合成工艺及其合成的磷酸铁

Also Published As

Publication number Publication date
GB2621302A (en) 2024-02-07
HUP2400061A1 (hu) 2024-04-28
CN113603071B (zh) 2023-11-03
DE112022002564T5 (de) 2024-03-07
CN113603071A (zh) 2021-11-05
GB202318497D0 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2023000846A1 (zh) 一种纳米片状磷酸铁及其制备方法和应用
WO2022116702A1 (zh) 一种磷酸铁的制备方法和应用
US11824194B2 (en) Method for rapidly preparing Prussian blue analogue with monoclinic crystal structure
WO2022267420A1 (zh) 一种磷酸铁前驱体及其制备方法和应用
CN107522188B (zh) 纳米球形磷酸铁的制备方法以及由该方法制备的纳米磷酸铁、磷酸铁锂和锂电池
WO2022242186A1 (zh) 利用磷铁废料制备高纯度磷酸铁的方法
CN108584902A (zh) 一种钛白固废生产电池级正磷酸铁的方法
CN112390237B (zh) 纳米结构磷酸铁的制备方法
WO2022242184A1 (zh) 一种掺杂磷酸铁及其制备方法和应用
CN102556994B (zh) 一种纳米级磷酸铁的制备方法
WO2023197483A1 (zh) 一种纳米磷酸铁锰锂的水热合成方法
WO2023142677A1 (zh) 掺杂型磷酸铁及其制备方法和应用
CN108511724B (zh) 一种溶胶凝胶辅助超临界co2干燥制备磷酸锰铁锂方法
CN113772650A (zh) 一种磷酸铁锂的制备方法和用途
CN114132910A (zh) 一种制备大孔径磷酸铁的方法
WO2024060505A1 (zh) 一种普鲁士类正极材料的回收方法及其制备的锰基普鲁士白正极材料
CN110980679A (zh) 一种类球形低硫磷酸铁的制备方法
CN112723332B (zh) 一种超细多孔结构的电池级磷酸铁及其制备方法
CN115974036A (zh) 一种球形磷酸铁锰锂纳米颗粒及其制备方法
CN115340075A (zh) 一种采用氧化铁和稀磷酸制备电池级磷酸铁的方法
CN111908441B (zh) 一种湿法制备钛掺杂磷酸铁的方法
CN114899392A (zh) 一种锂离子电池磷酸铁锂或锰铁锂正极材料的制备方法
CN104326467B (zh) 一种花状磷酸锰锂纳米颗粒的制备方法及产品
WO2022205534A1 (zh) 一种无汞碱性锌锰电池用的电解二氧化锰的制备方法
WO2024000839A1 (zh) 红磷锰矿型磷酸锰铁及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202318497

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220606

WWE Wipo information: entry into national phase

Ref document number: P202390226

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 112022002564

Country of ref document: DE