WO2022270799A1 - 리튬 이차 전지용 양극 및 이를 구비하는 양극 및 리튬 이차 전지 - Google Patents

리튬 이차 전지용 양극 및 이를 구비하는 양극 및 리튬 이차 전지 Download PDF

Info

Publication number
WO2022270799A1
WO2022270799A1 PCT/KR2022/008169 KR2022008169W WO2022270799A1 WO 2022270799 A1 WO2022270799 A1 WO 2022270799A1 KR 2022008169 W KR2022008169 W KR 2022008169W WO 2022270799 A1 WO2022270799 A1 WO 2022270799A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
active material
positive electrode
average particle
particle diameter
Prior art date
Application number
PCT/KR2022/008169
Other languages
English (en)
French (fr)
Inventor
김지혜
오상승
이현석
조성환
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/028,897 priority Critical patent/US20240030428A1/en
Priority to CN202280005826.XA priority patent/CN116261792A/zh
Priority to EP22828646.4A priority patent/EP4199140A4/en
Priority to JP2023514134A priority patent/JP7463618B2/ja
Publication of WO2022270799A1 publication Critical patent/WO2022270799A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode including a nickel-based lithium transition metal oxide and having a positive electrode active material layer having a multilayer structure, and a lithium secondary battery including the same.
  • lithium secondary batteries are in the limelight as a driving power source for portable devices because they are lightweight and have high energy density. Accordingly, research and development efforts to improve the performance of lithium secondary batteries are being actively conducted.
  • a lithium secondary battery is an oxidation state when lithium ions are intercalated/deintercalated at the positive and negative electrodes in a state in which an organic electrolyte or polymer electrolyte is charged between a positive electrode and a negative electrode made of active materials capable of intercalation and deintercalation of lithium ions. and electrical energy is produced by a reduction reaction.
  • Lithium cobalt oxide (LiCoO 2 ), nickel-based lithium transition metal oxide, lithium manganese oxide (such as LiMnO 2 or LiMn 2 O 4 ), lithium iron phosphate compound (LiFePO 4 ), and the like have been used as cathode active materials for lithium secondary batteries.
  • lithium cobalt oxide (LiCoO 2 ) has the advantage of high operating voltage and excellent capacity characteristics, and is widely used and applied as a positive electrode active material for high voltage.
  • Secondary particles formed by aggregation of fine primary particles having an average particle diameter (D50) of several hundred nm are used as the cathode active material of the currently commercialized nickel-containing lithium composite transition metal oxide. In order to increase output and rolling density, secondary particles are used.
  • a bimodal positive electrode active material is commonly used, which is a mixture of two types of different average particle diameters (D50), that is, large particles made of secondary particles with a large average particle diameter and small particles made of secondary particles with a small average particle diameter. .
  • Secondary particles in which fine primary particles are agglomerated have a large specific surface area and low particle strength. Therefore, when an electrode is manufactured with a bimodal cathode active material and then rolled using a roll press, there is a problem in that the amount of gas generated during cell operation is high and stability is deteriorated due to severe cracking of secondary large particles. Accordingly, it is difficult to sufficiently increase the roll press pressure in order to prevent disconnection, or a problem in that life characteristics are deteriorated occurs. In particular, in the case of high-Ni lithium transition metal oxides in which the content of nickel (Ni) is increased to secure high capacity, chemical stability is further reduced and thermal stability is further reduced when particle breakage occurs due to structural problems. It is also difficult to secure.
  • the problem to be solved according to one aspect of the present invention includes a positive electrode active material layer including secondary large particles and secondary small particles of the positive electrode active material having different average particle diameters, and a sufficiently large rolling pressure can be applied during electrode manufacturing It is to provide a positive electrode for a lithium secondary battery.
  • Another problem to be solved according to another aspect of the present invention is to provide a positive electrode for a lithium secondary battery having improved lifespan characteristics, including a positive electrode active material layer including secondary large particles and secondary small particles of the positive electrode active material having different average particle diameters.
  • a problem to be solved according to another aspect of the present invention is to provide a lithium secondary battery having a positive electrode for a lithium secondary battery having the above-described characteristics.
  • One aspect of the present invention provides a cathode for a lithium secondary battery according to the following embodiment.
  • a first positive electrode active material layer comprising at least one kind of positive electrode active material particles and a conductive material
  • the positive electrode active material particle is a positive electrode active material made of nickel-based lithium transition metal oxide,
  • the conductive material included in the second cathode active material layer relates to a cathode for a lithium secondary battery including single-walled carbon nanotubes.
  • the average particle diameter (D50) of the fine primary particles is 100 to 900 nm, in particular, the average particle diameter (D50) is 100 to 400 nm.
  • It relates to a positive electrode for a lithium secondary battery, characterized in that the average crystal size of the large primary particles included in the first positive electrode active material layer is 200 nm or more.
  • It relates to a cathode for a lithium secondary battery, characterized in that the average particle diameter (D50) of the large primary particles included in the first and second cathode active material layers is 1 to 3 ⁇ m, respectively.
  • It relates to a positive electrode for a lithium secondary battery, characterized in that the average particle diameter (D50) of the small secondary particles is 2 to 5 ⁇ m, and the average particle diameter (D50) of the large secondary particles is 8 to 16 ⁇ m.
  • the average particle diameter (D50) of the secondary large particles relates to a positive electrode for a lithium secondary battery, characterized in that 5:1 to 2:1.
  • the content of the secondary small particles relates to a positive electrode for a lithium secondary battery, characterized in that 10 to 100 parts by weight based on 100 parts by weight of the secondary large particles.
  • the thickness (a) of the second cathode active material layer relates to a cathode for a lithium secondary battery, characterized in that it satisfies the following formula compared to the thickness (b) of the first cathode active material layer.
  • the secondary small particles relate to a positive electrode for a lithium secondary battery, characterized in that composed of only secondary small particles formed by aggregation of the fine primary particles.
  • the nickel-based lithium transition metal oxide is Li a Ni 1-xy Co x M 1 y M 2 w O 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ w ⁇ 0.1, 0 ⁇ x+y ⁇ 0.2, M 1 is at least one metal selected from Mn or Al, and M 2 is one or more metal elements selected from the group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb, and Mo ), characterized in that it is represented by LiaNi 1-xy Co x Mn y O 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ x+y ⁇ 0.2) It relates to a cathode for a lithium secondary battery.
  • the content of the single-walled carbon nanotubes relates to a positive electrode for a lithium secondary battery, characterized in that 0.001% by weight or more based on the total weight of the second positive electrode active material layer.
  • the content of the conductive material in the second cathode active material layer relates to a cathode for a lithium secondary battery, characterized in that 0.5 to 3% by weight based on the total weight of the second cathode active material layer.
  • a thirteenth embodiment provides a lithium secondary battery having the positive electrode described above.
  • the second positive electrode active material layer of the positive electrode according to an embodiment of the present invention includes large secondary particles and small secondary particles at the same time and has good rolling density.
  • the first cathode active material interposed between the current collector and the second cathode active material layer includes cathode active material particles having low brittleness, so that disconnection does not occur even when a sufficiently large rolling pressure is applied during manufacture of the electrode. Therefore, when such a positive electrode having positive electrode active material particles with improved cracking is applied to a lithium secondary battery, lifespan characteristics are improved.
  • electrode resistance and cell resistance are improved by including SW-CNT as a conductive material of the second cathode active material layer.
  • FIG. 1 is a schematic cross-sectional view of a cathode having a conventional single-layer structure of a cathode active material layer.
  • FIG. 2 is a schematic cross-sectional view of a positive electrode having a multi-layered positive active material layer according to the present invention.
  • crystal size of the crystal grains can be quantitatively analyzed using X-ray diffraction analysis (XRD) by Cu K ⁇ X-rays (Xr ⁇ ).
  • XRD X-ray diffraction analysis
  • Xr ⁇ Cu K ⁇ X-rays
  • the average crystal size of the crystal grains can be quantitatively analyzed by putting the prepared particles in a holder and analyzing the diffraction grating emitted by irradiating the particles with X-rays.
  • D50 may be defined as a particle size at 50% of a particle size distribution, and may be measured using a laser diffraction method.
  • the method for measuring the average particle diameter (D50) of the positive electrode active material is to disperse the particles of the positive electrode active material in a dispersion medium, and then introduce it into a commercially available laser diffraction particle size measuring device (eg, Microtrac MT 3000) to measure about 28 kHz. After irradiating the ultrasonic wave with an output of 60 W, the average particle diameter (D50) corresponding to 50% of the cumulative volume in the measuring device can be calculated.
  • a commercially available laser diffraction particle size measuring device eg, Microtrac MT 3000
  • the 'primary particle' refers to a particle having no apparent grain boundary when observed under a 5000-fold to 20000-fold field of view using a scanning electron microscope.
  • 'secondary particles' are particles formed by aggregation of the primary particles.
  • a 'single particle' means a particle that exists independently of the secondary particle and does not have a grain boundary in appearance, for example, a particle having a particle diameter of 0.5 ⁇ m or more.
  • a first positive electrode active material layer comprising at least one kind of positive electrode active material particles and a conductive material
  • the positive electrode active material particle is a positive electrode active material made of nickel-based lithium transition metal oxide,
  • the conductive material included in the second cathode active material layer provides a cathode for a lithium secondary battery including single-walled carbon nanotubes.
  • FIG. 1 is a schematic cross-sectional view of a cathode having a conventional single-layer structure of a cathode active material layer.
  • a bimodal positive electrode active material in which large particles made of secondary particles formed by aggregation of fine primary particles and small particles made of secondary particles formed by aggregation of fine primary particles are mixed.
  • the positive electrode 10 was manufactured by coating at least one surface of the current collector 1 to form a single layer of the positive electrode active material layer 3 .
  • the positive electrode 20 of the present invention first forms the first positive electrode active material layer 15 including positive electrode active material particles having predetermined characteristics on at least one surface of the current collector 11 and then , By applying a bimodal positive electrode active material thereon to form the second positive electrode active material layer 17, the positive electrode active material layer having a multilayer structure is provided.
  • the thickness (a) of the second positive electrode active material layer satisfies the following formula compared to the thickness (b) of the first positive electrode active material layer in consideration of output characteristics and desired effects of the present invention.
  • the current collector that is, the positive electrode current collector is not particularly limited as long as it has conductivity without causing chemical change to the battery, and is, for example, stainless steel, aluminum, nickel, titanium, calcined carbon or carbon on the surface of aluminum or stainless steel, A surface treated with nickel, titanium, silver, or the like may be used.
  • the cathode current collector may have a thickness of typically 3 to 500 ⁇ m, and adhesion of the cathode active material may be increased by forming fine irregularities on the surface of the cathode current collector.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the positive electrode active material particles included in the first positive electrode active material layer include large primary particles having an average particle diameter (D50) of 0.5 to 3 ⁇ m and secondary particles having an average particle diameter (D50) of 3 to 7 ⁇ m formed by aggregation of the large primary particles. and at least one positive electrode active material particle selected from the group consisting of mixtures of these particles. That is, as the positive electrode active material included in the first positive electrode active material layer, large primary particles having an average particle diameter (D50) of 0.5 to 3 ⁇ m may be used alone or formed by aggregation of the large primary particles having an average particle size (D50) of 3 to 3 ⁇ m. Secondary particles having a size of 7 ⁇ m may be used alone or in combination with the primary large particles and the secondary particles. In particular, secondary particles having an average particle diameter (D50) of 3 to 7 ⁇ m formed by aggregation of the large primary particles alone can be used
  • the large primary particle is a nickel-based lithium transition metal oxide, specifically Li a Ni 1-xy Co x M 1 y M 2 w O 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2 , 0 ⁇ w ⁇ 0.1, 0 ⁇ x+y ⁇ 0.2, M 1 is at least one metal selected from Mn or Al, and M 2 is a group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb and Mo is one or more metal elements selected from), in particular LiaNi 1-xy Co x Mn y O 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ x+y ⁇ 0.2 ) is a positive electrode active material represented by
  • the average particle diameter (D50) of the large primary particles may be specifically 1 to 3 ⁇ m.
  • the average particle diameter (D50) of the secondary particles formed by aggregation of the large primary particles may be 2 to 5 ⁇ m.
  • the large primary particles according to one aspect of the present invention are particles having not only an average particle diameter but preferably a large average crystal size and no visible grain boundaries.
  • the size of the primary particles themselves increases and rock salt is formed. This is advantageous in terms of lowering the resistance.
  • the average crystal size of the large primary particles can be quantitatively analyzed using X-ray diffraction analysis (XRD) by Cu K ⁇ X-rays.
  • XRD X-ray diffraction analysis
  • the average crystal size of the large primary particles can be quantitatively analyzed by placing the prepared particles in a holder and analyzing the diffraction grating emitted by irradiating the particles with X-rays.
  • the average crystal size of the large primary particles may be 200 nm or more, specifically 250 nm or more, and more specifically 300 nm or more.
  • the first positive electrode active material layer made of such positive electrode active material particles has lower brittleness than secondary large particles formed by aggregation of fine primary particles, disconnection is prevented even when a sufficiently large rolling pressure is applied during electrode manufacturing. In addition, the life characteristics are improved by alleviating the cracking phenomenon of secondary large particles.
  • the positive electrode active material particles included in the second positive electrode active material layer are formed by aggregation of large primary particles having an average particle diameter (D50) of 0.5 to 3 ⁇ m, or fine particles having a smaller average particle size (D50) than the large primary particles.
  • the secondary small particles formed by aggregation of large primary particles having an average particle diameter (D50) of 0.5 to 3 ⁇ m are as described in the first positive electrode active material layer.
  • the secondary small particles formed by aggregation of fine primary particles are secondary small particles that have been conventionally used as secondary small particles of a bimodal positive electrode active material.
  • the average particle diameter (D50) of the fine primary particles may be specifically 100 to 900 nm, particularly 100 to 400 nm.
  • the secondary small particles may be formed only of secondary small particles formed by aggregation of the fine primary particles.
  • the content of the secondary small particles may be 10 to 100 parts by weight based on 100 parts by weight of the large secondary particles described later.
  • the secondary large particles are positive electrode active material particles formed by aggregation of fine primary particles having an average particle diameter (D50) smaller than that of macroscopic primary particles.
  • the fine primary particles are nickel-based lithium transition metal oxides, specifically, Li a Ni 1-xy Co x M 1 y M 2 w O 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2 , 0 ⁇ w ⁇ 0.1, 0 ⁇ x+y ⁇ 0.2, M 1 is at least one metal selected from Mn or Al, and M 2 is a group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb and Mo is one or more metal elements selected from), in particular LiaNi 1-xy Co x Mn y O 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ x+y ⁇ 0.2 ) is a positive electrode active material represented by
  • the average particle diameter (D50) of secondary large particles it has an average particle diameter (D50) larger than that of secondary small particles, specifically, the average particle diameter (D50) of secondary large particles: the average particle diameter (D50) of secondary small particles may be 5:1 to 2:1.
  • the average particle diameter (D50) of the secondary large particles is 7 to 20 ⁇ m, more specifically 8 to 16 ⁇ m.
  • Large particles having such a size are generally used as large particles of a bimodal positive electrode active material, and are prepared according to a conventional manufacturing method described later.
  • these large particles in which fine primary particles are agglomerated have a large specific surface area and low particle strength. Therefore, when an electrode is manufactured by using a positive electrode active material layer mixed with small particles having an average particle diameter smaller than that of large particles and then rolled, a problem in that large particles are severely cracked due to pressure by a roll press occurs, resulting in pressure during rolling. is difficult to raise sufficiently.
  • the present inventors have solved this problem by first forming the above-described first positive electrode active material layer and then forming a bimodal second positive electrode active material layer.
  • composition of the first positive electrode active material layer and the second positive electrode active material layer Composition of the first positive electrode active material layer and the second positive electrode active material layer
  • the first and second cathode active material layers according to the present invention may further include, in addition to the cathode active material particles having the above-described characteristics, cathode active material particles having different average particle diameters or heterogeneous components within the limit that does not impair the object of the present invention. Of course you can.
  • a commonly used conductive material may be included in the first and second cathode active material layers.
  • the conductive material is used to impart conductivity to the positive electrode, and any material that does not cause chemical change and has electronic conductivity may be used without particular limitation in the battery. Specific examples include graphite such as natural graphite or artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers such as copper, nickel, aluminum, and silver; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one of them alone or a mixture of two or more may be used.
  • the conductive material may be typically included in an amount of 0.5 to 30% by weight based on the total weight of the first and second positive electrode active material layers.
  • the second cathode active material layer includes single-walled carbon nanotube (SW-CNT) as a conductive material.
  • SW-CNT single-walled carbon nanotube
  • Single-walled carbon nanotubes have low resistance and contribute to improving resistance characteristics by lowering electrode resistance and cell resistance.
  • Single-walled carbon nanotubes are less entangled and are particularly effective in connecting cracks between secondary large particles.
  • the content of the single-walled carbon nanotubes may be, for example, 0.1% by weight or more based on the total weight of the second positive electrode active material layer, and in this case, the conductive material content of the second positive electrode active material layer is more specifically, the second positive electrode active material layer. 0.5 to 3% by weight based on the total weight.
  • the first and second positive electrode active material layers may include a binder.
  • the binder serves to improve adhesion between particles of the positive electrode active material and adhesion between the positive electrode active material and the positive current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethylcellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and the like, and a single one or a mixture of two or more of these may be used, but is not limited thereto.
  • the binder may be included in an amount of, for example, 1 to 30% by weight,
  • Secondary particles made of aggregates of large primary particles according to an aspect of the present invention may be prepared by the following method. However, it is not limited thereto.
  • Ni 1-xy Co x Mn y M 2 w O 2 (1.0 ⁇ a ⁇ 1.5, 0 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.2, 0 ⁇ w ⁇ 0.1, 0 ⁇ x +y ⁇ 0.2
  • M 1 is at least one metal selected from Mn or Al
  • M 2 is one or more metal elements selected from the group consisting of Ba, Ca, Zr, Ti, Mg, Ta, Nb, and Mo)
  • a method for producing a positive electrode active material made of the compound shown will be described as an example.
  • a transition metal-containing solution containing nickel, cobalt, manganese, and M 2 in a predetermined molar ratio, an aqueous ammonia solution, and an aqueous basic solution are mixed to form transition metal hydroxide precursor particles, separated and dried, and then a predetermined average particle diameter (D50) is obtained.
  • the transition metal hydroxide precursor particles are pulverized so as to have (step S1).
  • M 2 is an optional component, a case in which Q is not included will be described in more detail.
  • a positive electrode active material precursor containing nickel (Ni), cobalt (Co), and manganese (Mn) is prepared.
  • the precursor for preparing the cathode active material may be purchased and used as a commercially available cathode active material precursor, or may be prepared according to a method for preparing a cathode active material precursor well known in the art.
  • the precursor may be prepared by adding an ammonium cation-containing complex forming agent and a basic compound to a transition metal solution containing a nickel-containing raw material, a cobalt-containing raw material, and a manganese-containing raw material, followed by a coprecipitation reaction.
  • the nickel-containing raw material may be, for example, nickel-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, etc., specifically, Ni(OH) 2 , NiO, NiOOH, NiCO 3 ⁇ 2Ni(OH) 2 4H 2 O, NiC 2 O 2 2H 2 O, Ni(NO 3 ) 2 6H 2 O, NiSO 4 , NiSO 4 6H 2 O, fatty acid nickel salts, nickel halides or any of these It may be a combination, but is not limited thereto.
  • the cobalt-containing raw material may be cobalt-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide or oxyhydroxide, and specifically, Co(OH) 2 , CoOOH, Co(OCOCH 3 ) 2 4H 2 O , Co(NO 3 ) 2 6H 2 O, CoSO 4 , Co(SO 4 ) 2 7H 2 O, or a combination thereof, but is not limited thereto.
  • the manganese-containing raw material may be, for example, manganese-containing acetate, nitrate, sulfate, halide, sulfide, hydroxide, oxide, oxyhydroxide, or a combination thereof, specifically Mn 2 O 3 , MnO 2 , Mn 3 manganese oxides such as O 4 ; manganese salts such as MnCO 3 , Mn(NO 3 ) 2 , MnSO 4 , manganese acetate, manganese dicarboxylic acids, manganese citrate, and manganese fatty acids; It may be manganese oxyhydroxide, manganese chloride, or a combination thereof, but is not limited thereto.
  • the transition metal solution is a mixture of nickel-containing raw materials, cobalt-containing raw materials, and manganese-containing raw materials in a solvent, specifically, water or an organic solvent (eg, alcohol, etc.) capable of being uniformly mixed with water. It may be prepared by adding or mixing an aqueous solution of a nickel-containing raw material, an aqueous solution of a cobalt-containing raw material, and a manganese-containing raw material.
  • a solvent specifically, water or an organic solvent (eg, alcohol, etc.) capable of being uniformly mixed with water. It may be prepared by adding or mixing an aqueous solution of a nickel-containing raw material, an aqueous solution of a cobalt-containing raw material, and a manganese-containing raw material.
  • the ammonium cation-containing complexing agent may be, for example, NH 4 OH, (NH 4 ) 2 SO 4 , NH 4 NO 3 , NH 4 Cl, CH 3 COONH 4 , NH 4 CO 3 or combinations thereof, It is not limited to this. Meanwhile, the ammonium cation-containing complex forming agent may be used in the form of an aqueous solution, and in this case, water or a mixture of an organic solvent (specifically, alcohol, etc.) and water that can be uniformly mixed with water may be used as the solvent.
  • an organic solvent specifically, alcohol, etc.
  • the basic aqueous solution may be an aqueous solution of a hydroxide of an alkali metal or alkaline earth metal such as NaOH, KOH or Ca(OH) 2 , a hydrate thereof, or a combination thereof as a basic compound.
  • a hydroxide of an alkali metal or alkaline earth metal such as NaOH, KOH or Ca(OH) 2
  • a hydrate thereof or a combination thereof as a basic compound.
  • water or a mixture of an organic solvent (specifically, alcohol, etc.) and water that can be uniformly mixed with water may be used.
  • the basic aqueous solution is added to adjust the pH of the reaction solution, and may be added in an amount such that the pH of the metal solution is 9 to 12.
  • Transition metal hydroxide precursor particles may be prepared through a co-precipitation reaction by mixing the above-described transition metal-containing solution including nickel, cobalt, and manganese, an aqueous ammonia solution, and an aqueous basic solution.
  • the co-precipitation reaction may be carried out at a temperature of 25 °C to 60 °C under an inert atmosphere such as nitrogen or argon.
  • the prepared transition metal hydroxide precursor particles are separated in a reactor, dried, and pulverized to have a predetermined average particle diameter (D50) so that secondary particles having a desired average particle diameter can be formed through a process described later.
  • D50 predetermined average particle diameter
  • the pulverized transition metal hydroxide precursor particles are mixed with a lithium raw material and calcined in an oxygen atmosphere to prepare secondary particles in which large primary particles having an average particle diameter (D50) of 0.5 to 3 ⁇ m are aggregated (step S2). ).
  • secondary particles in which large primary particles having a predetermined average particle diameter are agglomerated can be prepared by preparing, pulverizing, and firing the precursor particles according to steps (S1) to (S2).
  • lithium-containing sulfate, nitrate, acetate, carbonate, oxalate, citrate, halide, hydroxide or oxyhydroxide may be used as the lithium raw material, and as long as it is soluble in water, Not limited.
  • the lithium source material is Li 2 CO 3 , LiNO 3 , LiNO 2 , LiOH, LiOH ⁇ H 2 O, LiH, LiF, LiCl, LiBr, LiI, CH 3 COOLi, Li 2 O, Li 2 SO 4 , CH 3 COOLi, or Li 3 C 6 H 5 O 7 and the like, and any one or a mixture of two or more of them may be used.
  • an oxygen atmosphere means an atmosphere including an air atmosphere and containing enough oxygen for firing.
  • small secondary particles and large secondary particles formed by aggregation of fine primary particles may be purchased and used commercially, or may be directly prepared and used using a known co-precipitation method. More specifically, it can be prepared by obtaining secondary particles in which a plurality of high-content nickel-based composite transition metal hydroxide particles are aggregated as a precursor using a co-precipitation method generally known in the art, mixing with a lithium source, and then firing. .
  • a method of controlling the composition of the precursor using the co-precipitation method, the type of lithium source, and the like may follow common technical knowledge widely known in the art.
  • the positive electrode active materials prepared in this way constitute a positive electrode mixture for forming the first and second positive electrode active material layers together with a conductive material and a binder, and are placed on a positive electrode current collector according to a conventional method to form a positive electrode active material layer to manufacture a positive electrode.
  • a composition for forming the first positive electrode active material layer was prepared by mixing the positive electrode active materials including the positive electrode active materials, a conductive material, and a binder in a solvent, and then the composition was coated on the positive electrode current collector and dried to form the first positive electrode active material layer.
  • a composition for forming a second positive electrode active material layer is prepared by mixing the positive electrode active materials, a conductive material including single-walled carbon nanotubes, and a positive electrode mixture including a binder in a solvent, and then the composition is applied on the first positive electrode active material layer. and drying and rolling.
  • the solvent may be a solvent commonly used in the art, and dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methylpyrrolidone (NMP), acetone, or water and the like, and one of them alone or a mixture of two or more kinds may be used.
  • the amount of the solvent used is enough to dissolve or disperse the positive electrode active material, conductive material, and binder in consideration of the coating thickness and manufacturing yield of the slurry, and to have a viscosity capable of exhibiting excellent thickness uniformity during subsequent coating for manufacturing the positive electrode. Do.
  • the positive electrode may be manufactured by casting the composition for forming the positive electrode active material layer on a separate support and then laminating a film obtained by peeling from the support on a positive electrode current collector.
  • a lithium secondary battery including the positive electrode is provided.
  • the lithium secondary battery specifically includes a positive electrode, a negative electrode positioned opposite to the positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the positive electrode is as described above.
  • the lithium secondary battery may optionally further include a battery container accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer positioned on the negative electrode current collector.
  • the anode current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • it is formed on the surface of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel.
  • a surface treated with carbon, nickel, titanium, silver, or the like, an aluminum-cadmium alloy, or the like may be used.
  • the negative electrode current collector may have a thickness of typically 3 to 500 ⁇ m, and, like the positive electrode current collector, fine irregularities may be formed on the surface of the current collector to enhance bonding strength of the negative electrode active material.
  • it may be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the anode active material layer optionally includes a binder and a conductive material together with the anode active material.
  • the negative electrode active material layer is formed by applying a composition for forming a negative electrode including a negative electrode active material, and optionally a binder and a conductive material on a negative electrode current collector and drying it, or by casting the composition for forming a negative electrode on a separate support, and then , It may be produced by laminating a film obtained by peeling from the support on a negative electrode current collector.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used as the anode active material.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metallic compounds capable of being alloyed with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloys, Sn alloys, or Al alloys; metal oxides capable of doping and undoping lithium, such as SiO ⁇ (0 ⁇ ⁇ ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; or a composite including the metallic compound and the carbonaceous material, such as a Si—C composite or a Sn—C composite, and any one or a mixture of two or more of these may be used.
  • a metal lithium thin film may be used as the anode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • Soft carbon and hard carbon are typical examples of low crystalline carbon
  • high crystalline carbon includes amorphous, platy, scaly, spherical or fibrous natural graphite, artificial graphite, or kish graphite.
  • High-temperature calcined carbon such as derived cokes is representative.
  • the binder and the conductive material may be the same as those described in the foregoing positive electrode.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ion movement
  • any separator used as a separator in a lithium secondary battery can be used without particular limitation, especially for the movement of ions in the electrolyte. It is preferable to have low resistance to the electrolyte and excellent ability to absorb the electrolyte.
  • a porous polymer film for example, a porous polymer film made of polyolefin-based polymers such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these
  • a laminated structure of two or more layers of may be used.
  • conventional porous non-woven fabrics for example, non-woven fabrics made of high-melting glass fibers, polyethylene terephthalate fibers, and the like may be used.
  • a coated separator containing a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be selectively used in a single layer or multilayer structure.
  • the electrolyte used in the present invention includes an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte that can be used in manufacturing a lithium secondary battery, and is limited to these. it is not going to be
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • the organic solvent includes ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, and ⁇ -caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; Dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, PC) and other carbonate-based solvents; alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a C2 to C20 straight-chain, branched or cyclic
  • carbonate-based solvents are preferred, and cyclic carbonates (eg, ethylene carbonate or propylene carbonate, etc.) having high ion conductivity and high dielectric constant capable of increasing the charge and discharge performance of batteries, and low-viscosity linear carbonate-based compounds (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • the lithium salt is LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 .
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 or the like may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is within the above range, the electrolyte has appropriate conductivity and viscosity, so excellent electrolyte performance can be exhibited, and lithium ions can move effectively.
  • the electrolyte may include, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides for the purpose of improving battery life characteristics, suppressing battery capacity decrease, and improving battery discharge capacity.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, and triglycerides
  • Ethylphosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the secondary battery according to the present invention is useful for portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs). .
  • portable devices such as mobile phones, notebook computers, digital cameras, and electric vehicles such as hybrid electric vehicles (HEVs).
  • HEVs hybrid electric vehicles
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same are provided.
  • the battery module or battery pack may include a power tool; electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for one or more medium or large-sized devices among power storage systems.
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • NiSO 4 , CoSO 4 , and MnSO 4 were mixed with a nickel:cobalt:manganese molar ratio of 0.8. : 0.1: 0.1 3.2 mol/L transition metal solution mixed to a concentration of 300 mL / hr, 28% by weight ammonia aqueous solution was continuously introduced into the reactor at 42 mL / hr.
  • the speed of the impeller was stirred at 400 rpm, and 40% by weight of sodium hydroxide solution was used to maintain the pH so that the pH was maintained at 9. Co-precipitation was performed for 10 hours to form precursor particles. The precursor particles were separated, washed, and then dried in an oven at 130° C. to prepare a precursor.
  • Ni 0.8 Co 0.1 Mn 0.1 (OH) 2 precursor synthesized by the co-precipitation reaction was put into a blender and pulverized to a size of about 1 ⁇ m, and then the pulverized precursor was mixed with LiOH so that the molar ratio was 1.05, and heat treatment was performed at 800 ° C in an oxygen atmosphere for 15 hours.
  • LiNi 0.8 Co 0.1 Mn 0.1 O 2 lithium composite transition metal oxide was prepared.
  • the obtained particles are particles having an average particle size (D50) of 4 ⁇ m and formed by aggregation of large primary particles having an average crystal size of 250 nm and an average particle size (D50) of 2.5 ⁇ m.
  • secondary particles in which a plurality of high-content nickel-based composite transition metal hydroxide particles are aggregated are obtained as a precursor, mixed with a lithium source, and then fired to form LiNi 0.8 Co 0.1 Mn 0.1 O 2 and small particles of secondary particles having an average particle diameter (D50) of 4 ⁇ m formed by aggregation of fine primary particles having an average particle diameter (D50) of 300 nm were prepared.
  • secondary particles in which a plurality of high-content nickel-based composite transition metal hydroxide particles are aggregated are obtained as a precursor, mixed with a lithium source, and then fired to form LiNi 0.8 Co 0.1 Mn 0.1 O 2 and large particles of secondary particles having an average particle diameter (D50) of 15 ⁇ m formed by aggregation of fine primary particles having an average particle diameter (D50) of 500 nm were prepared.
  • a cathode active material obtained by mixing large particles and small particles obtained by the above method in a weight ratio of 8: 2, 0.05 parts by weight of single-walled carbon nanotubes (All Sial, Single-Wall CNT) and double-walled carbon as a conductive material
  • LB-CNT nanotubes
  • DA288 KF9700
  • the thickness of the first positive electrode active material layer after rolling was 10.5 ⁇ m, and the thickness of the second positive electrode active material layer was 21 ⁇ m.
  • a positive electrode was prepared in the same manner as in Example 1, except that 0.008 parts by weight of single-walled carbon nanotubes and 0.69 parts by weight of double-walled carbon nanotubes were added as conductive materials when preparing the second positive electrode active material layer.
  • a positive electrode was manufactured in the same manner as in Example 1, except that only 0.7 parts by weight of double-walled carbon nanotubes were added as a conductive material when preparing the second positive electrode active material layer .
  • D50 can be defined as the particle size at 50% of the particle size distribution, and was measured using a laser diffraction method.
  • Lithium secondary batteries were manufactured as follows using the cathodes of Examples and Comparative Examples prepared by the above method.
  • a negative electrode slurry was prepared by mixing a mixture of artificial graphite and natural graphite in a ratio of 5:5 as an anode active material, superC as a conductive material, and SBR/CMC as a binder in a weight ratio of 96:1:3, A negative electrode was prepared by coating, drying and rolling.
  • An electrode assembly was prepared by interposing a porous polyethylene separator between the positive electrode and the negative electrode prepared as described above, the electrode assembly was placed inside a case, and an electrolyte solution was injected into the case to prepare a lithium secondary battery full cell.
  • LiPF6 lithium hexafluorophosphate
  • the manufactured lithium secondary battery full cell was charged in CC-CV mode at 45°C at 0.5C until 4.2V, and discharged to 2.5V at a constant current of 1C to conduct 900 charge/discharge experiments.
  • the capacity retention rate and the resistance increase rate at the time of measurement were measured, and the results are shown in FIG. 3 and Table 2.
  • Example 1 Capacity Retention @ 900th % 80.7 86.3 84.5 DCIR Increase @900 th % 154.9 134.7 144.3
  • Example 1 MP Resistance (mOhm*cm 2 ) 45.1 (-) 18.8 ( ⁇ 58.3%) 57.1 ( ⁇ 26.6%) 0.1sR@SOC50 (mOhms) 366.4 (-) 319.9 ( ⁇ 12.7%) 351.4 ( ⁇ 4.1%) 1kHzR@SOC50 (mOhms) 162.8 (-) 137.6 ( ⁇ 15.5%) 151.3 ( ⁇ 8.1%)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 서로 상이한 평균 입경을 갖는 양극 활물질 2차 대입자와 2차 소입자를 포함하는 양극 활물질층을 포함하며, 전극 제조시 충분히 큰 압연 압력을 가할 수 있는 리튬 이차전지용 양극을 개시한다.

Description

리튬 이차 전지용 양극 및 이를 구비하는 양극 및 리튬 이차 전지
본 발명은 니켈계 리튬 전이금속 산화물을 포함하며 다층 구조로 된 양극 활물질층을 구비하는 양극 및 이를 포함하는 리튬 이차 전지에 관한 것이다.
본 출원은 2021년 06월 24일 자로 출원된 한국 특허출원번호 제 10-2021-0082673호에 대한 우선권주장출원으로서, 해당 출원의 명세서에 개시된 모든 내용은 인용에 의해 본 출원에 원용된다.
최근 휴대전화, 노트북 컴퓨터, 전기 자동차 등 전지를 사용하는 전자기구의 급속한 보급에 수반하여 소형 경량이면서도 상대적으로 고용량인 이차 전지의 수요가 급속히 증대되고 있다. 특히, 리튬 이차 전지는 경량이고 고에너지 밀도를 가지고 있어 휴대 기기의 구동 전원으로서 각광을 받고 있다. 이에 따라, 리튬 이차 전지의 성능향상을 위한 연구개발 노력이 활발하게 진행되고 있다.
리튬 이차 전지는 리튬 이온의 삽입(intercalations) 및 탈리(deintercalation)가 가능한 활물질로 이루어진 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시킨 상태에서 리튬 이온이 양극 및 음극에서 삽입/탈리 될 때의 산화와 환원 반응에 의해 전기 에너지가 생산된다.
리튬 이차 전지의 양극 활물질로는 리튬 코발트 산화물(LiCoO2), 니켈계 리튬 전이금속 산화물, 리튬 망간 산화물(LiMnO2 또는 LiMn2O4 등), 리튬 인산철 화합물(LiFePO4) 등이 사용되었다. 이 중에서도 리튬 코발트 산화물(LiCoO2)은 작동 전압이 높고 용량 특성이 우수한 장점이 있어, 널리 사용되고 있으며, 고전압용 양극 활물질로 적용되고 있다. 그러나, 코발트(Co)의 가격 상승 및 공급 불안정 때문에 전기 자동차 등과 같은 분야의 동력원으로 대량 사용하기에 한계가 있어, 이를 대체할 수 있는 양극 활물질 개발의 필요성이 대두되었고, 특히 고함량의 니켈 함유 (Ni-rich) 리튬 복합전이금속 산화물로 된 양극 활물질은 높은 용량 발현으로 주목 받고 있다.
현재 상용화된 니켈 함유 리튬 복합 전이금속 산화물의 양극 활물질로는 평균 입경(D50)이 수백 nm 수준인 미세 1차 입자가 응집되어 형성된 2차 입자들을 이용하는데, 출력 및 압연밀도를 높이기 위하여 2차 입자들의 평균입경(D50)이 상이한 2종, 즉 평균입경이 큰 2차 입자로 된 대입자와 평균입경이 작은 2차 입자로 된 소입자를 혼합한 바이모달(bimodal) 양극 활물질이 통상적으로 사용된다.
미세 1차 입자가 응집된 2차 입자들은 비표면적이 크고, 입자 강도가 낮다. 따라서, 바이모달 양극 활물질로 전극을 제조한 후 롤 프레스를 이용하여 압연하는 경우, 특히 2차 대입자 깨짐이 심해 셀 구동 시 가스 발생량이 많고 안정성이 떨어지는 문제가 있다. 이에 따라 단선이 일어나지 않도록 하기 위하여 롤 프레스 압력을 충분히 높이기가 어려워지거나, 수명 특성이 저하되는 문제가 발생한다. 특히, 고용량 확보를 위해 니켈(Ni)의 함량을 증가시킨 고함량의 니켈계(High-Ni) 리튬 전이금속 산화물의 경우 구조적인 문제로 인하여 입자 깨짐이 발생하면 화학적 안정성이 더욱 저하되고, 열 안정성 확보도 어렵다.
본 발명의 일 태양에 따라 해결하고자 하는 과제는, 서로 상이한 평균 입경을 갖는 양극 활물질 2차 대입자와 2차 소입자를 포함하는 양극 활물질층을 포함하며, 전극 제조시 충분히 큰 압연 압력을 가할 수 있는 리튬 이차전지용 양극을 제공하는데 있다.
본 발명의 다른 태양에 따라 해결하고자 하는 과제는 서로 상이한 평균 입경을 갖는 양극 활물질 2차 대입자와 2차 소입자를 포함하는 양극 활물질층을 포함하며, 수명 특성이 개선된 리튬 이차전지용 양극을 제공하는데 있다.
본 발명의 다른 태양에 따라 해결하고자 하는 과제는 전술한 특성을 갖는 리튬 이차전지용 양극을 구비하는 리튬 이차전지를 제공하는데 있다.
본 발명의 일 측면에서는 하기 구현예에 따른 리튬 이차 전지용 양극을 제공한다.
제1 구현예는,
집전체;
상기 집전체의 적어도 일면 위에 형성되며,
평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자, 상기 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 3 내지 7 ㎛인 2차 입자 및 이들 입자의 혼합물로 이루어진 군으로부터 선택된 적어도 1종 이상의 양극 활물질 입자 및 도전재를 포함하는 제1 양극 활물질층; 및
상기 제1 양극 활물질층 위에 형성되며,
평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자가 응집되어 형성되거나 또는 상기 거대 1차 입자보다 작은 평균 입경(D50)을 갖는 미세 1차 입자가 응집되어 형성된 평균 입경(D50) 1 내지 7 ㎛인 2차 소입자로 된 양극 활물질 입자와,
상기 2차 소입자보다 큰 평균 입경(D50)을 가지며, 상기 거대 1차 입자보다 작은 평균 입경(D50)을 갖는 미세 1차 입자가 응집되어 형성된 평균 입경(D50) 7 내지 20 ㎛인 2차 대입자로 된 양극 활물질 입자 및
도전재를 포함하는 제2 양극 활물질층을 구비하고,
상기 양극 활물질 입자는 니켈계 리튬 전이금속 산화물로 된 양극 활물질이고,
상기 제2 양극 활물질층에 포함되는 도전재는 단일벽 탄소나노튜브를 포함하는, 리튬 이차전지용 양극에 관한 것이다.
제2 구현예는, 제1 구현예에 있어서,
상기 미세 1차 입자의 평균 입경(D50)이 100 내지 900 nm, 특히 평균 입경(D50)이 100 내지 400 nm인 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
제3 구현예는, 제1 또는 제2 구현예에 있어서,
상기 제1 양극 활물질층에 포함된 거대 1차 입자의 평균 결정 크기는 200 nm 이상인 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
제4 구현예는, 제1 내지 제3 구현예 중 어느 한 구현예에 있어서,
상기 제1 및 제2 양극 활물질층에 포함된 거대 1차 입자의 평균 입경(D50)이 각각 1 내지 3 ㎛인 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
제5 구현예는, 제1 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 2차 소입자의 평균 입경(D50)이 2 내지 5 ㎛이고, 상기 2차 대입자의 평균 입경(D50)이 8 내지 16 ㎛인 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
제6 구현예는, 제1 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 2차 대입자의 평균입경(D50):상기 2차 소입자의 평균입경(D50)은 5:1 내지 2:1인 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
제7 구현예는, 제1 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 2차 소입자의 함량은 상기 2차 대입자 100 중량부를 기준으로 10 내지 100 중량부인 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
제8 구현예는, 제1 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 제2 양극 활물질층의 두께(a)는 상기 제1 양극 활물질층의 두께(b) 대비 하기 식을 만족하는 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
(식) 3b≤a
제9 구현예는, 제1 내지 제8 구현예 중 어느 한 구현예에 있어서,
상기 2차 소입자는 상기 미세 1차 입자가 응집되어 형성된 2차 소입자로만 이루어진 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
제10 구현예는, 제1 내지 제9 구현예 중 어느 한 구현예에 있어서,
상기 니켈계 리튬 전이금속 산화물은 LiaNi1-x-yCoxM1 yM2 wO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 또는 Al 중 적어도 1종 이상의 금속이고, M2은 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되고, 특히 LiaNi1-x-yCoxMnyO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤x+y≤0.2)로 표시되는 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
제11 구현예는, 제1 내지 제10 구현예 중 어느 한 구현예에 있어서,
상기 단일벽 탄소나노튜브의 함량은 제2 양극 활물질층 총 중량을 기준으로 0.001 중량% 이상인 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
제12 구현예는, 제1 내지 제11 구현예 중 어느 한 구현예에 있어서,
상기 제2 양극 활물질층의 도전재 함량은 제2 양극 활물질층 총 중량을 기준으로 0.5 내지 3 중량%인 것을 특징으로 하는 리튬 이차전지용 양극에 관한 것이다.
제13 구현예는, 전술한 양극을 구비하는 리튬 이차전지를 제공한다.
본 발명의 일 실시예에 따른 양극의 제2 양극 활물질층은 2차 대입자와 2차 소입자를 동시에 포함하여 압연밀도가 양호하다.
또한, 집전체와 제2 양극 활물질층 사이에 개재된 제1 양극 활물질은 깨짐성이 낮은 양극 활물질 입자를 포함함으로써 전극 제조시 충분히 큰 압연 압력을 가해도 단선이 발생하지 않도록 한다. 따라서, 깨짐 현상이 개선된 양극 활물질 입자들을 구비하게 되는 이러한 양극을 리튬 이차전지에 적용시, 수명 특성이 개선된다.
더불어, 제2 양극 활물질층의 도전재로서 단열벽 탄소나노튜브(SW-CNT)가 포함됨으로써 전극 저항과 셀 저항이 개선된다.
본 명세서에 첨부되는 도면들은 본 발명의 바람직한 실시예를 예시한 것이며, 전술한 발명의 내용과 함께 본 발명의 기술 사상을 더욱 잘 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되는 것은 아니다. 한편, 본 명세서에 수록된 도면에서의 요소의 형상, 크기, 축척 또는 비율 등은 보다 명확한 설명을 강조하기 위해서 과장될 수 있다.
도 1은 종래의 단층 구조의 양극 활물질층을 구비하는 양극의 개략적인 단면도이다.
도 2은 본 발명의 다층 구조의 양극 활물질층을 구비하는 양극의 개략적인 단면도이다.
도 3은 실시예 및 비교예에 따른 리튬 이차전지의 용량 유지율 및 저항을 나타낸 그래프이다.
이하 본 발명의 구현예를 상세히 설명한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예에 기재된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 「포함한다」 또는 「구비한다」고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서 및 청구범위에 있어서, "다수의 결정립을 포함한다" 함은 특정 범위의 평균 결정 크기를 갖는 둘 이상의 결정 입자가 모여서 이루어지는 결정체를 의미한다. 이때 상기 결정립의 결정 크기는 Cu Kα X선(Xrα)에 의한 X선 회절 분석(XRD)을 이용하여 정량적으로 분석될 수 있다. 구체적으로는 제조된 입자를 홀더에 넣어 X선을 상기 입자에 조사해 나오는 회절 격자를 분석함으로써, 결정립의 평균 결정 크기를 정량적으로 분석 할 수 있다.
명세서 및 청구범위에 있어서, D50은 입자크기 분포의 50% 기준에서의 입자크기로 정의될 수 있으며, 레이저 회절법(laser diffraction method)을 이용하여 측정될 수 있다. 예를 들어, 상기 양극 활물질의 평균 입경(D50)의 측정 방법은, 양극 활물질의 입자를 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어, Microtrac MT 3000)에 도입하여 약 28kHz의 초음파를 출력 60W로 조사한 후, 측정 장치에 있어서의 체적 누적량의 50%에 해당하는 평균 입경(D50)을 산출할 수 있다.
본 발명에 있어서 '1차 입자'란 주사형 전자 현미경을 이용하여 5000배 내지 20000배의 시야에서 관찰하였을 때 외관상 입계가 존재하지 않는 입자를 의미한다.
본 발명에서 '2차 입자'란 상기 1차 입자가 응집되어 형성된 입자이다.
본 발명에서, '단입자'란 상기 2차 입자와는 독립적으로 존재하는 것으로, 외관상에 입계가 존재하지 않는 입자로서, 예를 들어, 입자 지름이 0.5 ㎛ 이상의 입자를 의미한다.
본 발명에 있어서, '입자'라고 기재하는 경우에는 단입자, 2차 입자, 1차 입자 중 어느 하나 또는 모두가 포함되는 의미일 수 있다.
본 발명의 일 측면에 따르면,
집전체;
상기 집전체의 적어도 일면 위에 형성되며,
평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자, 상기 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 3 내지 7 ㎛인 2차 입자 및 이들 입자의 혼합물로 이루어진 군으로부터 선택된 적어도 1종 이상의 양극 활물질 입자 및 도전재를 포함하는 제1 양극 활물질층; 및
상기 제1 양극 활물질층 위에 형성되며,
평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자가 응집되어 형성되거나 또는 상기 거대 1차 입자보다 작은 평균 입경(D50)을 갖는 미세 1차 입자가 응집되어 형성된 평균 입경(D50) 1 내지 7 ㎛인 2차 소입자로 된 양극 활물질 입자와,
상기 2차 소입자보다 큰 평균 입경(D50)을 가지며, 상기 거대 1차 입자보다 작은 평균 입경(D50)을 갖는 미세 1차 입자가 응집되어 형성된 평균 입경(D50) 7 내지 20 ㎛인 2차 대입자로 된 양극 활물질 입자 및
도전재를 포함하는 제2 양극 활물질층을 구비하고,
상기 양극 활물질 입자는 니켈계 리튬 전이금속 산화물로 된 양극 활물질이고,
상기 제2 양극 활물질층에 포함되는 도전재는 단일벽 탄소나노튜브를 포함하는, 리튬 이차전지용 양극을 제공한다.
양극 활물질층의 구조
도 1은 종래의 단층 구조의 양극 활물질층을 구비하는 양극의 개략적인 단면도이다.
도 1을 참조하면, 종래에는 미세 1차 입자가 응집되어 형성된 2차 입자로 된 대입자와 미세 1차 입자가 응집되어 형성된 2차 입자로 된 소입자를 혼합한 바이모달(bimodal) 양극 활물질을 집전체(1)의 적어도 일면에 도포하여 단일 층의 양극 활물질층(3)을 형성함으로써 양극(10)을 제조하였다.
반면, 본 발명의 양극(20)은 도 2에 도시된 바와 같이, 집전체(11)의 적어도 일면 위에 소정 특성을 갖는 양극 활물질 입자를 포함하는 제1 양극 활물질층(15)을 먼저 형성한 후, 그 위에 바이모달(bimodal) 양극 활물질을 도포하여 제2 양극 활물질층(17)을 형성함으로써, 다층 구조의 양극 활물질층을 구비한다.
상기 제2 양극 활물질층의 두께(a)는 상기 제1 양극 활물질층의 두께(b) 대비 하기 식을 만족하는 것이 출력 특성과 본 발명의 목적하는 효과를 고려할 때 바람직하다.
(식) 3b≤a
집전체
집전체, 즉 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또한, 상기 양극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 양극 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
제1 양극 활물질층
제1 양극 활물질층에 포함되는 양극 활물질 입자는 평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자, 상기 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 3 내지 7 ㎛인 2차 입자 및 이들 입자의 혼합물로 이루어진 군으로부터 선택된 적어도 1종 이상의 양극 활물질 입자를 포함한다. 즉, 제1 양극 활물질층에 포함되는 양극 활물질로는 평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자를 단독으로, 또는 상기 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 3 내지 7 ㎛인 2차 입자를 단독으로, 또는 상기 1차 거대 입자와 2차 입자를 혼용하여 사용할 수 있다. 특히, 상기 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 3 내지 7 ㎛인 2차 입자를 단독으로 사용할 수 있다.
거대 1차 입자는 니켈계 리튬 전이금속 산화물로서, 구체적으로는 LiaNi1-x-yCoxM1 yM2 wO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 또는 Al 중 적어도 1종 이상의 금속이고, M2은 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되고, 특히 LiaNi1-x-yCoxMnyO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤x+y≤0.2)로 표시되는 양극 활물질이다.
제1 양극 활물질층에 포함되는 양극 활물질 입자에 있어서, 거대 1차 입자의 평균 입경(D50)은 구체적으로 1 내지 3 ㎛일 수 있다. 또한, 거대 1차 입자가 응집되어 형성된 2차 입자의 평균 입경(D50)은 2 내지 5 ㎛일 수 있다.
거대 1차 입자는 후술하는 종래의 미세(micro) 1차 입자와 비교할 때, 1차 입자의 평균 입경이 크다.
크랙(crack) 관점에서 보자면 기존의 단입자와 같이 외관상 입계가 존재하지 않으면서도 평균 입경이 큰 것이 유리하다. 과소성 등에 의해 1차 입자의 평균 입경(D50)만을 늘리는 경우에는 1차 입자의 표면에 rock salt가 형성되고 최초(initial)저항이 높아지는 문제가 있는다. 1차 입자의 결정 크기도 함께 성장시키면 저항이 낮아지게 된다. 이에 따라, 본 발명에서 일 태양에 따른 거대 1차 입자는 평균 입경뿐만 아니라 바람직하게는 평균 결정 크기도 크며, 외관상의 입계가 존재하지 않는 입자이다.
이와 같이, 1차 입자의 평균 입경과 평균 결정 크기가 동시에 성장하는 경우, 고온에서의 소성으로 인해 표면에 rock salt 가 생겨 저항 증가가 큰 기존의 단입자에 비해, 저항이 낮아지며 장수명 측면에서도 유리하다.
이와 같이, 기존의 단입자에 비해, 본 발명의 일 측면에서 사용된 “거대 1차 입자” 나 이 응집체 또는 이들의 혼합물로 구성된 소입자의 경우, 1차 입자 자체의 크기 증가 및 rock salt의 형성이 감소되어 저항이 낮아진다는 측면에서 유리하다.
이 때, 거대 1차 입자의 평균 결정 크기(crystal size)는 Cu Kα X선(X-ray)에 의한 X선 회절 분석(XRD)을 이용하여 정량적으로 분석될 수 있다. 구체적으로는 제조된 입자를 홀더에 넣어 X선을 상기 입자에 조사해 나오는 회절 격자를 분석함으로써, 거대 1차 입자의 평균 결정 크기를 정량적으로 분석할 수 있다. 거대 1차 입자의 평균 결정 크기는, 200 nm 이상, 구체적으로는 250 nm 이상, 더욱 구체적으로는 300 nm 이상 일 수 있다.
이러한 양극 활물질 입자로 된 제1 양극활물질층은 미세 1차 입자로 응집되어 형성된 2차 대입자보다 깨짐성이 낮으므로, 전극 제조시 충분히 큰 압연 압력을 가해도 단선이 발생하지 않도록 한다. 또한, 2차 대입자의 깨짐 현상을 완화하여 수명 특성을 개선한다.
제2 양극 활물질층
제2 양극 활물질층에 포함되는 양극 활물질 입자는 평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자가 응집되어 형성되거나, 또는 상기 거대 1차 입자보다 작은 평균 입경(D50)을 갖는 미세 1차 입자가 응집되어 형성된, 평균 입경(D50)이 1 내지 7 ㎛인 2차 소입자와, 상기 2차 소입자보다 큰 평균 입경(D50)을 가지며, 상기 거대 1차 입자보다 작은 평균 입경(D50)을 갖는 미세 1차 입자가 응집되어 형성된 평균 입경(D50) 7 내지 20 ㎛인 2차 대입자의 양극 활물질 입자를 동시에 포함한다.
2차 소입자를 구성하는 성분 중, 평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자가 응집되어 형성된 2차 소입자에 대해서는 제1 양극 활물질층에서 설명된 바와 같다. 한편, 2차 소입자를 구성하는 성분 중, 미세 1차 입자가 응집되어 형성된 2차 소입자는 바이모달 양극 활물질의 2차 소입자로서 종래에 통상적으로 사용되어 온 2차 소입자이다. 미세 1차 입자의 평균 입경(D50)은 구체적으로는 100 내지 900 nm일 수 있고, 특히 100 내지 400 nm일 수 있다. 특히, 2차 소입자는 상기 미세 1차 입자가 응집되어 형성된 2차 소입자로만 이루어질 수 있다. 2차 소입자의 함량은 후술하는 2차 대입자 100 중량부를 기준으로 10 내지 100 중량부일 수 있다.
한편, 2차 대입자는 거대 1차 입자보다 작은 평균 입경(D50)을 갖는 미세 1차 입자가 응집되어 형성된 양극 활물질 입자이다. 미세 1차 입자는 니켈계 리튬 전이금속 산화물로서, 구체적으로는 LiaNi1-x-yCoxM1 yM2 wO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 또는 Al 중 적어도 1종 이상의 금속이고, M2은 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되고, 특히 LiaNi1-x-yCoxMnyO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤x+y≤0.2)로 표시되는 양극 활물질이다.
2차 대입자는 2차 소입자보다 큰 평균 입경(D50)을 가지는데, 구체적으로는 2차 대입자의 평균입경(D50):2차 소입자의 평균입경(D50)이 5:1 내지 2:1일 수 있다. 2차 대입자의 평균입경(D50)은 7 내지 20 ㎛이고, 더욱 구체적으로는 8 내지 16 ㎛이다.
이러한 크기를 갖는 대입자는 일반적으로 바이모달 양극 활물질의 대입자로 이용되는 입자로서, 후술하는 통상적인 제조방법에 따라 제조된다.
전술한 바와 같이 미세 1차 입자가 응집된 이러한 대입자들은 비표면적이 크고, 입자 강도가 낮다. 따라서, 대입자보다 평균 입경이 작은 소입자와 혼용한 양극 활물질층을 이용하여 전극을 제조한 후 압연하는 경우, 롤 프레스에 의한 압력으로 인해 대입자 깨짐이 심해지는 문제점이 발생하여 압연시의 압력을 충분히 높이기 어렵다.
본 발명자들은 이러한 문제점을 전술한 1차 양극 활물질층을 먼저 형성한 후 바이모달의 2차 양극 활물질층을 형성함으로서 해결하였다.
제1 양극 활물질층 및 제2 양극 활물질층의 조성
본 발명에 따른 제1 및 제2 양극 활물질층은 전술한 특성을 갖는 양극 활물질 입자 외에, 본 발명의 목적을 저해하지 않는 한도 내에서 다른 평균 입경을 갖거나 이질적인 성분의 양극 활물질 입자를 더 포함할 수 있음은 물론이다.
제1 및 제2 양극 활물질층에는 통상적으로 사용되는 도전재가 포함될 수 있다.
도전재는 양극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 도전재는 통상적으로 제1 및 제2 양극 활물질층 총 중량에 대하여 각각 0.5 내지 30 중량%로 포함될 수 있다.
특히, 제2 양극 활물질층에는 도전재로서 단일벽 탄소나노튜브(SW-CNT, single-walled carbon nanotube)가 포함된다. 단일벽 탄소나노튜브는 저항이 낮아 전극 저항 및 셀 저항을 낮추어 저항 특성을 개선하는데 기여한다. 단일벽 탄소나노튜브는 엉킴이 적고 특히 2차 대입자 사이의 크랙 부분을 연결해 주는 역할을 하는데 효과적이다. 상기 단일벽 탄소나노튜브의 함량은 예를 들어 제2 양극 활물질층 총 중량을 기준으로 0.1 중량% 이상일 수 있으며, 이 때 제2 양극 활물질층의 도전재 함량은 더욱 구체적으로는 제2 양극 활물질층 총 중량을 기준으로 0.5 내지 3 중량%일 수 있다.
한편, 제1 및 제2 양극 활물질층은 바인더를 포함할 수 있다.
바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있으나 이에 한정되지 않는다. 상기 바인더는 제1 및 제2 양극 활물질층 총 중량에 대하여 예를 들어 각각 1 내지 30 중량%로 포함될 수 있다.
양극의 제조방법
먼저, 양극 활물질 입자의 제조방법에 대하여 예를 들어 설명한다.
본 발명의 일 측면에 따른 거대 1차 입자의 응집체로 된 2차 입자는 다음과 같은 방법으로 제조될 수 있다. 다만, 이에 제한되는 것은 아니다.
니켈계 리튬 전이금속 산화물로서 LiaNi1-x-yCoxMnyM2 wO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 또는 Al 중 적어도 1종 이상의 금속이고, M2은 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는 화합물로 된 양극 활물질의 제조방법을 예를 들어 설명한다.
니켈, 코발트, 망간 및 M2을 소정 몰비로 포함하는 전이금속 함유 용액, 암모니아 수용액 및 염기성 수용액을 혼합하여 전이금속 수산화물 전구체 입자를 형성하고, 이를 분리하여 건조시킨 다음, 소정 평균 입경(D50)을 갖도록 상기 전이금속 수산화물 전구체 입자를 분쇄한다(S1 단계).
M2는 선택적인 성분이므로, Q를 포함하지 않는 경우를 들어 보다 구체적으로 설명한다.
먼저, 니켈(Ni), 코발트(Co) 및 망간(Mn)을 포함하는 양극 활물질 전구체를 마련한다.
이 때, 양극 활물질 제조를 위한 전구체는 시판되는 양극 활물질 전구체를 구입하여 사용하거나, 당해 기술 분야에서 잘 알려진 양극 활물질 전구체의 제조방법에 따라 제조될 수 있다.
예를 들면, 상기 전구체는 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 포함하는 전이 금속 용액에 암모늄 양이온 함유 착물 형성제와 염기성 화합물을 첨가하여 공침 반응시켜 제조되는 것일 수 있다.
상기 니켈 함유 원료물질은 예를 들면, 니켈 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는, Ni(OH)2, NiO, NiOOH, NiCO3ㆍ2Ni(OH)2ㆍ4H2O, NiC2O2ㆍ2H2O, Ni(NO3)2ㆍ6H2O, NiSO4, NiSO4ㆍ6H2O, 지방산 니켈염, 니켈 할로겐화물 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 코발트 함유 원료 물질은 코발트 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물 또는 옥시수산화물 등일 수 있으며, 구체적으로는 Co(OH)2, CoOOH, Co(OCOCH3)2ㆍ4H2O, Co(NO3)2ㆍ6H2O, CoSO4, Co(SO4)2ㆍ7H2O 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 망간 함유 원료물질은 예를 들면, 망간 함유 아세트산염, 질산염, 황산염, 할라이드, 황화물, 수산화물, 산화물, 옥시수산화물 또는 이들의 조합일 수 있으며, 구체적으로는 Mn2O3, MnO2, Mn3O4 등과 같은 망간산화물; MnCO3, Mn(NO3)2, MnSO4, 아세트산 망간, 디카르복실산 망간염, 시트르산 망간, 지방산 망간염과 같은 망간염; 옥시 수산화망간, 염화 망간 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다.
상기 전이금속 용액은 니켈 함유 원료물질, 코발트 함유 원료물질 및 망간 함유 원료물질을 용매, 구체적으로는 물, 또는 물과 균일하게 혼합될 수 있는 유기 용매(예를 들면, 알코올 등)의 혼합 용매에 첨가하여 제조되거나, 또는 니켈 함유 원료물질의 수용액, 코발트 함유 원료물질의 수용액 및 망간 함유 원료물질을 혼합하여 제조된 것일 수 있다.
상기 암모늄 양이온 함유 착물 형성제는, 예를 들면 NH4OH, (NH4)2SO4, NH4NO3, NH4Cl, CH3COONH4, NH4CO3 또는 이들의 조합일 수 있으나, 이에 한정되는 것은 아니다. 한편, 상기 암모늄 양이온 함유 착물 형성제는 수용액의 형태로 사용될 수도 있으며, 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 수용액은 염기성 화합물로서 NaOH, KOH 또는 Ca(OH)2 등과 같은 알칼리 금속 또는 알칼리 토금속의 수산화물, 이들의 수화물 또는 이들의 조합의 수용액일 수 있다. 이때 용매로는 물, 또는 물과 균일하게 혼합 가능한 유기용매(구체적으로, 알코올 등)와 물의 혼합물이 사용될 수 있다.
상기 염기성 수용액은 반응 용액의 pH를 조절하기 위해 첨가되는 것으로, 금속 용액의 pH가 9 내지 12이 되는 양으로 첨가될 수 있다.
전술한 니켈, 코발트 및 망간을 포함하는 전이금속 함유 용액, 암모니아 수용액 및 염기성 수용액을 혼합하여 공침 반응을 통해 전이금속 수산화물 전구체 입자를 제조할 수 있다.
이 때, 공침 반응은 질소 또는 아르곤 등의 비활성 분위기하에서, 25 ℃ 내지 60 ℃의 온도에서 수행될 수 있다.
제조된 전이금속 수산화물 전구체 입자는 반응기에서 분리하여 건조시킨 다음, 후술하는 공정을 통해 목적하는 평균 입경을 갖는 2차 입자가 형성될 수 있도록 하기 위하여 소정 평균 입경(D50)을 갖도록 분쇄한다.
이어서, 상기 분쇄된 전이금속 수산화물 전구체 입자를 리튬 원료 물질과 혼합하고 산소 분위기에서 소성하여, 평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자가 응집된 2차 입자를 제조한다(S2 단계).
이와 같이 (S1)~(S2) 단계에 따라 전구체 입자를 제조-분쇄-소성함으로써, 소정 평균입경을 갖는 거대 1차 입자가 응집된 2차 입자를 제조할 수 있다.
상기 (S2) 단계에 있어서, 리튬 원료물질로는 리튬 함유 황산염, 질산염, 아세트산염, 탄산염, 옥살산염, 시트르산염, 할라이드, 수산화물 또는 옥시수산화물 등이 사용될 수 있으며, 물에 용해될 수 있는 한 특별히 한정되지 않는다. 구체적으로 상기 리튬 원료물질은 Li2CO3, LiNO3, LiNO2, LiOH, LiOHㆍH2O, LiH, LiF, LiCl, LiBr, LiI, CH3COOLi, Li2O, Li2SO4, CH3COOLi, 또는 Li3C6H5O7 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
소성시 니켈(Ni)의 함량이 80몰% 이상인 고함량 니켈(High-Ni) NCM계 리튬 복합 전이금속 산화물의 경우, 790 내지 950℃로 소성할 수 있으며, 산소 분위기 하에서 5 내지 35시간 동안 수행할 수 있다. 본 명세서에 있어서, 산소 분위기란, 대기 분위기를 포함하여 소성에 충분한 정도의 산소를 포함하는 분위기를 의미한다. 특히, 산소 분압이 대기 분위기보다 더 높은 분위기에서 수행하는 것이 바람직하다.
한편, 미세 1차 입자가 응집되어 형성된 2차 소입자와 2차 대입자는 시판되는 것을 구입하여 사용할 수 있고, 공지의 공침법을 이용하여 직접 제조하여 사용할 수도 있다. 보다 구체적으로, 일반적으로 당 업계에 알려진 공침법을 이용하여 고함량의 니켈계 복합 전이금속 수산화물 입자가 복수 개 집합된 2차 입자를 전구체로 수득하고 리튬 소스와 혼합한 후 소성함으로써 제조할 수 있다. 여기서, 공침법을 이용하여 전구체 조성을 제어하는 방법, 리튬 소스의 종류 등은, 당 업계에 널리 알려진 기술 상식에 따를 수 있다.
이와 같이 준비된 양극 활물질들은 도전재, 바인더와 함께 제1 및 제2 양극 활물질층 형성을 위한 양극 합재를 구성하고 이를 통상의 방법에 따라 양극 집전체 위에 위치시켜 양극 활물질층으로 형성함으로서 양극을 제조할 수 있다.
구체적으로, 상기한 양극 활물질들과 도전재 및 바인더를 포함하는 양극 합재를 용매에 혼합하여 제1 양극 활물질층 형성용 조성물을 제조한 후 이를 양극 집전체 상에 도포 및 건조하여 제1 양극 활물질층을 형성한다. 이어서, 상기한 양극 활물질들과 단일벽 탄소나노튜브를 포함하는 도전재 및 바인더를 포함하는 양극 합재를 용매에 혼합하여 제2 양극 활물질층 형성용 조성물을 제조한 후 이를 제1 양극 활물질층 위에 도포 및 건조하고 압연함으로써 제조될 수 있다. 용매로는 당해 기술분야에서 일반적으로 사용되는 용매일 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재 및 바인더를 용해 또는 분산시키고, 이후 양극제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.
또, 다른 방법으로, 상기 양극은 상기 양극 활물질층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
리튬 이차 전지
본 발명의 또 다른 일 실시예에 따르면 상기 양극을 포함하는 리튬 이차전지를 제공한다.
리튬 이차전지는 구체적으로 양극, 상기 양극과 대향하여 위치하는 음극, 상기 양극과 음극 사이에 개재되는 세퍼레이터 및 전해질을 포함하며, 상기 양극은 앞서 설명한 바와 같다. 또, 상기 리튬 이차전지는 상기 양극, 음극, 세퍼레이터의 전극 조립체를 수납하는 전지용기, 및 상기 전지용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 활물질층을 포함한다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질층은 음극 활물질과 함께 선택적으로 바인더 및 도전재를 포함한다. 상기 음극 활물질층은 일례로서 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 음극 형성용 조성물을 도포하고 건조하거나, 또는 상기 음극 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수도 있다.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0 < β < 2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도프 및 탈도프할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.
또, 상기 바인더 및 도전재는 앞서 양극에서 설명한 바와 동일한 것일 수 있다.
한편, 상기 리튬 이차전지에 있어서, 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 세퍼레이터로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 세퍼레이터가 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
또, 본 발명에서 사용되는 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 C2 내지 C20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.
상기와 같이 본 발명에 따른 이차전지는 양극재의 퇴화 현상이 개선되므로, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.
이에 따라, 본 발명의 다른 일 구현예에 따르면, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공된다.
상기 전지모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
<실시예 1>
제1 양극 활물질층 형성용 양극 활물질 입자의 제조
공침 반응기(용량 20L)에 증류수 4리터를 넣은 뒤 50℃ 온도를 유지시키며 28중량% 농도의 암모니아 수용액 100mL를 투입한 후, NiSO4, CoSO4, MnSO4를 니켈:코발트:망간의 몰비가 0.8:0.1:0.1이 되도록 혼합된 3.2mol/L 농도의 전이금속 용액을 300mL/hr, 28중량%의 암모니아 수용액을 42mL/hr로 반응기에 연속적으로 투입하였다. 임펠러의 속도는 400rpm으로 교반하였고, pH 유지를 위해 40중량%의 수산화나트륨 용액을 이용하여 pH가 9가 유지되도록 투입하였다. 10시간 공침 반응시켜 전구체 입자를 형성하였다. 상기 전구체 입자를 분리하여 세척 후 130℃의 오븐에서 건조하여 전구체를 제조하였다.
공침 반응으로 합성된 Ni0.8Co0.1Mn0.1(OH)2 전구체를 믹서기에 넣어 1um 정도 크기로 분쇄한 후 분쇄된 전구체를 LiOH와 몰비가 1.05가 되도록 되도록 혼합하고, 산소 분위기 800℃에서 15시간 열처리하여 LiNi0.8Co0.1Mn0.1O2 리튬 복합 전이금속 산화물을 제조하였다.
얻어진 입자는 평균 결정 크기가 250 nm이며 평균 입경(D50)이 2.5 ㎛인 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 4 ㎛인 입자이다.
제2 양극 활물질층 형성용 양극 활물질 입자의 제조
2차 소입자의 제조
당 업계에 알려진 공침법을 이용하여 고함량의 니켈계 복합 전이금속 수산화물 입자가 복수 개 집합된 2차 입자를 전구체로 수득하고 리튬 소스와 혼합한 후 소성함으로써 LiNi0.8Co0.1Mn0.1O2로 이루어지며, 평균 입경(D50)이 300 nm인 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 4 ㎛인 2차 입자로 된 소입자들을 준비하였다.
2차 대입자의 제조
당 업계에 알려진 공침법을 이용하여 고함량의 니켈계 복합 전이금속 수산화물 입자가 복수 개 집합된 2차 입자를 전구체로 수득하고 리튬 소스와 혼합한 후 소성함으로써 LiNi0.8Co0.1Mn0.1O2로 이루어지며, 평균 입경(D50)이 500 nm인 미세 1차 입자가 응집되어 형성된 평균 입경(D50)이 15 ㎛인 2차 입자로 된 대입자들을 준비하였다.
양극의 제조
전술한 방법으로 얻은 제1 양극 활물질층 형성용 양극 활물질 입자 96.5 중량부, 도전재로서 케첸 블랙 2 중량부 및 바인더로서 KF9700 1.5 중량부를 NMP 용매에 분산시켜 제1 양극 활물질층 형성용 조성물을 제조한 후 이를 알루미늄 포일 집전체에 도포 및 건조시켜 제1 양극 활물질층을 형성하였다.
이어서, 전술한 방법으로 얻은 대입자와 소입자를 8 : 2의 중량비로 혼합한 양극 활물질 97.5 중량부, 도전재로서 단일벽 탄소나노튜브(올시알, 싱글월씨엔티) 0.05 중량부와 이중벽 탄소나노튜브 (LB-CNT) 0.65 중량부 및 바인더로서 KF9700 (DA288) 1.5 중량부를 NMP 용매에 분산시켜 제2 양극 활물질층 형성용 조성물을 제조한 후 이를 제1 양극 활물질층 위에 도포, 건조하여 제2 양극 활물질층을 형성하고, 이를 압연하여 양극을 제조하였다.
압연 후의 제1 양극 활물질층의 두께는 10.5 ㎛이고, 제2 양극 활물질층의 두께는 21 ㎛이었다.
<실시예 2>
제2 양극 활물질층 제조시 도전재로서 단일벽 탄소나노튜브 0.008 중량부와 이중벽 탄소나노튜브 0.69 중량부를 첨가한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
<비교예 1>
제2 양극 활물질층 제조시 도전재로서 이중벽 탄소나노튜브 0.7 중량부만을 첨가한 것을 제외하고는 실시예 1과 동일하게 양극을 제조하였다.
[실험예 1: 평균 입경]
D50은 입자크기 분포의 50% 기준에서의 입자크기로 정의될 수 있으며, 레이저 회절법(laser diffraction method)을 이용하여 측정하였다.
[실험예 2: 1차 입자의 평균 결정 크기]
LynxEye XE-T potision sensitive detector가 장착된 Bruker Endeavor (Cu Kα, λ=1.54 A°)를 이용, FDS 0.5 °, 2-theta 15 °에서 90 ° 영역에 대한 step size 0.02 °로 전체 스캔 시간(total scan time)이 20분이 되도록 시료를 측정하였다.
측정된 데이터에 대해 각 위치(site)에서 전위(charge) (transition metal site에서의 metal들은 +3, Li site의 Ni은 +2)와 cation mixing을 고려하여 Rietveld refinement를 수행하였다. 결정 크기(crystallite size 분석시 instrumental bradening 은 Bruker TOPAS program에 implement 되어 있는 Fundemental Parameter Approach (FPA)를 이용하여 고려되었고, 피팅시 측정 범위의 전체 피크가 사용되었다. 피트 형태(peak shate)은 TOPAS에서 사용 가능한 피크 타입 중 FP(First Principle)로 Lorenzian contribution만 사용되어 피팅하였고, 이 때 strain은 고려하지 않았다.
전술한 방법으로 제조한 실시예 및 비교예의 양극을 이용하여 다음과 같이 리튬 이차전지를 제조하였다.
음극 활물질로서 인조흑연과 천연흑연이 5:5로 혼합된 혼합물, 도전재로서 superC, 바인더로서 SBR/CMC를 96:1:3의 중량비로 혼합하여 음극 슬러리를 제작하고 이를 구리 집전체의 일면에 도포, 건조 및 압연하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극 사이에 다공성 폴리에틸렌의 세퍼레이터를 개재하여 전극 조립체를 제조하고, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 전해액을 주입하여 리튬 이차 전지 풀셀을 제조하였다.
이때 전해액은 에틸렌카보네이트/에틸메틸카보네이트/디에틸카보네이트/(EC/EMC/DEC의 혼합 부피비=3/4/3)로 이루어진 유기 용매에 1.0M 농도의 리튬헥사플루오로포스페이트(LiPF6)를 용해시켜 제조하였다.
[실험예 3. 전극 압연시 롤 프레스의 압력에 따른 단선 여부 측정]
실시예 및 비교예의 양극을 롤 프레스를 이용하여 압연시, 압력에 따른 기공도의 변화 및 단선 여부를 측정하여 하기 표 1에 나타냈다.
Item unit Roll press의 압력 (ton)
15 20 25 30 35
비교예 1 porosity % 27 26 25 단선 -
실시예 1 25 24 23 22 21
실시예 2 25 24 23 22 21
[실험예 4. 수명 특성 및 저항 증가율 측정]
실시예 및 비교예에 따라 제조한 리튬 이차전지 풀셀에 대하여 다음과 같은 방법으로 400 사이클 후의 용량 유지율 및 저항 증가율을 측정하였다
제조된 리튬 이차전지 풀셀 (full cell)에 대해, 45℃에서 CC-CV모드로 0.5C 로 4.2V가 될 때까지 충전하고, 1C의 정전류로 2.5V까지 방전하여 900회 충방전 실험을 진행하였을 시의 용량 유지율과 저항 증가율을 측정하였고 그 결과를 도 3 및 표 2에 나타냈다.
Cycle RPT unit 비교예 1 실시예 1 실시예 2
Capacity Retention @900th % 80.7 86.3 84.5
DCIR Increase @900th % 154.9 134.7 144.3
[실험예 5. MP(Multi probe resistivity) 테스트]
실시예 및 비교예에 따라 제조한 양극 전극을 5*5 사이즈로 타발 후 Multi probe resistivity 측정 장비를 이용하여 면저항을 측정하였다. 그 결과를 표 3에 나타냈다.
비교예 1 실시예 1 실시예 2
MP 저항(mOhm*cm2) 45.1 (-) 18.8 (▼58.3%) 57.1 (▲26.6%)
0.1sR@SOC50(mOhm) 366.4 (-) 319.9 (▼12.7%) 351.4 (▼4.1%)
1kHzR@SOC50(mOhm) 162.8 (-) 137.6 (▼15.5%) 151.3 (▼8.1%)

Claims (15)

  1. 집전체;
    상기 집전체의 적어도 일면 위에 형성되며,
    평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자, 상기 거대 1차 입자가 응집되어 형성된 평균 입경(D50) 3 내지 7 ㎛인 2차 입자 및 이들 입자의 혼합물로 이루어진 군으로부터 선택된 적어도 1종 이상의 양극 활물질 입자 및 도전재를 포함하는 제1 양극 활물질층; 및
    상기 제1 양극 활물질층 위에 형성되며,
    평균 입경(D50)이 0.5 내지 3 ㎛인 거대 1차 입자가 응집되어 형성되거나 또는 상기 거대 1차 입자보다 작은 평균 입경(D50)을 갖는 미세 1차 입자가 응집되어 형성된 평균 입경(D50) 1 내지 7 ㎛인 2차 소입자로 된 양극 활물질 입자와,
    상기 2차 소입자보다 큰 평균 입경(D50)을 가지며, 상기 거대 1차 입자보다 작은 평균 입경(D50)을 갖는 미세 1차 입자가 응집되어 형성된 평균 입경(D50) 7 내지 20 ㎛인 2차 대입자로 된 양극 활물질 입자 및
    도전재를 포함하는 제2 양극 활물질층을 구비하고,
    상기 양극 활물질 입자는 니켈계 리튬 전이금속 산화물로 된 양극 활물질이고,
    상기 제2 양극 활물질층에 포함되는 도전재는 단일벽 탄소나노튜브를 포함하는, 리튬 이차전지용 양극.
  2. 제1항에 있어서,
    상기 미세 1차 입자의 평균 입경(D50)이 100 내지 900 nm인 것을 특징으로 하는 리튬 이차전지용 양극.
  3. 제1항에 있어서,
    상기 미세 1차 입자의 평균 입경(D50)이 100 내지 400 nm인 것을 특징으로 하는 리튬 이차전지용 양극.
  4. 제1항에 있어서,
    상기 제1 양극 활물질층에 포함된 거대 1차 입자의 평균 결정 크기는 200 nm 이상인 것을 특징으로 하는 리튬 이차전지용 양극.
  5. 제1항에 있어서,
    상기 제1 및 제2 양극 활물질층에 포함된 거대 1차 입자의 평균 입경(D50)이 1 내지 3 ㎛인 것을 특징으로 하는 리튬 이차전지용 양극.
  6. 제1항에 있어서,
    상기 2차 소입자의 평균 입경(D50)이 2 내지 5 ㎛이고, 상기 2차 대입자의 평균 입경(D50)이 8 내지 16 ㎛인 것을 특징으로 하는 리튬 이차전지용 양극.
  7. 제1항에 있어서,
    상기 2차 대입자의 평균입경(D50):상기 2차 소입자의 평균입경(D50)은 5:1 내지 2:1인 것을 특징으로 하는 리튬 이차전지용 양극.
  8. 제1항에 있어서,
    상기 2차 소입자의 함량은 상기 2차 대입자 100 중량부를 기준으로 10 내지 100 중량부인 것을 특징으로 하는 리튬 이차전지용 양극.
  9. 제1항에 있어서,
    상기 제2 양극 활물질층의 두께(a)는 상기 제1 양극 활물질층의 두께(b) 대비 하기 식을 만족하는 것을 특징으로 하는 리튬 이차전지용 양극:
    (식) 3b≤a
  10. 제1항에 있어서,
    상기 2차 소입자는 상기 미세 1차 입자가 응집되어 형성된 2차 소입자로만 이루어진 것을 특징으로 하는 리튬 이차전지용 양극.
  11. 제1항에 있어서,
    상기 니켈계 리튬 전이금속 산화물은 LiaNi1-x-yCoxM1 yM2 wO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤w≤0.1, 0≤x+y≤0.2, M1은 Mn 또는 Al 중 적어도 1종 이상의 금속이고, M2은 Ba, Ca, Zr, Ti, Mg, Ta, Nb 및 Mo으로 이루어진 군에서 선택된 1종 이상의 금속 원소임)로 표시되는 것을 특징으로 하는 리튬 이차전지용 양극.
  12. 제11항에 있어서,
    상기 니켈계 리튬 전이금속 산화물은 LiaNi1-x-yCoxMnyO2 (1.0≤a≤1.5, 0≤x≤0.2, 0≤y≤0.2, 0≤x+y≤0.2)로 표시되는 것을 특징으로 하는 리튬 이차전지용 양극.
  13. 제1항에 있어서,
    상기 단일벽 탄소나노튜브의 함량은 제2 양극 활물질층 총 중량을 기준으로 0.001 중량% 이상인 것을 특징으로 하는 리튬 이차전지용 양극.
  14. 제1항에 있어서,
    상기 제2 양극 활물질층의 도전재 함량은 제2 양극 활물질층 총 중량을 기준으로 0.5 내지 3 중량%인 것을 특징으로 하는 리튬 이차전지용 양극.
  15. 제1항 내지 제14항 중 어느 한 항에 따른 양극을 구비하는 리튬 이차 전지.
PCT/KR2022/008169 2021-06-24 2022-06-09 리튬 이차 전지용 양극 및 이를 구비하는 양극 및 리튬 이차 전지 WO2022270799A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/028,897 US20240030428A1 (en) 2021-06-24 2022-06-09 Positive Electrode for Lithium Secondary Battery and Positive Electrode and Lithium Secondary Battery Comprising the Same
CN202280005826.XA CN116261792A (zh) 2021-06-24 2022-06-09 锂二次电池用正极以及包含其的锂二次电池
EP22828646.4A EP4199140A4 (en) 2021-06-24 2022-06-09 CATHODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY THEREFROM
JP2023514134A JP7463618B2 (ja) 2021-06-24 2022-06-09 リチウム二次電池用正極、それを備える正極及びリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0082673 2021-06-24
KR20210082673 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022270799A1 true WO2022270799A1 (ko) 2022-12-29

Family

ID=84544569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/008169 WO2022270799A1 (ko) 2021-06-24 2022-06-09 리튬 이차 전지용 양극 및 이를 구비하는 양극 및 리튬 이차 전지

Country Status (6)

Country Link
US (1) US20240030428A1 (ko)
EP (1) EP4199140A4 (ko)
JP (1) JP7463618B2 (ko)
KR (1) KR20230000428A (ko)
CN (1) CN116261792A (ko)
WO (1) WO2022270799A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002065A (ja) * 2013-06-14 2015-01-05 ソニー株式会社 二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6167854B2 (ja) * 2013-10-31 2017-07-26 株式会社豊田自動織機 蓄電装置用電極及び蓄電装置用電極組立体
JP2017157529A (ja) * 2016-03-04 2017-09-07 セイコーエプソン株式会社 電極複合体、電極複合体の製造方法、正極活物質層およびリチウム電池
KR20180058197A (ko) * 2016-11-23 2018-05-31 주식회사 엘지화학 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200043612A (ko) * 2018-10-18 2020-04-28 에스케이이노베이션 주식회사 리튬 이차 전지
KR20210082673A (ko) 2019-12-26 2021-07-06 맹성현 Rfid를 이용한 장애인 주차구역 관리 시스템

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5590283B2 (ja) 2008-09-22 2014-09-17 住友金属鉱山株式会社 リチウム複合ニッケル酸化物およびその製造方法
KR20130139711A (ko) * 2012-06-13 2013-12-23 삼성에스디아이 주식회사 양극 활물질, 그 제조방법, 및 이를 포함하는 리튬 전지
CN105074967B (zh) * 2013-03-15 2018-07-10 应用材料公司 用于制造较厚电极的多层电池电极设计
EP3526844B1 (en) * 2016-10-11 2021-06-09 GRST International Limited Cathode slurry for lithium ion battery
EP3457468B1 (en) * 2017-09-19 2020-06-03 Kabushiki Kaisha Toshiba Positive electrode, secondary battery, battery pack, and vehicle
KR102453273B1 (ko) * 2018-05-23 2022-10-11 주식회사 엘지에너지솔루션 리튬 이차전지용 양극재, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
JP2019220356A (ja) 2018-06-20 2019-12-26 積水化学工業株式会社 リチウムイオン二次電池用正極材料及びその製造方法、並びにリチウムイオン二次電池用正極材料からなる正極活物質層及びそれを用いたリチウムイオン二次電池
US20210265627A1 (en) 2018-06-29 2021-08-26 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active substance for non-aqueous electrolyte secondary cell, and non-aqueous electrolyte secondary cell
EP3905391A4 (en) 2018-12-28 2022-01-26 Panasonic Intellectual Property Management Co., Ltd. ACTIVE MATERIAL OF POSITIVE ELECTRODE FOR SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY AND SECONDARY NON-AQUEOUS ELECTROLYTE BATTERY
KR102517419B1 (ko) 2019-04-04 2023-03-31 주식회사 엘지에너지솔루션 리튬 이차전지용 전극
WO2021029652A1 (ko) * 2019-08-12 2021-02-18 주식회사 엘지화학 리튬 이차전지용 양극 및 이를 포함하는 리튬 이차전지
KR20210067735A (ko) 2019-11-29 2021-06-08 주식회사 엘지에너지솔루션 인편상 흑연을 포함하는 이차전지용 양극 및 이를 포함하는 이차전지
EP4071846A4 (en) * 2019-12-02 2024-03-27 Contemporary Amperex Technology Co., Limited POSITIVE ELECTRODE SHEET FOR RECHARGEABLE BATTERY, RECHARGEABLE BATTERY, BATTERY MODULE, BATTERY PACK AND DEVICE
WO2021109080A1 (zh) * 2019-12-05 2021-06-10 宁德时代新能源科技股份有限公司 锂离子电池、用于锂离子电池的正极极片及装置
CN111446488A (zh) * 2020-04-30 2020-07-24 宁德时代新能源科技股份有限公司 一种二次电池及其装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002065A (ja) * 2013-06-14 2015-01-05 ソニー株式会社 二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6167854B2 (ja) * 2013-10-31 2017-07-26 株式会社豊田自動織機 蓄電装置用電極及び蓄電装置用電極組立体
JP2017157529A (ja) * 2016-03-04 2017-09-07 セイコーエプソン株式会社 電極複合体、電極複合体の製造方法、正極活物質層およびリチウム電池
KR20180058197A (ko) * 2016-11-23 2018-05-31 주식회사 엘지화학 이차전지용 양극, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20200043612A (ko) * 2018-10-18 2020-04-28 에스케이이노베이션 주식회사 리튬 이차 전지
KR20210082673A (ko) 2019-12-26 2021-07-06 맹성현 Rfid를 이용한 장애인 주차구역 관리 시스템

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199140A4

Also Published As

Publication number Publication date
US20240030428A1 (en) 2024-01-25
EP4199140A1 (en) 2023-06-21
JP7463618B2 (ja) 2024-04-08
KR20230000428A (ko) 2023-01-02
CN116261792A (zh) 2023-06-13
EP4199140A4 (en) 2024-03-27
JP2023540088A (ja) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2020106024A1 (ko) 리튬 이차전지용 양극 활물질 및 이의 제조 방법
WO2019221497A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2017150945A1 (ko) 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질
WO2022124774A1 (ko) 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022139311A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2018160023A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2022124801A1 (ko) 리튬 이차 전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 양극
WO2022103105A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2021154021A1 (ko) 이차전지용 양극 활물질 전구체, 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2016053056A1 (ko) 리튬 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2020085731A1 (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2021187907A1 (ko) 리튬 이차전지용 양극재, 이를 포함하는 양극 및 리튬 이차전지
WO2022154603A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법, 이를 포함하는 양극 및 리튬 이차 전지
WO2022114872A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022092922A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022098136A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2019194609A1 (ko) 리튬 이차전지용 양극 활물질의 제조방법, 리튬 이차전지용 양극 활물질, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2021025464A1 (ko) 이차전지용 양극 활물질의 제조방법
WO2023277382A1 (ko) 리튬 이차 전지용 양극 및 이를 구비하는 리튬 이차 전지
WO2020145638A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법, 상기 제조방법에 의해 제조된 양극 활물질
WO2020111655A1 (ko) 리튬 이차전지용 양극 활물질 전구체의 제조 방법
WO2023038472A1 (ko) 리튬 이차 전지용 양극 활물질 분말, 이의 제조 방법, 리튬 이차 전지용 양극, 및 리튬 이차 전지
WO2022169331A1 (ko) 리튬 이차 전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차 전지
WO2022119157A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차전지
WO2022270799A1 (ko) 리튬 이차 전지용 양극 및 이를 구비하는 양극 및 리튬 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023514134

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022828646

Country of ref document: EP

Effective date: 20230316

WWE Wipo information: entry into national phase

Ref document number: 18028897

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE