WO2022270439A1 - ガス分離設備およびガス分離方法 - Google Patents

ガス分離設備およびガス分離方法 Download PDF

Info

Publication number
WO2022270439A1
WO2022270439A1 PCT/JP2022/024372 JP2022024372W WO2022270439A1 WO 2022270439 A1 WO2022270439 A1 WO 2022270439A1 JP 2022024372 W JP2022024372 W JP 2022024372W WO 2022270439 A1 WO2022270439 A1 WO 2022270439A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
gas
adsorbent
gas component
adsorption
Prior art date
Application number
PCT/JP2022/024372
Other languages
English (en)
French (fr)
Inventor
伸行 紫垣
祐太 西川
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to EP22828356.0A priority Critical patent/EP4342571A1/en
Priority to JP2022562794A priority patent/JP7207626B1/ja
Priority to CN202280040530.1A priority patent/CN117580632A/zh
Priority to AU2022298220A priority patent/AU2022298220A1/en
Priority to KR1020237042263A priority patent/KR20240005074A/ko
Publication of WO2022270439A1 publication Critical patent/WO2022270439A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/10Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/20Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40007Controlling pressure or temperature swing adsorption
    • B01D2259/40009Controlling pressure or temperature swing adsorption using sensors or gas analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • B01D53/0476Vacuum pressure swing adsorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to gas separation equipment and gas separation methods.
  • the pressure swing adsorption (PSA) method is used as a method for separating specific gas components contained in raw material gases.
  • the PSA method is a gas separation method that utilizes the fact that the amount of gas components adsorbed on an adsorbent varies depending on the gas species and its partial pressure.
  • Patent Document 1 as a gas separation method using the PSA method, "a gas separation and recovery method that does not have a washing process, the desorption process is divided into a plurality of time zones, and the desorbed gas is separated for each time zone. ([Claim 1]). According to this method, it is stated that ⁇ the concentration of the collected gas can be increased without performing a washing process, and therefore, a high-concentration target gas component can be separated and collected with less power consumption'' ([0013 ]).
  • the present invention has been made in view of the above points, and an object of the present invention is to efficiently separate specific gas components contained in the raw material gas using the PSA method.
  • a gas separation facility for separating and recovering the gas component 1 from a raw material gas containing at least the gas component 1 and the gas component 2 by a pressure swing adsorption method, wherein the gas component 1 and the gas component 2 are absorbed.
  • an adsorption tower filled with an adsorbent to be desorbed; an introduction part for introducing the raw material gas into the adsorption tower for causing the adsorbent to adsorb the raw material gas; and the adsorption for desorbing the raw material gas adsorbed by the adsorbent.
  • a decompression unit for depressurizing the column a temperature measurement unit for measuring the temperature of the adsorbent, a temperature adjustment unit for adjusting the temperature of the adsorbent, and the temperature adjustment so that the temperature of the adsorbent reaches a target temperature.
  • the target temperature is a temperature determined by comparing temperature change rates of effective adsorption amounts of the gas component 1 and the gas component 2 with respect to the adsorbent. Separation facility.
  • the target temperature is a temperature at which the temperature change rate of the effective adsorption amount of the gas component 1 to the adsorbent is smaller than the temperature change rate of the effective adsorption amount of the gas component 2 to the adsorbent.
  • Step 3 For the gas component 1 and the gas component 2, the temperature change rate Xi (T A , T B ) of the effective adsorption amount is compared, and the change temperature T B that satisfies the following formula (1) is set to the target temperature. decide. However, 0 ⁇ 1.
  • the decompression unit includes an exhaust line for exhausting the raw material gas desorbed from the adsorbent, and the exhaust line includes a branch line for exhausting the gas component 1 and a branch line for exhausting the gas component 2.
  • the gas separation facility according to any one of the above [1] to [3], which is branched into a branch line.
  • the gas separation equipment according to any one of [1] to [4] above, wherein the temperature adjustment unit indirectly adjusts the temperature of the adsorbent by adjusting the temperature of the source gas. .
  • the temperature adjustment unit includes a heat exchanger capable of variably controlling at least one of a heat medium flow rate and a heat transfer area, and by using the heat exchanger to adjust the temperature of the raw material gas,
  • the raw material gas is introduced into an adsorption tower filled with an adsorbent to be desorbed and adsorbed by the adsorbent, and the adsorption tower is depressurized to desorb the raw material gas adsorbed by the adsorbent and adsorb the raw material gas.
  • the temperature of the adsorbent is measured using a temperature measurement unit that measures the temperature of the agent, and the temperature adjustment unit that adjusts the temperature of the adsorbent is controlled so that the temperature of the adsorbent reaches the target temperature.
  • the target temperature is a temperature determined by comparing temperature change rates of effective adsorption amounts of the gas component 1 and the gas component 2 on the adsorbent.
  • the target temperature is a temperature at which the temperature change rate of the effective adsorption amount of the gas component 1 to the adsorbent is smaller than the temperature change rate of the effective adsorption amount of the gas component 2 to the adsorbent.
  • Step 3 For the gas component 1 and the gas component 2, the temperature change rate Xi (T A , T B ) of the effective adsorption amount is compared, and the change temperature T B that satisfies the following formula (1) is set to the target temperature. decide. However, 0 ⁇ 1.
  • the gas component 1 and the gas component 2 are adsorbed on the adsorbent, and the gas component 1 and the gas component 2 adsorbed on the adsorbent are desorbed in divided time zones.
  • the gas separation method according to any one of [10].
  • the temperature of the adsorbent is measured using the temperature measuring unit after at least 5 cycles have elapsed, with the source gas being adsorbed on the adsorbent and then desorbed as one cycle.
  • the gas separation method according to any one of [8] to [11] above, wherein the adjustment unit is controlled to adjust the temperature of the adsorbent to the target temperature.
  • the temperature adjustment unit includes a heat exchanger capable of variably controlling at least one of a heat medium flow rate and a heat transfer area, and by using the heat exchanger to adjust the temperature of the raw material gas, The gas separation method according to the above [14], wherein the temperature of the adsorbent is adjusted.
  • the PSA method can be used to efficiently separate specific gas components contained in the source gas.
  • FIG. 1 is a graph showing an example of CO 2 adsorption isotherms measured at different temperatures.
  • 4 is a graph showing an example of a CO adsorption isotherm measured while changing the temperature.
  • 1 is a graph showing an example of adsorption isotherms of N 2 measured at different temperatures.
  • 4 is a graph showing an example of adsorption isotherms of gas component 1 (CO 2 ) and gas component 2 (N 2 ).
  • FIG. 4 is a graph showing an example of adsorption isotherms of gas component 1 (CO 2 ) and gas component 2 (N 2 ) when changing from reference temperature TA to change temperature TB . It is a schematic diagram which shows the gas separation equipment of 2nd Embodiment. It is a schematic diagram which shows the gas separation equipment of 3rd Embodiment. 1 is a schematic diagram showing gas separation equipment used in Examples 1 and 2 and Comparative Example 1.
  • FIG. 2 is a graph showing CO 2 recovery for Examples 1-2 and Comparative Example 1.
  • FIG. 1 is a schematic diagram showing a gas separation facility 11 of the first embodiment.
  • Gas separation equipment 11 is equipment for separating and recovering gas component 1 from a source gas containing at least gas component 1 (e.g., CO 2 ) and gas component 2 (e.g., N 2 ) by a pressure swing adsorption (PSA) method.
  • PSA pressure swing adsorption
  • the gas separation equipment 11 is mainly composed of a vertical adsorption tower 12 through which gas flows vertically.
  • the adsorption tower 12 is filled with an adsorbent (not shown) that adsorbs and desorbs (adsorbs and desorbs) the gas component 1 and the gas component 2 .
  • adsorption tower 12a and adsorption tower 12b are arranged in parallel.
  • the number of adsorption towers 12 is not limited to two, and may be one or three or more.
  • the introduction line 13 introduces a raw material gas (a gas containing at least gas component 1 and gas component 2) into the adsorption tower 12 for adsorption by the adsorbent.
  • An on-off valve 21 is provided in the middle of the introduction line 13 .
  • the introduction line 13 constitutes an introduction section.
  • An offgas exhaust line 14 is connected to the other end side of the adsorption tower 12 (lower end side in FIG. 1).
  • the off-gas is the source gas that has been introduced into the adsorption tower 12 but has not been adsorbed by the adsorbent. Offgas is exhausted via offgas exhaust line 14 .
  • An on-off valve 22 is provided in the middle of the offgas exhaust line 14 .
  • a desorption gas exhaust line 15 is connected to the off-gas exhaust line 14 upstream of the on-off valve 22 .
  • the desorption gas exhaust line 15 is connected to a vacuum pump 18 .
  • By driving the vacuum pump 18, the inside of the adsorption tower 12 is depressurized, and the raw material gas adsorbed on the adsorbent is desorbed.
  • the raw material gas (desorbed gas) desorbed from the adsorbent is exhausted through the desorbed gas exhaust line 15 .
  • An on-off valve 23 is provided upstream of the vacuum pump 18 in the desorption gas exhaust line 15 .
  • the desorption gas exhaust line 15 is branched downstream of the vacuum pump 18 (discharge side of the vacuum pump 18), and a branch line 16 and a branch line 17 are provided.
  • the branch line 16 and the branch line 17 are provided with an on-off valve 24 and an on-off valve 25, respectively.
  • gas component 1 and gas component 2 contained in the source gas for example, gas containing gas component 2 that is not desired to be recovered (impurity gas) is exhausted via branch line 16 .
  • gas containing the gas component 1 desired to be recovered collected gas
  • is exhausted via the branch line 17 is exhausted via the branch line 17 .
  • the desorption gas exhaust line 15, the branch line 16, the branch line 17 and the vacuum pump 18 constitute a decompression section.
  • the adsorption tower 12 is provided with a temperature measuring section 26 for measuring the temperature of the adsorbent filled inside the adsorption tower 12 .
  • the temperature measurement unit 26 is not particularly limited, but is, for example, a thermocouple.
  • a sheath tube (not shown) for a thermocouple that reaches the inside of the adsorption tower 12 may be provided on the outer peripheral portion of the adsorption tower 12 .
  • a plurality of temperature measurement units 26 may be provided for each adsorption tower 12 .
  • the temperature measurement units 26a and 26b are arranged separately in the vertical direction of the adsorption tower 12 . Thereby, the temperature of the adsorbent can be measured evenly.
  • a temperature control unit 31 is provided in the middle of the introduction line 13 from the source gas supply source 61 to the adsorption tower 12 .
  • the temperature adjustment unit 31 is not particularly limited, and for example, a known heater such as an electric heater, which is an electric heating device, is used. be done.
  • the temperature adjustment unit 31 adjusts the temperature of the source gas introduced into the adsorption tower 12 by heating the source gas flowing through the introduction line 13 .
  • the raw material gas at the reference temperature T A for example, 25° C.
  • T B T A ⁇ T B
  • the temperature of the adsorbent in the adsorption tower 12 is also initially at the reference temperature TA , but the raw material gas at the changed temperature TB is introduced into the adsorption tower 12 and adsorbed and desorbed by the adsorbent, The adsorbent, which had been at the reference temperature T A , is also heated to gradually reach the change temperature T B .
  • T A the temperature of the raw material gas introduced into the adsorption tower 12 in this way, the temperature of the adsorbent packed inside the adsorption tower 12 is indirectly adjusted.
  • the temperature adjustment unit 31 is not limited to the example described above.
  • a jacket heater may be provided as the temperature control section 31 on the outer peripheral portion of the adsorption tower 12 .
  • the adsorbent filled inside the adsorption tower 12 is heated from the outer peripheral portion of the adsorption tower 12 .
  • the inner diameter of the adsorption tower 12 is large, poor heat transfer tends to occur, and it may be difficult to uniformly heat the adsorbent to the center of the adsorption tower 12 .
  • the source gas is also introduced into the central portion of the adsorption tower 12. Therefore, it is easy to uniformly heat the adsorbent to the center of the adsorption tower 12 .
  • the adsorbent is preferably heated uniformly.
  • a controller 35 is connected to the temperature controller 31 .
  • the control unit 35 is, for example, a commercially available PC (personal computer). Under the control of the control unit 35, the temperature adjustment unit 31 is driven and raised to a desired temperature. Thus, the raw material gas flowing through the introduction line 13 is heated to a desired temperature.
  • ⁇ Adsorption isotherm> 2 3 and 4 are graphs showing examples of adsorption isotherms of CO 2 , CO and N 2 measured at different temperatures, respectively.
  • the adsorption isotherms in FIGS. 2 to 4 are adsorption isotherms measured using 13X zeolite as an adsorbent (adsorption isotherms when each gas component is adsorbed and desorbed on 13X zeolite). 2 to 4, the temperature T at which the adsorption isotherms are measured is changed by 15°C in the range of 10 to 70°C.
  • the adsorption isotherm is the relationship between the pressure and the equilibrium adsorption amount Q, the horizontal axis indicates the pressure (partial pressure), and the vertical axis indicates the equilibrium adsorption amount.
  • the adsorption of CO 2 is an order of magnitude greater than that of CO and N 2 .
  • the adsorption isotherm is nonlinear with a large slope at low pressure because CO2 , which has a large adsorption capacity, rapidly adsorbs inside the pores of the adsorbent at low pressure. CO2 desorbs very little at high pressures and desorbs rapidly when decompressed to low pressures.
  • the adsorption isotherms of N2 and CO with small adsorption capacity are linear in a wider pressure range than that of CO2 . N2 and CO are desorbed in the process from high pressure to low pressure.
  • the adsorption isotherm is a graph showing the correlation between the pressure P and the equilibrium adsorption amount Q at a constant temperature T. As shown in FIGS. 2 to 4, the higher the temperature T, the smaller the equilibrium adsorption amount Q. .
  • the effective adsorption amount ⁇ Q corresponding to the same pressure swing width also changes in the same manner, and the higher the temperature T, the smaller the effective adsorption amount ⁇ Q.
  • the gas component 1 is carbon dioxide (CO 2 ) and the gas component 2 is nitrogen (N 2 ) will be described below.
  • FIG. 5 is a graph showing an example of adsorption isotherms for gas component 1 (CO 2 ) and gas component 2 (N 2 ).
  • the pressure swing adsorption (PSA) method utilizes the phenomenon that the equilibrium adsorption amount Q for the adsorbent changes due to the pressure swing.
  • a change in the equilibrium adsorption amount Q (also simply referred to as "adsorption amount Q") is called the effective adsorption amount ⁇ Q.
  • An adsorbent is used in which the effective adsorption amount ⁇ Q 1 ( ⁇ Q CO2 ) of gas component 1 (CO 2 ) is greater than the effective adsorption amount ⁇ Q 2 ( ⁇ Q N2 ) of gas component 2 (N 2 ). Thereby, the gas component 1 (CO 2 ) can be separated using the PSA method.
  • the adsorbent is not limited to 13X zeolite, and other adsorbents such as ZSM-5 can also be used as long as they exhibit an adsorption isotherm with the same shape as above.
  • the on-off valve 21 of the introduction line 13 is opened, and the raw material gas is introduced into the adsorption tower 12 from the raw material gas supply source 61 via the introduction line 13 . After that, the on-off valve 21 is closed. As a result, the source gas is adsorbed by the adsorbent filled inside the adsorption tower 12 . More specifically, as shown in FIG. 1, the gas component 1 having a large adsorptive power is adsorbed in a region close to the inlet of the adsorption tower 12 (the connecting portion between the introduction line 13 and the adsorption tower 12). On the other hand, the gas component 2 having a small adsorption force is adsorbed in a region far from the inlet of the adsorption tower 12 .
  • the on-off valve 23 of the desorption gas exhaust line 15 is closed, and the on-off valve 22 of the off-gas exhaust line 14 is opened.
  • the raw material gas (off-gas) that has not been adsorbed by the adsorbent is exhausted via the off-gas exhaust line 14 .
  • a temperature measurement section 26a and a temperature measurement section 26b may be provided in the area where the gas component 1 is adsorbed and the area where the gas component 2 is adsorbed, respectively.
  • the on-off valve 22 of the offgas exhaust line 14 and the on-off valve 25 of the branch line 17 are closed. It is closed, and the on-off valve 23 of the desorption gas exhaust line 15 and the on-off valve 24 of the branch line 16 are opened. Then, by driving the vacuum pump 18, the pressure inside the adsorption tower 12 is started.
  • the impurity gas containing the gas component 2 having a small adsorptive power (for convenience, simply referred to as “gas component 2”) is desorbed from the adsorbent and passes through the desorbed gas exhaust line 15 and the branch line 16. and exhausted (first time period). At this time, the gas component 2 is desorbed from the adsorbent without passing through the region where the gas component 1 is adsorbed. Therefore, the gas component 1 is prevented from being partially desorbed from the adsorbent and exhausted.
  • the on-off valve 24 of the branch line 16 is closed and the on-off valve 25 of the branch line 17 is opened.
  • the vacuum pump 18 is driven to reduce the pressure inside the adsorption tower 12 .
  • the recovered gas containing the gas component 1 having a large adsorptive power (for convenience, also simply referred to as "gas component 1") is desorbed from the adsorbent, via the desorbed gas exhaust line 15 and the branch line 17, It is exhausted (second time period).
  • the pressure inside the adsorption tower 12 may be reduced more than in the first time period.
  • the gas component 1 is separated and recovered.
  • the gas component 1 and the gas component 2 can be separated for each divided time period and recovered from different branch lines.
  • cleaning may be performed by using part of the desorption gas of another adsorption tower as cleaning gas.
  • part of the high-purity gas component 1 (CO 2 ) desorbed from one adsorption tower 12a is used to expel gas component 2 (N 2 ) from another adsorption tower 12b.
  • the temperature adjustment unit 31 by driving the temperature adjustment unit 31, the temperature of the adsorbent filled in the adsorption tower 12 is changed from the reference temperature T A (for example, 25° C.) to a change temperature T B higher than the reference temperature T A (for example, , 70°C). This makes it easier for the gas component 2 to desorb from the adsorbent during the first time period. Alternatively, before the first time period, gas component 2 is likely to be exhausted as off-gas without being adsorbed by the adsorbent.
  • the temperature of the adsorbent is too high, the effective adsorption amount of the gas component 1 becomes too small. In that case, the gas component 1 is also likely to be desorbed during the first time period (or is likely to be exhausted as off-gas before the first time period), which is not preferable. Therefore, a target temperature is set, and the temperature of the adsorbent is adjusted so as to reach this target temperature.
  • the target temperature is a temperature determined by comparing the temperature change rates of the effective adsorption amounts of gas component 1 and gas component 2 with respect to the adsorbent.
  • the adsorption isotherms for N2 decrease in slope with increasing temperature over a wide pressure range (see Figure 4). That is, the effective adsorption amount ⁇ QN2 of N2 tends to decrease as the temperature rises, and is highly dependent on temperature (the temperature change rate is large). The same applies to the effective adsorption amount ⁇ Q CO of CO (see FIG. 3).
  • the adsorption isotherm of CO2 shows that with increasing temperature, the change in slope is small at high pressure (almost parallel downward shift), but the slope decreases significantly at low pressure (e.g., below 10 kPa) (Fig. 2).
  • the temperature change rate of the effective adsorption amount ⁇ Q 1 ( ⁇ Q CO2 ) of the gas component 1 (CO 2 ) is set as the target temperature.
  • a temperature smaller than the temperature change rate of the effective adsorption amount ⁇ Q 2 ( ⁇ Q N2 ) is set. This increases the difference while maintaining the relationship ⁇ Q 1 > ⁇ Q 2 , making it easier to separate the gas component 1 using the PSA method.
  • the target temperature is determined, for example, according to steps 1 to 3 below.
  • the pressure swing width is appropriately determined for each gas component i, and may be the same or different for each gas component i.
  • the reference temperature T A is not particularly limited, and is, for example, an arbitrary temperature selected from the normal temperature range (5 to 35° C.).
  • Step 3 For gas component 1 and gas component 2, the temperature change rate Xi (T A , T B ) of the effective adsorption amount is compared, and the change temperature T B that satisfies the following formula (1) is determined as the target temperature. . However, 0 ⁇ 1. Specifically, ⁇ is 0.5, for example. X 1 (T A , T B ) ⁇ X 2 (T A , T B ) (1)
  • FIG. 6 is a graph showing an example of adsorption isotherms of gas component 1 (CO 2 ) and gas component 2 (N 2 ) when changing from reference temperature TA to change temperature TB .
  • ⁇ Q CO2 (T A ): ⁇ Q CO2 (T B ) 1:0.9
  • the raw material gas contains other gas components (gas component 3, gas component 4, etc.) in addition to gas component 1 and gas component 2, X 1 (T A , T B ) ⁇ X 3 ( T A , T B ), X 1 (T A , T B ) ⁇ X 4 (T A , T B ), etc. are also satisfied, and the target temperature is determined.
  • another gas component is regarded as another gas component 2, and the target temperature is determined for this another gas component 2 as well so as to satisfy the above formula (1).
  • the change temperature T B (target temperature) is appropriately set depending on the type of adsorbent and gas within a range that satisfies T A ⁇ T B.
  • T B is too high, for example, the effective adsorption amount ⁇ Q 1 ( ⁇ Q CO2 ) of gas component 1 (CO 2 ) becomes too small, and the required packing amount of the adsorbent increases. may become large.
  • T B is preferably 100° C. or less.
  • the temperature change amount of the effective adsorption amount ⁇ Q differs depending on the type of adsorbent. For this reason, the upper limit of the change temperature T B is appropriately set in consideration of, for example, the type of adsorbent, the cost of the adsorbent, and the restriction on the size of the adsorption tower.
  • a subject that determines such a target temperature is not particularly limited.
  • the control unit 35 may perform calculations to determine the target temperature automatically based on a program or the like, or upon receiving an operation by an operator of the gas separation equipment 11 .
  • the operator of the gas separation equipment 11 may determine the target temperature using another computer and input the determined target temperature to the control unit 35 . Then, based on the determined target temperature, the control unit 35 drives and controls the temperature adjustment unit 31 .
  • one cycle is performed until the raw material gas is adsorbed on the adsorbent and then desorbed. More specifically, the raw material gas is introduced into the adsorption tower 12, the on-off valve 21 is closed, and then the raw material gas (desorption gas) is discharged from the adsorption tower 12 through the desorption gas exhaust line 15.
  • One cycle is defined as the time until the gas is exhausted.
  • the temperature of the adsorbent packed in the adsorption tower 12 may change when introduction (adsorption) of the raw material gas is started, compared to before the start. Therefore, the temperature of the adsorbent is measured using the temperature measuring unit 26 after at least five cycles have passed. This stabilizes the temperature of the adsorbent and enables accurate temperature measurement.
  • the temperature adjustment unit 31 is controlled to adjust the temperature of the adsorbent to the target temperature.
  • the temperature of the adsorbent may slightly fluctuate due to the influence of heat of adsorption and heat of desorption of the source gas.
  • the heat of adsorption is exothermic and the heat of desorption is endothermic, so the temperature of the adsorbent is highest after the adsorption step is completed and lowest after the desorption step is completed.
  • the purity of gas component 1 in the desorption gas is greatly affected by the desorption behavior of the raw material gas at the beginning of the desorption process (that is, immediately after the completion of the adsorption process) in which a large amount of gas component 2 is desorbed.
  • the above-described first time period (including the beginning of the desorption process, that is, immediately after the adsorption process is completed) It is preferable to desorb a large amount of the gas component 2 by adjusting the temperature of the adsorbent. Therefore, as the temperature measured by the temperature measuring unit 26, it is preferable to use the temperature immediately after the adsorption step in which the temperature of the adsorbent is the highest, that is, the maximum value of the temperature amplitude measured by the temperature measuring unit.
  • FIG. 7 is a schematic diagram showing the gas separation equipment 11a of the second embodiment. Parts that are the same as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the temperature control unit 41 of the gas separation equipment 11a has a heat exchanger 42 arranged in the middle of the introduction line 13 through which the raw material gas flows.
  • the heat exchanger 42 is connected to a heat medium source 43 via a heat medium line 45 .
  • a pump 44 and a plurality of on-off valves 46 are provided in the heat medium line 45 .
  • a heat medium (not shown) flows from the heat medium source 43 to the heat exchanger 42 via the heat medium line 45 .
  • the raw material gas flowing through the introduction line 13 is heat-exchanged in the heat exchanger 42 to adjust the temperature.
  • the heat medium includes, for example, a liquid heat medium such as hot waste water, a gaseous heat medium such as exhaust gas, etc., and is appropriately selected according to the specifications of the heat exchanger 42 and the like.
  • a low temperature heat transfer medium can also be used, as described below.
  • a thermocouple (not shown) or the like is placed in the heat exchanger 42 to appropriately measure the temperatures of the heat medium and the raw material gas.
  • the heat exchanger 42 can variably control at least one of the heat medium flow rate and heat transfer area, as described below.
  • a flow control valve 47 is provided upstream of the heat exchanger 42 in the heat medium line 45 .
  • the flow control valve 47 can variably control the flow rate of the heat medium flowing through the heat exchanger 42 .
  • a bypass 48 that does not pass through the heat exchanger 42 is connected to the heat medium line 45 via an on-off valve 49 .
  • an on-off valve 49 By opening the on-off valve 49 , part of the heat medium flowing through the heat medium line 45 can bypass the heat exchanger 42 and circulate. As a result, for example, even when it is difficult to control the flow rate of the heat medium by the flow control valve 47, the flow rate of the heat medium flowing through the heat exchanger 42 can be variably controlled.
  • the heat medium line 45 passing through the heat exchanger 42 is divided into a plurality of lines, and in FIG. 7, a heat medium line 45a and a heat medium line 45b are illustrated as an example.
  • a state in which the heat medium flows only through the heat medium line 45a or the heat medium line 45b, a state in which the heat medium flows through both the heat medium line 45a and the heat medium line 45b, and the like can be appropriately selected.
  • the surfaces (heat transfer surfaces) that transfer heat to the raw material gas flowing through the introduction line 13 are divided, and the areas (heat transfer areas) can be variably controlled.
  • an electric heating device such as an electric heater can be considered as the temperature adjustment unit 31 (see FIG. 1) in the first embodiment.
  • the temperature change in the adsorption isotherm of CO 2 , N 2 , etc. is a phenomenon that occurs at a low temperature of about 100° C. or less (see FIGS. 2 to 4)
  • the energy conversion efficiency from electricity to heat is It can be said that using a low electric heating device is inefficient. If the temperature is about 100° C. or less, for example, warm waste water generated in a factory or the like can be used as a heat medium, and the raw material gas (and thus the adsorbent) can be heated by the low-temperature waste heat.
  • the heat exchanger 42 that can adjust the temperature of the raw material gas using a heat medium is used. As a result, unused waste heat can be effectively utilized, and the efficiency is high. It should be noted that since a normal heat exchanger is designed with a constant heat medium flow rate and a constant heat transfer area, it is difficult to control the temperature of the raw material gas. Therefore, in the second embodiment, the heat exchanger 42 that can control at least one of the heat medium flow rate and the heat transfer area is used. Thereby, for example, even when the temperature of the heat medium is not constant, the temperature of the source gas can be adjusted.
  • FIG. 8 is a schematic diagram showing a gas separation facility 11b of the third embodiment. Parts that are the same as those in the first and second embodiments are indicated by the same reference numerals, and explanations thereof are omitted.
  • the gas separation equipment 11 b has a gas circulation section 51 around the temperature adjustment section 41 .
  • the gas circulation unit 51 has a circulation line 52 connected from the outlet side of the heat exchanger 42 to the inlet side of the introduction line 13 .
  • a pump 53 is arranged in the middle of the circulation line 52 . By driving the pump 53 , part of the source gas on the outlet side of the heat exchanger 42 is circulated to the inlet side of the heat exchanger 42 .
  • variable control of the heat transfer area of the heat exchanger 42 (see FIG. 7) is difficult in terms of design.
  • the source gas repeatedly circulates through the heat exchanger 42, so that an effect equivalent to the effect of increasing the heat transfer area of the heat exchanger 42 can be obtained.
  • FIG. 9 is a schematic diagram showing the gas separation equipment 11c used in Examples 1 and 2 and Comparative Example 1.
  • the same parts as those of the first to third embodiments described with reference to FIGS. 1, 7 and 8 are denoted by the same reference numerals, and descriptions thereof are omitted.
  • the introduction line 13 arranged on the entrance side of the adsorption tower 12 and the outer periphery of the adsorption tower 12 are provided with a temperature adjustment unit 31, which is an electric heater.
  • the temperature of the raw material gas flowing through the introduction line 13 and the temperature of the adsorbent 30 can be controlled.
  • the temperature measurement part 26 is a thermocouple.
  • the adsorption tower 12 is provided with a sheath pipe 27 that reaches the inside of the adsorption tower 12, and by inserting a temperature measurement part 26 (thermocouple) into the sheath pipe 27, the inside of the adsorption tower 12 is filled with The temperature of the adsorbent 30 can be measured.
  • a temperature measurement part 26 thermocouple
  • Example 1 Using cylinder gas and mass flow controllers (both not shown), 22 vol% CO2 , 24 vol% CO, 49 vol% N2 and 5 vol% H2 simulating blast furnace gas discharged from a steel mill A four-component mixed gas was prepared and used as a source gas.
  • a SUS column with an inner diameter of 40 mm and a barrel length of 250 mm was used as the small adsorption tower 12 .
  • the inside of the adsorption tower 12 was filled with 190 g of 13X zeolite ( ⁇ 1.5 mm pellets) as the adsorbent 30 .
  • the temperature adjustment unit 31 electric heater
  • T A 25° C.
  • T B change temperature
  • This target temperature is determined in advance according to steps 1 to 3 described above, and satisfies equation (1) described above.
  • the temperature of the adsorbent 30 was determined using the temperature measuring section 26 (thermocouple) inserted into the sheath tube 27 . More specifically, it was determined from the maximum value of the obtained temperature amplitude data.
  • the raw material gas was introduced into the adsorption tower 12 through the introduction line 13 under conditions of a flow rate of 5.4 NL/min and a pressure of 151 kPa, and was adsorbed by the adsorbent 30 .
  • a part of the raw material gas was not adsorbed on the adsorbent 30 and was discharged as offgas from the offgas exhaust line 14 .
  • the pressure inside the adsorption tower 12 was reduced to 6 kPa using the vacuum pump 18 to desorb the raw material gas adsorbed on the adsorbent 30 .
  • the total time of the adsorption step and desorption step per cycle was 200 seconds (adsorption step: 100 seconds, desorption step: 100 seconds).
  • the source gas (desorbed gas) desorbed from the adsorbent 30 was recovered as recovered gas.
  • a gas analyzer (not shown) was used to measure the CO2 concentration of the recovered gas.
  • the CO2 recovery rate was obtained based on the CO2 concentration of the recovered gas and the CO2 concentration of the source gas. The results are shown in the graph of FIG.
  • the ratio of the circulation time t1 of the collected gas through the branch line 17 to the circulation time t2 of the impurity gas through the branch line 16 was changed. Accordingly, a gas analyzer (not shown) was used to adjust the CO 2 concentration of the finally obtained gas to 90% by volume.
  • Example 2 The target temperature was 60°C. This target temperature is determined in advance according to steps 1 to 3 described above, and satisfies equation (1) described above. Except for this, the recovery gas was recovered in the same manner as in Example 1, and the CO 2 recovery rate was determined. The results are shown in the graph of FIG.
  • FIG. 10 is a graph showing the CO 2 recovery of Examples 1-2 and Comparative Example 1.
  • FIG. 10 As shown in the graph of FIG. 10, in Examples 1 and 2 in which the temperature of the adsorbent was adjusted to the target temperature (90 ° C. or 60 ° C.), the CO 2 recovery rate was higher than in Comparative Example 1 without this. CO 2 could be efficiently separated from the source gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

PSA法を用いて、原料ガスに含まれる特定のガス成分を効率良く分離する。少なくともガス成分1およびガス成分2を含有する原料ガスから、圧力スイング吸着法により、ガス成分1を分離回収するガス分離設備11は、ガス成分1およびガス成分2を吸脱着する吸着剤が充填された吸着塔12を備え、原料ガスを吸着剤に吸着させるために吸着塔12に導入し、吸着剤に吸着した原料ガスを脱着させるために吸着塔12を減圧する。ガス分離設備11は、更に、吸着剤の温度を測定する温度測定部26と、吸着剤の温度を調整する温度調整部31と、吸着剤の温度が目標温度になるように、温度調整部31を制御する制御部35と、を備える。目標温度は、ガス成分1およびガス成分2の吸着剤に対する有効吸着量の温度変化率を比較することにより決定される。

Description

ガス分離設備およびガス分離方法
 本発明は、ガス分離設備およびガス分離方法に関する。
 従来、原料ガスに含まれる特定のガス成分を分離する方法として、圧力スイング吸着(PSA)法が用いられている。PSA法は、吸着剤に対するガス成分の吸着量がガス種およびその分圧によって異なることを利用したガス分離方法である。
 例えば、特許文献1には、PSA法を用いたガス分離方法として、「洗浄工程を有しないガス分離回収方法であり、脱着工程を複数の時間帯に区分けし、脱着ガスを前記各時間帯毎に分けて回収する」方法が開示されている([請求項1])。この方法によれば「洗浄工程を行うことなく回収ガスの濃度を高めることができ、このため少ない電力消費量で高濃度の目的ガス成分を分離回収することができる」とされている([0013])。
特開2018-114464号公報
 近年、原料ガスに含まれる特定のガス成分を効率良く分離することが望まれている。
 例えば、最近では、製鉄プロセス等から排出される二酸化炭素(CO)からメタノールなどの有用な化学品を製造するCCU(Carbon capture and utilization)が着目されている。この場合、製鉄プロセスから排出される高炉ガス(CO、CO、Nを含む原料ガス)からCOを効率良く分離することが望まれる。
 本発明は、以上の点を鑑みてなされたものであり、PSA法を用いて、原料ガスに含まれる特定のガス成分を効率良く分離することを目的とする。
 本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[16]を提供する。
[1]少なくともガス成分1およびガス成分2を含有する原料ガスから、圧力スイング吸着法により、上記ガス成分1を分離回収するガス分離設備であって、上記ガス成分1および上記ガス成分2を吸脱着する吸着剤が充填された吸着塔と、上記原料ガスを上記吸着剤に吸着させるために上記吸着塔に導入する導入部と、上記吸着剤に吸着した上記原料ガスを脱着させるために上記吸着塔を減圧する減圧部と、上記吸着剤の温度を測定する温度測定部と、上記吸着剤の温度を調整する温度調整部と、上記吸着剤の温度が目標温度になるように、上記温度調整部を制御する制御部と、を備え、上記目標温度は、上記ガス成分1および上記ガス成分2の上記吸着剤に対する有効吸着量の温度変化率を比較することにより決定される温度である、ガス分離設備。
[2]上記目標温度は、上記ガス成分1の上記吸着剤に対する有効吸着量の温度変化率が、上記ガス成分2の上記吸着剤に対する有効吸着量の温度変化率よりも小さい温度である、上記[1]に記載のガス分離設備。
[3]上記制御部が、上記目標温度を下記ステップ1~3に従い決定する、上記[1]または[2]に記載のガス分離設備。
 ステップ1:上記ガス成分1および上記ガス成分2について、温度Tにおけるガス成分i(i=1,2)の吸着等温線から、圧力スイング幅に対応する平衡吸着量の変化である有効吸着量ΔQ(T)を計算する。
 ステップ2:上記ガス成分1および上記ガス成分2について、基準温度Tと基準温度Tから変化させた変化温度Tとの有効吸着量ΔQ(T)の温度変化率X(T,T)=1-{ΔQ(T)/ΔQ(T)}を計算する。ただし、T<Tである。
 ステップ3:上記ガス成分1および上記ガス成分2について、有効吸着量の温度変化率X(T,T)を比較して、下記式(1)を満たす変化温度Tを目標温度に決定する。ただし、0<α≦1である。
 X(T,T)<α×X(T,T)…(1)
[4]上記減圧部は、上記吸着剤から脱着した上記原料ガスを排気する排気ラインを備え、上記排気ラインは、上記ガス成分1が排気される分岐ラインと、上記ガス成分2が排気される分岐ラインとに分岐している、上記[1]~[3]のいずれかに記載のガス分離設備。
[5]上記温度調整部は、上記原料ガスの温度を調整することにより、間接的に、上記吸着剤の温度を調整する、上記[1]~[4]のいずれかに記載のガス分離設備。
[6]上記温度調整部は、熱媒流量および伝熱面積の少なくともいずれかを可変制御できる熱交換器を含み、上記熱交換器を用いて上記原料ガスの温度を調整することにより、間接的に、上記吸着剤の温度を調整する、上記[5]に記載のガス分離設備。
[7]上記熱交換器の出側の上記原料ガスの一部を上記熱交換器の入側に循環させるガス循環部を備える、上記[6]に記載のガス分離設備。
[8]少なくともガス成分1およびガス成分2を含有する原料ガスから、圧力スイング吸着法により、上記ガス成分1を分離回収するガス分離方法であって、上記ガス成分1および上記ガス成分2を吸脱着する吸着剤が充填された吸着塔に、上記原料ガスを導入して上記吸着剤に吸着させ、上記吸着塔を減圧することにより、上記吸着剤に吸着した上記原料ガスを脱着させ、上記吸着剤の温度を測定する温度測定部を用いて、上記吸着剤の温度を測定し、上記吸着剤の温度を調整する温度調整部を制御して、上記吸着剤の温度が目標温度になるように調整し、上記目標温度は、上記ガス成分1および上記ガス成分2の上記吸着剤に対する有効吸着量の温度変化率を比較することにより決定される温度である、ガス分離方法。
[9]上記目標温度は、上記ガス成分1の上記吸着剤に対する有効吸着量の温度変化率が、上記ガス成分2の上記吸着剤に対する有効吸着量の温度変化率よりも小さい温度である、上記[8]に記載のガス分離方法。
[10]上記目標温度を下記ステップ1~3に従い決定する、上記[8]または[9]に記載のガス分離方法。
 ステップ1:上記ガス成分1および上記ガス成分2について、温度Tにおけるガス成分i(i=1,2)の吸着等温線から、圧力スイング幅に対応する平衡吸着量の変化である有効吸着量ΔQ(T)を計算する。
 ステップ2:上記ガス成分1および上記ガス成分2について、基準温度Tと基準温度Tから変化させた変化温度Tとの有効吸着量ΔQ(T)の温度変化率X(T,T)=1-{ΔQ(T)/ΔQ(T)}を計算する。ただし、T<Tである。
 ステップ3:上記ガス成分1および上記ガス成分2について、有効吸着量の温度変化率X(T,T)を比較して、下記式(1)を満たす変化温度Tを目標温度に決定する。ただし、0<α≦1である。
 X(T,T)<α×X(T,T)…(1)
[11]上記ガス成分1および上記ガス成分2を上記吸着剤に吸着させて、上記吸着剤に吸着した上記ガス成分1および上記ガス成分2を、区分けした時間帯ごとに分けて脱着させる、上記[8]~[10]のいずれかに記載のガス分離方法。
[12]上記原料ガスを上記吸着剤に吸着させ、その後、脱着させるまでを1サイクルとして、少なくとも5サイクルが経過した後に、上記温度測定部を用いて上記吸着剤の温度を測定し、上記温度調整部を制御して、上記吸着剤の温度が目標温度になるように調整する、上記[8]~[11]のいずれかに記載のガス分離方法。
[13]上記吸着剤の温度として、上記温度測定部により測定される温度振幅の最大値を用いる、上記[8]~[12]のいずれかに記載のガス分離方法。
[14]上記温度調整部は、上記原料ガスの温度を調整することにより、間接的に、上記吸着剤の温度を調整する、上記[8]~[13]のいずれかに記載のガス分離方法。
[15]上記温度調整部は、熱媒流量および伝熱面積の少なくともいずれかを可変制御できる熱交換器を含み、上記熱交換器を用いて上記原料ガスの温度を調整することにより、間接的に、上記吸着剤の温度を調整する、上記[14]に記載のガス分離方法。
[16]上記熱交換器の出側の上記原料ガスの一部を上記熱交換器の入側に循環させる、上記[15]に記載のガス分離方法。
 本発明によれば、PSA法を用いて、原料ガスに含まれる特定のガス成分を効率良く分離できる。
第1実施形態のガス分離設備を示す模式図である。 温度を変化させて測定したCOの吸着等温線の一例を示すグラフである。 温度を変化させて測定したCOの吸着等温線の一例を示すグラフである。 温度を変化させて測定したNの吸着等温線の一例を示すグラフである。 ガス成分1(CO)およびガス成分2(N)の吸着等温線の一例を示すグラフである。 基準温度Tから変化温度Tに変化させた場合におけるガス成分1(CO)およびガス成分2(N)の吸着等温線の一例を示すグラフである。 第2実施形態のガス分離設備を示す模式図である。 第3実施形態のガス分離設備を示す模式図である。 実施例1~2および比較例1で用いたガス分離設備を示す模式図である。 実施例1~2および比較例1のCO回収率を示すグラフである。
[第1実施形態]
 以下、図1~図9に基づいて、ガス分離設備を説明する。以下の説明は、ガス分離方法の説明を兼ねる。
 〈ガス分離設備の構成〉
 図1は、第1実施形態のガス分離設備11を示す模式図である。
 ガス分離設備11は、少なくともガス成分1(例えば、CO)およびガス成分2(例えば、N)を含有する原料ガスから、圧力スイング吸着(PSA)法により、ガス成分1を分離回収する設備である。
 ガス分離設備11は、ガスが上下方向に流れる縦型の吸着塔12を主体に構成されている。吸着塔12の内部には、ガス成分1およびガス成分2を吸脱着(吸着および脱着)する吸着剤(図示せず)が充填されている。
 図1に示すガス分離設備11は、いわゆる多塔式であり、2台の吸着塔12(吸着塔12aおよび吸着塔12b)が並列に配置されている。吸着塔12の台数は、2台に限定されず、1台でもよく、3台以上であってもよい。
 吸着塔12の一端側(図1中の上端側)には、原料ガス供給源61から原料ガスが流れる導入ライン13が接続している。
 原料ガス供給源61は、例えば、原料ガスとして高炉ガスを排出する高炉である。
 導入ライン13は、原料ガス(少なくともガス成分1およびガス成分2を含有するガス)を、吸着剤に吸着させるために、吸着塔12の内部に導入する。導入ライン13の途中には、開閉弁21が設けられている。導入ライン13は、導入部を構成する。
 吸着塔12の他端側(図1中の下端側)には、オフガス排気ライン14が接続している。オフガスは、吸着塔12に導入されたものの、吸着剤に吸着しなかった原料ガスである。オフガスは、オフガス排気ライン14を経由して、排気される。オフガス排気ライン14の途中には、開閉弁22が設けられている。
 オフガス排気ライン14における開閉弁22よりも上流側には、脱着ガス排気ライン15が接続している。
 脱着ガス排気ライン15は、真空ポンプ18に接続している。真空ポンプ18を駆動することにより、吸着塔12の内部が減圧されて、吸着剤に吸着していた原料ガスが脱着される。吸着剤から脱着した原料ガス(脱着ガス)は、脱着ガス排気ライン15を経由して、排気される。脱着ガス排気ライン15における真空ポンプ18よりも上流側には、開閉弁23が設けられている。
 脱着ガス排気ライン15における真空ポンプ18よりも下流側(真空ポンプ18の吐出側)は、分岐しており、分岐ライン16および分岐ライン17が設けられている。
 分岐ライン16および分岐ライン17には、それぞれ、開閉弁24および開閉弁25が設けられている。
 原料ガスに含まれるガス成分1およびガス成分2のうち、例えば、回収を所望しないガス成分2を含むガス(不純物ガス)が、分岐ライン16を経由して排気される。一方、回収を所望するガス成分1を含むガス(回収ガス)が、分岐ライン17を経由して排気される。
 脱着ガス排気ライン15、分岐ライン16、分岐ライン17および真空ポンプ18は、減圧部を構成する。
 吸着塔12には、吸着塔12の内部に充填された吸着剤の温度を測定する温度測定部26が設けられている。
 温度測定部26は、特に限定されないが、例えば、熱電対である。温度測定部26が熱電対である場合、吸着塔12の外周部に、吸着塔12の内部に到達する熱電対用の鞘管(図示せず)を設けてもよい。この鞘管に熱電対を挿入することにより、吸着塔12の内部に充填された吸着剤の温度を容易に測定できる。
 吸着塔12ごとに、複数の温度測定部26を設けてもよい。例えば、図1においては、吸着塔12の上下方向に分散させて、温度測定部26aおよび温度測定部26bを配置している。これにより、吸着剤の温度を偏りなく測定できる。
 原料ガス供給源61から吸着塔12に至る導入ライン13の途中には、温度調整部31が設けられている。
 温度調整部31としては、特に限定されず、例えば、電気式加熱装置である電熱ヒータなどの公知のヒータが用いられ、その具体例としては、導入ライン13の外周部を覆うジャケット式ヒータが挙げられる。
 温度調整部31は、導入ライン13を流れる原料ガスを加熱することにより、吸着塔12の内部に導入される原料ガスの温度を調整する。こうして、例えば、基準温度T(例えば、25℃)であった原料ガスは、昇温して、変化温度Tとなる(T<T)。
 このとき、吸着塔12の吸着剤の温度も、当初は基準温度Tであるが、変化温度Tとなった原料ガスが吸着塔12に導入されて吸着剤に吸脱着されることにより、基準温度Tであった吸着剤も加熱されて、次第に変化温度Tとなる。
 こうして、吸着塔12の内部に導入される原料ガスの温度を調整することにより、間接的に、吸着塔12の内部に充填された吸着剤の温度が調整される。
 なお、温度調整部31としては、上述した例に限定されない。
 例えば、吸着塔12が小型である場合には、吸着塔12の外周部に、温度調整部31としてジャケット式ヒータを設けてもよい。この場合、吸着塔12の外周部から、吸着塔12の内部に充填された吸着剤を加熱する。もっとも、この場合、吸着塔12の内径が大きいと、伝熱不良が起こりやすく、吸着塔12の中心部まで吸着剤を一様に加熱しにくいことがある。
 これに対して、上述した例(原料ガスの温度を調整することにより、間接的に、吸着剤の温度を調整する例)によれば、吸着塔12の中心部にも原料ガスが導入されるため、吸着塔12の中心部まで吸着剤を一様に加熱しやすい。
 後述するように、15℃程度の小さい温度変化でも、吸着剤の平衡吸着量は顕著に変化する場合がある(図2~図4を参照)。このため、吸着剤は、一様に加熱されることが好ましい。
 温度調整部31には、制御部35が接続している。制御部35は、一例として、市販のPC(パーソナルコンピュータ)である。
 制御部35による制御を受けて、温度調整部31は駆動し、所望の温度まで上昇する。こうして、導入ライン13を流れる原料ガスが所望の温度に加熱される。
 〈吸着等温線〉
 図2、図3および図4は、それぞれ、温度を変化させて測定したCO、COおよびNの吸着等温線の一例を示すグラフである。
 図2~図4の吸着等温線は、吸着剤として13Xゼオライトを用いて測定された吸着等温線(13Xゼオライトに各ガス成分を吸脱着させたときの吸着等温線)である。
 図2~図4においては、吸着等温線を測定する際の温度Tを、10~70℃の範囲で、15℃ずつ変化させている。吸着等温線は、圧力と平衡吸着量Qとの関係であり、横軸は圧力(分圧)を示し、縦軸は平衡吸着量を示す。
 図2~図4を比較すると、COの吸着量は、COおよびNの吸着量よりも1桁ほど大きい。
 吸着力の大きいCOは、低圧では吸着剤の細孔内部に急激に吸着するため、吸着等温線は、低圧での傾きが大きい非線形である。COは、高圧では殆ど脱着せず、低圧まで減圧されると急激に脱着する。
 一方、吸着力の小さいNおよびCOの吸着等温線は、COよりも広い圧力範囲において直線状である。NおよびCOは、高圧から低圧になる過程で脱着する。
 吸着等温線は、一定の温度Tにおける圧力Pと平衡吸着量Qとの相関を示すグラフであるが、図2~図4に示すように、温度Tが高くなるほど、平衡吸着量Qは小さくなる。そして、同じ圧力スイング幅に対応する有効吸着量ΔQも同様に変化し、温度Tが高くなるほど、有効吸着量ΔQは小さくなる。
 以下では、便宜的に、ガス成分1が二酸化炭素(CO)であり、かつ、ガス成分2が窒素(N)である場合を例に説明する。
 図5は、ガス成分1(CO)およびガス成分2(N)の吸着等温線の一例を示すグラフである。
 圧力スイング吸着(PSA)法では、吸着剤に対する平衡吸着量Qが、圧力スイングにより変化する現象を利用する。平衡吸着量Q(単に「吸着量Q」とも表記する)の変化は、有効吸着量ΔQと呼ばれる。図5に示すように、同じ圧力スイング幅であっても、ガス成分ごとに異なる有効吸着量ΔQ(i=1,2)を有する。
 ガス成分1(CO)の有効吸着量ΔQ(ΔQCO2)が、ガス成分2(N)の有効吸着量ΔQ(ΔQN2)よりも大きい吸着剤を用いる。これにより、PSA法を利用して、ガス成分1(CO)を分離できる。
 なお、吸着剤としては、上記と同様の形状の吸着等温線を示すものであれば、13Xゼオライトに限定されず、例えば、ZSM-5などの他の吸着剤も使用できる。
 〈PSA法によるガス分離〉
 図1に示すガス分離設備11において、少なくともガス成分1およびガス成分2を含有する原料ガスから、圧力スイング吸着(PSA)法により、ガス成分1を分離回収する方法について説明する。
 まず、導入ライン13の開閉弁21を開けて、原料ガス供給源61から、導入ライン13を経由して原料ガスを吸着塔12の内部に導入する。その後、開閉弁21は閉じる。
 これにより、原料ガスは、吸着塔12の内部に充填されている吸着剤に吸着する。
 より詳細には、図1に示すように、吸着塔12の導入口(導入ライン13と吸着塔12との接続部分)に近い領域に、吸着力の大きいガス成分1が吸着する。一方、吸着塔12の導入口から遠い領域に、吸着力の小さいガス成分2が吸着する。
 このとき、脱着ガス排気ライン15の開閉弁23を閉じ、かつ、オフガス排気ライン14の開閉弁22を開けておく。これにより、吸着剤に吸着しなかった原料ガス(オフガス)は、オフガス排気ライン14を経由して、排気される。
 なお、図1に示すように、ガス成分1が吸着する領域と、ガス成分2が吸着する領域とに、それぞれ、温度測定部26aと、温度測定部26bとを設けてもよい。
 図1に示すように、吸着塔12の内部に原料ガス(ガス成分1およびガス成分2)の分布が生じている状態で、オフガス排気ライン14の開閉弁22および分岐ライン17の開閉弁25を閉じ、かつ、脱着ガス排気ライン15の開閉弁23および分岐ライン16の開閉弁24を開ける。
 そして、真空ポンプ18を駆動することにより、吸着塔12の内部の減圧を開始する。
 これにより、まず、吸着力の小さいガス成分2を含む不純物ガス(便宜的に、単に「ガス成分2」ともいう)が吸着剤から脱着して、脱着ガス排気ライン15および分岐ライン16を経由して、排気される(第1時間帯)。
 このとき、ガス成分2は、ガス成分1が吸着している領域を通過することなく、吸着剤から脱着する。このため、ガス成分1が部分的に吸着剤から脱着して排気されることが抑制される。
 次に、分岐ライン16の開閉弁24を閉じ、かつ、分岐ライン17の開閉弁25を開ける。そのうえで、真空ポンプ18を駆動して、吸着塔12の内部を減圧する。
 これにより、吸着力の大きいガス成分1を含む回収ガス(便宜的に、単に「ガス成分1」ともいう)が吸着剤から脱着して、脱着ガス排気ライン15および分岐ライン17を経由して、排気される(第2時間帯)。第2時間帯では、第1時間帯よりも、吸着塔12の内部をより減圧してもよい。こうして、ガス成分1が分離回収される。
 このように、ガス分離設備11においては、ガス成分1とガス成分2とを、区分けした時間帯ごとに分けて、異なる分岐ラインから、回収できる。
 なお、吸着塔12においては、他の吸着塔の脱着ガスの一部を洗浄ガスとして使用する、いわゆる洗浄を実施してもよい。
 具体的には、例えば、1台の吸着塔12aから脱着される高純度のガス成分1(CO)の一部を、別の吸着塔12bのガス成分2(N)の追い出しに使用してもよい。
 ところで、図2~図4に基づいて説明したように、温度Tが高くなるほど、平衡吸着量Qは小さくなり、同じ圧力スイング幅に対応する有効吸着量ΔQも同様に小さくなる。
 そこで、温度調整部31を駆動して、吸着塔12に充填されている吸着剤の温度を、基準温度T(例えば、25℃)から、基準温度Tよりも高い変化温度T(例えば、70℃)にする。これにより、ガス成分2は、第1時間帯において、吸着剤から、より脱着しやすくなる。または、第1時間帯よりも前に、ガス成分2は、吸着剤に吸着しないで、オフガスとして、排気されやすくなる。
 もっとも、吸着剤の温度を上げすぎると、ガス成分1の有効吸着量が小さくなりすぎる。その場合、第1時間帯においてガス成分1も脱着しやすくなり(または、第1時間帯よりも前にオフガスとして排気されやすくなり)、好ましくない。
 そこで、目標温度を設定して、吸着剤の温度が、この目標温度になるように調整する。
 目標温度は、ガス成分1およびガス成分2の吸着剤に対する有効吸着量の温度変化率を比較することにより決定される温度である。
 Nの吸着等温線は、広い圧力範囲で、温度が高くなるに従い、傾きが減少する(図4を参照)。すなわち、Nの有効吸着量ΔQN2は、温度を上げると小さくなりやすく、温度依存性が大きい(温度変化率が大きい)。これは、COの有効吸着量ΔQCOも同様である(図3を参照)。
 一方、COの吸着等温線は、温度が高くなると、高圧では傾きの変化は小さい(ほぼ平行に下側にシフトする)が、低圧(例えば、10kPa未満)では傾きが顕著に減少する(図2を参照)。
 もっとも、吸着塔12の内部を真空状態まで減圧するのは、真空ポンプ18の運転効率が悪いため、一般的には、高圧(例えば、10kPa以上)で脱着を実施する。この場合、温度が高くなっても、吸着等温線の傾きの減少は小さい。
 すなわち、COの有効吸着量ΔQCO2は、温度を上げても小さくなりにくく、温度依存性が小さい(温度変化率が小さい)。
 このような有効吸着量ΔQの差異を考慮して、目標温度として、例えば、ガス成分1(CO)の有効吸着量ΔQ(ΔQCO2)の温度変化率が、ガス成分2(N)の有効吸着量ΔQ(ΔQN2)の温度変化率よりも小さい温度を設定する。
 これにより、ΔQ>ΔQの関係が維持された状態で、その差がより大きくなり、PSA法を利用して、ガス成分1をより分離しやすくなる。
 目標温度は、具体的には、例えば、下記ステップ1~3に従い決定する。
 ステップ1:ガス成分1およびガス成分2について、温度Tにおけるガス成分i(i=1,2)の吸着等温線から、圧力スイング幅に対応する平衡吸着量の変化である有効吸着量ΔQ(T)を計算する。温度Tにおけるガス成分iの吸着圧力(分圧)および脱着圧力(分圧)も適宜参照する。
 圧力スイング幅は、ガス成分iごとに適宜決定され、ガス成分iごとに同じであってもよく、異なっていてもよい。
 ステップ2:ガス成分1およびガス成分2について、基準温度Tと基準温度Tから変化させた変化温度Tとの有効吸着量ΔQ(T)の温度変化率X(T,T)=1-{ΔQ(T)/ΔQ(T)}を計算する。ただし、T<Tである。
 基準温度Tは、特に限定されず、例えば、常温(5~35℃)の範囲から選ばれる任意の温度である。
 ステップ3:ガス成分1およびガス成分2について、有効吸着量の温度変化率X(T,T)を比較して、下記式(1)を満たす変化温度Tを目標温度に決定する。ただし、0<α≦1である。αは、具体的には、例えば、0.5である。
 X(T,T)<α×X(T,T)…(1)
 図6は、基準温度Tから変化温度Tに変化させた場合におけるガス成分1(CO)およびガス成分2(N)の吸着等温線の一例を示すグラフである。
 図6においては、ΔQCO2(T):ΔQCO2(T)=1:0.9であり、かつ、ΔQN2(T):ΔQN2(T)=1:0.5であるから、以下のように計算されて、上記式(1)を満たす。
 XCO2(T,T)=1-{ΔQCO2(T)/ΔQCO2(T)}=0.1
 XN2(T,T)=1-{ΔQN2(T)/ΔQN2(T)}=0.5
 XCO2(T,T)<α×XN2(T,T
 原料ガスが、ガス成分1およびガス成分2のほかに、その他のガス成分(ガス成分3、ガス成分4など)を含有する場合は、X(T,T)<α×X(T,T)、X(T,T)<α×X(T,T)などもそれぞれ満たすように、目標温度を決定する。
 換言すれば、その他のガス成分を、別のガス成分2とみなし、この別のガス成分2についても、上記式(1)を満たすように、目標温度を決定する。
 変化温度T(目標温度)は、T<Tを満たす範囲で、吸着剤およびガスの種類によって適宜設定される。
 一方で、Tが高すぎると、例えばガス成分1(CO)の有効吸着量ΔQ(ΔQCO2)が小さくなりすぎて、吸着剤の必要充填量が増加し、その結果、吸着塔12が大型化する場合がある。これを避ける観点から、例えば吸着剤として13Xゼオライトを用いる場合には、Tは100℃以下が好ましい。
 吸着剤の種類によって、有効吸着量ΔQの温度変化量は、異なる。このため、変化温度Tの上限は、例えば、吸着剤の種類、吸着剤のコスト、吸着塔のサイズ制約などを考慮して、適宜設定される。
 このような目標温度を決定する主体は、特に限定されない。
 例えば、制御部35が、プログラム等に基づいて自動的に、または、ガス分離設備11の作業者による操作を受けて、計算を実行し、目標温度を決定してもよい。
 また、ガス分離設備11の作業者が、別の電子計算機を用いて目標温度を決定し、決定した目標温度を、制御部35に入力してもよい。
 そのうえで、決定された目標温度に基づいて、制御部35は、温度調整部31を駆動制御する。
 ここで、原料ガスを吸着剤に吸着させ、その後、脱着させるまでを1サイクルする。
 より具体的には、原料ガスを吸着塔12の内部に導入してから、開閉弁21を閉じ、その後、脱着ガス排気ライン15を経由して、その原料ガス(脱着ガス)を吸着塔12から排気するまでを1サイクルとする。
 吸着塔12に充填された吸着剤の温度は、原料ガスの導入(吸着)が開始されると、その開始前と比べて、変化する場合がある。そこで、少なくとも5サイクルが経過した後に、温度測定部26を用いて吸着剤の温度を測定する。これにより、吸着剤の温度が安定化して、正確な温度が測定できる。その後、温度調整部31を制御して、吸着剤の温度が目標温度になるように調整する。
 吸着剤の温度は、サイクル数が一定数以上に到達しても、原料ガスの吸着熱および脱着熱の影響により、わずかに変動する場合がある。
 一般的に、吸着熱は発熱であり、脱着熱は吸熱であるため、吸着剤の温度は、吸着工程の完了後が最も高く、脱着工程の完了後が最も低い。
 脱着ガスにおけるガス成分1の純度は、ガス成分2が多く脱着する脱着工程の初期(すなわち、吸着工程の完了直後)における原料ガスの脱着挙動による影響が大きい。
 つまり、例えば、上述した第2時間帯にガス成分1の純度が高い回収ガスを得るためには、上述した第1時間帯(脱着工程の初期、すなわち、吸着工程の完了直後を含む)に適切に吸着剤の温度を調整してガス成分2を多く脱着させることが好ましい。
 このため、温度測定部26が測定する温度としては、吸着剤の温度が最も高い吸着工程の完了直後の温度、すなわち、温度測定部により測定される温度振幅の最大値を用いることが好ましい。
[第2実施形態]
 図7は、第2実施形態のガス分離設備11aを示す模式図である。
 第1実施形態と同じ部分については、同じ符号で示し、説明も省略する。
 ガス分離設備11aの温度調整部41は、原料ガスが流れる導入ライン13の途中に配置された熱交換器42を有する。
 熱交換器42は、熱媒ライン45を介して、熱媒源43に接続している。熱媒ライン45には、ポンプ44および複数の開閉弁46が設けられている。開閉弁46を開けて、ポンプ44を駆動することにより、熱交換器42には、熱媒源43から、熱媒ライン45を経由して、熱媒(図示せず)が流れる。
 こうして、導入ライン13を流れる原料ガスは、熱交換器42において熱交換されて、温度が調整される。
 熱媒としては、例えば、温排水などの液状熱媒、排ガスなどのガス状熱媒などが挙げられ、熱交換器42の仕様などに応じて適宜選定される。後述するように、低温の熱媒も使用できる。熱媒および原料ガスの温度は、熱交換器42に熱電対(図示せず)などを配置し、適宜測定する。
 熱交換器42は、以下に説明するように、熱媒流量および伝熱面積の少なくともいずれかを可変制御できる。
 まず、図7に示すように、熱媒ライン45における熱交換器42よりも上流側には、流量調節弁47が設けられている。流量調節弁47によって、熱交換器42に流れる熱媒の流量を可変制御できる。
 また、図7に示すように、熱媒ライン45には、開閉弁49を介して、熱交換器42を通らないバイパス48が接続している。開閉弁49を開けることにより、熱媒ライン45を流れる熱媒の一部を、熱交換器42をバイパスさせて流通できる。
 これにより、例えば、流量調節弁47による熱媒流量の制御が難しい場合にも、熱交換器42に流れる熱媒の流量を可変制御できる。
 更に、熱交換器42を通る熱媒ライン45は、複数本に分かれており、図7では、一例として、熱媒ライン45aおよび熱媒ライン45bが図示されている。
 開閉弁46を開閉させることにより、熱媒ライン45aまたは熱媒ライン45bのみに熱媒が流れる状態、熱媒ライン45aおよび熱媒ライン45bの両方に熱媒が流れる状態などを、適宜選択できる。
 こうして、熱交換器42においては、導入ライン13を流れる原料ガスに熱を伝える面(伝熱面)が区分けされており、この面積(伝熱面積)を可変制御できる。
 ところで、上述したように、第1実施形態における温度調整部31(図1を参照)としては、例えば、電熱ヒータなどの電気式加熱装置が考えられる。
 もっとも、CO、Nなどの吸着等温線の温度変化は、100℃以下程度の低い温度で生じる現象であることから(図2~図4を参照)、電気から熱へのエネルギー変換効率が低い電気式加熱装置を用いるのは、非効率とも言える。
 100℃以下程度の温度であれば、例えば工場などで発生する温排水などを熱媒として用いて、その低温排熱により原料ガス(ひいては、吸着剤)を加熱できる。
 そこで、第2実施形態においては、熱媒を用いて原料ガスの温度を調整できる熱交換器42を用いる。これにより、未利用の排熱などを有効活用でき、経済性が高い。
 なお、通常の熱交換器では、熱媒流量および伝熱面積は一定として設計されるため、原料ガスの温度を制御しにくい。
 そこで、第2実施形態においては、熱媒流量および伝熱面積の少なくともいずれかを制御できる熱交換器42を用いる。これにより、例えば、熱媒の温度が一定ではない場合などであっても、原料ガスの温度を調整できる。
[第3実施形態]
 図8は、第3実施形態のガス分離設備11bを示す模式図である。
 第1~第2実施形態と同じ部分については、同じ符号で示し、説明も省略する。
 ガス分離設備11bは、温度調整部41の周辺に、ガス循環部51を有する。
 ガス循環部51は、導入ライン13における熱交換器42の出側から入側に接続した循環ライン52を有する。循環ライン52の途中には、ポンプ53が配置されている。ポンプ53を駆動することにより、熱交換器42の出側の原料ガスの一部が、熱交換器42の入側に循環される。
 例えば、熱交換器42の伝熱面積の可変制御(図7を参照)が設計的に難しい場合も考えられる。その場合、このような循環を繰り返すことにより、原料ガスが熱交換器42を繰り返し流通するため、熱交換器42の伝熱面積を増やす効果と同等の効果が得られる。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は、以下に説明する実施例に限定されない。
 〈ガス分離設備〉
 まず、以下に説明する実施例1~2および比較例1で用いたガス分離設備11cを、図9に基づいて説明する。
 図9は、実施例1~2および比較例1で用いたガス分離設備11cを示す模式図である。図1、図7および図8に基づいて説明した第1~第3実施形態と同じ部分については、同じ符号を付し、説明を省略する。
 吸着塔12の入側に配置された導入ライン13および吸着塔12の外周部には、図9に示すように、電熱ヒータである温度調整部31が設けられており、温度調整部31によって、導入ライン13を流れる原料ガスおよび吸着剤30の温度を制御できる。
 温度測定部26は、熱電対である。吸着塔12には、吸着塔12の内部に到達する鞘管27が設けられており、鞘管27に温度測定部26(熱電対)を挿入することにより、吸着塔12の内部に充填された吸着剤30の温度を測定できる。
 〈実施例1〉
 ボンベガスおよびマスフローコントローラ(いずれも図示せず)を用いて、製鉄所から排出される高炉ガスを模擬した、22体積%CO、24体積%CO、49体積%Nおよび5体積%Hの4成分混合ガスを調製し、これを原料ガスとして用いた。
 小型の吸着塔12として、内径40mm、胴長250mmのSUS製カラムを用いた。吸着塔12の内部に、吸着剤30として、13Xゼオライト(φ1.5mmペレット)190gを充填した。
 温度調整部31(電熱ヒータ)を駆動することにより、吸着剤30の温度を、基準温度T(25℃)から、目標温度である変化温度T(90℃)に加熱した。この目標温度は、事前に、上述したステップ1~3に従い決定されたものであり、上述した式(1)を満たす。
 吸着剤30の温度は、鞘管27に挿入された温度測定部26(熱電対)を用いて求めた。より詳細には、得られた温度振幅データの最大値から求めた。
 この状態において、原料ガスを、流量5.4NL/min、圧力151kPaの条件で、導入ライン13から吸着塔12の内部に導入して、吸着剤30に吸着させた。一部の原料ガスは、吸着剤30に吸着しないで、オフガス排気ライン14から、オフガスとして排出された。
 その後、真空ポンプ18を用いて、吸着塔12の内部を圧力6kPaまで減圧して、吸着剤30に吸着していた原料ガスを脱着させた。1サイクルあたりの吸着工程および脱着工程の合計時間は、200秒(吸着工程:100秒、脱着工程:100秒)とした。
 こうして、吸着剤30から脱着した原料ガス(脱着ガス)を、回収ガスとして回収した。ガス分析計(図示せず)を用いて、回収ガスのCO濃度を測定した。
 回収ガスのCO濃度と、原料ガスのCO濃度とに基づいて、CO回収率を求めた。結果を図10のグラフに示す。
 開閉弁25および開閉弁24を制御することにより、分岐ライン17を通る回収ガスの流通時間tと分岐ライン16を通る不純物ガスの流通時間tとの比(ガス流通時間比t/t)を変化させた。これにより、ガス分析計(図示せず)を用いて、最終的に得られるガスのCO濃度が90体積%になるように調整した。
 〈実施例2〉
 目標温度を60℃にした。この目標温度は、事前に、上述したステップ1~3に従い決定されたものであり、上述した式(1)を満たす。
 これ以外は、実施例1と同様にして、回収ガスを回収し、CO回収率を求めた。結果を図10のグラフに示す。
 〈比較例1〉
 温度調整部31(電熱ヒータ)を駆動しなかった。すなわち、吸着剤30の温度を、基準温度T(25℃)のままにした。
 それ以外は、実施例1と同様にして、回収ガスを回収し、CO回収率を求めた。結果を図10のグラフに示す。
 〈評価結果まとめ〉
 図10は、実施例1~2および比較例1のCO回収率を示すグラフである。
 図10のグラフに示すように、吸着剤の温度を目標温度(90℃または60℃)に調整した実施例1~2では、これをしなかった比較例1よりもCO回収率が高く、原料ガスからCOを効率良く分離できた。
 1:ガス成分1
 2:ガス成分2
11,11a,11b:ガス分離設備
12,12a,12b:吸着塔
13:導入ライン(導入部)
14:オフガス排気ライン
15:脱着ガス排気ライン(減圧部)
16:分岐ライン(減圧部)
17:分岐ライン(減圧部)
18:真空ポンプ(減圧部)
21,22,23,24,25:開閉弁
26,26a,26b:温度測定部
27:鞘管
30:吸着剤
31:温度調整部
35:制御部
41:温度調整部
42:熱交換器
43:熱媒源
44:ポンプ
45,45a,45b:熱媒ライン
46:開閉弁
47:流量調節弁
48:バイパス
49:開閉弁
51:ガス循環部
52:循環ライン
53:ポンプ
61:原料ガス供給源
 

Claims (16)

  1.  少なくともガス成分1およびガス成分2を含有する原料ガスから、圧力スイング吸着法により、前記ガス成分1を分離回収するガス分離設備であって、
     前記ガス成分1および前記ガス成分2を吸脱着する吸着剤が充填された吸着塔と、
     前記原料ガスを前記吸着剤に吸着させるために前記吸着塔に導入する導入部と、
     前記吸着剤に吸着した前記原料ガスを脱着させるために前記吸着塔を減圧する減圧部と、
     前記吸着剤の温度を測定する温度測定部と、
     前記吸着剤の温度を調整する温度調整部と、
     前記吸着剤の温度が目標温度になるように、前記温度調整部を制御する制御部と、
    を備え、
     前記目標温度は、前記ガス成分1および前記ガス成分2の前記吸着剤に対する有効吸着量の温度変化率を比較することにより決定される温度である、ガス分離設備。
  2.  前記目標温度は、前記ガス成分1の前記吸着剤に対する有効吸着量の温度変化率が、前記ガス成分2の前記吸着剤に対する有効吸着量の温度変化率よりも小さい温度である、請求項1に記載のガス分離設備。
  3.  前記制御部が、前記目標温度を下記ステップ1~3に従い決定する、請求項1または2に記載のガス分離設備。
     ステップ1:前記ガス成分1および前記ガス成分2について、温度Tにおけるガス成分i(i=1,2)の吸着等温線から、圧力スイング幅に対応する平衡吸着量の変化である有効吸着量ΔQ(T)を計算する。
     ステップ2:前記ガス成分1および前記ガス成分2について、基準温度Tと基準温度Tから変化させた変化温度Tとの有効吸着量ΔQ(T)の温度変化率X(T,T)=1-{ΔQ(T)/ΔQ(T)}を計算する。ただし、T<Tである。
     ステップ3:前記ガス成分1および前記ガス成分2について、有効吸着量の温度変化率X(T,T)を比較して、下記式(1)を満たす変化温度Tを目標温度に決定する。ただし、0<α≦1である。
     X(T,T)<α×X(T,T)…(1)
  4.  前記減圧部は、前記吸着剤から脱着した前記原料ガスを排気する排気ラインを備え、
     前記排気ラインは、前記ガス成分1が排気される分岐ラインと、前記ガス成分2が排気される分岐ラインとに分岐している、請求項1~3のいずれか1項に記載のガス分離設備。
  5.  前記温度調整部は、前記原料ガスの温度を調整することにより、間接的に、前記吸着剤の温度を調整する、請求項1~4のいずれか1項に記載のガス分離設備。
  6.  前記温度調整部は、
     熱媒流量および伝熱面積の少なくともいずれかを可変制御できる熱交換器を含み、
     前記熱交換器を用いて前記原料ガスの温度を調整することにより、間接的に、前記吸着剤の温度を調整する、請求項5に記載のガス分離設備。
  7.  前記熱交換器の出側の前記原料ガスの一部を前記熱交換器の入側に循環させるガス循環部を備える、請求項6に記載のガス分離設備。
  8.  少なくともガス成分1およびガス成分2を含有する原料ガスから、圧力スイング吸着法により、前記ガス成分1を分離回収するガス分離方法であって、
     前記ガス成分1および前記ガス成分2を吸脱着する吸着剤が充填された吸着塔に、前記原料ガスを導入して前記吸着剤に吸着させ、
     前記吸着塔を減圧することにより、前記吸着剤に吸着した前記原料ガスを脱着させ、
     前記吸着剤の温度を測定する温度測定部を用いて、前記吸着剤の温度を測定し、
     前記吸着剤の温度を調整する温度調整部を制御して、前記吸着剤の温度が目標温度になるように調整し、
     前記目標温度は、前記ガス成分1および前記ガス成分2の前記吸着剤に対する有効吸着量の温度変化率を比較することにより決定される温度である、ガス分離方法。
  9.  前記目標温度は、前記ガス成分1の前記吸着剤に対する有効吸着量の温度変化率が、前記ガス成分2の前記吸着剤に対する有効吸着量の温度変化率よりも小さい温度である、請求項8に記載のガス分離方法。
  10.  前記目標温度を下記ステップ1~3に従い決定する、請求項8または9に記載のガス分離方法。
     ステップ1:前記ガス成分1および前記ガス成分2について、温度Tにおけるガス成分i(i=1,2)の吸着等温線から、圧力スイング幅に対応する平衡吸着量の変化である有効吸着量ΔQ(T)を計算する。
     ステップ2:前記ガス成分1および前記ガス成分2について、基準温度Tと基準温度Tから変化させた変化温度Tとの有効吸着量ΔQ(T)の温度変化率X(T,T)=1-{ΔQ(T)/ΔQ(T)}を計算する。ただし、T<Tである。
     ステップ3:前記ガス成分1および前記ガス成分2について、有効吸着量の温度変化率X(T,T)を比較して、下記式(1)を満たす変化温度Tを目標温度に決定する。ただし、0<α≦1である。
     X(T,T)<α×X(T,T)…(1)
  11.  前記ガス成分1および前記ガス成分2を前記吸着剤に吸着させて、
     前記吸着剤に吸着した前記ガス成分1および前記ガス成分2を、区分けした時間帯ごとに分けて脱着させる、請求項8~10のいずれか1項に記載のガス分離方法。
  12.  前記原料ガスを前記吸着剤に吸着させ、その後、脱着させるまでを1サイクルとして、
     少なくとも5サイクルが経過した後に、前記温度測定部を用いて前記吸着剤の温度を測定し、前記温度調整部を制御して、前記吸着剤の温度が目標温度になるように調整する、請求項8~11のいずれか1項に記載のガス分離方法。
  13.  前記吸着剤の温度として、前記温度測定部により測定される温度振幅の最大値を用いる、請求項8~12のいずれか1項に記載のガス分離方法。
  14.  前記温度調整部は、前記原料ガスの温度を調整することにより、間接的に、前記吸着剤の温度を調整する、請求項8~13のいずれか1項に記載のガス分離方法。
  15.  前記温度調整部は、
     熱媒流量および伝熱面積の少なくともいずれかを可変制御できる熱交換器を含み、
     前記熱交換器を用いて前記原料ガスの温度を調整することにより、間接的に、前記吸着剤の温度を調整する、請求項14に記載のガス分離方法。
  16.  前記熱交換器の出側の前記原料ガスの一部を前記熱交換器の入側に循環させる、請求項15に記載のガス分離方法。
     
PCT/JP2022/024372 2021-06-24 2022-06-17 ガス分離設備およびガス分離方法 WO2022270439A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP22828356.0A EP4342571A1 (en) 2021-06-24 2022-06-17 Gas separation facility and gas separation method
JP2022562794A JP7207626B1 (ja) 2021-06-24 2022-06-17 ガス分離設備およびガス分離方法
CN202280040530.1A CN117580632A (zh) 2021-06-24 2022-06-17 气体分离设备及气体分离方法
AU2022298220A AU2022298220A1 (en) 2021-06-24 2022-06-17 Gas separation facility and gas separation method
KR1020237042263A KR20240005074A (ko) 2021-06-24 2022-06-17 가스 분리 설비 및 가스 분리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-104615 2021-06-24
JP2021104615 2021-06-24

Publications (1)

Publication Number Publication Date
WO2022270439A1 true WO2022270439A1 (ja) 2022-12-29

Family

ID=84545707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024372 WO2022270439A1 (ja) 2021-06-24 2022-06-17 ガス分離設備およびガス分離方法

Country Status (7)

Country Link
EP (1) EP4342571A1 (ja)
JP (1) JP7207626B1 (ja)
KR (1) KR20240005074A (ja)
CN (1) CN117580632A (ja)
AU (1) AU2022298220A1 (ja)
TW (1) TWI824576B (ja)
WO (1) WO2022270439A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575725A (en) * 1978-11-30 1980-06-07 Linde Ag Method of operating pressure alternation type adsorption device that periodically function
JPS60110318A (ja) * 1983-11-01 1985-06-15 ザ・ジョン・バン・カンパニー 単床式psa気体分離方法および装置
JPS63197513A (ja) * 1987-02-12 1988-08-16 Hitachi Ltd 吸着塔内温度制御方法
JPH08323127A (ja) * 1995-03-24 1996-12-10 L'air Liquide 極性のより低い化合物からの窒素の分離方法
JPH0925102A (ja) * 1995-07-14 1997-01-28 Mitsui Toatsu Chem Inc 塩素の濃縮方法
JPH10263352A (ja) * 1997-03-21 1998-10-06 Mitsui Eng & Shipbuild Co Ltd 圧力変動用吸着塔および吸着分離装置ならびに圧力変動吸着分離方法
JPH11104430A (ja) * 1997-07-25 1999-04-20 L'air Liquide 気体流の分離のためのpsa法
JP2000317244A (ja) * 1999-05-11 2000-11-21 Nippon Sanso Corp ガス精製方法及び装置
US20090214407A1 (en) * 2008-02-21 2009-08-27 Reyes Sebastian C Separation of carbon dioxide from nitrogen utilizing zeolitic imidazolate framework materials
JP2018114464A (ja) 2017-01-19 2018-07-26 Jfeスチール株式会社 ガス分離回収方法及び設備

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110108A1 (en) 2000-12-07 2002-08-15 Younglok Kim Simple block space time transmit diversity using multiple spreading codes
JP2002331218A (ja) * 2001-05-09 2002-11-19 Yoshinori Sano ガス分離装置およびガス分離方法
CN103585856B (zh) * 2013-11-11 2016-08-24 天津大学 一种多回流的变压吸附方法
JP6588265B2 (ja) * 2015-07-30 2019-10-09 住友精化株式会社 二酸化炭素の分離回収方法および分離回収システム
JP6791085B2 (ja) * 2017-09-28 2020-11-25 Jfeスチール株式会社 製鉄所副生ガスの分離設備及び分離方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575725A (en) * 1978-11-30 1980-06-07 Linde Ag Method of operating pressure alternation type adsorption device that periodically function
JPS60110318A (ja) * 1983-11-01 1985-06-15 ザ・ジョン・バン・カンパニー 単床式psa気体分離方法および装置
JPS63197513A (ja) * 1987-02-12 1988-08-16 Hitachi Ltd 吸着塔内温度制御方法
JPH08323127A (ja) * 1995-03-24 1996-12-10 L'air Liquide 極性のより低い化合物からの窒素の分離方法
JPH0925102A (ja) * 1995-07-14 1997-01-28 Mitsui Toatsu Chem Inc 塩素の濃縮方法
JPH10263352A (ja) * 1997-03-21 1998-10-06 Mitsui Eng & Shipbuild Co Ltd 圧力変動用吸着塔および吸着分離装置ならびに圧力変動吸着分離方法
JPH11104430A (ja) * 1997-07-25 1999-04-20 L'air Liquide 気体流の分離のためのpsa法
JP2000317244A (ja) * 1999-05-11 2000-11-21 Nippon Sanso Corp ガス精製方法及び装置
US20090214407A1 (en) * 2008-02-21 2009-08-27 Reyes Sebastian C Separation of carbon dioxide from nitrogen utilizing zeolitic imidazolate framework materials
JP2018114464A (ja) 2017-01-19 2018-07-26 Jfeスチール株式会社 ガス分離回収方法及び設備
WO2018135164A1 (ja) * 2017-01-19 2018-07-26 Jfeスチール株式会社 ガス分離回収方法及び設備

Also Published As

Publication number Publication date
JPWO2022270439A1 (ja) 2022-12-29
KR20240005074A (ko) 2024-01-11
AU2022298220A1 (en) 2023-12-21
TWI824576B (zh) 2023-12-01
CN117580632A (zh) 2024-02-20
JP7207626B1 (ja) 2023-01-18
EP4342571A1 (en) 2024-03-27
TW202306631A (zh) 2023-02-16

Similar Documents

Publication Publication Date Title
Tlili et al. Carbon dioxide capture and recovery by means of TSA and/or VSA
KR102034974B1 (ko) 조합된 압력 및 온도 스윙 흡착 공정에서의 흡착제 재생 방법
JP2000317244A (ja) ガス精製方法及び装置
CA2186976C (en) Ozone enriching method
JPH0938446A (ja) 空気液化分離装置の前処理方法及び装置
JP7291649B2 (ja) 二酸化炭素回収装置、炭化水素製造装置、および二酸化炭素回収方法
CN103523822B (zh) 氦气的纯化方法及纯化装置
JPH0565206B2 (ja)
Hassan et al. Pressure swing adsorption. Part II: Experimental study of a nonlinear trace component isothermal system
JP7207626B1 (ja) ガス分離設備およびガス分離方法
KR101720799B1 (ko) 아르곤 가스의 정제 방법 및 정제 장치
CN102311102B (zh) 氦气的纯化方法及纯化装置
CN102311103B (zh) 氦气的纯化方法及纯化装置
Chai et al. Efficiency of Nitrogen Desorption from LiX Zeolite by Rapid Oxygen Purge in a Pancake Adsorber.
CN112439398A (zh) 一种气体吸附柱再生的方法、装置及尾气回收系统
KR100614850B1 (ko) 저농도 산소농축방법
Mondino et al. Initial operation of a continuous lab-scale MBTSA pilot using activated carbon adsorbent
Abdel-Rahman et al. A Study of Oxygen Separation from Air by Pressure Swing Adsorption (PSA)
JPH0360524B2 (ja)
JP3151627B2 (ja) 酸素製造装置及びその原料空気の昇温方法
JP2021090895A (ja) ガス分離装置およびガス分離装置の制御方法
CN114849416A (zh) 利用在闭合环路中进行预再生吸附实现的对气体流的纯化
JPH11179134A (ja) ガス分離方法及び装置
JP2002167204A (ja) 混合ガスの分離方法
JPH0925102A (ja) 塩素の濃縮方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022562794

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22828356

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237042263

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280040530.1

Country of ref document: CN

Ref document number: 1020237042263

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022298220

Country of ref document: AU

Ref document number: AU2022298220

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2022828356

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022298220

Country of ref document: AU

Date of ref document: 20220617

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022828356

Country of ref document: EP

Effective date: 20231218

NENP Non-entry into the national phase

Ref country code: DE