WO2022270024A1 - 電子機器 - Google Patents

電子機器 Download PDF

Info

Publication number
WO2022270024A1
WO2022270024A1 PCT/JP2022/009602 JP2022009602W WO2022270024A1 WO 2022270024 A1 WO2022270024 A1 WO 2022270024A1 JP 2022009602 W JP2022009602 W JP 2022009602W WO 2022270024 A1 WO2022270024 A1 WO 2022270024A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
housing
electronic device
convection
transfer member
Prior art date
Application number
PCT/JP2022/009602
Other languages
English (en)
French (fr)
Inventor
孔明 吉田
悟朗 濱本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US18/281,816 priority Critical patent/US20240164045A1/en
Priority to EP22827945.1A priority patent/EP4362082A1/en
Publication of WO2022270024A1 publication Critical patent/WO2022270024A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20127Natural convection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff

Definitions

  • the present invention relates to electronic equipment having heating elements such as electronic components arranged on a circuit board.
  • PWB printed wiring board
  • Electronic components such as integrated circuits, transistors, diodes, resistors, capacitors, etc. are soldered onto a lithographically wired PWB to form a Printed Circuit Board (PCB).
  • PCB Printed Circuit Board
  • Heat sinks, heat pipes, and the like are often used as cooling structures.
  • each heat generating component such as an integrated circuit is attached via a heat transfer member such as a heat pipe or a metal block. ing.
  • a heat transfer member is provided between an upper portion of a heating element and a housing, and heat is transferred to the housing via the heat transfer member to dissipate heat. ing.
  • the electronic device described in Patent Document 1 may cause problems when applied to a configuration in which a plurality of electronic devices are adjacent to each other. Since the electronic device described in Patent Document 1 dissipates heat to the housing, the heat is transferred to another electronic device adjacent to the heat dissipating surface of the housing, and the inside of the other adjacent electronic device is heated. There is a problem that electronic parts malfunction and life is shortened. In addition, since the heat dissipation surface and another electronic device (electronic device) are adjacent to each other, there is no space for heat dissipation, and there is also the problem that the temperature rise inside the electronic device itself cannot be suppressed.
  • the present invention has been made to solve the above-described problems, and its object is to suppress the temperature rise of internal electronic components and to suppress the thermal effect on adjacent electronic devices and the like. It is an object of the present invention to provide an electronic device capable of
  • an electronic device of the present invention includes a circuit board on which a heating element that generates heat is mounted, and a housing that accommodates the circuit board.
  • the electronic device of the present invention further includes: a heat radiating section connected to the housing for radiating heat; and a housing cover provided on the side of the heat radiating section opposite to the side of the heat transfer member.
  • a convection area which is a space in which air convects, is provided between the heat radiating portion and the housing cover.
  • the heat generated by the heat generating element is transferred to the heat radiating portion by the heat transfer member, so that the temperature rise of the electronic components inside the housing can be suppressed.
  • a housing cover is provided on the side of the heat radiating section opposite to the heat transfer member side, and a convection area is provided between the heat radiating section and the housing cover.
  • FIG. 1 is a schematic configuration diagram (perspective view) of an electronic device according to a first embodiment of the present invention
  • FIG. 2 is an exploded perspective view of the electronic device of FIG. 1
  • FIG. 2 is a cross-sectional view of a cross section including a heat transfer member of the electronic device of FIG. 1
  • FIG. 2 is a cross-sectional view of the electronic device of FIG. 1 including a heat transfer member and a convection area
  • FIG. FIG. 11 is a cross-sectional view of a cross section including a heat transfer member of the electronic device of Modification 1
  • FIG. 11 is a cross-sectional view of a cross section including a heat transfer member of an electronic device of Modified Example 2;
  • An electronic device of the present invention includes a circuit board on which a heating element that generates heat is mounted, and a housing that accommodates the circuit board.
  • the electronic device of the present invention further includes: a heat radiating section connected to the housing for radiating heat; and a housing cover provided on the side of the heat radiating section opposite to the side of the heat transfer member.
  • a convection area which is a space in which air convects, is provided between the heat radiating portion and the housing cover.
  • the heating element is an element that generates heat, for example, an element that generates heat by the operation of the heating element itself.
  • the heating elements include electronic parts such as integrated circuits, transistors, diodes, resistors, capacitors, and the like.
  • the housing accommodates a circuit board on which the heating element described above is mounted.
  • the heat radiating section is configured to radiate heat.
  • a material that easily radiates heat such as aluminum or steel plate, can be used.
  • the heat transfer member is disposed between the heat generating element and the heat dissipating section, and transfers heat generated by the heat generating element to the heat dissipating section.
  • a material for the heat transfer member it is desirable to use a material with high thermal conductivity and high corrosion resistance, typically aluminum.
  • the high thermal conductivity of the heat transfer member makes it possible to increase the efficiency of heat dissipation, and the corrosion resistance of the heat transfer member extends the life of the heat transfer member and reduces the maintenance cost of electronic devices. be able to.
  • the heat transfer member is directly in contact with the heat generating element and the heat dissipating portion, and is connected via a heat conductive member with good heat conductivity (for example, a gel member, grease, etc.). Any configuration of configurations is possible.
  • the housing cover is provided on the side of the heat radiating section opposite to the side of the heat transfer member. In this way, by providing the housing cover on the opposite side of the heat dissipating member from the heat transfer member side of the heat dissipating portion, the heat from the heat dissipating portion is insulated, and the heat from the heat dissipating portion is directly transferred to other electronic devices in the vicinity. It is possible to suppress it so that it does not face.
  • a convection area which is a space in which air convects, is provided between the radiator and the housing cover.
  • the heat radiated from the heat radiating section can be transferred by convection, so that the heat radiating section can be cooled. Also, it is possible to suppress the rise in the temperature of the housing cover due to the heat radiated from the heat radiating section.
  • the convection generated in the convection area there are three possible configurations: natural convection, combined use of natural convection and forced convection, and forced convection.
  • openings are provided in the lower and upper surfaces of the convection area between the heat radiating section and the housing cover. Air warmed by the heat radiated from the heat radiating part becomes lighter and rises, so by providing an opening on the top surface of the convection area, the warmed air is discharged to the outside of the electronic device from the opening on the top surface. be able to. Moreover, since new air that has flowed in from the opening on the lower surface can be supplied, natural convection can be generated and the heat radiating section can be cooled with the newly supplied air.
  • forced convection is generated in the convection area, a configuration for generating forced convection such as a fan is provided, and the installation position, installation direction, air volume, etc. are set so as to generate a predetermined convection.
  • the material of the heat dissipation member should be a material that dissipates heat more easily than the material of the housing cover, and heat is mainly dissipated from the heat dissipation member. It is desirable to
  • the convection is generated not only in the convection area between the heat radiating section and the housing cover but also in the vicinity of the heat transfer member inside the housing.
  • Convection generated in the vicinity of the heat transfer member can be conceived in the same three configurations as the convection generated in the convection area: natural convection, combination of natural convection and forced convection, and forced convection.
  • an intake opening is provided on the bottom surface of the housing to take air into the housing, and a hole is provided to discharge the air inside the housing to the outside.
  • An opening for exhaust air is provided on the top surface of the housing.
  • openings in the housing for drawing air into the housing and openings (ventilation holes) for discharging the air inside the housing to the outside. are preferably provided respectively.
  • openings ventilation holes
  • the cooling effect of the heat transfer member by forced convection can be enhanced.
  • a heat dissipation member made of a material that easily dissipates heat.
  • these openings and heat dissipation members should be placed on the side where there are no adjacent electronic devices (for example, if there are other devices on the left and right) , bottom surface, top surface, front surface).
  • the shape and arrangement of the heat transfer member are desirably set so as not to hinder convection (natural convection or forced convection) generated near the heat transfer member inside the housing.
  • convection natural convection or forced convection
  • the heat transfer member is shaped like a quadrangular prism and arranged so that the sides of the quadrangle are up and down, the convection will be received on the plane, and the convection will be blocked by this plane, and the back side of the heat transfer member that has passed through the quadrangular prism. heat spots are generated.
  • the heat transfer member is in the shape of a cylinder, an elliptical column, or a polygonal column having a pentagon or more
  • the diagonal of the square (square, rhombus) of the square columnar heat transfer member is placed up and down. In this case, the obstruction of convection can be suppressed.
  • a protrusion such as a flat plate-shaped fin as a member for heat dissipation to the heat dissipation part or the heat transfer member.
  • projections such as fins are provided on the surface of the heat radiating section on the convection area side and the outer surface of the heat transfer member so as not to hinder the convection.
  • the electronic device of the present invention it is provided with the circuit board on which the heating elements that generate heat are mounted, and the housing in which the circuit board is accommodated. Further, according to the configuration of the electronic device of the present invention, the heat dissipation portion connected to the housing for dissipating heat, and the heat dissipation portion disposed between the heating element and the heat dissipation portion transmit the heat generated by the heating element to the heat dissipation portion.
  • a heat transfer member for heating and a housing cover provided on a side of the heat radiating section opposite to the heat transfer member side are provided. Furthermore, according to the configuration of the electronic device of the present invention, a convection area in which air convects is provided between the radiator and the housing cover.
  • the heat generated by the heat generating element is transferred to the heat dissipating portion by the heat transfer member, so that the heat generated by the heat generating element is transferred to the heat dissipating portion, thereby suppressing the temperature rise of the electronic components inside the housing. can.
  • the convection area allows the air to convect, dissipate heat from the heat radiating section, and cool the heat radiating section.
  • heat is radiated through the convection area, and the heat in the convection area is insulated by the housing cover, so that it is possible to suppress thermal effects on external devices adjacent to the electronic device.
  • the electronic device of the present invention is suitable for use in a configuration in which a plurality of electronic device modules each including a heating element are arranged horizontally and adjacent to each other. By applying the electronic device of the present invention to such a configuration, it is possible to suppress the influence of heat between adjacent modules.
  • the electronic device of the present embodiment is suitable for use in, for example, a configuration in which a plurality of modules each including a heating element are horizontally arranged and adjacent to each other, such as a compact controller for an automated system of a production line. .
  • FIG. 1 is a schematic configuration diagram (perspective view) of an electronic device according to a first embodiment of the present invention.
  • 2 is an exploded perspective view of the electronic device of FIG. 1.
  • FIG. 1 is a schematic configuration diagram (perspective view) of an electronic device according to a first embodiment of the present invention.
  • the electronic device 100 in this embodiment has a rectangular parallelepiped box shape with the direction of gravity as the longitudinal direction, which is indicated by the downward arrow in FIGS. 1 and 2 .
  • this electronic device 100 has a housing 10, a heat radiation section 20, a housing cover 30, and a heat transfer section 22.
  • the housing 10 has a front side surface, a bottom surface, a top surface, and a right side surface (not shown), and a circuit board 40 is housed in an internal space surrounded by these four surfaces.
  • a ventilation hole 11 for intake air for taking air into the housing 10 is provided on the bottom surface of the housing 10, and a ventilation hole 11 for exhaust air for discharging the air in the housing 10 to the outside of the housing 10.
  • a hole 12 is provided in the top surface of the housing 10 .
  • the heat radiating section 20 is substantially L-shaped with a left side surface and a rear side surface. The housing 10 and the heat radiating section 20 are formed, for example, by pressing aluminum or steel plate.
  • a heating element 41 is mounted on the circuit board 40 .
  • the heating element 41 is an element that generates heat, and generates heat, for example, when the heating element 41 itself operates.
  • Specific examples of the heating element 41 include electronic components such as integrated circuits, transistors, diodes, resistors, and capacitors.
  • a heat transfer member 22 is provided between the surface of the heat generating element 41 and the heat dissipating section 20 to transfer heat from the heat generating element 41 to the heat dissipating section 20 .
  • the heat transfer member 22 has a cylindrical shape as shown in FIG. 2 and is made of, for example, an aluminum member.
  • a heat conductive member 21 is provided between the heat generating element 41 and the heat transfer member 22, and heat can be transferred between the heat generating element 41 and the heat transfer member 22 via this heat conductive member 21. is joined to A thermally conductive member 23 is also provided between the heat transfer member 22 and the heat radiating portion 20 , and the heat transfer member 22 and the heat radiating portion 20 conduct heat through the heat conductive member 23 . Thermally bonded.
  • a gel-like member or grease can be used as the thermally conductive members 21 and 23, for example.
  • FIG. 3 is a cross-sectional view of the electronic device 100 of FIG. 1 including the heat transfer member 22 .
  • the airflow sucked from the intake ventilation hole 11 of the housing 10 flows along the outer shape of the heat transfer member 22 at a position close to the heat transfer member 22 as indicated by the arrow 24 in FIG. , is exhausted from the upper portion of the heat transfer member 22 through the ventilation hole 12 for exhaust of the housing 10 .
  • the housing cover 30 is formed, for example, by pressing aluminum or steel plate, or by using a resin material.
  • FIG. 4 is a cross-sectional view of the electronic device 100 of FIG. 1 including the heat transfer member 22 and the convection area.
  • the cross section of FIG. 4 is a cross section perpendicular to the cross section of FIG.
  • a lower end opening 31 and an upper end opening 32 are provided between the housing cover 30 and the heat radiating section 20, so that a convection area 33 between these openings 31 and 32 is formed.
  • air currents (natural convection) indicated by arrows 34 are generated. That is, air flows into the convection area 33 from the opening 31 at the lower end, and is discharged from the convection area 33 to the outside of the electronic device 100 through the opening 32 at the upper end, resulting in natural convection indicated by arrows 34 .
  • the heat radiated from the heat radiating section 20 indicated by the arrow 35 in FIG. 4 rides on the airflow 34 generated in the convection area 33, and is radiated to the outside of the electronic device 100 (the outside of the housing 10 and the heat radiating section 20). , the heat is not transferred to the housing cover 30 .
  • circuit board 40 and the right side surface of the housing 10 are separated from each other in order to provide electronic components such as connectors between the circuit board 40 and the right side surface of the housing 10. and are separated to some extent.
  • the distance between the circuit board 40 and the right side surface of the housing 10 is shown in FIG. can be shorter than
  • the heat from the heating element 41 is transferred to the heat radiating section 20 via the heat transfer member 22, and the heat transfer member 22 has a shape that does not hinder convection.
  • a convection area 33 is provided between the heat radiating part 20 and the housing cover 30 .
  • the ventilation hole 11 for air intake is provided on the bottom surface of the housing 10
  • the ventilation hole 12 for exhaust air is provided on the top surface of the housing 10
  • the heat dissipation part 20 and the housing are provided. Openings 31 and 32 are provided in the lower surface and the upper surface between the cover 30, respectively.
  • the heat transfer member 22 is cylindrical, and convection from the bottom to the top with respect to the direction of gravity from the air intake vent 11 to the exhaust air vent 12 is performed. It is a shape that does not interfere with As a result, it is possible to suppress the influence of the heat radiation from the heat transfer member 22 on the internal components of the electronic device 100 .
  • the shape of the heat transfer member 22 is cylindrical.
  • the shape of the heat transfer member 22 is not limited to a cylindrical shape.
  • FIG. 5 shows a cross-sectional view of the electronic device of Modification 1 including the heat transfer member.
  • the heat transfer member 22 has a hexagonal prism shape.
  • the hexagonal columnar heat transfer member 22 shown in FIG. 5 is arranged so that the vertices of the hexagon face up and down. Even if the heat transfer member 22 is shaped like a hexagonal column, the airflow indicated by the arrow 24 in FIG. The impact can be suppressed.
  • FIG. 6 shows a cross-sectional view of a cross-section including the heat transfer member of the electronic device of Modification 2.
  • the heat transfer member 22 has a pentagonal prism shape.
  • the pentagonal prism-shaped heat transfer member 22 shown in FIG. 6 is arranged so that the apex of the pentagon faces downward. Even if the heat transfer member 22 is shaped like a pentagonal prism in this way, the airflow indicated by the arrow 24 in FIG. The impact can be suppressed.
  • the shape of the heat transfer member 22 has been described as a cylinder, a hexagonal column, and a pentagonal column in the above-described embodiment and modification, the shape of the heat transfer member is not limited to these three shapes.
  • the shape of the heat transfer member may be an elliptical columnar shape, a quadrangular columnar shape in which a diagonal line of the quadrangular shape is arranged in the direction of gravity, or the like.
  • the shape of the heat transfer member may be a configuration in which flat fins or the like are added to each of the shapes described above. By adding fins or the like, convection air hits the protrusions, so heat can be efficiently dissipated, and the cooling effect can be enhanced. If the heat transfer member is configured so as not to receive convection on a plane perpendicular to the direction of convection, it will not hinder convection.
  • the surface of the heat radiating section 20 on the side of the housing cover 30 (the surface on the side of the convection area 33) has a flat plate shape.
  • projections such as flat plate-shaped fins that protrude into the convection area may be added to the surface of the heat radiating section on the convection area side.
  • convective air hits the protrusions, so heat can be efficiently dissipated, and the cooling effect can be enhanced.
  • the addition of projections such as fins can suppress thermal effects on adjacent modules and the like.
  • the ventilation holes 11 and 12 and the openings 31 and 32 are provided on the bottom surface and the top surface in order to generate natural convection in the housing 10 and the convection area 33, respectively. It used natural convection.
  • the configuration is not limited to the configuration using natural convection as described above, and a configuration using both natural convection and forced convection or a configuration using forced convection mainly is also possible.
  • forced convection a fan or the like is used to forcibly generate convection.
  • ventilation holes, openings, and the like which are entrances and exits of air.
  • the positions of the ventilation holes and openings and the configuration for forced convection such as a fan are selected so that the convection passes through the side surface of the heat transfer member and the position corresponding to the heat transfer member in the heat radiating section.
  • Set the specifications installation position, wind direction, air volume, etc.).
  • the housing 10 has a front side surface, a bottom surface, a top surface, and a right side surface
  • the radiator 20 has a left side surface and a rear side surface
  • the housing cover 30 has a front side surface. It had a side, a left side, and a back side.
  • the shapes of the housing, the heat radiating section, and the housing cover are not limited to the shapes in the above embodiments. Any shape may be used as long as it can accommodate the heat generating element, the circuit board, and the heat transfer member in the housing and secure the convection area.
  • a tubular member having openings on the bottom surface and the top surface may serve as both the heat radiating part and the housing cover, and this tubular member may be attached to the housing having an opening on one surface. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

内部の電子部品の温度上昇を抑制し、かつ、隣接する電子機器等への熱影響を抑制することができる、電子機器を提供する。発熱する発熱素子が実装された回路基板と、回路基板が収容された筐体と、筐体に接続され、熱を放熱させる放熱部と、発熱素子と放熱部との間に配置され、発熱素子で発生した熱を放熱部に伝熱させる伝熱部材と、放熱部の伝熱部材の側とは反対の側に設けられた、筐体カバーと、を備え、放熱部と筐体カバーとの間に、空気が対流する空間である対流エリアが設けられている電子機器を構成する。

Description

電子機器
 本発明は、回路基板上に配置された電子部品等の発熱素子を有する電子機器に関する。
 多くの電子機器は、プリント配線板(Printed Wiring Board:PWB)に電子部品を実装した電子回路を備えている。
 集積回路、トランジスタ、ダイオード、抵抗器、コンデンサ等の電子部品は、リソグラフィで配線が形成されたPWB上に、半田付けされてプリント回路板(Printed Circuit Board:PCB)を形成している。ある種の電子部品は、動作に伴って発熱するため、放熱用の冷却構造と共に用いられている。
 冷却構造としては、ヒートシンク、ヒートパイプ等が多用されている。
 一般に、電子部品が生じた熱を、外部に放熱するヒートシンクや、筐体等に放熱する場合は、集積回路等の発熱部品毎に、ヒートパイプ、金属ブロック等の伝熱部材を介して取り付けられている。
 近年、電子機器で処理される情報処理量が増大しており、より高速に動作可能な集積回路を使用するため、発熱量も増加傾向にある。そのため、電子部品を効率的に冷却する冷却構造が求められている。
 冷却効率を向上させるためには、ファン等を用いて、対流による熱移送量を増大させる強制空冷が効率的である。
 しかし、長期信頼性が求められる産業機器においては、故障等によるファン停止時の冷却能力の著しい劣化や、ファン用に電源を供給する構造が必要になる等の理由から、PCB及び筐体自体を主な放熱体として用いる自然冷却構造の改良が検討されている。
 一般に、発熱部品にヒートシンクを実装する方法、大気と接する筐体までの熱移送経路として放熱ヒートパイプを用いた構造、及び同様の目的で、アルミニウム(Al)に代表される、熱伝導率の高い金属ブロックを用いる方法、が良く知られている。
 例えば、下記特許文献1に開示されている電子装置では、発熱素子の上部と筐体との間に伝熱部材を設けて、この伝熱部材を介して筐体に伝熱させることで放熱させている。
特開2016-143769号公報
 しかしながら、特許文献1に記載の電子装置は、複数個の電子装置が隣接する構成に適用すると、問題を生じることがある。
 特許文献1に記載の電子装置は、筐体に放熱しているため、筐体放熱面と隣接する他の電子装置に伝熱してしまい、隣接する他の電子装置の内部が加熱されることで電子部品の誤作動や寿命が短くなる問題がある。
 また、放熱面と他の電子装置(電子機器)が隣接することになるため、放熱する空間がなくなり、当該電子装置自体の内部の温度上昇が抑制されない問題もある。
 本発明は、上述した課題を解決するためになされたものであり、その目的とするところは、内部の電子部品の温度上昇を抑制し、かつ、隣接する電子機器等への熱影響を抑制することができる、電子機器を提供することにある。
 また、本発明の上記の目的及びその他の目的と本発明の新規な特徴は、本明細書の記述及び添付図面によって明らかにする。
 上記目的を達成するため、本発明の電子機器は、発熱する発熱素子が実装された回路基板と、回路基板が収容された筐体と、を備えている。
 本発明の電子機器は、さらに、筐体に接続され、熱を放熱させる放熱部と、発熱素子と放熱部との間に配置され、発熱素子で発生した熱を放熱部に伝熱させる伝熱部材と、放熱部の伝熱部材の側とは反対の側に設けられた、筐体カバーと、を備えている。
 そして、本発明の電子機器は、放熱部と筐体カバーとの間に、空気が対流する空間である対流エリアが設けられている。
 上述の本発明の電子機器によれば、発熱素子で発生した熱を伝熱部材で放熱部に伝熱させるので、筐体の内部の電子部品の温度上昇を抑制することができる。
 そして、放熱部の伝熱部材の側とは反対の側に筐体カバーが設けられ、放熱部と筐体カバーとの間に対流エリアが設けられている。これにより、対流エリアで空気を対流させて、放熱部の熱を放熱して放熱部を冷却することができる。
 また、対流エリアを通じて放熱すると共に、筐体カバーによって対流エリア内の熱は断熱されるため、電子機器に隣接する外部の装置への熱影響を抑制することができる。
 なお、上述した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
本発明の第1の実施の形態の電子機器の概略構成図(斜視図)である。 図1の電子機器の分解斜視図である。 図1の電子機器の伝熱部材を含む断面における断面図である。 図1の電子機器の伝熱部材及び対流エリアを含む断面における断面図である。 変形例1の電子機器の伝熱部材を含む断面における断面図である。 変形例2の電子機器の伝熱部材を含む断面における断面図である。
 以下、本発明に係る実施の形態及び実施例について、文章もしくは図面を用いて説明する。ただし、本発明に示す構造、材料、その他具体的な各種の構成等は、ここで取り上げた実施の形態や実施例に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。また、本発明に直接関係のない要素は図示を省略する。
 本発明の電子機器は、発熱する発熱素子が実装された回路基板と、回路基板が収容された筐体と、を備えている。
 本発明の電子機器は、さらに、筐体に接続され、熱を放熱させる放熱部と、発熱素子と放熱部との間に配置され、発熱素子で発生した熱を放熱部に伝熱させる伝熱部材と、放熱部の伝熱部材の側とは反対の側に設けられた、筐体カバーと、を備えている。
 そして、本発明の電子機器は、放熱部と筐体カバーとの間に、空気が対流する空間である対流エリアが設けられている。
 上記の電子機器の構成において、発熱素子は、発熱する素子であり、例えば、発熱素子自身の動作等によって、発熱する素子である。
 この発熱素子の具体的な例として、例えば、集積回路、トランジスタ、ダイオード、抵抗器、コンデンサ、等の電子部品が挙げられる。
 上記の電子機器の構成において、筐体は、上述した発熱素子が実装された回路基板が収容されている。
 上記の電子機器の構成において、放熱部は、熱を放熱させる構成である。
 放熱部の材料としては、例えば、アルミニウムや鋼板等の、放熱させやすい材料を用いることができる。
 上記の電子機器の構成において、伝熱部材は、発熱素子と放熱部との間に配置され、発熱素子で発生した熱を放熱部に伝熱させる。
 伝熱部材の材料としては、アルミニウムに代表される、熱伝導率が高く、耐腐食性の高い材料を用いることが望ましい。伝熱部材の熱伝導率が高いことにより、放熱の効率を高くすることができ、伝熱部材が耐腐食性であることにより、伝熱部材の寿命を延ばして電子機器のメンテナンスコストを抑制することができる。
 なお、伝熱部材は、発熱素子や放熱部に対して、直接接している構成と、熱伝導の良い熱伝導性の部材(例えば、ゲル状の部材やグリス等)を介して接続されている構成の、いずれの構成も可能である。
 上記の電子機器の構成において、筐体カバーは、放熱部の伝熱部材の側とは反対の側に設けられている。このように、放熱部の伝熱部材の側とは反対の側に筐体カバーを設けることにより、放熱部からの熱を断熱して、放熱部からの熱が直接周囲の他の電子機器に向かわないように抑制することが可能になる。
 上記の電子機器の構成において、放熱部と筐体カバーとの間に、空気が対流する空間である、対流エリアを設ける。
 この対流エリアを設けたことにより、放熱部から放熱された熱を、対流によって移動させることができるので、放熱部を冷却することができる。また、放熱部からの放熱された熱による筐体カバーの温度の上昇を、抑制することができる。
 対流エリアに発生させる対流としては、自然対流、自然対流と強制対流の併用、強制対流、の3つの構成が考えられる。
 対流エリアに自然対流を発生させる場合には、放熱部と筐体カバーとの間にある対流エリアの下面と上面に、開口を設ける。放熱部から放熱された熱によって暖められた空気は、軽くなって上昇するので、対流エリアの上面に開口を設けることにより、この上面の開口から、暖められた空気を電子機器の外部へ排出することができる。また、下面の開口から流入した新たな空気を供給することができるので、自然対流を発生させて、新たに供給された空気で放熱部を冷やすことができる。
 対流エリアに強制対流を発生させる場合には、ファン等の強制対流を発生させるための構成を設けて、所定の対流が発生するように、設置する位置、設置する向き、風量等を設定する。
 なお、対流エリアに強制対流を発生させる場合でも、対流エリアに対して、対流エリアに空気が流入するための開口と、対流エリアから外部へ空気を排出するための開口をそれぞれ設けることが好ましく、これらの開口を設けることにより、強制対流による放熱部の冷却効果を高めることができる。また、開口を設ける代わりに、放熱しやすい材料からなる放熱部材を設けることも可能である。ただし、電子機器に隣接する他の電子機器等がある場合は、これらの開口や放熱部材は、隣接する他の電子機器等がない側の面(例えば、左右に他の機器がある場合には、下面、上面、手前の面)に設ける。また、隣接する他の電子機器等があり、かつ放熱部材を設ける場合には、放熱部材の材料を、筐体カバーの材料よりも放熱しやすい材料として、主に放熱部材から放熱するように構成することが望ましい。
 上記の電子機器の構成において、より好ましくは、放熱部と筐体カバーとの間の対流エリアだけでなく、筐体の内部の伝熱部材の付近にも対流が発生するように構成する。
 伝熱部材の付近に発生させる対流としては、対流エリアに発生させる対流と同様に、自然対流、自然対流と強制対流の併用、強制対流、の3つの構成が考えられる。
 伝熱部材の付近に自然対流を発生させる場合には、筐体内に空気を取り込むための吸気用の開口(通風孔)を筐体の下面に設け、筐体内の空気を外部へ排出するための排気用の開口(通風孔)を筐体の上面に設ける。筐体の上面に排気用の開口(通風孔)を設けることにより、この開口(通風孔)から、伝熱部材により暖められた空気を排出することができる。また、筐体の下面に吸気用の開口(通風孔)を設けることにより、この開口(通風孔)から流入した新たな空気を供給して自然対流を発生させて、新たに供給された空気で伝熱部材を冷やすことができる。
 伝熱部材の付近に強制対流を発生させる場合には、ファン等の強制対流を発生させるための構成を設けて、所定の対流が発生するように、設置する位置、風向、風量等を設定する。
 なお、伝熱部材の付近に強制対流を発生させる場合でも、筐体に、筐体内に空気を取り込むための開口(通風孔)と筐体内の空気を外部へ排出するための開口(通風孔)をそれぞれ設けることが好ましい。これらの開口(通風孔)を設けることにより、強制対流による伝熱部材の冷却効果を高めることができる。また、開口を設ける代わりに、放熱しやすい材料からなる放熱部材を設けることも可能である。ただし、電子機器に隣接する他の電子機器等がある場合は、これらの開口や放熱部材は、隣接する他の電子機器等がない側の面(例えば、左右に他の機器がある場合には、下面、上面、手前の面)に設ける。
 対流エリアや筐体の内部の伝熱部材の付近に、自然対流を発生させる構成としたときには、強制対流を発生させる構成と比較して、電力消費を低減し、ファン等の寿命の問題を回避することができる。
 また、対流エリアと筐体の内部の伝熱部材の付近に強制対流を発生させる構成において、さらに、例えば、対流エリアの空間と筐体の内部の空間とを連結させて、これらの空間の間で強制対流を循環させる構成とすることも考えられる。これにより、ファン等の構成を2つの空間でそれぞれ設けなくても、1つの構成で兼用することができ、また、放熱部と伝熱部材をそれぞれ通る対流によって、より効率良く冷却することができる。
 ただし、このように強制対流を循環させる構成とする場合には、連結された空間に熱がこもらないように、対流エリア及び筐体の少なくともいずれかに対して、前述した開口または放熱部材を設けて、電子機器の外部に放熱できるように構成することが望ましい。
 伝熱部材の形状及び配置は、筐体の内部の伝熱部材の付近に発生させる対流(自然対流または強制対流)を妨げにくいように、設定されていることが望ましい。
 例えば、伝熱部材を四角柱状として、四角形の辺が上下になるように配置すると、対流を平面で受けることになり、この平面で対流が妨げられて、四角柱状の伝熱部材を過ぎた裏側に、熱がこもるヒートスポットが発生する。
 これに対して、伝熱部材を、円柱状や楕円柱状、五角形以上の多角形柱状とした場合や、四角柱状の伝熱部材の四角形(正方形、ひし形)の対角線が上下になるように配置した場合には、対流の妨げを抑制することができる。
 また、放熱部または伝熱部材に対して、放熱するための部材として、平板形状のフィン等の突起を設けることも可能である。例えば、放熱部の対流エリア側の面や、伝熱部材の外面に、対流を妨げないように、フィン等の突起を設ける。これにより、対流する空気が突起に当たるので、効率良く放熱させることができ、冷却の効果を高めることができる。
 本発明の電子機器の構成によれば、発熱する発熱素子が実装された回路基板と、回路基板が収容された筐体と、を備えている。
 また、本発明の電子機器の構成によれば、筐体に接続され、熱を放熱させる放熱部と、発熱素子と放熱部との間に配置され、発熱素子で発生した熱を放熱部に伝熱させる伝熱部材と、放熱部の伝熱部材の側とは反対の側に設けられた、筐体カバーと、を備えている。
 さらに、本発明の電子機器の構成によれば、放熱部と筐体カバーとの間に、空気が対流する対流エリアが設けられている。
 これにより、発熱素子で発生した熱を伝熱部材によって放熱部に伝熱させるので、発熱素子で発生した熱が放熱部に移動し、筐体の内部の電子部品の温度上昇を抑制することができる。そして、対流エリアで空気を対流させて、放熱部の熱を放熱して放熱部を冷却することができる。
 また、対流エリアを通じて放熱すると共に、筐体カバーによって、対流エリア内の熱は断熱されるため、電子機器に隣接する外部の装置への熱影響を抑制することができる。
 本発明の電子機器は、発熱素子を含む電子機器のモジュールが複数個、水平方向に並んで隣接された構成等に用いて、好適なものである。
 このような構成に本発明の電子機器を適用することにより、隣接するモジュール同士における熱の影響を抑制することができる。
 以下、本発明の具体的な実施の形態を、説明する。
(第1の実施の形態)
 本発明の第1の実施の形態に関わる電子機器の概略構成について、図面を参照して説明する。
 本実施の形態の電子機器は、例えば、製造ラインの自動化システム向けの小型コントローラー等、発熱素子を含むモジュールが複数個、水平方向に並んで隣接された構成等に用いて、好適なものである。
 図1は、本発明の第1の実施の形態の電子機器の概略構成図(斜視図)である。
 図2は、図1の電子機器の分解斜視図である。
 本実施形態における電子機器100は、図1及び図2に下向きの矢印で示す、重力の方向を長手方向とする、直方体の箱状である。
 図1及び図2に示すように、この電子機器100は、筐体10、放熱部20、筐体カバー30、伝熱部22を有している。
 筐体10は、図2に示すように、手前の側面、下面、上面、図示しない右の側面、を有し、これら4面に囲まれた内部の空間に、回路基板40が収容されている。
 そして、筐体10内に空気を取り込むための吸気用の通風孔11が、筐体10の下面に設けられ、筐体10内の空気を筐体10の外部へ排出するための排気用の通風孔12が、筐体10の上面に設けられている。
 放熱部20は、図2に示すように、左の側面と奥の側面を有する略L字形状である。
 筐体10及び放熱部20は、例えば、アルミニウムや鋼板のプレス加工等により、形成されている。
 回路基板40には、発熱素子41が実装されている。
 発熱素子41は、発熱する素子であり、例えば、発熱素子41自身の動作の際等において、発熱する。
 発熱素子41の具体的な例としては、例えば、集積回路、トランジスタ、ダイオード、抵抗器、コンデンサ、等の電子部品が挙げられる。
 発熱素子41の表面と、放熱部20との間には、発熱素子41からの熱を放熱部20に伝熱させるための伝熱部材22が設けられている。
 伝熱部材22は、図2に示すように円柱状であり、例えば、アルミニウム部材から形成されている。
 発熱素子41と伝熱部材22との間には、熱伝導性の部材21が設けられており、発熱素子41と伝熱部材22とが、この熱伝導性の部材21を介して伝熱可能に接合されている。また、伝熱部材22と放熱部20との間にも、熱伝導性の部材23が設けられており、伝熱部材22と放熱部20とが、この熱伝導性の部材23を介して伝熱可能に接合されている。
 熱伝導性の部材21,23としては、例えば、ゲル状の部材やグリスを使用することができる。
 図3は、図1の電子機器100の伝熱部材22を含む断面における断面図である。
 筐体10の吸気用の通風孔11から吸気されてきた気流は、図3中の矢印24で示すように、伝熱部材22に差し迫ったところで、伝熱部材22の外形状に沿うように流れ、伝熱部材22の上部から筐体10の排気用の通風孔12を通じて排気される。
 筐体カバー30は、例えば、アルミニウムや鋼板のプレス加工、もしくは、樹脂材により、形成されている。
 筐体カバー30と放熱部20との間には、対流エリアを有する。
 図4は、図1の電子機器100の伝熱部材22及び対流エリアを含む断面における断面図である。この図4の断面は、図3の断面に対して垂直な断面である。
 図4に示すように、筐体カバー30と放熱部20との間において、下端の開口31と、上端の開口32が設けられていることにより、これらの開口31,32の間の対流エリア33に、矢印34で示す気流(自然対流)を生じる。即ち、下端の開口31から対流エリア33に空気が流入し、対流エリア33から上端の開口32を経て電子機器100の外部へ空気が排出され、矢印34で示す自然対流を生じる。
 また、図4の矢印35で示す、放熱部20から放熱された熱は、対流エリア33で生じた気流34に乗り、電子機器100の外部(筐体10及び放熱部20の外部)へ放熱され、筐体カバー30には伝熱されない。
 なお、図4では、図示を省略しているが、回路基板40と、筐体10の右側面との間に、コネクタ等の電子部品を設けるために、回路基板40と筐体10の右側面とがある程度離れている。
 これに対して、回路基板40と筐体10の右側面との間に、他の電子部品を設けない場合には、回路基板40と筐体10の右側面との間隔を、図4に示すよりも短くすることが可能である。
 以上説明した通り、本実施の形態の電子機器100では、発熱素子41からの熱を、伝熱部材22を介して、放熱部20に伝熱し、伝熱部材22は対流を妨げない形状を備え、放熱部20と筐体カバー30の間に対流エリア33を設けるように構成されている。
 発熱素子41からの熱を放熱させる際に、放熱部20と筐体カバー30の間に対流エリア33を設けることにより、隣接する他の電子機器と距離を確保でき、また、筐体カバー30によって、対流エリア33内の熱は断熱される。
 これにより、隣接する他の電子機器への伝熱を抑制することができ、また、隣接する他の電子機器からの伝熱も抑制することができる。
 また、本実施の形態の電子機器100では、筐体10の下面に吸気用の通風孔11が設けられ、筐体10の上面に排気用の通風孔12が設けられ、放熱部20と筐体カバー30との間の下面と上面には、開口31,32がそれぞれ設けられている。
 これにより、吸気用の通風孔11から、筐体10内の伝熱部材22を経て、排気用の通風孔12に向かう自然対流と、開口31から対流エリア33を経て開口32に向かう自然対流とを、それぞれ発生させることができる。このようにして自然対流を発生させることができることにより、自然対流を主に利用して冷却することができるので、強制対流を利用する構成よりも電力消費を低減し、ファン等の寿命の問題を回避することができる。
 さらに、本実施の形態の電子機器100では、伝熱部材22は、円柱状であり、吸気用の通風孔11から排気用の通風孔12へ向かう、重力方向に対して下から上への対流を、妨げない形状である。
 これにより、電子機器100の内部の部品が、伝熱部材22からの放熱により受ける影響を、抑制することができる。
 上述した第1の実施の形態の電子機器100では、伝熱部材22の形状が円柱状である構成であった。
 しかしながら、伝熱部材22の形状は、円柱状に限定されるものではない。
(変形例1)
 変形例1の電子機器の伝熱部材を含む断面における断面図を、図5に示す。
 図5に示すように、変形例1の電子機器110では、伝熱部材22を六角柱状としている。そして、図5に示す六角柱状の伝熱部材22は、六角形の頂点が上下に向くように、配置されている。
 このように伝熱部材22を六角柱状にしても、筐体10の吸気用の通風孔11から入ってきた、図5の矢印24に示す気流を妨げないので、伝熱部材22からの放熱による影響を抑制することができる。
(変形例2)
 また、変形例2の電子機器の伝熱部材を含む断面における断面図を、図6に示す。
 図6に示すように、変形例2の電子機器120では、伝熱部材22を五角柱状としている。そして、図6に示す五角柱状の伝熱部材22は、五角形の頂点が下に向くように、配置されている。
 このように伝熱部材22を五角柱状にしても、筐体10の吸気用の通風孔11から入ってきた、図6の矢印24に示す気流を妨げないので、伝熱部材22からの放熱による影響を抑制することができる。
(他の変形例)
 上記の実施の形態と変形例では、伝熱部材22の形状を、円柱状、六角柱状、五角柱状にて説明したが、伝熱部材の形状はこれら三つの形状に限定されない。
 例えば、伝熱部材の形状を、楕円柱状、四角形の対角線が重力の方向となるように配置された四角柱状、等としてもよい。また、伝熱部材の形状を、上述した各々の形状に平板形状のフィン等を付加した構成としても良い。フィン等を付加したことにより、対流する空気が突起に当たるので、効率良く放熱させることができ、冷却の効果を高めることができる。
 対流の方向に対して垂直な面で対流を受けないように、伝熱部材が構成されていれれば、対流の妨げとならない。
 また、上記の実施の形態では、放熱部20の筐体カバー30側の面(対流エリア33側の面)は、平板形状となっていた。
 これに対して、放熱部の対流エリア側の面に、対流エリアに突出する、平板形状のフィン等の突起を追加してもよい。これにより、対流する空気が突起に当たるので、効率良く放熱させることができ、冷却の効果を高めることができる。そして、筐体カバーとの間の空間における対流を妨げずに対流エリアを確保できる限りにおいて、フィン等の突起を追加することにより、隣接するモジュール等への熱影響は抑制される。
 また、上記の実施の形態と変形例では、筐体10と対流エリア33において、それぞれ自然対流を発生させるために、通風孔11,12及び開口31,32を、下面と上面とに設けて、自然対流を利用していた。
 このように自然対流を利用する構成に限定されず、自然対流と強制対流とを共に利用する構成や、強制対流を主に利用する構成とすることも可能である。強制対流を利用する場合には、ファン等により強制的に対流を発生させる。
 前述したように、強制対流を利用する場合にも、空気の出入り口である通風孔や開口等を設けることが望ましい。強制対流を利用する場合は、通風孔や開口等を、下面と上面に限らず、側面に設けることも可能である。この場合には、伝熱部材の側面や、放熱部のうちの伝熱部材に対応する位置を対流が通過するように、通風孔や開口の位置と、ファン等の強制対流のための構成の仕様(設置位置、風向、風量等)を、設定する。
 なお、強制対流を利用する場合には、前述したような、ファン等の強制的に対流を発生させるための構成の電力消費や寿命等の問題が生じる。
 これに対して、自然対流を主に利用することにより、電力消費を低減し、ファン等の寿命の問題を回避することができる。
 また、上記の実施の形態では、筐体10が手前の側面、下面、上面、右の側面を有し、放熱部20が左の側面と奥の側面を有し、筐体カバー30が手前の側面、左の側面、奥の側面を有する構成であった。
 筐体、放熱部、筐体カバーの各々の形状は、上記の実施の形態における形状には限定されない。発熱素子と回路基板と伝熱部材とを筐体に収容すること、対流エリアを確保すること、が共に実現できる形状であれば良い。例えば、下面と上面に開口を有する筒状の部材によって放熱部と筐体カバーとを兼ねるようにして、この筒状の部材を、1つの面に開口を有する筐体に取付けるようにしても良い。
 以上、本発明の好ましい実施の形態、変形例について説明したが、本発明は上記した実施形態に制限されることなく、本発明の趣旨を逸脱しない範囲において、種々変形して実施することが可能である。上述した各実施の形態及び変形例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
10…筐体、11…吸気用の通風孔、12…排気用の通風孔、20…放熱部、21,23…熱伝導性の部材、22…伝熱部材、30…筐体カバー、31,32…開口、33…対流エリア、40…回路基板、41…発熱素子、100,110,120…電子機器

Claims (6)

  1.  発熱する発熱素子が実装された回路基板と、
     前記回路基板が収容された筐体と、
     前記筐体に接続され、熱を放熱させる放熱部と、
     前記発熱素子と前記放熱部との間に配置され、前記発熱素子で発生した熱を前記放熱部に伝熱させる伝熱部材と、
     前記放熱部の前記伝熱部材の側とは反対の側に設けられた、筐体カバーと、
    を備え、
     前記放熱部と前記筐体カバーとの間に、空気が対流する空間である対流エリアが設けられている
     ことを特徴とする電子機器。
  2.  前記対流エリアに空気が流入するための開口と、前記対流エリアから外部へ空気を排出させるための開口が、設けられていることを特徴とする請求項1に記載の電子機器。
  3.  前記対流エリアに空気が流入するための開口が、前記放熱部と前記筐体カバーとの間の下面に設けられ、前記対流エリアから外部へ空気を排出させるための開口が、前記放熱部と前記筐体カバーとの間の上面に設けられていることを特徴とする請求項2に記載の電子機器。
  4.  前記筐体に、前記筐体内に空気を取り込むための吸気用の通風孔、及び、前記筐体内の空気を外部へ排出するための排気用の通風孔が、設けられていることを特徴とする請求項1に記載の電子機器。
  5.  前記吸気用の通風孔は前記筐体の下面に設けられ、前記排気用の通風孔は前記筐体の上面に設けられていることを特徴とする請求項4に記載の電子機器。
  6.  前記伝熱部材の形状が、円柱状、または、五角形以上の多角形の柱状であることを特徴とする請求項1に記載の電子機器。
PCT/JP2022/009602 2021-06-22 2022-03-07 電子機器 WO2022270024A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/281,816 US20240164045A1 (en) 2021-06-22 2022-03-07 Electronic device
EP22827945.1A EP4362082A1 (en) 2021-06-22 2022-03-07 Electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-103503 2021-06-22
JP2021103503A JP2023002323A (ja) 2021-06-22 2021-06-22 電子機器

Publications (1)

Publication Number Publication Date
WO2022270024A1 true WO2022270024A1 (ja) 2022-12-29

Family

ID=84544868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/009602 WO2022270024A1 (ja) 2021-06-22 2022-03-07 電子機器

Country Status (4)

Country Link
US (1) US20240164045A1 (ja)
EP (1) EP4362082A1 (ja)
JP (1) JP2023002323A (ja)
WO (1) WO2022270024A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032031A (ja) * 2014-07-29 2016-03-07 三菱電機株式会社 放熱構造およびこれを備えた電子機器
JP2020088050A (ja) * 2018-11-20 2020-06-04 Necプラットフォームズ株式会社 電子機器の放熱構造及び電子機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016032031A (ja) * 2014-07-29 2016-03-07 三菱電機株式会社 放熱構造およびこれを備えた電子機器
JP2020088050A (ja) * 2018-11-20 2020-06-04 Necプラットフォームズ株式会社 電子機器の放熱構造及び電子機器

Also Published As

Publication number Publication date
US20240164045A1 (en) 2024-05-16
EP4362082A1 (en) 2024-05-01
JP2023002323A (ja) 2023-01-10

Similar Documents

Publication Publication Date Title
JP4655987B2 (ja) 電子機器
WO2011096218A1 (ja) 放熱装置およびそれを用いた電子機器
TWI722195B (zh) 電子裝置及電子裝置之放熱構造
JP5472955B2 (ja) 放熱モジュール
US7256997B2 (en) Heat dissipating device having a fan duct
WO2021038954A1 (ja) 電気機器、電子制御装置
JP4720688B2 (ja) 電子制御装置の冷却装置
US20160205762A1 (en) Multi-layer heat spreader assembly with isolated convective fins
KR100939992B1 (ko) 전기전자기기의 냉각장치 및 이를 장착한 전기전자기기
JP2010212533A (ja) 局部冷却装置
WO2022270024A1 (ja) 電子機器
WO2017187898A1 (ja) ヒートシンクおよび筐体
KR101057137B1 (ko) 병렬형 방열핀 조립체를 이용한 자연냉각 방식의 산업용 컴퓨터
JP4229738B2 (ja) ヒートパイプ式放熱ユニット
JP4635670B2 (ja) 電子機器ユニットの冷却構造
KR101060357B1 (ko) 전자제품의 열원냉각장치
JP6044157B2 (ja) 冷却部品
CN214791873U (zh) 一种散热器及空调器
JP2009076623A (ja) 電子機器
US20070181286A1 (en) Structure for air conduction in radiator device
JP6888978B2 (ja) 放熱ユニットを備えた電気・電子機器
JP2022133106A (ja) 電子機器の放熱構造及び電子機器
JP2007088376A (ja) 電子装置の筐体及び電子装置
KR20230153053A (ko) 영상촬영장치 냉각 구조
TWI409619B (zh) 散熱裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827945

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18281816

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022827945

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022827945

Country of ref document: EP

Effective date: 20240122