WO2021038954A1 - 電気機器、電子制御装置 - Google Patents

電気機器、電子制御装置 Download PDF

Info

Publication number
WO2021038954A1
WO2021038954A1 PCT/JP2020/017114 JP2020017114W WO2021038954A1 WO 2021038954 A1 WO2021038954 A1 WO 2021038954A1 JP 2020017114 W JP2020017114 W JP 2020017114W WO 2021038954 A1 WO2021038954 A1 WO 2021038954A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
fins
electronic component
circuit board
heat
Prior art date
Application number
PCT/JP2020/017114
Other languages
English (en)
French (fr)
Inventor
美波 寺西
坂本 英之
心哉 河喜多
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US17/636,124 priority Critical patent/US20220293487A1/en
Publication of WO2021038954A1 publication Critical patent/WO2021038954A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20154Heat dissipaters coupled to components
    • H05K7/20163Heat dissipaters coupled to components the components being isolated from air flow, e.g. hollow heat sinks, wind tunnels or funnels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20409Outer radiating structures on heat dissipating housings, e.g. fins integrated with the housing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20845Modifications to facilitate cooling, ventilating, or heating for automotive electronic casings
    • H05K7/20863Forced ventilation, e.g. on heat dissipaters coupled to components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling

Definitions

  • the present invention relates to an electric device and an electronic control device.
  • Vehicles such as automobiles are equipped with electronic control devices for engine control, motor control, etc., for example.
  • electronic control device for engine control, motor control, etc.
  • Such an in-vehicle electronic control device usually includes heat-generating components such as electronic components and electronic circuits on a circuit board.
  • Patent Document 1 As a background technology in this technical field, there is a technology related to a heat sink with a high fin density. For example, there is a technique described in Patent Document 1.
  • the amount of heat generated by heat-generating components used in in-vehicle electronic control devices has increased due to higher performance.
  • a microcomputer used in an in-vehicle electronic control device has improved performance in response to high-speed calculation and high-speed processing, and the amount of heat generated has increased.
  • the number of circuit boards is increased, such as by using two circuit boards. Is being considered.
  • fins are provided for the microcomputers mounted on the respective boards for heat dissipation, there is a concern that the height of the housing will increase.
  • in-vehicle electronic control devices are required to be downsized and the housing volume to be reduced. Therefore, it is required to achieve both high heat dissipation of the in-vehicle electronic control device and miniaturization of the housing, particularly low height, so as not to exceed the guaranteed temperature of the heat generating component.
  • the electric device has a first housing having a first circuit board on which the first electronic component is mounted, and a first housing on which the second electronic component is mounted. It includes a second housing having a two-circuit board inside, and a fan that sends air passing between the first housing and the second housing.
  • the first housing has a plurality of fins facing the second housing.
  • the second housing has a plurality of fins facing the first housing.
  • the fins of the first housing are longer than the fins of the second housing, and the fins of the first housing are second. It is a structure having a region shorter than the fins of the housing.
  • the electronic control device includes a first housing having a first circuit board on which the first electronic component is mounted, and a second circuit board on which the second electronic component is mounted.
  • a second housing having the above and a third housing having the first housing and the second housing inside.
  • the first housing has a plurality of fins facing the second housing.
  • the second housing has a plurality of fins facing the first housing. At least a part of the heat generated in the first electronic component is transferred to at least a part of the fins of the first housing. At least a part of the heat generated in the second electronic component is transferred to at least a part of the fins of the second housing.
  • the fins of the first housing are longer than the fins of the second housing, and the fins of the first housing are the first. It is a structure having a region shorter than the fins of the two housings.
  • FIG. 1 It is an external perspective view of an electronic control device. It is a figure which shows an example of the component arrangement of a circuit board. It is a figure which shows another example of the component arrangement of a circuit board. It is a figure which shows an example of the X-ray cross section of an electronic control device. It is a figure which shows another example of the X-ray cross section of an electronic control apparatus. It is a figure which shows an example of the YY line cross section of an electronic control device. It is a figure which shows another example of the YY line cross section of an electronic control device. It is a figure which shows still another example of the YY line sectional view of an electronic control apparatus. It is external perspective view of the electronic control apparatus which concerns on Comparative Example 1.
  • FIG. 1 It is an external perspective view of an electronic control apparatus which concerns on Comparative Example 1.
  • FIG. It is a figure which shows the component arrangement of the circuit board built in the electronic control device which concerns on Comparative Example 1.
  • FIG. It is a figure which shows the ZZ line cross section of the electronic control apparatus which concerns on Comparative Example 1. It is a comparison diagram of the junction temperature. It is a figure which shows the cross section of the electronic control apparatus which concerns on Comparative Example 2.
  • each component shown in the drawing may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range and the like disclosed in the drawings.
  • the subscripts may be omitted for explanation.
  • FIG. 1 is an external perspective view of the electronic control device 100.
  • FIG. 2 is a perspective view of a pair of circuit boards arranged in the housing of the electronic control device 100 shown in FIG.
  • FIG. 3 is a modified example in which the component arrangement of the pair of circuit boards shown in FIG. 2 is changed.
  • the electronic control device 100 includes heat radiating fins 3 and 4 for air-cooling heat-generating components built in a rectangular parallelepiped main body (housing).
  • the electronic control device 100 has a multi-layer structure, and a ventilation path is formed in the gap between the layers.
  • the heat generated by the heat-generating component is conducted to the base where the heat-dissipating fins 3 and 4 of the electronic control device 100 are planted.
  • the heat generating components 9 and 13 are electronic components and electronic circuits, for example, integrated circuits such as microcomputers and semiconductor elements.
  • the heat-generating component may be called an electronic component.
  • the terms “upper”, “lower”, “front (front)”, and “rear (rear)” may be used for the configuration shown in each drawing, but this merely indicates the positional relationship in each drawing. Therefore, the embodiment is not limited to this positional relationship.
  • the housing 1 may be referred to as an upper housing 1 and the housing 2 may be referred to as a lower housing 2, but this device is rotated 180 degrees and the vertical positional relationship is reversed. It may be rotated 90 degrees and may have a left-right positional relationship.
  • the electronic control device 100 has an upper housing 1 and a lower housing 2.
  • the upper housing 1 and the lower housing 2 are arranged so as to face each other, and the ventilation passage formed between them is provided with heat radiation fins 3 and 4.
  • the upper heat radiating fins 3 extend from the upper housing 1 and the lower heat radiating fins 4 extend from the lower housing 2 so as to project toward each other.
  • the upper housing 1 and the lower housing 2 are fixed by fastening members such as screws (not shown).
  • One or more connectors (not shown) or a plurality of Ethernet (registered trademark) terminals may be arranged on the side wall on the front side (front) of the housings 1 and 2.
  • a hole or notch (not shown) for inserting a connector or the like (not shown) is formed, and the connector or the like is formed in a wiring pattern (not shown) on the circuit board through the hole or the notch. It is connected. Power and control signals are transmitted and received between the external device and the electronic control device 100 via a connector or the like.
  • An air cooling fan 6 is arranged behind the housings 1 and 2.
  • the cover (housing) 5 has openings that serve as intake holes or exhaust holes on the front or rear surfaces so that the air sent by the air cooling fan 6 flows between the heat radiation fins 3 and 4, except for the front and rear.
  • Circuit boards 7 and 8 are provided inside the housings 1 and 2, respectively.
  • the upper circuit board 7 is housed in the upper housing 1.
  • the lower circuit board 8 is housed in the lower housing 2.
  • One or more heat generating components 9 including semiconductor elements such as a microcomputer are mounted on each of the circuit boards 7 and 8.
  • the positions of the four heat generating components 9 mounted on the circuit board 7 are indicated by the mounting arrangements A, B, C, and D, respectively, and the four heat generating components 9 mounted on the circuit board 8 are shown.
  • the positions of are indicated by the mounting arrangements E, F, G, and H, respectively.
  • the number and position of the heat generating components 9 mounted on the circuit boards 7 and 8 are not limited to the examples of FIGS. 2 and 3, and may be any number and position.
  • circuit boards 7 and 8 are made of an organic material such as an epoxy resin.
  • the circuit boards 7 and 8 are preferably made of FR4 (glass epoxy board) material from the viewpoint of heat resistance and insulation.
  • the circuit boards 7 and 8 can be a single-layer board or a multi-layer board.
  • the heat generating component 9 is arranged so as to face the lower surface of the upper circuit board 7 and the upper surface of the lower circuit board 8. Further, the heat generating components 9 on the circuit boards 7 and 8 are arranged at positions where they do not overlap in a plan view.
  • the heat generating component 9 is electrically connected to the circuit boards 7 and 8 with a bonding material such as solder.
  • the plan view referred to here means that the circuit boards 7 and 8 are horizontal, and that the circuit boards 7 and 8 are visually recognized from the vertical direction, that is, the thickness direction (stacking direction) of the circuit boards 7 and 8.
  • the heat generated from the heat generating component 9 is transmitted to the housings 1 and 2 via the heat conductive material 10, and is introduced into the atmosphere from the heat radiating fins 3 and 4 formed in the lower part of the housing 1 and the upper part of the housing 2, respectively. Heat is dissipated.
  • the outer surfaces of the housings 1 and 2 that is, the mounting surface of the heat generating component 9 of the circuit boards 7 and 8 can be used. Heat is transferred to the surfaces of the housings 1 and 2 facing the opposite surfaces, and it is possible to effectively dissipate heat from the outer surfaces of the housings 1 and 2.
  • the upper housing 1 and the lower housing 2 may be formed of a metal material having excellent thermal conductivity, for example, an alloy type aluminum ADC 12 which is often used for automobile parts as an aluminum die cast. Further, it can be formed of a sheet metal such as iron or a non-metal material such as a resin material to reduce the cost and weight. Similarly, the cover (housing) 5 can be formed of a sheet metal such as iron or a non-metal material such as a resin material.
  • the heat generating component 9 is in contact with the heat conductive material 10 above or below the heat generating component 9, and the heat conductive material 10 is in contact with the boss portion (not shown).
  • the boss portion may be a part of the housings 1 and 2, or may be a member in contact with the inner surface of the housings 1 and 2.
  • the heat radiating fins 3 and 4 extend from the outer surfaces of the housings 1 and 2 so as to project toward each other.
  • the heat radiation fins 3 and 4 and the boss portion may be integrally formed as a part of the housings 1 and 2 by casting such as die casting. Alternatively, the heat radiation fins 3 and 4 and the boss portion may be manufactured as separate members from the housings 1 and 2 and attached to the housings 1 and 2.
  • the structure may be such that the heat of the heat generating component 9 is conducted to the base where the heat radiation fins 3 and 4 of the electronic control device 100 are planted. Other structures may be used as long as the heat radiating fins 3 and 4 are thermally coupled to the heat generating component 9, respectively.
  • three air-cooling fans 6 are arranged so that the wind flows through the ventilation passage between the heat radiation fins 3 and 4 composed of the heat radiation fins 3 on the upper side and the heat radiation fins 4 on the lower side.
  • One or a plurality of air cooling fans 6 may be arranged.
  • the air cooling fan 6 may be an axial fan, a centrifugal fan, or a blower.
  • the refrigerant may have a water-cooled structure in which a liquid is used instead of air and the liquid is passed between the fins to cool the refrigerant.
  • FIG. 4 is a sectional view taken along line XX of the electronic control device 100 shown in FIG.
  • FIG. 5 is a modified example in which the fin shape of the X-ray cross-sectional view shown in FIG. 4 is changed.
  • FIG. 6 is a sectional view taken along line YY of the electronic control device 100 shown in FIG.
  • boss portions 11 projecting toward the circuit boards 7 and 8 are provided at the corners of the surfaces on which the heat radiation fins 3 and 4 are arranged. Has been done. It should be noted that FIGS. 4 to 6 show a cross section when the heat generating component 9 is mounted on the substrates 7 and 8 in the arrangement shown in FIG.
  • the circuit boards 7 and 8 are fixed to the end face of the boss portion 11 by screws 12.
  • the heat-generating component 9 is arranged on the surfaces of the circuit boards 7 and 8 on the heat-dissipating fins 3 and 4, and a heat conductive material 10 is provided on the heat-generating component 9.
  • a boss portion (not shown) may be provided between the heat conductive material 10 and the housings 1 and 2.
  • the heat conductive material 10 includes various types of heat conductive materials such as grease, gel, and sheet, and an appropriate heat conductive material may be adopted.
  • the heat conductive material 10 generally used is a grease-like heat conductive material, and includes a thermosetting resin having adhesiveness, a semi-curing resin having low elasticity, and the like.
  • the thermal conductive material 10 contains a filler formed of metal, carbon, ceramic or the like and having good thermal conductivity.
  • the heat conductive material 10 is semi-cured using, for example, a silicon-based resin containing a ceramic filler, which has flexibility that allows the circuit boards 7 and 8 to be deformed and deformed by heat and tolerances during manufacturing. Resin is preferred.
  • FIGS. 4 and 5 among the heat-generating components 9 shown in FIG. 2, the heat-generating component 9 mounted on the upper circuit board 7 in the mounting arrangement D and the heat-generating component 9 mounted on the lower circuit board 8 in the mounting arrangement E E.
  • a component 9 is shown.
  • the protruding height of the heat radiating fins 3 and 4 arranged at the contact position of the heat generating component 9 is high, and the protruding of the heat radiating fins 3 and 4 extending in the region where the heat generating component 9 is not arranged. The height is low. Further, the protruding heights of the heat radiating fins 7 and 8 are switched like a step with the central position of each heat generating component 9 as a boundary.
  • the heat radiating fin 3 protrudes from the region on the left side in the drawing in which the heat generating component 9 is mounted on the circuit board 8 toward the region on the right side in the drawing in which the heating component 9 is mounted on the circuit board 7.
  • the height is continuously increased, and the protruding height of the heat radiating fin 4 is continuously decreased. That is, since the fin heights (protruding heights) are changed diagonally from both ends of the heat radiation fins 3 and 4, the shape of the heat radiation fins 3 and 4 is trapezoidal.
  • the fin shape is not limited to the examples of FIGS. 4 and 5, and other fin shapes such as triangles may be used, or pin fins may be used instead of flat plate fins in consideration of water cooling.
  • the shapes and arrangements of the heat radiation fins 3 and 4 may differ in the shapes and arrangements in each figure, they are designated by the same reference numerals.
  • the heat radiating fin 3 corresponding to the circuit board 7 is provided in the stacking direction (thickness direction) of the circuit boards 7 and 8.
  • the length is longer than that of the heat radiation fin 4.
  • the length of the heat radiation fin 4 corresponding to the circuit board 8 is longer than that of the heat radiation fin 3 in the stacking direction (thickness direction) of the circuit boards 7 and 8. It's getting longer.
  • FIG. 6 among the heat generating components 9 shown in FIG. 2, the heat generating components 9 mounted on the upper circuit board 7 in the mounting arrangement B and the heat generating components 8 mounted on the lower circuit boards 8 in the mounting arrangements E and H, respectively.
  • a component 9 is shown. That is, the heat generating component 9 (B) mounted on the circuit board 7 above FIG. 6 is the heat generating component 9 of the mounting arrangement B of FIG.
  • the heat-generating component 9 (E) in the center of the circuit board 8 at the bottom of FIG. 6 is the heat-generating component 9 of the mounting arrangement E of FIG.
  • the heat generating component 9 (H) on the right side of the circuit board 8 at the bottom of FIG. 6 is the heat generating component 9 of the mounting arrangement H of FIG.
  • the protruding heights of the heat radiating fins 3 and 4 arranged at the contact positions of the heat generating parts 9 are high, and the heat radiating fins 3 and 4 extending in the region where the heat generating parts 9 are not arranged are high.
  • the protruding height of is relatively low.
  • the circuit board 7 is stacked in the stacking direction (thickness direction) of the circuit boards 7 and 8.
  • the length of the heat radiating fin 3 corresponding to the above is longer than that of the heat radiating fin 4.
  • the length of the heat radiation fin 4 corresponding to the circuit board 8 is longer than that of the heat radiation fin 3 in the stacking direction (thickness direction) of the circuit boards 7 and 8. It has become.
  • FIG. 7 is a sectional view taken along line YY showing a modified example of the electronic control device 101 in which the shapes of the heat radiation fins 3 and 4 are changed, and corresponds to FIG.
  • this modification as shown in FIG. 7, in the stacking direction (thickness direction) of the circuit boards 7 and 8, heat radiating fins 3 or heat radiating to the housings 1 and 2 depending on the position where the heat generating component 9 is arranged. Only one of the fins 4 is provided.
  • FIG. 8 is a sectional view taken along line YY showing a modified example in which the arrangement of the heat generating parts 9 and the shapes of the heat radiating fins 3 and 4 are changed, and corresponds to FIG.
  • another heat generating component 13 is arranged on the upper circuit board 7.
  • the heat-generating component 13 may be, for example, a component having a smaller heat generation amount or power consumption than the heat-generating component 9.
  • the heat generating component 13 mounted on the circuit board 7 and the heat generating component 9 mounted on the circuit board 8 are viewed in a plan view from the stacking direction (thickness direction) of the circuit boards 7 and 8. In, a part of them is arranged at a position where they overlap each other. Then, in a plan view, at the position where the heat generating component 13 is arranged, the position where the heat generating component 9 mounted on the circuit board 8 overlaps and the position where the heat generating component 9 does not overlap, in the stacking direction (thickness direction) of the circuit boards 7 and 8.
  • the lengths of the heat radiating fins 3 are different.
  • the length of the heat radiating fin 3 at the position where the heat generating component 13 and the heat generating component 9 overlap is the position where the heat generating component 13 and the heat generating component 9 do not overlap. It is shorter than the length of the heat radiation fin 3 in.
  • the heat radiating fins 3 can be provided on the housing 1 side and the heat radiating fins 4 can be provided on the housing 2 side as well.
  • the protruding heights of the heat radiating fins 3 and 4 arranged at the contact positions of the heat generating parts 9 are high, and the protruding heights of the heat radiating fins 3 and 4 arranged in the region where the heat generating parts 9 are not in contact are high.
  • the heat radiating fins 3 arranged at the contact positions of the heat generating components 13 are also formed to be high to some extent. In this way, when the heat-generating component 9 and the heat-generating component 13 are arranged so as to overlap each other in a plan view from the stacking direction (thickness direction) of the circuit boards 7 and 8, the heat generation amount and power consumption of each are compared and each of them is compared.
  • the heat dissipation fins 3 and 4 it is desirable to extend the heat dissipation fins 3 and 4 to a height at which the heat dissipation performance of the fins is exhibited according to the amount of heat generated. In this way, by determining the lengths of the heat radiating fins 3 and 4 according to the power consumption of the heat generating component 9 and the heat generating component 13, the heat radiating performance of the heat radiating fins 3 and 4 can be optimized respectively.
  • the lengths of the heat radiating fins 3 and 4 arranged at the contact positions of the heat generating component 9 and the heat generating component 13 are the longest in the vicinity of the central axis of those components and are separated from the central axis. It is formed so as to become shorter according to. By doing so, it is possible to efficiently dissipate heat from the entire housing with respect to the size of the ventilation passage, the size and material of the heat radiation fins 3 and 4, and the amount of air blown by the air cooling fan 6.
  • FIG. 1 As an example of the electronic control device 100, as described above, the appearance of FIG. 1, the mounting arrangements A to H of the heat generating components 9 in the circuit boards 7 and 8 of FIG. 2, and the housing cross sections of FIGS. 4 and 6 are shown. , May be the configuration shown in. Hereinafter, an example of a more specific configuration will be described with respect to the configuration of the electronic control device 100.
  • the circuit boards 7 and 8 are fixed to the boss portions 11 provided at the four corners of the housing with screws 12.
  • the upper housing 1 is provided with an upper circuit board 7 having a heat generating component 9
  • the lower housing 2 is provided with a lower circuit board 8 having a heat generating component 9.
  • the circuit boards 7 and 8 were formed of an FR4 material having a size of 320 mm ⁇ 180 mm ⁇ 1.6 mm (thickness).
  • the circuit boards 7 and 8 are 8-layer boards, and the thermal conductivity is 69 W / mK in the in-plane direction and 0.45 W / mK in the vertical direction.
  • the heat generating component 9 having a large heat generation amount is a 40 mm ⁇ 40 mm ⁇ 3.4 mm (thickness) BGA (Ball Grid Array) type semiconductor device, for example, a CPU.
  • the heat generating component 9 may be mounted on the circuit boards 7 and 8 by soldering.
  • the heat generating component 9 of the upper circuit board 7 and the heat generating component 9 of the lower circuit board 8 are arranged at different positions in a plan view.
  • the mounting arrangements of the heat generating components 9 on the circuit boards 7 and 8 correspond to the mounting arrangements A to D of the circuit boards 7 and the mounting arrangements E to H of the circuit boards 8, respectively.
  • These circuit boards 7 and 8 may be inverted with respect to the diagonal line not including the mounting arrangements A and H.
  • the heat conductive material 10 was formed by using a low elasticity heat radiating material (heat conductivity 2 W / mK) containing a heat conductive filler in a silicon resin.
  • the heat conductive material 10 was provided on the upper surface of all the heat generating parts 9, and had the same size and thickness as the heat generating parts 9 (constant).
  • the upper housing 1 and the lower housing 2 were formed by using an ADC 12 having a thermal conductivity of 96 W / mK.
  • the cover 5 was formed using a resin having a thermal conductivity of 0.33 W / mK.
  • the heat radiating fins 3 and 4 had a thickness of 2 mm and an interval of 8 mm, a height of 24 mm at the contact position of the heat generating component 9, and a height of 10 mm at other positions.
  • the height of the fin region (ventilation path) between the upper housing 1 and the lower housing 2 is 36 mm.
  • the air cooling fan 6 three DC axial fans having a size of 92 mm ⁇ 38 mm (thickness) were arranged.
  • the maximum air volume is 5.05 m3 / min and the maximum static pressure is 400 Pa.
  • FIG. 9 is an external perspective view of the electronic control device 103 according to Comparative Example 1.
  • FIG. 10 is a perspective view of circuit boards 7 and 8 built in the electronic control device 103 of FIG.
  • FIG. 11 is a cross-sectional view taken along the line ZZ of FIG.
  • the positions of the heat generating components 9 on the circuit boards 7 and 8 of the electronic control device 101 and the shapes of the heat radiation fins 3a and 4a are different from those of the electronic control device 100.
  • the heat radiation fins 3a and 4a used in the electronic control devices 103 shown in FIGS. 9 to 11 are distinguished from the heat radiation fins 3 and 4 used in the electronic control device 100 with different reference numerals.
  • the heat generating components 9 arranged on the upper circuit board 7 and the lower circuit board 8 are arranged at overlapping positions in a plan view. Further, as shown in FIG. 11, the heights of the heat radiating fins are all constant 24 mm. In Comparative Example 1, the fin region between the upper housing 1 and the lower housing 2, that is, the ventilation path has a height of 50 mm. The electronic control device 103 according to Comparative Example 1 is not reduced in height. Other than that, the electronic control device 103 is the same as the electronic control device 100 according to the first embodiment in which the basic structure and the members used in the housing are reduced.
  • FIG. 12 is a comparison diagram of the junction temperature of the electronic control device 100 of the first embodiment and the electronic control device 103 of the comparative example 1.
  • FIG. 12 shows the results of thermofluid analysis of the junction temperature of the heat generating component 9 for each component arrangement A to H for the configurations of the electronic control device 100 of Example 1 and the electronic control device 103 of Comparative Example 1. ing.
  • the junction temperature shown in FIG. 12 is a junction temperature in an environment temperature of 80 ° C. and a forced air-cooled environment by the air-cooled fan 6, where the amount of heat generated per heat-generating component 9 is 28 W and the entire electronic control device 100 is 224 W.
  • the electronic control device 100 according to the first embodiment has almost the same result as the electronic control device 103 according to the comparative example 1.
  • the electronic control device 100 of the first embodiment has a lower profile than the electronic control device 103 of the comparative example 1 in that the height of the heat radiation fins is reduced by 14 mm (height is reduced by 28% in the fin region). It was confirmed that such a low-profile structure has almost the same heat dissipation performance, although the heat dissipation conditions are stricter than those that do not. Therefore, the electronic control device 100 has made it possible to achieve both high heat dissipation and low profile.
  • the electronic control device 101 of the second embodiment has a different shape and arrangement from the electronic control device 100 of the first embodiment and the heat radiation fins 3 and 4, but the electronic control device of the second embodiment.
  • the other configuration of 101 is the same as that of the electronic control device 100 of the first embodiment.
  • the heat radiating fins 3 and 4 had a thickness of 2 mm and an interval of 8 mm, and heat radiating fins were formed only above or below the heat generating component 9.
  • the heat radiation fins 3 and 4 have a height of 34 mm.
  • the height of the fin region (ventilation path) between the upper housing 1 and the lower housing 2 is 36 mm.
  • These fin shapes are slightly different between the electronic control device 100 of the first embodiment and the electronic control device 101 of the second embodiment, but have common reference numerals 3 and 4.
  • FIG. 13 is a cross-sectional view of a housing for explaining the ventilation path of the electronic control device 104 according to Comparative Example 2 with a front view.
  • the member used for the electronic control device 104 of Comparative Example 2 is substantially the same as the electronic control device 101 of Example 2 shown in FIG. 7, but only the fin shape is the electronic control device 101 shown in FIG. Is different.
  • the heat radiation fins 3a and 4a used in the electronic control device 104 of FIG. 13 have different reference numerals to the heat radiation fins 3 and 4 of the electronic control devices 100 and 102 in order to clearly distinguish them.
  • the distance between the upper heat radiation fin 3a and the lower heat radiation fin 4a is 3 mm.
  • the heat radiation fins 3 and 4 have a height of 34 mm.
  • the fin region (ventilation path) between the upper housing 1 and the lower housing 2 has a height of 36 mm.
  • the fin region formed by the ventilation path formed between the upper housing 1 and the lower housing 2 is a fin region. The height is constant.
  • is the pressure loss coefficient
  • is the density of the fluid
  • u is the average flow velocity.
  • the electronic control device 101 of Example 2 shown in FIG. 7 had a pressure loss of 82 Pa
  • the electronic control device 104 of Comparative Example 2 shown in FIG. 13 had a pressure loss of 271 Pa, which was about three times higher. did. It is considered that the average flow velocity u increased and the pressure loss increased due to the narrowing of the fin spacing.
  • the electronic control devices 100 and 101 have improved fin efficiency, and are effective in reducing the height and increasing heat dissipation.
  • the mounting arrangement of the heat generating component 9 the one mounted on the upper circuit board 7 and the one mounted on the lower circuit board 8 are arranged at different positions in the plan view from the thickness direction of the circuit boards 7 and 8. It is preferable to be done. Further, it is preferable that the fins planted at the base portion at a position closer to the contact position of the heat generating component 9 have a higher protrusion height from the base portion. Further, by arranging the fin spacings to be constant, it is possible to suppress an increase in pressure loss, and it is possible to reduce the height and dissipate heat while maintaining the performance of the air cooling fan 6.
  • the electronic control devices 100 to 102 have two circuit boards 7 and 8 arranged in parallel at regular intervals, and a forced cooling structure in which a ventilation path penetrating the gap between the two circuit boards is formed. Is. Between these circuit boards 7 and 8, heat radiation fins 3 and 4 provided on the inward facing surfaces of the upper and lower housings 1 and 2 are provided. In a plan view from the thickness direction of the circuit boards 7 and 8, the heat generating parts 9 on the two upper and lower circuit boards 7 and 8 are displaced from each other, and the heat radiating fins 3 and 4 are the heat generating parts 9. It is arranged so as to overlap with the contact position of.
  • the electronic control devices 100 to 102 can achieve both high heat dissipation and low profile without significantly increasing the temperature of the outer surfaces of the housings 1 and 2 while suppressing an increase in pressure loss between the heat radiation fins 3 and 4.
  • the electronic control devices 100 to 102 are particularly suitable for in-vehicle electronic control devices mounted on automobiles.
  • the mounting position and the mounting position and the height can be reduced from the viewpoint that both high heat dissipation and low profile can be achieved without extremely heating the outer surfaces of the housings 1 and 2. Since the degree of freedom for the mounting partner is increased, it is possible to secure versatility that can be applied over a long period of time for multiple models and multiple specifications.
  • the present invention is not limited to the above-mentioned examples, and includes various modifications. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • the electronic control devices 100 to 102 are electronic control devices provided with heat radiating fins 3 and 4 for air-cooling the heat generating parts 9 and 13 built in the rectangular parallelepiped housings 1 and 2. That is, the electronic control devices 100 to 102 have a multi-layer structure, and a ventilation path penetrating the gap between the layers is formed. Further, heat radiation fins 3 and 4 are projected from the inner wall surface of the ventilation passages of the electronic control devices 100 to 102 in the width direction. Further, the heat generating parts 9 and 13 are arranged so as to conduct heat at the base where the heat radiation fins 3 and 4 of the electronic control devices 100 to 102 are planted.
  • the electronic control devices 100 to 102 preferably include a forced air cooling mechanism that sends air to the ventilation path.
  • the heat radiation fins 3 and 4 are not projected on the outer surface of the housing 5, and a flat surface is secured. Therefore, there are few restrictions on the partner in contact with the outer surface of the housing. That is, the electronic control devices 100 to 102 have a structure that is easy to attach.
  • the electronic control devices 100 to 102 can provide an electronic control device that increases the degree of freedom for the mounting position and the mounting partner. Further, the heat generating parts 9 and 13 can be satisfactorily cooled without making the outer surface of the electronic control devices 100 to 102 particularly hot. Further, it is preferable that the heat radiation fins 3 and 4 of the electronic control devices 100 to 102 are arranged facing each other. According to this, since a large heat exchange area can be secured in the ventilation path, it is easy to design heat dissipation to obtain the required cooling effect.
  • the protruding heights of the heat radiating fins 3 and 4 are preferably changed according to the amount of heat generated by the heat generating parts 9 and 13, and may be formed unevenly. It is preferable that the width of the gap forming the ventilation path is uniform without the heat radiation fins 3 and 4. In this uniform width ventilation path, if one of the pair of heat radiation fins 3 and 4 is high, the other is arranged so as to face each other. As a result, the heat exchange area can be efficiently obtained as a whole in the ventilation passage having a limited uniform width.
  • An electric device (for example, electronic control devices 100 to 102) has a first housing (for example, a housing) having a first circuit board (for example, a circuit board 7) on which at least a first electronic component (for example, a heat generating component 9) is mounted. 1), a second housing (for example, housing 2) having a second circuit board (for example, circuit board 8) on which at least a second electronic component (for example, heat generating component 9) is mounted, and a first housing. It includes at least one fan (for example, an air-cooled fan 6) that sends air through the second housing.
  • a first housing for example, a housing having a first circuit board (for example, a circuit board 7) on which at least a first electronic component (for example, a heat generating component 9) is mounted.
  • a second housing for example, housing 2 having a second circuit board (for example, circuit board 8) on which at least a second electronic component (for example, heat generating component 9) is mounted
  • the first housing has a plurality of fins (for example, heat radiation fins 3) facing the second housing.
  • the second housing has a plurality of fins (for example, heat radiation fins 4) facing the first housing.
  • the fins of the first housing are longer than the fins of the second housing, and the fins of the first housing are second. It is a structure having a region shorter than the fins of the housing.
  • At least a part of the heat generated in the first electronic component is transferred to at least a part of the fins of the first housing.
  • At least a part of the heat generated in the second electronic component is transferred to at least a part of the fins of the second housing.
  • the fins of the first housing and the fins of the second housing are cooled by the wind from at least one or more fans.
  • the first electronic component and the second electronic component may be integrated circuits, for example.
  • the first electronic component and the second electronic component may be arranged at different positions in a plan view from the thickness direction of the first circuit board.
  • the fins of the first housing and the fins of the second housing which are arranged so as to overlap the first electronic component in a plan view from the thickness direction of the first circuit board, are one in the thickness direction of the first circuit board.
  • the fins of the first housing are longer than the fins of the second housing.
  • the fins of the first housing and the fins of the second housing which are arranged so as to overlap the second electronic component in a plan view from the thickness direction of the first circuit board, are in the thickness direction of the first circuit board.
  • the fins of the first housing are shorter than the fins of the second housing.
  • a third electronic component (for example, electronic component 13), which is an integrated circuit, may be mounted on the first circuit board.
  • the third electronic component and the second electronic component may be arranged at a position where they partially overlap.
  • the fins of the first housing arranged at positions where the third electronic component and the second electronic component do not overlap have different lengths in one cross section (for example, the cross section of FIG. 8) in the thickness direction of the first circuit board.
  • the fins of the first housing arranged at the positions where the third electronic component and the second electronic component overlap are among the positions where the third electronic component is arranged.
  • the length of the first circuit board in one cross section (for example, the cross section of FIG. 8) in the thickness direction is shorter than that of the fins of the first housing arranged at positions where the third electronic component and the second electronic component do not overlap.
  • the second electronic component may consume more power than the third electronic component.
  • the first housing and the fins of the second housing which are arranged at positions where the third electronic component and the second electronic component overlap in a plan view from the thickness direction of the first circuit board, the first housing
  • the fins of the body are shorter in length in one cross section (for example, the cross section of FIG. 8) in the thickness direction of the first circuit board than the fins of the second housing.
  • the plurality of fins of the second housing arranged at positions overlapping with the second electronic component in a plan view from the thickness direction of the first circuit board are one cross section in the thickness direction of the first circuit board (for example, FIG. 8).
  • the length of the fin is shorter as the fin is farther from the center of the second electronic component.
  • a plurality of fins of the first housing arranged at positions overlapping with the second electronic component in a plan view from the thickness direction of the first circuit board are one cross section of the first circuit board in the thickness direction (for example, FIG. 8).
  • the fins farther from the center of the second electronic component are longer in length.
  • the first electronic component may be an integrated circuit.
  • a part of the fins of the first electronic component and the first housing is arranged so as to overlap with the first electronic component.
  • the fins of the second housing are arranged so as not to overlap.
  • the second electronic component may be an integrated circuit.
  • a part of the fins of the second electronic component and the second housing are arranged so as to overlap with the second electronic component.
  • the fins of the first housing are arranged so as not to overlap.
  • the first electronic component is arranged at a position on the second circuit board where the integrated circuit is not mounted, and the first circuit The second electronic component is arranged on the board at a position where the integrated circuit is not mounted.
  • the distance between the plurality of fins of the first housing and the distance between the plurality of fins of the second housing may be the same.
  • the following electronic control device is also an example of the embodiment.
  • the electronic control device (for example, electronic control devices 100 to 102) has a first housing (for example, a casing) having a first circuit board (for example, a circuit board 7) on which at least the first electronic component (for example, a heat generating component 9) is mounted.
  • a second housing (for example, a housing 2) having a body 1) and a second circuit board (for example, a circuit board 8) on which at least a second electronic component (for example, a heat generating component 9) is mounted, and a first housing.
  • a third housing (for example, a housing 5) having the second housing and the second housing inside is provided.
  • the first housing has a plurality of fins (for example, heat radiation fins 3) facing the second housing.
  • the second housing has a plurality of fins (for example, heat radiation fins 4) facing the first housing. At least a part of the heat generated in the first electronic component is transferred to at least a part of the fins of the first housing.
  • At least a part of the heat generated in the second electronic component is transferred to at least a part of the fins of the second housing.
  • the fins of the first housing are longer than the fins of the second housing, and the fins of the first housing are the first. It is a structure having a region shorter than the fins of the two housings.
  • the electronic control device is cooled by natural air cooling, forced air cooling by an air cooling fan 6, water cooling, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

電気機器は、第一電子部品が実装された第一回路基板を内部に有する第一筐体と、第二電子部品が実装された第二回路基板を内部に有する第二筐体と、第一筐体と第二筐体との間を通る風を送るファンと、を備える。第一筐体は、第二筐体に対向する複数のフィンを有する。第二筐体は、第一筐体に対向する複数のフィンを有する。電気機器は、第一回路基板の厚さ方向の断面のうち、少なくとも一つの断面において、第一筐体のフィンが第二筐体のフィンより長い領域と、第一筐体のフィンが第二筐体のフィンより短い領域とを有する構造である。

Description

電気機器、電子制御装置
 本発明は電気機器、電子制御装置に関する。
 自動車等の車両には、例えば、エンジン制御用、モータ制御用等の電子制御装置が搭載されている。このような車載用電子制御装置は、通常、回路基板の上に、電子部品や電子回路等の発熱部品を備えている。
 本技術分野の背景技術として、高フィン密度のヒートシンクに関する技術がある。例えば、特許文献1に記載の技術がある。
特開平11-314131号公報
 近年、車載用電子制御装置に用いられる発熱部品は、高性能化により発熱量が増大している。例えば、車載用電子制御装置に用いられるマイコンは、高速演算及び高速処理に対応して高性能化され、発熱量が増大している。また、例えば高度な自動運転機能の実現のためには、マイコンを複数搭載する必要があることから、車載用電子制御装置において、回路基板を二枚にすること等、回路基板の枚数を増加させることが検討されている。回路基板の枚数を増加させた場合、放熱のため、それぞれの基板に搭載されたマイコンに対してフィンを設けると、筐体高さの増大が懸念される。また、さらなる放熱性能の向上のためには、フィンの表面積を増やすことが一般的であるが、フィン間の摩擦圧力損失が生じてファン性能が低下し、フィンへの風通しが悪化する可能性もある。
 一方で、車載レイアウトの自由度向上の観点から、車載用電子制御装置には、小型化、筐体容積の減少が要求されている。このため、車載用電子制御装置の高放熱性と、筐体の小型化、特に低背化を両立して、発熱部品の保障温度を超えないようにすることが求められている。車載用電子制御装置の低背化と高放熱性を実現するためには、回路基板におけるヒートシンクの形状や位置関係等が適切に設計される必要がある。そこで、高放熱性と低背化を両立した、電気機器及び電子制御装置を提供する。
 上記課題を解決するために、本発明の一態様である電気機器は、第一電子部品が実装された第一回路基板を内部に有する第一筐体と、第二電子部品が実装された第二回路基板を内部に有する第二筐体と、第一筐体と第二筐体との間を通る風を送るファンと、を備える。第一筐体は、第二筐体に対向する複数のフィンを有する。第二筐体は、第一筐体に対向する複数のフィンを有する。電気機器は、第一回路基板の厚さ方向の断面のうち、少なくとも一つの断面において、第一筐体のフィンが第二筐体のフィンより長い領域と、第一筐体のフィンが第二筐体のフィンより短い領域とを有する構造である。
 また、本発明の別の一態様である電子制御装置は、第一電子部品が実装された第一回路基板を内部に有する第一筐体と、第二電子部品が実装された第二回路基板を内部に有する第二筐体と、第一筐体と第二筐体とを内部に有する第三筐体と、を備える。第一筐体は、第二筐体に対向する複数のフィンを有する。第二筐体は、第一筐体に対向する複数のフィンを有する。第一電子部品で発生した熱の少なくとも一部は、第一筐体の少なくとも一部のフィンに伝熱する。第二電子部品で発生した熱の少なくとも一部は、第二筐体の少なくとも一部のフィンに伝熱する。電子制御装置は、第一回路基板の厚さ方向の断面のうち、少なくとも一つの断面において、第一筐体のフィンが第二筐体のフィンより長い領域と、第一筐体のフィンが第二筐体のフィンより短い領域とを有する構造である。
 本発明によれば、高放熱性と低背化を両立した、電気機器及び電子制御装置を提供できる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
電子制御装置の外観斜視図である。 回路基板の部品配置の一例を示す図である。 回路基板の部品配置の別の一例を示す図である。 電子制御装置のX―X線断面の一例を示す図である。 電子制御装置のX―X線断面の別の一例を示す図である。 電子制御装置のY―Y線断面の一例を示す図である。 電子制御装置のY―Y線断面の別の一例を示す図である。 電子制御装置のY―Y線断面図のさらに別の一例を示す図である。 比較例1に係る電子制御装置の外観斜視図である。 比較例1に係る電子制御装置に内蔵された回路基板の部品配置を示す図である。 比較例1に係る電子制御装置のZ―Z線断面を示す図である。 ジャンクション温度の比較図である。 比較例2に係る電子制御装置の断面を示す図である。
 以下、図面を参照して、本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施することが可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。同一あるいは同様な機能を有する構成要素が複数ある場合には、同一の符号に異なる添字を付して説明する場合がある。ただし、これらの複数の構成要素を区別する必要がない場合には、添字を省略して説明する場合がある。
 図1は、電子制御装置100の外観斜視図である。図2は、図1に示した電子制御装置100の筐体内に配設された1対の回路基板の斜視図である。図3は、図2に示した1対の回路基板の部品配置を変化させた変形例である。図1に示すように、電子制御装置100は、直方体の本体(筐体)に内蔵された発熱部品を空冷するために、放熱フィン3,4を備えている。電子制御装置100は重層構造であり、層間の隙間に通風路が形成されている。電子制御装置100の放熱フィン3,4が植設された基部に、発熱部品で発生した熱が伝導する。発熱部品9,13は、電子部品や電子回路であり、例えばマイコン等の集積回路や半導体素子である。発熱部品を、電子部品と呼んでもよい。
 以降の説明において、各図面に示される構成について「上方」「下方」「前方(前面)」「後方(後面)」という用語を用いることがあるが、これは単に各図面における位置関係を示すものであり、この位置関係に実施形態が限定されるものではない。例えば、図1において、筐体1を上方の筐体1と呼び、筐体2を下方の筐体2と呼ぶことがあるが、この装置が180度回転して上下の位置関係が逆になってもよいし、90度回転して左右の位置関係になってもよい。
 電子制御装置100は、上方の筐体1と下方の筐体2を有する。上方の筐体1と下方の筐体2とは互いに対向して配置され、これらの間に形成された通風路には、放熱フィン3,4を備えている。上方の筐体1からは上方の放熱フィン3、下方の筐体2からは下方の放熱フィン4が、互いに向かってそれぞれ突出するように延伸している。上方の筐体1と下方の筐体2は、不図示のねじ等の締結部材により固定されている。
 筐体1,2の前面側(前方)の側壁には、1つ又は複数の不図示のコネクタや複数のイーサネット(登録商標)ターミナルが配置されていてもよい。コネクタ等(図示せず)を挿通するための孔又は切欠き(図示せず)が形成されており、この孔又は切欠きを通してコネクタ等が回路基板に形成された配線パターン(図示せず)に接続されている。コネクタ等を介して、外部装置と電子制御装置100との間で電力や制御信号の送受信が行われる。
 筐体1,2の後方には空冷ファン6が配置されている。カバー(筐体)5は、空冷ファン6により送られる風が放熱フィン3,4間に流れるように、前方または後方の面に吸気孔または排気孔となる開口部があり、前方と後方以外の面には壁がある。
 筐体1,2の内部には、それぞれ回路基板7,8を有している。上方の筐体1には、上方の回路基板7が収容されている。下方の筐体2には、下方の回路基板8が収容されている。回路基板7と回路基板8との間には、放熱フィン3,4がある。
 回路基板7,8の其々には、マイコン等の半導体素子を含む1つ以上の発熱部品9が実装されている。図2や図3に示す例では、回路基板7に実装された4つの発熱部品9の位置を実装配置A,B,C,Dでそれぞれ示し、回路基板8に実装された4つの発熱部品9の位置を実装配置E,F,G,Hでそれぞれ示している。なお、回路基板7,8に実装される発熱部品9の数や位置は、図2や図3の例に限定されず、任意の数や位置とすることができる。
 図示を省略するが、回路基板7,8には、コンデンサ等の受動素子も実装され、これらの電子部品とコネクタ等(不図示)とを接続する配線パターンも形成されている。回路基板7,8は、例えば、エポキシ樹脂等の有機材料により形成されている。回路基板7,8は、耐熱性、及び絶縁性の観点からFR4(ガラスエポキシ基板)材料とすることが好ましい。回路基板7,8は、単層基板又は多層基板とすることができる。
 発熱部品9は、上方の回路基板7の下面及び下方の回路基板8の上面に、それぞれ向き合うように配置されている。また、回路基板7,8上の発熱部品9は、平面視において重ならない位置に配置されている。発熱部品9は、回路基板7,8に半田等の接合材で電気的に接続されている。なお、ここでいう平面視とは、回路基板7,8が水平であるとして、それらに対する垂直方向、すなわち回路基板7,8の厚さ方向(積層方向)からの視認をいう。
 発熱部品9から生じた熱は、熱伝導材10を介して筐体1,2に伝わり、筐体1の下部と筐体2の上部にそれぞれ形成された放熱フィン3,4より大気中へと放熱される。もしくは、回路基板7,8に不図示の配線パターン及びサーマルビア(又はスルーホール)を設けることで、筐体1,2の外側面、すなわち回路基板7,8の発熱部品9の実装面とは反対側の面に対向する筐体1,2の面にまで熱が伝わり、それら筐体1,2の外側面から効果的に放熱することも可能である。ただし、電子制御装置100の取り付け位置及び取り付け相手に対する自由度が増すことを目的とする場合、筐体1,2の外側面への熱伝導を制限する構成である方が有利な場合がある。
 上方の筐体1及び下方の筐体2は、例えば、アルミダイカストとして自動車用部品に多く使われている合金タイプのアルミニウムADC12等の熱伝導性に優れた金属材料により形成されてもよい。また、鉄などの板金、あるいは樹脂材料等の非金属材料により形成し、低コスト化及び軽量化を図ることもできる。カバー(筐体)5も同様に、鉄などの板金、あるいは樹脂材料等の非金属材料により形成することができる。
 筐体1,2の内部において、発熱部品9は、当該発熱部品9の上方または下方で熱伝導材10に接し、当該熱伝導材10はボス部(不図示)と接する。ボス部は、筐体1,2の一部であってもよいし、または筐体1,2の内側の面と接する部材であってもよい。放熱フィン3,4は、筐体1,2の外側の面から、互いに向かって突出するように延伸している。
 放熱フィン3,4及びボス部は、ダイキャスト等の鋳造により筐体1,2の一部として一体形成してもよい。または、放熱フィン3,4及びボス部を、筐体1,2とは別部材として作製して、筐体1,2に取り付けるようにしてもよい。電子制御装置100の放熱フィン3,4が植設された基部に、発熱部品9の熱が伝導する構造であってもよい。放熱フィン3,4が発熱部品9とそれぞれ熱的に結合されていれば、他の構造であっても構わない。
 図1に示す例では、上方の放熱フィン3と下方の放熱フィン4で構成された放熱フィン3,4間の通風路に風が流れるように、空冷ファン6が3つ配設されている。空冷ファン6は、1つあるいは複数配置してもよい。空冷ファン6は、軸流ファンや遠心ファン、もしくはブロアであってもよい。また、冷媒として、空気ではなく液体にして、フィン間に液体を流すことで冷却する水冷構造であってもよい。
 図4は、図1に示した電子制御装置100のX―X線断面図である。図5は、図4に示したX―X線断面図のフィン形状を変化させた変形例である。図6は、図1に示した電子制御装置100のY―Y線断面図である。図4~図6に示されるように、筐体1,2内において、放熱フィン3,4が配置されている面のコーナー部には、回路基板7,8側に突出するボス部11が設けられている。なお、図4~図6では、発熱部品9が図2に示した配置で基板7,8に実装されている場合の断面を示している。
 回路基板7,8は、ねじ12によりボス部11の端面に固定されている。発熱部品9は、回路基板7,8の放熱フィン3,4側の面に配置され、発熱部品9上には熱伝導材10が設けられている。熱伝導材10と筐体1,2との間に、不図示のボス部を設けてもよい。
 熱伝導材10には、グリース状、ジェル状、シート状等、さまざまな種類の熱伝導材があり、適切な熱伝導材が採用されればよい。一般的に使用されている熱伝導材10は、グリース状の熱伝導材であり、接着性を有する熱硬化樹脂や、低弾性を有する半硬化樹脂等がある。
 熱伝導材10は、金属、カーボン、セラミック等により形成された、熱伝導性が良好なフィラーが含有されている。熱伝導材10は、回路基板7,8の熱による変形や振動、及び製造時の公差に対して変形可能な柔軟性を有する、例えば、セラミックフィラーが含有されたシリコン系樹脂を用いた半硬化樹脂が好ましい。
 図4及び図5では、図2に示した発熱部品9のうち、実装配置Dにおいて上方の回路基板7に実装された発熱部品9と、実装配置Eにおいて下方の回路基板8に実装された発熱部品9とを示している。図4の場合、発熱部品9の当接位置に配置されている放熱フィン3,4の突出高さは高く、発熱部品9が配置されていない領域で延伸している放熱フィン3,4の突出高さは低い。また、それぞれの発熱部品9の中央位置を境に、放熱フィン7,8の突出高さが段差のように切り替えられている。
 図5の場合、回路基板8に発熱部品9が実装されている図中左側の領域から、回路基板7に発熱部品9が実装されている図中右側の領域に向かって、放熱フィン3は突出高さが連続的に高くなり、放熱フィン4は突出高さが連続的に低くなっている。すなわち、放熱フィン3,4の両端から対角線上にフィン高さ(突出高さ)を変えているため、放熱フィン3,4の形状が台形になっている。
 フィン形状は図4、図5の例に限らず、他のフィン形状、例えば三角形にしてもいいし、水冷を考慮して平板フィンではなくピンフィンにしてもよい。なお、放熱フィン3,4の形状や配置等が、各図で形状や配置等が異なる例を示すことがあるが、同一符号を付している。
 図4、図5のいずれの場合でも、回路基板7に発熱部品9が配置された位置では、回路基板7,8の積層方向(厚さ方向)において、回路基板7に対応する放熱フィン3の長さが放熱フィン4よりも長くなっている。同様に、回路基板8に発熱部品9が配置された位置では、回路基板7,8の積層方向(厚さ方向)において、回路基板8に対応する放熱フィン4の長さが放熱フィン3よりも長くなっている。このように、発熱部品9の近くに配置されている放熱フィン3,4を高くすることで、発熱部品9からの熱を放熱フィン3,4で効率良く放熱することができるので、放熱性能の向上に効果がある。
 図6では、図2に示した発熱部品9のうち、実装配置Bにおいて上方の回路基板7に実装された発熱部品9と、実装配置E,Hにおいて下方の回路基板8にそれぞれ実装された発熱部品9とを示している。すなわち、図6の上方の回路基板7に実装された発熱部品9(B)は、図2の実装配置Bの発熱部品9である。図6の下方の回路基板8の中央にある発熱部品9(E)は、図2の実装配置Eの発熱部品9である。図6の下方の回路基板8の右側にある発熱部品9(H)は、図2の実装配置Hの発熱部品9である。
 図6に示すように、発熱部品9の当接位置に配置されている放熱フィン3,4の突出高さは高く、発熱部品9が配置されていない領域で延伸している放熱フィン3,4の突出高さは相対的に低い。このように図6でも、図4、図5の例と同様に、回路基板7に発熱部品9が配置された位置では、回路基板7,8の積層方向(厚さ方向)において、回路基板7に対応する放熱フィン3の長さが放熱フィン4よりも長くなっている。また、回路基板8に発熱部品9が配置された位置では、回路基板7,8の積層方向(厚さ方向)において、回路基板8に対応する放熱フィン4の長さが放熱フィン3よりも長くなっている。
 図7は、放熱フィン3,4の形状を変化させた変形例に係る電子制御装置101を示すY―Y線断面図であり、図6に対応している。この変形例では、図7に示すように、回路基板7,8の積層方向(厚さ方向)において、発熱部品9が配置された位置に応じて、筐体1,2に放熱フィン3または放熱フィン4の一方のみが設けられている。
 回路基板7に発熱部品9が配置された位置では、放熱フィン4が設けられずに放熱フィン3のみが設けられている。また、回路基板8に発熱部品9が配置された位置では、放熱フィン3が設けられずに放熱フィン4のみが設けられている。このように放熱フィン3,4の配置とすることで、発熱部品9の近くに配置されている放熱フィン3,4を高くすることができるため、発熱部品9から放熱フィン3,4へ効率良く伝熱して放熱性能を向上させることができる。
 図8は、発熱部品9の配置と放熱フィン3,4の形状を変化させた変形例に係る電子制御装置102を示すY―Y線断面図であり、図6に対応している。この変形例では、図8に示すように、上方の回路基板7にさらに別の発熱部品13が配置されている。発熱部品13は、例えば発熱部品9よりも発熱量または消費電力が小さい部品であってもよい。
 図8の電子制御装置102では、回路基板7に実装された発熱部品13と回路基板8に実装された発熱部品9とが、回路基板7,8の積層方向(厚さ方向)からの平面視において、その一部が互いに重なる位置に配置されている。そして、平面視において、発熱部品13が配置された位置では、回路基板8に実装された発熱部品9が重なる位置と重ならない位置とで、回路基板7,8の積層方向(厚さ方向)における放熱フィン3の長さが異なっている。
 具体的には、平面視で発熱部品13が配置された位置のうち、発熱部品13と発熱部品9が重なる位置での放熱フィン3の長さは、発熱部品13と発熱部品9が重ならない位置での放熱フィン3の長さよりも短くなっている。これにより、平面視で発熱部品9と発熱部品13とが重なる位置において、筐体1側に放熱フィン3を設けつつ、筐体2側にも放熱フィン4を設けることができるようにしている。
 また、発熱部品9の当接位置に配置されている放熱フィン3,4の突出高さは高く、発熱部品9が当接していない領域に配置されている放熱フィン3,4の突出高さが低いことに加えて、発熱部品13の当接位置に配置されている放熱フィン3もある程度高く形成されている。このように、回路基板7,8の積層方向(厚さ方向)からの平面視において発熱部品9と発熱部品13が重なって配置される場合は、それぞれの発熱量や消費電力を比較し、各発熱量に応じてフィンの放熱性能を発揮させる高さまで放熱フィン3,4を延伸させることが望ましい。このように、発熱部品9や発熱部品13の消費電力に応じて放熱フィン3,4の長さを定めることで、放熱フィン3,4の放熱性能をそれぞれ最適化することができる。
 また、図8に示すように、発熱部品9及び発熱部品13の当接位置に配置された放熱フィン3,4の長さは、それらの部品の中心軸付近が最も長く、その中心軸から離れるに従って短くなるように形成されている。このようにすることで、通風路の大きさ、放熱フィン3,4の大きさや材料、及び空冷ファン6の送風量に対し、効率良く筐体全体を放熱する効果が得られる。
 続いて、以上説明した実施形態に係る電子制御装置100及び変形例に係る電子制御装置101の放熱効果について、以下の実施例1,2により説明する。
 電子制御装置100の一例としては、上述したように、図1の外観と、図2の回路基板7,8における発熱部品9の実装配置A~Hと、図4及び図6の筐体断面と、に示される構成であってもよい。以下、この電子制御装置100の構成に関して、より具体的な構成の一例を説明する。回路基板7,8は、筐体の4つのコーナーに設けられたボス部11に対し、ねじ12で固定する。上方の筐体1には、発熱部品9を有した上方の回路基板7を備え、下方の筐体2には、発熱部品9を有した下方の回路基板8を備える。
 回路基板7,8は、320mm×180mm×1.6mm(厚さ)を有するFR4材料により形成した。回路基板7,8は8層基板であり、熱伝導率は、面内方向では69W/mK、垂直方向では0.45W/mKである。発熱量の大きい発熱部品9は、40mm×40mm×3.4mm(厚さ)のBGA(Ball Grid Array)型の半導体装置、例えばCPUである。発熱部品9は、半田付けにより回路基板7,8に実装してもよい。
 図2に示すように、上方の回路基板7の発熱部品9と下方の回路基板8の発熱部品9は、平面視において異なる位置に配置した。回路基板7,8における発熱部品9の実装配置は、回路基板7の実装配置A~Dと、回路基板8の実装配置E~Hに其々対応している。これらの回路基板7,8は、実装配置A,Hを含まない対角線を軸にして反転させた関係であってもよい。
 熱伝導材10は、シリコン系樹脂に熱伝導性フィラーを含有した低弾性放熱材(熱伝導率2W/mK)を用いて形成した。熱伝導材10は、全ての発熱部品9の上面に設け、発熱部品9と同じサイズかつ厚さを1.9mm(一定)とした。上方の筐体1及び下方の筐体2は、熱伝導率が96W/mKのADC12を用いて形成した。カバー5は、熱伝導率が0.33W/mKの樹脂を用いて形成した。
 放熱フィン3,4は、厚さ2mm、間隔8mmとし、発熱部品9の当接位置では高さ24mm、それ以外では高さ10mmとした。実施例1に係る電子制御装置100における、上方の筐体1及び下方の筐体2間のフィン領域(通風路)は、高さを36mmとした。空冷ファン6は、92mm×38mm(厚さ)のDC軸流ファンを3つ配設した。最大風量は5.05m3/min、最大静圧は400Paである。
 図9は、比較例1に係る電子制御装置103の外観斜視図である。図10は、図9の電子制御装置103に内蔵される回路基板7,8の斜視図である。図11は、図9のZ―Z線断面図である。電子制御装置101の各回路基板7,8における発熱部品9の位置と、放熱フィン3a,4aの形状は、電子制御装置100と異なっている。なお、電子制御装置100で用いた放熱フィン3,4に対し、図9~図11に示す電子制御装置103で用いる放熱フィン3a,4aは、異なる符号を付して区別している。
 図10に示す電子制御装置103において、上方の回路基板7及び下方の回路基板8に配置された発熱部品9は、平面視において重なる位置に配置されている。また、図11に示すように、放熱フィンの高さは全て一定の24mmである。比較例1における、上方の筐体1及び下方の筐体2間のフィン領域、すなわち通風路は、高さ50mmである。この比較例1に係る電子制御装置103は低背化していない。その点以外、電子制御装置103は、その筐体内の基本的な構造及び使用した部材について、低背化した実施例1に係る電子制御装置100と同一である。
 図12は、実施例1の電子制御装置100と比較例1の電子制御装置103のジャンクション温度の比較図である。図12には、実施例1の電子制御装置100、及び比較例1の電子制御装置103、それぞれの構成について、部品配置A~H別に発熱部品9のジャンクション温度を熱流体解析した結果が示されている。図12に示されたジャンクション温度は、発熱部品9のひとつあたりの発熱量を28Wとし、電子制御装置100全体で224Wとして、環境温度80℃、空冷ファン6による強制空冷環境におけるジャンクション温度である。
 図12に示すように、発熱部品9のジャンクション温度について、実施例1に係る電子制御装置100は、比較例1に係る電子制御装置103と、ほぼ同等の結果である。実施例1の電子制御装置100は、比較例1の電子制御装置103よりも、放熱フィン高さを14mm低減(フィン領域において高さ28%減)した低背化構造である。このような低背化構造は、そうでないものよりも放熱条件が厳しくなるにも関わらず、ほぼ同等の放熱性能が確認できた。したがって、電子制御装置100は、高放熱性と低背化の両立を可能にした。
 以下、実施例2の電子制御装置101の具体的な構成の一例を説明する。実施例2の電子制御装置101は、図7の筐体断面に示すように、実施例1の電子制御装置100と放熱フィン3,4の形状や配置は違うが、実施例2の電子制御装置101の他の構成については実施例1の電子制御装置100と同一である。放熱フィン3,4は、厚さ2mm、間隔8mmとし、発熱部品9の上方または下方にのみ放熱フィンを形成した。放熱フィン3,4は、高さ34mmとした。実施例2に係る電子制御装置101における、上方の筐体1及び下方の筐体2間のフィン領域(通風路)は、高さを36mmとした。これらフィン形状は、実施例1の電子制御装置100と実施例2の電子制御装置101で、若干異なるが、共通の放熱フィン3,4の符号を付している。
 図13は、比較例2に係る電子制御装置104の通風路を正面視して説明する筐体断面図である。なお、比較例2の電子制御装置104に使用した部材は、図7に示した実施例2の電子制御装置101と概ね同一であるが、フィン形状だけは、図7で示した電子制御装置101と異なっている。なお、図13の電子制御装置104で用いる放熱フィン3a,4aは、電子制御装置100,102の放熱フィン3,4に対し、明確に区別するために異なる符号を付している。
 図13に示すように、厚さ2mm、間隔8mmの放熱フィン3a,4aを互いに組み合わせるように配置されているため、上方の放熱フィン3aと下方の放熱フィン4aの間隔は3mmである。放熱フィン3,4は、高さ34mmとした。比較例2に係る電子制御装置104における、上方の筐体1及び下方の筐体2間のフィン領域(通風路)は、高さを36mmとした。実施例2の電子制御装置101と、比較例2の電子制御装置104と、両者の比較において、上方の筐体1と下方の筐体2との間に形成された通風路によるフィン領域は、高さが一定である。
 空冷ファン6からの空気が通風路のフィン間を通り抜ける際に、流体と流路壁面間において摩擦による圧力損失が生じる。そのため空冷ファン6の性能が低下し、十分な風を流すことができなくなり、放熱悪化が課題となる。そこで、実施例2の電子制御装置101と、比較例2の電子制御装置104と、双方を比較するため、それぞれフィン間の摩擦による圧力損失を算出した。
 圧力損失は以下の式(△Ploss=ζ×(ρ/2)×u)で導出できる。ここで、ζは圧力損失係数、ρは流体の密度、uは平均流速である。図7に示した実施例2の電子制御装置101は、圧力損失が82Paであったのに対し、図13に示した比較例2の電子制御装置104では、圧力損失が271Paとなり約3倍増大した。フィン間隔が狭まることで平均流速uが増大し、圧力損失が増大したと考えられる。
 以上のことから、電子制御装置100,101は、フィン効率が向上し、低背化と高放熱化に効果がある。発熱部品9の実装配置について、上方の回路基板7に実装されたものと、下方の回路基板8に実装されたものが、回路基板7,8の厚さ方向からの平面視において異なる位置に配置されることが好ましい。また、発熱部品9の当接位置に近い位置の基部に植設されたフィンほど、それら基部から突出高さを高く配置することが好ましい。さらに、フィン間隔を一定に配置することで、圧力損失の増大を抑えることができ、空冷ファン6の性能を維持した低背化及び高放熱を可能にできる。なお、上記の実施例1,2では、図8に示した変形例に係る電子制御装置102の放熱効果の説明を省略したが、この場合も実施例1,2と同様の放熱効果が得られる。
 以上説明したように、電子制御装置100~102は、一定間隔で平行に配置された2枚の回路基板7,8を有し、両者の隙間を貫通する通風路が形成された強制冷却構造体である。これらの回路基板7,8間には、上下の筐体1,2それぞれの内向きの面に設けられた放熱フィン3,4を備えている。回路基板7,8の厚さ方向からの平面視において、上下2枚の回路基板7,8上の発熱部品9は、それらの実装配置がずらされており、放熱フィン3,4は発熱部品9の当接位置と重なるように配置されている。
 電子制御装置100~102は、放熱フィン3,4間の圧力損失の増大を抑えつつ、筐体1,2の外面を著しく高温化させること無く、高放熱性と低背化を両立できる。電子制御装置100~102は、特に自動車に搭載される車載用電子制御装置に好適である。電子制御装置100~102が車載用電子制御装置に適用された場合、筐体1,2の外面を極端に高温化させること無く、高放熱性と低背化を両立できる点から、取り付け位置及び取り付け相手に対する自由度が増すので、多機種多仕様に対し、長期間にわたって、適用可能な汎用性を確保できる。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。また、ある実施例の構成の一部をほかの実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
 電子制御装置100~102は、直方体の筐体1,2に内蔵された発熱部品9,13を空冷する放熱フィン3,4を備えた電子制御装置である。すなわち、電子制御装置100~102は重層構造であり、層間の隙間を貫通する通風路が形成されている。また、電子制御装置100~102の通風路の内壁面から幅方向に放熱フィン3,4が突設されている。さらに、電子制御装置100~102の放熱フィン3,4が植設された基部に発熱部品9,13が熱伝導するように配設されている。電子制御装置100~102は、通風路に風を送る強制空冷機構を備えることが好ましい。
 また、筐体5の外側表面には、放熱フィン3,4が突設されておらず、平坦面が確保されている。したがって、筐体の外側表面に接する相手に対する制約条件は少ない。すなわち、電子制御装置100~102は、取り付けやすい構造である。
 このように、電子制御装置100~102は、取り付け位置及び取り付け相手に対する自由度が増すような電子制御装置を提供できる。また、電子制御装置100~102の外側表面をことさら高温にすること無く、発熱部品9,13を良好に冷却できる。また、電子制御装置100~102の放熱フィン3,4は、対面配置されていることが好ましい。これによれば、通風路に大きく熱交換面積を確保できるので、必要な冷却効果を得るための放熱設計が容易である。
 発熱部品9,13に近い位置ほど発熱量が大きいので、放熱フィン3,4の突出高さを高くして熱交換面積を広げることにより、必要な冷却効果を確保し易い。また、放熱フィン3,4の突出高さは、発熱部品9,13の発熱量に応じて変えることが好ましく、不均等に形成されてもよい。放熱フィン3,4の無い状態で通風路を構成する隙間の幅は均等であることが好ましい。この均等幅の通風路において、一対の放熱フィン3,4の一方が高ければ、他方を低く対面配置されている。その結果、限られた均等幅の通風路において、全体的に効率良く熱交換面積が得られる。
 また、以下の電気機器も、実施形態の一例である。電気機器(例えば電子制御装置100~102)は、少なくとも第一電子部品(例えば発熱部品9)が実装された第一回路基板(例えば回路基板7)を内部に有する第一筐体(例えば筐体1)と、少なくとも第二電子部品(例えば発熱部品9)が実装された第二回路基板(例えば回路基板8)を内部に有する第二筐体(例えば筐体2)と、第一筐体と第二筐体との間を通る風を送る、少なくとも1以上のファン(例えば空冷ファン6)と、を備える。
 第一筐体は、第二筐体に対向する複数のフィン(例えば放熱フィン3)を有する。第二筐体は、第一筐体に対向する複数のフィン(例えば放熱フィン4)を有する。電気機器は、第一回路基板の厚さ方向の断面のうち、少なくとも一つの断面において、第一筐体のフィンが第二筐体のフィンより長い領域と、第一筐体のフィンが第二筐体のフィンより短い領域とを有する構造である。
 第一電子部品で発生した熱の少なくとも一部は、第一筐体の少なくとも一部のフィンに伝熱する。第二電子部品で発生した熱の少なくとも一部は、第二筐体の少なくとも一部のフィンに伝熱する。第一筐体のフィンと第二筐体のフィンは、少なくとも1以上のファンからの風により冷却される。
 第一電子部品と第二電子部品は、例えばそれぞれ集積回路であってもよい。第一回路基板の厚さ方向からの平面視において、第一電子部品と第二電子部品は異なる位置に配置されてもよい。第一回路基板の厚さ方向からの平面視で第一電子部品と重なるように配置されている第一筐体のフィンと第二筐体のフィンは、第一回路基板の厚さ方向の一断面(例えば図6や図8の断面)において、第一筐体のフィンが第二筐体のフィンより長い。
 第一回路基板の厚さ方向からの平面視で第二電子部品と重なるように配置されている、第一筐体のフィンと第二筐体のフィンは、第一回路基板の厚さ方向の一断面(例えば図6や図8の断面)において、第一筐体のフィンが第二筐体のフィンより短い。
 第一回路基板上に、集積回路である第三電子部品(例えば電子部品13)が実装されてもよい。第一回路基板の厚さ方向からの平面視において、第三電子部品と第二電子部品とは一部が重なる位置に配置されてもよい。第一回路基板の厚さ方向からの平面視において、第三電子部品と第二電子部品とが重なる位置に配置された第一筐体のフィンと、第三電子部品が配置された位置のうち第三電子部品と第二電子部品とが重ならない位置に配置された第一筐体のフィンは、第一回路基板の厚さ方向の一断面(例えば図8の断面)における長さが異なる。
 第一回路基板の厚さ方向からの平面視において、第三電子部品と第二電子部品とが重なる位置に配置された第一筐体のフィンは、第三電子部品が配置された位置のうち第三電子部品と第二電子部品とが重ならない位置に配置された第一筐体のフィンより、第一回路基板の厚さ方向の一断面(例えば図8の断面)における長さが短い。
 第二電子部品は、第三電子部品より消費電力が大きくもよい。第一回路基板の厚さ方向からの平面視において、第三電子部品と第二電子部品とが重なる位置に配置された、第一筐体のフィン及び第二筐体のフィンについて、第一筐体のフィンは第二筐体のフィンより、第一回路基板の厚さ方向の一断面(例えば図8の断面)における長さが短い。
 第一回路基板の厚さ方向からの平面視で、第二電子部品と重なる位置に配置された第二筐体の複数のフィンは、第一回路基板の厚さ方向の一断面(例えば図8の断面)において、第二電子部品の中心から遠いフィンほど長さが短い。
 第一回路基板の厚さ方向からの平面視で、第二電子部品と重なる位置に配置された第一筐体の複数のフィンは、第一回路基板の厚さ方向の一断面(例えば図8の断面)において、第二電子部品の中心から遠いフィンほど長さが長い。
 第一電子部品は集積回路であってもよい。例えば図7の例に示すように、第一回路基板の厚さ方向からの平面視において、第一電子部品と第一筐体のフィンの一部は重なるように配置され、第一電子部品と第二筐体のフィンは重ならないように配置されている。
 第二電子部品は集積回路であってもよい。例えば図7の例に示すように、第一回路基板の厚さ方向からの平面視において、第二電子部品と第二筐体のフィンの一部は重なるように配置され、第二電子部品と第一筐体のフィンは重ならないように配置されている。
 例えば図7の例に示すように、第一回路基板の厚さ方向からの平面視において、第二回路基板上で集積回路が実装されていない位置に第一電子部品が配置され、第一回路基板上で集積回路が実装されていない位置に第二電子部品が配置されている。
 例えば図6や図8の例に示すように、第一筐体の複数のフィン間の間隔と、第二筐体の複数のフィン間の間隔は、同じであってもよい。また、以下の電子制御装置も、実施形態の一例である。
 電子制御装置(例えば電子制御装置100~102)は、少なくとも第一電子部品(例えば発熱部品9)が実装された第一回路基板(例えば回路基板7)を内部に有する第一筐体(例えば筐体1)と、少なくとも第二電子部品(例えば発熱部品9)が実装された第二回路基板(例えば回路基板8)を内部に有する第二筐体(例えば筐体2)と、第一筐体と第二筐体とを内部に有する第三筐体(例えば筐体5)と、を備える。
 第一筐体は、第二筐体に対向する複数のフィン(例えば放熱フィン3)を有する。第二筐体は、第一筐体に対向する複数のフィン(例えば放熱フィン4)を有する。第一電子部品で発生した熱の少なくとも一部は、第一筐体の少なくとも一部のフィンに伝熱する。
 第二電子部品で発生した熱の少なくとも一部は、第二筐体の少なくとも一部のフィンに伝熱する。電子制御装置は、第一回路基板の厚さ方向の断面のうち、少なくとも一つの断面において、第一筐体のフィンが第二筐体のフィンより長い領域と、第一筐体のフィンが第二筐体のフィンより短い領域とを有する構造である。電子制御装置は、自然空冷、空冷ファン6による強制空冷、水冷等により、冷却される。
1 上方の筐体、2 下方の筐体、3 上方のフィン、4 下方のフィン、5 カバー(筐体)、6 空冷ファン、7 上方の回路基板、8 下方の回路基板、9,13 発熱部品、10 熱伝導材、11 ボス部、12 ねじ、100,101,102 電子制御装置

Claims (13)

  1.  少なくとも第一電子部品が実装された第一回路基板を内部に有する第一筐体と、
     少なくとも第二電子部品が実装された第二回路基板を内部に有する第二筐体と、
     前記第一筐体と前記第二筐体との間を通る風を送る、少なくとも1以上のファンと、
    を備える電気機器であって、
     前記第一筐体は、前記第二筐体に対向する複数のフィンを有し、
     前記第二筐体は、前記第一筐体に対向する複数のフィンを有し、
     前記第一回路基板の厚さ方向の断面のうち、少なくとも一つの断面において、前記第一筐体のフィンが前記第二筐体のフィンより長い領域と、前記第一筐体のフィンが前記第二筐体のフィンより短い領域とを有する構造である電気機器。
  2.  前記第一電子部品で発生した熱の少なくとも一部は、前記第一筐体の少なくとも一部のフィンに伝熱し、
     前記第二電子部品で発生した熱の少なくとも一部は、前記第二筐体の少なくとも一部のフィンに伝熱し、
     前記第一筐体のフィンと前記第二筐体のフィンは、前記少なくとも1以上のファンからの風により冷却される
    請求項1に記載の電気機器。
  3.  前記第一電子部品と前記第二電子部品は、それぞれ集積回路であり、
     前記第一回路基板の厚さ方向からの平面視において、前記第一電子部品と前記第二電子部品は異なる位置に配置され、
     前記第一回路基板の厚さ方向からの平面視で前記第一電子部品と重なるように配置されている前記第一筐体のフィンと前記第二筐体のフィンは、前記第一回路基板の厚さ方向の一断面において、前記第一筐体のフィンが前記第二筐体のフィンより長く、
     前記第一回路基板の厚さ方向からの平面視で前記第二電子部品と重なるように配置されている、前記第一筐体のフィンと前記第二筐体のフィンは、前記第一回路基板の厚さ方向の一断面において、前記第一筐体のフィンが前記第二筐体のフィンより短い
    請求項2に記載の電気機器。
  4.  前記第一回路基板上に、集積回路である第三電子部品が実装されており、
     前記第一回路基板の厚さ方向からの平面視において、前記第三電子部品と前記第二電子部品とは一部が重なる位置に配置され、
     前記第一回路基板の厚さ方向からの平面視において、前記第三電子部品と前記第二電子部品とが重なる位置に配置された前記第一筐体のフィンと、前記第三電子部品が配置された位置のうち前記第三電子部品と前記第二電子部品とが重ならない位置に配置された前記第一筐体のフィンは、前記第一回路基板の厚さ方向の一断面における長さが異なる
    請求項3に記載の電気機器。
  5.  前記第一回路基板の厚さ方向からの平面視において、前記第三電子部品と前記第二電子部品とが重なる位置に配置された前記第一筐体のフィンは、前記第三電子部品が配置された位置のうち前記第三電子部品と前記第二電子部品とが重ならない位置に配置された前記第一筐体のフィンより、前記第一回路基板の厚さ方向の一断面における長さが短い
    請求項4に記載の電気機器。
  6.  前記第二電子部品は、前記第三電子部品より消費電力が大きく、
     前記第一回路基板の厚さ方向からの平面視において、前記第三電子部品と前記第二電子部品とが重なる位置に配置された、前記第一筐体のフィン及び前記第二筐体のフィンについて、前記第一筐体のフィンは前記第二筐体のフィンより、前記第一回路基板の厚さ方向の一断面における長さが短い
    請求項5に記載の電気機器。
  7.  前記第一回路基板の厚さ方向からの平面視で、前記第二電子部品と重なる位置に配置された前記第二筐体の複数のフィンは、前記第一回路基板の厚さ方向の一断面において、前記第二電子部品の中心から遠いフィンほど長さが短い
    請求項6に記載の電気機器。
  8.  前記第一回路基板の厚さ方向からの平面視で、前記第二電子部品と重なる位置に配置された前記第一筐体の複数のフィンは、前記第一回路基板の厚さ方向の一断面において、前記第二電子部品の中心から遠いフィンほど長さが長い
    請求項7に記載の電気機器。
  9.  前記第一電子部品は集積回路であり、
     前記第一回路基板の厚さ方向からの平面視において、前記第一電子部品と前記第一筐体のフィンの一部は重なるように配置され、前記第一電子部品と前記第二筐体のフィンは重ならないように配置されている
    請求項1に記載の電気機器。
  10.  前記第二電子部品は集積回路であり、
     前記第一回路基板の厚さ方向からの平面視において、前記第二電子部品と前記第二筐体のフィンの一部は重なるように配置され、前記第二電子部品と前記第一筐体のフィンは重ならないように配置されている
    請求項9に記載の電気機器。
  11.  前記第一回路基板の厚さ方向からの平面視において、前記第二回路基板上で集積回路が実装されていない位置に前記第一電子部品が配置され、前記第一回路基板上で集積回路が実装されていない位置に前記第二電子部品が配置されている
    請求項10に記載の電気機器。
  12.  前記第一筐体の複数のフィン間の間隔と、前記第二筐体の複数のフィン間の間隔は、同じである
    請求項1に記載の電気機器。
  13.  少なくとも第一電子部品が実装された第一回路基板を内部に有する第一筐体と、
     少なくとも第二電子部品が実装された第二回路基板を内部に有する第二筐体と、
     前記第一筐体と前記第二筐体とを内部に有する第三筐体と、
    を備える電子制御装置であって、
     前記第一筐体は、前記第二筐体に対向する複数のフィンを有し、
     前記第二筐体は、前記第一筐体に対向する複数のフィンを有し、
     前記第一電子部品で発生した熱の少なくとも一部は、前記第一筐体の少なくとも一部のフィンに伝熱し、
     前記第二電子部品で発生した熱の少なくとも一部は、前記第二筐体の少なくとも一部のフィンに伝熱し、
     前記第一回路基板の厚さ方向の断面のうち、少なくとも一つの断面において、前記第一筐体のフィンが前記第二筐体のフィンより長い領域と、前記第一筐体のフィンが前記第二筐体のフィンより短い領域とを有する構造である電子制御装置。
     
     
PCT/JP2020/017114 2019-08-30 2020-04-20 電気機器、電子制御装置 WO2021038954A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/636,124 US20220293487A1 (en) 2019-08-30 2020-04-20 Electrical device and electronic control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-158389 2019-08-30
JP2019158389A JP7339075B2 (ja) 2019-08-30 2019-08-30 電気機器、電子制御装置

Publications (1)

Publication Number Publication Date
WO2021038954A1 true WO2021038954A1 (ja) 2021-03-04

Family

ID=74685399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017114 WO2021038954A1 (ja) 2019-08-30 2020-04-20 電気機器、電子制御装置

Country Status (3)

Country Link
US (1) US20220293487A1 (ja)
JP (1) JP7339075B2 (ja)
WO (1) WO2021038954A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116097032A (zh) * 2020-08-12 2023-05-09 Hgci股份有限公司 包括用于镇流器的外壳的灯具
US20220352051A1 (en) * 2021-04-28 2022-11-03 Nidec Corporation Heat dissipation member and cooling device
US20230007809A1 (en) * 2021-07-02 2023-01-05 Rohde & Schwarz Gmbh & Co. Kg Heat management arrangement, method of manufacturing and electronic device
CN117881077B (zh) * 2024-03-12 2024-05-28 北京钧天航宇技术有限公司 一种一体化热控结构及有源设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318274A (ja) * 1992-05-18 1993-12-03 Fanuc Ltd パワーユニットおよびその冷却構造
JP2002124608A (ja) * 2000-10-16 2002-04-26 Toshiba Corp 車両用半導体冷却装置
JP2012186203A (ja) * 2011-03-03 2012-09-27 Mitsubishi Electric Corp 電子機器筐体の冷却構造
WO2018079141A1 (ja) * 2016-10-24 2018-05-03 パナソニックIpマネジメント株式会社 放熱構造体とそれを用いた車載電源装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5589647B2 (ja) * 2010-07-28 2014-09-17 日産自動車株式会社 冷却装置
JP5318274B1 (ja) 2012-11-19 2013-10-16 株式会社日精 マーキング機能付きねじ締付け工具

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05318274A (ja) * 1992-05-18 1993-12-03 Fanuc Ltd パワーユニットおよびその冷却構造
JP2002124608A (ja) * 2000-10-16 2002-04-26 Toshiba Corp 車両用半導体冷却装置
JP2012186203A (ja) * 2011-03-03 2012-09-27 Mitsubishi Electric Corp 電子機器筐体の冷却構造
WO2018079141A1 (ja) * 2016-10-24 2018-05-03 パナソニックIpマネジメント株式会社 放熱構造体とそれを用いた車載電源装置

Also Published As

Publication number Publication date
JP2021039966A (ja) 2021-03-11
JP7339075B2 (ja) 2023-09-05
US20220293487A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
WO2021038954A1 (ja) 電気機器、電子制御装置
JP3852253B2 (ja) 電子部品の冷却装置及び電子機器
US6795315B1 (en) Cooling system
US20060133043A1 (en) Heat spreader with multiple stacked printed circuit boards
JP2004538657A (ja) 電子装置冷却構造
JP5295043B2 (ja) 電子コントロールユニットの放熱構造
JP6945514B2 (ja) 電子制御装置
KR100939992B1 (ko) 전기전자기기의 냉각장치 및 이를 장착한 전기전자기기
WO2021256021A1 (ja) 電子制御装置
JP7245756B2 (ja) 電子制御装置
CN210555610U (zh) 一种无人机的散热结构
JP2001291982A (ja) 自然空冷式密閉型電子機器筐体
WO2023100480A1 (ja) 電子制御装置
US6399877B1 (en) Heat sink
JP4635670B2 (ja) 電子機器ユニットの冷却構造
WO2022270024A1 (ja) 電子機器
WO2022091596A1 (ja) 電子制御装置
WO2023145964A1 (ja) 半導体モジュール
CN118235531A (zh) 电子控制装置
JP7397991B2 (ja) 電子制御装置
JP6707293B2 (ja) 電気機器ユニット
JP2003243860A (ja) 電子機器
JP2007043011A (ja) 電子機器の放熱構造
JP2003218565A (ja) 電子機器
JP2002232172A (ja) 電子部品の放熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857183

Country of ref document: EP

Kind code of ref document: A1