WO2022269820A1 - 熱交換型換気装置 - Google Patents

熱交換型換気装置 Download PDF

Info

Publication number
WO2022269820A1
WO2022269820A1 PCT/JP2021/023839 JP2021023839W WO2022269820A1 WO 2022269820 A1 WO2022269820 A1 WO 2022269820A1 JP 2021023839 W JP2021023839 W JP 2021023839W WO 2022269820 A1 WO2022269820 A1 WO 2022269820A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
rotation speed
freezing
motor
air
Prior art date
Application number
PCT/JP2021/023839
Other languages
English (en)
French (fr)
Inventor
福太郎 長田
弘樹 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/023839 priority Critical patent/WO2022269820A1/ja
Priority to JP2023529333A priority patent/JP7511761B2/ja
Publication of WO2022269820A1 publication Critical patent/WO2022269820A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a heat exchange ventilation system that performs ventilation while exchanging heat between outdoor air and indoor air using a heat exchanger.
  • a filter is installed in the air passage, and the user periodically cleans the filter to ensure the air volume.
  • the heat exchange type ventilator by notifying the user of the operation time of the heat exchange type ventilator, or by detecting clogging of the filter over time by some method and notifying the user of the clogging, The user is notified when it is time to clean the filter, and the user is urged to clean the filter periodically.
  • the filter when the filter is clogged, the air volume and pressure of the air passage change, so a method of detecting clogging of the filter using an air volume sensor or a pressure sensor is used.
  • the air volume sensor and pressure sensor are expensive, the structure of the heat exchange ventilation system or the control of the heat exchange ventilation system is complicated due to restrictions on the use of the sensors, and the life of the sensor or the reliability of the sensor is difficult. From my point of view, I prefer not to use it if possible.
  • filter clogging is detected based on control parameters such as voltage, current, and number of rotations used to control the motor. ing.
  • Patent Document 1 discloses a heat exchange type ventilator that monitors the number of rotations of a DC motor, detects clogging of a filter when the number of rotations of the DC motor exceeds a predetermined value, and notifies residents of insufficient ventilation. is disclosed.
  • the present disclosure has been made in view of the above, and an object thereof is to obtain a heat exchange type ventilator capable of distinguishing and detecting temporary clogging of a heat exchanger due to freezing and clogging of a filter over time.
  • the heat exchange type ventilation device includes an exhaust air passage for exhausting indoor air to the outside, a supply air passage for supplying outdoor air to the room, is independently formed inside, an exhaust fan provided in an exhaust air passage and provided with an exhaust motor to generate an exhaust flow flowing through the exhaust air passage, and an air supply motor having an air supply air passage and an air supply blower that is provided in and generates an air supply flow that flows through the air supply air passage.
  • the heat exchange type ventilation device includes a heat exchanger that is provided across the supply air passage and the exhaust air passage and exchanges heat between the supply air flow and the exhaust air flow, and is arranged upstream of the heat exchanger in the exhaust air passage.
  • an exhaust filter an outdoor temperature detection unit that detects the outdoor temperature, which is the temperature of the outdoor air, a rotation speed detection unit that detects the rotation speed of the exhaust motor, and the operation of the air supply blower and the exhaust blower. and a control unit for controlling.
  • the control unit stores the current rotation speed of the exhaust motor as a pre-freezing reference rotation speed when the outdoor temperature is less than a predetermined temperature threshold, and stores the current exhaust motor rotation speed after storing the pre-freezing reference rotation speed.
  • the rotation speed of the air supply motor is equal to or higher than the freezing judgment rotation speed which is higher than the pre-freezing reference rotation speed, control is performed to reduce the air volume of the air supply fan from the air volume of the exhaust fan for a predetermined operation change time, and the operation is performed.
  • the exhaust filter is clogged. is detected, and if the current rotation speed of the exhaust motor after the operation change time has elapsed is less than the freezing judgment rotation speed by more than the decrease judgment setting value, clogging due to freezing occurs in the heat exchanger. detect that
  • the heat exchange type ventilator According to the heat exchange type ventilator according to the present disclosure, it is possible to distinguish and detect temporary clogging of the heat exchanger due to freezing and clogging of the filter over time.
  • FIG. 2 is a block diagram showing the functional configuration of the heat exchange ventilator according to the first embodiment
  • FIG. 4 is a characteristic diagram showing the relationship between the air volume of the fan and the static pressure when constant command voltage control is performed on the fan according to Embodiment 1
  • FIG. 4 is a characteristic diagram showing the relationship between the rotation speed and the torque of the blower when constant command voltage control is performed on the blower in Embodiment 1
  • a first flow chart showing an operation example of detecting clogging due to freezing of the heat exchanger and improving the freezing state of the heat exchanger in the heat exchange ventilator according to the first embodiment.
  • FIG. 1 shows an example of a hardware configuration of a processing circuit according to Embodiment 1;
  • FIG. 3 is a block diagram showing the functional configuration of another heat exchange type ventilation device according to the first embodiment;
  • FIG. 1 is a schematic diagram showing the configuration of a heat exchange ventilator 1 according to the first embodiment.
  • FIG. 2 is a block diagram showing the functional configuration of the heat exchange ventilator 1 according to the first embodiment.
  • the heat exchange type ventilator 1 is a device capable of performing ventilation while exchanging heat between an air supply flow and an exhaust air flow.
  • the heat exchange type ventilator 1 operates for the purpose of 24-hour ventilation. Therefore, once the heat exchange ventilator 1 starts operating, it basically does not stop operating except during maintenance.
  • the heat exchange type ventilator 1 maintains a comfortable air environment in the room by ventilating the room by supplying air from the outside to the room and exhausting air from the room to the outside. In addition, the heat exchange type ventilator 1 reduces the temperature difference between the air taken into the room and the air in the room by heat exchange between the supply air flow and the exhaust air flow, thereby reducing the burden of air conditioning in the room. .
  • the heat exchange ventilator 1 is installed, for example, in a space behind the ceiling.
  • the heat exchange type ventilator 1 includes a housing 1a, a heat exchanger 2, an air supply fan 3, an exhaust fan 4, an air supply filter 5, an exhaust filter 6, and an indoor air outlet 7. , an indoor intake section 8 , an outdoor intake section 9 , an outdoor outlet section 10 , an outdoor temperature detection section 11 , a control device 12 , and a display section 13 .
  • a heat exchanger 2 that exchanges heat between the supply air flow and the exhaust air flow is housed in the housing 1a.
  • the housing 1 a has, for example, a rectangular parallelepiped hexahedron, and constitutes the main body of the heat exchange ventilator 1 .
  • a supply air passage 21 through which an air supply flow passes, an exhaust air passage 22 through which an exhaust flow passes, and a partition wall 23 that partitions the supply air passage 21 and the exhaust air passage 22 are provided inside the housing 1a.
  • the supply air passage 21 is indicated by a dashed arrow.
  • the exhaust air passage 22 is indicated by a solid arrow.
  • FIG. 1 shows the heat exchange ventilator 1 in a state where one surface of the housing 1a is removed from the housing 1a.
  • an indoor air outlet 7 as an air supply outlet, an indoor air inlet 8 as an exhaust air inlet, and an outdoor air inlet 9 as an air inlet are provided on one side surface 1b of the housing 1a.
  • an outdoor-side blow-out portion 10 which is an exhaust blow-out port, are provided.
  • An outdoor-side air supply duct (not shown) that communicates the outdoor side with the outdoor-side suction part 9 is connected to the outdoor-side suction part 9 that is an air supply suction port.
  • An indoor air supply duct (not shown) that communicates between the room and the indoor air outlet 7 is connected to the indoor air outlet 7 serving as an air supply outlet.
  • An indoor exhaust duct (not shown) that communicates the interior of the room with the indoor intake unit 8 is connected to the indoor intake unit 8 that is an exhaust intake port.
  • An outdoor-side exhaust duct (not shown) that communicates the outdoor side with the outdoor-side blowing portion 10 is connected to the outdoor-side blowing portion 10 that is an exhaust air outlet.
  • the heat exchanger 2 is provided across the supply airflow path 21 and the exhaust airflow path 22, and performs total heat exchange between the supply airflow and the exhaust airflow.
  • the heat exchanger 2 has a primary side air passage through which the exhaust flow passes and a secondary side air passage through which the supply air flow passes. Inside the heat exchanger 2, the primary air passage and the secondary air passage intersect perpendicularly.
  • the primary side air passage and the secondary side air passage are formed by a laminate configured by alternately laminating and adhering flat sheets of flat paper and corrugated sheets of corrugated paperboard. In FIG. 1, illustration of the primary side air passage and the secondary side air passage is omitted.
  • the laminate has a quadrangular prism shape.
  • the end surfaces of the heat exchanger 2 located at both ends in the stacking direction are square.
  • the stacking direction is the direction in which the flat sheets and the corrugated sheets are stacked, and is the depth direction of the paper surface in FIG.
  • the supply air passage 21 is an air passage for supplying outdoor air, which is outdoor air, into the room.
  • the upstream supply air passage 21a is an air passage on the upstream side of the heat exchanger 2 in the air supply passage 21 and is an upstream air supply passage that communicates with the outside of the room.
  • the downstream supply air passage 21b is an air passage on the downstream side of the heat exchanger 2 in the air supply passage 21 and communicates with the interior of the room.
  • the exhaust air passage 22 is an air passage for exhausting return air, which is indoor air, to the outside, and is an upstream exhaust air formed between the indoor side suction part 8 which is an exhaust suction port and the heat exchanger 2.
  • the downstream exhaust air passage 22b is an air passage on the downstream side of the heat exchanger 2 and is a downstream exhaust air passage that communicates with the outside of the room.
  • a heat exchange type ventilator 1 has a supply air blower 3 that takes in outdoor air and sends the taken in air indoors, and an exhaust fan 4 that takes in indoor air and sends the taken in air outdoors. .
  • the air supply blower 3 is arranged in the downstream air supply air passage 21 b and generates an air supply flow from the outdoor side suction section 9 toward the indoor side blowout section 7 .
  • the air supply fan 3 includes an air supply fan 31 in an air supply fan casing 30 and a DC brushless motor that is an air supply DC motor 32 for rotating the air supply fan 31 .
  • the air supply fan 3 rotates the air supply fan 31 with the air supply DC motor 32 to generate an air supply flow.
  • the operation of the air supply fan 3 is controlled by the control unit 123 by controlling the operation, stop, and rotation speed of the air supply DC motor 32 by the control unit 123, which will be described later.
  • the air supply DC motor 32 has an air supply motor control circuit 320 that controls the driving of the air supply DC motor 32 and adjusts the load according to the control of the control unit 123 as a control circuit that is a feature of the DC motor.
  • the air supply motor control circuit 320 controls control parameters such as the voltage output to the air supply DC motor 32, the motor current flowing through the air supply DC motor 32, and the rotation speed of the air supply DC motor 32.
  • the motor power of the air supply DC motor 32 can be adjusted. By acquiring these control parameters, the control unit 123 can grasp the operating state of the air supply DC motor 32 .
  • the control unit 123 constantly monitors the control parameters of the DC motor 32 for air supply, so that the pressure sensor that detects the pressure of the air passage or the air flowing to the air passage To detect the clogging state of an exhaust filter 6 without using an air volume sensor for detecting the air volume.
  • the air supply motor control circuit 320 operates the air supply DC motor 32 upon receiving an output instruction from the control unit 123 . Further, when the load applied to the air supply blower 3, such as a change in pressure in the air passage, fluctuates, the load applied to the air supply DC motor 32 also changes, and the rotation speed, voltage, and motor current change.
  • the air supply motor control circuit 320 includes an air supply rotation speed detection unit 321 , an air supply voltage detection unit 322 , an air supply current detection unit 323 , and an air supply communication unit 324 .
  • the air supply rotation speed detector 321 detects the rotation speed of the air supply DC motor 32 .
  • the air supply voltage detector 322 detects the voltage supplied to the air supply DC motor 32 .
  • the air supply current detection unit 323 detects a motor current value, which is the current value of the motor current flowing through the air supply DC motor 32 .
  • the air supply communication unit 324 communicates with the control device 12 .
  • the air supply rotation speed detection unit 321 , the air supply voltage detection unit 322 , and the air supply current detection unit 323 transmit detection results to the control unit 123 via the air supply communication unit 324 .
  • the exhaust blower 4 is arranged in the downstream exhaust air passage 22b and generates an exhaust flow from the indoor intake section 8 toward the outdoor outlet 10 .
  • the exhaust fan 4 includes an exhaust fan 41 in an exhaust fan casing 40 and a DC brushless motor that is an exhaust DC motor 42 for rotating the exhaust fan 41 .
  • the exhaust fan 4 generates an exhaust flow by rotating the exhaust fan 41 with the exhaust DC motor 42 .
  • the operation of the exhaust fan 4 is controlled by the control unit 123 by controlling the operation, stop, and rotational speed of the exhaust DC motor 42 by the control unit 123, which will be described later.
  • the exhaust DC motor 42 has an exhaust motor control circuit 420 that controls the driving of the exhaust DC motor 42 and adjusts the load according to the control of the control unit 123 as a control circuit that is a feature of the DC motor.
  • the exhaust motor control circuit 420 controls the control parameters such as the voltage output to the exhaust DC motor 42, the motor current flowing through the exhaust DC motor 42, and the rotation speed of the exhaust DC motor 42, thereby controlling the exhaust DC motor. 42 motor power can be adjusted.
  • the control unit 123 can grasp the operating state of the exhaust DC motor 42 .
  • the exhaust motor control circuit 420 operates the exhaust DC motor 42 upon receiving an output instruction from the control unit 123 . Further, when the load applied to the exhaust fan 4 such as the pressure change in the air path fluctuates, the load applied to the exhaust DC motor 42 also changes, and the rotation speed, voltage, and motor current also change.
  • the exhaust motor control circuit 420 includes an exhaust rotation speed detection unit 421 , an exhaust voltage detection unit 422 , an exhaust current detection unit 423 , and an exhaust communication unit 424 .
  • the exhaust rotation speed detection unit 421 detects the rotation speed of the exhaust DC motor 42 .
  • the exhaust voltage detector 422 detects the voltage supplied to the exhaust DC motor 42 .
  • the exhaust current detection unit 423 detects a motor current value, which is the current value of the motor current flowing through the exhaust DC motor 42 .
  • the exhaust communication unit 424 communicates with the control device 12 .
  • the exhaust rotation speed detection unit 421 , the exhaust voltage detection unit 422 , and the exhaust current detection unit 423 transmit detection results to the control unit 123 via the exhaust communication unit 424 .
  • the air supply filter 5 is an air filter that cleans the outside air by removing dust from the outside air sucked into the heat exchanger 2 in order to prevent the performance of the heat exchanger 2 from being clogged with dust contained in the outside air. be.
  • the air supply filter 5 is detachably installed in the upstream air supply air passage 21 a of the air supply air passage 21 . That is, the air supply filter 5 is installed at a position upstream of the heat exchanger 2 in the air supply passage 21 .
  • the outside air taken into the heat exchange type ventilator 1 passes through the air supply filter 5, removes some of the contained suspended particles, and is supplied to the room.
  • the air supply filter 5 can be replaced from a normal dust filter with a high-performance dust filter that can collect fine particulate matter and pollen at a higher collection rate than a normal dust filter.
  • the exhaust filter 6 is an air filter that removes dust from the return air sucked into the heat exchanger 2 in order to prevent the performance of the heat exchanger 2 from being clogged with dust contained in the return air.
  • the exhaust filter 6 is detachably installed in the upstream side exhaust air passage 22 a of the exhaust air passage 22 . That is, the exhaust filter 6 is installed upstream of the heat exchanger 2 in the exhaust air passage 22 .
  • the return air taken into the heat exchange type ventilator 1 passes through the exhaust filter 6 to remove part of the contained suspended particles and is exhausted to the outside.
  • the outdoor temperature detection unit 11 is a detection unit that detects the outdoor temperature, which is the temperature of the outdoor air that is sucked into the heat exchange type ventilation device 1 from the outdoors via the outdoor side suction unit 9, that is, the temperature of the outside air. That is, the outdoor temperature detection unit 11 can be rephrased as an outdoor temperature detection unit that detects the temperature of the outdoor air.
  • the outdoor temperature detection unit 11 is provided in an upstream air supply air passage 21 a of the air supply air passage 21 .
  • the outdoor temperature detection unit 11 transmits the detected outdoor air temperature to the control unit 123 .
  • the display unit 13 displays various warnings such as a clogging warning that the air supply filter 5 or the exhaust filter 6 is clogged and a freezing warning that freezing may occur in the heat exchanger 2. Display and inform the user.
  • the display unit 13 can notify various warnings by, for example, lighting a light-emitting diode. Details of each warning will be described later.
  • the control device 12 is provided inside the housing 1a and controls the heat exchange type ventilator 1 as a whole.
  • the control device 12 includes a storage section 121 , a communication section 122 and a control section 123 .
  • the storage unit 121 stores various information used for controlling the heat exchange ventilator 1 .
  • the communication unit 122 communicates with devices external to the air supply fan 3, the exhaust fan 4, and the heat exchange type ventilator 1.
  • the control unit 123 controls the entire heat exchange ventilator 1 including the air supply fan 3 and the exhaust fan 4 . Further, the control unit 123 functions as a determination unit that determines whether temporary clogging of the heat exchanger 2 due to freezing has occurred, or whether clogging of the exhaust filter 6 has occurred over time. have.
  • the control unit 123 controls the ventilation operation of the heat exchange ventilator 1 under predetermined conditions.
  • the predetermined conditions are command voltage constant control to keep the voltage supplied to the DC motor of the blower constant, and ventilation operation with a predetermined ventilation amount. is the same predetermined air volume.
  • the control unit 123 After completing the initial setting at the time of installation of the heat exchange type ventilator 1, or at the time of trial operation after completion of filter maintenance of the exhaust filter 6 after the start of use of the heat exchange type ventilator 1, or at the time of the first operation, the control unit 123 The number of revolutions of the exhaust fan 4 is obtained as the reference number of revolutions N0 before filter clogging.
  • the filter pre-clogging reference rotation speed N0 is used by the control unit 123 to determine whether clogging of the exhaust filter 6 over time has occurred based on the rotation speed N of the exhaust DC motor 42. It is the number of revolutions that is used as a reference.
  • the reference rotation speed N0 before filter clogging is the rotation speed of the exhaust DC motor 42 that outputs a predetermined air volume at the initial stage of use of the exhaust filter 6 .
  • the initial use of the exhaust filter 6 is after the initial setting at the time of installation of the heat exchange ventilator 1 is completed, or after the filter maintenance of the exhaust filter 6 is completed after the start of use of the heat exchange ventilator 1. It is the time when the use of 6 was started.
  • the reference rotational speed N0 before filter clogging may be referred to as the reference rotational speed N0 .
  • control unit 123 acquires the outdoor temperature, that is, the temperature of the outside air from the outdoor temperature detection unit 11, compares the outdoor temperature with a predetermined temperature threshold, and determines that the heat exchanger In 2, it is determined whether or not there is a possibility that freezing will occur.
  • the temperature threshold is a threshold that serves as a reference for the control unit 123 to determine whether or not there is a possibility that freezing will occur in the heat exchanger 2 .
  • the controller 123 determines that the current outdoor temperature T and the heat exchanger 2 are in a state in which there is no possibility of freezing in the heat exchanger 2. . Further, when the current outdoor temperature T is less than the temperature threshold, the control unit 123 determines that the current outdoor temperature T and the heat exchanger 2 are in a state where freezing may occur in the heat exchanger 2. judge.
  • the control unit 123 controls the current exhaust DC motor 42 has increased from the pre-filter-clogging reference rotation speed N0 by a predetermined set value A or more, thereby determining whether clogging of the exhaust filter 6 over time has occurred. determine whether The control unit 123 stores the rotation speed obtained by adding the set value A to the filter pre - clogging reference rotation speed N0 as the filter clogging determination rotation speed N1.
  • the set value A is a set value used by the control unit 123 to determine whether or not clogging of the exhaust filter 6 has occurred over time based on the filter pre-clogging reference rotation speed N0 . That is, the set value A is an increase determination set value used to determine the increase state of the current rotation speed N of the exhaust DC motor 42 from the reference rotation speed N0 before filter clogging.
  • the set value A is determined in advance through experiments and simulations and stored in the controller 123 .
  • the filter clogging determination rotation speed N1 is a reference value used by the control unit 123 to determine whether clogging of the exhaust filter 6 has occurred over time.
  • the control unit 123 determines that the exhaust filter 6 has clogged over time. I judge. Further, when the current rotation speed N of the exhaust DC motor 42 does not increase from the reference rotation speed N0 before filter clogging by the set value A or more, the control unit 123 changes the target value of the exhaust filter 6 over time. It is determined that clogging has not occurred. The control unit 123 continuously acquires the current rotation speed N of the exhaust DC motor 42 and determines whether or not the exhaust filter 6 is clogged over time.
  • control unit 123 determines that the exhaust filter 6 has been clogged with age, it notifies the user that the exhaust filter 6 has been clogged with age.
  • the control unit 123 controls the current exhaust DC motor 42 is obtained, and the obtained current rotation speed N of the exhaust DC motor 42 is stored as the pre-icing reference rotation speed Ni0 . Further, the control unit 123 stores the rotation speed obtained by adding a predetermined set value B to the pre-icing reference rotation speed Ni0 as the freezing determination rotation speed Ni1 .
  • the pre-icing reference rotational speed N i0 is determined by whether there is a possibility of freezing in the heat exchanger 2, whether freezing has occurred in the heat exchanger 2, and clogging of the exhaust filter 6 over time. It is a reference rotation speed used by the control unit 123 to determine whether or not the occurrence of the exhaustion DC motor 42 based on the rotation speed N of the exhaust DC motor 42 . Note that the pre-freezing reference rotational speed Ni0 may be referred to as the rotational speed Ni0 .
  • the freezing determination rotation speed Ni1 is determined by whether there is a possibility of freezing in the heat exchanger 2, whether freezing has occurred in the heat exchanger 2, and whether clogging of the exhaust filter 6 over time has occurred. This is the number of rotations used by the control unit 123 to determine whether or not it has occurred based on the number of rotations N of the exhaust DC motor 42 .
  • the freezing determination rotation speed Ni1 is a value larger than the pre-freezing reference rotation speed Ni0 . Note that the freezing determination rotation speed Ni1 may be referred to as the rotation speed Ni1 .
  • the set value B is an addition value used for calculating the freezing determination rotation speed Ni1 based on the pre-freezing reference rotation speed Ni0 .
  • the set value B is determined in advance through experiments and simulations and stored in the control unit 123 .
  • the control unit 123 compares the current rotation speed N of the exhaust DC motor 42 with the freezing determination rotation speed Ni1 , and the current rotation speed N of the exhaust DC motor 42 becomes equal to or higher than the freezing determination rotation speed Ni1 . If so, it is determined that the current outdoor temperature T and the heat exchanger 2 are in a state where freezing may occur.
  • the control unit 123 reduces the air volume of the air supply fan 3 to that of the exhaust fan 4 for a predetermined operation change time.
  • the frozen state improvement control is performed to reduce the air flow rate, thereby reducing the inflow amount of outside air having a lower temperature than the indoor air into the heat exchanger 2 .
  • the ice in the heat exchanger 2 can be melted by the heat of the airflow of the indoor air that is conveyed to the heat exchanger 2 by the exhaust air blower 4 and exhausted from the room.
  • the control unit 123 After the freezing state improvement control, the control unit 123 returns the state of the air supply fan 3 to the normal operating state, and based on the amount of change in the rotation speed of the exhaust fan 4, the temporary heat exchanger 2 due to freezing. is clogged, or whether the exhaust filter 6 is clogged over time. The control unit 123 returns the state of the air supply fan 3 to the normal operating state to perform the normal ventilation operation. If the speed is approaching the previous reference speed Ni0 , it is determined that temporary clogging of the heat exchanger 2 due to freezing has occurred. The control unit 123 returns the state of the air supply fan 3 to the normal operation state and performs the normal ventilation operation. If so, it is determined that the exhaust filter 6 is clogged over time.
  • control unit 123 determines that the exhaust filter 6 has been clogged with age, it notifies the user that the exhaust filter 6 has been clogged with age.
  • the controller 123 determines that the heat exchanger 2 is temporarily clogged due to freezing, and when the rotation speed N of the exhaust fan 4 has returned to the pre-freezing reference rotation speed Ni0 , informs the user that the heat exchanger 2 is in a state where freezing may occur.
  • the control unit 123 determines that the rotation speed N of the exhaust fan 4 has not returned to the pre-freezing reference rotation speed Ni0 . repeats the icing condition improvement control until the rotation speed N of the exhaust air blower 4 returns to the pre-freezing reference rotation speed Ni0 , or until the current outdoor temperature T becomes higher than a predetermined temperature threshold value. Ease and improve the frozen state of 2.
  • the control unit 123 When the freezing state improvement control is repeated a predetermined number of times, the control unit 123 notifies the user that the heat exchanger 2 is temporarily clogged due to freezing.
  • the control unit 123 sets the pre-freezing reference rotation speed N i0 and the ice-freezing determination rotation speed Ni1 are stored until the heat exchanger 2 is in a state in which there is no possibility of ice-freezing. Reset this information.
  • FIG. 3 is a characteristic diagram showing the relationship between the air volume of the fan and the static pressure when the command voltage constant control is performed on the fan according to the first embodiment.
  • FIG. 4 is a characteristic diagram showing the relationship between the rotation speed and the torque of the blower when constant command voltage control is performed on the blower according to the first embodiment.
  • the blower according to the first embodiment has a relationship in which the rotation speed increases as the torque required to drive the DC motor decreases during command voltage constant control in which the voltage supplied to the DC motor provided in the blower is constant.
  • the blowers in Embodiment 1 are the air supply blower 3 and the exhaust blower 4 .
  • the DC motors in Embodiment 1 are the air supply DC motor 32 and the exhaust DC motor 42 .
  • the control unit 123 can acquire the rotation speed of the air supply fan 3 from the air supply rotation speed detection unit 321 and can acquire the rotation speed of the exhaust fan 4 from the exhaust rotation speed detection unit 421 . Also, the control unit 123 can acquire the outdoor temperature, that is, the temperature of the outside air, from the outdoor temperature detection unit 11 . The control unit 123 detects age-related clogging of the air supply filter 5 based on the rotational speed of the air supply fan 3 . In addition, the control unit 123 controls clogging of the exhaust filter 6 over time, occurrence of freezing in the heat exchanger 2, and clogging due to freezing in the heat exchanger 2 based on the outdoor temperature and the rotation speed of the exhaust fan 4. to detect.
  • a characteristic curve 111 represents the relationship between air volume and static pressure.
  • the heat exchange type ventilator 1 has ventilation performance indicated by the characteristic curve 111 .
  • the initial pressure loss curve 112 represents the relationship between the air volume and the static pressure at the initial stage when the duct piping, outdoor hood, fire damper, etc. connected to the heat exchange type ventilation system 1 are installed. That is, the initial pressure loss is the pressure loss at the initial stage of use of the filter.
  • the clogging pressure loss is the pressure loss when the filter or heat exchanger 2 is clogged.
  • the filter in Embodiment 1 is the air supply filter 5 or the exhaust filter 6 .
  • the air volume at the intersection 114 between the characteristic curve 111 and the initial pressure loss curve 112 is the ventilation air volume by the heat exchange ventilator 1 at the initial stage of use of the filter.
  • the rotational speed of the blower at this ventilation air volume corresponds to the rotational speed 131 in FIG.
  • the initial use of the filter is the time when the use of the filter is started after the initial setting at the time of installation of the heat exchange ventilator 1 is completed, or after the filter maintenance of the filter after the start of use of the heat exchange ventilator 1 is completed. be. At the initial stage of use of the filter, clogging of the filter and temporary clogging of the heat exchanger 2 due to freezing did not occur.
  • the air supply filter 5 and the exhaust filter 6 are clogged due to adhesion of impurities such as dust and dust sucked in together with the air.
  • the initial pressure loss curve 112 rises in the arrow direction in FIG.
  • a clogging pressure loss curve 113 represents the relationship between the air volume and the static pressure when the filter is clogged and air cannot pass through easily.
  • the air volume at the intersection 115 between the characteristic curve 111 and the clogging pressure loss curve 113 is the ventilation air volume from the heat exchange ventilator 1 .
  • the rotation speed of the blower at this ventilation air volume corresponds to the rotation speed 132 in FIG.
  • the air volume is lower than at the intersection point 114, and even if the blower is rotating, ventilation is difficult.
  • the number of rotations of the blower also increases from the position of the number of rotations 131 to the position of the number of rotations 132 .
  • clogging of the filter reduces the ventilation function of the heat exchange type ventilator 1. That is, when the filter is clogged, the clogged filter acts as an air path resistance, resulting in an increase in pressure loss.
  • control unit 123 controls the constant command voltage to keep the voltage supplied to the blower constant. , control is performed to increase the current value of the exhaust DC motor 42 so as to increase the rotation speed of the exhaust DC motor 42 according to the relationship between the rotation speed of the exhaust DC motor 42 and the motor current value of the exhaust DC motor 42 .
  • the heat exchange type ventilator 1 when the outside air temperature decreases during ventilation operation, condensation occurs in the heat exchanger internal exhaust air passage 22c, which is the exhaust air passage 22 in the heat exchanger 2. That is, when the indoor air flowing through the exhaust air passage 22 exchanges heat with the outdoor air in the heat exchanger 2 and the temperature drops below the dew point, dew condensation occurs.
  • the temperature of the exhaust gas after heat exchange falls below the freezing temperature, the moisture generated by the dew condensation freezes into ice, clogging the heat exchanger 2, and lowering the ventilation function. That is, when the heat exchanger 2 is clogged due to freezing, the freezing causes airflow resistance, resulting in an increase in pressure loss, which deteriorates the ventilation function.
  • control unit 123 In order to maintain a predetermined ventilation air volume in command voltage constant control in which the voltage supplied to the blower is constant even when the pressure loss increases due to the freezing of the air path, the control unit 123 , control is performed to increase the current value of the exhaust DC motor 42 so as to increase the rotation speed of the exhaust DC motor 42 according to the relationship between the rotation speed of the exhaust DC motor 42 and the motor current value of the exhaust DC motor 42 . Freezing melts when the outdoor temperature rises. That is, clogging of the heat exchanger 2 due to freezing is temporary clogging.
  • the heat exchange type ventilator 1 operates as shown in FIGS. characterize.
  • FIG. 5 is a first flowchart showing an example of detection operation of clogging of the exhaust filter 6 over time and clogging of the exhaust filter 6 due to freezing in the heat exchange type ventilator 1 according to the first embodiment.
  • FIG. 6 is a second flowchart showing an example of detection operation of clogging of the exhaust filter 6 over time and clogging of the exhaust filter 6 due to freezing in the heat exchange type ventilator 1 according to the first embodiment. .
  • the control unit 123 acquires the rotation speed from the air supply DC motor 32 mounted on the air supply blower 3, acquires the rotation speed from the exhaust DC motor 42 mounted on the exhaust blower 4, and detects the outdoor temperature.
  • the outdoor temperature that is, the airflow temperature of the outside air is acquired from the unit 11 .
  • the control unit 123 executes detection of either filter clogging or ice clogging based on the obtained rotational speed of the DC motor 32 for air supply, the rotational speed of the DC motor 42 for exhaust, and the outdoor temperature.
  • the air supply DC motor 32 mounted on the air supply fan 3 and the exhaust DC motor 42 mounted on the exhaust fan 4 are controlled by command voltage constant control.
  • the operation of detecting clogging of the exhaust filter 6 over time and clogging of the exhaust filter 6 due to freezing in the heat exchange type ventilator 1 will be described below.
  • the detection operation described below is started after the initial setting at the time of installation of the heat exchange ventilator 1 is completed, or after filter maintenance of the exhaust filter 6 is completed after the start of use of the heat exchange ventilator 1 .
  • step S110 the reference rotational speed before filter clogging N0 is acquired.
  • the control unit 123 performs the initial setting at the time of installation of the heat exchange ventilator 1, or at the time of trial operation after completion of filter maintenance of the exhaust filter 6 after the start of use of the heat exchange ventilator 1, or At the time of initial operation, the number of rotations of the exhaust fan 4 is obtained as the reference number of rotations N0 before filter clogging.
  • the control unit 123 stores the acquired pre-filter-clogging reference rotational speed N0 .
  • the reference rotational speed before filter clogging N 0 may be stored in the storage unit 121 .
  • step S120 it is determined whether or not the current outdoor temperature T detected by the outdoor temperature detector 11 is equal to or higher than a first temperature threshold T0 , which is a temperature threshold. Specifically, the controller 123 acquires the current outdoor temperature T from the outdoor temperature detector 11 . Then, the controller 123 compares the obtained outdoor temperature T with the first temperature threshold value T0 to determine whether there is a possibility that freezing will occur in the heat exchanger 2 in the current state of the outdoor temperature T. determine whether or not In addition, the outdoor temperature T may be described as the temperature T.
  • the first temperature threshold value T0 is a reference threshold value for the control unit 123 to determine whether or not freezing may occur in the heat exchanger 2, and is determined in advance and stored in the control unit 123. ing.
  • the first temperature threshold value T0 can be said to be a reference threshold value for determining whether or not the heat exchanger 2 is likely to freeze.
  • the first temperature threshold T0 is, for example, 1°C.
  • the control unit 123 controls the current outdoor temperature T and the heat exchanger 2 in a state where there is no possibility of freezing in the heat exchanger 2. Determine that there is. In addition, when the current outdoor temperature T is less than the first temperature threshold value T0 , the control unit 123 determines that the current outdoor temperature T and the heat exchanger 2 may freeze in the heat exchanger 2. state.
  • step S120 If it is determined that the current outdoor temperature T is equal to or higher than the first temperature threshold value T0 , that is, if it is determined that there is no possibility of freezing occurring in the heat exchanger 2, the result of step S120 is Yes, and step S130 proceed to If it is determined that the current outdoor temperature T is less than the first temperature threshold value T0 , that is, if it is determined that there is a possibility that freezing will occur in the heat exchanger 2, the result of step S120 is No, and step S160 proceed to
  • step S130 the rotation speed N of the exhaust DC motor 42 of the exhaust fan 4 is monitored.
  • the control unit 123 acquires the current rotation speed N of the exhaust DC motor 42 from the exhaust rotation speed detection unit 421 of the exhaust motor control circuit 420 of the exhaust fan 4 .
  • the control unit 123 acquires the rotation speed N of the exhaust DC motor 42 at a predetermined cycle and monitors the rotation speed of the exhaust DC motor 42 .
  • step S140 it is determined whether or not the current rotation speed N of the exhaust DC motor 42 has increased from the reference rotation speed N0 before filter clogging by a predetermined set value A or more.
  • the control unit 123 compares the current rotation speed N of the exhaust DC motor 42 acquired in step S130 with the reference rotation speed N0 before filter clogging acquired in step S110, and determines the current It is determined whether or not the rotation speed N of the exhaust DC motor 42 has increased from the reference rotation speed N0 before filter clogging by a set value A or more. That is, the control unit 123 determines whether or not the current rotation speed N of the exhaust DC motor 42 obtained in step S130 is equal to or greater than the filter clogging determination rotation speed N1.
  • the current rotation speed N of the exhaust DC motor 42 is increased from the reference rotation speed N0 before filter clogging by the set value A or more. If so, the controller 123 determines that the exhaust filter 6 has clogged over time. Further, when it is determined that there is no possibility of freezing in the heat exchanger 2, the current rotation speed N of the exhaust DC motor 42 increases from the reference rotation speed N0 before filter clogging by the set value A or more. If not, the control unit 123 determines that the exhaust filter 6 is not clogged over time.
  • the rotation speed N of the exhaust filter 6 increases due to an increase in pressure loss due to clogging.
  • the number of rotations N increases from the reference number of rotations N0 before filter clogging by a predetermined set value A or more in a state in which there is no possibility of freezing, the exhaust filter 6 has a long-term objective. It can be determined that clogging has occurred.
  • step S140 If it is determined that the current rotation speed N of the exhaust DC motor 42 has increased from the reference rotation speed N0 before filter clogging by the set value A or more, the determination in step S140 is Yes, and the process proceeds to step S150. If it is determined that the current rotation speed N of the exhaust DC motor 42 has not increased from the pre-filter-clogging reference rotation speed N0 by the set value A or more, the result in step S140 is No, and the process returns to step S130.
  • step S150 a warning that the exhaust filter 6 is clogged is issued.
  • the control unit 123 controls the display unit 13 to display a clogging warning indicating that the exhaust filter 6 has clogged over time.
  • the user can recognize that the exhaust filter 6 needs to be cleaned. After that, the process returns to step S120.
  • step S160 it is determined whether or not the pre-freezing reference rotation speed Ni0 and the freezing determination rotation speed Ni1 have been acquired. Specifically, the control unit 123 determines whether or not the pre-icing reference rotation speed Ni0 and the freezing determination rotation speed Ni1 are stored in the control unit 123, so that the pre-icing reference rotation speed Ni0 and the freezing determination rotation speed Ni1 are stored in the control unit 123. It is determined whether or not the determination rotational speed Ni1 has been acquired.
  • control unit 123 When the control unit 123 stores the pre-freezing reference rotation speed Ni0 and the freezing determination rotation speed Ni1 , the control unit 123 has acquired the pre-icing reference rotation speed Ni0 and the freezing determination rotation speed Ni1 . It is determined that If the reference rotation speed before freezing Ni0 and the determination rotation speed Ni1 before freezing are not stored in the control unit 123, the control unit 123 determines that the reference rotation speed before freezing Ni0 and the determination rotation speed Ni1 before freezing have already been acquired. determine that it is not.
  • step S160 If it is determined that the pre-freezing reference rotation speed Ni0 and the freezing determination rotation speed Ni1 have not been obtained, the determination in step S160 is No, and the process proceeds to step S170. If it is determined that the pre-freezing reference rotation speed Ni0 and the freezing determination rotation speed Ni1 have already been obtained, the determination in step S160 is Yes, and the process proceeds to step S180.
  • step S170 the pre-icing reference rotation speed Ni0 and the freezing determination rotation speed Ni1 are acquired.
  • the control unit 123 acquires the current rotation speed N of the exhaust DC motor 42 from the exhaust rotation speed detection unit 421 of the exhaust motor control circuit 420 of the exhaust fan 4 .
  • the control unit 123 stores the acquired current rotation speed N of the exhaust DC motor 42 as a pre-freezing reference rotation speed Ni0 . Thereby, the control unit 123 can acquire the pre-freezing reference rotation speed Ni0 . Further, the control unit 123 calculates the number of revolutions by adding a predetermined set value B to the reference number of revolutions before freezing Ni0 . The control unit 123 stores the rotation speed calculated based on the pre-freezing reference rotation speed Ni0 as the freezing determination rotation speed Ni1 . Thereby, the control unit 123 can acquire the freezing determination rotation speed Ni1 . After that, the process proceeds to step S180.
  • control unit 123 controls the current exhaust DC
  • the rotational speed N of the motor 42 is stored as the pre-freezing reference rotational speed Ni0 .
  • step S180 it is determined whether or not the current outdoor temperature T is equal to or lower than a second temperature threshold T1, which is a temperature threshold. Specifically, the control unit 123 compares the outdoor temperature T acquired in step S120 with the second temperature threshold T1 to determine whether freezing occurs in the heat exchanger 2 at the current outdoor temperature T. Determine whether there is a possibility of
  • the second temperature threshold T1 is a threshold that serves as a reference for the control unit 123 to determine whether or not there is a possibility that freezing will occur in the heat exchanger 2, and is determined in advance and stored in the control unit 123. ing.
  • the second temperature threshold T1 serves as a reference threshold for determining whether or not there is no possibility of freezing in the heat exchanger 2 when steps S190 to S280, which will be described later, are repeated. I can say.
  • the second temperature threshold T1 is, for example, 3°C.
  • the control unit 123 determines that the heat exchanger 2 is likely to freeze when the current outdoor temperature T is equal to or lower than the second temperature threshold T1. Further, the control unit 123 determines that the heat exchanger 2 is in a state where there is no possibility of freezing when the current outdoor temperature T is higher than the second temperature threshold value T1.
  • step S120 ⁇ step S160 ⁇ step S170 ⁇ step S180 and the flow of step S120 ⁇ step S160 ⁇ step S180 it is determined that freezing may occur in the heat exchanger 2 in the flow of No in step S120. has been judged.
  • step S260 or step S290 ⁇ step S180 in order to determine whether or not to continue monitoring the rotation speed N of the exhaust DC motor 42 of the exhaust fan 4 in step S190 described later, the heat exchanger 2, it is necessary to determine in step S180 whether or not freezing may occur.
  • step S180 If it is determined that the current outdoor temperature T is equal to or lower than the second temperature threshold value T1, that is, if it is determined that there is a possibility that freezing will occur in the heat exchanger 2, the result of step S180 is Yes, and step S190 proceed to If it is determined that the current outdoor temperature T is higher than the second temperature threshold T1, that is, if it is determined that there is no possibility of freezing occurring in the heat exchanger 2, the result of step S180 is No, and step Proceed to S300.
  • step S190 the rotation speed N of the exhaust DC motor 42 of the exhaust fan 4 is monitored.
  • the control unit 123 acquires the current rotation speed N of the exhaust DC motor 42 from the exhaust rotation speed detection unit 421 of the exhaust motor control circuit 420 of the exhaust fan 4 .
  • the control unit 123 acquires the rotation speed N of the exhaust DC motor 42 at a predetermined cycle and monitors the rotation speed of the exhaust DC motor 42 .
  • step S200 it is determined whether or not the current rotation speed N of the exhaust DC motor 42 is equal to or higher than the freezing determination rotation speed Ni1 .
  • the control unit 123 compares the current rotation speed N of the exhaust DC motor 42 acquired in step S190 with the freezing determination rotation speed Ni1 stored in the control unit 123, It is determined whether or not the rotation speed N of the DC motor 42 is equal to or higher than the freezing determination rotation speed Ni1 . That is, the control unit 123 determines whether or not the current rotation speed N of the exhaust DC motor 42 has increased from the pre-freezing reference rotation speed Ni0 by the set value B or more.
  • the control unit 123 determines that the exhaust filter 6 is clogged with age or ice is generated. determine that there is That is, when the current rotation speed N of the exhaust DC motor 42 is equal to or higher than the freezing determination rotation speed Ni1 , the control unit 123 determines the current outdoor temperature T and the heat exchanger 2 to determine the possibility of freezing. is determined to be in a certain state. Further, when the current rotation speed N of the exhaust DC motor 42 is less than the freezing determination rotation speed Ni1 , the control unit 123 determines that the current outdoor temperature T and the heat exchanger 2 may cause freezing. It is judged that there is no state.
  • the rotation speed N of the exhaust filter 6 increases due to an increase in pressure loss due to clogging. Then, when the current rotation speed N of the exhaust DC motor 42 is equal to or higher than the freezing determination rotation speed Ni1 in a state where there is a possibility of freezing, the current outdoor temperature T and the heat exchanger 2 are frozen. It is determined that there is a possibility of occurrence of
  • step S200 If it is determined that the current rotation speed N of the exhaust DC motor 42 is equal to or higher than the freezing determination rotation speed Ni1 , the determination in step S200 is Yes, and the process proceeds to step S210. If it is determined that the current rotation speed N of the exhaust DC motor 42 is less than the freezing determination rotation speed Ni1 , the determination in step S200 is No, and the process returns to step S190.
  • step S210 the output of the air supply fan 3 is reduced or the air supply fan 3 is stopped during a predetermined operation change time C to melt the ice and improve the ice condition.
  • control is performed.
  • the control unit 123 performs control to reduce the output of the air supply fan 3 only during the operation change time C, or control to stop the air supply fan 3 only during the operation change time C.
  • the reduction in the output of the air supply fan 3 is a reduction in the voltage supplied to the air supply fan 3 , that is, the reduction in the voltage supplied to the air supply DC motor 32 .
  • the control to reduce the output of the air supply fan 3 only during the operation change time C or the control to stop the air supply fan 3 only during the operation change time C is the air volume of the air supply fan 3 for the operation change time C. is less than the air volume of the exhaust fan 4 .
  • the operation change time C is the time during which the control unit 123 performs control to change the operation of the air supply fan 3 in order to improve the freezing of the heat exchanger 2 .
  • the operation change time C is, for example, 5 minutes.
  • the predetermined operation change time C means the operation change time C set in a series of frozen condition improvement control.
  • the control itself for melting the frozen state to improve the frozen state is the control performed in step S210.
  • the control for melting the ice to improve the ice condition including the process of extending or shortening the operation change time C as described later, is a series of ice condition improvement control. can think. That is, the predetermined action change time C includes the initial value of the action change time C, the extended action change time C, and the shortened action change time C, which are predetermined and set before step S210 is performed. including the operation change time C.
  • the heat exchange type ventilator 1 can improve the frozen state of the heat exchanger 2 .
  • the outside air having a lower temperature than the indoor air is stopped from flowing into the heat exchanger 2, and is conveyed to the heat exchanger 2 by the exhaust air blower 4 and exhausted from the room. Ice in the heat exchanger 2 can be melted by the heat of the indoor air flow. Thereby, the heat exchange type ventilator 1 can improve the frozen state of the heat exchanger 2 .
  • step S220 the state of the air supply fan 3 is returned to the normal state. Specifically, the control unit 123 returns the state of the air supply fan 3 whose output is reduced in step S210 or the state of the air supply fan 3 which is stopped to the normal operation state before step S210.
  • step S230 it is determined whether or not the current rotation speed N of the exhaust DC motor 42 has decreased by a predetermined set value D or more with respect to the freezing determination rotation speed Ni1 . Specifically, after the control unit 123 returns the air supply fan 3 to the normal operation state in step S220, the current The rotation speed N of the exhaust DC motor 42 is acquired. Then, the control unit 123 determines whether or not the acquired current rotation speed N of the exhaust DC motor 42 has decreased by a set value D or more from the freezing determination rotation speed Ni1 .
  • the set value D determines whether freezing has occurred in the heat exchanger 2 when it is determined that the current outdoor temperature T is less than the first temperature threshold value T0 and there is a possibility of freezing in the heat exchanger 2.
  • it is a set value used by the control unit 123 to determine whether clogging of the exhaust filter 6 has occurred over time based on the freezing determination rotation speed Ni1 .
  • the set value D is a decrease determination set value used for determining the decrease state of the current rotation speed N of the exhaust DC motor 42 with respect to the freezing determination rotation speed Ni1 .
  • the set value D is a value smaller than the set value B.
  • the control unit 123 can calculate the set value D by multiplying the pre-icing reference rotation speed Ni0 by a predetermined ratio. The predetermined ratio is determined in advance through experiments and simulations and stored in control unit 123 .
  • the control unit 123 determines that the heat exchanger 2 is frozen, and the heat exchanger 2 is temporarily clogged due to the ice. determine that it has occurred.
  • the control unit 123 determines that the exhaust filter 6 is clogged over time.
  • the pre-freezing reference rotation speed N i0 may be relatively high depending on the ventilation air volume. and relatively low, and does not become a constant value. Therefore, the degree of influence of freezing changes depending on whether the pre-icing reference rotation speed N i0 is relatively high or when the pre-icing reference rotation speed N i0 is relatively low.
  • the control unit 123 cannot accurately determine whether freezing has occurred in 2 or whether the exhaust filter 6 has been clogged over time.
  • step S230 If it is determined that the current rotation speed N of the exhaust DC motor 42 has decreased from the freezing determination rotation speed Ni1 by the set value D or more, the determination in step S230 is YES, and the process proceeds to step S240. If it is determined that the current rotation speed N of the exhaust DC motor 42 has not decreased from the freezing determination rotation speed Ni1 by the set value D or more, the result in step S230 is No, and the process proceeds to step S150.
  • step S240 it is determined whether or not the rotation speed N of the exhaust DC motor 42 has returned to the pre-freezing reference rotation speed Ni0 .
  • the control unit 123 acquires the current rotation speed N of the exhaust DC motor 42 from the exhaust rotation speed detection unit 421 of the exhaust motor control circuit 420 of the exhaust fan 4 . Then, the control unit 123 compares the acquired current rotation speed N of the exhaust DC motor 42 with the pre-freezing reference rotation speed Ni0 , whereby the rotation speed N of the exhaust DC motor 42 becomes equal to the pre-freezing reference rotation speed. It is determined whether or not the number N i0 has been restored. By performing step S240, it is possible to determine the recovery state of the heat exchanger 2 from the frozen state.
  • the control unit 123 determines that the heat exchanger 2 has recovered from the freezing state to the normal state. I judge. When the current rotation speed N of the exhaust DC motor 42 is greater than the pre-freezing reference rotation speed Ni0 , that is, when the current rotation speed N of the exhaust DC motor 42 does not return to the pre-freezing reference rotation speed Ni0 , the control unit 123 determines that the heat exchanger 2 has not recovered from the frozen state. That is, it is possible to determine whether or not the rotation speed N of the exhaust DC motor 42 has returned to the pre-freezing reference rotation speed Ni0 , thereby determining whether or not the heat exchanger 2 has recovered from freezing.
  • step S240 determines whether the rotation speed N of the exhaust DC motor 42 has returned to the pre-freezing reference rotation speed Ni0 . If it is determined that the rotation speed N of the exhaust DC motor 42 has returned to the pre-freezing reference rotation speed Ni0 , the determination in step S240 is YES, and the process proceeds to step S250. If it is determined that the rotation speed N of the exhaust DC motor 42 has not returned to the pre-freezing reference rotation speed Ni0 , the determination in step S240 is No, and the process proceeds to step S270.
  • step S250 it is determined that the freezing condition improvement control may be excessively performed, and the operation change time C is shortened. Specifically, the control unit 123 subtracts a predetermined set value G from the current operation change time C, and stores the result as the operation change time C to be used for the next frozen state improvement control. If the operation change time C used in the current frozen state improvement control is already extended or shortened, the control unit 123 further sets the set value for the extended or shortened operation change time C. G is subtracted and stored as operation change time C to be used for the next ice condition improvement control. After that, the process proceeds to step S260.
  • the set value G is a shortened time that is subtracted from the current action change time C in order to set the action change time C to be shortened.
  • the set value G is determined in advance through experiments and simulations and stored in the controller 123 .
  • a warning of freezing is issued.
  • the control unit 123 controls the display unit 13 to display a freezing occurrence warning.
  • the freezing warning is a warning indicating that the current outdoor temperature T and the heat exchanger 2 are in a state where freezing may occur in the heat exchanger 2 . That is, the freezing occurrence warning is issued as long as there is no change in the temperature conditions in step S180, that is, unless there is a change in which the current outdoor temperature T becomes greater than the second temperature threshold T1, the possibility that freezing will occur in the heat exchanger 2.
  • This is a warning indicating that there is a possibility that the freezing condition improvement control will be repeatedly performed due to the possibility of repeated freezing condition improvement control.
  • the freezing occurrence warning indicates that the freezing level of the freezing generated in the heat exchanger 2 is a light freezing level at which the freezing of the heat exchanger 2 can be melted by the freezing condition improvement control.
  • step S270 it is determined whether or not the frozen state in the heat exchanger 2 can be improved depending on whether or not the current operation change time C is equal to or less than the set value E. Specifically, the control unit 123 determines whether the current operation change time C is equal to or less than the set value E.
  • the set value E is a reference value for the control unit 123 to determine whether or not the freezing state in the heat exchanger 2 can be improved based on the current operation change time C, and is a value larger than the initial value of the operation change time C. is the time threshold for The set value E is determined in advance through experiments and simulations and stored in the controller 123 .
  • the control unit 123 determines that the freezing state in the heat exchanger 2 can be improved by further performing the freezing state improvement control.
  • the control unit 123 determines that clogging due to freezing occurs in the heat exchanger 2, and even if the freezing state improvement control is performed, the freezing in the heat exchanger 2 is prevented. Determine that the condition cannot be improved.
  • step S270 If it is determined that the current operation change time C is equal to or less than the set value E, the determination in step S270 is Yes, and the process proceeds to step S280. If it is determined that the current operation change time C is longer than the set value E, the determination in step S270 is No, and the process proceeds to step S290.
  • step S280 the operation change time C is extended. Specifically, the control unit 123 adds a predetermined set value F to the current operation change time C, and stores the result as the operation change time C to be used for the next ice condition improvement control. If the operation change time C used in the current frozen state improvement control is already extended or shortened, the control unit 123 further sets the set value for the extended or shortened operation change time C. F is added and stored as operation change time C to be used for the next ice condition improvement control. After that, the process proceeds to step S260.
  • step S280 ⁇ step S260 ⁇ step S180 freezing occurs repeatedly unless the temperature conditions are improved in step S180, that is, unless the current outdoor temperature T changes to be greater than the second temperature threshold T1.
  • the heat exchanger 2 is notified that freezing may occur, and the flow of No in step S200 ⁇ step S190 is repeated to continuously confirm the occurrence of freezing. Further, the flow from Yes in step S200 to step S210 is repeated to continuously perform the ice condition improvement control.
  • the set value F is an extension time that is added to the current operation change time C in order to set the operation change time C to be extended.
  • the set value F is determined in advance through experiments and simulations and stored in the controller 123 .
  • the operation change time C is set to be extended or shortened according to the amount of decrease in the current rotation speed of the exhaust DC motor 42 after the operation change time C has elapsed. Then, after the operation change time C is extended or shortened and set, the current outdoor temperature T is equal to or lower than the second temperature threshold T1, and the current rotation speed of the exhaust DC motor 42 is the freezing determination rotation speed Ni1 . In the above cases, the control for reducing the air volume of the air supply fan 3 from the air volume of the exhaust fan 4 by the extended or shortened operation change time C is repeatedly performed.
  • step S290 a warning of ice clogging is issued.
  • the control unit 123 controls the display unit 13 to display the frozen clogging warning.
  • the user can recognize that the heat exchanger 2 is temporarily clogged due to ice. After that, the process returns to step S180.
  • the freezing clogging warning is a warning indicating that temporary clogging of the heat exchanger 2 due to freezing has occurred in the heat exchanger 2 and that the freezing state has not recovered even if the freezing state improvement control is performed.
  • the frozen clogging warning is issued when the level of the frozen state of the ice generated in the heat exchanger 2 cannot be melted by the frozen state improvement control, and the frozen state remains even if the frozen state improvement control is performed. This indicates a severely frozen state level that cannot be recovered.
  • the operation change time C extended or shortened in the case of the severely frozen state level is the set value described above. greater than E. Therefore, it is determined that the current operation change time C is greater than the set value E. As a result, when the severe frozen state level continues and the frozen state improvement control is repeated, a warning of frozen clogging is issued in step S290.
  • step S300 the warning of freezing is cancelled.
  • the control unit 123 performs control to terminate the display of the freezing occurrence warning on the display unit 13 .
  • the pre-icing reference rotation speed Ni0 , the freezing determination rotation speed Ni1 , and the extended or shortened operation change time are cleared.
  • the control unit 123 deletes the stored pre-icing reference rotation speed Ni0 , the freezing determination rotation speed Ni1 , and the extended or shortened operation change time from the control unit 123 . After that, the process returns to step S120.
  • FIG. 7 is a diagram explaining an example of the freezing state improvement control in the heat exchange ventilator 1 according to the first embodiment.
  • the vertical axis indicates the state of the air supply DC motor 32, the rotation speed N of the exhaust DC motor 42, and the frozen state of the heat exchanger 2.
  • the state of the air supply DC motor 32 is an operating state or a stopped state.
  • the frozen state of the heat exchanger 2 includes a normal state without ice, a frozen state, and a semi-frozen state between the normal state and the frozen state.
  • the horizontal axis in FIG. 7 indicates time.
  • the heat exchanger 2 begins to freeze at time T1. Then, the current rotation speed N of the exhaust DC motor 42 increases from time T1.
  • the frozen state of the heat exchanger 2 is a semi-frozen state between the normal state and the frozen state.
  • Time T3 corresponds to Yes in step S200 and step S210 in FIG.
  • Time T4 corresponds to Yes in step S240 in FIG.
  • Time T6 corresponds to Yes in step S200 and step S210 in FIG.
  • the rotation speed N7 which is the current rotation speed N of the exhaust DC motor 42 at time T7, is less than the freezing determination rotation speed Ni1 , but is greater than the pre-freezing reference rotation speed Ni0 . It has not returned to the number N i0 . Also, at this point, the heat exchanger 2 has not returned to its normal, non-icing state. Then, since the heat exchanger 2 has not returned to the normal state without freezing, freezing occurs in the heat exchanger 2 in a short period of time, and from time T7, the occurrence of freezing in the heat exchanger 2 begin.
  • Time T7 corresponds to Yes in steps S220 and S230 in FIG. More specifically, time T7 corresponds to steps S220 ⁇ Yes in step S230 ⁇ No in step S240 ⁇ Yes in step S270 ⁇ step S280 ⁇ step S260 ⁇ step S180 in FIGS. That is, the control unit 123 shifts to control of normal operation. Further, the control unit 123 extends the operation change time C in step S280.
  • FIG. Time T8 corresponds to Yes in step S200 and step S210 in FIG.
  • Time T9 corresponds to Yes in steps S220 and S230 and Yes in step S240 in FIGS.
  • the current rotation speed N of the exhaust DC motor 42 is detected when the air supply DC motor 32 is in operation. do. Then, in the heat exchange ventilator 1, even if the amount of decrease in the detected current rotation speed N of the exhaust DC motor 42 from the freezing determination rotation speed Ni1 is equal to or greater than the set value D, the time T7 As in the state of (1), there is a case where the freezing of the heat exchanger 2 is not completely eliminated.
  • step S220 the amount of decrease in the current rotation speed N of the exhaust DC motor 42 detected after the state of the air supply fan 3 is returned to the normal state from the freezing determination rotation speed Ni1 is equal to or greater than the set value D. Even if there is, if the current rotation speed N of the exhaust DC motor 42 is greater than the pre-icing reference rotation speed Ni0 , the control unit 123 determines that the ice-freezing of the heat exchanger 2 is completely eliminated. It is judged that it is not in the state. If the current rotation speed N of the exhaust DC motor 42 is greater than the pre-freezing reference rotation speed Ni0 , the current rotation speed N of the exhaust DC motor 42 has not returned to the pre-freezing reference rotation speed Ni0 . is the case. Further, the control unit 123 determines that the improvement of the freezing of the heat exchanger 2 is insufficient, and extends the operation change time C used for the freezing state improvement control in the next step S210.
  • the control The unit 123 determines that the freezing of the heat exchanger 2 has been appropriately improved and the heat exchanger 2 has recovered from the freezing state to the normal state. Further, the control unit 123 determines that there is a possibility that the icing state improvement control is being performed excessively, and shortens the operation change time C used for the icing state improvement control in the next step S210.
  • control unit 123 repeatedly performs the control described above, so that the freezing state improvement control suitable for improving the freezing of the heat exchanger 2 can be performed.
  • Each of the control unit 123 of the control device 12, the air supply motor control circuit 320, and the exhaust motor control circuit 420 is implemented as a processing circuit having the hardware configuration shown in FIG. 8, for example.
  • 8 is a diagram illustrating an example of a hardware configuration of a processing circuit according to Embodiment 1.
  • FIG. When the control unit 123 of the control device 12, the air supply motor control circuit 320, and the exhaust motor control circuit 420 are each realized by the processing circuit shown in FIG. Circuit 320 and exhaust motor control circuit 420 are implemented by processor 201 executing a program stored in memory 202 . Also, multiple processors and multiple memories may work together to achieve the above functions.
  • control unit 123 of the control device 12 Some of the functions of the control unit 123 of the control device 12, the air supply motor control circuit 320, and the exhaust motor control circuit 420 are implemented as electronic circuits, and the other functions are implemented by the processor 201 and the memory 202. You may make it implement
  • the heat exchange type ventilator 1 depending on whether the current outdoor temperature T is equal to or higher than the first temperature threshold value T0 , the heat exchanger 2 in the state of the current outdoor temperature T A primary determination is made as to whether or not freezing may occur. Further, when it is determined in the primary determination that there is a possibility of freezing in the heat exchanger 2, the heat exchange type ventilator 1 determines whether or not freezing has occurred in the heat exchanger 2, or whether the exhaust filter 6, a secondary determination is performed to determine whether clogging over time has occurred based on the number of revolutions N of the DC motor 42 for exhaust.
  • the heat exchange ventilator 1 uses two determination parameters to identify the cause of clogging in the heat exchange ventilator 1. Therefore, the clogging occurring in the heat exchange ventilator 1 is caused by freezing. It is possible to accurately determine whether the clogging of the heat exchanger 2 is due to temporary clogging or the clogging of the exhaust filter 6 over time. As a result, erroneous detection of clogging of the exhaust filter 6 over time due to temporary clogging of the heat exchanger 2 due to freezing can be eliminated, and clogging of the exhaust filter 6 over time can be notified. can be performed with high accuracy.
  • step S200 if it is determined in step S200 that the current outdoor temperature T and the heat exchanger 2 are in a state where freezing may occur, the freezing is melted in step S210. icing state improvement control is performed to improve the icing state.
  • step S230 it is determined whether the heat exchanger 2 is clogged temporarily due to freezing or whether the exhaust filter 6 is clogged over time. For this reason, the heat exchange ventilator 1 is either clogged temporarily due to freezing of the heat exchanger 2 due to freezing, or the exhaust filter 6 is clogged over time. It is possible to accurately determine whether or not there is serious clogging. As a result, the heat exchange type ventilator 1 can eliminate erroneous detection of clogging of the exhaust filter 6 over time due to temporary clogging of the heat exchanger 2 due to freezing. Accurate notification of clogging over time can be performed.
  • the heat exchange ventilator 1 does not use a pressure sensor or a flow rate sensor. or clogging of the exhaust filter 6 over time can be accurately determined, and the user can be notified to prompt cleaning of the exhaust filter 6 at an appropriate timing, A decrease in air volume can be suppressed.
  • the ice condition improvement control for melting the ice to improve the ice condition is performed corresponding to the ice condition, and the ice condition in the heat exchanger 2 is improved.
  • the heat exchanger 2 is clogged, an unnecessary decrease in the air volume can be suppressed, and a decrease in the ventilation volume of the heat exchange type ventilator 1 can be suppressed.
  • the heat exchange type ventilator 1 can reduce unnecessary waiting time for melting ice by changing the operation change time C according to the state of freezing, and can suppress unnecessary decrease in ventilation air volume. can.
  • the heat exchange type ventilator 1 has various reference values used when determining whether the clogging of the heat exchanger 2 is temporary due to freezing or the clogging of the exhaust filter 6 over time. and set values can be set to any appropriate values corresponding to the installation environment of the heat exchange ventilator 1 . As a result, the heat exchange ventilator 1 can notify the user to prompt the user to clean the exhaust filter 6 at an appropriate timing corresponding to the environment in which the heat exchange ventilator 1 is installed. It is possible to suppress a decrease in ventilation air volume due to freezing in accordance with the environment when freezing occurs in the exchanger 2 .
  • the clogging of the heat exchange ventilator 1 is determined using the rotation speed N of the exhaust DC motor 42, but the rotation speed N of the exhaust DC motor 42 can be replaced with determination using the motor current value of the exhaust DC motor 42 or the command voltage value of the exhaust DC motor 42, which is a known technique.
  • Embodiment 1 an example in which a DC motor is used for the motors used in the air supply fan 3 and the exhaust fan 4 is shown, but the motors used in the air supply fan 3 and the exhaust fan 4 are It is not limited to DC motors. That is, alternating current (AC) motors may be used for the air supply fan 3 and the exhaust fan 4 . Even when AC motors are used for the air supply fan 3 and the exhaust fan 4, the above effects can be obtained by performing the same control as above.
  • AC alternating current
  • FIG. 9 is a block diagram showing the functional configuration of another heat exchange ventilator 1X according to the first embodiment.
  • FIG. 9 components similar to those shown in FIG. 2 are assigned the same reference numerals as in FIG. 2, and detailed description thereof is omitted.
  • Another heat exchange ventilator 1X basically has the same configuration and effect as the heat exchange ventilator 1 according to the first embodiment, but AC motors are used for the air supply fan 3 and the exhaust fan 4. is different from the heat exchange ventilator 1 according to the first embodiment.
  • Another heat exchange type ventilator 1X includes a housing 1a, a heat exchanger 2, an air supply fan 3X, an exhaust fan 4X, an air supply filter 5, an exhaust filter 6, and an indoor air outlet.
  • a unit 7 an indoor intake unit 8 , an outdoor intake unit 9 , an outdoor outlet unit 10 , an outdoor temperature detection unit 11 , a control device 12X, and a display unit 13 .
  • the air supply blower 3X is arranged in the downstream air supply air passage 21b and generates an air supply flow from the outdoor side suction section 9 toward the indoor side blowout section 7.
  • the air supply fan 3X includes an air supply fan 31 in an air supply fan casing 30, an air supply AC motor 33 for rotating the air supply fan 31, an air supply communication unit 34, and an air supply fan 31. and a rotation speed detection unit 35 for the engine.
  • the air supply fan 3X rotates the air supply fan 31 with the air supply AC motor 33 to generate an air supply flow.
  • the operation of the air supply fan 3X is controlled by the control unit 123X, which will be described later, by controlling the operation, stop, and rotation speed of the air supply AC motor 33 by the control unit 123X.
  • the air supply communication unit 34 communicates with the control device 12X.
  • the air supply rotation speed detector 35 detects the rotation speed of the air supply AC motor 33 .
  • the exhaust air blower 4X is arranged in the downstream exhaust air passage 22b and generates an exhaust flow from the indoor intake section 8 to the outdoor outlet section 10.
  • the exhaust fan 4X includes an exhaust fan 41 in an exhaust fan casing 40, an exhaust AC motor 43 for rotating the exhaust fan 41, an exhaust communication unit 44, and an exhaust rotation speed detection unit 45. , provided.
  • the exhaust fan 4X rotates the exhaust fan 41 with the exhaust AC motor 43 to generate an exhaust flow.
  • the operation of the exhaust air blower 4X is controlled by the control unit 123X, which will be described later, by controlling the operation, stop, and rotational speed of the exhaust AC motor 43 by the control unit 123X.
  • the exhaust communication unit 44 communicates with the control device 12X.
  • the exhaust rotation speed detector 45 detects the rotation speed of the exhaust AC motor 43 .
  • the control device 12X is provided inside the housing 1a and controls the entire heat exchange type ventilator 1X.
  • the control device 12X includes a storage unit 121, a communication unit 122, and a control unit 123X.
  • the control unit 123X controls the entire heat exchange ventilator 1X including the air supply fan 3X and the exhaust fan 4X. Instead of the current value of the motor current flowing through the air supply DC motor 32 and the current value of the motor current flowing through the exhaust DC motor 42, the control unit 123X determines the current value of the motor current flowing through the air supply AC motor 33 and the exhaust current. The same control as that of the control unit 123 of the heat exchange type ventilator 1 according to the first embodiment is performed except that the current value of the motor current flowing through the AC motor 43 is used.
  • the other heat exchange type ventilator 1X is configured as described above, and uses the current value of the motor current flowing through the AC motor 33 for air supply and the current value of the motor current flowing through the AC motor 43 for exhausting, Control similar to that shown in FIGS. 5 and 6 can be performed, and effects similar to those of the heat exchange ventilator 1 according to the first embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

制御部(123)は、室外温度が予め決められた温度閾値未満である場合に、現在の排気用モータの回転数を結氷前基準回転数として記憶し、結氷前基準回転数を記憶した後における現在の排気用モータの回転数が結氷前基準回転数より大きい結氷判定回転数以上である場合に、予め決められた動作変更時間だけ給気用送風機(3)の風量を排気用送風機(4)の風量より減らす制御を行い、動作変更時間の経過後の現在の排気用モータの回転数が、結氷判定回転数に対して、予め決められた減少判定設定値以上減少しない場合に、排気用フィルタに目詰まりが発生していることを検知し、動作変更時間の経過後の現在の排気用モータの回転数が、結氷判定回転数に対して、減少判定設定値以上減少する場合に、熱交換器に結氷による目詰まりが発生していることを検知する。

Description

熱交換型換気装置
 本開示は、熱交換器により室外の空気と室内の空気との間で熱交換を行いながら換気する熱交換型換気装置に関する。
 熱交換型換気装置は、宅内および宅外から空気を取り込む際に空気と同時に吸い込まれる埃および塵などの不純物が風路に付着して風量を低下させてしまう。このため、熱交換型換気装置では、風路にフィルタを設置し、ユーザが定期的にフィルタを清掃することで風量を確保することが行われている。また、熱交換型換気装置では、熱交換型換気装置の運転時間をユーザに報知したり、何らかの方法で経年的なフィルタの目詰まりを検知してユーザに目詰まりしたことを報知することで、フィルタの清掃時期をユーザに報知し、ユーザに定期的なフィルタの清掃を促している。
 従来、経年的なフィルタの目詰まりを検知する一般的な方法としては、フィルタの清掃時期を居住者に知らせるべく、予め設定した運転時間を記憶しておき、熱交換型換気装置の積算運転時間がこの運転時間に到達した場合に、フィルタの目詰まりを報知する方法がある。ただし、この方法では、熱交換型換気装置の積算運転時間を報知しているにすぎないので、実際にはフィルタが目詰まりしていなくてもフィルタの目詰まりが報知される、フィルタの目詰まりが起こっていても報知されない等、フィルタの目詰まりを的確に報知できないという問題がある。
 また、フィルタが目詰まりすると風路の風量および風路の圧力が変化することから、風量センサまたは圧力センサを用いて、フィルタの目詰まりを検知する方法が用いられている。ただし、風量センサおよび圧力センサは、高価であること、センサの使用制限により熱交換型換気装置の構造または熱交換型換気装置の制御が複雑化すること、およびセンサの寿命またはセンサの信頼性の観点から、可能であれば使用しないほうが望ましい。
 このため、直流(Direct Current:DC)モータ等の制御回路を有するモータにおいては、モータの制御に用いている電圧、電流および回転数といった制御パラメータによりフィルタの目詰まりの検知を行うことが行われている。
 特許文献1には、DCモータの回転数を監視し、DCモータの回転数が予め決められた値以上となるとフィルタの目詰まりを検知し、居住者に換気不足を報知する熱交換型換気装置が開示されている。
特開2010-255960号公報
 しかしながら、熱交換型換気装置では、冬季等において室外空気の気流温度が下がり、室内空気の気流温度が高く且つ高湿であった場合には、熱交換器で温度を交換した後の室内空気が冷却されることで熱交換器に発生する結氷により、一時的な風路の目詰まりが発生する。上記特許文献1の技術では、結氷による一時的な目詰まりを経年的なフィルタの目詰まりと誤検知する可能性があった。
 本開示は、上記に鑑みてなされたものであって、結氷による熱交換器の一時的な目詰まりと経年的なフィルタの目詰まりとを区別して検知できる熱交換型換気装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本開示にかかる熱交換型換気装置は、室内空気を室外に排気する排気風路と、室外空気を室内に給気する給気風路と、が独立して内部に形成された筐体と、排気用モータを備えて排気風路に設けられ排気風路を流れる排気流を発生させる排気用送風機と、給気用モータを備えて給気風路に設けられ給気風路を流れる給気流を発生させる給気用送風機と、を備える。熱交換型換気装置は、給気風路と排気風路とに跨って設けられ給気流と排気流との間で熱交換させる熱交換器と、排気風路における熱交換器よりも上流側に配置された排気用フィルタと、室外空気の温度である室外温度を検知する室外温度検知部と、排気用モータの回転数を検知する回転数検知部と、給気用送風機および排気用送風機の動作を制御する制御部と、を備える。制御部は、室外温度が予め決められた温度閾値未満である場合に、現在の排気用モータの回転数を結氷前基準回転数として記憶し、結氷前基準回転数を記憶した後における現在の排気用モータの回転数が結氷前基準回転数より大きい結氷判定回転数以上である場合に、予め決められた動作変更時間だけ給気用送風機の風量を排気用送風機の風量より減らす制御を行い、動作変更時間の経過後の現在の排気用モータの回転数が、結氷判定回転数に対して、予め決められた減少判定設定値以上減少しない場合に、排気用フィルタに目詰まりが発生していることを検知し、動作変更時間の経過後の現在の排気用モータの回転数が、結氷判定回転数に対して、減少判定設定値以上減少する場合に、熱交換器に結氷による目詰まりが発生していることを検知する。
 本開示にかかる熱交換型換気装置によれば、結氷による熱交換器の一時的な目詰まりと経年的なフィルタの目詰まりとを区別して検知できる、という効果を奏する。
実施の形態1にかかる熱交換型換気装置の構成を示す模式図 実施の形態1にかかる熱交換型換気装置の機能構成を示すブロック図 実施の形態1における送風機に対して指令電圧一定制御を行っているときの送風機の風量と静圧の関係を示す特性図 実施の形態1における送風機に対して指令電圧一定制御を行っているときの送風機における回転数とトルクとの関係を示す特性図 実施の形態1にかかる熱交換型換気装置における熱交換器の結氷による目詰まりの検出動作および熱交換器の結氷状態の改善動作の動作例を示す第1のフローチャート 実施の形態1にかかる熱交換型換気装置における熱交換器の結氷による目詰まりの検出動作および熱交換器の結氷状態の改善動作の動作例を示す第2のフローチャート 実施の形態1にかかる熱交換型換気装置における結氷状態改善制御の一例を説明する図 実施の形態1における処理回路のハードウェア構成の一例を示す図 実施の形態1にかかる他の熱交換型換気装置の機能構成を示すブロック図
 以下に、実施の形態にかかる熱交換型換気装置を図面に基づいて詳細に説明する。
実施の形態1.
 図1は、実施の形態1にかかる熱交換型換気装置1の構成を示す模式図である。図2は、実施の形態1にかかる熱交換型換気装置1の機能構成を示すブロック図である。熱交換型換気装置1は、給気流と排気流との間で熱交換を行いながら換気を行うことが可能な装置である。熱交換型換気装置1は、24時間換気を目的として運転する。したがって、熱交換型換気装置1は、基本的には、運転が開始されるとメンテナンス時以外では運転を停止することはない。
 熱交換型換気装置1は、室外から室内への給気と室内から室外への排気とにより室内を換気することで、室内の快適な空気環境を維持する。また、熱交換型換気装置1は、給気流と排気流との間の熱交換により、室内に取り込まれる空気と室内の空気との温度差を小さくして、室内の空気調和の負担を低減させる。熱交換型換気装置1は、例えば天井裏の空間に設置される。
 熱交換型換気装置1は、筐体1aと、熱交換器2と、給気用送風機3と、排気用送風機4と、給気用フィルタ5と、排気用フィルタ6と、室内側吹出部7と、室内側吸込部8と、室外側吸込部9と、室外側吹出部10と、室外温度検知部11と、制御装置12と、表示部13と、を備える。
 熱交換型換気装置1は、給気流と排気流との間の熱交換を行う熱交換器2が筐体1aに収納されている。筐体1aは、例えば直方体形状の六面体を有し、熱交換型換気装置1の本体部を構成する。筐体1aの内部には、給気流が通る給気風路21と、排気流が通る排気風路22と、給気風路21と排気風路22とを仕切る仕切壁23とが設けられている。図1では、給気風路21が破線の矢印で示されている。図1では、排気風路22が実線の矢印で示されている。図1では、筐体1aから筐体1aにおける1つの面が取り外された状態における熱交換型換気装置1が示されている。
 筐体1aのうちの1つの側面1bには、給気吹出口である室内側吹出部7と、排気吸込口である室内側吸込部8と、給気吸込口である室外側吸込部9と、排気吹出口である室外側吹出部10と、が設けられている。給気吸込口である室外側吸込部9には、室外と室外側吸込部9とを連通する不図示の室外側給気ダクトが接続される。給気吹出口である室内側吹出部7には、室内と室内側吹出部7とを連通する不図示の室内側給気ダクトが接続される。排気吸込口である室内側吸込部8には、室内と室内側吸込部8とを連通する不図示の室内側排気ダクトが接続される。排気吹出口である室外側吹出部10には、室外と室外側吹出部10とを連通する不図示の室外側排気ダクトが接続される。
 熱交換器2は、給気風路21と排気風路22とに跨って設けられ、給気流と排気流との間の全熱交換を行う。熱交換器2は、排気流が通る一次側風路と、給気流が通る二次側風路とを有する。熱交換器2の内部において、一次側風路と二次側風路とは垂直に交差している。一次側風路と二次側風路とは、平板紙と、波板紙であるコルゲートシートとが交互に積層および接着されて構成された積層体により形成されている。図1では、一次側風路と二次側風路との図示を省略している。積層体は、四角柱形状を呈する。熱交換器2のうち積層方向における両端に位置する端面は、それぞれ正方形を呈する。積層方向は、平板紙およびコルゲートシートが積層されている方向であり、図1における紙面の奥行方向である。
 給気風路21は、室外の空気である外気を室内へ給気するための風路であり、給気吸込口である室外側吸込部9と熱交換器2との間に形成された上流側給気風路21aと、熱交換器2と給気吹出口である室内側吹出部7との間に形成された下流側給気風路21bと、熱交換器2内の給気風路21である熱交換器内給気風路21cと、を有している。すなわち、上流側給気風路21aは、給気風路21において熱交換器2よりも上流側の風路であって、室外に連通する上流側の給気風路である。また、下流側給気風路21bは、給気風路21において熱交換器2よりも下流側の風路であって、室内に連通する下流側の給気風路である。
 排気風路22は、室内空気である還気を室外へ排気するための風路であり、排気吸込口である室内側吸込部8と熱交換器2との間に形成された上流側排気風路22aと、熱交換器2と排気吹出口である室外側吹出部10との間に形成された下流側排気風路22bと、熱交換器2内の排気風路22である熱交換器内排気風路22cと、を有している。すなわち、上流側排気風路22aは、熱交換器2よりも上流側の風路であって、室内に連通する上流側の排気風路である。また、下流側排気風路22bは、熱交換器2よりも下流側の風路であって、室外に連通する下流側の排気風路である。
 熱交換型換気装置1は、室外の空気を取り込み、取り込まれた空気を室内へ送る給気用送風機3と、室内の空気を取り込み、取り込まれた空気を室外へ送る排気用送風機4とを有する。
 給気用送風機3は、下流側給気風路21bに配置され、室外側吸込部9から室内側吹出部7に向かう給気流の流れを生成する。給気用送風機3は、給気用送風機ケーシング30内に給気用ファン31と、給気用ファン31を回転させるための給気用DCモータ32であるDCブラシレスモータと、を備える。給気用送風機3は、給気用DCモータ32によって給気用ファン31を回転させることによって給気流を発生させる。給気用送風機3は、後述する制御部123によって給気用DCモータ32の運転、停止および回転速度が制御されることで、制御部123によって運転動作が制御される。
 給気用DCモータ32は、DCモータの特徴である制御回路として、制御部123の制御に従って給気用DCモータ32の駆動の制御と負荷調整とを行う給気用モータ制御回路320を有する。給気用モータ制御回路320は、給気用DCモータ32に出力する電圧、給気用DCモータ32に流れるモータ電流、および給気用DCモータ32の回転数などの制御パラメータを制御することで給気用DCモータ32のモータパワーを調整することができる。制御部123は、これらの制御パラメータを取得することで、給気用DCモータ32の運転状態を把握することが可能である。本実施の形態1では、DCモータのこの特徴を利用し、制御部123が給気用DCモータ32の制御パラメータを常時監視することで、風路の圧力を検知する圧力センサまたは風路に流れる風量を検知する風量センサを使用せずに排気用フィルタ6の目詰まり状態を検知する。
 給気用モータ制御回路320は、制御部123から出力指示を受け取ると、給気用DCモータ32の運転を行う。また、給気用送風機3に加わる風路の圧力変化などの負荷が変動すると給気用DCモータ32に加わる負荷も変化し、回転数、電圧、モータ電流が変化する。給気用モータ制御回路320は、給気用回転数検知部321と、給気用電圧検知部322と、給気用電流検知部323と、給気用通信部324と、を備える。給気用回転数検知部321は、給気用DCモータ32の回転数を検知する。給気用電圧検知部322は、給気用DCモータ32に供給される電圧を検知する。給気用電流検知部323は、給気用DCモータ32に流れるモータ電流の電流値であるモータ電流値を検知する。給気用通信部324は、制御装置12と通信を行う。給気用回転数検知部321と給気用電圧検知部322と給気用電流検知部323とは、給気用通信部324を介して検知結果を制御部123へ送信する。
 排気用送風機4は、下流側排気風路22bに配置され、室内側吸込部8から室外側吹出部10に向かう排気流の流れを生成する。排気用送風機4は、排気用送風機ケーシング40内に排気用ファン41と、排気用ファン41を回転させるための排気用DCモータ42であるDCブラシレスモータと、を備える。排気用送風機4は、排気用DCモータ42によって排気用ファン41を回転させることによって排気流を発生させる。排気用送風機4は、後述する制御部123によって排気用DCモータ42の運転、停止および回転速度が制御されることで、制御部123によって運転動作が制御される。
 排気用DCモータ42は、DCモータの特徴である制御回路として、制御部123の制御に従って排気用DCモータ42の駆動の制御と負荷調整とを行う排気用モータ制御回路420を有する。排気用モータ制御回路420は、排気用DCモータ42に出力する電圧、排気用DCモータ42に流れるモータ電流、および排気用DCモータ42の回転数などの制御パラメータを制御することで排気用DCモータ42のモータパワーを調整することができる。制御部123は、これらの制御パラメータを取得することで、排気用DCモータ42の運転状態を把握することが可能である。
 排気用モータ制御回路420は、制御部123から出力指示を受け取ると、排気用DCモータ42の運転を行う。また、排気用送風機4に加わる風路の圧力変化などの負荷が変動すると排気用DCモータ42に加わる負荷も変化し、回転数、電圧、モータ電流が変化する。排気用モータ制御回路420は、排気用回転数検知部421と、排気用電圧検知部422と、排気用電流検知部423と、排気用通信部424と、を備える。
 排気用回転数検知部421は、排気用DCモータ42の回転数を検知する。排気用電圧検知部422は、排気用DCモータ42に供給される電圧を検知する。排気用電流検知部423は、排気用DCモータ42に流れるモータ電流の電流値であるモータ電流値を検知する。排気用通信部424は、制御装置12と通信を行う。排気用回転数検知部421と排気用電圧検知部422と排気用電流検知部423とは、排気用通信部424を介して検知結果を制御部123へ送信する。
 給気用フィルタ5は、外気に含まれる塵埃の目詰まりによる熱交換器2の性能低下を防止するために、熱交換器2に吸い込まれる外気の塵埃を取り除いて外気を清浄化するエアフィルタである。給気用フィルタ5は、取り外し自在に給気風路21の上流側給気風路21aに設置されている。すなわち、給気用フィルタ5は、給気風路21における熱交換器2よりも上流側の位置に設置されている。
 熱交換型換気装置1に取り込まれた外気は、給気用フィルタ5を通過し、含まれる浮遊粒子の一部が除去されて室内に給気される。給気用フィルタ5は、通常の除塵フィルタから、通常の除塵フィルタよりも微小粒子状物質および花粉をより高い捕集率で捕集できる高性能除塵フィルタに交換することが可能である。
 排気用フィルタ6は、還気に含まれる塵埃の目詰まりによる熱交換器2の性能低下を防止するために、熱交換器2に吸い込まれる還気の塵埃を取り除くエアフィルタである。排気用フィルタ6は、取り外し自在に排気風路22の上流側排気風路22aに設置されている。すなわち、排気用フィルタ6は、排気風路22における熱交換器2よりも上流側の位置に設置されている。熱交換型換気装置1に取り込まれた還気は、排気用フィルタ6を通過し、含まれる浮遊粒子の一部が除去されて屋外に排気される。
 室外温度検知部11は、屋外から室外側吸込部9を介して熱交換型換気装置1に吸い込まれる屋外空気の気流の温度である室外温度、すなわち外気の温度を検知する検知部である。すなわち、室外温度検知部11は、外気の温度を検知する外気温度検知部と換言できる。室外温度検知部11は、給気風路21における上流側給気風路21aに設けられている。室外温度検知部11は、検知した屋外の空気の温度を制御部123に送信する。
 表示部13は、給気用フィルタ5または排気用フィルタ6に目詰まりが発生した旨の目詰まり警告および熱交換器2において結氷が発生する可能性がある旨の結氷発生警告といった各種の警告を表示してユーザに報知する。表示部13は、例えば発光ダイオードを点灯させることにより、各種の警告を報知することができる。各警告の詳細については、後述する。
 制御装置12は、筐体1aの内部に設けられ、熱交換型換気装置1の全体を制御する。制御装置12は、記憶部121と、通信部122と、制御部123と、を備える。
 記憶部121は、熱交換型換気装置1の制御に用いられる各種の情報を記憶する。
 通信部122は、給気用送風機3、排気用送風機4および熱交換型換気装置1の外部の機器と通信を行う。
 制御部123は、給気用送風機3および排気用送風機4を含む熱交換型換気装置1の全体を制御する。また、制御部123は、結氷による一時的な熱交換器2の目詰まりが発生しているか、あるいは排気用フィルタ6に経年的な目詰まりが発生しているかを判定する判定部としての機能を有する。
 制御部123は、予め決められた条件で熱交換型換気装置1の換気運転を制御する。予め決められた条件は、送風機が備えるDCモータに供給する電圧を一定とする指令電圧一定制御、且つ予め決められた換気量での換気運転であり、給気用送風機3と排気用送風機4との風量は予め決められた同じ風量とされる。
 制御部123は、熱交換型換気装置1の設置時における初期設定の完了後、あるいは熱交換型換気装置1の使用開始後における排気用フィルタ6のフィルタメンテナンス完了後の試運転時もしくは初回運転時に、フィルタ目詰まり前基準回転数Nとして排気用送風機4の回転数を取得する。
 フィルタ目詰まり前基準回転数Nは、排気用フィルタ6の経年的な目詰まりが発生したか否かを、制御部123が排気用DCモータ42の回転数Nに基づいて判定するために用いられる基準となる回転数である。また、フィルタ目詰まり前基準回転数Nは、排気用フィルタ6の使用初期において予め決められた風量を出力する排気用DCモータ42の回転数である。排気用フィルタ6の使用初期は、熱交換型換気装置1の設置時における初期設定の完了後、あるいは熱交換型換気装置1の使用開始後における排気用フィルタ6のフィルタメンテナンス完了後において排気用フィルタ6の使用が開始された時期である。排気用フィルタ6の使用初期においては、排気用フィルタ6の目詰まりおよび熱交換器2における結氷による一時的な目詰まりは発生していない。なお、フィルタ目詰まり前基準回転数Nを基準回転数Nと記載する場合がある。
 また、制御部123は、室外温度検知部11から室外温度、すなわち外気の温度を取得し、室外温度を予め決められた温度閾値と比較して、現在の室外温度Tの状態において、熱交換器2で結氷が発生する可能性があるか否かを判定する。温度閾値は、熱交換器2において結氷が発生する可能性があるか否かを制御部123が判定するための基準となる閾値である。
 制御部123は、現在の室外温度Tが温度閾値以上である場合に、現在の室外温度Tおよび熱交換器2が、熱交換器2において結氷が発生する可能性がない状態であると判定する。また、制御部123は、現在の室外温度Tが温度閾値未満である場合に、現在の室外温度Tおよび熱交換器2が、熱交換器2において結氷が発生する可能性がある状態であると判定する。
 制御部123は、現在の室外温度Tが温度閾値以上である場合に、すなわち現在の室外温度Tの状態において熱交換器2で結氷が発生する可能性がない場合に、現在の排気用DCモータ42の回転数Nがフィルタ目詰まり前基準回転数Nから予め決められた設定値A以上増加したか否かを判定することにより、排気用フィルタ6の経年的な目詰まりが発生したか否かを判定する。制御部123は、フィルタ目詰まり前基準回転数Nに設定値Aを加算した回転数をフィルタ目詰まり判定回転数Nとして記憶する。
 設定値Aは、排気用フィルタ6の経年的な目詰まりが発生したか否かを、制御部123がフィルタ目詰まり前基準回転数Nに基づいて判定するために用いられる設定値である。すなわち、設定値Aは、フィルタ目詰まり前基準回転数Nからの現在の排気用DCモータ42の回転数Nの増加状態を判定するために用いられる増加判定設定値である。設定値Aは、実験とシミュレーションにより予め決められて制御部123に記憶されている。フィルタ目詰まり判定回転数Nは、排気用フィルタ6の経年的な目詰まりが発生したか否かを、制御部123が判定するために用いられる基準値である。
 現在の排気用DCモータ42の回転数Nがフィルタ目詰まり前基準回転数Nから設定値A以上増加した場合には、制御部123は、排気用フィルタ6の経年的な目詰まりが発生したと判定する。また、現在の排気用DCモータ42の回転数Nがフィルタ目詰まり前基準回転数Nから設定値A以上増加していない場合には、制御部123は、排気用フィルタ6の経年的な目詰まりが発生していないと判定する。制御部123は、現在の排気用DCモータ42の回転数Nを継続的に取得し、排気用フィルタ6の経年的な目詰まりの有無を判定する。
 制御部123は、排気用フィルタ6の経年的な目詰まりが発生したと判定した場合、排気用フィルタ6に経年的な目詰まりが発生した旨をユーザに報知する。
 制御部123は、現在の室外温度Tが温度閾値未満である場合に、すなわち現在の室外温度Tの状態において熱交換器2で結氷が発生する可能性がある場合に、現在の排気用DCモータ42の回転数Nを取得し、取得した現在の排気用DCモータ42の回転数Nを、結氷前基準回転数Ni0として記憶する。また、制御部123は、結氷前基準回転数Ni0に予め決められた設定値Bを加算した回転数を、結氷判定回転数Ni1として記憶する。
 結氷前基準回転数Ni0は、熱交換器2において結氷が発生する可能性があるか否か、熱交換器2において結氷が発生したか否か、および排気用フィルタ6の経年的な目詰まりが発生したか否かを、制御部123が排気用DCモータ42の回転数Nに基づいて判定するために用いられる、基準となる回転数である。なお、結氷前基準回転数Ni0を回転数Ni0と記載する場合がある。
 結氷判定回転数Ni1は、熱交換器2において結氷が発生する可能性があるか否か、熱交換器2において結氷が発生したか否か、および排気用フィルタ6の経年的な目詰まりが発生したか否かを、制御部123が排気用DCモータ42の回転数Nに基づいて判定するために用いられる回転数である。結氷判定回転数Ni1は、結氷前基準回転数Ni0よりも大きい値である。なお、結氷判定回転数Ni1を回転数Ni1と記載する場合がある。
 設定値Bは、結氷前基準回転数Ni0に基づいて結氷判定回転数Ni1を算出するために用いられる加算値である。設定値Bは、実験およびシミュレーションにより予め決められて制御部123に記憶されている。
 制御部123は、現在の排気用DCモータ42の回転数Nと、結氷判定回転数Ni1とを比較し、現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1以上となった場合に、現在の室外温度Tおよび熱交換器2が、結氷の発生の可能性がある状態であると判定する。
 制御部123は、現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1以上となった場合、予め決められた動作変更時間だけ給気用送風機3の風量を排気用送風機4の風量より減らす結氷状態改善制御を行い、室内空気よりも低温である外気の熱交換器2への流入量を低減させる。これにより、排気用送風機4によって熱交換器2に搬送されて室内から排気される室内空気の気流が有する熱によって、熱交換器2の結氷を溶かすことができる。
 制御部123は、結氷状態改善制御の後に、給気用送風機3の状態を通常の運転状態に戻し、排気用送風機4の回転数の変化量に基づいて、結氷による一時的な熱交換器2の目詰まりが発生しているか、あるいは排気用フィルタ6に経年的な目詰まりが発生しているかを判定する。制御部123は、給気用送風機3の状態を通常の運転状態に戻して通常の換気運転を行った際の排気用送風機4の回転数Nが、予め決められた設定値以上減少して結氷前基準回転数Ni0に近づいている場合は、結氷による一時的な熱交換器2の目詰まりが発生していると判定する。制御部123は、給気用送風機3の状態を通常の運転状態に戻して通常の換気運転を行った際の排気用送風機4の回転数Nが、予め決められた設定値以上減少しなかった場合は、排気用フィルタ6に経年的な目詰まりが発生していると判定する。
 制御部123は、排気用フィルタ6の経年的な目詰まりが発生したと判定した場合、排気用フィルタ6に経年的な目詰まりが発生した旨をユーザに報知する。
 制御部123は、結氷による一時的な熱交換器2の目詰まりが発生していると判定した場合に、排気用送風機4の回転数Nが結氷前基準回転数Ni0に戻っている場合には、熱交換器2において結氷が発生する可能性がある状態である旨をユーザに報知する。
 制御部123は、結氷による一時的な熱交換器2の目詰まりが発生していると判定した場合に、排気用送風機4の回転数Nが結氷前基準回転数Ni0に戻っていない場合には、排気用送風機4の回転数Nが結氷前基準回転数Ni0に戻るまで、あるいは現在の室外温度Tが予め決められた温度閾値より大きくなるまで、結氷状態改善制御を繰り返して熱交換器2の結氷状態の緩和および改善を図る。
 制御部123は、結氷状態改善制御を予め決められた回数繰り返した場合、結氷による一時的な熱交換器2の目詰まりが発生している旨をユーザに報知する。
 制御部123は、現在の室外温度Tが温度閾値未満である場合に、すなわち現在の室外温度Tの状態において熱交換器2で結氷が発生する可能性がある場合に、結氷前基準回転数Ni0と結氷判定回転数Ni1とを、熱交換器2で結氷が発生する可能性がない状態となるまで記憶し、熱交換器2で結氷が発生する可能性がない状態となったときにこれらの情報のリセットを行う。
 図3は、実施の形態1における送風機に対して指令電圧一定制御を行っているときの送風機の風量と静圧との関係を示す特性図である。図4は、実施の形態1における送風機に対して指令電圧一定制御を行っているときの送風機における回転数とトルクとの関係を示す特性図である。図4に示すように、実施の形態1における送風機は、送風機が備えるDCモータに供給する電圧を一定とする指令電圧一定制御時にはDCモータの駆動に必要なトルクが小さくなるほど回転数が大きくなる関係を有している。実施の形態1における送風機は、給気用送風機3および排気用送風機4である。実施の形態1におけるDCモータは、給気用DCモータ32および排気用DCモータ42である。
 制御部123は、給気用送風機3の回転数を給気用回転数検知部321から取得でき、排気用送風機4の回転数を排気用回転数検知部421から取得できる。また、制御部123は、室外温度検知部11から室外温度、すなわち外気の温度を取得できる。制御部123は、給気用送風機3の回転数に基づいて給気用フィルタ5の経年的な目詰まりを検知する。また、制御部123は、室外温度と排気用送風機4の回転数とに基づいて排気用フィルタ6の経年的な目詰まり、熱交換器2における結氷の発生および熱交換器2における結氷による目詰まりを検知する。
 図3において、特性曲線111は風量と静圧との関係を表す。熱交換型換気装置1は特性曲線111に示す換気性能を有している。初期圧損曲線112は、熱交換型換気装置1に接続されるダクト配管、屋外フード、防火ダンパー等を設置したときの初期における風量と静圧との関係を表す。すなわち、初期圧損は、フィルタの使用初期における圧損である。目詰まり圧損は、フィルタまたは熱交換器2に目詰まりが発生したときの圧損である。実施の形態1におけるフィルタは、給気用フィルタ5または排気用フィルタ6である。特性曲線111と初期圧損曲線112との交点114の風量が、フィルタの使用初期における熱交換型換気装置1による換気風量となる。この換気風量における送風機の回転数が、図4における回転数131に対応する。
 フィルタの使用初期は、熱交換型換気装置1の設置時における初期設定の完了後、あるいは熱交換型換気装置1の使用開始後におけるフィルタのフィルタメンテナンス完了後においてフィルタの使用が開始された時期である。フィルタの使用初期においては、フィルタの目詰まりおよび熱交換器2における結氷による一時的な目詰まりは発生していない。
 熱交換型換気装置1が換気運転を続けると、給気用フィルタ5と排気用フィルタ6とが、空気と同時に吸い込まれる埃および塵などの不純物の付着により目詰まりを起こす。給気用フィルタ5と排気用フィルタ6とが目詰まりを起こすと、初期圧損曲線112は、図3における矢印方向に立ち上がる。目詰まり圧損曲線113は、フィルタの目詰まりが発生して、空気を通りにくくなった状態になったときの風量と静圧との関係を表す。
 この場合、特性曲線111と目詰まり圧損曲線113との交点115の風量が、熱交換型換気装置1による換気風量となる。この換気風量における送風機の回転数が、図4における回転数132に対応する。交点115では、交点114と比較すると風量が低下し、送風機が回転運転していても換気がされ難い状態となる。また、送風機の回転数も回転数131の位置から回転数132の位置に上昇する。
 そして、フィルタの目詰まりは、熱交換型換気装置1の換気機能を低下させる。すなわち、フィルタの目詰まりが発生すると、フィルタの目詰まりが風路抵抗となって圧損が増加した状態となり、送風機の風量および換気風量が低減し、換気機能を低下させる。
 制御部123は、フィルタの目詰まりが風路抵抗となって圧損が増加した状態になると、送風機に供給する電圧を一定とする指令電圧一定制御において、予め決められた換気風量を維持するために、排気用DCモータ42の回転数と排気用DCモータ42のモータ電流値との関係に従って排気用DCモータ42の回転数を上げるように排気用DCモータ42の電流値を上昇させる制御を行う。
 また、熱交換型換気装置1は、換気運転中に外気温度が低下していくと、熱交換器2内の排気風路22である熱交換器内排気風路22cに結露が生じる。すなわち、排気風路22を流れる室内空気が熱交換器2で室外空気と熱交換することで露点以下に温度低下すると結露が生じる。そして、結露により発生した水分は、熱交換後の排気温度が結氷温度を下回ると、凍結して結氷となり、熱交換器2の目詰まりを引き起こし、換気機能を低下させる。すなわち、結氷による熱交換器2の目詰まりが発生すると、結氷が風路抵抗となって圧損が増加した状態となり、換気機能を低下させる。
 制御部123は、結氷が風路抵抗となって圧損が増加した状態になった場合も、送風機に供給する電圧を一定とする指令電圧一定制御において、予め決められた換気風量を維持するために、排気用DCモータ42の回転数と排気用DCモータ42のモータ電流値との関係に従って排気用DCモータ42の回転数を上げるように排気用DCモータ42の電流値を上昇させる制御を行う。結氷は、室外温度が上昇すると解ける。すなわち、結氷による熱交換器2の目詰まりは、一時的な目詰まりである。
 また、熱交換型換気装置1は、結氷による熱交換器2の一時的な目詰まりが発生したときも、上記のフィルタに目詰まりが発生したときと同様に図3および図4に示すような特性を示す。
 図5は、実施の形態1にかかる熱交換型換気装置1における排気用フィルタ6の経年的な目詰まりと排気用フィルタ6の結氷による目詰まりとの検知動作例を示す第1のフローチャートである。図6は、実施の形態1にかかる熱交換型換気装置1における排気用フィルタ6の経年的な目詰まりと排気用フィルタ6の結氷による目詰まりとの検知動作例を示す第2のフローチャートである。
 制御部123は、給気用送風機3に搭載された給気用DCモータ32から回転数を取得し、排気用送風機4に搭載された排気用DCモータ42から回転数を取得し、室外温度検知部11から室外温度、すなわち外気の気流温度を取得する。制御部123は、取得した給気用DCモータ32の回転数、排気用DCモータ42の回転数、および室外温度に基づいて、フィルタ目詰まりおよび結氷目詰まりのいずれかの検知を実行する。熱交換型換気装置1において、給気用送風機3に搭載された給気用DCモータ32と、排気用送風機4に搭載された排気用DCモータ42とは、指令電圧一定制御で制御される。
 以下、熱交換型換気装置1における排気用フィルタ6の経年的な目詰まりと排気用フィルタ6の結氷による目詰まりとの検知動作について説明する。以下に示す検知動作は、熱交換型換気装置1の設置時における初期設定の完了後、あるいは熱交換型換気装置1の使用開始後における排気用フィルタ6のフィルタメンテナンス完了後において開始される。
 ステップS110において、フィルタ目詰まり前基準回転数Nが、取得される。具体的に、制御部123が、熱交換型換気装置1の設置時における初期設定の完了後、あるいは熱交換型換気装置1の使用開始後における排気用フィルタ6のフィルタメンテナンス完了後の試運転時もしくは初回運転時に、フィルタ目詰まり前基準回転数Nとして排気用送風機4の回転数を取得する。制御部123は、取得したフィルタ目詰まり前基準回転数Nを記憶する。なお、フィルタ目詰まり前基準回転数Nは、記憶部121に記憶されてもよい。
 ステップS120において、室外温度検知部11で検知される現在の室外温度Tが温度閾値である第1温度閾値T以上であるか否かが判定される。具体的に、制御部123が、現在の室外温度Tを室外温度検知部11から取得する。そして、制御部123が、取得した室外温度Tと、第1温度閾値Tとを比較することにより、現在の室外温度Tの状態において、熱交換器2で結氷が発生する可能性があるか否かを判定する。なお、室外温度Tを温度Tと記載する場合がある。
 第1温度閾値Tは、熱交換器2において結氷が発生する可能性があるか否かを制御部123が判定するための基準となる閾値であり、予め決められて制御部123に記憶されている。第1温度閾値Tは、熱交換器2において結氷が発生する可能性がある状態となるか否かを判定するための基準となる閾値といえる。第1温度閾値Tは、例えば1℃である。
 制御部123は、現在の室外温度Tが第1温度閾値T以上である場合に、現在の室外温度Tおよび熱交換器2が、熱交換器2において結氷が発生する可能性がない状態であると判定する。また、制御部123は、現在の室外温度Tが第1温度閾値T未満である場合に、現在の室外温度Tおよび熱交換器2が、熱交換器2において結氷が発生する可能性がある状態であると判定する。
 現在の室外温度Tが第1温度閾値T以上であると判定された場合、すなわち熱交換器2において結氷が発生する可能性がないと判定された場合は、ステップS120においてYesとなり、ステップS130に進む。現在の室外温度Tが第1温度閾値T未満であると判定された場合、すなわち熱交換器2において結氷が発生する可能性があると判定された場合は、ステップS120においてNoとなり、ステップS160に進む。
 ステップS130では、排気用送風機4の排気用DCモータ42の回転数Nの監視が行われる。具体的に、制御部123が、排気用送風機4の排気用モータ制御回路420の排気用回転数検知部421から、現在の排気用DCモータ42の回転数Nを取得する。制御部123は、予め決められた周期で排気用DCモータ42の回転数Nを取得して、排気用DCモータ42の回転数を監視する。
 ステップS140において、現在の排気用DCモータ42の回転数Nがフィルタ目詰まり前基準回転数Nから予め決められた設定値A以上増加したか否かが判定される。具体的に、制御部123が、ステップS130で取得された現在の排気用DCモータ42の回転数Nと、ステップS110で取得されたフィルタ目詰まり前基準回転数Nとを比較し、現在の排気用DCモータ42の回転数Nがフィルタ目詰まり前基準回転数Nから設定値A以上増加したか否かを判定する。すなわち、制御部123は、ステップS130で取得された現在の排気用DCモータ42の回転数Nがフィルタ目詰まり判定回転数N以上であるか否かを判定する。
 ここで、熱交換器2において結氷が発生する可能性がないと判定された場合において、現在の排気用DCモータ42の回転数Nがフィルタ目詰まり前基準回転数Nから設定値A以上増加した場合には、制御部123は、排気用フィルタ6の経年的な目詰まりが発生したと判定する。また、熱交換器2において結氷が発生する可能性がないと判定された場合において、現在の排気用DCモータ42の回転数Nがフィルタ目詰まり前基準回転数Nから設定値A以上増加していない場合には、制御部123は、排気用フィルタ6の経年的な目詰まりが発生していないと判定する。
 図4に示すように、排気用フィルタ6は目詰まりの発生による圧力損失の増加に起因して、回転数Nが増加する。そして、結氷の発生の可能性がない状態においてフィルタ目詰まり前基準回転数Nから予め決められた設定値A以上、回転数Nが増加する場合には、排気用フィルタ6の経年的な目詰まりが発生したと判定することができる。
 現在の排気用DCモータ42の回転数Nがフィルタ目詰まり前基準回転数Nから設定値A以上増加したと判定された場合は、ステップS140においてYesとなり、ステップS150に進む。現在の排気用DCモータ42の回転数Nがフィルタ目詰まり前基準回転数Nから設定値A以上増加していないと判定された場合は、ステップS140においてNoとなり、ステップS130に戻る。
 ステップS150では、排気用フィルタ6の目詰まりの警告が報知される。具体的に、制御部123が、排気用フィルタ6に経年的な目詰まりが発生した旨の目詰まり警告を表示部13に表示させる制御を行う。目詰まり警告が表示部13に表示されることにより、ユーザは、排気用フィルタ6の清掃が必要であることを認識することができる。その後、ステップS120に戻る。
 ステップS160では、結氷前基準回転数Ni0と結氷判定回転数Ni1とが取得済みであるか否かが判定される。具体的に、制御部123が、結氷前基準回転数Ni0と結氷判定回転数Ni1とが制御部123に記憶されているか否かを判定することにより、結氷前基準回転数Ni0と結氷判定回転数Ni1とが取得済みであるか否かを判定する。
 制御部123は、結氷前基準回転数Ni0と結氷判定回転数Ni1とが制御部123に記憶されている場合に、結氷前基準回転数Ni0と結氷判定回転数Ni1とが取得済みであると判定する。制御部123は、結氷前基準回転数Ni0と結氷判定回転数Ni1とが制御部123に記憶されていない場合に、結氷前基準回転数Ni0と結氷判定回転数Ni1とが取得済みでないと判定する。
 結氷前基準回転数Ni0と結氷判定回転数Ni1とが取得済みでないと判定された場合は、ステップS160においてNoとなり、ステップS170に進む。結氷前基準回転数Ni0と結氷判定回転数Ni1とが取得済みであると判定された場合は、ステップS160においてYesとなり、ステップS180に進む。
 ステップS170では、結氷前基準回転数Ni0と結氷判定回転数Ni1とが取得される。具体的に、制御部123が、排気用送風機4の排気用モータ制御回路420の排気用回転数検知部421から、現在の排気用DCモータ42の回転数Nを取得する。
 制御部123は、取得した現在の排気用DCモータ42の回転数Nを、結氷前基準回転数Ni0として記憶する。これにより、制御部123は、結氷前基準回転数Ni0を取得することができる。また、制御部123は、結氷前基準回転数Ni0に予め決められた設定値Bを加算した回転数を算出する。制御部123は、結氷前基準回転数Ni0に基づいて算出した回転数を、結氷判定回転数Ni1として記憶する。これにより、制御部123は、結氷判定回転数Ni1を取得することができる。その後、ステップS180に進む。
 このように、制御部123は、現在の室外温度Tが第1温度閾値T未満である場合、すなわち現在の室外温度Tが第1温度閾値Tを下回った際に、現在の排気用DCモータ42の回転数Nを結氷前基準回転数Ni0として記憶する。
 ステップS180では、現在の室外温度Tが温度閾値である第2温度閾値T以下であるか否かが判定される。具体的に、制御部123が、ステップS120で取得された室外温度Tと、第2温度閾値Tとを比較することにより、現在の室外温度Tの状態において、熱交換器2で結氷が発生する可能性があるか否かを判定する。
 第2温度閾値Tは、熱交換器2において結氷が発生する可能性があるか否かを制御部123が判定するための基準となる閾値であり、予め決められて制御部123に記憶されている。第2温度閾値Tは、後述するステップS190からステップS280が繰り返される場合に、熱交換器2において結氷が発生する可能性がない状態になったか否かを判定するための基準となる閾値といえる。第2温度閾値Tは、例えば3℃である。ステップS180を行うことにより、熱交換器2において結氷が発生する可能性があるかを判定することができる。
 制御部123は、現在の室外温度Tが第2温度閾値T以下である場合に、熱交換器2において結氷が発生する可能性がある状態であると判定する。また、制御部123は、現在の室外温度Tが第2温度閾値Tより大である場合に、熱交換器2において結氷が発生する可能性がない状態であると判定する。
 なお、ステップS120→ステップS160→ステップS170→ステップS180のフローおよびステップS120→ステップS160→ステップS180のフローでは、ステップS120でNoのフローにおいて、熱交換器2において結氷が発生する可能性があると判定されている。一方、ステップS260あるいはステップS290→ステップS180のフローでは、後述するステップS190において排気用送風機4の排気用DCモータ42の回転数Nの監視を継続するか否かを判定するために、熱交換器2において結氷が発生する可能性があるか否かをステップS180において判定する必要がある。
 現在の室外温度Tが第2温度閾値T以下であると判定された場合、すなわち熱交換器2において結氷が発生する可能性があると判定された場合は、ステップS180においてYesとなり、ステップS190に進む。現在の室外温度Tが第2温度閾値Tより大であると判定された場合、すなわち熱交換器2において結氷が発生する可能性がないと判定された場合は、ステップS180においてNoとなり、ステップS300に進む。
 ステップS190では、排気用送風機4の排気用DCモータ42の回転数Nの監視が行われる。具体的に、制御部123が、排気用送風機4の排気用モータ制御回路420の排気用回転数検知部421から、現在の排気用DCモータ42の回転数Nを取得する。制御部123は、予め決められた周期で排気用DCモータ42の回転数Nを取得して、排気用DCモータ42の回転数を監視する。
 ステップS200において、現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1以上であるか否かが判定される。具体的に、制御部123が、ステップS190で取得された現在の排気用DCモータ42の回転数Nと、制御部123に記憶された結氷判定回転数Ni1とを比較し、現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1以上であるか否かが判定される。すなわち、制御部123は、現在の排気用DCモータ42の回転数Nが結氷前基準回転数Ni0から設定値B以上増加したか否かを判定する。
 ここで、現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1以上である場合には、制御部123は、排気用フィルタ6の経年的な目詰まり、あるいは結氷が発生していると判定する。すなわち、現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1以上である場合には、制御部123は、現在の室外温度Tおよび熱交換器2が、結氷の発生の可能性がある状態であると判定する。また、現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1未満である場合は、制御部123は、現在の室外温度Tおよび熱交換器2が、結氷の発生の可能性がない状態であると判定する。
 図4に示すように、排気用フィルタ6は目詰まりの発生による圧力損失の増加に起因して、回転数Nが増加する。そして、結氷の発生の可能性がある状態において現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1以上である場合には、現在の室外温度Tおよび熱交換器2が、結氷の発生の可能性がある状態であると判定する。
 現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1以上であると判定された場合は、ステップS200においてYesとなり、ステップS210に進む。現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1未満であると判定された場合は、ステップS200においてNoとなり、ステップS190に戻る。
 ステップS210では、予め決められた動作変更時間Cの間、給気用送風機3の出力低減、あるいは給気用送風機3の停止を行って、結氷を溶かして結氷状態を改善するための結氷状態改善制御が行われる。具体的に、制御部123が、動作変更時間Cの間だけ給気用送風機3の出力を低減させる制御、あるいは動作変更時間Cの間だけ給気用送風機3を停止させる制御を行う。給気用送風機3の出力低減は、給気用送風機3に供給する電圧の低減、すなわち給気用DCモータ32に供給する電圧の低減である。動作変更時間Cの間だけ給気用送風機3の出力を低減させる制御、あるいは動作変更時間Cの間だけ給気用送風機3を停止させる制御は、動作変更時間Cだけ給気用送風機3の風量を排気用送風機4の風量より減らす制御である。
 動作変更時間Cは、熱交換器2の結氷を改善するために制御部123が給気用送風機3の動作を変更する制御を行う時間である。動作変更時間Cは、実験およびシミュレーションにより予め決められた初期値が制御部123に記憶されている。動作変更時間Cは、例えば5分である。なお、予め決められた動作変更時間Cとは、一連の結氷状態改善制御内で設定された動作変更時間Cを意味する。結氷を溶かして結氷状態を改善するための制御そのものは、ステップS210で行われる制御である。一方で、後述するように動作変更時間Cを延長あるいは短縮して設定する処理も含めた、結氷を溶かして結氷状態を改善するための制御は、広義の意味で、一連の結氷状態改善制御と考えることができる。すなちわ、予め決められた動作変更時間Cは、ステップS210が実施される前に予め決められて設定された、動作変更時間Cの初期値、延長された動作変更時間C、および短縮された動作変更時間Cを含む。
 給気用送風機3の出力を低減させることにより、室内空気よりも低温である外気の熱交換器2への流入量を低減させ、排気用送風機4によって熱交換器2に搬送されて室内から排気される室内空気の気流が有する熱によって、熱交換器2の結氷を溶かすことができる。これにより、熱交換型換気装置1は、熱交換器2の結氷状態を改善することができる。また、給気用送風機3を停止させることにより、室内空気よりも低温である外気の熱交換器2への流入を停止させ、排気用送風機4によって熱交換器2に搬送されて室内から排気される室内空気の気流が有する熱によって、熱交換器2の結氷を溶かすことができる。これにより、熱交換型換気装置1は、熱交換器2の結氷状態を改善することができる。
 動作変更時間Cの経過後、ステップS220において、給気用送風機3の状態を通常状態に戻す。具体的に、制御部123が、ステップS210において出力を低減させた給気用送風機3の状態、あるいは停止させた給気用送風機3の状態を、ステップS210以前の、通常の動作状態に戻す。
 ステップS230において、現在の排気用DCモータ42の回転数Nが、結氷判定回転数Ni1に対して、予め決められた設定値D以上、減少したか否かを判定する。具体的に、制御部123が、ステップS220において給気用送風機3を通常の動作状態に戻した後に、排気用送風機4の排気用モータ制御回路420の排気用回転数検知部421から、現在の排気用DCモータ42の回転数Nを取得する。そして、制御部123が、取得した現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1に対して設定値D以上、減少したか否かを判定する。
 設定値Dは、現在の室外温度Tが第1温度閾値T未満であり熱交換器2において結氷が発生する可能性があると判定された場合に、熱交換器2において結氷が発生したか、あるいは排気用フィルタ6の経年的な目詰まりが発生したかを、制御部123が結氷判定回転数Ni1に基づいて判定するために用いられる設定値である。すなわち、設定値Dは、結氷判定回転数Ni1に対する現在の排気用DCモータ42の回転数Nの減少状態を判定するために用いられる減少判定設定値である。設定値Dは、設定値Bよりも小さい値である。また、制御部123は、結氷前基準回転数Ni0に対して予め決められた比率を乗じて設定値Dを算出することができる。予め決められた比率は、実験とシミュレーションにより予め決められて制御部123に記憶されている。
 ここで、現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1に対して設定値D以上、減少した場合には、すなわち、現在の排気用DCモータ42の回転数Nの結氷判定回転数Ni1からの減少量が設定値D以上である場合には、制御部123は、熱交換器2において結氷が発生しており、結氷による一時的な熱交換器2の目詰まりが発生していると判定する。また、現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1に対して設定値D以上、減少していない場合には、すなわち、現在の排気用DCモータ42の回転数Nの結氷判定回転数Ni1からの減少量が設定値D未満である場合には、制御部123は、排気用フィルタ6に経年的な目詰まりが発生していると判定する。
 フィルタの使用初期における熱交換型換気装置1は同一の送風機によって小風量から大風量まで風量を変化させることができるため、換気風量によっては、結氷前基準回転数Ni0は、相対的に高い場合と、相対的に低い場合とがあり、一定値とはならない。このため、結氷前基準回転数Ni0が相対的に高い場合と、結氷前基準回転数Ni0が相対的に低い場合とでは、結氷による影響度合いが変化する。設定値Dが予め決められた一定の値である場合には、結氷前基準回転数Ni0が相対的に高い場合、および結氷前基準回転数Ni0が相対的に低い場合において、熱交換器2において結氷が発生したか、あるいは排気用フィルタ6の経年的な目詰まりが発生したかを、制御部123が的確に判定できない可能性がある。
 これに対して、結氷前基準回転数Ni0に対して予め決められた比率を乗じて設定値Dを算出することにより、上記のような設定値Dが一定の値に設定されている場合に発生する誤検知を回避することができる。すなわち、結氷前基準回転数Ni0が相対的に高い場合には、熱交換器2において結氷が発生したか、あるいは排気用フィルタ6の経年的な目詰まりが発生したかを結氷前基準回転数Ni0が相対的に高い場合に判定するために適した、相対的に大きい値の設定値Dを設定することができる。また、結氷前基準回転数Ni0が相対的に低い場合には、熱交換器2において結氷が発生したか、あるいは排気用フィルタ6の経年的な目詰まりが発生したかを結氷前基準回転数Ni0が相対的に低い場合に判定するために適した、相対的に小さい値の設定値Dを設定することができる。
 現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1に対して設定値D以上、減少したと判定された場合には、ステップS230においてYesとなり、ステップS240に進む。現在の排気用DCモータ42の回転数Nが結氷判定回転数Ni1に対して設定値D以上、減少していないと判定された場合には、ステップS230においてNoとなり、ステップS150に進む。
 ステップS240では、排気用DCモータ42の回転数Nが結氷前基準回転数Ni0に復帰したか否かが判定される。具体的に、制御部123が、排気用送風機4の排気用モータ制御回路420の排気用回転数検知部421から、現在の排気用DCモータ42の回転数Nを取得する。そして、制御部123が、取得した現在の排気用DCモータ42の回転数Nと、結氷前基準回転数Ni0とを比較することにより、排気用DCモータ42の回転数Nが結氷前基準回転数Ni0に復帰したか否かを判定する。ステップS240が行われることにより、熱交換器2の結氷状態からの回復状態を判定できる。
 ここで、現在の排気用DCモータ42の回転数Nが結氷前基準回転数Ni0と同等である場合には、制御部123は、熱交換器2が結氷状態から通常状態に回復できていると判定する。現在の排気用DCモータ42の回転数Nが結氷前基準回転数Ni0より大である場合、すなわち現在の排気用DCモータ42の回転数Nが結氷前基準回転数Ni0に戻らない場合には、制御部123は、熱交換器2が結氷状態から回復できていないと判定する。すなわち、排気用DCモータ42の回転数Nが結氷前基準回転数Ni0に復帰したか否かを判定することにより、熱交換器2における結氷の復帰状態を判定することができる。
 排気用DCモータ42の回転数Nが結氷前基準回転数Ni0に復帰したと判定された場合は、ステップS240においてYesとなり、ステップS250に進む。排気用DCモータ42の回転数Nが結氷前基準回転数Ni0に復帰していないと判定された場合は、ステップS240においてNoとなり、ステップS270に進む。
 ステップS250では、結氷状態改善制御が過剰に行われている可能性があると判断し、動作変更時間Cの短縮が行われる。具体的に、制御部123が、現在の動作変更時間Cから予め決められた設定値Gを減算して、次回の結氷状態改善制御に用いる動作変更時間Cとして記憶する。制御部123は、今回の結氷状態改善制御に用いられた動作変更時間Cがすでに延長あるいは短縮された動作変更時間Cである場合は、延長あるいは短縮された動作変更時間Cに対してさらに設定値Gを減算して、次回の結氷状態改善制御に用いる動作変更時間Cとして記憶する。その後、ステップS260に進む。
 設定値Gは、動作変更時間Cを短縮設定するために現在の動作変更時間Cから減算される短縮時間である。設定値Gは、実験とシミュレーションにより予め決められて制御部123に記憶されている。
 ステップS260では、結氷発生の警告が報知される。具体的に、制御部123が、結氷発生警告を表示部13に表示させる制御を行う。結氷発生警告は、現在の室外温度Tおよび熱交換器2が、熱交換器2において結氷が発生する可能性がある状態であることを示す警告である。すなわち、結氷発生警告は、ステップS180において温度条件の変化がない限り、すなわち現在の室外温度Tが第2温度閾値Tより大となる変化がない限り、熱交換器2において結氷が発生する可能性があるため、結氷状態改善制御が繰り返し行われる可能性がある状態であることを示す警告である。結氷発生警告は、熱交換器2に発生する結氷の結氷状態のレベルが、結氷状態改善制御によって熱交換器2の結氷を溶かすことができるレベルの、軽度の結氷状態レベルであることを示している。結氷発生警告が表示部13に表示されることにより、ユーザは、現在の室外温度Tおよび熱交換器2が、熱交換器2における結氷の発生により熱交換型換気装置1の換気量が一時的に低下する可能性がある状態であることを認識できる。その後、ステップS180に戻る。
 ステップS270では、現在の動作変更時間Cが設定値E以下であるか否かにより、熱交換器2における結氷状態の改善の可否が判定される。具体的に、制御部123が、現在の動作変更時間Cが設定値E以下であるかを判定する。
 設定値Eは、現在の動作変更時間Cに基づいて制御部123が熱交換器2における結氷状態の改善の可否を判定するための基準値であり、動作変更時間Cの初期値よりも大きい値の時間閾値である。設定値Eは、実験とシミュレーションにより予め決められて制御部123に記憶されている。
 制御部123は、現在の動作変更時間Cが設定値E以下である場合は、さらに結氷状態改善制御を行うことにより熱交換器2における結氷状態の改善が可能であると判定する。制御部123は、現在の動作変更時間Cが設定値Eより大である場合は、熱交換器2における結氷による目詰まりが発生し、さらに結氷状態改善制御を行っても熱交換器2における結氷状態の改善が不可能であると判定する。
 現在の動作変更時間Cが設定値E以下であると判定された場合には、ステップS270においてYesとなり、ステップS280に進む。現在の動作変更時間Cが設定値Eより大であると判定された場合には、ステップS270においてNoとなり、ステップS290に進む。
 ステップS280では、動作変更時間Cの延長が行われる。具体的に、制御部123が、現在の動作変更時間Cに予め決められた設定値Fを加算して、次回の結氷状態改善制御に用いる動作変更時間Cとして記憶する。制御部123は、今回の結氷状態改善制御に用いられた動作変更時間Cがすでに延長あるいは短縮された動作変更時間Cである場合は、延長あるいは短縮された動作変更時間Cに対してさらに設定値Fを加算して、次回の結氷状態改善制御に用いる動作変更時間Cとして記憶する。その後、ステップS260に進む。
 ステップS280→ステップS260→ステップS180へ進むフローでは、ステップS180において温度条件が改善されない限り、すなわち現在の室外温度Tが第2温度閾値T1より大となる変化がない限り結氷が繰り返し発生するため、熱交換器2に結氷が発生する可能性がある状態であることを報知するとともに、ステップS200でNo→ステップS190のフローを繰り返して結氷の発生の確認を継続的に行う。また、ステップS200でYes→ステップS210のフローを繰り返して、結氷状態改善制御を継続的に行う。
 設定値Fは、動作変更時間Cを延長設定するために現在の動作変更時間Cに加算される延長時間である。設定値Fは、実験とシミュレーションにより予め決められて制御部123に記憶されている。
 すなわち、動作変更時間Cの経過後の現在の排気用DCモータ42の回転数の減少量に対応して動作変更時間Cが延長あるいは短縮して設定される。そして、動作変更時間Cを延長あるいは短縮して設定した後に、現在の室外温度Tが第2温度閾値T以下であり、且つ現在の排気用DCモータ42の回転数が結氷判定回転数Ni1以上である場合に、延長あるいは短縮した動作変更時間Cだけ給気用送風機3の風量を排気用送風機4の風量より減らす制御が、繰り返して行われる。
 ステップS290では、結氷目詰まりの警告が報知される。具体的に、制御部123が、結氷目詰まり警告を表示部13に表示させる制御を行う。結氷目詰まり警告が表示部13に表示されることにより、ユーザは、結氷による一時的な熱交換器2の目詰まりが発生していることを認識できる。その後、ステップS180に戻る。
 結氷目詰まり警告は、熱交換器2において結氷による一時的な熱交換器2の目詰まりが発生し、結氷状態改善制御を行っても結氷状態が回復しない旨を示す警告である。結氷目詰まり警告は、熱交換器2に発生する結氷の結氷状態のレベルが、結氷状態改善制御によって熱交換器2の結氷を溶かすことができず、結氷状態改善制御を行っても結氷状態が回復しないレベルの、重度の結氷状態レベルであることを示している。
 動作変更時間Cの初期値に対して複数回において設定値Fを加算あるいは設定値Gを減算すると、重度の結氷状態レベルであった場合に延長あるいは短縮された動作変更時間Cが上述した設定値Eより大となる。したがって、現在の動作変更時間Cが設定値Eより大であると判定される。これにより、重度の結氷状態レベルが継続し、結氷状態改善制御を繰り返した場合に、ステップS290では、結氷目詰まりの警告が報知される。
 ステップS300では、結氷発生の警告が解除される。具体的に、制御部123が、表示部13における結氷発生警告の表示を終了させる制御を行う。また、結氷前基準回転数Ni0と、結氷判定回転数Ni1と、延長あるいは短縮された動作変更時間と、がクリアされる。具体的に、制御部123が、記憶している結氷前基準回転数Ni0と結氷判定回転数Ni1と延長あるいは短縮された動作変更時間とを制御部123から削除する。その後、ステップS120に戻る。
 図7は、実施の形態1にかかる熱交換型換気装置1における結氷状態改善制御の一例を説明する図である。図7においては、給気用DCモータ32の状態、排気用DCモータ42の回転数Nおよび熱交換器2の結氷状態を縦軸に示している。給気用DCモータ32の状態は、運転状態あるいは停止状態である。熱交換器2の結氷状態は、結氷がない通常状態、結氷状態、および通常状態と結氷状態との間の状態である半結氷状態がある。図7における横軸は、時間を示している。
 図7に示すように、熱交換型換気装置1の運転中において、時刻T1に、熱交換器2における結氷の発生が、始まる。そして、現在の排気用DCモータ42の回転数Nは、時刻T1から増加していく。
 時刻T2では、熱交換器2の結氷状態は、通常状態と結氷状態との間の状態である半結氷状態となっている。
 時刻T3に、現在の排気用DCモータ42の回転数Nが、結氷判定回転数Ni1に増加する。この時点で、熱交換器2は、結氷状態となっている。時刻T3に、給気用送風機3が停止されることで、結氷を溶かして結氷状態を改善するための結氷状態改善制御が、行われる。時刻T3は、図5における、ステップS200においてYes、およびステップS210に対応する。
 時刻T4に、給気用送風機3の状態が、通常状態に戻される。この時点で、現在の排気用DCモータ42の回転数Nは、結氷前基準回転数Ni0に戻っている。また、この時点で、熱交換器2は、結氷がない通常の状態に戻っている。時刻T4は、図6における、ステップS240においてYesに対応する。
 時刻T5に、熱交換器2における結氷の発生が、始まる。そして、現在の排気用DCモータ42の回転数Nは、時刻T5から増加していく。
 時刻T6に、現在の排気用DCモータ42の回転数Nが、結氷判定回転数Ni1に増加する。この時点で、熱交換器2は、結氷状態となっている。そして、時刻T6に、給気用送風機3が停止されることで、結氷状態改善制御が、行われる。時刻T6は、図5における、ステップS200においてYes、およびステップS210に対応する。
 時刻T7に、給気用送風機3の状態が、通常状態に戻される。時刻T7における現在の排気用DCモータ42の回転数Nである回転数N7は、結氷判定回転数Ni1未満となっているが、結氷前基準回転数Ni0より大であり、結氷前基準回転数Ni0には戻っていない。また、この時点で、熱交換器2は、結氷がない通常の状態には戻っていない。そして、熱交換器2は、結氷がない通常の状態には戻っていないため、短時間で熱交換器2における結氷が発生し、時刻T7の時点から、熱交換器2における結氷の発生が、始まる。
 時刻T7は、図5における、ステップS220、およびステップS230においてYesに対応する。より詳細には、時刻T7は、図5および図6における、ステップS220→ステップS230においてYes→ステップS240においてNo→ステップS270においてYes→ステップS280→ステップS260→ステップS180に対応する。すなわち、制御部123は、通常の運転の制御に移行する。また、制御部123は、ステップS280において、動作変更時間Cの延長を行う。
 時刻T8に、現在の排気用DCモータ42の回転数Nが、結氷判定回転数Ni1に増加する。この時点で、熱交換器2は、結氷状態となっている。そして、給気用送風機3が停止されることで、結氷状態改善制御が、行われる。ここでは、延長された動作変更時間Cの間だけ、結氷状態改善制御が、行われる。時刻T8は、図5における、ステップS200においてYesおよびステップS210に対応する。
 時刻T9に、給気用送風機3の状態が、通常状態に戻される。この時点で、現在の排気用DCモータ42の回転数Nは、結氷前基準回転数Ni0に戻っている。また、この時点で、熱交換器2は、結氷がない通常の状態に戻っている。時刻T9は、図5および図6における、ステップS220、ステップS230においてYes、およびステップS240においてYesに対応する。
 上記のように熱交換型換気装置1において現在の排気用DCモータ42の回転数Nを判定するにあたっては、給気用DCモータ32と排気用DCモータ42との双方の運転時でないと、通常の運転時と環境が異なることから、現在の排気用DCモータ42の回転数Nを正しく判定ができない。このため、熱交換型換気装置1においては、給気用DCモータ32の停止中には、現在の排気用DCモータ42の回転数Nの判定を行わない。また、熱交換型換気装置1は、ステップS210の結氷状態改善制御における給気用DCモータ32の停止中に実際の現在の排気用DCモータ42の回転数Nが結氷前基準回転数Ni0となった場合でも、停止している給気用DCモータ32の運転を直ぐに再開することはできない。
 このため、動作変更時間Cの経過後にステップS220において給気用送風機3の状態を通常状態に戻した後に、給気用DCモータ32の運転時に現在の排気用DCモータ42の回転数Nを検知する。そして、熱交換型換気装置1では、検知された現在の排気用DCモータ42の回転数Nの結氷判定回転数Ni1からの減少量が設定値D以上であったとしても、上記の時刻T7の状態のように、必ずしも熱交換器2の結氷が完全に解消されている状態となっていない場合がある。
 そこで、ステップS220において給気用送風機3の状態を通常状態に戻した後に検知された現在の排気用DCモータ42の回転数Nの結氷判定回転数Ni1からの減少量が設定値D以上であったとしても、現在の排気用DCモータ42の回転数Nが結氷前基準回転数Ni0より大である場合には、制御部123は、熱交換器2の結氷が完全に解消されている状態となっていないと判定する。現在の排気用DCモータ42の回転数Nが結氷前基準回転数Ni0より大である場合は、現在の排気用DCモータ42の回転数Nが結氷前基準回転数Ni0に復帰していない場合である。また、制御部123は、熱交換器2の結氷の改善が不足していると判定し、次回のステップS210の結氷状態改善制御に用いられる動作変更時間Cを延長する。
 また、ステップS220において給気用送風機3の状態を通常状態に戻した後に検知された現在の排気用DCモータ42の回転数Nが結氷前基準回転数Ni0と同等である場合には、制御部123は、熱交換器2の結氷の改善が適切に行われて熱交換器2が結氷状態から通常状態に回復できていると判定する。また、制御部123は、結氷状態改善制御が過剰に行われている可能性があると判定し、次回のステップS210の結氷状態改善制御に用いられる動作変更時間Cを短縮する。
 すなわち、図7とは異なり、動作変更時間Cが長すぎる場合には、給気用送風機3を必要以上に停止させることになる。このため、ステップS220において給気用送風機3の状態を通常状態に戻した後に検知された現在の排気用DCモータ42の回転数Nが結氷前基準回転数Ni0と同等である場合には、制御部123は、次回のステップS210の結氷状態改善制御に用いられる動作変更時間Cを短縮する。
 熱交換型換気装置1においては、制御部123が上記のような制御を繰り返し行うことにより、熱交換器2の結氷の改善に適切な結氷状態改善制御を行うことができる。
 制御装置12の制御部123、給気用モータ制御回路320および排気用モータ制御回路420のそれぞれは、例えば、図8に示したハードウェア構成の処理回路として実現される。図8は、実施の形態1における処理回路のハードウェア構成の一例を示す図である。制御装置12の制御部123、給気用モータ制御回路320および排気用モータ制御回路420のそれぞれが図8に示す処理回路により実現される場合、制御装置12の制御部123、給気用モータ制御回路320および排気用モータ制御回路420のそれぞれは、プロセッサ201がメモリ202に記憶されたプログラムを実行することにより、実現される。また、複数のプロセッサおよび複数のメモリが連携して上記機能を実現してもよい。また、制御装置12の制御部123、給気用モータ制御回路320および排気用モータ制御回路420のそれぞれの機能のうちの一部を電子回路として実装し、他の部分をプロセッサ201およびメモリ202を用いて実現するようにしてもよい。
 上述した本実施の形態1にかかる熱交換型換気装置1は、現在の室外温度Tが第1温度閾値T以上であるか否かによって、現在の室外温度Tの状態において熱交換器2で結氷が発生する可能性があるか否かの一次判定を実施する。また、熱交換型換気装置1は、一次判定において熱交換器2で結氷が発生する可能性があると判定された場合に、熱交換器2において結氷が発生したか否か、あるいは排気用フィルタ6の経年的な目詰まりが発生したか否かを排気用DCモータ42の回転数Nに基づいて判定する二次判定を実施する。
 このように熱交換型換気装置1は、2つの判定パラメータを用いて熱交換型換気装置1における目詰まりの原因を特定するため、熱交換型換気装置1に発生している目詰まりが、結氷による一時的な熱交換器2の目詰まりであるか、あるいは排気用フィルタ6の経年的な目詰まりであるかを、精度良く判定することができる。これにより、結氷による一時的な熱交換器2の目詰まりに起因した、排気用フィルタ6の経年的な目詰まりの誤検知を無くすことができ、排気用フィルタ6の経年的な目詰まりの報知を精度良く行うことができる。
 また、熱交換型換気装置1においては、ステップS200において現在の室外温度Tおよび熱交換器2が結氷の発生の可能性がある状態であると判定された場合に、ステップS210において、結氷を溶かして結氷状態を改善するための結氷状態改善制御が実施される。さらに、ステップS230において、結氷による一時的な熱交換器2の目詰まりが発生しているか、あるいは排気用フィルタ6に経年的な目詰まりが発生しているかが判定される。このため、熱交換型換気装置1は、熱交換型換気装置1に発生している目詰まりが、結氷による一時的な熱交換器2の目詰まりであるか、あるいは排気用フィルタ6の経年的な目詰まりであるかを、精度良く判定することができる。これにより、熱交換型換気装置1は、結氷による一時的な熱交換器2の目詰まりに起因した、排気用フィルタ6の経年的な目詰まりの誤検知を無くすことができ、排気用フィルタ6の経年的な目詰まりの報知を精度良く行うことができる。
 このように、熱交換型換気装置1は、圧力センサまたは流量センサを使用せずに、熱交換型換気装置1に発生している目詰まりが、結氷による一時的な熱交換器2の目詰まりであるか、あるいは排気用フィルタ6の経年的な目詰まりであるかを精度良く判定することができ、適正なタイミングで排気用フィルタ6の清掃を促す報知をユーザに対して行うことができ、風量低下を抑えることができる。
 また、二次判定においては、結氷を溶かして結氷状態を改善するための結氷状態改善制御が結氷状態に対応して実施されて熱交換器2における結氷状態の改善が行われるため、結氷による一時的な熱交換器2の目詰まりが発生している場合に、不必要な風量低下を抑えることができ、熱交換型換気装置1の換気量の低下を抑えることができる。また、熱交換型換気装置1は、結氷の状態に対応して動作変更時間Cを変更することにより、不必要な解氷待ち時間を減らすことができ、不要な換気風量の低下を抑えることができる。
 また、熱交換型換気装置1は、結氷による一時的な熱交換器2の目詰まりであるか、あるいは排気用フィルタ6の経年的な目詰まりであるかを判定する際に用いる各種の基準値および設定値を、熱交換型換気装置1の設置環境に対応して任意の適正な値に設定することができる。これにより、熱交換型換気装置1は、熱交換型換気装置1の設置環境に対応して適正なタイミングで排気用フィルタ6の清掃を促す報知をユーザに対して行うことができ、また、熱交換器2における結氷発生時の環境に対応して結氷による換気風量の低下を抑えることができる。
 なお、本実施の形態1では熱交換型換気装置1の目詰まりを判定するために排気用DCモータ42の回転数Nを用いた判定を行っているが、排気用DCモータ42の回転数Nを、公知の技術となっている排気用DCモータ42のモータ電流値、または排気用DCモータ42の指令電圧値を用いた判定に置き換えることも可能である。
 上述したように、本実施の形態1にかかる熱交換型換気装置1によれば、結氷による熱交換器2の一時的な目詰まりと経年的なフィルタの目詰まりとを区別して精度良く検知できる、という効果を奏する。また、結氷による熱交換器2の一時的な目詰まりが発生している場合には、結氷状態に対応して結氷状態の改善を行うことで、換気量の低下を抑えることができる、という効果を奏する。
 なお、実施の形態1では、給気用送風機3および排気用送風機4に用いられるモータにDCモータが使用される例について示したが、給気用送風機3および排気用送風機4に用いられるモータはDCモータに限定されない。すなわち、給気用送風機3および排気用送風機4には、交流(Alternating Current:AC)モータが用いられてもよい。給気用送風機3および排気用送風機4にACモータが用いられる場合も、上記と同様の制御が行われることにより、上述した効果が得られる。
 図9は、実施の形態1にかかる他の熱交換型換気装置1Xの機能構成を示すブロック図である。図9においては、図2に示した構成と同様の構成については図2と同じ符号を付すことで、詳細な説明は省略する。他の熱交換型換気装置1Xは、基本的に実施の形態1にかかる熱交換型換気装置1と同様の構成および効果を有するが、給気用送風機3および排気用送風機4にACモータが用いられていることが、実施の形態1にかかる熱交換型換気装置1と異なる。
 他の熱交換型換気装置1Xは、筐体1aと、熱交換器2と、給気用送風機3Xと、排気用送風機4Xと、給気用フィルタ5と、排気用フィルタ6と、室内側吹出部7と、室内側吸込部8と、室外側吸込部9と、室外側吹出部10と、室外温度検知部11と、制御装置12Xと、表示部13と、を備える。
 給気用送風機3Xは、下流側給気風路21bに配置され、室外側吸込部9から室内側吹出部7に向かう給気流の流れを生成する。給気用送風機3Xは、給気用送風機ケーシング30内に給気用ファン31と、給気用ファン31を回転させるための給気用ACモータ33と、給気用通信部34と、給気用回転数検知部35と、を備える。給気用送風機3Xは、給気用ACモータ33によって給気用ファン31を回転させることによって給気流を発生させる。給気用送風機3Xは、後述する制御部123Xによって給気用ACモータ33の運転、停止および回転速度が制御されることで、制御部123Xによって運転動作が制御される。
 給気用通信部34は、制御装置12Xと通信を行う。給気用回転数検知部35は、給気用ACモータ33の回転数を検知する。
 排気用送風機4Xは、下流側排気風路22bに配置され、室内側吸込部8から室外側吹出部10に向かう排気流の流れを生成する。排気用送風機4Xは、排気用送風機ケーシング40内に排気用ファン41と、排気用ファン41を回転させるための排気用ACモータ43と、排気用通信部44と、排気用回転数検知部45と、を備える。排気用送風機4Xは、排気用ACモータ43によって排気用ファン41を回転させることによって排気流を発生させる。排気用送風機4Xは、後述する制御部123Xによって排気用ACモータ43の運転、停止および回転速度が制御されることで、制御部123Xによって運転動作が制御される。
 排気用通信部44は、制御装置12Xと通信を行う。排気用回転数検知部45は、排気用ACモータ43の回転数を検知する。
 制御装置12Xは、筐体1aの内部に設けられ、熱交換型換気装置1Xの全体を制御する。制御装置12Xは、記憶部121と、通信部122と、制御部123Xと、を備える。
 制御部123Xは、給気用送風機3Xおよび排気用送風機4Xを含む熱交換型換気装置1Xの全体を制御する。制御部123Xは、給気用DCモータ32に流れるモータ電流の電流値および排気用DCモータ42に流れるモータ電流の電流値の代わりに、給気用ACモータ33に流れるモータ電流の電流値および排気用ACモータ43に流れるモータ電流の電流値を用いること以外は、実施の形態1にかかる熱交換型換気装置1の制御部123と同様の制御を行う。
 他の熱交換型換気装置1Xは、上記のような構成を備えることにより、給気用ACモータ33に流れるモータ電流の電流値および排気用ACモータ43に流れるモータ電流の電流値を用いて、図5および図6に示した制御と同様の制御を行うことができ、実施の形態1にかかる熱交換型換気装置1と同様の効果を得ることができる。
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 熱交換型換気装置、1a 筐体、1b 側面、1X 他の熱交換型換気装置、2 熱交換器、3,3X 給気用送風機、4,4X 排気用送風機、5 給気用フィルタ、6 排気用フィルタ、7 室内側吹出部、8 室内側吸込部、9 室外側吸込部、10 室外側吹出部、11 室外温度検知部、12,12X 制御装置、13 表示部、21 給気風路、21a 上流側給気風路、21b 下流側給気風路、21c 熱交換器内給気風路、22 排気風路、22a 上流側排気風路、22b 下流側排気風路、22c 熱交換器内排気風路、23 仕切壁、30 給気用送風機ケーシング、31 給気用ファン、32 給気用DCモータ、33 給気用ACモータ、34 給気用通信部、35 給気用回転数検知部、40 排気用送風機ケーシング、41 排気用ファン、42 排気用DCモータ、43 排気用ACモータ、44 排気用通信部、45 排気用回転数検知部、111 特性曲線、112 初期圧損曲線、113 目詰まり圧損曲線、114,115 交点、121 記憶部、122 通信部、123,123X 制御部、131,132 回転数、320 給気用モータ制御回路、321 給気用回転数検知部、322 給気用電圧検知部、323 給気用電流検知部、324 給気用通信部、420 排気用モータ制御回路、421 排気用回転数検知部、422 排気用電圧検知部、423 排気用電流検知部、424 排気用通信部、A,B,D,E,F,G 設定値、C 動作変更時間、N 回転数、N フィルタ目詰まり前基準回転数、N フィルタ目詰まり判定回転数、Ni0 結氷前基準回転数、Ni1 結氷判定回転数、T 室外温度、T 第1温度閾値、T 第2温度閾値。

Claims (9)

  1.  室内空気を室外に排気する排気風路と、室外空気を室内に給気する給気風路と、が独立して内部に形成された筐体と、
     排気用モータを備えて前記排気風路に設けられ前記排気風路を流れる排気流を発生させる排気用送風機と、
     給気用モータを備えて前記給気風路に設けられ前記給気風路を流れる給気流を発生させる給気用送風機と、
     前記給気風路と前記排気風路とに跨って設けられ前記給気流と前記排気流との間で熱交換させる熱交換器と、
     前記排気風路における前記熱交換器よりも上流側に配置された排気用フィルタと、
     前記室外空気の温度である室外温度を検知する室外温度検知部と、
     前記排気用モータの回転数を検知する回転数検知部と、
     前記給気用送風機および前記排気用送風機の動作を制御する制御部と、
     を備え、
     前記制御部は、
     前記室外温度が予め決められた温度閾値未満である場合に、現在の前記排気用モータの回転数を結氷前基準回転数として記憶し、
     前記結氷前基準回転数を記憶した後における現在の前記排気用モータの回転数が前記結氷前基準回転数より大きい結氷判定回転数以上である場合に、予め決められた動作変更時間だけ前記給気用送風機の風量を前記排気用送風機の風量より減らす制御を行い、
     前記動作変更時間の経過後の現在の前記排気用モータの回転数が、前記結氷判定回転数に対して、予め決められた減少判定設定値以上減少しない場合に、前記排気用フィルタに目詰まりが発生していることを検知し、
     前記動作変更時間の経過後の現在の前記排気用モータの回転数が、前記結氷判定回転数に対して、前記減少判定設定値以上減少する場合に、前記熱交換器に結氷による目詰まりが発生していることを検知すること、
     を特徴とする熱交換型換気装置。
  2.  前記制御部は、
     前記排気用フィルタの使用初期において予め決められた風量を出力する前記排気用モータの回転数であるフィルタ目詰まり前基準回転数を記憶し、
     前記室外温度が前記温度閾値以上である場合に、現在の前記排気用モータの回転数が前記フィルタ目詰まり前基準回転数から予め決められた増加判定設定値以上増加した場合に、前記排気用フィルタに目詰まりが発生していることを検知すること、
     を特徴とする請求項1に記載の熱交換型換気装置。
  3.  前記制御部は、前記結氷前基準回転数を記憶した後における現在の前記排気用モータの回転数が前記結氷判定回転数以上である場合に、前記動作変更時間だけ前記給気用送風機の風量を低減する制御を行うこと、
     を特徴とする請求項1または2に記載の熱交換型換気装置。
  4.  前記制御部は、前記結氷前基準回転数を記憶した後における現在の前記排気用モータの回転数が前記結氷判定回転数以上である場合に、前記動作変更時間だけ前記給気用送風機を停止する制御を行うこと、
     を特徴とする請求項1または2に記載の熱交換型換気装置。
  5.  前記制御部は、前記結氷前基準回転数に対して予め決められた比率を乗じて前記減少判定設定値を算出すること、
     を特徴とする請求項1から4のいずれか1つに記載の熱交換型換気装置。
  6.  前記制御部は、
     前記熱交換器に結氷による目詰まりが発生していることを検知した後に、前記動作変更時間の経過後の現在の前記排気用モータの回転数の減少量に対応して前記動作変更時間を延長あるいは短縮して設定し、前記動作変更時間を延長あるいは短縮して設定した後に現在の前記排気用モータの回転数が前記結氷判定回転数以上である場合に、延長あるいは短縮した前記動作変更時間だけ前記給気用送風機の風量を前記排気用送風機の風量より減らす制御を、繰り返すこと、
     を特徴とする請求項1から5のいずれか1つに記載の熱交換型換気装置。
  7.  前記制御部は、延長して設定した前記動作変更時間が予め決められた時間閾値より大となった場合に、前記熱交換器に結氷による目詰まりが発生していることを検知すること、
     を特徴とする請求項6に記載の熱交換型換気装置。
  8.  前記制御部は、前記熱交換器に結氷による目詰まりが発生していることを報知すること、
     を特徴とする請求項7に記載の熱交換型換気装置。
  9.  前記制御部は、前記排気用フィルタに目詰まりが発生していることを報知すること、
     を特徴とする請求項1または2に記載の熱交換型換気装置。
PCT/JP2021/023839 2021-06-23 2021-06-23 熱交換型換気装置 WO2022269820A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/023839 WO2022269820A1 (ja) 2021-06-23 2021-06-23 熱交換型換気装置
JP2023529333A JP7511761B2 (ja) 2021-06-23 2021-06-23 熱交換型換気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023839 WO2022269820A1 (ja) 2021-06-23 2021-06-23 熱交換型換気装置

Publications (1)

Publication Number Publication Date
WO2022269820A1 true WO2022269820A1 (ja) 2022-12-29

Family

ID=84545376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023839 WO2022269820A1 (ja) 2021-06-23 2021-06-23 熱交換型換気装置

Country Status (2)

Country Link
JP (1) JP7511761B2 (ja)
WO (1) WO2022269820A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316940A (ja) * 2003-04-11 2004-11-11 Fujitsu General Ltd 空気調和機
WO2009128150A1 (ja) * 2008-04-16 2009-10-22 三菱電機株式会社 熱交換換気装置
WO2012004978A1 (ja) * 2010-07-07 2012-01-12 パナソニック株式会社 熱交換形換気装置
JP2015135199A (ja) * 2014-01-16 2015-07-27 三菱電機株式会社 換気装置
WO2015146018A1 (ja) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 熱交換形換気装置
JP2018036006A (ja) * 2016-09-01 2018-03-08 三菱電機株式会社 空調換気装置
JP2019090593A (ja) * 2017-11-17 2019-06-13 パナソニックIpマネジメント株式会社 換気装置
WO2020196274A1 (ja) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 換気装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004316940A (ja) * 2003-04-11 2004-11-11 Fujitsu General Ltd 空気調和機
WO2009128150A1 (ja) * 2008-04-16 2009-10-22 三菱電機株式会社 熱交換換気装置
WO2012004978A1 (ja) * 2010-07-07 2012-01-12 パナソニック株式会社 熱交換形換気装置
JP2015135199A (ja) * 2014-01-16 2015-07-27 三菱電機株式会社 換気装置
WO2015146018A1 (ja) * 2014-03-28 2015-10-01 パナソニックIpマネジメント株式会社 熱交換形換気装置
JP2018036006A (ja) * 2016-09-01 2018-03-08 三菱電機株式会社 空調換気装置
JP2019090593A (ja) * 2017-11-17 2019-06-13 パナソニックIpマネジメント株式会社 換気装置
WO2020196274A1 (ja) * 2019-03-28 2020-10-01 パナソニックIpマネジメント株式会社 換気装置

Also Published As

Publication number Publication date
JP7511761B2 (ja) 2024-07-05
JPWO2022269820A1 (ja) 2022-12-29

Similar Documents

Publication Publication Date Title
US10415842B2 (en) Outdoor unit for air conditioner, air conditioner, and method for controlling air conditioner
KR101034936B1 (ko) 전열교환형 환기장치 및 그 제어방법
JP6295422B2 (ja) 換気装置
JP5274296B2 (ja) 換気装置、及び換気装置の制御方法
US10168067B2 (en) Detecting and handling a blocked condition in the coil
WO2003042602A1 (fr) Unite d'echange thermique
KR101070186B1 (ko) 냉매 흐름량 변화에 따른 송풍기 풍량 자동 제어 장치를 구비한 직접팽창방식 공조기
JP6387276B2 (ja) 冷凍サイクル装置
WO2016047028A1 (ja) 熱交換形換気装置
EP3489592A1 (en) Filter contamination detection method
WO2015146018A1 (ja) 熱交換形換気装置
JP5981396B2 (ja) ヒートポンプ熱源機
JP6458256B2 (ja) 換気装置
JP2003322380A (ja) 空気調和装置
JP2012122674A (ja) 多室型空気調和機
WO2022269820A1 (ja) 熱交換型換気装置
JP6053563B2 (ja) 熱交換換気装置
JP2015068544A (ja) 熱交換換気装置
WO2022269821A1 (ja) 熱交換型換気装置
JP6322814B2 (ja) 熱交換形換気装置
JP2016153701A (ja) 熱交換形換気装置
JP2017187237A (ja) 熱交換型換気装置
JP2016065699A (ja) 冷凍サイクル装置
JP7423400B2 (ja) 空気清浄システム
JPWO2019058519A1 (ja) 換気装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023529333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21947105

Country of ref document: EP

Kind code of ref document: A1