WO2012004978A1 - 熱交換形換気装置 - Google Patents

熱交換形換気装置 Download PDF

Info

Publication number
WO2012004978A1
WO2012004978A1 PCT/JP2011/003825 JP2011003825W WO2012004978A1 WO 2012004978 A1 WO2012004978 A1 WO 2012004978A1 JP 2011003825 W JP2011003825 W JP 2011003825W WO 2012004978 A1 WO2012004978 A1 WO 2012004978A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
air
heat exchange
exhaust
air supply
Prior art date
Application number
PCT/JP2011/003825
Other languages
English (en)
French (fr)
Inventor
洋祐 浜田
勝見 佳正
村山 拓也
俊司 三宅
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012004978A1 publication Critical patent/WO2012004978A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/007Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using a by-pass for bypassing the heat-exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a heat exchange type ventilator.
  • FIG. 5 is a schematic diagram showing a conventional heat exchange type ventilator.
  • the heat exchanger unit 101 exchanges heat between indoor air and outdoor air.
  • the heat exchanger unit 101 includes a heat exchanger 102, an exhaust path 103, an air supply path 104, an exhaust fan 105, an air supply fan 106, a temperature sensor 107, and a control unit.
  • the exhaust path 103 exhausts indoor air to the outside and passes through the heat exchanger 102.
  • the air supply path 104 supplies outdoor air into the room and passes through the heat exchanger 102.
  • the exhaust fan 105 is incorporated in the exhaust path 103.
  • the air supply fan 106 is incorporated in the air supply path 104.
  • the temperature sensor 107 detects the outside air temperature.
  • the control unit controls the operation of the exhaust fan 105 and the supply fan 106 according to the outside air temperature detected by the temperature sensor 107.
  • the controller of the heat exchanger unit 101 performs two freeze suppression controls according to the outside air temperature in order to prevent the heat exchanger 102 from freezing when the outside air temperature falls below ⁇ 10 ° C.
  • These two anti-freezing controls are a first anti-freezing control and a second anti-freezing control.
  • the first freezing suppression control is a control for suppressing freezing of the heat exchanger 102 when the outside air temperature falls below ⁇ 10 ° C., and the exhaust fan 105 is always operated and the operation of the air supply fan 106 is performed for 60 minutes. Pause for the first 15 minutes.
  • the second freezing suppression control is a control for suppressing freezing of the heat exchanger 102 more strongly than the first freezing suppression control when the outside air temperature falls below ⁇ 15 ° C., and the exhaust fan 105 and the supply fan 106 are controlled. Perform intermittent operation. In the second freezing suppression control, the operation is resumed for 5 minutes after the exhaust fan 105 and the air supply fan 106 are suspended for 60 minutes.
  • the conventional heat exchange type ventilator has a configuration in which clogging due to condensation and icing is prevented by introducing indoor air into the air supply passage (see, for example, Patent Document 2).
  • Patent Document 2 is a schematic diagram showing a conventional heat exchange type ventilator.
  • the heat exchange type ventilator is a ventilator provided with a total heat exchange element 109 inside the heat exchange chamber 108.
  • the heat exchange ventilator takes in outdoor air from the outdoor air supply path 111 and takes in indoor air from the indoor exhaust path 112.
  • the taken-out outdoor and indoor air is heat-exchanged by the total heat exchanging element 109, the outdoor air is supplied into the room from the indoor air supply path 110, and the indoor air is discharged from the outdoor exhaust path 113 to the outside. Is done.
  • the heat exchange ventilator includes a bypass 114, a temperature detector 118, and a fluid element 115.
  • the bypass path 114 communicates the indoor side exhaust path 112 and the outdoor side air supply path 111.
  • the temperature detector 118 is attached to the indoor air supply path 110.
  • the fluid element 115 is provided at an inlet portion of the bypass path 114 and includes a control path 116 and an opening / closing mechanism 117.
  • the opening / closing mechanism 117 closes the opening of the control path 116.
  • the opening / closing mechanism 117 opens the opening. Therefore, when the temperature of the air supply airflow is equal to or lower than a predetermined value, a part of the indoor exhaust is guided to the outdoor air supply airway 111 via the bypass passage 114.
  • the indoor exhaust flow in the indoor exhaust path 112 is supplied to the total heat exchange element 109 without being guided to the bypass path 114.
  • the conventional heat exchange type ventilator has a configuration in which clogging due to condensation and icing is prevented by reversing the flow of the supply air flow and the exhaust flow in the heat exchange element (see, for example, Patent Document 3). ).
  • FIG. 7A is a schematic diagram showing still another conventional heat exchange type ventilator
  • FIG. 7B is a schematic diagram of the heat exchange type ventilator when the flow direction of the air supply / exhaust in FIG. 7A is reversed.
  • the ventilation device 119 includes a support 120, a cap 121, an intermediate plate 122, an intermediate cylinder 123, a fan 124, an element portion 125, a partition plate 126, and an air supply / exhaust port 129, and indoors and outdoors. It is installed on the partition wall 130. A plurality of heat pipes 128 including fins 127 are provided in parallel in the axial direction in the cylindrical element portion 125.
  • the ventilation device 119 is formed symmetrically. In a state where the ventilator 119 is attached to the wall 130, the wall 130 is located at the center of the ventilator 119 along the axial direction of the ventilator 119. The ventilator 119 is divided into right and left by the wall 130, one half is exposed outdoors, and the other half is exposed indoors.
  • the warm air passes through the opening of the intermediate plate 122 and the space below each partition plate 126 of the intermediate cylinder 123 and the element portion 125, and is discharged to the outside (S) from the air supply / exhaust port 129 of the intermediate cylinder 123.
  • Patent Document 1 In such a conventional heat exchange type ventilator, in Patent Document 1, the operation was stopped for a predetermined time. Therefore, for example, when only the air supply is stopped, the room becomes negative pressure, and the outdoor air flows from the gaps between the buildings, causing cold draft and condensation in the indoor space. In addition, when both supply and exhaust are stopped, there is a problem that it is difficult to secure the necessary ventilation amount in the room.
  • Patent Document 2 there has been proposed a heat exchange type ventilator configured to perform heat exchange after bypassing a warm exhaust flow and mixing in a cold supply air without stopping operation.
  • the high-temperature and high-humidity indoor air guided by the bypass mixes with the low-temperature and low-humidity air taken in from the outdoor, so that condensation and icing occur at the mixing site.
  • the ventilation efficiency as a ventilator fell and had the subject that it became difficult to ensure the required amount of ventilation in a room
  • Patent Document 3 there has also been proposed a heat exchange type ventilator configured to reverse the flow of the supply air flow and the exhaust flow that hit the heat exchange element.
  • the supply air flow and the exhaust flow are reversed, and it is difficult to evaporate all the water generated by melting the ice that has frozen in the heat exchange element and the condensed water, and water accumulates in the low temperature exhaust path. To do.
  • the pressure loss inside the element and the exhaust path is greatly increased, which makes it difficult to secure the necessary ventilation volume in the room.
  • the hot and humid indoor air before heat exchange and the cryogenic air before heat exchange, and the low-temperature air after heat exchange and the cryogenic air before heat exchange are mixed by inversion. For this reason, dew condensation and icing occur at the reversal site, and the reversal site may malfunction.
  • a plurality of partition plates having heat conductivity, moisture permeability, and water resistance are overlapped at a predetermined interval to form an interlayer passage between the partition plates and take outdoor air into the room.
  • a total heat exchange element in which an air supply path and an exhaust path for exhausting indoor air to the outside alternately pass through the interlayer path, and a first blower and a second blower for ventilating the supply path and the exhaust path, respectively
  • an inversion unit that switches between the direction of the air that is ventilated through the air supply path and the direction of the air that is ventilated through the exhaust path in the interlayer passage.
  • the warm exhaust flow can evaporate the condensed water or icing by reversing the air flowing through the exhaust passage.
  • FIG. 1 is a schematic cross-sectional view showing a heat exchange ventilator according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the heat exchange ventilator after reversing the supply air flow and exhaust flow.
  • FIG. 3 is a schematic cross-sectional view showing a path connecting the heat exchange element and the air supply switching unit of the heat exchange type ventilator.
  • FIG. 4 is a schematic view showing a heat exchange element of the heat exchange type ventilator.
  • FIG. 5 is a schematic view showing a conventional heat exchange type ventilator.
  • FIG. 6 is a schematic cross-sectional view showing a different conventional heat exchange type ventilator.
  • FIG. 7A is a schematic cross-sectional view showing still another conventional heat exchange type ventilator.
  • FIG. 7B is a schematic diagram of the heat exchange type ventilator when the flow direction of the supply / exhaust air in FIG. 7A is reversed.
  • FIG. 1 is a schematic cross-sectional view showing a heat exchange ventilator according to an embodiment of the present invention.
  • the heat exchange type ventilator includes a main body box 5 having an outdoor suction port 1, an indoor suction port 2, an outdoor discharge port 3, and an indoor air supply port 4.
  • outdoor air is taken in from the outdoor suction port 1 and is supplied into the room through the indoor air supply port 4.
  • Indoor air is taken in from the indoor suction port 2 and discharged from the outdoor discharge port 3 to the outside.
  • the heat exchange type ventilator includes an air supply path 6 in which the outdoor air inlet 1 and the indoor air inlet 4 are communicated, and an exhaust path 7 in which the indoor air inlet 2 and the outdoor outlet 3 are in communication.
  • the heat exchange type ventilator is used as a first air blower for blowing the air flow flowing through the air supply path 6 to blow the exhaust flow flowing through the first blower fan 14 and the first prime mover 16 and the exhaust path 7.
  • a second blower fan 15 and a second prime mover 17 are provided.
  • the heat exchange ventilator includes a total heat exchange element 13 that performs heat exchange and humidity exchange between the exhaust flow and the supply airflow.
  • the heat exchange type ventilator includes an air supply switching unit 8 and an exhaust gas switching unit 9 as a reversing unit that reverses the direction of the airflow and exhaust flow flowing through the total heat exchange element 13.
  • the air supply path 6 can be switched by an air supply switching unit 8, and the exhaust path 7 can be switched by an exhaust gas switching unit 9. That is, as a result of the ventilation section passing through the air supply path 6, the direction of the exhaust air flow and the direction of the air supply air flowing through the total heat exchange element 13 is reversed.
  • FIG. 2 shows a state in which the exhaust air flow and the air supply air flowing inside the total heat exchange element 13 in FIG. 1 are reversed.
  • Condensed water or icing generated by heat exchange between the cold supply air flow and the warm exhaust air flow is generated at a portion where the partition plate 24 is at a relatively low temperature. That is, the cooled exhaust flow after heat exchange is mainly generated in the vicinity of the outlet that flows out of the total heat exchange element 13.
  • the warm exhaust flow evaporates and melts the condensed water or ice at the portion near the inlet after the exhaust flow is reversed, and then the exhaust flow passes through the entire heat exchange element 13 and is heat-exchanged.
  • the humidity of the exhaust flow near the inlet of the exhaust path 7 increases after the exhaust flow is reversed. Therefore, the absolute humidity difference at the inlets of the total heat exchange elements 13 of the air supply path 6 and the exhaust path 7 increases, and the movement of moisture from the exhaust path 7 to the air supply path 6 is promoted.
  • the humidity of the exhaust stream flowing through the exhaust path 7 after passing through the total heat exchange element 13 is reduced. Therefore, the generation
  • the amount of condensed water or ice generated in the heat exchange type ventilation device is reduced. Further, the continuous operation is performed while suppressing the pressure loss of the exhaust path 7 from being extremely increased, and the necessary ventilation amount in the room is ensured even in a cold region.
  • the air supply switching unit 8 includes a first air path adjustment plate 19 and a second air path adjustment plate 20 as means for switching the air supply path 6.
  • the air supply switching unit 8 includes a third prime mover 18.
  • the third prime mover 18 drives the first air path adjustment plate 19 and the second air path adjustment plate 20 that slide inside the air supply switching unit 8.
  • the air supply air introduced from the outdoor suction port 1 is divided into two routes, and a route connected to the indoor air supply port 4 is located in the middle of the divided route. These three paths are connected to spaces where the first air path adjustment plate 19 and the second air path adjustment plate 20 slide. Further, the space in which the first air path adjusting plate 19 and the second air path adjusting plate 20 slide is in communication with two paths connected to the air supply path 6 of the total heat exchange element 13.
  • the exhaust gas switching unit 9 includes a third air path adjustment plate 21 and a fourth air path adjustment plate 22 as means for reversing the direction of the gas. Further, the exhaust gas switching unit 9 includes a third prime mover 18. The third prime mover 18 drives the third air path adjustment plate 21 and the fourth air path adjustment plate 22 that slide inside the exhaust gas switching unit 9.
  • the exhaust flow exhausted to the outdoor discharge port 3 is divided into two routes, and a route connected to the indoor suction port 2 is located in the middle of the divided route. These three paths are connected to spaces where the third air path adjustment plate 21 and the fourth air path adjustment plate 22 slide. Further, the space in which the third air path adjusting plate 21 and the fourth air path adjusting plate 22 slide is in communication with two paths connected to the exhaust path 7 of the total heat exchange element 13.
  • the first air path adjustment plate 19 blocks the left path in FIG. 1 among the two air supply air paths introduced from the outdoor suction port 1.
  • the path on the left side in FIG. 1 and the indoor air supply port 4 are connected.
  • the second air path adjusting plate 20 prevents the air supply air introduced from the outdoor air inlet 1 from flowing directly into the indoor air inlet 4 through the inside of the air supply switching unit 8.
  • the right path in FIG. 1 and the outdoor suction port 1 are connected, and the left path and the indoor air supply port 4 are connected. Is done.
  • the air supply sucked by the first blower fan 14 from the outdoor suction port 1 passes through the right path in FIG. Then, the air supply air is heat-exchanged inside the total heat exchange element 13, passes through the route at the center of the air supply switching unit 8, and is supplied into the room through the indoor air supply port 4.
  • the third air path adjustment plate 21 in the exhaust switching unit 9 prevents the exhaust flow introduced from the indoor suction port 2 from flowing directly into the outdoor exhaust port 3 through the exhaust switching unit 9.
  • the fourth air path adjustment plate 22 closes the right path in FIG. 1 among the two paths through which the exhaust flow exhausted to the outdoor discharge port 3 flows.
  • the right path in FIG. 1 and the indoor suction port 2 are connected.
  • the exhaust flow sucked from the indoor suction port 2 passes through the central path in FIG. 1 of the exhaust gas switching unit 9 and is heat-exchanged inside the total heat exchange element 13.
  • the exhaust flow passes through the path on the left side of the exhaust switching unit 9 and is exhausted from the outdoor discharge port 3 to the outside by the second blower fan 15.
  • FIG. 2 shows that the first air path adjusting plate 19 and the second air path adjusting plate 20 of FIG. 1 are moved to the right side of FIG. 1, and the third air path adjusting plate 21 and the fourth air path adjusting plate 22 are illustrated. It is the state which moved to the left side of 1.
  • the first air path adjustment plate 19 causes the air supply air introduced from the outdoor suction port 1 to flow directly into the indoor air supply port 4 through the inside of the air supply switching unit 8. To prevent that.
  • the left path and the outdoor inlet 1 are connected in FIG. 2, and the right path and the indoor air inlet 4 are connected.
  • the second air path adjusting plate 20 blocks the right path in FIG. 2 among the two paths through which the air supply air flow introduced from the outdoor suction port 1 flows.
  • the path on the right side in FIG. 2 and the indoor air inlet 4 are connected.
  • the air supply sucked by the first blower fan 14 from the outdoor suction port 1 passes through the path on the left side of the air supply switching unit 8 in FIG. Then, the air supply air is heat-exchanged inside the total heat exchange element 13, passes through the route at the center of the air supply switching unit 8, and is supplied into the room through the indoor air supply port 4. In this way, the direction of the air supply flowing through the total heat exchange element 13 is reversed.
  • the third air path adjusting plate 21 closes the left path in FIG. 2 among the two paths through which the exhaust flow exhausted to the outdoor discharge port 3 flows.
  • the left path in FIG. 2 and the indoor suction port 2 are connected.
  • the fourth air path adjusting plate 22 prevents the exhaust flow introduced from the indoor suction port 2 from flowing directly into the outdoor discharge port 3 through the exhaust switching unit 9.
  • the left path in FIG. 2 and the indoor suction port 2 are connected, and the right path and the outdoor discharge port 3 in FIG. Connected.
  • the exhaust flow sucked from the indoor suction port 2 passes through the central path in FIG. 2 of the exhaust gas switching unit 9 and is heat-exchanged inside the total heat exchange element 13.
  • the exhaust flow passes through the path on the right side of the exhaust switching unit 9 in FIG. 2 and is exhausted from the outdoor discharge port 3 to the outside by the second blower fan 15. In this way, the direction of the exhaust flow flowing inside the total heat exchange element 13 is reversed.
  • the supply air switching unit 8 alternately switches the supply air flow between the state shown in FIG. 1 and the state shown in FIG. 2, so that the first air passage adjustment plate 19 and the second air passage adjustment plate 20 are condensed with water or ice. Is prevented from being attached.
  • the exhaust gas switching unit 9 also has the same effect as the air supply switching unit 8. That is, when the exhaust flow is in the state of FIG. 1, a cold exhaust flow after heat exchange and a warm exhaust flow before heat exchange flow through the fourth air path adjustment plate 22. For this reason, the cold exhaust flow after heat exchange cools the fourth air passage adjustment plate 22, and condensed water or icing may occur at the contact surface between the warm exhaust flow before heat exchange and the fourth air passage adjustment plate 22. There is sex.
  • the exhaust switching unit 9 switches the exhaust flow to the state shown in FIG. 2, the cold exhaust flow after the heat exchange and the warm exhaust flow before the heat exchange flow through the third air path adjustment plate 21. And the 4th air-path adjustment board 22 contacts only with the warm exhaust flow before heat exchange. Therefore, the dew condensation water or ice adhering to the surface of the fourth air path adjustment plate 22 is melted and evaporated by the warm exhaust flow before heat exchange.
  • the supply air switching unit 8 and the exhaust gas switching unit 9 alternately switch between the state shown in FIG. 1 and the state shown in FIG. 2, thereby causing condensation on the third air path adjustment plate 21 and the fourth air path adjustment plate 22. Water or ice is prevented from adhering and growing.
  • a first temperature sensor 10 such as a thermocouple is provided as a first environment detection unit inside the air supply path 6, and a second temperature sensor 11 such as a thermocouple is provided as a second environment detection unit inside the exhaust path 7. ing.
  • the air supply switching unit 8 When the first temperature sensor 10 detects a predetermined temperature, for example, a temperature of 0 ° C. or lower, or when the second temperature sensor 11 detects a predetermined temperature, for example, a temperature of 0 ° C. or lower, the air supply switching unit 8 and The air supply path 6 and the exhaust path 7 are switched using the exhaust gas switching unit 9.
  • a pressure sensor 12 that uses a semiconductor strain gauge, for example, is provided as a pressure detector 12.
  • a pressure detector 12 For example, when a heat exchange type ventilator is normally operated with a strong notch, a gauge pressure fluctuation corresponding to a pressure loss at which the air volume is reduced by 10% is measured in advance to obtain a predetermined gauge pressure fluctuation.
  • the air supply path 6 and the exhaust path 7 are used by using the air supply switching unit 8 and the exhaust gas switching unit 9. Switch.
  • the outside temperature is detected by the first temperature sensor 10.
  • outside air temperature at which dew condensation water or icing is likely to occur is measured in advance in the total heat exchange element 13.
  • the air path reversal operation is started, and condensed water or ice is removed.
  • the second temperature sensor 11 may be used instead of the first temperature sensor 10.
  • an increase in pressure loss in the exhaust path 7 is measured by the pressure detector 12.
  • the air path reversal operation is the air supply path 6 and the exhaust path of the total heat exchange element 13 using the air supply switching unit 8 and the exhaust gas switching unit 9 at predetermined time intervals, for example, every 20 minutes. 7 to reverse the direction of the supply airflow and the exhaust flow.
  • the following operation is performed. If the predetermined time, for example, the operation switching time is 20 minutes, the outputs of the first prime mover 16 and the second prime mover 17 are increased for 5 minutes.
  • a motor is used as a prime mover, and a mechanism for increasing a voltage or frequency applied to the motor is provided.
  • the pressure difference between the exhaust path 7 and the air supply path 6 inside the total heat exchange element 13 is reduced, and air leakage inside the total heat exchange element 13 is suppressed.
  • control based on a signal from the first temperature sensor 10 or a signal from the pressure detection unit 12 is performed according to a predetermined condition.
  • a predetermined condition for example, when the detected temperature of the first temperature sensor 10 exceeds a predetermined value, or the detected pressure of the pressure detection unit 12 falls below a predetermined value. Then, if the operation switching time is 20 minutes, the air path reversal operation is continuously performed for 40 minutes.
  • the air path inversion operation is continuously performed for a certain period even after the dew condensation water or icing formed in the total heat exchange element 13 cannot be detected. Then, melting and evaporation of condensed water or ice formed in the exhaust path 7 including the total heat exchange element 13 is promoted.
  • the air supply path 6 and the exhaust path 7 are made of a highly heat-insulating material, such as foamed polystyrene or foamed urethane.
  • the highly heat-insulating material means a material having low thermal conductivity, for example, 1 W / m ⁇ K or less, preferably 0.1 W / m ⁇ K or less, 0.001 W / m ⁇ K or more, and heat capacity. It has at least one characteristic of a large material, for example, a material having a specific heat of 1 J / g ⁇ K or more. It is more preferable that the material satisfies both characteristics, and the exemplified polystyrene foam is one of the materials satisfying both characteristics.
  • the lower the thermal conductivity the better the constituent material of the air supply path 6 and the exhaust path 7, but the current thermal conductivity of the lowest material is 0.001 W / m ⁇ K.
  • the air supply path 6 and the exhaust path 7 are made of a material having a large heat capacity, the surface temperature change can be reduced. Therefore, when the air supply path 6 and the exhaust path 7 are switched, the warm air after heat exchange flows into the air supply path 6 or the exhaust path 7 cooled by the cold air before heat exchange. Condensed water or icing is suppressed.
  • FIG. 3 is a schematic cross-sectional view showing a path connecting the heat exchange element and the air supply switching unit of the heat exchange ventilator according to the embodiment of the present invention
  • FIG. 4 is a schematic diagram showing the heat exchange element of the heat exchange ventilator.
  • FIG. FIG. 3 is a cross-sectional view of a path through which air before heat exchange and air after heat exchange flow in the air supply path 6.
  • the paths are two connecting the air supply switching unit 8 and the total heat exchange element 13.
  • Each path is provided with a wind direction adjusting plate 23.
  • Each path allows air to pass in different directions.
  • the wind direction adjusting plate 23 includes an opening / closing damper plate and a baffle member that defines an opening / closing direction.
  • the cold air before heat exchange passes through the upper path flowing from the right side to the left side in FIG. 3, and the warm air after heat exchange passes through the lower path flowing from the left side to the right side in FIG.
  • the air flow path before and after heat exchange is partly divided.
  • the wind direction adjusting plate 23 is provided on the side closer to the total heat exchange element 13, but it may be provided anywhere within the divided path, and there is no difference in effect.
  • the air supply path 6 is divided vertically, but it may be divided into two in the horizontal direction, and the dividing direction may be any direction.
  • the air supply path 6 is described as an example. However, in the exhaust path 7, the path connecting the exhaust switching unit 9 and the total heat exchange element 13 may be divided, and the wind direction adjusting plate 23 may be provided.
  • the exhaust path 7 is switched, the generation of condensed water or ice due to the warm air before the heat exchange flows into the exhaust path 7 cooled by the cold air after the heat exchange is suppressed.
  • a plurality of partition plates 24 are overlapped at a predetermined interval, for example, an interval of 1 mm or more and 10 mm or less, and an interlayer passage 25 is formed between the partition plates 24.
  • the partition plate 24 has heat conductivity, moisture permeability, and water resistance.
  • the air supply path 6 and the exhaust path 7 alternately pass through the interlayer passage 25.
  • the reversing unit switches the direction of the air that is ventilated through the air supply path 6 and the direction of the air that is ventilated through the exhaust path 7 in the interlayer passage 25.
  • the material of the partition plate 24 is a porous polymer film, specifically, moisture-permeable polyethylene, polycarbonate, polyester, cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone, cellulose or the like.
  • pulp, paper made of synthetic fibers, non-woven fabric, and woven fabric having fine holes are suitable.
  • Specific examples include wood pulp mainly composed of cellulose, rayon, cotton and hemp.
  • the part of the surface of the partition plate 24 facing the exhaust path 7 has a surface having water repellency, for example, a contact angle of water of 90 degrees or more.
  • a surface having water repellency for example, a contact angle of water of 90 degrees or more.
  • polyethylene, polypropylene, and polyethylene terephthalate that are the above-described porous polymer films and are hydrophobic as polymer materials.
  • the partition plate 24 is compatible with moisture permeability and water repellency by being coated with a hydrophilic resin such as polyvinyl alcohol or polyurethane from the side facing the air supply path 6.
  • the air supply path 6 and the exhaust path 7 are exemplified as being made of a highly heat insulating material, but a part of the air supply path 6 and the exhaust path 7 has high heat insulating properties. Also good.
  • route is switched by the air supply switching part 8 and the exhaust gas switching part 9, and it is good to use a highly heat-insulating material for the site
  • it is used for the path connecting the supply air switching unit 8 and the total heat exchange element 13 in the supply path 6 and the path connecting the exhaust switching unit 9 and the total heat exchange element 13 in the exhaust path 7. Good.
  • the heat exchange type ventilator includes a circular total heat exchange element 13, and the supply air switching unit 8 and the exhaust gas switching unit 9 provided with a motor rotate the total heat exchange element 13 by 180 °, so that the directions of the exhaust flow and the supply air flow May be reversed.
  • the air supply switching unit 8 and the exhaust switching unit 9 are each provided with two air path adjustment plates as shown in FIGS. 1 and 2, but may be one or three, for example.
  • the counter flow type element was shown as the total heat exchange element 13, for example, a cross flow type or a diagonal AC type may be used.
  • 1st prime mover 16 and the 2nd prime mover 17 were shown as a ventilation part, you may drive the 1st ventilation fan 14 and the 2nd ventilation fan 15 using one prime mover.
  • both the air supply switching unit 8 and the exhaust gas switching unit 9 are driven by the third prime mover 18, they may be driven by separate prime movers.
  • the 1st temperature sensor 10 was used as a 1st environment detection part and the 2nd temperature sensor 11 was used as a 2nd environment detection part, there exist temperature and humidity as an environmental condition regarding condensed water and icing. Therefore, a humidity sensor, a temperature / humidity sensor, a dew point sensor, or the like may be used instead of the temperature sensor.
  • the predetermined environmental condition includes a condition where the exhaust path is 100% relative humidity.
  • the first temperature sensor 10 is illustrated in the vicinity of the first blower fan 14. However, the first temperature sensor 10 may be installed anywhere between the outdoor and the total heat exchange element 13 in the air supply path 6. May be. Although the second temperature sensor 11 is illustrated in the vicinity of the second blower fan 15, it may be installed at any position as long as it is between the outdoor and the total heat exchange element 13 in the exhaust path 7.
  • a pressure sensor that measures the relative pressure may be used as the pressure detection unit 12.
  • a pressure sensor that measures relative pressure it is preferable because the influence of condensed water and ice on the exhaust path 7 can be evaluated by measuring the differential pressure between the supply path 6 and the exhaust path 7. .
  • the pressure detector 12 may be a torque change of the second prime mover 17. Specifically, an ammeter that measures a current value flowing through the second prime mover 17 may be used.
  • the operation in which the outputs of the first prime mover 16 and the second prime mover 17 are increased for a predetermined time after the air path switching operation is performed.
  • air can flow to each layer of the total heat exchange element 13, so that the condensed water and ice on the exhaust path 7 inside the total heat exchange element 13 are melted and evaporated. Is promoted.
  • an element that prevents the air from leaking from the exhaust path 7 to the air supply path 6 due to a pressure difference between the air supply path 6 and the exhaust path 7 by using a process such as increasing the tear strength characteristics of the partition plate 24 is also used. Air leakage can be suppressed.
  • interval may differ in the exhaust path 7 and the air supply path 6.
  • the surface of the partition plate 24 constituting the exhaust path 7 has water repellency, only the vicinity of the inlet and the vicinity of the outlet of the exhaust path 7 of the total heat exchange element 13 may have water repellency.
  • the heat exchange type ventilator of the present invention can secure the necessary ventilation amount in a room even in a cold region. Therefore, it is useful as a heat exchange type ventilator or the like in which condensation occurs inside the heat exchange element in a cold district or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

伝熱性、透湿性、および耐水性を有する仕切板が、所定間隔を有して複数枚重ね合わされて仕切板間に層間通路を形成し、給気経路と、排気経路とが層間通路を交互に通る全熱交換素子と、給気経路および排気経路にそれぞれ通風するための第1送風部および第2送風部と、給気経路を通風される空気の向きと排気経路を通風される空気の向きとをそれぞれ層間通路において切り替える反転部とを備えている熱交換形換気装置。

Description

熱交換形換気装置
 本発明は、熱交換形換気装置に関する。
 従来の熱交換形換気装置は熱交換素子の流路内において、室外が例えば-10℃以下のような低い温度になると、室内からの排気流が室外からの給気流によって冷やされ、排気流の流路が結露および結氷し目詰まりしていく。そのため、従来の熱交換形換気装置では、この結露および結氷による目詰まりを運転停止によって防止していた(例えば、特許文献1参照)。
 また、室外の温度が-25℃以下となる低い温度の地域では、実用に供する熱交換形換気装置がないのが実状であった。
 以下、特許文献1に示す熱交換形換気装置について、従来の熱交換形換気装置を示す概略図である図5を参照しながら説明する。
 熱交換器ユニット101は室内の空気と、室外の空気との熱交換気を行う。図5に示すように熱交換器ユニット101は、熱交換器102と、排気経路103と、給気経路104と、排気ファン105と、給気ファン106と、温度センサー107と、制御部とを備えている。ここで排気経路103は、室内の空気を室外へ排気し、熱交換器102を経由する。給気経路104は、室外の空気を室内へ給気し、熱交換器102を経由する。排気ファン105は、排気経路103に組み込まれている。給気ファン106は、給気経路104に組み込まれている。温度センサー107は、外気温度を検出する。制御部は、温度センサー107が検出した外気温度によって排気ファン105と、給気ファン106との運転制御を行う。
 熱交換器ユニット101の制御部は、外気温度が-10℃を下回った時に、熱交換器102が凍結することを防止するため、外気温度に応じて2つの凍結抑制制御を行う。この2つの凍結抑制制御は、第1凍結抑制制御及び第2凍結抑制制御とする。
 第1凍結抑制制御は、外気温度が-10℃を下回った場合に、熱交換器102の凍結を抑制する制御であり、排気ファン105を常時作動させ、給気ファン106の動作を60分のうち最初の15分だけ休止させる。
 第2凍結抑制制御は、外気温度が-15℃を下回った場合に、第1凍結抑制制御よりも強力に熱交換器102の凍結を抑制する制御であり、排気ファン105及び給気ファン106の間欠運転を行う。第2凍結抑制制御は、排気ファン105及び給気ファン106を60分休止させた後に5分だけ作動を再開させる。
 また、従来の熱交換形換気装置には、結露および結氷による目詰まりを、室内の空気を給気流路に導入することによって防止している構成もある(例えば、特許文献2参照)。
 以下、特許文献2について従来の異なる熱交換形換気装置を示す概略図である図6を参照しながら説明する。
 図6に示すように熱交換形換気装置は、熱交換室108内部に全熱交換素子109を備えた換気装置である。熱交換形換気装置は、室外側給気路111から室外の空気を取り込み、室内側排気路112から室内の空気を取り込む。
 取り込まれた室外および室内の空気は、全熱交換素子109によって熱交換され、室外の空気は室内側給気路110から室内へ給気され、室内の空気は室外側排気路113から室外へ排出される。
 さらに熱交換形換気装置は、バイパス路114と、温度検出器118と、流体素子115とを備えている。ここでバイパス路114は、室内側排気路112と室外側給気路111とを連通する。温度検出器118は、室内側給気路110に取り付けられている。流体素子115は、バイパス路114の入口部分に設けられ、制御路116と開閉機構117とを備えている。
 温度検出器118において所定温度以下の低温が検知された場合、開閉機構117が制御路116の開口部を閉塞させ、所定値を超える場合、開閉機構117が開口部を開放する。従って、給気流の温度が所定値以下の場合、室内排気の一部がバイパス路114を介して室外側給気路111へと導かれる。給気流の温度が所定値を超える場合、室内側排気路112の室内排気流はバイパス路114に導かれること無く全熱交換素子109へ供給される。
 さらに、従来の熱交換形換気装置には、結露および結氷による目詰まりを、熱交換エレメントにおける給気流および排気流の流れを反転させることにより防止している構成もある(例えば、特許文献3参照)。
 以下、特許文献3について図7A、図7Bを参照しながら説明する。図7Aは従来のさらに異なる熱交換形換気装置を示す概略図、図7Bは図7Aの給排気の流れ方向を逆にした場合の熱交換形換気装置の概略図である。
 図7Aに示すように換気装置119は、支持具120、キャップ121、中板122、中間筒123、ファン124、エレメント部125、仕切板126、および給排気口129を備え、屋内と屋外とを仕切る壁130に設置されている。円筒状のエレメント部125には、フィン127を備えたヒートパイプ128が軸方向にそって複数個並列に設けられている。換気装置119は左右対称形に形成されている。換気装置119が壁130に取り付けられた状態において、換気装置119の軸方向に沿って換気装置119の中心部に壁130が位置する。換気装置119は壁130によって左右に2分され、一方の半分が屋外に露出し、他方の半分が屋内に露出している。
 図7Aに示す状態にて使用する場合、ファン124の回転により、屋外(S)からの冷気が矢印のように支持具120の右側の開口部とキャップ121の給排気口129とから吸入される。冷気は、中板122の開口部、および中間筒123、エレメント部125の各仕切板126の上側の空間を通過し、中間筒123の給排気口129から屋内(R)へ放出される。また、屋内の暖気は矢印のように、支持具120の左側の開口部と、キャップ121の給排気口129とから吸入される。暖気は中板122の開口部、および中間筒123、エレメント部125の各仕切板126の下側の空間を通過し、中間筒123の給排気口129から屋外(S)へ放出される。
 外気の気温が0℃以下になる場合、一定時間図7Aの状態にて運転すると、次に図7Bに示すように、キャップ121、中板122、中間筒123を一体化した部材を180°回転させる。すると、ファン124の回転方向はそのままで、ヒートパイプ128に当たる風の流れがそれぞれ逆になり、凍結の可能性の高いヒートパイプ128に屋内暖気が最初に当たる。
 このような従来の熱交換形換気装置において、特許文献1では、運転を所定の時間停止していた。そのため、例えば給気のみを停止させると、室内が負圧となって建物の隙間から室外の空気が流入し、室内空間にコールドドラフトおよび結露を生じさせていた。また給気と排気との両方を停止させると、室内の必要換気量を確保することが困難となるという課題を有していた。
 また、特許文献2に例示したように、運転を停止せず、暖かい排気流をバイパスさせ、冷たい給気流に混入した後に熱交換を行う構成の熱交換形換気装置が提案されている。この構成では、バイパスによって導かれた高温多湿の室内の空気が、室外より取り込まれた低温低湿の空気と混合するため、混合部位において結露および結氷が生じていた。また特許文献2の構成は、室内の空気を給気流へ混入するため、換気装置としての換気効率が低下し、室内の必要換気量を確保することが困難となるという課題を有していた。
 さらに、特許文献3に例示したように、熱交換素子に当たる給気流および排気流の流れを反転させる構成の熱交換形換気装置も提案されている。この構成では、給気流および排気流が反転し、熱交換素子内部に結氷した氷を融解させることにより発生する水、および結露水をすべて蒸発させることが難しく、水が低温の排気経路内に蓄積する。そのため、特に積層型の熱交換素子を用いた場合、素子内部および排気経路の圧力損失が大きく増大し、室内の必要換気量を確保することが困難になるという課題を有していた。さらに、熱交換前の高温多湿の室内の空気と熱交換前の極低温の空気、および熱交換後の低温の空気と熱交換前の極低温の空気とが反転により混合される。そのため、反転部位において結露および結氷が発生し、反転部位が機能不全になる場合があった。
特開2003-148780号公報 特開昭60-64146号公報 特開昭60-155841号公報
 本発明の熱交換形換気装置は伝熱性、透湿性、および耐水性を有する仕切板が所定間隔を有して複数枚重ね合わされて仕切板間に層間通路を形成し室外の空気を室内へ取り込む給気経路と室内の空気を室外へ排出する排気経路とが層間通路を交互に通る全熱交換素子と、給気経路および排気経路にそれぞれ通風するための第1送風部および第2送風部と、給気経路を通風される空気の向きと排気経路を通風される空気の向きとをそれぞれ層間通路において切り替える反転部とを備えている。
 その結果、全熱交換素子内部の排気経路に結露水または結氷が生じた場合、排気流路を流れる空気を反転させることにより、暖かい排気流がこの結露水または結氷を蒸発させることができる。
図1は、本発明の実施の形態の熱交換形換気装置を示す概略断面図である。 図2は、同熱交換形換気装置の給気流および排気流反転後の概略断面図である。 図3は、同熱交換形換気装置の熱交換素子と給気切替部とを結ぶ経路を示す概略断面図である。 図4は、同熱交換形換気装置の熱交換素子を示す概略図である。 図5は、従来の熱交換形換気装置を示す概略図である。 図6は、従来の異なる熱交換形換気装置を示す概略断面図である。 図7Aは、従来のさらに異なる熱交換形換気装置を示す概略断面図である。 図7Bは、図7Aの給排気の流れ方向を逆にした場合の熱交換形換気装置の概略図である。
 以下、本発明の実施の形態の熱交換形換気装置を、添付図面を用いて説明する。
 (実施の形態)
 図1は本発明の実施の形態の熱交換形換気装置を示す概略断面図、図2は同熱交換形換気装置の給気流および排気流反転後の概略断面図である。
 図1、図2に示すように熱交換形換気装置は、本体箱5に、室外吸込口1、室内吸込口2、室外排出口3、および室内給気口4を備えている。ここで室外の空気は、室外吸込口1より取り込まれ、室内給気口4から室内へ給気される。室内の空気は、室内吸込口2より取り込まれ、室外排出口3から室外へ排出される。
 また熱交換形換気装置は、室外吸込口1と室内給気口4とを連通させた給気経路6と、室内吸込口2と室外排出口3とを連通させた排気経路7とを備えている。さらに熱交換形換気装置は、給気経路6を流れる給気流を送風するための第1送風部として、第1送風ファン14および第1原動機16、排気経路7を流れる排気流を送風するための第2送風部として、第2送風ファン15および第2原動機17を備えている。そして熱交換形換気装置は、排気流と給気流との熱交換および湿度交換を行う全熱交換素子13を備えている。
 また熱交換形換気装置は、全熱交換素子13を流れる給気流および排気流の向きを反転させる反転部として、給気切替部8および排気切替部9を備えている。給気経路6は給気切替部8によって、排気経路7は排気切替部9によってそれぞれの経路を切り替えることができる。すなわち反転部は、給気経路6を通風されるその結果、全熱交換素子13内部を流れる排気流と給気流の向きとが反転される。図2は、図1の全熱交換素子13内部を流れる排気流と給気流とが反転した状態を示す。
 全熱交換素子13の仕切板24に透湿性を持つ素材が使用されているため、排気経路7から給気経路6へ水分が移動する。
 また、全熱交換素子13内部の排気経路7に結露水または結氷が生じた場合、排気経路7を流れる排気流を反転させることにより、暖かい排気流と接触したこの結露水または結氷の温度が上昇し、この結露水または結氷が蒸発、融解される。
 冷たい給気流と暖かい排気流との熱交換によって発生した結露水または結氷は、仕切板24が相対的に低温となっている部位に生じる。即ち、熱交換後の冷却された排気流が、全熱交換素子13から流れ出す出口近傍に主に生じる。
 一方で、全熱交換素子13内部の排気流の向きを反転させると、熱交換前の暖かい排気流が、反転前の出口近傍から全熱交換素子13内部へ流れ込む。
 即ち、暖かい排気流は、排気流の反転後の入口近傍に当たる部位の結露水または結氷を蒸発、融解させ、その後排気流は全熱交換素子13内部を通過して熱交換される。
 上記の構成によって、排気流の反転後は排気経路7入口近傍の排気流の湿度が上昇する。そのため、給気経路6と排気経路7とのそれぞれの全熱交換素子13入口における絶対湿度差が増加し、排気経路7から給気経路6への水分の移動が促進される。
 さらに排気経路7入口近傍の結氷が融解された水と結露水とが、排気流と共に全熱交換素子13内部の排気経路7内を移動する。仕切板24上を排気経路7の水分が、液体の形により移動する。そのため、排気経路7内の空気中の水分が仕切板24上へ凝縮するという過程を省いて、排気経路7内の結氷が融解された水と結露水とが仕切板24へ吸収される。このことにより、排気経路7から仕切板24への水移動抵抗が、排気経路7から給気経路6への水移動に対し支配的である部位において、排気経路7から給気経路6への水分の移動が促進される。
 その結果、排気流が全熱交換素子13内部の排気経路7内を移動する際、仕切板24を介して水分が給気経路6へ移動する。さらにその水分の移動が促進されるため、全熱交換素子13の排気経路7に発生する結露水または結氷量が減少する。
 さらに、全熱交換素子13を通過した後の排気経路7を流れる排気流の湿度が減少する。そのため、排気経路7において熱交換前後の空気が混合する部位の結露水または結氷量の発生が低減される。
 以上のように、熱交換形換気装置内部において発生する結露水または結氷量が低減される。また排気経路7の圧力損失が極端に増加することが抑制されつつ連続運転が行われ、寒冷地においても室内の必要換気量が確保される。
 次に、風路反転機構について図1および図2を用いて説明する。
 給気切替部8は、給気経路6を切り替える手段として、第1風路調整板19および第2風路調整板20を備えている。また給気切替部8は、第3原動機18を備えている。第3原動機18は、それぞれ給気切替部8内部を摺動する第1風路調整板19および第2風路調整板20を駆動する。
 給気切替部8では、室外吸込口1から導入された給気流が2本の経路に分割され、分割された経路の中間に室内給気口4へ接続された経路が位置している。そして、それら3本の経路は、それぞれ第1風路調整板19と第2風路調整板20が摺動する空間へと接続されている。さらに第1風路調整板19と第2風路調整板20とが摺動する空間は、全熱交換素子13の給気経路6へ接続されている2本の経路と連通している。
 排気切替部9は、気体の向きを反転させる手段として、第3風路調整板21および第4風路調整板22を備えている。また排気切替部9は、第3原動機18を備えている。第3原動機18は、それぞれ排気切替部9内部を摺動する第3風路調整板21および第4風路調整板22を駆動する。
 排気切替部9では、室外排出口3へ排気される排気流が2本の経路に分割され、分割された経路の中間に室内吸込口2へ接続された経路が位置している。そして、それら3本の経路は、それぞれ第3風路調整板21と第4風路調整板22が摺動する空間へと接続されている。さらに第3風路調整板21と第4風路調整板22とが摺動する空間は、全熱交換素子13の排気経路7へ接続されている2本の経路と連通している。
 給気切替部8および排気切替部9による給気流と排気流との反転機構を、図1を用いて説明する。
 給気切替部8において、室外吸込口1から導入された2本の給気流の経路のうち、第1風路調整板19が図1における左側の経路を塞ぐ。そして給気切替部8と全熱交換素子13とを接続する2本の経路のうち、図1における左側の経路と室内給気口4とが接続される。第2風路調整板20は、室外吸込口1から導入された給気流が給気切替部8内部を通じて直接、室内給気口4へ流れこむことを防ぐ。給気切替部8と全熱交換素子13とを接続する2本の経路のうち、図1における右側の経路と室外吸込口1とが接続され、左側の経路と室内給気口4とが接続される。
 その結果、室外吸込口1から第1送風ファン14によって吸い込まれた給気流は、給気切替部8の図1における右側の経路を通過する。そして給気流は、全熱交換素子13内部にて熱交換され、給気切替部8中央の経路を通過して室内給気口4から室内へ給気される。
 同様に、排気切替部9において第3風路調整板21は、室内吸込口2から導入された排気流が、排気切替部9内部を通じて直接、室外排出口3へ流れこむことを防ぐ。排気切替部9と全熱交換素子13とを接続する2本の経路のうち、図1における右側の経路と室内吸込口2とが接続され、左側の経路と室外排出口3とが接続される。第4風路調整板22は、室外排出口3へ排気される排気流の流れる2本の経路のうち、図1における右側の経路を塞ぐ。そして、排気切替部9と全熱交換素子13とを接続する2本の経路のうち、図1における右側の経路と室内吸込口2とが接続される。その結果、室内吸込口2から吸い込まれた排気流は、排気切替部9の図1の中央の経路を通過し、全熱交換素子13内部にて熱交換される。そして排気流は、排気切替部9左側の経路を通過して、第2送風ファン15によって、室外排出口3から室外へ排気される。
 図2は、図1の第1風路調整板19と第2風路調整板20とが図1の右側へ移動し、第3風路調整板21と第4風路調整板22とが図1の左側へ移動した状態である。
 図2に示すように給気切替部8において、第1風路調整板19は室外吸込口1から導入された給気流が、給気切替部8内部を通じて直接、室内給気口4へ流れこむことを防ぐ。そして給気切替部8と全熱交換素子13とを接続する2本の経路のうち、図2において左側の経路と室外吸込口1とが接続され、右側の経路と室内給気口4とが接続される。第2風路調整板20は、室外吸込口1から導入された給気流の流れる2本の経路のうち、図2において右側の経路を塞ぐ。給気切替部8と全熱交換素子13とを接続する2本の経路のうち、図2において右側の経路と室内給気口4とが接続される。
 その結果、室外吸込口1から第1送風ファン14によって吸い込まれた給気流は、給気切替部8の図2における左側の経路を通過する。そして給気流は、全熱交換素子13内部にて熱交換され、給気切替部8中央の経路を通過して室内給気口4から室内へ給気される。このように、全熱交換素子13内部を流れる給気流の向きが反転される。
 同様に、排気切替部9において第3風路調整板21は、室外排出口3へ排気される排気流の流れる2本の経路のうち、図2における左側の経路を塞ぐ。排気切替部9と全熱交換素子13とを接続する2本の経路のうち、図2における左側の経路と室内吸込口2とが接続される。第4風路調整板22は、室内吸込口2から導入された排気流が排気切替部9内部を通じて直接、室外排出口3へ流れこむことを防ぐ。排気切替部9と全熱交換素子13とを接続する2本の経路のうち、図2における左側の経路と室内吸込口2とが接続され、図2における右側の経路と室外排出口3とが接続される。
 その結果、室内吸込口2から吸い込まれた排気流は、排気切替部9の図2の中央の経路を通過し、全熱交換素子13内部にて熱交換される。そして排気流は、図2の排気切替部9右側の経路を通過して、第2送風ファン15によって、室外排出口3から室外へ排気される。このように、全熱交換素子13内部を流れる排気流の向きが反転される。
 さらに、給気経路6および排気経路7を切り替えるとき、熱交換前後の空気が入れ替わることによって発生する結露水または結氷が、経路切り替えによって蒸発または融解される。そのため給気経路6と排気経路7との圧力損失の上昇、および氷の詰まりによる給気切替部8と排気切替部9との動作不全の発生が抑制される。
 以下その機構を詳細に説明する。
 まず図1の状態の場合、給気切替部8内部を、第2風路調整板20を隔てて、熱交換前の冷たい給気流と熱交換後の暖かい給気流とが流れる。このため、熱交換前の冷たい給気流が第2風路調整板20を冷却し、熱交換後の暖かい給気流と第2風路調整板20との接触面において、結露水または結氷が生じる可能性がある。
 ここで、図2の状態へ切り替える。すると、第1風路調整板19を隔てて、熱交換前の冷たい給気流と熱交換後の暖かい給気流とが流れ、第2風路調整板20は熱交換後の暖かい給気流のみと接触する。そのため、第2風路調整板20表面に付着した結露水または結氷は、熱交換後の暖かい給気流によって融解、蒸発される。
 この時、第1風路調整板19には、結露水または結氷が発生する可能性がある。しかし図1の状態へ切り替えることにより、結露水または結氷は融解、蒸発される。
 このため給気切替部8が、給気流を図1の状態と図2の状態とに交互に切り替えることにより、第1風路調整板19と第2風路調整板20とに結露水または結氷が付着されることが抑制される。
 排気切替部9も、給気切替部8と同様の作用をもたらす。すなわち排気流が図1の状態の場合、第4風路調整板22を隔てて、熱交換後の冷たい排気流と熱交換前の暖かい排気流とが流れる。このため、熱交換後の冷たい排気流が第4風路調整板22を冷却し、熱交換前の暖かい排気流と第4風路調整板22との接触面において、結露水または結氷が生じる可能性がある。
 ここで排気切替部9が排気流を、図2の状態へ切り替えると、第3風路調整板21を隔てて、熱交換後の冷たい排気流と熱交換前の暖かい排気流とが流れる。そして第4風路調整板22は、熱交換前の暖かい排気流のみと接触する。そのため、第4風路調整板22表面に付着した結露水または結氷は、熱交換前の暖かい排気流によって融解、蒸発される。
 この時、第3風路調整板21は、結露水または結氷が発生する可能性があるが、排気流が図1の状態へ切り替えられることにより融解、蒸発される。
 このように給気切替部8および排気切替部9が、図1の状態と図2の状態とを交互に切り替えることにより、第3風路調整板21と第4風路調整板22とに結露水または結氷が付着、成長することが抑制される。
 次に、給気切替部8と排気切替部9との切り替えメカニズムについて説明する。
 給気経路6内部に第1環境検知部として、例えば熱電対等の第1温度センサー10が備えられ、排気経路7内部に第2環境検知部として、例えば熱電対等の第2温度センサー11が備えられている。第1温度センサー10が所定の温度、例えば0℃以下の温度を検知した場合、あるいは第2温度センサー11が所定の温度、例えば0℃以下の温度を検知した場合に、給気切替部8および排気切替部9を用いて給気経路6および排気経路7を切り替える。
 排気経路7内部には、圧力検知部12として、例えば半導体歪みゲージを利用したゲージ圧測定型圧力センサーが備えられている。例えば熱交換形換気装置を強ノッチにて通常運転させた場合に、風量が10%低下する圧力損失に相当するゲージ圧力変動をあらかじめ測定し、所定のゲージ圧力変動とする。そして、ゲージ圧測定型圧力センサーで検知されたゲージ圧力に、所定のゲージ圧力分の変動が検出された場合、給気切替部8および排気切替部9を用いて給気経路6および排気経路7を切り替える。
 このような構成では、例えば外気温は第1温度センサー10にて検知される。また全熱交換素子13内部において、結露水または結氷が生じると考えられる外気温が予め測定されている。そして、その外気温を下回った時点において、風路反転運転が開始され、結露水または結氷が取り除かれる。
 また、第2温度センサー11が、第1温度センサー10の代わりに用いられてもよい。
 さらに、圧力検知部12によって、排気経路7の圧力損失の増加が計測される。圧力損失の増加によって、例示したような換気風量の低下が生じると予測された場合、結露水または結氷を取り除くための風路反転運転が開始され、換気風量の低下が抑制される。
 本実施の形態において、風路反転運転とは所定の時間間隔、例えば20分ごとに、給気切替部8および排気切替部9を用いて全熱交換素子13のそれぞれ給気経路6、排気経路7を流れる給気流、排気流の向きを反転させることである。
 次に、この風路反転運転の制御機構について説明する。
 まず、給気経路6および排気経路7を切り替えるとき、切り替え中に第1送風ファン14および第2送風ファン15が停止する。そのため、給気経路6および排気経路7を切り替えている間、通風によって給気切替部8および排気切替部9にてそれぞれ熱交換前後の気体が混合されることが防止され、熱交換前後の気体の混合による結露水または結氷の発生が抑制される。
 さらに風路切り替えが完了し、第1送風ファン14および第2送風ファン15が始動した時点において、以下の操作を行う。所定の時間、例えば運転切替時間が20分であれば、5分間、第1原動機16と第2原動機17との出力が増加される。例えば、原動機としてモータが用いられ、モータに印加する電圧または周波数を増加させる機構が備えられている。
 風路切り替え直前は、結露水または結氷によって全熱交換素子13内部の排気経路7において部分的に圧力損失が上昇する場合がある。しかしこのような機構によれば、風路切り替え時に一時的に第2原動機17の出力が増加され、切り替え後の排気経路7を流れる排気流の全圧が高くなり、仕切板24により構成された各層へ空気を流すことができるため、全熱交換素子13内部の排気経路7の結露水または結氷の融解、蒸発が促進される。
 さらに、第1原動機16の出力を増加させることにより、全熱交換素子13内部の排気経路7と給気経路6との圧力差が低減され、全熱交換素子13内部における空気の漏れが抑制される。
 そして予め定めた条件によって、例えば第1温度センサー10の信号、または圧力検知部12の信号等に基づく制御が行なわれる。風路反転運転が開始され、予め定めた条件が取り除かれた時、例えば第1温度センサー10の検出温度が所定の値を上回った時、または圧力検知部12の検出圧力が所定の値を下回った時、さらに所定の時間、例えば運転切替時間が20分であれば40分間、継続して風路反転運転が行なわれる。
 その結果、全熱交換素子13内部に生じた結露水または結氷が検知できなくなった後も一定の間、継続して風路反転運転が行なわれる。そして全熱交換素子13を含む排気経路7に生じた結露水または結氷の融解、蒸発が、促進される。
 さらに、本実施の形態における熱交換形換気装置の構成材料について説明する。
 給気経路6および排気経路7は、断熱性の高い材料、例えば発泡スチロール、または発泡ウレタン等の材料により構成されている。
 本発明における断熱性の高い材料とは、熱伝導率の低い材料、例えば1W/m・K以下、好ましくは0.1W/m・K以下0.001W/m・K以上の材料と、熱容量の大きな材料、例えば比熱が1J/g・K以上の材料との少なくとも一方の特性を有する。両方の特性を満たす材料であればなお好ましく、例示した発泡スチロールは両方の特性を満たす材料の一つである。なお給気経路6および排気経路7の構成材料は、熱伝導率が低ければ低いほどよいが、現状の最も低い材料の熱伝導率は0.001W/m・Kである。
 このような材料を用いれば、給気経路6および排気経路7からの熱の伝導が抑えられる。また、熱伝導の大きな箇所の表面において、気体が冷やされ、結露水または結氷することが抑制される。
 また給気経路6、排気経路7は熱容量の大きな材料により形成されているため、表面温度変化を小さくすることができる。そのため、給気経路6および排気経路7を切り替えた場合、熱交換を行う前の冷たい空気によって冷却された給気経路6または排気経路7へ、熱交換を行った後の暖かい空気が流れ込むことによって発生する結露水または結氷が抑制される。
 図3は本発明の実施の形態の熱交換形換気装置の熱交換素子と給気切替部とを結ぶ経路を示す概略断面図、図4は同熱交換形換気装置の熱交換素子を示す概略図である。図3は、給気経路6における熱交換前の空気と、熱交換後の空気とが流れる経路の断面図である。経路とは、給気切替部8と全熱交換素子13とを接続する2本である。各々の経路には、風向調整板23が備えられている。それぞれの経路は、互いに異なる方向へ空気を通過させる。風向調整板23としては、図3に示したように、開閉式のダンパー板と開閉方向を規定する邪魔部材を備えたものが挙げられる。
 このような構成によれば、熱交換前の冷たい空気が図3の右側より左側へ流れる上部の経路を通り、熱交換後の暖かい空気が図4の左側より右側へ流れる下部の経路を通る。このように、熱交換前と熱交換後との空気の流れる経路が、一部分割されている。前述のように経路が分割されることにより、熱交換を行う前の冷たい空気によって蓄冷した給気経路6へ、熱交換を行った後の暖かい空気が流れ込み発生する結露水または結氷が抑制される。
 なお、図3では全熱交換素子13に近い側に風向調整板23が設けられているが、分割された経路内であれば、どこに設けられてもよく、効果に差異がない。
 なお図3では、給気経路6が上下に分割されたが、水平方向に2分割されてもよく、分割方向はどの方向でもよい。
 なお図3では、例として給気経路6にて説明した。しかし、排気経路7において、排気切替部9と全熱交換素子13とを接続する経路が分割され、風向調整板23が設けられてもよい。排気経路7を切り替えた場合、熱交換を行った後の冷たい空気によって冷却された排気経路7へ、熱交換を行う前の暖かい空気が流れ込むことによる結露水または結氷の発生が抑制される。
 図4に示すように全熱交換素子13は、仕切板24を所定間隔、例えば1mm以上10mm以下の間隔にて複数枚重ね合わされて仕切板24間に層間通路25が形成されている。ここで仕切板24は、伝熱性、透湿性、および耐水性を有する。また層間通路25には、給気経路6と、排気経路7とが交互に通る。また反転部は、給気経路6を通風される空気の向きと排気経路7を通風される空気の向きとをそれぞれ層間通路25において切り替える。
 仕切板24の材料としては、多孔性の高分子膜、具体的には透湿性を有するポリエチレン、ポリカーボネート、ポリエステル、酢酸セルロース、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン、セルロース等である。
 また仕切板24の材料としては、パルプ、合成繊維からなる紙、不織布、および細かい孔を有する織布等が適している。具体的には、セルロースを主成分とする木材パルプ、レーヨン、綿、および麻等が挙げられる。
 さらに、仕切板24表面のうち排気経路7に面している部位は、撥水性、例えば水の接触角が90度以上となる表面を備えている。具体的には、上記多孔性の高分子膜であり、高分子材料として疎水性であるポリエチレン、ポリプロピレン、およびポリエチレンテレフタレートである。そしてポリビニルアルコール、ポリウレタン等の親水性樹脂が給気経路6に面する面側からコーティングされることにより、仕切板24は透湿性と撥水性との両立が図られる。
 その結果、排気経路7において発生したそれぞれ結露水、結氷の液滴径、結晶径が小さくなる。そして排気経路7の表面積が増加するため、風路反転後の排気流への蒸発が促進される。
 また、排気経路7上に付着した水分の移動抵抗が減少することにより、排気流によって全熱交換素子13内部の水滴が全熱交換素子13外部へ排出されやすくなる。
 さらに、排気経路7内を水が移動して仕切板24への水分の吸着が促進されるため、給気経路6への湿分の移動が促進される。
 なお、本実施の形態において、給気経路6および排気経路7は、高断熱性の材料により構成されると例示したが、給気経路6および排気経路7の一部が高断熱性を備えてもよい。その場合、給気切替部8および排気切替部9によって経路が切り替えられ、熱交換前および熱交換後の気体の両方が流れる可能性のある部位に高断熱性の材料が用いられるのがよい。例えば、給気経路6のうち給気切替部8と全熱交換素子13とを接続する経路、および排気経路7のうち排気切替部9と全熱交換素子13とを接続する経路に用いるのがよい。
 なお、給気切替部8および排気切替部9は、全熱交換素子13内部を流れる排気流および給気流の向きを反転できればよい。熱交換形換気装置が円形の全熱交換素子13を備え、モータを備えた給気切替部8および排気切替部9が全熱交換素子13を180°回転させて、排気流および給気流の向きを反転させてもよい。
 なお、給気切替部8および排気切替部9は、図1および図2に示すように、それぞれ2枚の風路調整板を備えていたが、例えばそれぞれ1枚または3枚としてもよい。
 なお、全熱交換素子13として、対向流型の素子を示したが、例えば直交流型、または斜交流型でもよい。
 なお送風部として、第1原動機16および第2原動機17を示したが、一つの原動機を用いて、第1送風ファン14および第2送風ファン15を駆動してもよい。
 なお、給気切替部8および排気切替部9は、ともに第3原動機18により駆動されるとしたが、別々の原動機により駆動されても良い。
 なお、第1環境検知部として第1温度センサー10を、第2環境検知部として第2温度センサー11を用いたが、結露水および結氷にかかわる環境条件としては、温度、および湿度がある。そのため、温度センサーの代わりに、湿度センサー、温湿度センサー、または露点センサー等を用いてもよい。湿度センサーを用いた場合、所定の環境条件としては、排気経路が相対湿度100%になる条件等が挙げられる。
 なお図1、図2において、第1温度センサー10は第1送風ファン14近傍に図示されているが、給気経路6において室外と全熱交換素子13との間であれば、どの位置に設置されてもよい。また第2温度センサー11は第2送風ファン15近傍に図示されているが、排気経路7において室外と全熱交換素子13との間であれば、どの位置に設置されてもよい。
 なお圧力検知部12として、ゲージ圧を測定する圧力センサーのほかに、相対圧を測定する圧力センサーが用いられても良い。相対圧を測定する圧力センサーを用いた場合、給気経路6と排気経路7との差圧を測定することによって、排気経路7における結露水および結氷の影響を評価することができるため好適である。
 なお、圧力検知部12は、第2原動機17のトルク変化でもよい。具体的には第2原動機17に流れる電流値を計測する電流計が、用いられても良い。
 なお、風路切替運転後に所定の時間、第1原動機16および第2原動機17の出力が増加される運転を行うとした。しかし、第2原動機17の出力が増加されるだけでも、全熱交換素子13の各層へ空気を流すことができるため、全熱交換素子13内部の排気経路7の結露水および結氷の融解、蒸発が促進される。この場合、さらに仕切板24の引き裂き強度特性を増す等の処理により、給気経路6と排気経路7とにかかる圧力差によって空気が排気経路7から給気経路6へ漏れにくい素子を合わせて用い、空気の漏れが抑制できる。
 なお、全熱交換素子13の積層間隔として、1mm以上10mm以下の間隔と例示したが、この積層間隔は排気経路7と給気経路6とにおいて異なっていてもよい。排気経路7側の積層間隔が給気経路6側よりも広く取られることにより、排気経路7に発生した結露水および結氷による、全熱交換素子13の圧力損失の増大が抑制される。
 なお、排気経路7を構成する仕切板24表面が撥水性を備えるとしたが、全熱交換素子13の排気経路7のうち、入口近傍および出口近傍のみが撥水性を備えてもよい。
 本発明の熱交換形換気装置は、寒冷地においても室内の必要換気量を確保することができる。そのため、寒冷地等において熱交換素子内部に結露が発生する熱交換形換気装置等として有用である。
1  室外吸込口
2  室内吸込口
3  室外排出口
4  室内給気口
5  本体箱
6  給気経路
7  排気経路
8  給気切替部
9  排気切替部
10  第1温度センサー
11  第2温度センサー
12  圧力検知部
13  全熱交換素子
14  第1送風ファン
15  第2送風ファン
16  第1原動機
17  第2原動機
18  第3原動機
19  第1風路調整板
20  第2風路調整板
21  第3風路調整板
22  第4風路調整板
23  風向調整板
24  仕切板
25  層間通路

Claims (14)

  1. 伝熱性、透湿性、および耐水性を有する仕切板が所定間隔を有して複数枚重ね合わされて前記仕切板間に層間通路を形成し室外の空気を室内へ取り込む給気経路と室内の空気を室外へ排出する排気経路とが前記層間通路を交互に通る全熱交換素子と、
    前記給気経路および前記排気経路にそれぞれ通風するための第1送風部および第2送風部と、
    前記給気経路を通風される空気の向きと前記排気経路を通風される空気の向きとをそれぞれ前記層間通路において切り替える反転部とを備えたことを特徴とする熱交換形換気装置。
  2. 前記排気経路を構成する前記仕切板の表面が撥水性を備えることを特徴とする請求項1記載の熱交換形換気装置。
  3. 前記反転部は給気切替部および排気切替部を備え、
    前記給気経路において、前記室外と前記全熱交換素子とを接続する経路に環境条件を検知する第1環境検知部を備え、
    前記第1環境検知部が検知した前記環境条件が所定範囲を外れた場合に、前記給気切替部および前記排気切替部が前記給気経路および前記排気経路の切り替えを行うことを特徴とする請求項1記載の熱交換形換気装置。
  4. 前記反転部は給気切替部および排気切替部を備え、
    前記排気経路において、前記室外と前記全熱交換素子とを接続する経路に環境条件を検知する第2環境検知部を備え、
    前記第2環境検知部が検知した前記環境条件が所定範囲を外れた場合に、前記給気切替部および前記排気切替部が前記給気経路および前記排気経路の切り替えを行うことを特徴とする請求項1記載の熱交換形換気装置。
  5. 前記反転部は給気切替部および排気切替部を備え、
    前記排気経路に前記排気経路内の圧力を検知する圧力検知部を備え、
    前記圧力検知部によって検知された圧力が所定範囲を外れた場合に、前記給気切替部および前記排気切替部が前記給気経路および前記排気経路の切り替えを行うことを特徴とする請求項1記載の熱交換形換気装置。
  6. 前記反転部は給気切替部および排気切替部を備え、
    前記給気切替部および前記排気切替部が前記給気経路および前記排気経路の切り替えを開始した場合、所定の時間、前記給気切替部および前記排気切替部による切り替えが所定の間隔、継続することを特徴とする請求項1記載の熱交換形換気装置。
  7. 前記反転部は給気切替部および排気切替部を備え、
    前記給気切替部および前記排気切替部にて前記給気経路および前記排気経路を切り替える間、前記第1送風部および前記第2送風部が停止することを特徴とする請求項1記載の熱交換形換気装置。
  8. 前記給気経路および前記排気経路の切り替え終了後、所定の時間、前記第1送風部および前記第2送風部の出力を増加させることを特徴とする請求項7に記載の熱交換形換気装置。
  9. 前記給気経路および前記排気経路が1W/m・K以下0.001W/m・K以上の熱伝導率を持った材料からなることを特徴とする請求項1記載の熱交換形換気装置。
  10. 前記給気切替部または前記排気切替部と前記全熱交換素子とを接続する経路の一部分を2本の経路に分割し、前記全熱交換素子通過前の空気を前記経路の片方に、前記全熱交換素子通過後の空気を前記経路の他方に流すことを特徴とする請求項3記載の熱交換形換気装置。
  11. 2本の前記経路に、前記空気の向きを一方向に規定する風向調整板が備えられていることを特徴とする請求項10記載の熱交換形換気装置。
  12. 前記反転部は給気切替部および排気切替部を備え、
    前記給気切替部または前記排気切替部に発生する結露水または結氷を前記給気経路または前記排気経路を切り替える時に蒸発、融解させる構成を有することを特徴とする請求項1記載の熱交換形換気装置。
  13. 前記給気切替部に発生する結露水または結氷を、前記給気経路の切り替え時に前記室内へ給気される空気の熱を用いて蒸発、融解させることを特徴とする請求項10記載の熱交換形換気装置。
  14. 前記排気切替部に発生する結露水または結氷を、前記排気経路の切り替え時に前記室内から吸い込まれた空気の熱を用いて蒸発、融解させることを特徴とする請求項10記載の熱交換形換気装置。
PCT/JP2011/003825 2010-07-07 2011-07-05 熱交換形換気装置 WO2012004978A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-154585 2010-07-07
JP2010154585 2010-07-07
JP2010275327A JP5617585B2 (ja) 2010-07-07 2010-12-10 熱交換形換気装置
JP2010-275327 2010-12-10

Publications (1)

Publication Number Publication Date
WO2012004978A1 true WO2012004978A1 (ja) 2012-01-12

Family

ID=45440968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003825 WO2012004978A1 (ja) 2010-07-07 2011-07-05 熱交換形換気装置

Country Status (2)

Country Link
JP (1) JP5617585B2 (ja)
WO (1) WO2012004978A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083354A1 (en) * 2012-11-30 2014-06-05 Greenwood Air Management Limited Summer bypass for heat recovery unit
DE102015103594B3 (de) * 2015-03-11 2016-03-31 Hoval Aktiengesellschaft Lüftungsgerät und Verfahren zur dezentralen Raumlüftung
JP2018036006A (ja) * 2016-09-01 2018-03-08 三菱電機株式会社 空調換気装置
WO2022269820A1 (ja) * 2021-06-23 2022-12-29 三菱電機株式会社 熱交換型換気装置
WO2022269821A1 (ja) * 2021-06-23 2022-12-29 三菱電機株式会社 熱交換型換気装置
WO2024004022A1 (ja) * 2022-06-28 2024-01-04 三菱電機株式会社 熱交換素子、熱交換構造体および熱交換換気装置
JP7511762B2 (ja) 2021-06-23 2024-07-05 三菱電機株式会社 熱交換型換気装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845388B2 (ja) * 2011-03-10 2016-01-20 パナソニックIpマネジメント株式会社 熱交換形換気装置
JP5845389B2 (ja) * 2011-03-14 2016-01-20 パナソニックIpマネジメント株式会社 熱交換形換気装置
FR3011624B1 (fr) * 2013-10-09 2017-12-22 Commissariat Energie Atomique Systeme et procede de traitement et de conditionnement d'air
FR3013823B1 (fr) * 2013-11-28 2018-09-21 F2A - Fabrication Aeraulique Et Acoustique Echangeur air/air a double flux, installation de traitement d'air et methode de nettoyage d'un tel echangeur
US10337758B2 (en) * 2014-09-25 2019-07-02 Panasonic Intellectual Property Management Co., Ltd. Heat exchanger ventilator
KR102319017B1 (ko) * 2021-03-11 2021-11-03 (주)에이피 전열교환기 결로방지 및 외기냉난방 운전고지기능을 구비한 환기장치

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208339A (ja) * 1983-05-12 1984-11-26 Matsushita Electric Ind Co Ltd 換気装置
JPS62261892A (ja) * 1986-05-08 1987-11-14 Toshiba Corp 熱交換器
JPS63156993A (ja) * 1986-12-19 1988-06-30 Matsushita Seiko Co Ltd 全熱交換器
JPH0861697A (ja) * 1994-08-26 1996-03-08 Mitsubishi Electric Corp 空気調和装置
JP2003148780A (ja) * 2001-11-14 2003-05-21 Daikin Ind Ltd 熱交換器ユニット
JP2004324901A (ja) * 2003-04-21 2004-11-18 Matsushita Electric Ind Co Ltd 熱交換換気装置
JP2005037107A (ja) * 2003-07-16 2005-02-10 Kyohei Yamaguchi 共同住宅用換気装置
JP2010096384A (ja) * 2008-10-15 2010-04-30 Panasonic Corp 熱交換形換気装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1027927C2 (nl) * 2004-12-30 2006-07-03 Tno Ventilatiesysteem.
EP2406553A4 (en) * 2009-03-10 2018-04-11 Exhausto A/S A building ventilation air-to-air heat exchanger control

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208339A (ja) * 1983-05-12 1984-11-26 Matsushita Electric Ind Co Ltd 換気装置
JPS62261892A (ja) * 1986-05-08 1987-11-14 Toshiba Corp 熱交換器
JPS63156993A (ja) * 1986-12-19 1988-06-30 Matsushita Seiko Co Ltd 全熱交換器
JPH0861697A (ja) * 1994-08-26 1996-03-08 Mitsubishi Electric Corp 空気調和装置
JP2003148780A (ja) * 2001-11-14 2003-05-21 Daikin Ind Ltd 熱交換器ユニット
JP2004324901A (ja) * 2003-04-21 2004-11-18 Matsushita Electric Ind Co Ltd 熱交換換気装置
JP2005037107A (ja) * 2003-07-16 2005-02-10 Kyohei Yamaguchi 共同住宅用換気装置
JP2010096384A (ja) * 2008-10-15 2010-04-30 Panasonic Corp 熱交換形換気装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014083354A1 (en) * 2012-11-30 2014-06-05 Greenwood Air Management Limited Summer bypass for heat recovery unit
CN105026848A (zh) * 2012-11-30 2015-11-04 格林伍德空气管理有限公司 用于热回收通风单元的夏季旁路
EA029651B1 (ru) * 2012-11-30 2018-04-30 Гринвуд Эйр Менеджмент Лимитед Байпас для блока рекуперации тепла для работы в летнем режиме
CN105026848B (zh) * 2012-11-30 2019-04-23 格林伍德空气管理有限公司 用于热回收通风单元的夏季旁路
DE102015103594B3 (de) * 2015-03-11 2016-03-31 Hoval Aktiengesellschaft Lüftungsgerät und Verfahren zur dezentralen Raumlüftung
JP2018036006A (ja) * 2016-09-01 2018-03-08 三菱電機株式会社 空調換気装置
WO2022269820A1 (ja) * 2021-06-23 2022-12-29 三菱電機株式会社 熱交換型換気装置
WO2022269821A1 (ja) * 2021-06-23 2022-12-29 三菱電機株式会社 熱交換型換気装置
JP7511762B2 (ja) 2021-06-23 2024-07-05 三菱電機株式会社 熱交換型換気装置
JP7511761B2 (ja) 2021-06-23 2024-07-05 三菱電機株式会社 熱交換型換気装置
WO2024004022A1 (ja) * 2022-06-28 2024-01-04 三菱電機株式会社 熱交換素子、熱交換構造体および熱交換換気装置

Also Published As

Publication number Publication date
JP2012032134A (ja) 2012-02-16
JP5617585B2 (ja) 2014-11-05

Similar Documents

Publication Publication Date Title
WO2012004978A1 (ja) 熱交換形換気装置
JP6669813B2 (ja) デシカント空調方法及びシステム
JP5220102B2 (ja) 熱交換換気装置
US9062890B2 (en) Energy recovery ventilator
JP4978303B2 (ja) 熱交換形換気装置
JP2020116580A (ja) 除湿装置
JP6791568B2 (ja) 車両空調設備
JP5862266B2 (ja) 換気システム
JP2019081460A (ja) 車両用空調装置
JP5845389B2 (ja) 熱交換形換気装置
WO2014017040A1 (ja) 熱交換素子とそれを用いた熱交換型換気機器
JP5292768B2 (ja) 調湿装置
JP4781384B2 (ja) 除湿装置
WO2013021817A1 (ja) 外気処理装置
JP5934009B2 (ja) 冷房除湿システム
JP6561313B2 (ja) 熱交換素子を用いた熱交換形換気装置
KR102369029B1 (ko) 공조 시스템 및 그의 제어방법
JP2010096384A (ja) 熱交換形換気装置
JP2006017369A5 (ja)
JP6009531B2 (ja) 除湿システム
JP2013014307A (ja) 車両用空調装置
JP5845388B2 (ja) 熱交換形換気装置
JP2013014306A (ja) 車両用空調装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803316

Country of ref document: EP

Kind code of ref document: A1