WO2022267689A1 - 微波加热装置、控制方法、微波发生装置的控制方法、烹饪装置和介质 - Google Patents

微波加热装置、控制方法、微波发生装置的控制方法、烹饪装置和介质 Download PDF

Info

Publication number
WO2022267689A1
WO2022267689A1 PCT/CN2022/089873 CN2022089873W WO2022267689A1 WO 2022267689 A1 WO2022267689 A1 WO 2022267689A1 CN 2022089873 W CN2022089873 W CN 2022089873W WO 2022267689 A1 WO2022267689 A1 WO 2022267689A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
generating device
microwave
power
microwave generating
Prior art date
Application number
PCT/CN2022/089873
Other languages
English (en)
French (fr)
Inventor
黎青海
高茂丰
增田慎一
陈辉成
高伟
刘兴华
周福昌
王永昌
Original Assignee
广东美的厨房电器制造有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110683736.3A external-priority patent/CN113382492B/zh
Priority claimed from CN202111268724.0A external-priority patent/CN113923812B/zh
Application filed by 广东美的厨房电器制造有限公司, 美的集团股份有限公司 filed Critical 广东美的厨房电器制造有限公司
Publication of WO2022267689A1 publication Critical patent/WO2022267689A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control

Definitions

  • the present application relates to the technical field of household appliances, in particular to a microwave heating device, a control method, a control method of a microwave generating device, a cooking device and a medium.
  • the existing microwave heating device usually includes a switching element, a step-up transformer, a resonant capacitor and a magnetron, and the step-up transformer includes a primary coil and a secondary coil.
  • the switching element When the switching element is off, the resonant capacitor and the primary coil of the step-up transformer will generate a resonant voltage.
  • the resonant amplitude voltage drops to the emitter potential of the switching element (hereinafter referred to as GND), the switching element is turned on, forming a reducing switch Loss of operating waveform.
  • GND the resonant amplitude voltage
  • the amplitude of the resonant voltage will drop below the GND potential, resulting in increased loss of the switching element.
  • the embodiments of the present application provide a microwave heating device, a control method, a control method of a microwave generating device, a cooking device and a medium.
  • the microwave heating device of the present application comprises:
  • a power module used to output voltage, the voltage is a DC voltage
  • an amplifying module connected to the power supply module, the amplifying module is used to pressurize the voltage, and the amplifying module includes a switching element;
  • a microwave source connected to the amplifying module, for outputting a microwave signal driven by the pressurized voltage
  • the control module is configured to detect the voltage of the power supply module and the resonance voltage of the amplification module, and control the on-off state of the switching element according to the voltage and the resonance voltage.
  • control module is used to control the on-off state of the switching element according to the proportional relationship between the resonance voltage and the voltage.
  • control module increases the conduction width of the switching element when the proportional relationship is smaller than a first threshold, wherein the first threshold is related to the voltage.
  • control module when the proportional relationship is greater than a second threshold, the control module reduces the conduction width of the switching element, wherein the second threshold and the withstand voltage value of the switching element related to the voltage.
  • the amplifying module includes a primary winding and a secondary winding
  • the microwave heating device includes a detection winding connected to the primary winding, so as to obtain the resonant voltage through the detection winding.
  • the switching element includes a collector
  • the microwave heating device includes a resonant voltage detection circuit connected to the collector, so as to obtain the resonant voltage according to the voltage of the collector.
  • control method of the embodiment of the present application uses the microwave heating device described in any one of the above embodiments, and the control method includes:
  • the on-off state of the switching element of the microwave heating device is controlled.
  • the controlling the on-off state of the switching element of the microwave heating device according to the voltage and the resonance voltage includes:
  • the control module increases the conduction width of the switching element when the proportional relationship is smaller than a first threshold, wherein the first threshold is related to the voltage.
  • the controlling the on-off state of the switching element of the microwave heating device according to the voltage and the resonance voltage includes:
  • the control module When the proportional relationship is greater than a second threshold, the control module reduces the conduction width of the switching element, wherein the second threshold is related to the withstand voltage value of the switching element and the voltage.
  • a non-volatile computer-readable storage medium containing a computer program according to an embodiment of the present application.
  • the control method described in any one of the above embodiments is implemented. .
  • the microwave heating device, control method and storage medium of the present application can obtain the voltage and resonance voltage of the power module, thereby controlling the on-off state of the switching element according to the voltage and resonance voltage, so as to ensure that the peak value of the resonance voltage is high enough to make the resonance voltage It can drop to zero to reduce the loss of switching elements.
  • it can also control the resonant voltage to avoid the situation that the resonant voltage is too large to exceed the withstand voltage value of the switching element, so as to achieve the effect of ensuring the service life of the switching element.
  • the first aspect of the present application proposes a method for controlling a microwave generating device.
  • a second aspect of the present application proposes a cooking device.
  • the third aspect of the present application provides a readable storage medium.
  • a control method for a microwave generating device including: receiving the target operating power of the microwave generating device; determining that the target operating power is less than the set power, and determining according to the target operating power and the set power The duty ratio of the microwave output by the microwave generator; the microwave generator is controlled to set the power and operate according to the duty ratio.
  • the control method of the present application is used to control the microwave generating device.
  • the microwave generating device is started to be controlled in response to the control instruction for controlling the operation of the microwave generating device, and the control instruction is analyzed to determine the target operating power.
  • the set power is preset according to the minimum power that the hardware in the microwave generating device can bear, and the target operating power is numerically compared with the set power. When it is detected that the power value of the target operating power is greater than or equal to the power value of the set power, it is determined that the microwave generating device can operate at the target operating power, thereby controlling the microwave generating device to operate at the target operating power.
  • the microwave generating device When it is detected that the power value of the target operating power is smaller than the power value of the set power, it is determined that if the microwave generating device is directly controlled to output at the target operating power, it may cause damage to the hardware in the microwave generating device, so the microwave generating device cannot be directly controlled Operate at the target operating power.
  • the duty cycle required when the microwave generating device outputs microwaves according to the set power can be determined through the set power and the target operating power. According to the obtained duty cycle, the microwave generating device is controlled to operate according to the set power, so as to periodically output microwaves.
  • the microwave generating device When the application receives the need to control the microwave generating device to operate with a smaller firepower, that is, when the microwave generating device operates at a power less than the set power, the microwave generating device is controlled to set the power, according to the obtained duty cycle than periodically output microwaves. Since the set power is obtained according to the minimum power allowed by the hardware of the microwave generating device, controlling the microwave generating device to operate according to the set power can avoid hardware damage in the microwave generating device, and by controlling the microwave generating device to output microwaves periodically, the realization of microwave Generators can be run with less power. Furthermore, under the premise of avoiding damage to the microwave generating device, the microwave generating device can be operated with a firepower smaller than the adjustable power range of the microwave generating device.
  • the microwave generating device includes a magnetron and a filament.
  • the magnetron when the microwave generator needs to be controlled to output microwaves, the magnetron is controlled to be under its operating voltage, and the filament is also controlled to be under its operating voltage, that is, the filament continues to generate heat, and the magnetron outputs microwaves.
  • the current lower than the working voltage of the magnetron is input to the microwave generating device, so that the magnetron is in a state of stopping operation, and the filament is in a state of continuous heating, that is, the microwave generating device is in the " Ready to output microwave" state.
  • the microwave generating device By controlling whether the microwave generating device outputs microwaves in the above manner, it is realized that in the process of controlling the microwave generating device to output microwaves at a set duty ratio, it is no longer necessary to frequently preheat the filament during the switching process of whether the microwave generating device outputs microwaves, Improved the stability of the control of the microwave generator.
  • the minimum power allowed by the hardware of the microwave generating device is 500W (watt), and the set power is set to 500W, and the duty ratio is set to 1:4.
  • the user sends a control command to the microwave generating device, and the target operating power contained in the control command is 100W. Then set the total duration of one cycle to 50MS, and then control the microwave generator to output microwaves at a power of 500W continuously for 10MS (milliseconds) in another cycle, then control the microwave generator to stop outputting microwaves to 40MS.
  • the microwave generating device By controlling the microwave generating device to microwave according to the above cycle and setting power data, the work done by the microwave generating device during the entire operation process is roughly the same as the work done by the microwave generating device at 100W continuous operation, thus realizing the need for no control When the microwave generating device operates at a target operating power lower than the set power, it can still output a small firepower.
  • the microwave generating device includes a magnetron and a filament
  • the step of controlling the microwave generating device to set the power and operate according to the duty cycle specifically includes: within the set period, the controlled filament continues to generate heat; During the heating process of the filament, the magnetron is controlled to operate according to the duty cycle at the set power.
  • the microwave generating device includes a filament and a magnetron, and the filament is arranged on the magnetron.
  • the filament is energized and continues to generate heat, and at the same time, a high-voltage electric field is formed between the filament and the magnetron.
  • the filament emits electrons to the magnetron, and the magnetron generates a current after receiving the electrons, thereby A magnetron can output microwaves.
  • the working voltage of the filament is 3V (volts)
  • the working current is 10A (ampere)
  • the working voltage of the magnetron is 4000V.
  • the microwave generating device outputs microwaves only when both the filament and the magnetron are energized.
  • the operation period of the microwave generating device is preset.
  • the filament in the microwave generating device is controlled to run continuously within the set period, that is, the filament continuously emits electrons to the magnetron during the entire set period.
  • control the intermittent operation of the microwave generating device according to the set power that is, the magnetron is intermittently connected to the electrical signal of the working voltage.
  • the microwave generating device outputs microwaves.
  • the microwave generator cannot output microwaves, and the microwave output of the microwave generator can be controlled by controlling the power-on time and power-off time of the magnetron.
  • the power-on time and power-off time of the magnetron are set according to the obtained duty cycle, thereby realizing the intermittent microwave output of the microwave generating device.
  • This application maintains the power-on state of the filament in the process of controlling the intermittent microwave output of the microwave generating device, and does not need to frequently preheat the filament during the switching process of whether the microwave generating device outputs microwaves, which improves the control of the microwave generating device. Stability ensures that the power value of the microwave generating device can be consistent with the set power every time it runs. While ensuring the operation stability of the microwave generating device, the microwave generating device can also be operated with a small firepower.
  • the microwave generating device further includes a frequency converter.
  • the step of controlling the magnetron to operate with a set power according to the duty ratio specifically includes: controlling the frequency converter within the set period Outputting the first voltage signal to the filament and the magnetron; adjusting the voltage value of the first voltage signal according to the duty cycle.
  • the microwave generating device includes a frequency converter, and the frequency converter is used to supply power to the microwave generating device.
  • the frequency converter can supply power to the magnetron and the filament in the microwave generating device. Through the control of the frequency converter, the operation of the magnetron and the filament can be controlled.
  • the frequency converter includes a rectification circuit, an inverter circuit and a switch circuit, the first end of the rectification circuit is connected to the mains power supply, the second end of the rectification circuit is connected to the first end of the inverter circuit, and the second end of the inverter circuit terminal is connected to the magnetron, the third terminal of the inverter circuit is connected to the filament, and the switch circuit is arranged between the rectifier circuit and the inverter circuit, wherein the first terminal of the inverter circuit is configured as an input terminal, and the first terminal of the inverter circuit is configured as an input terminal.
  • the two ends are configured as a first output end, and the third end of the inverter circuit is configured as a second output end.
  • the rectifier circuit can convert the AC power of the mains power supply into DC power
  • the inverter circuit can convert the DC power into AC power.
  • the parameters such as the current and voltage output by the inverter circuit can be controlled and adjusted.
  • the switch circuit may be an IGBT (Field Effect Transistor).
  • the filament and the magnetron to which the frequency converter outputs the first voltage signal are controlled.
  • the voltage value of the first voltage signal output to the filament and the magnetron is adjusted through the switch circuit in the frequency converter, and the adjustment basis is the duty cycle obtained according to the set power and the target operating power. Specifically, when the microwave generating device does not need to output microwaves, the voltage value of the first voltage signal is lowered so that the voltage value output by the magnetron cannot reach the operating voltage of the magnetron, thereby stopping the microwave generating device. output microwaves.
  • the filament is kept in the power-on state, and there is no need to determine whether the microwave generating device outputs microwaves.
  • the filament is frequently preheated, which improves the stability of the control of the microwave generator and ensures that the power value of the microwave generator in each operation can be consistent with the set power. While ensuring the operation stability of the microwave generating device, the microwave generating device can also be operated with a small firepower.
  • the parameters of the first voltage signal output from the frequency converter to the filament and the magnetron are different, and the parameters of the first voltage signal output from the frequency converter to the filament and the magnetron can be passed to the coil in the frequency converter Adjust the setting of the number of winding turns.
  • the step of adjusting the voltage value of the first voltage signal according to the duty cycle specifically includes: determining the first time period for the microwave generating device to output microwaves and stopping the microwave generating device according to the set cycle and the duty cycle The second duration of microwave output; determine the initial voltage value corresponding to the first voltage signal according to the set power; control the frequency converter to output the first voltage signal to maintain the initial voltage value until reaching the first duration; control the frequency converter to output the first voltage signal The voltage value is adjusted to the set voltage value until reaching the second duration; wherein, the initial voltage value is greater than the set voltage value, and the set voltage value is greater than the minimum operating voltage of the filament.
  • the total time length and duty ratio in the set cycle are calculated, and the microwave generator needs to output microwaves.
  • the voltage value corresponding to the set power is found, and the found voltage value is set as the initial voltage value of the first voltage signal.
  • the initial voltage value includes the first voltage signal
  • the voltage value output to the filament and the voltage value output to the magnetron that is, the first voltage signal that controls the frequency converter to output the initial voltage value to the filament and the magnetron can make the microwave generator output microwaves with a set power.
  • the microwave generator In the process of controlling the operation of the microwave generator, first control the frequency converter to output the first voltage signal of the initial voltage value. At this time, both the magnetron and the filament are in the working state.
  • the frequency converter is controlled to reduce the voltage value of the first voltage signal, that is, the frequency converter is controlled to output the first voltage signal of the set voltage value.
  • the microwave generating device stops outputting microwaves. When the microwave generating device stops outputting microwaves for a second duration, it is determined that the microwave generating device has completed a complete cycle of operation. The microwave generating device is controlled to cycle the operation mode in the above-mentioned cycle, thereby realizing the periodic and intermittent output of microwaves with a set power.
  • the set voltage value is larger than the minimum operating voltage value of the filament, which ensures that the filament remains in the power-on running state when the frequency converter outputs the first voltage signal of the set voltage value, that is, when the microwave generator stops outputting When microwave, the filament is in a heating state, which avoids the problem of unstable operation of the microwave generating device caused by frequent preheating of the filament.
  • the first duration is less than or equal to 30 milliseconds.
  • the duration of the microwave generating device's single output of microwaves does not exceed 30 milliseconds. It avoids the problem that the output power exceeds the set power in the first period of time due to the microwave generating device outputting microwaves for a single time for too long, and improves the stability of the microwave generating device operating with low firepower.
  • the set voltage value is smaller than the start-up voltage value of the magnetron.
  • the frequency converter sends the first voltage signal with the set voltage value
  • the voltage value at the magnetron in the microwave generating device does not change.
  • the working voltage is reached, so that the microwave generating device does not output microwaves within the second time period.
  • the carrier frequency when the frequency converter outputs the first voltage signal is within a set frequency range.
  • the frequency converter in this application works in a resonant mode, and the carrier frequency of the frequency converter is controlled within the set frequency range, which can ensure that the frequency converter is in a "soft switching" state and reduce the frequency generated by the frequency converter. Loss, reducing the faults caused by the high loss of the inverter for a long time, prolonging the service life of the inverter.
  • the resonance state of the frequency converter is not destroyed, so that the microwave generating device can run stably with a small firepower.
  • the step of adjusting the voltage value of the first voltage signal according to the duty cycle further includes: collecting the current signal and/or the second voltage signal at the frequency converter; according to the current signal and/or the second The voltage signal is used to adjust the voltage value corresponding to the first voltage signal.
  • the output of the frequency converter is adjusted according to the current value corresponding to the current signal at the frequency converter and/or the voltage value corresponding to the second voltage signal.
  • the first voltage signal performs closed-loop control. That is, the closed-loop control of the switching circuit in the frequency converter is carried out in combination with the current value and/or voltage value at the frequency converter, so as to ensure that the microwave generating device outputs microwaves at a set power, and further improves the operation stability of the microwave generating device.
  • the step of determining the duty cycle of microwave output by the microwave generating device according to the target operating power and the set power specifically includes: calculating the proportional relationship between the target operating power and the set power, and determining the microwave generating device according to the proportional relationship. The duty cycle of the output microwave.
  • the difference between the target operating power and the set power is calculated to obtain the power difference, and then the ratio between the target operating power and the power difference is calculated to obtain a value that can reflect the difference between the target operating power and the set power.
  • the ratio of the proportional relationship between them is used as the duty ratio of the microwave output by the microwave generator.
  • the set power of the microwave generating device is set to 500W, and the target operating power is 100W.
  • the set power of the microwave generating device is set to 600W, and the target operating power is 150W.
  • a cooking device including: a microwave generating device; a memory for storing programs or instructions; a processor connected to the microwave generating device for executing the programs or instructions, and the programs or instructions are processed by the processor When executed, the steps of the control method of the microwave generating device according to any possible design in the first aspect are realized.
  • the cooking device provided by the present application includes a microwave generating device, which is connected with a processor, and the processor can control the operation of the microwave generating device.
  • the cooking device also includes a memory, in which instructions or programs are stored, and the processor can execute the instructions or programs stored in the memory, so as to control the microwave generating device.
  • the microwave generating device is started to be controlled in response to the control instruction for controlling the operation of the microwave generating device, and the control instruction is analyzed to determine the target operating power.
  • the set power is preset according to the minimum power that the hardware in the microwave generating device can bear, and the target operating power is numerically compared with the set power. When it is detected that the power value of the target operating power is greater than or equal to the power value of the set power, it is determined that the microwave generating device can operate at the target operating power, thereby controlling the microwave generating device to operate at the target operating power.
  • the microwave generating device When it is detected that the power value of the target operating power is smaller than the power value of the set power, it is determined that if the microwave generating device is directly controlled to output at the target operating power, it may cause damage to the hardware in the microwave generating device, so the microwave generating device cannot be directly controlled Operate at the target operating power.
  • the duty cycle required when the microwave generating device outputs microwaves according to the set power can be determined through the set power and the target operating power. According to the obtained duty cycle, the microwave generating device is controlled to operate according to the set power, so as to periodically output microwaves.
  • the microwave generating device When the application receives the need to control the microwave generating device to operate with a smaller firepower, that is, when the microwave generating device operates at a power less than the set power, the microwave generating device is controlled to set the power, according to the obtained duty cycle than periodically output microwaves. Since the set power is obtained according to the minimum power allowed by the hardware of the microwave generating device, controlling the microwave generating device to operate according to the set power can avoid hardware damage in the microwave generating device, and by controlling the microwave generating device to output microwaves periodically, the realization of microwave Generators can be run with less power. Furthermore, under the premise of avoiding damage to the microwave generating device, the microwave generating device can be operated with a firepower smaller than the adjustable power range of the microwave generating device.
  • the minimum power allowed by the hardware of the microwave generating device is 500W (watt), and the set power is set to 500W, and the duty ratio is set to 1:4.
  • the user sends a control command to the microwave generating device, and the target operating power contained in the control command is 100W. Then set the total duration of one cycle to 50MS, and then control the microwave generator to output microwaves at a power of 500W continuously for 10MS (milliseconds) in another cycle, then control the microwave generator to stop outputting microwaves to 40MS.
  • the microwave generating device By controlling the microwave generating device to microwave according to the above cycle and setting power data, the work done by the microwave generating device during the entire operation process is roughly the same as the work done by the microwave generating device at 100W continuous operation, thus realizing the need for no control When the microwave generating device operates at a target operating power lower than the set power, it can still output a small firepower.
  • the microwave generating device includes: a magnetron; a filament connected to the magnetron; a frequency converter connected to the magnetron and the filament for supplying power to the magnetron and the filament.
  • the microwave generating device includes a filament and a magnetron, one end of the magnetron is set, and the filament is set on the magnetron as a magnetron.
  • the magnetron When the magnetron is energized, the filament is heated, and at the same time, a high-voltage electric field is formed between the filament and the magnetron. Under the action of the electric field, the filament emits electrons to the magnetron, and the magnetron generates a current after receiving the electrons.
  • the controller can output microwaves.
  • the working voltage of the filament is 3V (volts)
  • the working current is 10A (ampere)
  • the working voltage of the magnetron is 4000V.
  • the microwave generating device outputs microwaves only when both the filament and the magnetron are energized.
  • the frequency converter includes: a rectification circuit, the rectification circuit is connected to the power supply; an inverter circuit, the input end of the inverter circuit is connected to the rectification circuit, the first output end of the inverter circuit is connected to the magnetron, and the inverter The second output terminal of the variable circuit is connected with the filament.
  • the microwave generating device includes a frequency converter, and the frequency converter is used to supply power to the microwave generating device.
  • the frequency converter can supply power to the magnetron and the filament in the microwave generating device. Through the control of the frequency converter, the operation of the magnetron and the filament can be controlled.
  • the frequency converter includes a rectification circuit and an inverter circuit, the first end of the rectification circuit is connected to the mains power supply, the second end of the rectification circuit is connected to the first end of the inverter circuit, and the second end of the inverter circuit is connected to the magnetic
  • the control tube is connected, and the third end of the inverter circuit is connected to the filament, wherein the first end of the inverter circuit is configured as an input end, the second end of the inverter circuit is configured as a first output end, and the third end of the inverter circuit is configured as the first output end. configured as the second output.
  • the rectifier circuit can convert the alternating current of the mains power supply into direct current, and the inverter circuit can convert the direct current into alternating current.
  • the frequency converter further includes: a switch circuit, the first terminal of the switch circuit is connected to the rectifier circuit, the second terminal of the switch circuit is connected to the inverter circuit, and the control terminal of the switch circuit is connected to the processor.
  • the switch circuit is provided between the rectifier circuit and the inverter circuit.
  • the rectifier circuit can convert the AC power of the mains power supply into DC power
  • the inverter circuit can convert the DC power into AC power.
  • the switch circuit is connected with the processor, and the processor can control the frequency converter by controlling the opening of the switch circuit, and then control the voltage signal output from the frequency converter to the filament and the magnetron.
  • the switch circuit may be an IGBT (Field Effect Transistor).
  • the microwave generating device further includes: a voltage obtaining device, connected to the frequency converter, for collecting the second voltage signal at the frequency converter; a current obtaining device, connected with the frequency converter, for collecting the second voltage signal at the frequency converter current signal.
  • the current obtaining device can collect the current signal of the frequency converter during operation, and determine the current value corresponding to the current signal.
  • the voltage obtaining device can collect the voltage signal of the frequency converter during operation, and determine the voltage value corresponding to the current signal.
  • the first voltage signal output by the frequency converter is closed-looped according to the current value corresponding to the current signal at the frequency converter and/or the voltage value corresponding to the second voltage signal control. That is, the closed-loop control of the switching circuit in the frequency converter is carried out in combination with the current value and/or voltage value at the frequency converter, so as to ensure that the microwave generating device outputs microwaves at a set power, and further improves the operation stability of the microwave generating device.
  • a readable storage medium on which a program or instruction is stored, and when the program or instruction is executed by a processor, the control method of the microwave generating device in any of the above-mentioned possible designs is realized. step. Therefore, it has all the beneficial technical effects of the control method of the microwave generating device in any of the above-mentioned possible designs, which will not be repeated here.
  • Fig. 1 is a schematic circuit diagram of a microwave heating device according to an embodiment of the present application
  • Fig. 2 is a schematic circuit diagram of a microwave heating device according to an embodiment of the present application.
  • Fig. 3 is a block diagram of a microwave heating device according to an embodiment of the present application.
  • Fig. 4 is a schematic circuit diagram of a microwave heating device of the related art
  • FIG. 6 is a working waveform diagram of a switching element according to an embodiment of the present application.
  • FIG. 7 is a schematic waveform diagram of the value range of the resonant voltage in the embodiment of the present application.
  • FIG. 8 is a voltage waveform diagram of a switching element according to an embodiment of the present application.
  • FIG. 9 is another voltage waveform diagram of a switching element according to an embodiment of the present application.
  • FIG. 10 is a flowchart of a control method in an embodiment of the present application.
  • Microwave heating device 100 power supply module 10, amplification module 20, switching element 21, primary winding 22, secondary winding 23, detection winding 24, microwave source 30, control module 40;
  • Fig. 11 is one of the schematic flowcharts of the control method of the microwave generating device according to an embodiment of the present application.
  • Fig. 12 is a circuit diagram of a frequency converter according to an embodiment of the present application.
  • Fig. 13 is the second schematic flow chart of the control method of the microwave generating device in an embodiment of the present application.
  • Fig. 14 is the third schematic flow chart of the control method of the microwave generating device in an embodiment of the present application.
  • Fig. 15 is the fourth schematic flowchart of the control method of the microwave generating device according to an embodiment of the present application.
  • Fig. 16 is the fifth schematic flowchart of the control method of the microwave generating device according to an embodiment of the present application.
  • Fig. 17 is the sixth schematic flow chart of the control method of the microwave generating device in an embodiment of the present application.
  • Fig. 18 is a schematic flowchart of a control method of a microwave generating device according to another embodiment of the present application.
  • Fig. 19 is a schematic block diagram of a cooking device according to another embodiment of the present application.
  • Fig. 20 is a schematic block diagram of a microwave generating device according to another embodiment of the present application.
  • inverter 202 rectifier circuit, 204 inverter circuit, 206 switch circuit.
  • the first feature being "on” or “under” the second feature may include that the first and second features are in direct contact, and may also include that the first and second features are not in direct contact but pass through Additional characteristic contacts between them.
  • “above”, “above” and “above” the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature.
  • “Below”, “under” and “under” the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.
  • a microwave heating device 100 includes a power module 10 , an amplification module 20 , a microwave source 30 and a control module 40 .
  • the power module 10 is used for outputting voltage, and the voltage is DC voltage.
  • the amplifying module 20 is connected to the power supply module 10 .
  • the amplifying module 20 is used to pressurize the voltage.
  • the amplifying module 20 includes a switching element 21 .
  • the microwave source 30 is connected to the amplifying module 20, and is used to output microwave signals driven by the pressurized voltage.
  • the control module 40 is used to detect the voltage of the power supply module and the resonant voltage of the amplifying module 20, and control the on-off state of the switch element 21 according to the voltage and the resonant voltage.
  • the microwave heating device 100 in the embodiment of the present application can obtain the voltage of the power module 10 and the resonant voltage, so as to control the on-off state of the switching element 21 according to the voltage and the resonant voltage, so as to ensure that the peak value of the resonant voltage is high enough, so that the resonant voltage can drop to zero to reduce the loss of the switching element 21.
  • the resonant voltage can also be controlled to avoid the situation that the resonant voltage is too large to exceed the withstand voltage value of the switching element 21, thereby achieving the effect of ensuring the service life of the switching element 21 .
  • the on-off state of the switching element 21 is controlled, that is, the conduction width of the switching element 21, so as to ensure that the resonant voltage can be within an appropriate voltage range, as shown in Figure 6
  • the shown waveforms enable the resonant voltage to return to zero, so that the switch element 21 is turned on again when the resonant voltage returns to zero.
  • the microwave heating device 100 may include, but not limited to, microwave appliances such as microwave ovens, microwave ovens, microwave rice cookers, and micro-steamers and ovens.
  • the power module 10 may include an AC power terminal, a rectifier circuit and a filter circuit. Specifically, the AC power supply terminal inputs an AC voltage, the rectification circuit rectifies the AC voltage input from the AC power supply terminal into a DC voltage, the filter circuit filters the voltage rectified by the rectification circuit, and the voltage filtered by the filter circuit is input to the amplification module 20 .
  • the filter circuit may include an inductance inductor and a capacitance to ground to adjust the waveform of the voltage so that the amplifying module 20 can work in an ideal state.
  • the power supply module 10 can also include a measuring resistor, one end of the measuring resistor is connected to the filter circuit, the other end of the measuring resistor is connected to the switching element 21, the control module 40 can be connected to the measuring resistor, and by measuring the current of the measuring resistor , to obtain a current through the switching element 21.
  • the power supply module 10 includes a vehicle-mounted DC power supply (Direct Current, DC).
  • the vehicle-mounted DC power supply can be applied in the field of electric vehicles.
  • the minimum voltage of the DC power supply is about 140V, and the maximum voltage is about 400V; the load and power of the power supply carried by the internal combustion engine vehicle are relatively small, and it is generally a low-voltage DC power supply such as 12V or 24V.
  • the microwave heating device 100 of the embodiment of the present application can be applied to automobiles.
  • the microwave heating device 100 can be a vehicle-mounted microwave oven installed in an electric vehicle, and the vehicle-mounted DC power supply of the electric vehicle provides the microwave heating device 100100 with current and voltage.
  • the amplifying module 20 may include but not limited to a switching element 21, a resonant capacitor and a transformer.
  • the switching element 21 is connected to the power module 10 and controlled by the control module 40.
  • the transformer includes a primary winding 22 and a secondary winding 23.
  • the transformer It is a step-up transformer, that is, the number of turns of the primary winding 22 is greater than the number of turns of the secondary winding 23 .
  • the resonant capacitor is connected in parallel with the primary winding 22, and the resonant capacitor and the primary winding 22 jointly form a resonant voltage when the switching element 21 is turned off.
  • the switching element 21 may be a triode, and the collector of the switching element 21 is connected to the transformer.
  • the control module 40 may include but not limited to a voltage detection circuit, a current detection circuit, a resonant voltage detection circuit, an arithmetic circuit, and a drive circuit.
  • the voltage detection circuit is connected to the power module 10 to detect the voltage of the power module 10.
  • the current detection circuit is used to detect
  • the resonant voltage detection circuit is used to detect the resonant voltage of the current flowing through the switching element 21
  • the calculation circuit is used to calculate the voltage, the current flowing through the switching element 21 and the resonant voltage, so as to control the switching element 21 through the driving circuit.
  • the microwave heating device 100 also includes a high-voltage rectification module, the input end of the high-voltage rectification module is connected to the amplification module 20, and the output end of the high-voltage rectification module is connected to the microwave source 30, so that the voltage output by the amplification module 20 is rectification, so that the microwave source 30 works at a more suitable voltage.
  • microwave source 30 comprises a solid state source.
  • Solid state sources include solid state active devices, which may be transfer electron oscillators, or avalanche diode oscillators, or microwave transistor oscillators.
  • Solid-state sources can generate microwave signals with stable power, frequency, and phase difference.
  • microwave source 30 includes a magnetron.
  • a magnetron includes a vacuum device, which may be a diode placed in a constant magnetic field. Under the control of the perpendicular constant magnetic field and constant electric field, the electrons in the tube interact with the high-frequency electromagnetic field, and convert the energy obtained from the constant electric field into microwave energy, thereby generating microwave signals.
  • Magnetron has the characteristics of high power, high efficiency, low operating voltage, small size, light weight and low cost.
  • microwave source 30 in the embodiment of the present application is illustrated by taking the magnetron as an example.
  • the microwave source 30 should not be understood as a limitation of the protection scope of the present application. limited.
  • the microwave heating device 100 may be a turntable microwave oven.
  • the microwave heating device 100 includes a housing, a cavity and a turntable.
  • a user may place food in the cavity.
  • the food may be of different types and shapes.
  • the microwave source 30 can feed microwave signals on the top or both sides of the cavity, and the turntable can make the position of the food move during heating, control the heating deviation of the food, and improve the uniformity of food heating.
  • the microwave heating device 100 may be a microwave oven including a rotating antenna.
  • the microwave heating device 100 includes a casing, a cavity and a rotating antenna. The user can place food in the cavity, and the food may be of different types and shapes. food.
  • the cavity includes an inner wall through which microwave signals can pass, and the microwave source 30 can be fed into the cavity through a rotating antenna to improve the uniformity of food heating.
  • control module 40 is used to control the on-off state of the switch element 21 according to the proportional relationship between the resonance voltage and the voltage.
  • the voltage borne by the switching element 21 is the sum of the voltage and the resonant voltage, so when considering the When considering the withstand voltage value of 21, that is, when considering the highest voltage value that the switching element 21 can withstand under normal working conditions for a long time, the voltage and the resonant voltage should be considered together.
  • the voltage in this embodiment is the voltage of the power module 10 .
  • control module 40 increases the conduction width of the switching element 21 when the proportional relationship is smaller than a first threshold, wherein the first threshold is related to voltage.
  • the proportional relationship should be the resonance voltage divided by the voltage, that is, if the proportional relationship is less than the first threshold, the value of the resonance voltage divided by the voltage is less than the first threshold. If the resonant voltage can oscillate to zero, the value of the resonant voltage should be greater than the power supply voltage, so the first threshold should be greater than or equal to 1.
  • control module 40 reduces the conduction width of the switching element 21 when the proportional relationship is greater than the second threshold, where the second threshold is related to the withstand voltage and the voltage of the switching element 21 .
  • the proportional relationship is greater than the second threshold, that is, the value of dividing the resonance voltage by the voltage is greater than the second threshold.
  • the setting of the second threshold is related to the withstand voltage value of the switch element 21 , and is used to ensure that the voltage passing through the switch element 21 will not be too large, so as to avoid loss of the switch element 21 caused by excessive voltage.
  • the voltage of the switching element 21 is the sum of the voltage and the resonant voltage. Therefore, the voltage is subtracted from the withstand voltage value of the switching element 21 to obtain the maximum value of the resonant voltage, and the maximum value of the resonant voltage is divided by the voltage to obtain the second threshold. .
  • the upper limit and lower limit of the resonance voltage can be limited, so as to ensure that the value of the resonance voltage will not be too low and avoid the oscillation of the resonance voltage below zero.
  • the situation of the position also ensures that the value of the resonant voltage will not be too high, avoiding the situation of loss caused by the voltage passing through the switching element 21 being too high.
  • the amplifying module 20 includes a primary winding 22 and a secondary winding 23
  • the microwave heating device 100 includes a detection winding 24 connected to the primary winding 22 to obtain resonance through the detection winding 24 Voltage.
  • Such setting enables the control module 40 to obtain the resonant voltage through the detection winding 24 .
  • the resonance voltage generated by the primary winding 22 can be obtained.
  • the switching element 21 includes a collector
  • the microwave heating device 100 includes a resonant voltage detection circuit connected to the collector to obtain a resonant voltage according to the voltage of the collector.
  • Such setting enables the control module 40 to obtain the resonance voltage according to the voltage of the collector.
  • the collector voltage waveform of the switching element 21 can be referred to as shown in FIG. 9 , the collector voltage is the sum of the power supply voltage and the resonance voltage, and thus the resonance voltage can be obtained by subtracting the power supply voltage from the collector voltage.
  • the control method uses the microwave heating device 100 described in any of the above-mentioned embodiments.
  • the control method includes:
  • Step S10 detecting the voltage of the power module 10 and the resonance voltage of the amplification module 20;
  • Step S20 according to the voltage and the resonant voltage, the on-off state of the switching element 21 of the microwave heating device 100 is controlled.
  • the voltage of the power supply module 10 and the resonance voltage of the amplification module 20 can be obtained, so as to control the on-off state of the switching element 21 according to the voltage and the resonance voltage, so as to ensure that the peak value of the resonance voltage is high enough so that the resonance voltage can drop to zero
  • the resonant voltage can be controlled to avoid the situation that the resonant voltage is too large to exceed the withstand voltage value of the switching element 21, thereby achieving the effect of ensuring the service life of the switching element 21.
  • step S20 includes:
  • control module 40 increases the conduction width of the switch element 21 , wherein the first threshold is related to voltage.
  • the voltage borne by the switching element 21 is the sum of the voltage and the resonant voltage, so when considering the When considering the withstand voltage value of 21, that is, when considering the highest voltage value that the switching element 21 can withstand under normal working conditions for a long time, the voltage and the resonant voltage should be considered together.
  • step S20 includes:
  • control module 40 When the proportional relationship is greater than the second threshold, the control module 40 reduces the conduction width of the switch element 21 , wherein the second threshold is related to the withstand voltage and voltage of the switch element 21 .
  • the proportional relationship should be the resonance voltage divided by the voltage, that is, if the proportional relationship is less than the first threshold, the value of the resonance voltage divided by the voltage is less than the first threshold. If the resonant voltage can oscillate to zero, the value of the resonant voltage should be greater than the power supply voltage, so the first threshold should be greater than or equal to 1.
  • Embodiments of the present application also provide a non-volatile computer-readable storage medium containing a computer program.
  • the computer program is executed by one or more processors, the steps of the control method described in any of the above-mentioned embodiments are realized. .
  • the non-volatile computer-readable storage medium can be set in the microwave heating device 100 or in a cloud server, and the microwave heating device 100 can communicate with the cloud server to obtain corresponding programs.
  • a computer program includes computer program code.
  • the computer program code may be in source code form, object code form, executable file or some intermediate form, etc.
  • the computer-readable storage medium may include: any entity or device capable of carrying computer program code, recording medium, U disk, removable hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, Read-Only Memory), random memory Access memory (RAM, Random Access Memory), and software distribution media, etc.
  • the processor can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), off-the-shelf programmable Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the power adjustable range of the microwave oven is small, and the microwave oven cannot operate with a heat power smaller than the adjustable power range of the microwave generating device.
  • embodiments of the present application provide a method for controlling a microwave generating device, a cooking device, and a readable storage medium.
  • a method for controlling a microwave generating device, a cooking device and a readable storage medium according to some embodiments of the present application will be described below with reference to FIGS. 11 to 20 .
  • an embodiment of the present application provides a method for controlling a microwave generating device, which specifically includes:
  • Step 102 receiving target operating power
  • Step 104 judging whether the target operating power is less than the set power, if the judging result is yes, go to step 106, if the judging result is otherwise, go to step 110;
  • Step 106 according to the target operating power and the set power, determine the duty cycle of the microwave output by the microwave generating device
  • Step 108 controlling the microwave generating device to output microwaves with a set power according to the duty cycle
  • Step 110 controlling the microwave generating device to operate at the target operating power.
  • the control method provided in this embodiment is used to control a microwave generating device.
  • the microwave generating device is started to be controlled in response to the control instruction for controlling the operation of the microwave generating device, and the control instruction is analyzed to determine the target operating power.
  • the set power is preset according to the minimum power that the hardware in the microwave generating device can bear, and the target operating power is compared with the set power. When it is detected that the power value of the target operating power is greater than or equal to the power value of the set power, it is determined that the microwave generating device can operate at the target operating power, thereby controlling the microwave generating device to operate at the target operating power.
  • the microwave generating device When it is detected that the power value of the target operating power is smaller than the power value of the set power, it is determined that if the microwave generating device is directly controlled to output at the target operating power, it may cause damage to the hardware in the microwave generating device, so the microwave generating device cannot be directly controlled Operate at the target operating power.
  • the duty cycle required when the microwave generating device outputs microwaves according to the set power can be determined through the set power and the target operating power. According to the obtained duty cycle, the microwave generating device is controlled to operate according to the set power, so as to periodically output microwaves.
  • the microwave generating device When the application receives the need to control the microwave generating device to operate with a smaller firepower, that is, when the microwave generating device operates at a power less than the set power, the microwave generating device is controlled to set the power, according to the obtained duty cycle than periodically output microwaves. Since the set power is obtained according to the minimum power allowed by the hardware of the microwave generating device, controlling the microwave generating device to operate according to the set power can avoid hardware damage in the microwave generating device, and by controlling the microwave generating device to output microwaves periodically, the realization of microwave Generators can be run with less power. Furthermore, under the premise of avoiding damage to the microwave generating device, the microwave generating device can be operated with a firepower smaller than the adjustable power range of the microwave generating device.
  • the microwave generating device includes a magnetron and a filament.
  • the magnetron when the microwave generator needs to be controlled to output microwaves, the magnetron is controlled to be under its operating voltage, and the filament is also controlled to be under its operating voltage, that is, the filament continues to generate heat, and the magnetron outputs microwaves.
  • the current lower than the working voltage of the magnetron is input to the microwave generating device, so that the magnetron is in a state of stopping operation, and the filament is in a state of continuous heating, that is, the microwave generating device is in the " Ready to output microwave" state.
  • the minimum power allowed by the hardware of the microwave generating device is 500W (watt), and the set power is set to 500W, and the duty ratio is set to 1:4.
  • the user sends a control command to the microwave generating device, and the target operating power contained in the control command is 100W. Then set the total duration of one cycle to 50MS, and then control the microwave generator to output microwaves at a power of 500W continuously for 10MS (milliseconds) in another cycle, then control the microwave generator to stop outputting microwaves to 40MS.
  • the microwave generating device By controlling the microwave generating device to microwave according to the above cycle and setting power data, the work done by the microwave generating device during the entire operation process is roughly the same as the work done by the microwave generating device at 100W continuous operation, thus realizing the need for no control When the microwave generating device operates at a target operating power lower than the set power, it can still output a small firepower.
  • the microwave generating device includes a magnetron and a filament.
  • one end of the magnetron is set, and the filament is set on the magnetron.
  • the magnetron is energized, the filament is heated, and at the same time, a high-voltage electric field is formed between the filament and the magnetron. Under the action of the electric field, the filament emits electrons to the magnetron, and the magnetron generates a current after receiving the electrons.
  • the controller can output microwaves.
  • the working voltage of the filament is 3V (volts)
  • the working current is 10A (ampere)
  • the working voltage of the magnetron is 4000V.
  • the microwave generating device outputs microwaves only when both the filament and the magnetron are energized.
  • the steps of controlling the microwave generating device to output microwaves according to the duty ratio to set the power include:
  • Step 302 the controlled filament is in a state of continuous heating within a set period
  • Step 304 controlling the magnetron to operate at a set power according to the duty cycle.
  • a period is preset for the operation of the microwave generating device.
  • the filament in the microwave generating device is controlled to run continuously within the set period, that is, the filament continuously emits electrons to the magnetron during the entire set period.
  • control the intermittent operation of the microwave generating device according to the set power that is, the magnetron is intermittently connected to the electrical signal of the working voltage.
  • the microwave generating device outputs microwaves.
  • the microwave generator cannot output microwaves, and the microwave output of the microwave generator can be controlled by controlling the power-on time and power-off time of the magnetron.
  • the power-on time and power-off time of the magnetron are set according to the obtained duty cycle, thereby realizing the intermittent microwave output of the microwave generating device.
  • This application maintains the power-on state of the filament in the process of controlling the intermittent microwave output of the microwave generating device, and does not need to frequently preheat the filament during the switching process of whether the microwave generating device outputs microwaves, which improves the control of the microwave generating device. Stability ensures that the power value of the microwave generating device can be consistent with the set power every time it runs. While ensuring the operation stability of the microwave generating device, the microwave generating device can also be operated with a small firepower.
  • the microwave generating device further includes a frequency converter.
  • the frequency converter is used to supply power to the microwave generating device, specifically, the frequency converter can supply power to the magnetron and filament in the microwave generating device. Through the control of the frequency converter, the operation of the magnetron and the filament can be controlled.
  • the frequency converter includes a rectification circuit, an inverter circuit and a switch circuit, the first end of the rectification circuit is connected to the mains power supply, the second end of the rectification circuit is connected to the first end of the inverter circuit, and the second end of the inverter circuit terminal is connected to the magnetron, the third terminal of the inverter circuit is connected to the filament, and the switch circuit is arranged between the rectifier circuit and the inverter circuit, wherein the first terminal of the inverter circuit is configured as an input terminal, and the first terminal of the inverter circuit is configured as an input terminal.
  • the two ends are configured as a first output end, and the third end of the inverter circuit is configured as a second output end.
  • the rectifier circuit can convert the AC power of the mains power supply into DC power
  • the inverter circuit can convert the DC power into AC power.
  • the parameters such as the current and voltage output by the inverter circuit can be controlled and adjusted.
  • the switch circuit may be an IGBT (Field Effect Transistor).
  • the steps of controlling the magnetron to operate at the set power according to the duty ratio include:
  • Step 402 controlling the frequency converter to output the first voltage signal to the filament and the magnetron;
  • Step 404 adjusting the voltage value of the first voltage signal according to the duty ratio.
  • the filament and the magnetron to which the frequency converter outputs the first voltage signal are controlled.
  • the voltage value of the first voltage signal output to the filament and the magnetron is adjusted through the switch circuit in the frequency converter, and the adjustment basis is the duty cycle obtained according to the set power and the target operating power. Specifically, when the microwave generating device does not need to output microwaves, the voltage value of the first voltage signal is lowered so that the voltage value output by the magnetron cannot reach the operating voltage of the magnetron, thereby stopping the microwave generating device. output microwaves.
  • the filament is kept in the power-on state, and there is no need to determine whether the microwave generating device outputs microwaves.
  • the filament is frequently preheated, which improves the stability of the control of the microwave generator and ensures that the power value of the microwave generator in each operation can be consistent with the set power. While ensuring the operation stability of the microwave generating device, the microwave generating device can also be operated with a small firepower.
  • the parameters of the first voltage signal output from the frequency converter to the filament and the magnetron are different, and the parameters of the first voltage signal output from the frequency converter to the filament and the magnetron can be passed to the coil in the frequency converter Adjust the setting of the number of winding turns.
  • the step of adjusting the voltage value of the first voltage signal according to the duty cycle specifically includes:
  • Step 502 performing ratio calculation according to the set cycle and duty cycle, to obtain the first time period for the microwave generator to output microwaves and the second time period for the microwave generator to stop outputting microwaves;
  • Step 504 according to the set power, search for the initial voltage value corresponding to the first voltage signal
  • Step 506 controlling the frequency converter to output the first voltage signal of the initial voltage value until the first duration is reached;
  • Step 508 control the frequency converter to output the first voltage signal of the set voltage value until the second duration is reached.
  • the initial voltage value is greater than the set voltage value
  • the set voltage value is greater than the minimum operating voltage of the filament
  • the total time length and duty ratio in the set cycle are calculated, and the microwave generator needs to output microwaves.
  • the voltage value corresponding to the set power is found, and the found voltage value is set as the initial voltage value of the first voltage signal.
  • the initial voltage value includes the first voltage signal
  • the voltage value output to the filament and the voltage value output to the magnetron that is, the first voltage signal that controls the frequency converter to output the initial voltage value to the filament and the magnetron can make the microwave generator output microwaves with a set power.
  • the microwave generator In the process of controlling the operation of the microwave generator, first control the frequency converter to output the first voltage signal of the initial voltage value. At this time, both the magnetron and the filament are in the working state.
  • the frequency converter is controlled to reduce the voltage value of the first voltage signal, that is, the frequency converter is controlled to output the first voltage signal of the set voltage value.
  • the microwave generating device stops outputting microwaves. When the microwave generating device stops outputting microwaves for a second duration, it is determined that the microwave generating device has completed a complete cycle of operation. The microwave generating device is controlled to cycle the operation mode in the above-mentioned cycle, thereby realizing the periodic and intermittent output of microwaves with a set power.
  • the set voltage value is larger than the minimum operating voltage value of the filament, which ensures that the filament remains in the power-on running state when the frequency converter outputs the first voltage signal of the set voltage value, that is, when the microwave generator stops outputting When microwave, the filament is in a heating state, which avoids the problem of unstable operation of the microwave generating device caused by frequent preheating of the filament.
  • the first duration is less than or equal to 30 milliseconds.
  • the duration of the microwave generating device's single output of microwaves does not exceed 30 milliseconds. It avoids the problem that the output power exceeds the set power in the first period of time due to the microwave generating device outputting microwaves for a single time for too long, and improves the stability of the microwave generating device operating with low firepower.
  • the set voltage value is smaller than the start-up voltage value of the magnetron.
  • the frequency converter sends the first voltage signal with the set voltage value
  • the voltage value at the magnetron in the microwave generating device does not change.
  • the working voltage is reached, so that the microwave generating device does not output microwaves within the second time period.
  • the carrier frequency when the frequency converter outputs the first voltage signal is within the set frequency range.
  • the frequency converter in this application works in a resonant mode, and the carrier frequency of the frequency converter is controlled within the set frequency range, which can ensure that the frequency converter is in a "soft switching" state and reduce the frequency generated by the frequency converter. Loss, reducing the faults caused by the high loss of the inverter for a long time, prolonging the service life of the inverter.
  • the resonance state of the frequency converter is not destroyed, so that the microwave generating device can run stably with a small firepower.
  • step of adjusting the voltage value of the first voltage signal according to the duty ratio further include:
  • Step 602 collecting the current signal and/or the second voltage signal at the frequency converter
  • Step 604 adjust the voltage value corresponding to the first voltage signal according to the current signal and/or the second voltage signal.
  • the output of the frequency converter is adjusted according to the current value corresponding to the current signal at the frequency converter and/or the voltage value corresponding to the second voltage signal.
  • the first voltage signal performs closed-loop control. That is, the closed-loop control of the switching circuit in the frequency converter is carried out in combination with the current value and/or voltage value at the frequency converter, so as to ensure that the microwave generating device outputs microwaves at a set power, and further improves the operation stability of the microwave generating device.
  • the step of determining the duty cycle of the microwave output by the microwave generating device specifically includes:
  • Step 702 calculating the proportional relationship between the target operating power and the set power
  • Step 704 Determine the duty cycle of the microwave output by the microwave generating device according to the proportional relationship.
  • the difference between the target operating power and the set power is calculated to obtain the power difference, and then the ratio between the target operating power and the power difference is calculated to obtain a value that can reflect the difference between the target operating power and the set power.
  • the ratio of the proportional relationship between them is used as the duty ratio of the microwave output by the microwave generator.
  • the set power of the microwave generating device is set to 500W, and the target operating power is 100W.
  • the set power of the microwave generating device is set to 600W, and the target operating power is 150W.
  • the set power of the microwave generating device is set to 600W, and the target operating power is 200W.
  • the set power of the microwave generating device is set to 600W
  • the target operating power is 300W. Calculate the difference between the set power and the target operating power to obtain a power difference of 300W, and then calculate the ratio between the power difference and the target operating power to obtain a ratio of 1:1, so that the duty cycle is set to 1 :1, you can also set the duty cycle to 1:1.
  • the second embodiment of the present application provides a method for controlling a microwave generating device, which specifically includes:
  • Step 802 receiving target operating power
  • Step 804 judging whether the target operating power is less than the set power, if the judging result is yes, go to step 806, if the judging result is otherwise, go to step 818;
  • Step 806 calculating the proportional relationship between the target operating power and the set power
  • Step 808 determining the duty cycle of the microwave output by the microwave generating device according to the proportional relationship
  • Step 810 performing ratio calculation according to the set period and duty cycle, to obtain the first time period for the microwave generator to output microwaves and the second time period for the microwave generator to stop outputting microwaves;
  • Step 812 according to the set power, search for the initial voltage value corresponding to the first voltage signal
  • Step 814 control the frequency converter to output the first voltage signal of the initial voltage value until the first duration is reached;
  • Step 816 controlling the frequency converter to output the first voltage signal of the set voltage value until the second duration is reached;
  • Step 818 controlling the microwave generating device to operate at the target operating power
  • Step 820 judging whether a shutdown command is received, if the judging result is otherwise, return to step 814, and if the judging result is yes, go to step 822;
  • Step 822 controlling the microwave generating device to stop running.
  • the application when the application receives the need to control the microwave generating device to operate with a smaller firepower, that is, when the microwave generating device operates at a power less than the set power, the application controls the microwave generating device to set the power , periodically output microwaves according to the obtained duty cycle. Since the set power is obtained according to the minimum power allowed by the hardware of the microwave generating device, controlling the microwave generating device to operate according to the set power can avoid hardware damage in the microwave generating device, and by controlling the microwave generating device to output microwaves periodically, the realization of microwave Generators can be run with less power. Furthermore, under the premise of avoiding damage to the microwave generating device, the microwave generating device can be operated with a firepower smaller than the adjustable power range of the microwave generating device.
  • the initial voltage value includes the first voltage signal
  • the voltage value output to the filament and the voltage value output to the magnetron that is, the first voltage signal that controls the frequency converter to output the initial voltage value to the filament and the magnetron can make the microwave generator output microwaves with a set power.
  • the microwave generator In the process of controlling the operation of the microwave generator, first control the frequency converter to output the first voltage signal of the initial voltage value. At this time, both the magnetron and the filament are in the working state.
  • the frequency converter is controlled to reduce the voltage value of the first voltage signal, that is, the frequency converter is controlled to output the first voltage signal of the set voltage value.
  • the microwave generating device stops outputting microwaves. When the microwave generating device stops outputting microwaves for a second duration, it is determined that the microwave generating device has completed a complete cycle of operation. The microwave generating device is controlled to cycle the operation mode in the above-mentioned cycle, thereby realizing the periodic and intermittent output of microwaves with a set power.
  • the set voltage value is larger than the minimum operating voltage value of the filament, which ensures that the filament remains in the power-on running state when the frequency converter outputs the first voltage signal of the set voltage value, that is, when the microwave generator stops outputting When microwave, the filament is in a heating state, which avoids the problem of unstable operation of the microwave generating device caused by frequent preheating of the filament.
  • the first voltage signal output by the frequency converter is closed-looped according to the current value corresponding to the current signal at the frequency converter and/or the voltage value corresponding to the second voltage signal control. That is, the closed-loop control of the switching circuit in the frequency converter is carried out in combination with the current value and/or voltage value at the frequency converter, so as to ensure that the microwave generating device outputs microwaves at a set power, and further improves the operation stability of the microwave generating device.
  • Calculate the difference between the target operating power and the set power to obtain the power difference then calculate the ratio between the target operating power and the power difference, and calculate the ratio that can reflect the proportional relationship between the target operating power and the set power , taking the above ratio as the duty cycle of the microwave output microwave from the microwave generating device.
  • the first duration is less than or equal to 30 milliseconds.
  • the duration of the microwave generating device's single output of microwaves does not exceed 30 milliseconds. It avoids the problem that the output power exceeds the set power in the first period of time due to the microwave generating device outputting microwaves for a single time for too long, and improves the stability of the microwave generating device operating with low firepower.
  • the set voltage value is smaller than the start-up voltage value of the magnetron.
  • the frequency converter sends the first voltage signal with the set voltage value
  • the voltage value at the magnetron in the microwave generating device does not change.
  • the working voltage is reached, so that the microwave generating device does not output microwaves within the second time period.
  • the carrier frequency when the frequency converter outputs the first voltage signal is within the set frequency range.
  • the frequency converter in this application works in a resonant mode, and the carrier frequency of the frequency converter is controlled within the set frequency range, which can ensure that the frequency converter is in a "soft switching" state and reduce the frequency generated by the frequency converter. Loss, reducing the faults caused by the high loss of the inverter for a long time, prolonging the service life of the inverter.
  • the resonance state of the frequency converter is not destroyed, so that the microwave generating device can run stably with a small firepower.
  • a third embodiment of the present application provides a cooking device 900 , including: a microwave generating device 910 , a memory 920 and a processor 930 .
  • the memory 920 is used to store programs or instructions; the processor 930 is connected to the microwave generating device 910 for executing the programs or instructions, and when the programs or instructions are executed by the processor 930, microwave generation as in Embodiment 1 or Embodiment 2 is realized.
  • the steps of the control method of the device are used to store programs or instructions; the processor 930 is connected to the microwave generating device 910 for executing the programs or instructions, and when the programs or instructions are executed by the processor 930, microwave generation as in Embodiment 1 or Embodiment 2 is realized. The steps of the control method of the device.
  • the cooking device 900 provided in the present application includes a microwave generating device 910 , and the microwave generating device 910 is connected to a processor 930 , and the processor 930 can control the operation of the microwave generating device 910 .
  • the cooking device 900 also includes a memory 920 , and instructions or programs are stored in the memory 920 , and the processor 930 can execute the instructions or programs stored in the memory, so as to control the microwave generating device 910 .
  • the microwave generating device 910 is controlled in response to the control instruction for controlling the operation of the microwave generating device 910, and the control instruction is analyzed to determine the target operating power.
  • the set power is preset according to the minimum power that the hardware in the microwave generating device 910 can bear, and the target operating power is numerically compared with the set power. When it is detected that the power value of the target operating power is greater than or equal to the power value of the set power, it is determined that the microwave generating device 910 can operate at the target operating power, thereby controlling the microwave generating device 910 to operate at the target operating power.
  • the microwave generating device 910 After detecting that the power value of the target operating power is smaller than the power value of the set power, it is determined that if the microwave generating device 910 is directly controlled to output at the target operating power, it may cause damage to the hardware in the microwave generating device 910, so the microwave cannot be directly controlled.
  • the generating device 910 operates at the target operating power.
  • the duty ratio required for the microwave generating device 910 to output microwaves according to the set power can be determined through the set power and the target operating power. According to the obtained duty cycle, the microwave generating device 910 is controlled to operate according to the set power, so as to periodically output microwaves.
  • the present application receives the need to control the microwave generating device 910 to operate with a smaller firepower, that is, when the microwave generating device 910 operates at a power less than the set power, by controlling the microwave generating device 910 to set the power, according to the obtained
  • the duty cycle periodically outputs microwaves. Since the set power is obtained according to the minimum power allowed by the hardware of the microwave generating device 910, controlling the microwave generating device 910 to operate according to the set power can avoid hardware damage in the microwave generating device 910, and by controlling the microwave generating device 910 to output microwaves periodically , realizing that the microwave generating device 910 can operate with a small firepower. Furthermore, on the premise of avoiding damage to the microwave generating device 910 , the microwave generating device 910 can be operated with a firepower less than the adjustable power range of the microwave generating device 910 .
  • the microwave generating device includes a magnetron and a filament.
  • the magnetron when the microwave generator needs to be controlled to output microwaves, the magnetron is controlled to be under its operating voltage, and the filament is also controlled to be under its operating voltage, that is, the filament continues to generate heat, and the magnetron outputs microwaves.
  • the current lower than the working voltage of the magnetron is input to the microwave generating device, so that the magnetron is in a state of stopping operation, and the filament is in a state of continuous heating, that is, the microwave generating device is in the " Ready to output microwave" state.
  • the minimum power allowed by the hardware of the microwave generating device 910 is 500W (watts), and the set power is set to 500W, and the duty ratio is set to 1:4.
  • the user sends a control instruction to the microwave generating device 910, and the target operating power included in the control instruction is 100W. Then set the total duration of one cycle to 50 MS, and then control the microwave generator 910 to output microwaves at a power of 500 W continuously for 10 MS (milliseconds) in another cycle, then control the microwave generator 910 to stop outputting microwaves for 40 MS.
  • the microwave generating device 910 By controlling the microwave generating device 910 to microwave according to the above cycle and setting power data, the work done by the microwave generating device 910 during the entire operation is approximately the same as the work done by the microwave generating device 910 at 100W continuous operation, thereby achieving Without controlling the microwave generating device 910 to operate at a target operating power lower than the set power, it can still output relatively small firepower.
  • the microwave generating device 910 includes: a magnetron 912 , a filament 914 and a frequency converter 200 .
  • the filament 914 is connected with the magnetron 912 .
  • the frequency converter 200 is connected to the magnetron 912 and the filament 914 , and the frequency converter 200 is used to supply power to the magnetron 912 and the filament 914 .
  • the microwave generating device 910 includes a filament 914 and a magnetron 912 , one end of the magnetron 912 is set, and the filament 914 is set on the magnetron 912 as the magnetron 912 .
  • the magnetron 912 is energized, the filament 914 is heated, and a high-voltage electric field is formed between the filament 914 and the magnetron 912.
  • the filament 914 emits electrons to the magnetron 912, and the magnetron 912 receives electrons.
  • the electrons then generate a current, so that the magnetron 912 can output microwaves.
  • the working voltage of the filament 914 is 3V (volts)
  • the working current is 10A (amperes)
  • the working voltage of the magnetron 912 is 4000V.
  • microwave generating device 910 outputs microwaves only when the filament 914 and the magnetron 912 are powered on.
  • the frequency converter 200 includes a rectification circuit 202 and an inverter circuit 204 .
  • the rectifier circuit 202 is connected to the power supply; the input end of the inverter circuit 204 is connected with the rectifier circuit 202, the first output end of the inverter circuit 204 is connected with the magnetron 912, and the second output end of the inverter circuit 204 is connected with the filament 914 connected.
  • the microwave generating device 910 includes a frequency converter 200, and the frequency converter 200 is used to supply power to the microwave generating device 910.
  • the frequency converter 200 can power the magnetron 912 and the filament 914 in the microwave generating device 910 powered by.
  • the operation of the magnetron 912 and the filament 914 is controlled by the control of the frequency converter 200 .
  • the frequency converter 200 includes a rectification circuit 202 and an inverter circuit 204, the first end of the rectification circuit 202 is connected to the mains power supply, the second end of the rectification circuit 202 is connected to the first end of the inverter circuit 204, and the inverter circuit
  • the second end of the inverter circuit 204 is connected to the magnetron 912, and the third end of the inverter circuit 204 is connected to the filament 914, wherein the first end of the inverter circuit 204 is configured as an input end, and the second end of the inverter circuit 204 is configured as The first output terminal and the third terminal of the inverter circuit 204 are configured as the second output terminal.
  • the rectifier circuit 202 can convert the AC power of the commercial power supply into DC power
  • the inverter circuit 204 can convert the DC power into AC power.
  • the frequency converter 200 further includes a switch circuit 206 .
  • the first terminal of the switch circuit 206 is connected to the rectifier circuit 202
  • the second terminal of the switch circuit 206 is connected to the inverter circuit 204
  • the control terminal of the switch circuit 206 is connected to the processor 930 .
  • the switch circuit 206 is provided between the rectifier circuit 202 and the inverter circuit 204 .
  • the rectifier circuit 202 can convert the AC power of the mains power supply into DC power
  • the inverter circuit 204 can convert the DC power into AC power.
  • parameters such as the voltage of the current output by the inverter circuit 204 can be controlled and adjusted. .
  • the switch circuit 206 is connected to the processor 930 , and the processor 930 can control the frequency converter 200 by controlling the opening of the switch circuit 206 , and then control the voltage signal output from the frequency converter 200 to the filament 914 and the magnetron 912 .
  • the switch circuit 206 may be an IGBT (Field Effect Transistor).
  • the microwave generating device 910 further includes: a voltage obtaining device 950, connected to the frequency converter 200, for collecting the second voltage signal at the frequency converter 200; a current obtaining device 940, connected to the frequency converter 200, It is used to collect the current signal at the frequency converter 200 .
  • the current obtaining device 940 can collect the current signal of the frequency converter 200 during operation, and determine the current value corresponding to the current signal.
  • the voltage obtaining device 950 can collect the voltage signal of the frequency converter 200 during operation, and determine the voltage value corresponding to the current signal.
  • the first voltage output by the frequency converter 200 according to the current value corresponding to the current signal at the frequency converter 200 and/or the voltage value corresponding to the second voltage signal signal for closed-loop control. That is, combined with the current value and/or voltage value at the frequency converter 200, the switch circuit 206 in the frequency converter 200 is closed-loop controlled, thereby ensuring that the microwave generating device 910 outputs microwaves at a set power, and further improving the stability of the operation of the microwave generating device 910 .
  • the fourth embodiment of the present application provides a readable storage medium, on which a program is stored, and when the program is executed by a processor, the control method of the microwave generating device in any of the above embodiments is implemented, thus having any of the above All the beneficial technical effects of the control method of the microwave generating device in one embodiment.
  • the readable storage medium is, for example, a read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • magnetic disk or an optical disk and the like.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
  • It can be a fixed connection between multiple objects, or a detachable connection between multiple objects, or an integral connection; it can be a direct connection between multiple objects, or a passing connection between multiple objects Intermediaries are indirectly connected.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

一种微波加热装置、控制方法和存储介质。微波加热装置(100)包括电源模块(10),用于输出电压,电压为直流电压;放大模块(20),连接电源模块,放大模块(20)用于对电压加压,放大模块(20)包括开关元件(21);微波源(30),连接放大模块(20),用于在加压后的电压驱动下输出微波信号;控制模块(40),用于检测电源模块(10)的电压以及放大模块(20)的谐振电压,并根据电压以及谐振电压控制开关元件(21)的通断状态。

Description

微波加热装置、控制方法、微波发生装置的控制方法、烹饪装置和介质
优先权信息
本申请请求2021年06月21日向中国国家知识产权局提交的、专利申请号为202110683736.3,2021年10月29日向中国国家知识产权局提交的、专利申请号为202111268724.0的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及家用电器技术领域,特别涉及一种微波加热装置、控制方法、微波发生装置的控制方法、烹饪装置和介质。
背景技术
现有的微波加热装置,通常包括开关元件、升压变压器、谐振电容和磁控管,升压变压器包括初级线圈和次级线圈。在开关元件断开期间,谐振电容和升压变压器的初级线圈会产生谐振电压,当其谐振振幅电压下降至开关元件的发射极电位(下文记为GND)时,开关元件导通,形成减少开关损耗的工作波形。然而,如果谐振电压相对于电源电压的峰值不够高,就会使得谐振电压的振幅下降不到GND电位,从而导致开关元件的损耗增大。
发明内容
本申请实施方式提供了一种微波加热装置、控制方法、微波发生装置的控制方法、烹饪装置和介质。
本申请的微波加热装置包括:
电源模块,用于输出电压,所述电压为直流电压;
放大模块,连接所述电源模块,所述放大模块用于对所述电压加压,所述放大模块包括开关元件;
微波源,连接所述放大模块,用于在加压后的所述电压驱动下输出微波信号;
控制模块,用于检测所述电源模块的所述电压以及所述放大模块的谐振电压,并根据所述电压以及所述谐振电压控制所述开关元件的通断状态。
在某些实施方式中,所述控制模块用于根据所述谐振电压与所述电压的比例关系,控制所述开关元件的通断状态。
在某些实施方式中,在所述比例关系小于第一阈值的情况下,所述控制模块增大所述开关元件的导通宽度,其中,所述第一阈值与所述电压有关。
在某些实施方式中,所述比例关系大于第二阈值的情况下,所述控制模块减小所述开关元件的导通宽度,其中,所述第二阈值与所述开关元件的耐压值和所述电压有关。
在某些实施方式中,所述放大模块包括初级绕组和次级绕组,所述微波加热装置包括与所述初级绕组连接的检测绕组,以通过所述检测绕组获得所述谐振电压。
在某些实施方式中,所述开关元件包括集电极,所述微波加热装置包括与所述集电极连接的谐振电压检测电路,以根据所述集电极的电压获得所述谐振电压。
本申请实施方式的控制方法,使用上述任一项实施方式所述的微波加热装置,所述控制方法包括:
检测电源模块的电压以及放大模块的谐振电压;
根据所述电压以及所述谐振电压,控制微波加热装置的开关元件的通断状态。
在某些实施方式中,所述根据所述电压以及所述谐振电压,控制微波加热装置的开关元件的通断状态,包括:
在所述比例关系小于第一阈值的情况下,所述控制模块增大所述开关元件的导通宽度,其中,所述第一阈值与所述电压有关。
在某些实施方式中,所述根据所述电压以及所述谐振电压,控制微波加热装置的开关元件的通 断状态,包括:
所述比例关系大于第二阈值的情况下,所述控制模块减小所述开关元件的导通宽度,其中,所述第二阈值与所述开关元件的耐压值和所述电压有关。
本申请实施方式的一种包含计算机程序的非易失性计算机可读存储介质,在所述计算机程序被一个或多个处理器执行的情况下,实现上述任一项实施方式所述的控制方法。
本申请的微波加热装置、控制方法和存储介质,能够获得电源模块的电压和谐振电压,从而根据电压和谐振电压控制开关元件的通断状态,从而保证谐振电压的峰值足够高,以使得谐振电压能够下降至零位,减少开关元件的损耗,此外,还可以控制谐振电压,避免谐振电压过大,以至于超出开关元件的耐压值的情况,从而达到保障开关元件的使用寿命的效果。
为此,本申请的第一方面提出了一种微波发生装置的控制方法。
本申请的第二方面提出了一种烹饪装置。
本申请的第三方面提出了一种可读存储介质。
有鉴于此,根据本申请的第一方面提出一种微波发生装置的控制方法,包括:接收微波发生装置的目标运行功率;确定目标运行功率小于设定功率,根据目标运行功率和设定功率确定微波发生装置输出微波的占空比;控制微波发生装置以设定功率,按照占空比运行。
本申请的控制方法,用于对微波发生装置进行控制。响应于用于控制微波发生装置运行的控制指令开始对微波发生装置进行控制,对控制指令进行解析,以确定目标运行功率。设定功率为根据微波发生装置中硬件所能承受的最小功率进行预设的,将目标运行功率与设定功率进行数值进行比较。在检测到目标运行功率的功率值大于等于设定功率的功率值,判定微波发生装置能够以目标运行功率运行,从而控制微波发生装置以目标运行功率运行。在检测到目标运行功率的功率值比设定功率的功率值小,判定如果直接控制微波发生装置以目标运行功率进行输出,可能导致微波发生装置中的硬件产生损伤,故不能直接控制微波发生装置以目标运行功率运行,此时,通过设定功率和目标运行功率能够确定微波发生装置按照设定功率输出微波时所需的占空比。根据得到的占空比,控制微波发生装置按照设定功率运行,从而周期性地输出微波。
本申请在接收到需要控制微波发生装置以较小火力运行的情况下,即微波发生装置以小于设定功率的功率运行的情况下,通过控制微波发生装置以设定功率,按照得到的占空比周期性地输出微波。由于设定功率根据微波发生装置硬件允许的最小功率得到,故控制微波发生装置按照设定功率运行能够避免微波发生装置中的硬件损坏,并且通过控制微波发生装置周期性地输出微波,实现了微波发生装置能够以较小火力运行。进而实现了在避免微波发生装置损坏的前提下,使微波发生装置能够以小于微波发生装置可调功率范围的火力运行的效果。
值得说明的是,微波发生装置中包括磁控管和灯丝。在上述技术方案中,需要控制微波发生装置输出微波时,则控制磁控管处于其工作电压下,并控制灯丝也处于其工作电压下,即灯丝持续发热,且磁控管输出微波。需要控制微波发生装置停止输出微波时,则向微波发生装置输入低于磁控管的工作电压的电流,使磁控管处于停止运行状态,灯丝则处于持续发热的状态,即微波发生装置处于“准备输出微波”的状态。通过上述方式控制微波发生装置是否输出微波,实现了在控制微波发生装置以设定占空比输出微波的过程中,无需再对微波发生装置是否输出微波的切换过程中对灯丝频繁进行预热,提高了对微波发生装置控制的稳定性。在一些实施例中,微波发生装置硬件允许的最小功率为500W(瓦特),并将设定功率设置为500W,占空比设置为1:4。
在这些实施例中,用户向微波发生装置发送控制指令,控制指令中带有的目标运行功率为100W。则将一个周期的总时长设置为50MS,再一个周期内控制微波发生装置以500W的功率持续输出微波达到10MS(毫秒)后,控制微波发生装置停止输出微波达到40MS。通过控制微波发生装置按照上述周期和设定功率数据微波,从而使微波发生装置在整个运行过程中所做的功与微波发生装置以100W持续运行所作的功大致相同,从而实现了在不需要控制微波发生装置以低于设定功率的目标运行功率运行的情况下,依然能够输出较小火力。
另外,根据本申请提供的上述技术方案中的微波发生装置的控制方法,还可以具有如下附加技术特征:
在某些实施方式中,微波发生装置包括磁控管和灯丝,控制微波发生装置以设定功率,按照占空比运行的步骤,具体包括:在设定周期内,控制的灯丝持续发热;在灯丝发热的过程中,控制磁控管以设定功率按照占空比运行。
在该实施方式中,微波发生装置包括灯丝和磁控管,灯丝设置在磁控管上。磁控管通电工作时,灯丝通电持续发热,同时在灯丝与磁控管之间形成高压电场,在电场作用下,灯丝向磁控管发射电子,磁控管在接收到电子后产生电流,从而磁控管能够输出微波。其中,灯丝的工作电压为3V(伏特),工作电流为10A(安培),磁控管的工作电压为4000V。
可以理解的是,微波发生装置在灯丝和磁控管均通电的情况下才会输出微波。
在控制微波发生装置运行前,对微波发生装置的运行预设设定周期。控制微波发生装置中的灯丝在设定周期内持续运行,即灯丝在整个设定周期内持续向磁控管发射电子。同时,控制微波发生装置中的按照设定功率间断式运行,即磁控管间断式地通入工作电压的电信号,当磁控管与灯丝同时通电运行时,微波发生装置输出微波,当仅灯丝通电运行时,微波发生装置无法输出微波,通过控制磁控管的上电时长和断电时长,能够对微波发生装置输出微波进行控制。按照得到的占空比对磁控管的上电时长和断电时长进行设置,从而实现了微波发生装置间断式地输出微波。
本申请在控制微波发生装置间断式输出微波的过程中,保持灯丝的上电状态,无需再对微波发生装置是否输出微波的切换过程中对灯丝频繁进行预热,提高了对微波发生装置控制的稳定性,保证了微波发生装置在每次运行时的功率值均能与设定功率相符。在保证微波发生装置运行稳定性的同时,还能够使微波发生装置以较小火力运行。
在某些实施方式中,微波发生装置还包括变频器,在灯丝发热的过程中,控制磁控管以设定功率按照占空比运行的步骤,具体包括:在设定周期内,控制变频器输出第一电压信号至灯丝和磁控管;根据占空比,调整第一电压信号的电压值。
在该实施方式中,微波发生装置包括变频器,变频器用于对微波发生装置进行供电,具体地,变频器能够对微波发生装置中的磁控管和灯丝进行供电。通过为变频器的控制,从而实现控制磁控管和灯丝的运行。
具体地,变频器包括整流电路、逆变电路和开关电路,整流电路的第一端与市电电源相连,整流电路的第二端与逆变电路的第一端相连,逆变电路的第二端与磁控管相连,逆变电路的第三端与灯丝相连,开关电路设置于整流电路和逆变电路之间,其中,逆变电路的第一端配置为输入端,逆变电路的第二端配置为第一输出端,逆变电路的第三端配置为第二输出端。整流电路能够将市电电源的交流电转化为直流电,逆变电路能够将直流电转化为交流电,通过控制开关电路的开度,能够对逆变电路输出的电流的电压等参数进行控制调节。
示例性地,开关电路可选为IGBT管(场效应管)。
在控制微波发生装置运行的过程中,控制变频器输出第一电压信号至的灯丝和磁控管。通过变频器中的开关电路对输出至灯丝和磁控管的第一电压信号的电压值进行调节,调整的依据为根据设定功率和目标运行功率得到的占空比。具体地,在微波发生装置不需要输出微波的情况下,调低电压第一电压信号的电压值,以使磁控管出的电压值无法达到磁控管的工作电压,从而使微波发生装置停止输出微波。
本申请通过控制微波发生装置中的变频器输出的第一电压信号的电压值,实现了在磁控管处于掉电的情况下,保持灯丝处于上电状态,无需再对微波发生装置是否输出微波的切换过程中对灯丝频繁进行预热,提高了对微波发生装置控制的稳定性,保证了微波发生装置在每次运行时的功率值均能与设定功率相符。在保证微波发生装置运行稳定性的同时,还能够使微波发生装置以较小火力运行。
可以理解的是,变频器输出至灯丝和磁控管出的第一电压信号的参数不同,并且变频器输出至灯丝和磁控管出的第一电压信号的参数能够通过对变频器中的线圈的缠绕匝数的设置进行调整。
在某些实施方式中,根据占空比,调整第一电压信号的电压值的步骤,具体包括:根据设定周期和占空比,确定微波发生装置输出微波的第一时长和微波发生装置停止输出微波的第二时长;根据设定功率确定第一电压信号对应的初始电压值;控制变频器输出第一电压信号保持初始电压值, 直至达到第一时长;控制变频器输出第一电压信号的电压值调整至设定电压值,直至达到第二时长;其中,初始电压值大于设定电压值,设定电压值大于灯丝的最小运行电压。
在该实施方式中,在控制变频器调整输出的第一电压信号的电压值的过程中,通过设定周期中的总时长与占空比进行计算,能够得到微波发生装置需要输出微波情况下的第一时长,以及微波发生装置不需要输出微波情况下的第二时长。根据功率与电压值的映射关系,查找到设定功率对应的电压值,将查找到的电压值设定为第一电压信号的初始电压值,可以理解的是,初始电压值包括第一电压信号中输出至灯丝的电压值和输出至磁控管的电压值,即控制变频器向灯丝和磁控管输出初始电压值的第一电压信号能够使微波发生装置输出设定功率的微波。在需要控制微波发生装置停止输出微波信号时,则需要降低第一电信号的电压值。
在控制微波发生装置运行的过程中,先控制变频器输出初始电压值的第一电压信号,此时磁控管和灯丝均处于工作状态,此时微波发生装置输出设定功率的微波,当微波发生装置输出设定功率的微波达到第一时长后,控制变频器降低第一电压信号的电压值,即控制变频器输出设定电压值的第一电压信号,此时仅灯丝处于上电状态,即灯丝处于发热状态,而磁控管处于未工作状态,此时微波发生装置停止输出微波,当微波发生装置停止输出微波达到第二时长,判定微波发生装置完成完整周期的运行。控制微波发生装置循环上述周期内的运行方式,从而实现了周期性间断式地输出设定功率的微波。
其中,设定电压值相较于灯丝的最小运行电压值大,保证了在变频器输出设定电压值的第一电压信号的情况下,灯丝保持上电运行状态,即在微波发生装置停止输出微波时,灯丝处于发热状态,避免灯丝频繁进行预热导致的微波发生装置运行不稳定的问题。
在某些实施方式中,第一时长小于等于30毫秒。
在该实施方式中,通过对第一时长的数值范围进行限定,并具体限定在第一时长小于等于30毫秒,使微波发生装置单次输出微波的时长不超过30毫秒。避免了由于微波发生装置单次输出微波的时间过长导致在第一时长内输出功率超过设定功率的问题,提高了微波发生装置以小火力运行的稳定性。
在某些实施方式中,设定电压值小于磁控管的起振电压值。
在该实施方式中,通过将设定电压值设定为小于起振电压值,能够使变频器发送设定电压值的第一电压信号时,微波发生装置中的磁控管处的电压值未达到工作电压,从而使微波发生装置在第二时长内不进行微波输出。
在某些实施方式中,变频器输出第一电压信号时的载波频率处于设定频率范围内。
在该实施方式中,本申请中的变频器采用谐振方式工作,将变频器工作时的载波频率控制在设定频率范围内,能够保证变频器处于“软开关”状态,减少变频器工作产生的损耗,减少了由于变频器长时间处于高损耗状态下产生的故障,延长了变频器的使用寿命。在控制微波发生装置运行的过程中,变频器的谐振状态不被破坏,实现了微波发生装置能够稳定地以较小火力运行。
在某些实施方式中,根据占空比,调整第一电压信号的电压值的步骤之后,还包括:采集变频器处的电流信号和/或第二电压信号;根据电流信号和/或第二电压信号,调整第一电压信号对应的电压值。
在该实施方式中,在控制微波发生装置按照占空比输出设定功率的微波之后,根据变频器处的电流信号对应的电流值和/或第二电压信号对应的电压值对变频器输出的第一电压信号进行闭环控制。即结合变频器处的电流值和/或电压值对变频器中开关电路进行闭环控制,从而保证微波发生装置以设定功率输出微波,进一步提高了微波发生装置运行的稳定性。
在某些实施方式中,根据目标运行功率和设定功率确定微波发生装置输出微波的占空比的步骤,具体包括:计算目标运行功率和设定功率的比例关系,根据比例关系确定微波发生装置输出微波的占空比。
在该实施方式中,将目标运行功率与设定功率进行差值计算,得到功率差值,再将目标运行功率与功率差值进行比值计算,计算得到能够反映出目标运行功率与设定功率之间的比例关系的比值,将上述比值作为微波发生装置输出微波的占空比。
在一些实施方式中,微波发生装置的设定功率设置为500W,目标运行功率为100W。将设定功率与目标运行功率进行差值计算,以得到功率差值为400W,再将功率差值与目标运行功率进行比值计算,以得到比值为1:4,从而确定占空比设置为1:4,还可以将占空比设置为3:12。
在另外一些实施方式中,微波发生装置的设定功率设置为600W,目标运行功率为150W。将设定功率与目标运行功率进行差值计算,以得到功率差值为450W,再将功率差值与目标运行功率进行比值计算,以得到比值为1:3,从而确定占空比设置为1:3,还可以将占空比设置为3:9。
根据本申请第二方面提出了一种烹饪装置,包括:微波发生装置;存储器,用于存储程序或指令;处理器,与微波发生装置相连,用于执行程序或指令,程序或指令被处理器执行时实现如第一方面中任一可能设计的微波发生装置的控制方法的步骤。
本申请提供的烹饪装置包括微波发生装置,微波发生装置与处理器相连,处理器能够对微波发生装置的运行控制。烹饪装置还包括存储器,存储器中存储有指令或程序,处理器能够执行存储中存储的指令或程序,从而对微波发生装置进行控制。
响应于用于控制微波发生装置运行的控制指令开始对微波发生装置进行控制,对控制指令进行解析,以确定目标运行功率。设定功率为根据微波发生装置中硬件所能承受的最小功率进行预设的,将目标运行功率与设定功率进行数值进行比较。在检测到目标运行功率的功率值大于等于设定功率的功率值,判定微波发生装置能够以目标运行功率运行,从而控制微波发生装置以目标运行功率运行。在检测到目标运行功率的功率值比设定功率的功率值小,判定如果直接控制微波发生装置以目标运行功率进行输出,可能导致微波发生装置中的硬件产生损伤,故不能直接控制微波发生装置以目标运行功率运行,此时,通过设定功率和目标运行功率能够确定微波发生装置按照设定功率输出微波时所需的占空比。根据得到的占空比,控制微波发生装置按照设定功率运行,从而周期性地输出微波。
本申请在接收到需要控制微波发生装置以较小火力运行的情况下,即微波发生装置以小于设定功率的功率运行的情况下,通过控制微波发生装置以设定功率,按照得到的占空比周期性地输出微波。由于设定功率根据微波发生装置硬件允许的最小功率得到,故控制微波发生装置按照设定功率运行能够避免微波发生装置中的硬件损坏,并且通过控制微波发生装置周期性地输出微波,实现了微波发生装置能够以较小火力运行。进而实现了在避免微波发生装置损坏的前提下,使微波发生装置能够以小于微波发生装置可调功率范围的火力运行的效果。
在一些实施方式中,微波发生装置硬件允许的最小功率为500W(瓦特),并将设定功率设置为500W,占空比设置为1:4。
在这些实施方式中,用户向微波发生装置发送控制指令,控制指令中带有的目标运行功率为100W。则将一个周期的总时长设置为50MS,再一个周期内控制微波发生装置以500W的功率持续输出微波达到10MS(毫秒)后,控制微波发生装置停止输出微波达到40MS。通过控制微波发生装置按照上述周期和设定功率数据微波,从而使微波发生装置在整个运行过程中所做的功与微波发生装置以100W持续运行所作的功大致相同,从而实现了在不需要控制微波发生装置以低于设定功率的目标运行功率运行的情况下,依然能够输出较小火力。
另外,根据本申请提供的上述技术方案中的烹饪装置,还可以具有如下附加技术特征:
在某些实施方式中,微波发生装置包括:磁控管;灯丝,与磁控管相连;变频器,变频器与磁控管和灯丝相连,用于向磁控管和灯丝供电。
在该实施方式中,微波发生装置包括灯丝和磁控管,磁控管的一端设置为,灯丝设置在磁控管上,作为磁控管。磁控管通电工作时,灯丝被加热,同时在灯丝与磁控管之间形成高压电场,在电场作用下,灯丝向磁控管发射电子,磁控管在接收到电子后产生电流,从而磁控管能够输出微波。其中,灯丝的工作电压为3V(伏特),工作电流为10A(安培),磁控管的工作电压为4000V。
可以理解的是,微波发生装置在灯丝和磁控管均通电的情况下才会输出微波。
在某些实施方式中,变频器包括:整流电路,整流电路连接至电源;逆变电路,逆变电路的输入端与整流电路相连,逆变电路的第一输出端与磁控管相连,逆变电路的第二输出端与灯丝相连。
在该实施方式中,微波发生装置包括变频器,变频器用于对微波发生装置进行供电,具体地, 变频器能够对微波发生装置中的磁控管和灯丝进行供电。通过为变频器的控制,从而实现控制磁控管和灯丝的运行。
具体地,变频器包括整流电路和逆变电路,整流电路的第一端与市电电源相连,整流电路的第二端与逆变电路的第一端相连,逆变电路的第二端与磁控管相连,逆变电路的第三端与灯丝相连,其中,逆变电路的第一端配置为输入端,逆变电路的第二端配置为第一输出端,逆变电路的第三端配置为第二输出端。整流电路能够将市电电源的交流电转化为直流电,逆变电路能够将直流电转化为交流电。
在某些实施方式中,变频器还包括:开关电路,开关电路的第一端与整流电路相连,开关电路的第二端与逆变电路相连,开关电路的控制端与处理器相连。
在该实施方式中,开关电路设置于整流电路和逆变电路之间。整流电路能够将市电电源的交流电转化为直流电,逆变电路能够将直流电转化为交流电,通过控制开关电路的开度,能够对逆变电路输出的电流的电压等参数进行控制调节。
开关电路与处理器相连,处理器能够通过控制开关电路的开度从而对变频器进行控制,进而对变频器输出至灯丝和磁控管处的电压信号进行控制。
具体地,开关电路可选为IGBT管(场效应管)。
在某些实施方式中,微波发生装置还包括:电压获取装置,与变频器相连,用于采集变频器处的第二电压信号;电流获取装置,与变频器相连,用于采集变频器处的电流信号。
在该实施方式中,电流获取装置能够采集变频器在运行过程中的电流信号,并确定电流信号对应的电流值。电压获取装置能够采集变频器在运行过程中的电压信号,并确定电流信号对应的电压值。
在控制微波发生装置按照占空比输出设定功率的微波之后,根据变频器处的电流信号对应的电流值和/或第二电压信号对应的电压值对变频器输出的第一电压信号进行闭环控制。即结合变频器处的电流值和/或电压值对变频器中开关电路进行闭环控制,从而保证微波发生装置以设定功率输出微波,进一步提高了微波发生装置运行的稳定性。
根据本申请第三方面提出了一种可读存储介质,可读存储介质上存储有程序或指令,程序或指令被处理器执行时实现如上述任一可能设计中的微波发生装置的控制方法的步骤。因而具有上述任一可能设计中的微波发生装置的控制方法的全部有益技术效果,在此不再做过多赘述。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请实施方式的微波加热装置的电路示意图;
图2是本申请实施方式的微波加热装置的电路示意图;
图3是本申请实施方式的微波加热装置的模块示意图;
图4是相关技术的微波加热装置的电路示意图;
图5是相关技术的开关元件的工作波形图;
图6是本申请实施方式的开关元件的工作波形图;
图7是本申请实施方式的谐振电压取值范围的波形示意图;
图8是本申请实施方式的开关元件的电压波形图;
图9是本申请实施方式的开关元件的另一电压波形图;
图10是本申请实施方式的控制方法的流程图。
附图标记:
微波加热装置100、电源模块10、放大模块20、开关元件21、初级绕组22、次级绕组23、检测绕组24、微波源30、控制模块40;
图11是本申请一实施方式的微波发生装置的控制方法的示意流程图之一;
图12是本申请一实施方式的变频器的电路图;
图13是本申请一实施方式的微波发生装置的控制方法的示意流程图之二;
图14是本申请一实施方式的微波发生装置的控制方法的示意流程图之三;
图15是本申请一实施方式的微波发生装置的控制方法的示意流程图之四;
图16是本申请一实施方式的微波发生装置的控制方法的示意流程图之五;
图17是本申请一实施方式的微波发生装置的控制方法的示意流程图之六;
图18是本申请另一实施方式的微波发生装置的控制方法的示意流程图;
图19是本申请另一实施方式的烹饪装置的示意框图;
图20是本申请另一实施方式的微波发生装置的示意框图。
附图标记:
200变频器、202整流电路、204逆变电路、206开关电路。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
在本申请的实施方式中,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的实施方式的不同结构。为了简化本申请的实施方式的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。本申请的实施方式可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请的实施方式提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面参照图1至图10描述根据本申请一些实施方式的一种微波加热装置100、控制方法和一种可读存储介质。请参阅图1至图3,本申请实施方式的微波加热装置100包括电源模块10、放大模块20、微波源30和控制模块40。其中,电源模块10用于输出电压,电压为直流电压。放大模块20,连接电源模块10放大模块20用于对电压加压,放大模块20包括开关元件21。微波源30连接放大模块20,用于在加压后的电压驱动下输出微波信号。控制模块40用于检测所述电源模块的电压以及放大模块20的谐振电压,并根据电压以及谐振电压控制开关元件21的通断状态。
本申请实施方式的微波加热装置100,能够获得电源模块10的电压和谐振电压,从而根据电压和谐振电压控制开关元件21的通断状态,从而保证谐振电压的峰值足够高,以使得谐振电压能够下降至零位,减少开关元件21的损耗,此外,还可以控制谐振电压,避免谐振电压过大,以至于超出开关元件21的耐压值的情况,从而达到保障开关元件21的使用寿命的效果。
具体的,请参阅图4和图5,在相关技术中,在将微波加热装置的输出降低的时候,开关元件的导通宽度变小,使得放大模块的初级绕组存储的能量变少,从而导致谐振电压降低,谐振电压的波形可参照图5所示,此时谐振电压的振幅无法下降至零位,而若开关元件在该状态下导通,就会使得放大模块的谐振电容中残留的电荷释放,导致有较大的电流通入开关元件的集电极中。因为开关损耗(W)=电压(V)×电流(I),所以若开关元件在电压未至零位的状态下导通,会使得开关元件损耗较大且温度升高,因而对开关元件不利。
本申请实施方式,通过获得电源模块10的电压和谐振电压,控制开关元件21的通断状态,即 开关元件21的导通宽度,保证了谐振电压能够在适当的电压范围内,形成如图6所示的波形,即使得谐振电压能够归于零位,以便于开关元件21在谐振电压归于零位时再导通。
微波加热装置100可包括但不仅限于微波炉、微波烤箱、微波饭煲、微蒸烤一体机等微波电器。
电源模块10可以包括交流电源端、整流电路以及滤波电路。具体的,交流电源端输入交流电压,整流电路将交流电源端输入的交流电压整流为直流电压,滤波电路将整流电路整流后的电压进行滤波,经滤波电路滤波后的电压输入至放大模块20。
滤波电路可以包括感抗电感以及对地电容,以调整电压的波形,使得放大模块20能够在较为理想的状态工作。
值得补充的是,电源模块10还可以包括测量电阻,测量电阻的一端与滤波电路连接,测量电阻的另一端与开关元件21连接,控制模块40可以与测量电阻连接,通过测量该测量电阻的电流,获得通过开关元件21的电流。
在一个实施例中,电源模块10包括车载DC电源(Direct Current,DC),车载DC电源可以应用在电动汽车领域,电动汽车以电动机为驱动主体,电动机所搭载的电源是大负载量大功率的直流电源,其电压最小为140V左右,最大为400V左右;内燃机汽车所搭载的电源的负载量及功率相对小,一般为12V或24V等电压较低的直流电源。
如此,本申请实施方式的微波加热装置100可以应用于汽车,例如:微波加热装置100可以是设置在电动汽车内的车载微波炉,电动汽车的车载DC电源为微波加热装置100100提供电流电压。
需要说明的是,上述所举例的例子以及具体数值是为方便说明本申请的实施,不应理解为对本申请保护范围的限定。
放大模块20可以包括但不限于开关元件21、共振电容以及变压器,开关元件21与电源模块10连接且受控制模块40控制,变压器包括初级绕组22和次级绕组23,在一个实施方式中,变压器为升压变压器,即初级绕组22的匝数大于次级绕组23的匝数设置。共振电容与初级绕组22并联,共振电容与初级绕组22在开关元件21关断时,共同形成谐振电压。
开关元件21可以为三极管,开关元件21的集电极与变压器连接。
控制模块40可以包括但不限于电压检测电路、电流检测电路、谐振电压检测电路、运算电路以及驱动电路,电压检测电路与电源模块10连接,以检测电源模块10的电压,电流检测电路用于检测流经开关元件21的电流,谐振电压检测电路用于检测谐振电压,运算电路用于根据电压、流经开关元件21的电流以及谐振电压计算,从而通过驱动电路对开关元件21进行控制。
在某些实施方式中,微波加热装置100还包括高压整流模块,高压整流模块的输入端与放大模块20连接,高压整流模块的输出端与微波源30连接,以对放大模块20输出的电压进行整流,使得微波源30在较为合适的电压中工作。
在某些实施方式中,微波源30包括固态源。固态源包括固态有源器件,固态有源器件可以是转移电子振荡器、或雪崩二极管振荡器、或微波晶体管振荡器。固态源可以产生稳定的功率、频率、相位差的微波信号。
在某些实施方式中,微波源30包括磁控管。磁控管包括真空器件,真空器件可以是置于恒定磁场中的二极管。管内电子在相互垂直的恒定磁场和恒定电场的控制下,与高频电磁场发生相互作用,把从恒定电场中获得能量转变成微波能量,从而产生微波信号。磁控管具有功率大、效率高、工作电压低、尺寸小、重量轻和成本低等特点。
值得一提的是,本申请实施方式的微波源30以磁控管为例进行举例说明,以磁控管为例进行举例说明为方便说明本申请的实施,不应理解为对本申请保护范围的限定。
在一个实施例中,微波加热装置100可以是转盘式微波炉,微波加热装置100包括壳体、腔体和转盘,用户可以将食物放置在腔体内,食物可以是种类及形状不同的食物。微波源30可以在腔体的上方或两侧馈入微波信号,转盘可以使得食物在加热时位置移动,控制食品的加热偏差,提升食物加热的均匀性。
在另一个实施例中,微波加热装置100可以是包括旋转天线的微波炉,微波加热装置100包括壳体、腔体和旋转天线,用户可以将食物放置在腔体内,食物可以是种类及形状不同的食物。腔体 包括能够通过微波信号的内壁,微波源30可以通过旋转天线馈入至腔体内,以提升食物加热的均匀性。
在某些实施方式中,控制模块40用于根据谐振电压与电压的比例关系,控制开关元件21的通断状态。
如此设置,根据谐振电压与电压的比例关系,判断谐振电压是较大还是较小,从而为控制开关元件21提供依据。
具体的,谐振电压是否足够大,以使得谐振电压能够归于零位,需要根据谐振电压与电压的关系进行判断,此外,开关元件21承受的电压为电压与谐振电压之和,因而在考虑开关元件21的耐压值时,即考虑开关元件21能够长时间保持正常工作状态下可以承受的最高的电压值时,应当将电压与谐振电压一同考虑。
需要说明的是,本实施方式中的电压,为电源模块10的电压。
在某些实施方式中,在比例关系小于第一阈值的情况下,控制模块40增大开关元件21的导通宽度,其中,第一阈值与电压有关。
如此设置,在比例关系小于第一阈值的情况下,可以判断谐振电压较小,从而应增大开关元件21的导通宽度。
具体的,比例关系应为谐振电压除以电压,即比例关系小于第一阈值的情况,为谐振电压除以电压的值小于第一阈值。若使谐振电压能够振荡至零位,则谐振电压的数值应大于电源电压,因而第一阈值应大于或等于1。
在某些实施方式中,比例关系大于第二阈值的情况下,控制模块40减小开关元件21的导通宽度,其中,第二阈值与开关元件21的耐压值和电压有关。
如此设置,在比例关系大于第二阈值的情况下,可以判断谐振电压较大,从而应减小开关元件21的导通宽度。
具体的,比例关系大于第二阈值,即谐振电压除以电压的值大于第二阈值。第二阈值的设定与开关元件21的耐压值有关,用于保证通过开关元件21的电压不会过大,以避免因电压过大而对开关元件21造成的损耗。开关元件21的电压为电压与谐振电压之和,因而将开关元件21的耐压值减去电压,即为谐振电压的最大值,将谐振电压的最大值除以电压,即得出第二阈值。
值得说明的是,请参阅图7,通过设定第一阈值和第二阈值,实现对谐振电压的上限和下限的限定,从而保证谐振电压的值不会过低,避免谐振电压振荡不到零位的情况,也保证了谐振电压的值不会过高,避免因通过开关元件21的电压过高而造成损耗的情况。
在某些实施方式中,请参阅图1和图8,放大模块20包括初级绕组22和次级绕组23,微波加热装置100包括与初级绕组22连接的检测绕组24,以通过检测绕组24获得谐振电压。
如此设置,使得控制模块40可以通过检测绕组24获得谐振电压。
具体的,根据检测绕组24和初级绕组22的匝数比以及检测绕组24的输出电压,可以获得初级绕组22产生的谐振电压。
在某些实施方式中,请参阅图2和图9,开关元件21包括集电极,微波加热装置100包括与集电极连接的谐振电压检测电路,以根据集电极的电压获得谐振电压。
如此设置,使得控制模块40可以根据集电极的电压获得谐振电压。
具体的,开关元件21的集电极电压波形可参阅图9所示,集电极的电压为电源电压和谐振电压叠加的和,因而将集电极的电压减去电源电压即可获得谐振电压。
请参阅图10,本申请还公开了一种控制方法,控制方法使用上述任一实施方式所述的微波加热装置100,控制方法包括:
步骤S10,检测电源模块10的电压以及放大模块20的谐振电压;
步骤S20,根据电压以及谐振电压,控制微波加热装置100的开关元件21的通断状态。
如此设置,能够获得电源模块10的电压和放大模块20的谐振电压,从而根据电压和谐振电压控制开关元件21的通断状态,从而保证谐振电压的峰值足够高,以使得谐振电压能够下降至零位,减少开关元件21的损耗,此外,还可以控制谐振电压,避免谐振电压过大,以至于超出开关元件 21的耐压值的情况,从而达到保障开关元件21的使用寿命的效果。
在某些实施方式中,步骤S20包括:
在比例关系小于第一阈值的情况下,控制模块40增大开关元件21的导通宽度,其中,第一阈值与电压有关。
如此设置,根据谐振电压与电压的比例关系,判断谐振电压是较大还是较小,从而为控制开关元件21提供依据。
具体的,谐振电压是否足够大,以使得谐振电压能够归于零位,需要根据谐振电压与电压的关系进行判断,此外,开关元件21承受的电压为电压与谐振电压之和,因而在考虑开关元件21的耐压值时,即考虑开关元件21能够长时间保持正常工作状态下可以承受的最高的电压值时,应当将电压与谐振电压一同考虑。
在某些实施方式中,步骤S20包括:
比例关系大于第二阈值的情况下,控制模块40减小开关元件21的导通宽度,其中,第二阈值与开关元件21的耐压值和电压有关。
如此设置,在比例关系小于第一阈值的情况下,可以判断谐振电压较小,从而应增大开关元件21的导通宽度。
具体的,比例关系应为谐振电压除以电压,即比例关系小于第一阈值的情况,为谐振电压除以电压的值小于第一阈值。若使谐振电压能够振荡至零位,则谐振电压的数值应大于电源电压,因而第一阈值应大于或等于1。
本申请实施方式还提供一种包含计算机程序的非易失性计算机可读存储介质,在计算机程序被一个或多个处理器执行的情况下,实现上述任一实施方式所述的控制方法的步骤。
非易失性计算机可读存储介质可设置在微波加热装置100,也可设置在云端服务器,微波加热装置100能够与云端服务器进行通讯来获取到相应的程序。
可以理解,计算机程序包括计算机程序代码。计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。计算机可读存储介质可以包括:能够携带计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、以及软件分发介质等。
处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
相关技术中,由于微波炉中的微波发生装置的硬件特性,导致微波炉的功率可调范围较小,微波炉无法以小于微波发生装置的可调功率范围的火力运行。
为了解决上述问题中的至少一个,本申请实施方式提供一种微波发生装置的控制方法、一种烹饪装置和一种可读存储介质。下面参照图11至图20描述根据本申请一些实施方式的一种微波发生装置的控制方法、一种烹饪装置和一种可读存储介质。
实施方式一:
如图11所示,本申请的一实施方式中提供了一种微波发生装置的控制方法,具体包括:
步骤102,接收目标运行功率;
步骤104,判断目标运行功率是否小于设定功率,判断结果为是则执行步骤106,判断结果为否则执行步骤110;
步骤106,根据目标运行功率和设定功率,确定微波发生装置输出微波的占空比;
步骤108,控制微波发生装置按照占空比,以设定功率输出微波;
步骤110,控制微波发生装置以目标运行功率运行。
本实施方式提供的控制方法,用于对微波发生装置进行控制。响应于用于控制微波发生装置运行的控制指令开始对微波发生装置进行控制,对控制指令进行解析,以确定目标运行功率。设定功 率为根据微波发生装置中硬件所能承受的最小功率进行预设的,将目标运行功率与设定功率进行数值进行比较。在检测到目标运行功率的功率值大于等于设定功率的功率值,判定微波发生装置能够以目标运行功率运行,从而控制微波发生装置以目标运行功率运行。在检测到目标运行功率的功率值比设定功率的功率值小,判定如果直接控制微波发生装置以目标运行功率进行输出,可能导致微波发生装置中的硬件产生损伤,故不能直接控制微波发生装置以目标运行功率运行,此时,通过设定功率和目标运行功率能够确定微波发生装置按照设定功率输出微波时所需的占空比。根据得到的占空比,控制微波发生装置按照设定功率运行,从而周期性地输出微波。
本申请在接收到需要控制微波发生装置以较小火力运行的情况下,即微波发生装置以小于设定功率的功率运行的情况下,通过控制微波发生装置以设定功率,按照得到的占空比周期性地输出微波。由于设定功率根据微波发生装置硬件允许的最小功率得到,故控制微波发生装置按照设定功率运行能够避免微波发生装置中的硬件损坏,并且通过控制微波发生装置周期性地输出微波,实现了微波发生装置能够以较小火力运行。进而实现了在避免微波发生装置损坏的前提下,使微波发生装置能够以小于微波发生装置可调功率范围的火力运行的效果。
值得说明的是,微波发生装置中包括磁控管和灯丝。在上述技术方案中,需要控制微波发生装置输出微波时,则控制磁控管处于其工作电压下,并控制灯丝也处于其工作电压下,即灯丝持续发热,且磁控管输出微波。需要控制微波发生装置停止输出微波时,则向微波发生装置输入低于磁控管的工作电压的电流,使磁控管处于停止运行状态,灯丝则处于持续发热的状态,即微波发生装置处于“准备输出微波”的状态。通过上述方式控制微波发生装置是否输出微波,实现了在控制微波发生装置以设定占空比输出微波的过程中,无需再对微波发生装置是否输出微波的切换过程中对灯丝频繁进行预热,提高了对微波发生装置控制的稳定性。
在一些实施方式中,微波发生装置硬件允许的最小功率为500W(瓦特),并将设定功率设置为500W,占空比设置为1:4。
在这些实施方式中,用户向微波发生装置发送控制指令,控制指令中带有的目标运行功率为100W。则将一个周期的总时长设置为50MS,再一个周期内控制微波发生装置以500W的功率持续输出微波达到10MS(毫秒)后,控制微波发生装置停止输出微波达到40MS。通过控制微波发生装置按照上述周期和设定功率数据微波,从而使微波发生装置在整个运行过程中所做的功与微波发生装置以100W持续运行所作的功大致相同,从而实现了在不需要控制微波发生装置以低于设定功率的目标运行功率运行的情况下,依然能够输出较小火力。
如图12所示,在上述任一实施方式中,微波发生装置包括磁控管和灯丝。
其中,磁控管的一端设置为,灯丝设置在磁控管上。磁控管通电工作时,灯丝被加热,同时在灯丝与磁控管之间形成高压电场,在电场作用下,灯丝向磁控管发射电子,磁控管在接收到电子后产生电流,从而磁控管能够输出微波。其中,灯丝的工作电压为3V(伏特),工作电流为10A(安培),磁控管的工作电压为4000V。
可以理解的是,微波发生装置在灯丝和磁控管均通电的情况下才会输出微波。
如图13所示,控制微波发生装置按照占空比,以设定功率输出微波的步骤,具体包括:
步骤302,控制的灯丝在设定周期内处于持续发热状态;
步骤304,控制磁控管按照占空比,以设定功率运行。
在该实施方式中,在控制微波发生装置运行前,对微波发生装置的运行预设设定周期。控制微波发生装置中的灯丝在设定周期内持续运行,即灯丝在整个设定周期内持续向磁控管发射电子。同时,控制微波发生装置中的按照设定功率间断式运行,即磁控管间断式地通入工作电压的电信号,当磁控管与灯丝同时通电运行时,微波发生装置输出微波,当仅灯丝通电运行时,微波发生装置无法输出微波,通过控制磁控管的上电时长和断电时长,能够对微波发生装置输出微波进行控制。按照得到的占空比对磁控管的上电时长和断电时长进行设置,从而实现了微波发生装置间断式地输出微波。
本申请在控制微波发生装置间断式输出微波的过程中,保持灯丝的上电状态,无需再对微波发生装置是否输出微波的切换过程中对灯丝频繁进行预热,提高了对微波发生装置控制的稳定性,保 证了微波发生装置在每次运行时的功率值均能与设定功率相符。在保证微波发生装置运行稳定性的同时,还能够使微波发生装置以较小火力运行。
如图12所示,在上述任一实施方式中,微波发生装置还包括变频器。
其中,变频器用于对微波发生装置进行供电,具体地,变频器能够对微波发生装置中的磁控管和灯丝进行供电。通过为变频器的控制,从而实现控制磁控管和灯丝的运行。
具体地,变频器包括整流电路、逆变电路和开关电路,整流电路的第一端与市电电源相连,整流电路的第二端与逆变电路的第一端相连,逆变电路的第二端与磁控管相连,逆变电路的第三端与灯丝相连,开关电路设置于整流电路和逆变电路之间,其中,逆变电路的第一端配置为输入端,逆变电路的第二端配置为第一输出端,逆变电路的第三端配置为第二输出端。整流电路能够将市电电源的交流电转化为直流电,逆变电路能够将直流电转化为交流电,通过控制开关电路的开度,能够对逆变电路输出的电流的电压等参数进行控制调节。
示例性地,开关电路可选为IGBT管(场效应管)。
如图14所示,在设定周期内,控制磁控管按照占空比,以设定功率运行的步骤,具体包括:
步骤402,控制变频器输出第一电压信号至灯丝和磁控管;
步骤404,根据占空比,对第一电压信号的电压值进行调整。
在该实施方式中,在控制微波发生装置运行的过程中,控制变频器输出第一电压信号至的灯丝和磁控管。通过变频器中的开关电路对输出至灯丝和磁控管的第一电压信号的电压值进行调节,调整的依据为根据设定功率和目标运行功率得到的占空比。具体地,在微波发生装置不需要输出微波的情况下,调低电压第一电压信号的电压值,以使磁控管出的电压值无法达到磁控管的工作电压,从而使微波发生装置停止输出微波。
本申请通过控制微波发生装置中的变频器输出的第一电压信号的电压值,实现了在磁控管处于掉电的情况下,保持灯丝处于上电状态,无需再对微波发生装置是否输出微波的切换过程中对灯丝频繁进行预热,提高了对微波发生装置控制的稳定性,保证了微波发生装置在每次运行时的功率值均能与设定功率相符。在保证微波发生装置运行稳定性的同时,还能够使微波发生装置以较小火力运行。
可以理解的是,变频器输出至灯丝和磁控管出的第一电压信号的参数不同,并且变频器输出至灯丝和磁控管出的第一电压信号的参数能够通过对变频器中的线圈的缠绕匝数的设置进行调整。
如图15所示,在上述任一实施方式中,根据占空比,对第一电压信号的电压值进行调整的步骤,具体包括:
步骤502,根据设定周期和占空比进行比值计算,以得到微波发生装置输出微波的第一时长和微波发生装置停止输出微波的第二时长;
步骤504,根据设定功率,查找与第一电压信号对应的初始电压值;
步骤506,控制变频器输出初始电压值的第一电压信号,直至达到第一时长;
步骤508,控制变频器输出设定电压值的第一电压信号,直至达到第二时长。
其中,初始电压值大于设定电压值,设定电压值大于灯丝的最小运行电压。
在该实施方式中,在控制变频器调整输出的第一电压信号的电压值的过程中,通过设定周期中的总时长与占空比进行计算,能够得到微波发生装置需要输出微波情况下的第一时长,以及微波发生装置不需要输出微波情况下的第二时长。根据功率与电压值的映射关系,查找到设定功率对应的电压值,将查找到的电压值设定为第一电压信号的初始电压值,可以理解的是,初始电压值包括第一电压信号中输出至灯丝的电压值和输出至磁控管的电压值,即控制变频器向灯丝和磁控管输出初始电压值的第一电压信号能够使微波发生装置输出设定功率的微波。在需要控制微波发生装置停止输出微波信号时,则需要降低第一电信号的电压值。
在控制微波发生装置运行的过程中,先控制变频器输出初始电压值的第一电压信号,此时磁控管和灯丝均处于工作状态,此时微波发生装置输出设定功率的微波,当微波发生装置输出设定功率的微波达到第一时长后,控制变频器降低第一电压信号的电压值,即控制变频器输出设定电压值的第一电压信号,此时仅灯丝处于上电状态,即灯丝处于发热状态,而磁控管处于未工作状态,此时 微波发生装置停止输出微波,当微波发生装置停止输出微波达到第二时长,判定微波发生装置完成完整周期的运行。控制微波发生装置循环上述周期内的运行方式,从而实现了周期性间断式地输出设定功率的微波。
其中,设定电压值相较于灯丝的最小运行电压值大,保证了在变频器输出设定电压值的第一电压信号的情况下,灯丝保持上电运行状态,即在微波发生装置停止输出微波时,灯丝处于发热状态,避免灯丝频繁进行预热导致的微波发生装置运行不稳定的问题。
在上述任一实施方式中,第一时长小于等于30毫秒。
在该实施方式中,通过对第一时长的数值范围进行限定,并具体限定在第一时长小于等于30毫秒,使微波发生装置单次输出微波的时长不超过30毫秒。避免了由于微波发生装置单次输出微波的时间过长导致在第一时长内输出功率超过设定功率的问题,提高了微波发生装置以小火力运行的稳定性。
在上述任一实施方式中,设定电压值小于磁控管的起振电压值。
在该实施方式中,通过将设定电压值设定为小于起振电压值,能够使变频器发送设定电压值的第一电压信号时,微波发生装置中的磁控管处的电压值未达到工作电压,从而使微波发生装置在第二时长内不进行微波输出。
在上述任一实施方式中,变频器输出第一电压信号时的载波频率处于设定频率范围内。
在该实施方式中,本申请中的变频器采用谐振方式工作,将变频器工作时的载波频率控制在设定频率范围内,能够保证变频器处于“软开关”状态,减少变频器工作产生的损耗,减少了由于变频器长时间处于高损耗状态下产生的故障,延长了变频器的使用寿命。在控制微波发生装置运行的过程中,变频器的谐振状态不被破坏,实现了微波发生装置能够稳定地以较小火力运行。
如图16所示,在上述任一实施方式中,根据占空比,对第一电压信号的电压值进行调整的步骤之后,还包括:
步骤602,采集变频器处的电流信号和/或第二电压信号;
步骤604,根据电流信号和/或第二电压信号,对第一电压信号对应的电压值进行调整。
在该实施方式中,在控制微波发生装置按照占空比输出设定功率的微波之后,根据变频器处的电流信号对应的电流值和/或第二电压信号对应的电压值对变频器输出的第一电压信号进行闭环控制。即结合变频器处的电流值和/或电压值对变频器中开关电路进行闭环控制,从而保证微波发生装置以设定功率输出微波,进一步提高了微波发生装置运行的稳定性。
如图17所示,在上述任一实施方式中,根据目标运行功率和设定功率,确定微波发生装置输出微波的占空比的步骤,具体包括:
步骤702,计算目标运行功率和设定功率的比例关系;
步骤704,根据比例关系确定微波发生装置输出微波的占空比。
在该实施方式中,将目标运行功率与设定功率进行差值计算,得到功率差值,再将目标运行功率与功率差值进行比值计算,计算得到能够反映出目标运行功率与设定功率之间的比例关系的比值,将上述比值作为微波发生装置输出微波的占空比。
在一些实施方式中,微波发生装置的设定功率设置为500W,目标运行功率为100W。将设定功率与目标运行功率进行差值计算,以得到功率差值为400W,再将功率差值与目标运行功率进行比值计算,以得到比值为1:4,从而确定占空比设置为1:4,还可以将占空比设置为3:12。
在另外一些实施方式中,微波发生装置的设定功率设置为600W,目标运行功率为150W。将设定功率与目标运行功率进行差值计算,以得到功率差值为450W,再将功率差值与目标运行功率进行比值计算,以得到比值为1:3,从而确定占空比设置为1:3,还可以将占空比设置为3:9。
在另外一些实施方式中,微波发生装置的设定功率设置为600W,目标运行功率为200W。将设定功率与目标运行功率进行差值计算,以得到功率差值为400W,再将功率差值与目标运行功率进行比值计算,以得到比值为1:2,从而确定占空比设置为1:2,还可以将占空比设置为1:2。
在另外一些实施方式中,微波发生装置的设定功率设置为600W,目标运行功率为300W。将设定功率与目标运行功率进行差值计算,以得到功率差值为300W,再将功率差值与目标运行功率进 行比值计算,以得到比值为1:1,从而确定占空比设置为1:1,还可以将占空比设置为1:1。
实施方式二:
如图18所示,本申请的第二个实施方式中提供了一种微波发生装置的控制方法,具体包括:
步骤802,接收目标运行功率;
步骤804,判断目标运行功率是否小于设定功率,判断结果为是则执行步骤806,判断结果为否则执行步骤818;
步骤806,计算目标运行功率和设定功率的比例关系;
步骤808,根据比例关系确定微波发生装置输出微波的占空比;
步骤810,根据设定周期和占空比进行比值计算,以得到微波发生装置输出微波的第一时长和微波发生装置停止输出微波的第二时长;
步骤812,根据设定功率,查找与第一电压信号对应的初始电压值;
步骤814,控制变频器输出初始电压值的第一电压信号,直至达到第一时长;
步骤816,控制变频器输出设定电压值的第一电压信号,直至达到第二时长;
步骤818,控制控制微波发生装置以目标运行功率运行;
步骤820,判断是否接收到停机指令,判断结果为否则返回执行步骤814,判断结果为是则执行步骤822;
步骤822,控制微波发生装置停止运行。
在该实施方式中,本申请在接收到需要控制微波发生装置以较小火力运行的情况下,即微波发生装置以小于设定功率的功率运行的情况下,通过控制微波发生装置以设定功率,按照得到的占空比周期性地输出微波。由于设定功率根据微波发生装置硬件允许的最小功率得到,故控制微波发生装置按照设定功率运行能够避免微波发生装置中的硬件损坏,并且通过控制微波发生装置周期性地输出微波,实现了微波发生装置能够以较小火力运行。进而实现了在避免微波发生装置损坏的前提下,使微波发生装置能够以小于微波发生装置可调功率范围的火力运行的效果。
在控制变频器调整输出的第一电压信号的电压值的过程中,通过设定周期中的总时长与占空比进行计算,能够得到微波发生装置需要输出微波情况下的第一时长,以及微波发生装置不需要输出微波情况下的第二时长。根据功率与电压值的映射关系,查找到设定功率对应的电压值,将查找到的电压值设定为第一电压信号的初始电压值,可以理解的是,初始电压值包括第一电压信号中输出至灯丝的电压值和输出至磁控管的电压值,即控制变频器向灯丝和磁控管输出初始电压值的第一电压信号能够使微波发生装置输出设定功率的微波。在需要控制微波发生装置停止输出微波信号时,则需要降低第一电信号的电压值。
在控制微波发生装置运行的过程中,先控制变频器输出初始电压值的第一电压信号,此时磁控管和灯丝均处于工作状态,此时微波发生装置输出设定功率的微波,当微波发生装置输出设定功率的微波达到第一时长后,控制变频器降低第一电压信号的电压值,即控制变频器输出设定电压值的第一电压信号,此时仅灯丝处于上电状态,即灯丝处于发热状态,而磁控管处于未工作状态,此时微波发生装置停止输出微波,当微波发生装置停止输出微波达到第二时长,判定微波发生装置完成完整周期的运行。控制微波发生装置循环上述周期内的运行方式,从而实现了周期性间断式地输出设定功率的微波。
其中,设定电压值相较于灯丝的最小运行电压值大,保证了在变频器输出设定电压值的第一电压信号的情况下,灯丝保持上电运行状态,即在微波发生装置停止输出微波时,灯丝处于发热状态,避免灯丝频繁进行预热导致的微波发生装置运行不稳定的问题。
在控制微波发生装置按照占空比输出设定功率的微波之后,根据变频器处的电流信号对应的电流值和/或第二电压信号对应的电压值对变频器输出的第一电压信号进行闭环控制。即结合变频器处的电流值和/或电压值对变频器中开关电路进行闭环控制,从而保证微波发生装置以设定功率输出微波,进一步提高了微波发生装置运行的稳定性。
将目标运行功率与设定功率进行差值计算,得到功率差值,再将目标运行功率与功率差值进行比值计算,计算得到能够反映出目标运行功率与设定功率之间的比例关系的比值,将上述比值作为 微波发生装置输出微波的占空比。
在上述实施方式中,第一时长小于等于30毫秒。
在该实施方式中,通过对第一时长的数值范围进行限定,并具体限定在第一时长小于等于30毫秒,使微波发生装置单次输出微波的时长不超过30毫秒。避免了由于微波发生装置单次输出微波的时间过长导致在第一时长内输出功率超过设定功率的问题,提高了微波发生装置以小火力运行的稳定性。
在上述任一实施方式中,设定电压值小于磁控管的起振电压值。
在该实施方式中,通过将设定电压值设定为小于起振电压值,能够使变频器发送设定电压值的第一电压信号时,微波发生装置中的磁控管处的电压值未达到工作电压,从而使微波发生装置在第二时长内不进行微波输出。
在上述任一实施方式中,变频器输出第一电压信号时的载波频率处于设定频率范围内。
在该实施方式中,本申请中的变频器采用谐振方式工作,将变频器工作时的载波频率控制在设定频率范围内,能够保证变频器处于“软开关”状态,减少变频器工作产生的损耗,减少了由于变频器长时间处于高损耗状态下产生的故障,延长了变频器的使用寿命。在控制微波发生装置运行的过程中,变频器的谐振状态不被破坏,实现了微波发生装置能够稳定地以较小火力运行。
实施方式三:
如图19所示,本申请的第三个实施方式中提供了一种烹饪装置900,包括:微波发生装置910、存储器920和处理器930。
其中,存储器920用于存储程序或指令;处理器930与微波发生装置910相连,用于执行程序或指令,程序或指令被处理器930执行时实现如实施方式一或实施方式二中的微波发生装置的控制方法的步骤。
本申请提供的烹饪装置900包括微波发生装置910,微波发生装置910与处理器930相连,处理器930能够对微波发生装置910的运行控制。烹饪装置900还包括存储器920,存储器920中存储有指令或程序,处理器930能够执行存储中存储的指令或程序,从而对微波发生装置910进行控制。
响应于用于控制微波发生装置910运行的控制指令开始对微波发生装置910进行控制,对控制指令进行解析,以确定目标运行功率。设定功率为根据微波发生装置910中硬件所能承受的最小功率进行预设的,将目标运行功率与设定功率进行数值进行比较。在检测到目标运行功率的功率值大于等于设定功率的功率值,判定微波发生装置910能够以目标运行功率运行,从而控制微波发生装置910以目标运行功率运行。在检测到目标运行功率的功率值比设定功率的功率值小,判定如果直接控制微波发生装置910以目标运行功率进行输出,可能导致微波发生装置910中的硬件产生损伤,故不能直接控制微波发生装置910以目标运行功率运行,此时,通过设定功率和目标运行功率能够确定微波发生装置910按照设定功率输出微波时所需的占空比。根据得到的占空比,控制微波发生装置910按照设定功率运行,从而周期性地输出微波。
本申请在接收到需要控制微波发生装置910以较小火力运行的情况下,即微波发生装置910以小于设定功率的功率运行的情况下,通过控制微波发生装置910以设定功率,按照得到的占空比周期性地输出微波。由于设定功率根据微波发生装置910硬件允许的最小功率得到,故控制微波发生装置910按照设定功率运行能够避免微波发生装置910中的硬件损坏,并且通过控制微波发生装置910周期性地输出微波,实现了微波发生装置910能够以较小火力运行。进而实现了在避免微波发生装置910损坏的前提下,使微波发生装置910能够以小于微波发生装置910可调功率范围的火力运行的效果。
值得说明的是,微波发生装置中包括磁控管和灯丝。在上述技术方案中,需要控制微波发生装置输出微波时,则控制磁控管处于其工作电压下,并控制灯丝也处于其工作电压下,即灯丝持续发热,且磁控管输出微波。需要控制微波发生装置停止输出微波时,则向微波发生装置输入低于磁控管的工作电压的电流,使磁控管处于停止运行状态,灯丝则处于持续发热的状态,即微波发生装置处于“准备输出微波”的状态。通过上述方式控制微波发生装置是否输出微波,实现了在控制微波 发生装置以设定占空比输出微波的过程中,无需再对微波发生装置是否输出微波的切换过程中对灯丝频繁进行预热,提高了对微波发生装置控制的稳定性。
在一些实施方式中,微波发生装置910硬件允许的最小功率为500W(瓦特),并将设定功率设置为500W,占空比设置为1:4。
在这些实施方式中,用户向微波发生装置910发送控制指令,控制指令中带有的目标运行功率为100W。则将一个周期的总时长设置为50MS,再一个周期内控制微波发生装置910以500W的功率持续输出微波达到10MS(毫秒)后,控制微波发生装置910停止输出微波达到40MS。通过控制微波发生装置910按照上述周期和设定功率数据微波,从而使微波发生装置910在整个运行过程中所做的功与微波发生装置910以100W持续运行所作的功大致相同,从而实现了在不需要控制微波发生装置910以低于设定功率的目标运行功率运行的情况下,依然能够输出较小火力。
如图20所示,微波发生装置910包括:磁控管912、灯丝914和变频器200。
其中,灯丝914与磁控管912相连。变频器200与磁控管912和灯丝914相连,变频器200用于向磁控管912和灯丝914供电。
在该实施方式中,微波发生装置910包括灯丝914和磁控管912,磁控管912的一端设置为,灯丝914设置在磁控管912上,作为磁控管912。磁控管912通电工作时,灯丝914被加热,同时在灯丝914与磁控管912之间形成高压电场,在电场作用下,灯丝914向磁控管912发射电子,磁控管912在接收到电子后产生电流,从而磁控管912能够输出微波。其中,灯丝914的工作电压为3V(伏特),工作电流为10A(安培),磁控管912的工作电压为4000V。
可以理解的是,微波发生装置910在灯丝914和磁控管912均通电的情况下才会输出微波。
在上述任一实施方式中,变频器200包括整流电路202和逆变电路204。
其中,整流电路202连接至电源;逆变电路204的输入端与整流电路202相连,逆变电路204的第一输出端与磁控管912相连,逆变电路204的第二输出端与灯丝914相连。
在该实施方式中,微波发生装置910包括变频器200,变频器200用于对微波发生装置910进行供电,具体地,变频器200能够对微波发生装置910中的磁控管912和灯丝914进行供电。通过为变频器200的控制,从而实现控制磁控管912和灯丝914的运行。
具体地,变频器200包括整流电路202和逆变电路204,整流电路202的第一端与市电电源相连,整流电路202的第二端与逆变电路204的第一端相连,逆变电路204的第二端与磁控管912相连,逆变电路204的第三端与灯丝914相连,其中,逆变电路204的第一端配置为输入端,逆变电路204的第二端配置为第一输出端,逆变电路204的第三端配置为第二输出端。整流电路202能够将市电电源的交流电转化为直流电,逆变电路204能够将直流电转化为交流电。
在上述任一实施方式中,变频器200还包括开关电路206。
其中,开关电路206的第一端与整流电路202相连,开关电路206的第二端与逆变电路204相连,开关电路206的控制端与处理器930相连。
在该实施方式中,开关电路206设置于整流电路202和逆变电路204之间。整流电路202能够将市电电源的交流电转化为直流电,逆变电路204能够将直流电转化为交流电,通过控制开关电路206的开度,能够对逆变电路204输出的电流的电压等参数进行控制调节。
开关电路206与处理器930相连,处理器930能够通过控制开关电路206的开度从而对变频器200进行控制,进而对变频器200输出至灯丝914和磁控管912处的电压信号进行控制。
具体地,开关电路206可选为IGBT管(场效应管)。
在上述任一实施方式中,微波发生装置910还包括:电压获取装置950,与变频器200相连,用于采集变频器200处的第二电压信号;电流获取装置940,与变频器200相连,用于采集变频器200处的电流信号。
在该实施方式中,电流获取装置940能够采集变频器200在运行过程中的电流信号,并确定电流信号对应的电流值。电压获取装置950能够采集变频器200在运行过程中的电压信号,并确定电流信号对应的电压值。
在控制微波发生装置910按照占空比输出设定功率的微波之后,根据变频器200处的电流信号 对应的电流值和/或第二电压信号对应的电压值对变频器200输出的第一电压信号进行闭环控制。即结合变频器200处的电流值和/或电压值对变频器200中开关电路206进行闭环控制,从而保证微波发生装置910以设定功率输出微波,进一步提高了微波发生装置910运行的稳定性。
实施方式四:
本申请的第四个实施方式中提供了一种可读存储介质,其上存储有程序,程序被处理器执行时实现如上述任一实施方式中的微波发生装置的控制方法,因而具有上述任一实施方式中的微波发生装置的控制方法的全部有益技术效果。
其中,可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请的各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
需要明确的是,在本申请的权利要求书、说明书和水明书附图中,术语“多个”则指两个或两个以上,除非有额外的明确限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了更方便地描述本申请和使得描述过程更加简便,而不是为了指示或暗示所指的装置或元件必须具有所描述的特定方位、以特定方位构造和操作,因此这些描述不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,举例来说,“连接”可以是多个对象之间的固定连接,也可以是多个对象之间的可拆卸连接,或一体地连接;可以是多个对象之间的直接相连,也可以是多个对象之间的通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据上述数据地具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (25)

  1. 一种微波加热装置,其特征在于,所述微波加热装置包括:
    电源模块,用于输出电压,所述电压为直流电压;
    放大模块,连接所述电源模块,所述放大模块用于对所述电压加压,所述放大模块包括开关元件;
    微波源,连接所述放大模块,用于在加压后的所述电压驱动下输出微波信号;
    控制模块,用于检测所述电源模块的所述电压以及所述放大模块的谐振电压,并根据所述电压以及所述谐振电压控制所述开关元件的通断状态。
  2. 根据权利要求1所述的微波加热装置,其特征在于,所述控制模块用于根据所述谐振电压与所述电压的比例关系,控制所述开关元件的通断状态。
  3. 根据权利要求2所述的微波加热装置,其特征在于,在所述比例关系小于第一阈值的情况下,所述控制模块增大所述开关元件的导通宽度,其中,所述第一阈值与所述电压有关。
  4. 根据权利要求2所述的微波加热装置,其特征在于,所述比例关系大于第二阈值的情况下,所述控制模块减小所述开关元件的导通宽度,其中,所述第二阈值与所述开关元件的耐压值和所述电压有关。
  5. 根据权利要求1所述的微波加热装置,其特征在于,所述放大模块包括初级绕组和次级绕组,所述微波加热装置包括与所述初级绕组连接的检测绕组,以通过所述检测绕组获得所述谐振电压。
  6. 根据权利要求1所述的微波加热装置,其特征在于,所述开关元件包括集电极,所述微波加热装置包括与所述集电极连接的谐振电压检测电路,以根据所述集电极的电压获得所述谐振电压。
  7. 一种控制方法,其特征在于,所述控制方法包括:
    检测电源模块的电压以及所述放大模块的谐振电压;
    根据所述电压以及所述谐振电压,控制微波加热装置的开关元件的通断状态。
  8. 根据权利要求7所述的控制方法,其特征在于,所述根据所述电压以及所述谐振电压,控制微波加热装置的开关元件的通断状态,包括:
    在所述比例关系小于第一阈值的情况下,增大所述开关元件的导通宽度,其中,所述第一阈值与所述电压有关。
  9. 根据权利要求7所述的控制方法,其特征在于,所述根据所述电压以及所述谐振电压,控制微波加热装置的开关元件的通断状态,包括:
    所述比例关系大于第二阈值的情况下,减小所述开关元件的导通宽度,其中,所述第二阈值与所述开关元件的耐压值和所述电压有关。
  10. 一种包含计算机程序的非易失性计算机可读存储介质,其特征在于,在所述计算机程序被一个或多个处理器执行的情况下,实现权利要求7-9任一项所述的控制方法。
  11. 一种微波发生装置的控制方法,其特征在于,包括:
    接收所述微波发生装置的目标运行功率;
    确定所述目标运行功率小于设定功率,根据所述目标运行功率和设定功率确定所述微波发生装置输出微波的占空比;
    控制所述微波发生装置以所述设定功率,按照所述占空比运行。
  12. 根据权利要求11所述的微波发生装置的控制方法,其特征在于,所述微波发生装置包括磁控管和灯丝,所述控制所述微波发生装置以所述设定功率,按照所述占空比运行的步骤,具体包括:
    在设定周期内,控制所述灯丝持续发热;
    在所述灯丝发热的过程中,控制所述磁控管以所述设定功率按照所述占空比运行。
  13. 根据权利要求12所述的微波发生装置的控制方法,其特征在于,所述微波发生装置还包括变频器,所述在所述灯丝发热的过程中,控制所述磁控管以所述设定功率按照所述占空比运行的步骤,具体包括:
    在所述设定周期内,控制所述变频器输出第一电压信号至所述灯丝和所述磁控管;
    根据所述占空比,调整所述第一电压信号的电压值。
  14. 根据权利要求13所述的微波发生装置的控制方法,其特征在于,所述根据所述占空比,调整所述第一电压信号的电压值的步骤,具体包括:
    根据所述设定周期和所述占空比,确定所述微波发生装置输出微波的第一时长和所述微波发生装置停止输出微波的第二时长;
    根据所述设定功率确定所述第一电压信号对应的初始电压值;
    控制所述变频器输出第一电压信号保持初始电压值,直至达到所述第一时长;
    控制所述变频器输出第一电压信号的电压值调整至设定电压值,直至达到所述第二时长;
    其中,所述初始电压值大于所述设定电压值,所述设定电压值大于所述灯丝的最小运行电压。
  15. 根据权利要求14所述的微波发生装置的控制方法,其特征在于,
    所述第一时长小于等于30毫秒。
  16. 根据权利要求14所述的微波发生装置的控制方法,其特征在于,
    所述设定电压值小于所述磁控管的起振电压值。
  17. 根据权利要求16所述的微波发生装置的控制方法,其特征在于,
    所述变频器输出所述第一电压信号时的载波频率处于设定频率范围内。
  18. 根据权利要求13所述的微波发生装置的控制方法,其特征在于,所述根据所述占空比,调整所述电压信号的电压值的步骤之前,还包括:
    采集所述变频器处的电流信号和/或第二电压信号;
    根据所述电流信号和/或所述第二电压信号,调整所述第一电压信号对应的电压值。
  19. 根据权利要求11至18中任一项所述的微波发生装置的控制方法,其特征在于,所述根据所述目标运行功率和设定功率确定所述微波发生装置输出微波的占空比的步骤,具体包括:
    计算所述目标运行功率和所述设定功率的比例关系,根据所述比例关系确定所述微波发生装置输出微波的占空比。
  20. 一种烹饪装置,其特征在于,包括:
    微波发生装置;
    存储器,用于存储程序或指令;
    处理器,与所述微波发生装置相连,用于执行所述程序或指令,所述程序或指令被所述处理器执行时实现如权利要求11至19中任一项所述的微波发生装置的控制方法的步骤。
  21. 根据权利要求20所述的烹饪装置,其特征在于,所述微波发生装置包括:
    磁控管;
    灯丝,与所述磁控管相连;
    变频器,所述变频器与所述磁控管和所述灯丝相连,用于向所述磁控管和所述灯丝供电。
  22. 根据权利要求21所述的烹饪装置,其特征在于,所述变频器包括:
    整流电路,所述整流电路连接至电源;
    逆变电路,所述逆变电路的输入端与所述整流电路相连,所述逆变电路的第一输出端与所述磁控管相连,所述逆变电路的第二输出端与所述灯丝相连。
  23. 根据权利要求22所述的烹饪装置,其特征在于,所述变频器还包括:
    开关电路,所述开关电路的第一端与所述整流电路相连,所述开关电路的第二端与所述逆变电路相连,所述开关电路的控制端与所述处理器相连。
  24. 根据权利要求21至23中任一项所述的烹饪装置,其特征在于,所述微波发生装置还包括:
    电压获取装置,与所述变频器相连,用于采集所述变频器处的第二电压信号;
    电流获取装置,与所述变频器相连,用于采集所述变频器处的电流信号。
  25. 一种可读存储介质,其特征在于,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求11至19中任一项所述的微波发生装置的控制方法的步骤。
PCT/CN2022/089873 2021-06-21 2022-04-28 微波加热装置、控制方法、微波发生装置的控制方法、烹饪装置和介质 WO2022267689A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110683736.3A CN113382492B (zh) 2021-06-21 2021-06-21 微波发生装置的控制方法、烹饪装置和可读存储介质
CN202110683736.3 2021-06-21
CN202111268724.0 2021-10-29
CN202111268724.0A CN113923812B (zh) 2021-10-29 2021-10-29 微波加热装置、控制方法和存储介质

Publications (1)

Publication Number Publication Date
WO2022267689A1 true WO2022267689A1 (zh) 2022-12-29

Family

ID=84545216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089873 WO2022267689A1 (zh) 2021-06-21 2022-04-28 微波加热装置、控制方法、微波发生装置的控制方法、烹饪装置和介质

Country Status (1)

Country Link
WO (1) WO2022267689A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054453A (ja) * 2009-09-03 2011-03-17 Panasonic Corp マグネトロン駆動用電源
CN104764301A (zh) * 2015-04-23 2015-07-08 江南大学 一种输出功率连续线性可调的微波干燥系统
CN104936327A (zh) * 2015-07-08 2015-09-23 王春芳 一种微波炉用磁控管电源功率传输与控制方法
CN107770891A (zh) * 2017-10-25 2018-03-06 广东美的厨房电器制造有限公司 磁控管灯丝控制电路、磁控管供电电路
CN108663566A (zh) * 2017-04-01 2018-10-16 佛山市顺德区美的电热电器制造有限公司 电磁感应的谐振电压的检测装置和方法
CN113382492A (zh) * 2021-06-21 2021-09-10 广东美的厨房电器制造有限公司 微波发生装置的控制方法、烹饪装置和可读存储介质
CN113923812A (zh) * 2021-10-29 2022-01-11 广东美的厨房电器制造有限公司 微波加热装置、控制方法和存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011054453A (ja) * 2009-09-03 2011-03-17 Panasonic Corp マグネトロン駆動用電源
CN104764301A (zh) * 2015-04-23 2015-07-08 江南大学 一种输出功率连续线性可调的微波干燥系统
CN104936327A (zh) * 2015-07-08 2015-09-23 王春芳 一种微波炉用磁控管电源功率传输与控制方法
CN108663566A (zh) * 2017-04-01 2018-10-16 佛山市顺德区美的电热电器制造有限公司 电磁感应的谐振电压的检测装置和方法
CN107770891A (zh) * 2017-10-25 2018-03-06 广东美的厨房电器制造有限公司 磁控管灯丝控制电路、磁控管供电电路
CN113382492A (zh) * 2021-06-21 2021-09-10 广东美的厨房电器制造有限公司 微波发生装置的控制方法、烹饪装置和可读存储介质
CN113923812A (zh) * 2021-10-29 2022-01-11 广东美的厨房电器制造有限公司 微波加热装置、控制方法和存储介质

Similar Documents

Publication Publication Date Title
JP3884664B2 (ja) 誘導加熱装置
US5642268A (en) Power supply for a magnetron having controlled output power and narrow bandwidth
JP5506547B2 (ja) 誘導加熱調理器
JP5872235B2 (ja) 電磁誘導加熱装置
JP4391314B2 (ja) 高周波加熱装置
EP2525485B1 (en) Method to increase the regulation range of AC-AC Quasi Resonant (QR) converters
KR920004033B1 (ko) 전압공진형 스위칭전원장치
US20190029078A1 (en) Determining resonant frequency for quasi-resonant induction cooking devices
CN113068283B (zh) 微波加热系统、微波电器、控制方法和存储介质
WO2022267689A1 (zh) 微波加热装置、控制方法、微波发生装置的控制方法、烹饪装置和介质
CN113382492B (zh) 微波发生装置的控制方法、烹饪装置和可读存储介质
JP3191597B2 (ja) 高周波加熱装置
JP2002270360A (ja) 高周波加熱装置
JP2006294431A (ja) 誘導加熱装置
JP3833159B2 (ja) 誘導加熱装置
JP7365682B2 (ja) 高周波加熱装置
CN112888100B (zh) 半桥电磁器具的电磁加热控制方法和半桥电磁器具
JPH0567493A (ja) マイクロ波加熱用電源装置
JP3404894B2 (ja) 高周波加熱調理器
JP2004171934A (ja) 誘導加熱装置
JPH0432187A (ja) 高周波加熱調理装置
JPH0528717Y2 (zh)
KR100361027B1 (ko) 전자렌지
JPH0635440Y2 (ja) 高周波加熱装置
JPH03201388A (ja) 高周波加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22827188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22827188

Country of ref document: EP

Kind code of ref document: A1