WO2022266919A1 - 一种n,n-二烃基酰胺羧酸及其制备方法和应用 - Google Patents

一种n,n-二烃基酰胺羧酸及其制备方法和应用 Download PDF

Info

Publication number
WO2022266919A1
WO2022266919A1 PCT/CN2021/102010 CN2021102010W WO2022266919A1 WO 2022266919 A1 WO2022266919 A1 WO 2022266919A1 CN 2021102010 W CN2021102010 W CN 2021102010W WO 2022266919 A1 WO2022266919 A1 WO 2022266919A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
formula
dihydrocarbyl
compound
branched
Prior art date
Application number
PCT/CN2021/102010
Other languages
English (en)
French (fr)
Inventor
王艳良
肖文涛
吴玉远
林锦池
Original Assignee
福建省长汀金龙稀土有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建省长汀金龙稀土有限公司 filed Critical 福建省长汀金龙稀土有限公司
Priority to US17/639,122 priority Critical patent/US20230331662A1/en
Priority to CN202180004549.6A priority patent/CN114206828B/zh
Priority to AU2021310842A priority patent/AU2021310842B2/en
Priority to EP21863067.1A priority patent/EP4155291A4/en
Priority to PCT/CN2021/102010 priority patent/WO2022266919A1/zh
Priority to CA3150358A priority patent/CA3150358A1/en
Priority to JP2022539088A priority patent/JP7485769B2/ja
Publication of WO2022266919A1 publication Critical patent/WO2022266919A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/70Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/72Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms
    • C07C235/76Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups and doubly-bound oxygen atoms bound to the same carbon skeleton with the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/47Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a hydrogen atom or to a carbon atom of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/05Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/02Preparation of carboxylic acid amides from carboxylic acids or from esters, anhydrides, or halides thereof by reaction with ammonia or amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/49Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to a carbon atom of an acyclic unsaturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/32Carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of organic compound synthesis, in particular to an N,N-dihydrocarbyl amide carboxylic acid and its preparation method and application.
  • Rare earth elements refer to the 15 lanthanide elements with atomic numbers 57 to 71 in the periodic table of elements, as well as the 21st element scandium and the 39th element yttrium with similar chemical properties, a total of 17 metal elements. Rare earth elements have unique magnetic, optical, and electrical properties, and are known as "industrial vitamins". They are widely used in metallurgy, petrochemicals, glass ceramics, energy materials, and military industries. They are important foundational raw materials for the development of human society.
  • the mining of natural rare earth ores first requires the use of a leaching agent to leach rare earth ions to obtain a rare earth leach solution, and then extract and separate the rare earth ions one by one by means of solvent extraction.
  • extractant is the core technology in the solvent extraction process.
  • the rare earth metal extractant for industrial application needs to consider multiple factors, such as extraction selectivity, extraction rate, extraction capacity, compound stability, solubility, stripping performance, and safety.
  • excellent extractants can be said to be one in a million.
  • a good extractant can simplify the production process, improve separation efficiency, reduce production costs, and reduce pollution emissions.
  • organic phosphine extractants include 2-ethylhexylphosphonic acid mono(2-ethylhexyl ) ester (P507), bis(2-ethylhexyl)phosphonic acid (P204), bis(2,4,4-trimethylpentyl)phosphinic acid (C272), tributyl phosphonate (TBP), etc.
  • amine extractants include tri-n-octylamine (N235), secondary carbon primary amine (N1923), methyl trioctyl ammonium chloride (N263), etc.
  • carboxylic acid extractants include naphthenic acid, neodecanoic acid, secondary Octylphenoxyacetic acid (CA-12), etc.
  • P507 is the most widely used extractant in the rare earth separation industry, but it has a low separation coefficient between adjacent rare earth elements, such as the separation coefficient of praseodymium and neodymium is only 1.4, which is It makes it difficult to separate the praseodymium and neodymium elements.
  • Naphthenic acid is mainly used in the separation and purification of yttrium oxide.
  • naphthenic acid is a by-product of the petrochemical industry, and its components are complex. It needs to be extracted under high pH conditions. After long-term use, its composition is prone to change, resulting in organic The phase concentration decreases, affecting the stability of the separation process.
  • CA-12 extractant has been tried to replace naphthenic acid.
  • This extractant can effectively separate yttrium from all lanthanide elements in the extraction and separation process of rare earth elements, and can overcome the problem of lower organic phase concentration when naphthenic acid extracts and separates yttrium. , but the separation coefficient of heavy rare earth elements and yttrium in the extraction system is low, which makes it difficult to separate heavy rare earth elements and yttrium, so it is necessary to design more stages of extraction tanks to achieve the separation effect.
  • Amide carboxylic acid is a new type of extraction agent containing N and O ligands. It has certain selectivity for the extraction of transition metal ions, and has a relatively stable chemical structure and fast extraction kinetics. It is a promising extraction agent. agent.
  • CN109824532A discloses a new process for synthesizing N,N,N',N'-tetraoctyl-3-oxoglutaramide (TODGA) .
  • the steps are: (1) Diglycyl acid reacts with SOCl to generate Diglycyl chloride, and then reacts with amine to generate part of TODGA; (2) After the by-products are removed from water-soluble components, the monooxaamide carboxylate can be obtained by separation (3) Utilize monooxaamide carboxylic acid to react with amine to regenerate part of TODGA.
  • the process combines the characteristics of the existing process and has a high yield.
  • CN104529861A provides a method for synthesizing imide-modified low-molecular-weight novolac resin, comprising the following steps: mixing N,N-dimethylformamide or N,N-dimethylformamide as the main In the solvent, p-aminophenol reacts with the acid anhydride of dibasic carboxylic acid to obtain amide carboxylic acid phenolic compound, and then the amide carboxylic acid phenolic compound is reacted with 2,6-dimethylol p-methylol under the catalysis of an acidic catalyst such as oxalic acid The phenol undergoes polycondensation reaction and dehydration ring-closing reaction to obtain imide-modified low molecular weight novolak resin.
  • CN106892835A discloses a bis-diglycylamide ligand and its preparation method and a lanthanide/actinide separation and extraction system containing a bis-diglycylamide ligand.
  • the extraction system is formed by mixing an organic phase and water in equal volumes.
  • the organic phase contains N,N,N',N',N",N"-hexa-n-octyl-nitrotriacetamide with a molar concentration of 0.1-0.7mol/L as an extractant; N,N,N',N',N",N"-hexa-n-octyl-nitrotriacetamide has a unique non-N heterocyclic triangular structure, which can not only greatly improve the radiation stability of the extraction system , and will not produce secondary pollutants, which is beneficial to environmental protection; in the extraction system, the water-soluble bisglycylamide ligand is used as a masking agent, which is more inclined to complex with lanthanides, and can effectively extract lanthanides Masked in the aqueous phase, enabling selective separation of actinides and lanthanides.
  • the object of the present invention is to provide a N,N-dihydrocarbylamide carboxylic acid and its preparation method and application.
  • the N,N-dihydrocarbyl amide carboxylic acid can be used as an extractant for separating and purifying selected rare earth elements from a mixed rare earth feed liquid, especially extracting and separating yttrium from a mixture of rare earth elements.
  • the present invention provides a N,N-dihydrocarbyl amide carboxylic acid
  • the N,N-dihydrocarbyl amide carboxylic acid has the structure shown in the following formula I:
  • R 1 and R 2 are independently C6 and above (such as C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C22, C24 , C26, C28, C30, C35, C40, etc.) straight or branched, saturated or unsaturated, substituted or unsubstituted hydrocarbon groups;
  • R 3 is a linear or branched, saturated or unsaturated, substituted or unsubstituted hydrocarbon group
  • n is a natural number of 1 to 10 (eg, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, etc.).
  • the present invention provides a class of amide carboxylic acid compounds with the structure shown in formula I as a carboxylic acid-type extractant for separating rare earth metals and an extraction and separation method thereof. Such compounds have not been reported as rare earth metal extractants.
  • This type of compound has a high separation factor for rare earth elements as a metal extractant, especially for the separation of heavy rare earth and yttrium elements, and can overcome the shortcomings of naphthenic acid separation of yttrium.
  • the hydrocarbon group is any one of substituted alkyl, substituted alkenyl, and substituted alkynyl
  • the substituents of the alkyl, alkenyl, and alkynyl are each independently selected from halogen, hydroxyl, carboxyl , acyl, ester, ether, alkoxy, phenyl, phenoxy, amino, amido, nitro, cyano, mercapto, sulfonyl, thiol, imino, sulfonyl or sulfanyl Any one or a combination of at least two of them; preferably, the substituent is halogen.
  • said R 1 and R 2 are independently C6-C30 linear or branched, saturated or unsaturated, substituted or unsubstituted hydrocarbon groups, preferably C6-C18 linear or branched, saturated or unsubstituted Saturated, substituted or unsubstituted hydrocarbyl.
  • the R 1 and R 2 are independently linear or branched, saturated or unsaturated, unsubstituted hydrocarbon groups above C6, such as (C6, C7, C8, C9, C10, C11, C12, C13, C14 , C15, C16, C17, C18, C19, C20, C22, C24, C26, C28, C30, C35, C40, etc.) straight or branched and unsubstituted alkyl, alkenyl, alkynyl, preferably C6- C30 branched, saturated or unsaturated, unsubstituted hydrocarbon group, more preferably C6-C10 branched, saturated or unsaturated, unsubstituted hydrocarbon group
  • said R 1 and R 2 are independently C6-C30 linear or branched, unsubstituted alkyl, preferably C6-C18 linear or branched, unsubstituted alkyl, more preferably C6-C10 linear or branched, unsubstituted alkyl.
  • n is a natural number of 1-6.
  • said R 1 and R 2 are independently Among them, 2 ⁇ a+b ⁇ 10, Represents the group attachment position.
  • said R 1 and R 2 are independently any one of the following groups, wherein, Representative group connection position:
  • the R3 is selected from C6 or more (such as C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C30, C40, etc.)
  • a linear or branched, saturated or unsaturated, substituted or unsubstituted hydrocarbon group preferably a C6-C30 linear or branched, saturated or unsaturated, substituted or unsubstituted hydrocarbon group.
  • the R3 is selected from C6 or more (such as C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, etc.) straight chain or branched
  • the chain unsaturated unsubstituted hydrocarbon group is preferably a C10 or higher straight-chain alkenyl group, more preferably a C10-C18 straight-chain alkenyl group.
  • said R 3 is any one of the following groups, wherein, Representative group connection position:
  • the present invention provides a method for preparing N,N-dihydrocarbylamide carboxylic acid as described in the first aspect, the method for preparing N,N-dihydrocarbylamide carboxylic acid is as follows:
  • the N,N-dihydrocarbyl secondary amine shown in formula II and the dianhydride compound shown in formula III are mixed and reacted to obtain the N,N-dihydrocarbyl amide carboxylic acid shown in formula I.
  • the reaction formula is as follows:
  • n is a natural number from 1 to 10;
  • N,N-dihydrocarbyl secondary amine shown in formula II and the acid chloride anhydride compound shown in formula IV are mixed and reacted to obtain the N,N-dihydrocarbyl amide carboxylic acid shown in formula I, and the reaction formula is as follows:
  • R 1 , R 2 , R 3 are the groups defined in the first aspect, and n is a natural number ranging from 1 to 10.
  • the molar ratio of the N,N-dihydrocarbyl secondary amine represented by formula II to the dianhydride compound represented by formula III is 1:(0.8-1.2), such as 1:0.8, 1:0.9, 1:1, 1:1.1, 1:1.2, etc.
  • the molar ratio of the N,N-dihydrocarbyl secondary amine represented by formula II to the acid chloride anhydride compound represented by formula IV is 1:(0.8-1.2), such as 1:0.8, 1:0.9, 1:1, 1:1.1, 1:1.2, etc.
  • the temperature for the mixed reaction of the N,N-dihydrocarbyl secondary amine represented by formula II and the dianhydride compound represented by formula III is 0-125°C, for example, 0°C, 5°C, 10°C, 15°C °C, 20°C, 25°C, 30°C, 35°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, etc.
  • the mixing reaction time is 0.5-4h, such as 0.5h, 0.6h, 0.8h, 1h, 1.2h, 1.4h, 1.6h, 1.8h, 2h, 2.2h, 2.4h, 2.6h, 2.8h, 3h, 3.2h, 3.4h, 3.6h, 3.8h, 4h, etc.
  • the temperature for the mixed reaction of the N,N-dihydrocarbyl secondary amine represented by formula II and the acid chloride anhydride compound represented by formula IV is 0-125°C, for example, 0°C, 5°C, 10°C, 15°C °C, 20°C, 25°C, 30°C, 35°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 95°C, 100°C, 105°C, 110°C, 115°C, 120°C, 125°C, etc.
  • the mixing reaction time is 0.5-4h, such as 0.5h, 0.6h, 0.8h, 1h, 1.2h, 1.4h, 1.6h, 1.8h, 2h, 2.2h, 2.4h, 2.6h, 2.8h, 3h, 3.2h, 3.4h, 3.6h, 3.8h, 4h, etc.
  • the mixed reaction of the N,N-dihydrocarbyl secondary amine represented by formula II and the dianhydride compound represented by formula III is carried out in the absence of a solvent or in a solvent, and the solvent is an inert solvent.
  • the mixed reaction of the N,N-dihydrocarbyl secondary amine represented by the formula II and the acid chloride anhydride compound represented by the formula IV is carried out in the absence of a solvent; or in a solvent, and the solvent is an inert solvent.
  • reaction can also be carried out under solvent-free conditions, directly mixing the compound represented by formula II and the compound represented by formula III.
  • the inert solvent is selected from any one or a combination of at least two of hexane, dichloromethane, petroleum ether, toluene, xylene or kerosene.
  • the present invention provides an application of the N,N-dihydrocarbylamide carboxylic acid as described in the first aspect in the preparation of an extractant for separating rare earth elements.
  • said separating the rare earth elements is specifically extracting and separating the yttrium element from the mixture of rare earth elements.
  • the present invention has the following beneficial effects:
  • the amide carboxylic acid provided by the present invention can be used to enrich rare earth elements from low-concentration rare earth raw materials, separate and purify yttrium element from mixed rare earth raw materials, and remove aluminum, iron, radioactive thorium, and radioactive uranium from mixed rare earth raw materials And elements such as actinium, and other fields.
  • the amide carboxylic acid provided by the invention has good chemical stability and can withstand strong acid and strong alkali without decomposition.
  • Fig. 1 is the NMR spectrum of the N,N-dihydrocarbylamide carboxylic acid provided in Example 1.
  • Figure 2 is the carbon nuclear magnetic resonance spectrum of the N,N-dihydrocarbylamide carboxylic acid provided in Example 1.
  • This embodiment provides a compound I-1 shown in formula I, the structural formula of the compound I-1 is as follows:
  • the synthetic method can be carried out under solvent or solvent-free conditions, and the synthetic method with solvent is as follows:
  • the solvent-free synthesis method is as follows:
  • N,N-dihydrocarbyl secondary amine (24.2g, 0.10mol) shown in formula II-1 is directly mixed with the dianhydride compound (28.2g, 0.10mol) shown in formula III-1 to form a mixed solution, and the mixed solution is stirred , and raised the temperature to 80° C., maintained at the reaction temperature for 2 h, and obtained compound I-1 after the reaction was completed.
  • the synthesis method is: directly mix the N,N-dihydrocarbyl secondary amine (24.2g, 0.10mol) shown in formula II-1 with the carboxylic acid monoacyl chloride compound (31.7g, 0.10mol) shown in formula III-1a to form The mixed solution was stirred, and the temperature was raised to 80° C., and maintained at the reaction temperature for 2 hours. After the reaction was completed, compound I-1 was obtained.
  • the present invention carries out nuclear magnetic resonance analysis on compound I-1, and the results are shown in Figures 1 and 2.
  • the 0.81 ⁇ 1.95 peak cluster belongs to compound I-1 alkyl chain hydrogen
  • the 2.77 peak belongs to In the structure of methylene hydrogen
  • the 3.06 peak cluster belongs to The methine hydrogen in the structure and The methylene hydrogens in the structure, 4.91 and 5.21 belong to Of the two hydrogens on the alkene in the structure, 10.58 is assigned to the carboxyl hydrogen.
  • peak clusters 10.6-30.2 belong to the alkyl chain carbon of compound I-1, and peaks 35.6 and 36.7 belong to The methine carbon in the structure, 51.4 belongs to Among the methylene carbons in the structure, 172.1 is assigned to the amide carbonyl carbon, and 179.5 is assigned to the carboxyl carbon.
  • This embodiment provides a compound I-2 shown in formula I, the structural formula of the compound I-2 is as follows:
  • N,N-diisohexyl secondary amine (18.5g, 0.10mol) shown in formula II-2 is dissolved in hexane (20mL) to obtain solution one;
  • Alkenyl glutaric anhydride compound (26.7g, 0.10mol) was dissolved in hexane (30mL) to obtain solution 2;
  • This embodiment provides a compound I-3 shown in formula I, the structural formula of the compound I-3 is as follows:
  • N,N-dihydrocarbyl secondary amine (24.2g, 0.10mol) shown in formula II-3 was dissolved in petroleum ether (20mL) to obtain solution one; dodecene shown in formula III-3 Glutaric anhydride compound (28.2g, 0.10mol) was dissolved in petroleum ether (30mL) to obtain solution 2;
  • This embodiment provides a compound I-4 shown in formula I, the structural formula of the compound I-4 is as follows:
  • This embodiment provides a compound I-5 shown in formula I, the structural formula of the compound I-5 is as follows:
  • This embodiment provides a compound I-6 shown in formula I, the structural formula of the compound I-6 is as follows:
  • Compound I-6 synthetic route is as follows:
  • This embodiment provides a compound I-7 shown in formula I, the structural formula of the compound I-7 is as follows:
  • N,N-dihydrocarbyl secondary amine (23.7g, 0.10mol) shown in formula II-7 was dissolved in toluene (20mL) to obtain solution one; the dianhydride compound (28.2 g, 0.10mol) was dissolved in toluene (30mL) to obtain solution two;
  • NMR characterization of compound I-7 1 H NMR (500MHz, CDCl 3 ), ⁇ 10.58(1H), 5.48(2H), 5.43(2H), 5.21(1H), 4.91(1H), 3.31(4H), 3.02 (1H), 2.70(2H), 2.33(2H), 2.0(4H), 1.94(2H), 1.84(2H), 1.44(4H), 1.33(2H), 1.30(2H), 1.30(2H), 1.29 (2H), 1.26(8H), 0.94(6H), 0.88(3H), 0.79(6H).
  • This embodiment provides a compound I-8 shown in formula I, the structural formula of the compound I-8 is as follows:
  • This embodiment provides a compound I-9 shown in formula I, the structural formula of the compound I-9 is as follows:
  • This embodiment provides a compound I-10 shown in formula I, the structural formula of the compound I-10 is as follows:
  • This embodiment provides a compound I-11 shown in formula I, the structural formula of the compound I-11 is as follows:
  • This embodiment provides a compound I-12 shown in formula I, the structural formula of the compound I-12 is as follows:
  • This embodiment provides a compound I-13 shown in formula I, the structural formula of the compound I-13 is as follows:
  • This embodiment provides a compound I-14 shown in formula I, the structural formula of the compound I-14 is as follows:
  • This embodiment provides a compound I-15 shown in formula I, the structural formula of the compound I-15 is as follows:
  • This comparative example provides a compound I-d1 shown in the formula I-d1, the structural formula of the compound I-d1 is as follows:
  • N,N-dihydrocarbyl secondary amine (15.7g, 0.10mol) shown in formula II-d1 is dissolved in toluene (20mL) to obtain solution one;
  • Diacid anhydride compound (28.2 g, 0.10mol) was dissolved in toluene (30mL) to obtain solution two;
  • This comparative example provides a compound I-d2 shown in formula I-d2, and the structural formula of said compound I-d2 is as follows:
  • N,N-dihydrocarbyl secondary amine (11.5g, 0.10mol) shown in formula II-d2 is dissolved in toluene (20mL) to obtain solution one;
  • Diacid anhydride compound (11.4 g, 0.10mol) was dissolved in toluene (30mL) to obtain solution two;
  • This comparative example provides a compound I-d3 shown in formula I-d3, and the structural formula of said compound I-d3 is as follows:
  • N,N-dibutyl secondary amine (12.9g, 0.10mol) shown in formula II-d3 was dissolved in toluene (20mL) to obtain solution one; the dianhydride compound (28.1g , 0.10mol) was dissolved in toluene (30mL) to obtain solution two;
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 6 Total enrichment rate E% 97.5 98.4 98.5 97.5 98.9 98.6 project
  • Example 7 Example 8
  • Example 9 Example 10
  • Example 11 Example 12
  • Example 12 Total enrichment rate E% 98.7 98.9 98.9 96.8 95.6 99.5 project
  • Example 13 Example 14
  • Example 15 Comparative example 1 Comparative example 2 Comparative example 3 Total enrichment rate E% 98.5 96.7 97.7 94.5 92.7 93.6
  • the enrichment rate of N,N-dihydrocarbylamide carboxylic acid in Example 1-15 is more than 95%, and the total enrichment rate of N,N-dihydrocarbylamide carboxylic acid in Comparative Example 1-3 All are below 95%. Therefore, the N,N-dihydrocarbylamide carboxylic acid defined in the present invention can be used as an extractant to enrich rare earth elements from low-concentration rare earth raw materials, and the enrichment effect is better.
  • the compounds prepared in the above-mentioned Examples 1-15 and Comparative Example 1 are respectively prepared as extractant solutions, and the specific configuration method of the extractant solutions is: the quality of extractant taken in Examples 1-15 and Comparative Example 1 Respectively (6.6, 5.9, 6.6, 6.6, 6.1, 6.6, 6.6, 6.24, 6.97, 7.8, 11.66, 12.8, 13.01, 8.55, 7.3 and 5.53, 3.0, 5.3) g, the volume of toluene taken is (18.4, 19.1, 18.4, 18.4, 18.9, 18.4, 18.4, 18.76, 18.03, 17.2, 13.34, 12.2, 12.99, 16.45, 17.7 and 19.47, 22.0, 19.7) g, the two were mixed to obtain an extractant solution, and the concentration of the extractant was 0.52 mol/L;
  • the composition of the mixed rare earth solution is: lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium and yttrium, a total of 15 rare earth elements, the concentration of each element is 0.020 mol/L. Test the concentration of rare earth ions in the aqueous phase before and after extraction, and calculate the relative separation coefficient ⁇ Ln/Y of each rare earth ion (Ln) with respect to yttrium ion (Y);
  • Example 1 1.10 1.29 1.72 2.06 3.01 2.96 2.18 2.26 2.30 2.39 2.48 2.59 2.88 3.15
  • Example 2 1.12 1.27 1.72 2.06 3.01 2.96 2.18 2.27 2.29 2.37 2.47 2.57 2.85 3.10
  • Example 3 1.11 1.30 1.72 2.06 3.01 2.96 2.18 2.26 2.29 2.37 2.46 2.57 2.85 3.14
  • Example 4 1.09 1.29 1.72 2.06 3.01 2.96 2.18 2.26 2.3 2.39 2.48 2.59 2.88 3.14
  • Example 5 1.12 1.27 1.72 2.06 3.01 2.96 2.18 2.27 2.29 2.37 2.47 2.57 2.85 3.11
  • Example 6 1.13 1.30 1.73 2.07 3.02 2.98 2.20 2.28 2.30 2.39 2.49 2.62 2.9 3.17
  • Example 7 1.14 1.31 1.73 2.07 3.02 2.98 2.20 2.28 2.30 2.39 2.50 2.62 2.91 3.19
  • Example 8 1.10 1.29 1.72 2.06 3.01 2.96 2.18 2.
  • the separation factor ( ⁇ Ln/Y ) of the N,N-dihydrocarbylamide carboxylic acid for each rare earth element is higher than that of Comparative Example 1-3 ( ⁇ Ln/Y ), the N,N-dihydrocarbylamide carboxylic acid defined in the present invention is better for separating and purifying yttrium element from mixed rare earth raw materials.
  • the compound I-1 prepared in the above example 1 was subjected to a stability test.
  • the specific test method was: compound I-1 was configured as an extractant solution, and the specific configuration method of the extractant solution was: the quality of the extraction agent was 50.9g , mixed with 100mL toluene to prepare extractant solution, the concentration is 1.0mol/L; get 50mL extractant solution and 50mL concentration of 6mol/L hydrochloric acid solution and mix and stir, and another 50mL extractant solution and 50mL concentration of 6mol/L hydrogen The sodium oxide solution was mixed and stirred, and kept stirring for 15 days, after which the loss rate of the extractant was tested by nuclear magnetic detection.
  • Embodiment 2 ⁇ 15 and comparative example compound stability test method is the same as compound I-1;
  • the loss rate of N,N-dihydrocarbyl amide carboxylic acid in the hydrochloric acid medium of the present invention is below 0.05%; the loss rate in the liquid alkali medium is below 0.07%; fully illustrated thus,
  • the N,N-dihydrocarbylamide carboxylic acid prepared by the invention has excellent chemical stability and can withstand strong acid and strong alkali without decomposition.
  • the present invention illustrates the N,N-dialkylamide carboxylic acid of the present invention and its preparation method and application through the above examples, but the present invention is not limited to the above examples, that is, it does not mean that the present invention must Rely on the above-mentioned embodiment to implement.
  • Those skilled in the art should understand that any improvement of the present invention, the equivalent replacement of each raw material of the product of the present invention, the addition of auxiliary components, the selection of specific methods, etc., all fall within the scope of protection and disclosure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提出了一种N,N-二烃基酰胺羧酸及其制备方法和应用。所述的N,N-二烃基酰胺羧酸可作为萃取剂用于从低浓度稀土原料中富集稀土元素,从混合稀土原料中分离和提纯钇元素,从混合稀土原料中分离铝、铁、放射性钍、放射性铀和锕等元素。该化合物合成简单,成本低廉,作为萃取剂化学稳定性好,能够耐受强酸和强碱而不发生分解。

Description

一种N,N-二烃基酰胺羧酸及其制备方法和应用 技术领域
本发明涉及有机化合物合成技术领域,具体涉及一种N,N-二烃基酰胺羧酸及其制备方法和应用。
背景技术
稀土元素是指元素周期表中原子序数为57~71的15种镧系元素以及化学性质与之相似的21号元素钪和39号元素钇,共17个金属元素。稀土元素具有独特的磁、光、电性能,被誉为“工业维生素”,广泛应用于冶金、石油化工、玻璃陶瓷、能源材料和军事工业等领域,是人类社会发展的重要奠基性原料。
目前,自然界稀土矿的开采首先需要使用浸出剂将稀土离子浸出得到稀土浸出液,再通过溶剂萃取的方式将稀土离子逐一萃取分离。萃取剂的开发是溶剂萃取过程最为核心的技术,工业应用的稀土金属萃取剂需要考虑多重因素,例如萃取选择性、萃取速率、萃取容量、化合物的稳定性、溶解性、反萃性能、安全性、合成方法和来源等方面,优异的萃取剂可谓万里挑一,好的萃取剂能够简化生产工艺,提高分离效率,降低生产成本,减少污染排放。
本领域已知的市售萃取剂产品主要分为有机膦萃取剂、羧酸类萃取剂和胺类萃取剂,典型的有机膦萃取剂包括2-乙基己基膦酸单(2-乙基己基)酯(P507)、二(2-乙基己基)膦酸(P204)、二(2,4,4-三甲基戊基)次膦酸(C272)、膦酸三丁酯(TBP)等,胺类萃取剂包括三正辛基胺(N235)、仲碳伯胺(N1923)、甲基三辛基氯化铵(N263)等,羧酸萃取剂包括环烷酸、新癸酸、仲辛基苯氧乙酸(CA-12)等。
市售萃取剂仍存在某些不足,例如P507是稀土分离工业中应用最广的一种萃取剂,但它对于相邻的稀土元素间的分离系数低,比如镨钕的分离系数只有1.4,这使得镨钕元素难以分离。环烷酸主要应用于分离提纯氧化钇,但环烷酸是石油化工工业的副产物其组分复杂,需要在较高的pH条件下才能萃取稀土,长期使用后其成分容易发生变化,导致有机相浓度降低,影响分离工艺的稳定性。CA-12萃取剂曾尝试替代环烷酸,该萃取剂可在稀土元素萃取分离工艺中有效地将钇与全部镧系元素分离,并可克服环烷酸萃取分离钇时有机相浓度降低的问题,但是萃取体系中重稀土与钇的分离系数低,这导致重稀土元素与钇难以分离,从而需要设计更多级数的萃取槽来达到分离效果。
酰胺羧酸是一种新型的含N和O配体的萃取剂,对于过渡金属离子的萃取有一定的选择性,并且化学结构较稳定,萃取动力学快,是一种很有应用前景的萃取剂。
现有技术公开了多种酰胺羧酸化合物的制备方法,例如,CN109824532A公开了一种新 的合成N,N,N',N'-四辛基-3-氧戊二酰胺(TODGA)的工艺。步骤是:(1)二甘酸与SOCl 2反应生成二甘酰氯,再与胺反应生成部分TODGA;(2)将副产物除去易溶于水的组分后,经分离可得到单氧杂酰胺羧酸;(3)利用单氧杂酰胺羧酸与胺反应,再生成部分TODGA。该工艺结合了已有工艺的特点,收率较高。
CN104529861A提供了一种酰亚胺基改性低分子量线型酚醛树脂的合成方法,包括以下步骤:在N,N-二甲基甲酰胺或以N,N-二甲基甲酰胺为主的混合溶剂中,对氨基苯酚与二元羧酸的酸酐发生反应,得到酰胺羧酸酚类化合物,然后在草酸等酸性催化剂催化下该酰胺羧酸酚类化合物与2,6-二羟甲基对甲酚发生缩聚反应和脱水关环反应,得到酰亚胺基改性低分子量线型酚醛树脂。
CN106892835A公开了一种双二甘酰胺配体及其制备方法和含有双二甘酰胺配体的镧系/锕系分离萃取体系,该萃取体系是由有机相和水相等体积混合而成,所述有机相中包含摩尔浓度为0.1~0.7mol/L的N,N,N',N',N",N"-六正辛基-氮川三乙酰胺作为萃取剂;该发明萃取体系中的N,N,N',N',N",N"-六正辛基-氮川三乙酰胺具有独特的非N杂环的三角结构,不仅可以极大地提高萃取体系的耐辐照稳定性,而且不会产生二次污染物,有利于环境保护;萃取体系中以水溶性双二甘酰胺配体为掩蔽剂,其具有更倾向于与镧系络合的特点,可以有效地将镧系掩蔽在水相中,实现锕系和镧系的选择性分离。
从公开资料看出现有技术虽然提供了酰胺羧酸的制备方法,但没有提供能更加有效分离稀土元素的酰胺羧酸化合物及其萃取分离方法。为了更有效地分离稀土元素,需要开发与现有技术相比具有更高分离系数并且能够克服现有技术缺点的新型萃取剂,以及使用该萃取剂的萃取分离方法。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种N,N-二烃基酰胺羧酸及其制备方法和应用。所述N,N-二烃基酰胺羧酸可作为萃取剂,用于从混合稀土料液中分离提纯选定的稀土元素,特别是从稀土元素混合物中提取分离钇元素。
为达此目的,本发明采用以下技术方案:
第一方面,本发明提供一种N,N-二烃基酰胺羧酸,所述N,N-二烃基酰胺羧酸具有如下式I所示的结构:
Figure PCTCN2021102010-appb-000001
Figure PCTCN2021102010-appb-000002
其中,R 1和R 2独立地为C6及以上(例如可以是C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C22、C24、C26、C28、C30、C35、C40等)的直链或支链、饱和或不饱和、取代或未取代的烃基;
R 3为直链或支链、饱和或不饱和、取代或未取代的烃基;
n为1~10(例如可以是1、2、3、4、5、6、7、8、9、10等)的自然数。
本发明提供了一类具有式I所示结构的酰胺羧酸化合物作为分离稀土金属的羧酸型萃取剂及其萃取分离方法,这类化合物作为稀土金属萃取剂未经报道。这类化合物作为金属萃取剂对于稀土元素具有很高的分离系数,特别是对于重稀土和钇元素的分离更具效率,同时可以克服环烷酸分离钇时存在的缺点。
优选地,所述烃基为取代的烷基、取代的烯基、取代的炔基中的任意一种,所述烷基、烯基、炔基的取代基各自独立地选自卤素、羟基、羧基、酰基、酯基、醚基、烷氧基、苯基、苯氧基、氨基、酰胺基、硝基、氰基、巯基、磺酰基、硫醇基、亚胺基、磺酰基或硫烷基中的任意一种或至少两种的组合;优选地,所述取代基为卤素。
优选地,所述R 1和R 2独立地为C6-C30的直链或支链、饱和或不饱和、取代或未取代的烃基,优选为C6-C18的直链或支链、饱和或不饱和、取代或未取代的烃基。
优选地,所述R 1和R 2独立地为C6以上的直链或支链、饱和或不饱和、未取代烃基,例如(C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C22、C24、C26、C28、C30、C35、C40等)直链或支链且未取代的烷基、烯基、炔基,优选为C6-C30的支链、饱和或不饱和、未取代的烃基,更优为C6-C10的支链、饱和或不饱和、未取代的烃基
优选地,所述R 1和R 2独立地为C6-C30的直链或支链、未取代的烷基,优选为C6-C18的直链或支链、未取代的烷基,更优为C6-C10的直链或支链、未取代的烷基。
优选地,n为1-6的自然数。
优选地,所述R 1和R 2独立地为
Figure PCTCN2021102010-appb-000003
其中,2≤a+b≤10,
Figure PCTCN2021102010-appb-000004
代表基团连接位置。
优选地,所述R 1和R 2独立地为下述基团中的任意一种,其中,
Figure PCTCN2021102010-appb-000005
代表基团连接位置:
Figure PCTCN2021102010-appb-000006
优选地,所述R 3选自C6以上(例如可以是C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C30、C40等)的直链或支链、饱和或不饱和、取代或未取代的烃基,优选为C6-C30的直链或支链、饱和或不饱和、取代或未取代的烃基。
优选地,所述R 3选自C6以上(例如可以是C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20等)直链或支链的不饱和的未取代烃基,优选为C10以上直链烯基,更优为C10-C18的直链烯基。
优选地,所述R 3为下述基团中的任意一种,其中,
Figure PCTCN2021102010-appb-000007
代表基团连接位置:
Figure PCTCN2021102010-appb-000008
第二方面,本发明提供一种如第一方面所述的N,N-二烃基酰胺羧酸的制备方法,所述N,N-二烃基酰胺羧酸的制备方法为:
将式II所示的N,N-二烃基仲胺和式III所示的二酸酐化合物混合反应,得到式I所示的 N,N-二烃基酰胺羧酸,反应式如下:
Figure PCTCN2021102010-appb-000009
其中,R 1、R 2、R 3与第一方面中所定义的基团,n为1~10的自然数;
或,将式II所示的N,N-二烃基仲胺和式IV所示的酰氯酐化合物混合反应,得到式I所示的N,N-二烃基酰胺羧酸,反应式如下:
Figure PCTCN2021102010-appb-000010
其中,R 1、R 2、R 3与第一方面中所定义的基团,n为1~10的自然数。
优选地,所述式II所示的N,N-二烃基仲胺和式III所示的二酸酐化合物的摩尔比为1:(0.8-1.2),例如可以是1:0.8、1:0.9、1:1、1:1.1、1:1.2等。
优选地,所述式II所示的N,N-二烃基仲胺和式IV所示的酰氯酐化合物的摩尔比为1:(0.8-1.2),例如可以是1:0.8、1:0.9、1:1、1:1.1、1:1.2等。
优选地,所述式II所示的N,N-二烃基仲胺和式III所示的二酸酐化合物混合反应的温度为0-125℃,例如可以是0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、50℃、60℃、70℃、80℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃等,混合反应的时间为0.5-4h,例如可以是0.5h、0.6h、0.8h、1h、1.2h、1.4h、1.6h、1.8h、2h、2.2h、2.4h、2.6h、2.8h、3h、3.2h、3.4h、3.6h、3.8h、4h等。
优选地,所述式II所示的N,N-二烃基仲胺和式IV所示的酰氯酐化合物混合反应的温度为0-125℃,例如可以是0℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、50℃、60℃、70℃、80℃、90℃、95℃、100℃、105℃、110℃、115℃、120℃、125℃等,混合反应的时间为0.5-4h,例如可以是0.5h、0.6h、0.8h、1h、1.2h、1.4h、1.6h、1.8h、2h、2.2h、2.4h、2.6h、2.8h、3h、3.2h、3.4h、3.6h、3.8h、4h等。
优选地,所述式II所示的N,N-二烃基仲胺和式III所示的二酸酐化合物混合反应在无溶剂存在条件下进行;或在溶剂中进行,所述溶剂为惰性溶剂。
优选地,所述式II所示的N,N-二烃基仲胺和式IV所示的酰氯酐化合物混合反应在无溶 剂存在条件下进行;或在溶剂中进行,所述溶剂为惰性溶剂。
在本发明中,值得一提的是,反应也可在无溶剂条件下进行,直接将式II所示结构化合物与式III所示结构化合物混合反应。
优选地,所述惰性溶剂选自己烷、二氯甲烷、石油醚、甲苯、二甲苯或煤油中的任意一种或至少两种的组合。
第三方面,本发明提供一种如第一方面所述的N,N-二烃基酰胺羧酸在制备分离稀土元素的萃取剂中的应用。
优选地,所述分离稀土元素具体为从稀土元素混合物中提取分离钇元素。
与现有技术相比,本发明具有以下有益效果:
(1)本发明提供的酰胺羧酸,可用于从低浓度稀土原料中富集稀土元素,从混合稀土原料中分离和提纯钇元素,从混合稀土原料中去除铝、铁、放射性钍、放射性铀和锕等元素,以及其它领域。
(2)本发明提供的酰胺羧酸化学稳定性好,能够耐受强酸和强碱而不发生分解。
附图说明
图1为实施例1提供的N,N-二烃基酰胺羧酸的核磁共振氢谱图。
图2为实施例1提供的N,N-二烃基酰胺羧酸的核磁共振碳谱图。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述具体实施方式仅仅是帮助理解本发明,不应视为对本发明的具体限制。
实施例1
本实施例提供一种式I所示的化合物I-1,所述化合物I-1的结构式如下:
Figure PCTCN2021102010-appb-000011
化合物I-1合成路线如下所示:
Figure PCTCN2021102010-appb-000012
合成方法可以在有溶剂或无溶剂条件下进行,有溶剂的合成方法如下:
(1)将式II-1所示的N,N-二异辛基仲胺(24.2g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-1所示的十二碳烯基戊二酸酐化合物(26.7g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去惰性溶剂,得到化合物I-1。
无溶剂的合成方法如下:
将式II-1所示的N,N-二烃基仲胺(24.2g,0.10mol)与式III-1所示的二酸酐化合物(28.2g,0.10mol)直接混合形成混合液,搅拌混合液,并升高温度至80℃,在反应温度下维持2h,反应结束后,得到化合物I-1。
或,将式II-1所示的N,N-二烃基仲胺和式III-1a所示的羧酸单酰氯化合物混合反应,反应式如下:
Figure PCTCN2021102010-appb-000013
合成方法为:将式II-1所示的N,N-二烃基仲胺(24.2g,0.10mol)与式III-1a所示的羧酸单酰氯化合物(31.7g,0.10mol)直接混合形成混合液,搅拌混合液,并升高温度至80℃,在反应温度下维持2h,反应结束后,得到化合物I-1。
本发明对化合物I-1进行核磁共振分析,结果如图1和2所示。
核磁共振氢谱(图1)分析如下: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.21(1H),4.91(1H),3.06(5H),2.77(2H),1.95(2H),1.92(2H),1.84(2H),1.56(4H),1.33(2H),1.31(8H),1.29(2H),1.26(12H),1.17(4H),0.99(6H),0.81(9H)。
其中,0.81~1.95峰簇归属于化合物I-1烷基链氢,2.77峰归属于
Figure PCTCN2021102010-appb-000014
结构中亚甲基氢,3.06峰簇归属于
Figure PCTCN2021102010-appb-000015
结构中次甲基氢以及
Figure PCTCN2021102010-appb-000016
结构中的亚甲基氢,4.91和5.21归属于
Figure PCTCN2021102010-appb-000017
结构中烯烃上的两个氢,10.58归属于羧基氢。
核磁共振碳谱(图2)分析如下: 13C NMR(500MHz,CDCl 3),δ179.5,172.1,128.9,128.3,51.4(2C),36.7(2C),35.6,33.0,32.0(2C),31.9,29.9,30.2(2C),29.7,29.7,29.6,29.6,29.3(2C),29.3,27.7,27.3,22.8(2C),22.8,13.7(2C),13.7,10.6(2C)。
其中,10.6~30.2峰簇归属于化合物I-1烷基链碳,35.6和36.7归属于
Figure PCTCN2021102010-appb-000018
结构中的次甲基碳,51.4归属于
Figure PCTCN2021102010-appb-000019
结构中亚甲基碳,172.1归属于酰胺羰基碳,179.5归属于羧基碳。
实施例2
本实施例提供一种式I所示的化合物I-2,所述化合物I-2的结构式如下:
Figure PCTCN2021102010-appb-000020
化合物I-2合成路线如下所示:
Figure PCTCN2021102010-appb-000021
(1)将式II-2所示的N,N-二异己基仲胺(18.5g,0.10mol)溶解于己烷(20mL)中得到溶液一;将式III-2所示的十二碳烯基戊二酸酐化合物(26.7g,0.10mol)溶解于己烷(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去惰性溶剂,得到化合物I-2。
化合物I-2核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.21(1H),4.91(1H),3.12(4H),3.02(1H),2.33(2H),1.94(2H),1.92(2H),1.84(2H),1.33(2H),1.30(4H),1.29(2H),1.26(8H),1.20(8H),0.99(12H),0.88(3H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,128.9,128.3,52.1(2C),39.7(2C),37.4,33.0,31.9,29.9,29.7,29.7,29.6,29.6,29.3,27.7,27.3,25.7(4C),22.7,14.1,11.6(4C)。
实施例3
本实施例提供一种式I所示的化合物I-3,所述化合物I-3的结构式如下:
Figure PCTCN2021102010-appb-000022
化合物I-3合成路线如下所示:
Figure PCTCN2021102010-appb-000023
(1)将式II-3所示的N,N-二烃基仲胺(24.2g,0.10mol)溶解于石油醚(20mL)中得到溶液一;将式III-3所示的十二碳烯基戊二酸酐化合物(28.2g,0.10mol)溶解于石油醚(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去惰性溶剂,得到化合物I-3。
化合物I-3核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.21(1H),4.91(1H),3.25(4H),3.02(1H),2.37(2H),2.12(2H),1.94(2H),1.85(2H),1.33(2H),1.30(4H),1.29(2H),1.28(4H),1.26(8H),1.25(4H),1.24(4H),1.19(4H),0.93(6H),0.88(6H),0.87(3H)。
13C NMR(500MHz,CDCl 3),δ178.5,170.1,128.7,128.1,54.4(2C),37.4,34.8(2C),33.0,32.1(2C),31.9,30.8(2C),29.9,29.7,29.7,29.6,29.6,29.3,27.7,27.3,26.5(2C),22.7(2C),22.7,18.4(2C),14.1(2C),14.0。
实施例4
本实施例提供一种式I所示的化合物I-4,所述化合物I-4的结构式如下所示:
Figure PCTCN2021102010-appb-000024
化合物I-4合成路线如下所示:
Figure PCTCN2021102010-appb-000025
(1)将式II-4所示的N,N-二烃基仲胺(24.2g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-4所示的十二碳烯基戊二酸酐化合物(28.2g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-4。
化合物I-4核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.21(1H),4.91(1H),3.18(4H),3.02(1H),2.33(2H),1.94(2H),1.84(2H),1.52(4H),1.33(2H),1.30(2H),1.30(2H),1.29(2H),1.29(4H),1.27(4H),1.26(8H),1.26(4H),1.26(4H),1.26(4H),0.88(9H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,128.9,128.3,50.0(2C),37.4,33.0,31.9(2C),31.9,29.9,29.7,29.7,29.6,29.6,29.3,29.3(2C),29.3(2C),29.3(2C),27.0(2C),22.7(2C),27.7,27.3,22.7,14.1(2C),14.1。
实施例5
本实施例提供一种式I所示的化合物I-5,所述化合物I-5的结构式如下:
Figure PCTCN2021102010-appb-000026
化合物I-5合成路线如下所示:
Figure PCTCN2021102010-appb-000027
(1)将式II-5所示的N,N-二烃基仲胺(18.6g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-5所示的十二碳烯基戊二酸酐化合物(28.0g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-5。
化合物I-5核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.21(1H),4.91(1H),3.18(4H),3.02(1H),2.33(2H),1.94(2H),1.84(2H),1.52(4H),1.33(2H),1.30(2H),1.30(2H),1.29(2H),1.29(4H),1.28(4H),1.28(4H),1.26(8H),0.88(3H),0.88(6H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,128.9,128.3,50.0(2C),37.4,33.0,31.9,31.5(2C),29.9,29.7,29.7,29.6,29.6,29.3,29.3(2C),27.7,27.3,26.7(2C),22.7(2C),22.7,14.1(2C),14.1。
实施例6
本实施例提供一种式I所示的化合物I-6,所述化合物I-6的结构式如下:
Figure PCTCN2021102010-appb-000028
化合物I-6合成路线如下所示:
Figure PCTCN2021102010-appb-000029
(1)将式II-6所示的N,N-二烃基仲胺(23.8g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-6所示的十二碳烯基戊二酸酐化合物(26.7g,0.10mol)溶解于甲苯(30mL) 中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-6。
化合物I-6核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),6.83(2H),5.21(1H),4.91(1H),3.02(1H),2.33(2H),2.18(4H),2.0(4H),1.94(2H),1.84(2H),1.33(2H),1.38(4H),1.30(2H),1.30(2H),1.29(2H),1.29(4H),1.26(8H),0.93(6H),0.88(3H),0.85(6H)。
13C NMR(500MHz,CDCl 3),δ178.4,165.7,128.9,128.3,124.6(2C),116.6(2C),37.6,33.0,31.9,29.9,29.7,29.7,29.6,29.6,29.6(2C),29.3,28.0(2C),27.9,27.7(2C),27.3,23.1(2C),22.7,14.2(2C),14.1,11.8(2C)。
实施例7
本实施例提供一种式I所示的化合物I-7,所述化合物I-7的结构式如下:
Figure PCTCN2021102010-appb-000030
化合物I-7合成路线如下所示:
Figure PCTCN2021102010-appb-000031
(1)将式II-7所示的N,N-二烃基仲胺(23.7g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-7所示的二酸酐化合物(28.2g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-7。
化合物I-7核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.48(2H),5.43(2H),5.21(1H),4.91(1H),3.31(4H),3.02(1H),2.70(2H),2.33(2H),2.0(4H),1.94(2H),1.84(2H),1.44(4H),1.33(2H),1.30(2H),1.30(2H),1.29(2H),1.26(8H),0.94(6H),0.88(3H),0.79(6H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,135.6(2C),129.3(2C),128.9,128.3,55.5(2C),39.9(2C),37.4,33.0,31.9,29.9,29.7,29.7,29.6,29.6,29.3,27.7,27.3,26.8(2C),26.7(2C),22.7,14.3(2C),14.1,11.7(2C)。
实施例8
本实施例提供一种式I所示的化合物I-8,所述化合物I-8的结构式如下:
Figure PCTCN2021102010-appb-000032
化合物I-8合成路线如下所示:
Figure PCTCN2021102010-appb-000033
(1)将式II-8所示的N,N-二烃基仲胺(24.2g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-8所示的癸碳烯基戊二酸酐化合物(25.4g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-8。
化合物I-8核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.21(1H),4.91(1H),3.25(4H),3.02(1H),2.33(2H),1.94(2H),1.92(2H),1.84(2H),1.55(4H),1.33(2H),1.31(4H),1.30(2H),1.29(2H),1.26(6H),1.25(4H),1.19(4H),0.99(4H),0.88(6H),0.88(3H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,128.9,128.3,52.4(2C),37.5(2C),37.4,33.0,32.0(2C),31.9,29.9,29.8(2C),29.7,29.7,29.3(2C),29.3,27.7,27.3,23.0(2C),22.7,14.1(2C),14.1,11.6(2C)。
实施例9
本实施例提供一种式I所示的化合物I-9,所述化合物I-9的结构式如下:
Figure PCTCN2021102010-appb-000034
化合物I-9合成路线如下所示:
Figure PCTCN2021102010-appb-000035
(1)将式II-9所示的N,N-二烃基仲胺(24.2g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-9所示的癸碳烯基庚二酸酐化合物(28.2g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-9。
化合物I-9核磁表征: 1H NMR(500MHz,CDCl 3),δ10.43(1H),5.21(1H),4.91(1H),3.25(4H),3.02(1H),2.21(2H),1.94(2H),1.92(2H),1.55(2H),1.55(4H),1.54(2H),1.33(2H),1.31(4H),1.30(2H),1.30(2H),1.29(2H),1.26(8H),1.25(1H),1.25(4H),1.19(4H),0.99(6H),0.88(6H),0.88(3H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,130.9,128.8,52.4(2C),38.0,37.5(2C),34.5,34.0,32.0(2C),31.9,29.9,29.8(2C),29.7,29.7,29.6,29.6,29.3,29.3(2C),27.3,25.9,24.4,23.0(2C),22.7,14.1(2C),14.1,11.6(2C)。
实施例10
本实施例提供一种式I所示的化合物I-10,所述化合物I-10的结构式如下:
Figure PCTCN2021102010-appb-000036
化合物I-10合成路线如下所示:
Figure PCTCN2021102010-appb-000037
(1)将式II-10所示的N,N-二烃基仲胺(29.4g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-10所示的癸碳烯基庚二酸酐化合物(30.8g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-10。
化合物I-10核磁表征: 1H NMR(500MHz,CDCl 3),δ10.18(1H),5.21(1H),4.91(1H),3.18(4H),3.02(1H),2.87(2H),2.46(4H),2.21(2H),1.94(2H),1.55(2H),1.54(2H),1.52(4H),1.44(4H),1.38(2H),1.33(2H),1.30(2H),1.29(4H),1.29(4H),1.29(4H),1.27(4H),1.26(2H),1.26(2H),1.26(2H),1.26(4H),1.25(2H),1.25(2H),1.29(2H),0.93(3H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,128.9,130.9,83.7(2C),68.6(2C),50.0(2C),38.0,34.8,34.0,32.1,29.9,29.6,29.6,29.6,29.3,29.3,29.3(2C),29.3(2C),29.0,28.7(2C),28.7(2C),28.4(2C),27.0,27.0(2C),24.7,22.8,18.4(2C),14.2。
实施例11
本实施例提供一种式I所示的化合物I-11,所述化合物I-11的结构式如下:
Figure PCTCN2021102010-appb-000038
化合物I-11合成路线如下所示:
Figure PCTCN2021102010-appb-000039
(1)将式II-11所示的N,N-二烃基仲胺(51.3g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-11所示的癸碳烯基庚二酸酐化合物(42.0g,0.10mol)溶解于甲苯(30mL) 中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-11。
化合物I-11核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.21(1H),4.91(1H),3.18(4H),3.02(1H),2.87(2H),2.46(4H),2.21(2H),1.94(2H),1.55(2H),1.54(2H),1.52(4H),1.44(4H),1.33(2H),1.33(2H),1.30(2H),1.30(2H),1.29(2H),1.29(4H),1.29(4H),1.26(20H),1.26(40H),1.25(2H),1.25(2H),0.88(3H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,130.9,128.8,83.7(2C),68.6(2C),50.0(2C),38.0,34.8,34.0,31.9,29.9,29.9,29.7,29.7,29.6(8C),29.6(16C),29.3,29.3(4C),29.0,29.0,28.7(6C),27.3,27.0(2C),24.7,22.7,18.4(2C),14.1。
实施例12
本实施例提供一种式I所示的化合物I-12,所述化合物I-12的结构式如下:
Figure PCTCN2021102010-appb-000040
化合物I-12合成路线如下所示:
Figure PCTCN2021102010-appb-000041
(1)将式II-12所示的N,N-二烃基仲胺(84.9g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-12所示的癸碳烯基庚二酸酐化合物(18.0g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-12。
化合物I-12核磁表征: 1H NMR(500MHz,CDCl 3),δ10.88(1H),3.80(1H)3.18(4H),2.77(2H),1.96(2H),1.52(4H),1.44(2H),1.30(2H),1.29(104H),1.28(4H),0.89(3H),0.88(6H)。
13C NMR(500MHz,CDCl 3),δ177.3,173.6,84.5,78.6,49.0(2C),35.2,31.2,29.0(2C),27.0, 22.4(2C),22.1(52C),21.5,18.4,14.1(2C),13.2。
实施例13
本实施例提供一种式I所示的化合物I-13,所述化合物I-13的结构式如下:
Figure PCTCN2021102010-appb-000042
化合物I-13合成路线如下所示:
Figure PCTCN2021102010-appb-000043
(1)将式II-13所示的N,N-二烃基仲胺(42.9g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-13所示的癸碳烯基庚二酸酐化合物(61.8g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-13。
化合物I-13核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),3.25(4H),2.27(1H),2.21(2H),1.92(2H),1.55(4H),1.54(2H),1.49(4H),1.33(2H),1.26(96H),1.25(12H),1.19(4H),0.99(6H),0.88(9H)。
13C NMR(500MHz,CDCl 3),δ178.4,173.8,52.3(2C),42.4,37.5(2C),34.0,33.1,33.0,32.3(2C),31.9,31.9(2C),29.9(2C),29.8(2C),29.7,29.6(36C),29.4,29.3(2C),29.2(2C),29.0,27.1(2C),26.4(2C),24.7,22.8,22.7(2C),14.1(2C),14.0,11.6(2C)。
实施例14
本实施例提供一种式I所示的化合物I-14,所述化合物I-14的结构式如下:
Figure PCTCN2021102010-appb-000044
化合物I-14合成路线如下所示:
Figure PCTCN2021102010-appb-000045
(1)将式II-14所示的N,N-二烃基仲胺(27.0g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-14所示的癸碳烯基庚二酸酐化合物(41.0g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-14。
化合物I-14核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),3.25(4H),2.33(2H),2.27(1H),1.92(2H),1.55(4H),1.54(2H),1.49(4H),1.26(22H),1.25(10H),1.19(4H),0.99(6H),0.88(9H)。
13C NMR(500MHz,CDCl 3),δ178.4,173.8,52.3(2C),42.1,37.5(2C),33.6,33.1,32.3(2C),31.9,31.8,29.9,29.8(2C),29.6(13C),29.5(2C),29.3,29.2,27.1,26.4,24.4,22.8,22.7(2C),14.2,14.1(2C),11.6(2C)。
实施例15
本实施例提供一种式I所示的化合物I-15,所述化合物I-15的结构式如下:
Figure PCTCN2021102010-appb-000046
化合物I-15合成路线如下所示:
Figure PCTCN2021102010-appb-000047
(1)将式II-15所示的N,N-二烃基仲胺(28.3g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-15所示的癸碳烯基庚二酸酐化合物(28.1g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-15。
化合物I-15核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.21(1H),4.91(1H),3.74(4H),3.25(4H),3.02(1H),2.21(2H),1.94(2H),1.92(2H),1.55(10H),1.54(2H),1.33(2H),1.30(2H),1.29(2H),1.26(6H),1.25(2H),1.19(4H),0.99(4H),0.88(3H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,130.9,128.8,52.4(2C),45.0(2C),38.0,36.7(2C),34.5,34.0,31.9,30.5(2C),29.9,29.8(2C),29.7,29.6,29.4(2C),29.3,27.3,25.9,24.4,22.7,14.1,11.6(2C)。
对比例1
本对比例例提供一种式I-d1所示的化合物I-d1,所述化合物I-d1的结构式如下所示:
Figure PCTCN2021102010-appb-000048
化合物I-d1合成路线如下所示:
Figure PCTCN2021102010-appb-000049
(1)将式II-d1所示的N,N-二烃基仲胺(15.7g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-d1所示的二酸酐化合物(28.2g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-d1。
化合物I-d1核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.21(1H),4.91(1H),3.02(1H),3.00(4H),2.33(2H),2.12(2H),1.94(2H),1.84(2H),1.55(4H),1.33(2H),1.31(2H),1.30(2H),1.29(2H),1.26(8H),0.99(6H),0.93(6H),0.88(3H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,128.9,128.3,54.6(2C),37.4,33.0(2C),32.9,31.9,29.9,29.7,29.7,29.6,29.6,29.3,28.2(2C),27.7,27.3,22.7,18.1(2C),14.1,11.3(2C)。
对比例2
本对比例例提供一种式I-d2所示的化合物I-d2,所述化合物I-d2的结构式如下所示:
Figure PCTCN2021102010-appb-000050
化合物I-d2合成路线如下所示:
Figure PCTCN2021102010-appb-000051
(1)将式II-d2所示的N,N-二烃基仲胺(11.5g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-d2所示的二酸酐化合物(11.4g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-d2。
化合物I-d2核磁表征: 1H NMR(500MHz,CDCl 3),δ10.38(1H),3.18(2H),2.94(3H),2.86(1H),2.56(2H),1.52(2H),1.62(1H),1.19(2H),1.17(3H),0.91(6H)。
13C NMR(500MHz,CDCl 3),δ177.3,175.5,52.4,40.9,37.0,36.7,36.3,27.8,24.7,23.2(2C),17.2。
对比例3
本对比例例提供一种式I-d3所示的化合物I-d3,所述化合物I-d3的结构式如下所示:
Figure PCTCN2021102010-appb-000052
化合物I-d3合成路线如下所示:
Figure PCTCN2021102010-appb-000053
(1)将式II-d3所示的N,N-二丁基仲胺(12.9g,0.10mol)溶解于甲苯(20mL)中得到溶液一;将式III-d3所示的二酸酐化合物(28.1g,0.10mol)溶解于甲苯(30mL)中得到溶液二;
(2)将溶液一加入到溶液二中,搅拌溶液,并升高温度至80℃,在反应温度下维持2h,反应结束后,在真空中浓缩除去甲苯,得到化合物I-d3。
化合物I-d3核磁表征: 1H NMR(500MHz,CDCl 3),δ10.58(1H),5.21(1H),4.91(1H),3.02(1H),3.18(4H),2.33(2H),1.94(2H),1.84(2H),1.52(4H),1.33(2H),1.31(4H),1.30(4H),1.29(2H),1.26(8H),0.99(6H),0.88(3H)。
13C NMR(500MHz,CDCl 3),δ178.4,170.8,128.9,128.3,49.7(2C),37.4,33.0,30.0(2C),31.9,29.9,29.7,29.7,29.6,29.6,29.3,27.7,27.3,20.1(2C),22.7,14.1,13.8(2C)。
试验例1
富集稀土元素测试
(1)分别将上述实施例1-15和对比例1-3制备得到的化合物,取用质量分别为(6.6、5.9、6.6、6.6、6.1、6.6、6.6、6.24、6.97、7.8、11.66、12.8、13.01、8.55、7.3和5.53、3.0、5.3)g。
(2)将上述各萃取剂分别与10.8mol/L氢氧化钠的水溶液0.96mL混合,在25℃皂化5min,得到皂化的萃取剂粘稠液体,皂化度为80%;
(3)室温下,将皂化的萃取剂粘稠液体和离子型稀土浸出液2000mL混合,富集时间0.5h。离子型稀土浸出液的成分为:镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇一共15个稀土元素,总摩尔浓度为0.00636mol/L。pH=6.0。测试富集前和富集后 水相中稀土离子的浓度,并计算稀土离子的总富集率E%;
具体测试结果(稀土离子的总富集率)如表1所示:
表1
项目 实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
总富集率E% 97.5 98.4 98.5 97.5 98.9 98.6
项目 实施例7 实施例8 实施例9 实施例10 实施例11 实施例12
总富集率E% 98.7 98.9 98.9 96.8 95.6 99.5
项目 实施例13 实施例14 实施例15 对比例1 对比例2 对比例3
总富集率E% 98.5 96.7 97.7 94.5 92.7 93.6
从上表看出,实施例1-15的N,N-二烃基酰胺羧酸的富集率在95%以上,对比例1-3的N,N-二烃基酰胺羧酸的总富集率则都在95%以下,因此本发明限定的N,N-二烃基酰胺羧酸作为萃取剂能够从低浓度稀土原料中富集稀土元素,富集效果更好。
试验例2
分离钇离子测试
(1)分别将上述实施例1-15和对比例1制备得到的化合物配制为萃取剂溶液,所述萃取剂溶液的具体配置方法为:实施例1-15及对比例1萃取剂取用质量分别为(6.6、5.9、6.6、6.6、6.1、6.6、6.6、6.24、6.97、7.8、11.66、12.8、13.01、8.55、7.3和5.53、3.0、5.3)g,甲苯取用体积分别为(18.4、19.1、18.4、18.4、18.9、18.4、18.4、18.76、18.03、17.2、13.34、12.2、12.99、16.45、17.7和19.47、22.0、19.7)g,二者混合制得萃取剂溶液,萃取剂浓度为0.52mol/L;
(2)将上述各萃取剂溶液分别与10.8mol/L氢氧化钠的水溶液0.96mL混合,在25℃皂化5min,得到皂化的萃取剂溶液,皂化度为80%;
(3)室温下,将皂化的萃取剂溶液25mL和混合稀土溶液25mL混合,萃取时间0.5h。混合稀土溶液的成分为:镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥和钇一共15个稀土元素,每个元素的浓度均为0.020mol/L。测试萃取前和萃取后水相中稀土离子的浓度,并计算各稀土离子(Ln)相对于钇离子(Y)的相对分离系数β Ln/Y
具体测试结果(稀土离子(Ln)相对于钇离子(Y)的相对分离系数β Ln/Y)如表2所示:
表2
β Ln/Y La/ Ce/ Pr/ Nd/ Sm/ Eu/ Gd/ Tb/ Dy/ Ho/ Er/ Tm/ Yb/ Lu/
Y Y Y Y Y Y Y Y Y Y Y Y Y Y
实施例1 1.10 1.29 1.72 2.06 3.01 2.96 2.18 2.26 2.30 2.39 2.48 2.59 2.88 3.15
实施例2 1.12 1.27 1.72 2.06 3.01 2.96 2.18 2.27 2.29 2.37 2.47 2.57 2.85 3.10
实施例3 1.11 1.30 1.72 2.06 3.01 2.96 2.18 2.26 2.29 2.37 2.46 2.57 2.85 3.14
实施例4 1.09 1.29 1.72 2.06 3.01 2.96 2.18 2.26 2.3 2.39 2.48 2.59 2.88 3.14
实施例5 1.12 1.27 1.72 2.06 3.01 2.96 2.18 2.27 2.29 2.37 2.47 2.57 2.85 3.11
实施例6 1.13 1.30 1.73 2.07 3.02 2.98 2.20 2.28 2.30 2.39 2.49 2.62 2.9 3.17
实施例7 1.14 1.31 1.73 2.07 3.02 2.98 2.20 2.28 2.30 2.39 2.50 2.62 2.91 3.19
实施例8 1.10 1.29 1.72 2.06 3.01 2.96 2.18 2.26 2.30 2.39 2.48 2.59 2.88 3.15
实施例9 1.21 1.32 1.82 2.08 3.02 2.97 2.19 2.28 2.32 2.42 2.51 2.61 2.97 3.35
实施例10 1.10 1.23 1.77 2.09 3.06 2.99 2.28 2.29 2.33 2.42 2.50 2.56 2.83 3.11
实施例11 1.13 1.32 1.80 2.04 3.05 2.98 2.12 2.23 2.32 2.41 2.48 2.54 2.86 3.13
实施例12 1.08 1.33 1.73 2.07 3.04 3.00 2.13 2.23 2.35 2.42 2.49 2.51 2.89 3.18
实施例13 1.16 1.30 1.74 2.09 3.03 2.93 2.12 2.29 2.30 2.40 2.43 2.59 2.88 3.19
实施例14 1.14 1.39 1.77 2.08 3.09 2.99 2.23 2.26 2.33 2.42 2.51 2.66 2.91 3.27
实施例15 1.28 1.35 1.75 2.05 3.12 3.02 2.24 2.27 2.32 2.43 2.54 2.68 2.91 3.29
对比例1 0.98 1.22 1.60 1.84 2.95 2.93 2.15 2.22 2.21 2.26 2.32 2.49 2.83 3.07
对比例2 0.88 1.05 1.48 1.79 2.91 2.92 2.10 2.15 2.06 2.04 2.17 2.50 2.77 3.06
对比例3 1.03 1.21 1.55 1.78 2.92 2.93 2.14 2.21 2.17 2.19 2.25 2.47 2.82 3.08
从表2看出,实施例1-15的N,N-二烃基酰胺羧酸的对于各稀土元素的分离系数(β Ln/Y)高于对比例1-3的分离系数(β Ln/Y),本发明限定的N,N-二烃基酰胺羧酸更好地从混合稀土原料中分离、提纯钇元素。
试验例3
稳定性测试
对上述实施例1制备得到的化合物I-1进行稳定性测试,具体测试方法为:将化合物I-1配置为萃取剂溶液,所述萃取剂溶液的具体配置方法为:取用质量为50.9g,与100mL甲苯混合制得萃取剂溶液,浓度为1.0mol/L;取50mL萃取剂溶液与50mL浓度为6mol/L盐酸溶液混合并搅拌,另取50mL萃取剂溶液与50mL浓度为6mol/L氢氧化钠溶液混合并搅拌,维持搅拌15天,之后通过核磁检测测试萃取剂损失率。实施例2~15以及对比例化合物稳定 性测试方法同化合物I-1;
具体测试结果(盐酸介质和液碱介质中萃取剂的损失率)如下表3所示:
表3
Figure PCTCN2021102010-appb-000054
由表3测试数据可知,本发明所述N,N-二烃基酰胺羧酸在盐酸介质中的损失率在0.05%以下;在液碱介质中的损失率在0.07%以下;由此充分说明,本发明制备得到的N,N-二烃基酰胺羧酸的化学稳定性极好,能够耐受强酸和强碱而不发生分解。
申请人声明,本发明通过上述实施例来说明本发明所述N,N-二烃基酰胺羧酸及其制备方法和应用,但本发明并不局限于上述实施例,即不意味着本发明必须依赖上述实施例才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效 替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (15)

  1. 一种N,N-二烃基酰胺羧酸,其特征在于,所述N,N-二烃基酰胺羧酸具有如式I所示的结构:
    Figure PCTCN2021102010-appb-100001
    其中,R 1和R 2独立地为C6及以上的直链或支链、饱和或不饱和、取代或未取代的烃基;
    R 3为直链或支链、饱和或不饱和、取代或未取代的烃基;
    n为1~10的自然数。
  2. 根据权利要求1所述的N,N-二烃基酰胺羧酸,其特征在于,所述R 1和R 2独立地为C6-C30的直链或支链、饱和或不饱和、取代或未取代的烃基,优选为C6-C18的直链或支链、饱和或不饱和、取代或未取代的烃基。
  3. 根据权利要求1或2所述的N,N-二烃基酰胺羧酸,其特征在于,所述R 1和R 2独立地为C6以上的直链或支链、饱和或不饱和、未取代烃基,优选为C6-C30的支链、饱和或不饱和、未取代的烃基,更优为C6-C10的支链、饱和或不饱和、未取代的烃基。
  4. 根据权利要求1-3中任一项所述的N,N-二烃基酰胺羧酸,其特征在于,所述R 1和R 2独立地为C6-C30的直链或支链、未取代的烷基,优选为C6-C18的直链或支链、未取代的烷基,更优为C6-C10的直链或支链、未取代的烷基。
  5. 根据权利要求1-4中任一项所述的N,N-二烃基酰胺羧酸,其特征在于,所述n为1~6的自然数。
  6. 根据权利要求1-5中任一项所述的N,N-二烃基酰胺羧酸,其特征在于,所述R 1和R 2独立地为
    Figure PCTCN2021102010-appb-100002
    其中,2≤a+b≤10,
    Figure PCTCN2021102010-appb-100003
    代表基团连接位置。
  7. 根据权利要求1-6中任一项所述的N,N-二烃基酰胺羧酸,其特征在于,所述R 1和R 2独立地为下述基团中的任意一种,其中,
    Figure PCTCN2021102010-appb-100004
    代表基团连接位置:
    Figure PCTCN2021102010-appb-100005
  8. 根据权利要求1-7中任一项所述的N,N-二烃基酰胺羧酸,其特征在于,所述R 3选自C6以上的直链或支链、饱和或不饱和、取代或未取代的烃基,优选为C6-C30的直链或支链、饱和或不饱和、取代或未取代的烃基。
  9. 根据权利要求1-8中任一项所述的N,N-二烃基酰胺羧酸,其特征在于,所述R 3选自C6以上直链或支链的不饱和的未取代烃基,优选为C10以上直链烯基,更优为C10-C18的直链烯基。
  10. 根据权利要求1-9中任一项所述的N,N-二烃基酰胺羧酸,其特征在于,所述R 3为下述基团中的任意一种,其中,
    Figure PCTCN2021102010-appb-100006
    代表基团连接位置:
    Figure PCTCN2021102010-appb-100007
  11. 根据权利要求1-10中任一项所述的N,N-二烃基酰胺羧酸的制备方法,其特征在于,所述N,N-二烃基酰胺羧酸的制备方法为:
    将式II所示的N,N-二烃基仲胺和式III所示的二酸酐化合物混合反应,得到式I所示的N,N-二烃基酰胺羧酸,反应式如下:
    Figure PCTCN2021102010-appb-100008
    其中,R 1、R 2、R 3为权利要求1-10任一项中所定义的基团,n为1~10的自然数;
    或,将式II所示的N,N-二烃基仲胺和式IV所示的羧酸单酰氯化合物混合反应,得到式I所示的N,N-二烃基酰胺羧酸,反应式如下:
    Figure PCTCN2021102010-appb-100009
    其中,R 1、R 2、R 3与权利要求1-10任一项中所定义的基团,n为1~10的自然数。
  12. 根据权利要求11所述的N,N-二烃基酰胺羧酸的制备方法,其特征在于,所述式II所示的N,N-二烃基仲胺和式III所示的二酸酐化合物的摩尔比为1∶(0.8-1.2);
    优选地,所述式II所示的N,N-二烃基仲胺和式IV所示的羧酸单酰氯化合物的摩尔比为1∶(0.8-1.2)。
  13. 根据权利要求11或12所述的N,N-二烃基酰胺羧酸的制备方法,其特征在于,所述式II所示的N,N-二烃基仲胺和式III所示的二酸酐化合物混合反应的温度为0-125℃,混合反应的时间为0.5-4h;
    优选地,所述式II所示的N,N-二烃基仲胺和式IV所示的羧酸单酰氯化合物混合反应的温度为0-125℃,混合反应的时间为0.5-4h。
  14. 根据权利要求11-13中任一项所述的N,N-二烃基酰胺羧酸的制备方法,其特征在于,所述式II所示的N,N-二烃基仲胺和式III所示的二酸酐化合物混合反应在无溶剂存在条件下进行;或在溶剂中进行;
    优选地,所述式II所示的N,N-二烃基仲胺和式IV所示的羧酸单酰氯化合物混合反应在无溶剂存在条件下进行;或在溶剂中进行;
    优选地,所述溶剂均为惰性溶剂,所述惰性溶剂选自己烷、二氯甲烷、石油醚、甲苯、 二甲苯或煤油中的任意一种或至少两种的组合。
  15. 根据权利要求1-10中任一项所述的N,N-二烃基酰胺羧酸在制备分离稀土元素的萃取剂中的应用。
PCT/CN2021/102010 2021-06-24 2021-06-24 一种n,n-二烃基酰胺羧酸及其制备方法和应用 WO2022266919A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US17/639,122 US20230331662A1 (en) 2021-06-24 2021-06-24 An n,n-dihydrocarbonylamide carboxylic acid, preparation method therefor and use thereof
CN202180004549.6A CN114206828B (zh) 2021-06-24 2021-06-24 一种n,n-二烃基酰胺羧酸及其制备方法和应用
AU2021310842A AU2021310842B2 (en) 2021-06-24 2021-06-24 N,N-dihydrocarbylamide carboxylic acid, preparation method therefor and application thereof
EP21863067.1A EP4155291A4 (en) 2021-06-24 2021-06-24 N,N-DIHYDROCARBYLAMIDECARBONIC ACID, METHOD OF PRODUCTION THEREOF AND USE THEREOF
PCT/CN2021/102010 WO2022266919A1 (zh) 2021-06-24 2021-06-24 一种n,n-二烃基酰胺羧酸及其制备方法和应用
CA3150358A CA3150358A1 (en) 2021-06-24 2021-06-24 N,n-dihydrocarbonylamide carboxylic acid, preparation method therefor and use thereof
JP2022539088A JP7485769B2 (ja) 2021-06-24 2021-06-24 N,n-ジヒドロカルビルアミドカルボン酸並びにその調製方法及び使用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/102010 WO2022266919A1 (zh) 2021-06-24 2021-06-24 一种n,n-二烃基酰胺羧酸及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022266919A1 true WO2022266919A1 (zh) 2022-12-29

Family

ID=80659070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102010 WO2022266919A1 (zh) 2021-06-24 2021-06-24 一种n,n-二烃基酰胺羧酸及其制备方法和应用

Country Status (7)

Country Link
US (1) US20230331662A1 (zh)
EP (1) EP4155291A4 (zh)
JP (1) JP7485769B2 (zh)
CN (1) CN114206828B (zh)
AU (1) AU2021310842B2 (zh)
CA (1) CA3150358A1 (zh)
WO (1) WO2022266919A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133952A (ja) * 1989-10-17 1991-06-07 Kissei Pharmaceut Co Ltd フェニルスルホニルアルキルカルボン酸誘導体
JPH0436266A (ja) * 1990-06-01 1992-02-06 Kissei Pharmaceut Co Ltd フェニルスルフィニルアルキルカルボン酸誘導体
JPH0495059A (ja) * 1990-08-10 1992-03-27 Kissei Pharmaceut Co Ltd フェニルチオアルキルカルボン酸誘導体
EP0508004A1 (en) * 1991-04-08 1992-10-14 Kissei Pharmaceutical Co., Ltd. Phenylsulfonylalkanoic acid compounds
US5786468A (en) * 1995-03-24 1998-07-28 Lever Brothers Company, Division Of Conopco, Inc. Anionic glycasuccinamide surfactants and a process for their manufacture
CN101945575A (zh) * 2008-01-25 2011-01-12 罗地亚管理公司 酯酰胺的用途、新的酯酰胺以及酯酰胺的制备方法
CN103582711A (zh) * 2011-11-09 2014-02-12 国立大学法人九州大学 有价金属萃取剂和使用该萃取剂的有价金属萃取方法
CN104529861A (zh) 2015-01-13 2015-04-22 威海经济技术开发区天成化工有限公司 酰亚胺基改性低分子量线型酚醛树脂的合成方法及包含该树脂的感光成像组合物
CN106892835A (zh) 2017-01-08 2017-06-27 四川大学 双二甘酰胺配体及其制备方法和含有双二甘酰胺配体的镧系/锕系分离萃取体系
CN109824532A (zh) 2019-02-25 2019-05-31 中红普林(北京)医疗用品高新技术研究院有限公司 一种合成n,n,n’,n’-四辛基-3-氧戊二酰胺的新工艺
CN112575188A (zh) * 2020-11-24 2021-03-30 厦门钨业股份有限公司 一种二烷基氨基苯氧乙酸萃取剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5487506B2 (ja) 2010-07-05 2014-05-07 信越化学工業株式会社 希土類金属抽出剤の合成方法
JP5279942B1 (ja) 2011-11-09 2013-09-04 国立大学法人九州大学 コバルト抽出方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03133952A (ja) * 1989-10-17 1991-06-07 Kissei Pharmaceut Co Ltd フェニルスルホニルアルキルカルボン酸誘導体
JPH0436266A (ja) * 1990-06-01 1992-02-06 Kissei Pharmaceut Co Ltd フェニルスルフィニルアルキルカルボン酸誘導体
JPH0495059A (ja) * 1990-08-10 1992-03-27 Kissei Pharmaceut Co Ltd フェニルチオアルキルカルボン酸誘導体
EP0508004A1 (en) * 1991-04-08 1992-10-14 Kissei Pharmaceutical Co., Ltd. Phenylsulfonylalkanoic acid compounds
US5786468A (en) * 1995-03-24 1998-07-28 Lever Brothers Company, Division Of Conopco, Inc. Anionic glycasuccinamide surfactants and a process for their manufacture
US5844103A (en) * 1995-03-24 1998-12-01 Lever Brothers Company, Division Of Conopco, Inc. Anionic glycasuccinamide sufactants and a process for their manufacture
CN101945575A (zh) * 2008-01-25 2011-01-12 罗地亚管理公司 酯酰胺的用途、新的酯酰胺以及酯酰胺的制备方法
CN103582711A (zh) * 2011-11-09 2014-02-12 国立大学法人九州大学 有价金属萃取剂和使用该萃取剂的有价金属萃取方法
CN104529861A (zh) 2015-01-13 2015-04-22 威海经济技术开发区天成化工有限公司 酰亚胺基改性低分子量线型酚醛树脂的合成方法及包含该树脂的感光成像组合物
CN106892835A (zh) 2017-01-08 2017-06-27 四川大学 双二甘酰胺配体及其制备方法和含有双二甘酰胺配体的镧系/锕系分离萃取体系
CN109824532A (zh) 2019-02-25 2019-05-31 中红普林(北京)医疗用品高新技术研究院有限公司 一种合成n,n,n’,n’-四辛基-3-氧戊二酰胺的新工艺
CN112575188A (zh) * 2020-11-24 2021-03-30 厦门钨业股份有限公司 一种二烷基氨基苯氧乙酸萃取剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AJISAWA YUKIYOSHI, ET AL.: "Studies on the Synthesis of Cholecystokinin A Receptor Antagonists. II. Synthesis and Cholecystokinin A Receptor Inhibitory Activities of Sulfur- Containing Amide-Carboxylic Acid Derivatives", YAKUGAKU ZASSHI : JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN APR 2011, PHARMACEUTICAL SOCIETY OF JAPAN, JP, vol. 116, no. 8, 1 January 1996 (1996-01-01), JP , pages 647 - 656, XP055939053, ISSN: 1347-5231, DOI: 10.1248/yakushi1947.116.8_647 *
DATABASE REGISTRY 12 June 2008 (2008-06-12), ANONYMOUS : "5-Hexenoic acid, 3-[(dioctadecylamino)carbonyl]-4-oxo- (CA INDEX NAME) ", XP055939056, retrieved from STN Database accession no. 1027464-50-1 *

Also Published As

Publication number Publication date
CN114206828B (zh) 2024-01-26
JP2023535658A (ja) 2023-08-21
CA3150358A1 (en) 2022-12-24
AU2021310842B2 (en) 2023-06-15
US20230331662A1 (en) 2023-10-19
JP7485769B2 (ja) 2024-05-16
AU2021310842A1 (en) 2023-01-19
EP4155291A1 (en) 2023-03-29
EP4155291A4 (en) 2023-08-02
CN114206828A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
US8951486B2 (en) Valuable metal extraction agent and valuable metal extraction method using said extraction agent
JP5496387B2 (ja) アミド誘導体
CN108456792A (zh) 一种稀土萃取分离用萃取剂及其制备方法和萃取分离方法
CN113481391B (zh) 一种分离稀土元素的方法
WO2022266919A1 (zh) 一种n,n-二烃基酰胺羧酸及其制备方法和应用
CN113429312B (zh) 一种n,n-二烃基酰胺羧酸化合物及其制备方法和应用
CN113321593B (zh) 一种n,n-二烃基酰胺羧酸化合物及其制备方法和应用
WO2023272497A1 (zh) 一种n,n-二烃基氨基羧酸及其制备方法和应用
CN113402406B (zh) 一种n,n-二烃基氨基羧酸化合物及其制备方法和应用
JP5598918B2 (ja) カリックスアレーン誘導体を用いる希土類金属の検出法
CN113430373B (zh) 一种分离稀土元素的方法
CN113480443B (zh) 一种n,n-二烃基氨基羧酸化合物及其制备方法和应用
JP4022612B2 (ja) 希土類の複核かご型錯体及びその製造方法
CN108084010A (zh) 一种分子磁性材料苯甲酰丙酮Dy(III)配合物及其制备方法
CN117926001A (zh) 一种萃取分离锗的羰基酸类萃取剂

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021863067

Country of ref document: EP

Effective date: 20220309

ENP Entry into the national phase

Ref document number: 2022539088

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021310842

Country of ref document: AU

Date of ref document: 20210624

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE