WO2022264961A1 - セリウム系複合酸化物粉末、摩擦材組成物、及び、摩擦材 - Google Patents

セリウム系複合酸化物粉末、摩擦材組成物、及び、摩擦材 Download PDF

Info

Publication number
WO2022264961A1
WO2022264961A1 PCT/JP2022/023603 JP2022023603W WO2022264961A1 WO 2022264961 A1 WO2022264961 A1 WO 2022264961A1 JP 2022023603 W JP2022023603 W JP 2022023603W WO 2022264961 A1 WO2022264961 A1 WO 2022264961A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
mass
composite oxide
less
oxide powder
Prior art date
Application number
PCT/JP2022/023603
Other languages
English (en)
French (fr)
Inventor
卓二 鍋田
元希 ▲高▼瀬
Original Assignee
第一稀元素化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一稀元素化学工業株式会社 filed Critical 第一稀元素化学工業株式会社
Priority to JP2023529854A priority Critical patent/JP7568857B2/ja
Priority to KR1020237026882A priority patent/KR20230128122A/ko
Priority to US18/547,684 priority patent/US20240228313A9/en
Priority to CN202280018621.5A priority patent/CN116917235A/zh
Priority to EP22824950.4A priority patent/EP4357302A1/en
Publication of WO2022264961A1 publication Critical patent/WO2022264961A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • F16D69/028Compositions based on metals or inorganic oxides containing fibres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/21Attrition-index or crushing strength of granulates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0065Inorganic, e.g. non-asbestos mineral fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/006Materials; Production methods therefor containing fibres or particles
    • F16D2200/0069Materials; Production methods therefor containing fibres or particles being characterised by their size

Definitions

  • the present invention relates to a cerium-based composite oxide powder, a friction material composition, and a friction material.
  • Brake pads are often used for braking automobiles. Conventionally, it has been the mainstream to add asbestos to brake pads to obtain desired performance. However, in recent years, asbestos-free brake pads have been demanded due to the problem of environmental load, and research and development are being actively carried out.
  • the friction material used in brake pads generally uses zircon raw ore powder or zirconium oxide powder obtained by removing impurities such as silicon from raw ore.
  • problems such as the recent rise in raw material prices and the inclusion of radioactive elements derived from ores have occurred.
  • Patent Document 1 discloses a friction material in which a fiber base material and a friction modifier are bonded with a thermosetting resin, and the friction material contains a rare earth oxide as at least a part of the friction modifier. .
  • rare earth oxides such as CeO 2 , La 2 O 3 and Y 2 O 3 have lower hardness than general abrasive materials such as alumina and are less likely to cause deterioration. Therefore, it is disclosed that the aggression to the mating material can be reduced while obtaining a high and stable coefficient of friction.
  • Patent Document 2 discloses a friction material composition containing a binder, an organic filler, an inorganic filler, and a fiber base material, wherein the friction material composition does not contain copper as an element, and the inorganic filler is ⁇ alumina with an average particle size of 10 nm to 50 ⁇ m, dolomite with an average particle size of 1 to 20 ⁇ m, calcium carbonate with an average particle size of 1 to 20 ⁇ m, magnesium carbonate with an average particle size of 1 to 20 ⁇ m, manganese dioxide with an average particle size of 1 to 20 ⁇ m, average One or two selected from zinc oxide having a particle size of 10 nm to 1 ⁇ m, triiron tetraoxide having an average particle size of 1.0 ⁇ m or less, cerium oxide having an average particle size of 0.5 to 5 ⁇ m, and zirconia having an average particle size of 5 to 50 nm
  • a friction material composition that is more than one species is disclosed.
  • Patent Document 2 discloses that when used in a friction material such as a disc brake pad for automobiles, even without using copper, which has a high environmental load, it has fade resistance and wear resistance at high temperatures exceeding 500 ° C. It is disclosed that it is superior to
  • Patent Document 3 discloses a friction material composition containing a binder, an organic filler, an inorganic filler, and a fiber base material, wherein the friction material composition does not contain copper as an element and has a plurality of convex shapes. and zirconium silicate having an average particle size of 1 to 2.5 ⁇ m. Moreover, Patent Document 3 discloses that, as an effect, even without using copper, which has a high environmental load, it has excellent wear resistance at high temperatures and produces little abnormal noise.
  • NAO brake pads non-asbestos organic brake pads
  • a weak point of the NAO brake pad is a decrease in braking force (fade phenomenon) due to continuous use. If the decrease in ⁇ value due to the fade phenomenon is large, it will lead to discomfort during braking.
  • there has been a tendency to demand brake pads with a high ⁇ value but the problem is that a high ⁇ value tends to increase the difference between the ⁇ value during hard braking and the ⁇ value during light braking. Occur. If the difference between the ⁇ value for hard braking and the ⁇ value for light braking becomes large, it will lead to discomfort during braking.
  • excellent friction stability a small difference between the ⁇ value during hard braking and the ⁇ value during light braking is referred to as excellent friction stability.
  • the present invention has been made in view of the above problems, and its object is to provide a friction material that has excellent fade resistance, a high ⁇ value, and excellent friction stability when used as a friction material for brake pads.
  • An object of the present invention is to provide a cerium-based composite oxide powder that enables obtaining
  • Another object of the present invention is to provide a friction material composition containing the cerium-based composite oxide powder.
  • Another object of the present invention is to provide a friction material comprising a molded body of the friction material composition.
  • the inventors of the present invention conducted extensive research on the powder used for the friction material of the brake pads. As a result, surprisingly, when ceria powder is mixed with alumina powder, melted and pulverized, and the resulting powder is used as a friction material for a brake pad, it has excellent fade resistance and a high ⁇ value. also found that a friction material having excellent friction stability can be obtained, and completed the present invention.
  • the cerium-based composite oxide powder according to the present invention is including cerium and aluminum, It is characterized by having a specific surface area of 0.5 m 2 /g or more and 10 m 2 /g or less.
  • cerium oxide (ceria) powder containing no aluminum is excellent in fade resistance, but cannot provide a high ⁇ value and is inferior in friction stability.
  • cerium-based composite oxide powder containing aluminum in addition to cerium and having a specific surface area of 10 m 2 /g or less is used, the cerium-based composite oxide powder is used as a friction material for brake pads.
  • the cerium-based composite oxide powder is used as a friction material for brake pads.
  • Cerium-based composite oxide powder containing aluminum in addition to cerium it is possible to obtain a friction material that is excellent in friction stability while having excellent fade resistance and a high ⁇ value.
  • Cerium contributes to fade resistance as a major role. Cerium is known to have a high oxygen storage capacity. During high-load braking, the surface of the brake pad may reach 400°C or higher due to frictional heat. Therefore, strong reducing gas may be generated by burning the resin that hardens the brake pad. It is believed that the gas reduces the metal oxide added as an abrasive, thereby reducing the coefficient of friction. Cerium has the property of releasing oxygen at around 400° C. if the atmosphere is in a reducing state.
  • cerium aluminate plays a major role in contributing to high ⁇ value and friction stability. Alumina alone is too hard and highly aggressive to the rotor disk, making it impractical. In addition, the necessary coefficient of friction cannot be obtained with cerium alone. On the other hand, cerium aluminate has fewer disadvantages than alumina alone and cerium alone, and makes it possible to obtain a friction material that is excellent in friction stability while having excellent fade resistance and a high ⁇ value.
  • zirconium is included.
  • the cerium-based composite oxide powder When a cerium-based composite oxide powder containing zirconium and aluminum in addition to cerium is used, it is easy to obtain a friction material that has excellent fade resistance, a high ⁇ value, and excellent friction stability. . When a cerium-based composite oxide powder containing zirconium and aluminum in addition to cerium is used, it is easy to obtain a friction material that has excellent fade resistance, a high ⁇ value, and excellent friction stability.
  • the present inventors have found that the cerium-based composite oxide powder has two crystals: a crystal phase in which zirconia and ceria are dissolved and a crystal phase containing cerium and aluminum. It is inferred that such characteristics were obtained because of the presence of phases. Also, it is speculated that the specific surface area of 10 m 2 /g or less enabled the high hardness and the high ⁇ value.
  • Patent Documents 1 to 3 do not disclose a cerium-based composite oxide powder containing three elements of cerium, zirconium, and aluminum. Moreover, Patent Documents 1 to 3 do not disclose the problem or effect of having three characteristics of excellent fade resistance, high ⁇ value, and excellent friction stability.
  • the crystallite diameter is preferably within the range of 10 nm or more and 80 nm or less.
  • the crystallite diameter is 10 nm or more, sufficient crystal growth is achieved, and characteristics such as a high ⁇ value can be easily obtained.
  • the particle diameter D50 is preferably 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the particle diameter D50 is 0.5 ⁇ m or more and 20 ⁇ m or less, properties such as a high ⁇ value can be obtained more easily.
  • the particle diameter D99 is preferably 60 ⁇ m or less.
  • the single grain crushing strength is within the range of 50N or more and 300N or less.
  • the single grain crushing strength is 50 N or more, the strength of the particles is high, and properties such as a high ⁇ value can be obtained particularly easily.
  • the content of cerium is 40% by mass or more and 95% by mass or less in terms of oxide
  • the content of zirconium is in the range of 0.1% by mass or more and 50% by mass or less in terms of oxide
  • the content of aluminum is in the range of 0.1% by mass or more and 24% by mass or less in terms of oxide.
  • the cerium content is 40% by mass or more and 95% by mass or less in terms of oxide
  • the zirconium content is in the range of 0.1% by mass or more and 50% by mass or less in terms of oxide
  • the aluminum content is When it is in the range of 0.1% by mass or more and 24% by mass or less in terms of oxide, it is a suitable ratio for obtaining characteristics such as a high ⁇ value.
  • the cerium-based composite oxide powder has two crystal phases, namely, a crystal phase in which zirconia and ceria form a solid solution and a crystal phase containing cerium and aluminum. , high ⁇ value, etc. can be easily obtained.
  • the content of cerium is 40% by mass or more and 95% by mass or less in terms of oxide
  • the content of zirconium is in the range of 0.1% by mass or more and 50% by mass or less in terms of oxide
  • the content of aluminum is When the content is in the range of 0.1% by mass or more and 24% by mass or less in terms of oxide, two of the crystal phase in which zirconia and ceria are dissolved and the crystal phase containing cerium and aluminum are high. It is presumed that the ratio is suitable for obtaining characteristics such as the ⁇ value.
  • the content of aluminum is preferably in the range of 0.1% by mass or more and 10% by mass or less in terms of oxide.
  • the content of zirconium is in the range of 0.1% by mass or more and 40% by mass or less in terms of oxide, It is preferable that the content of aluminum is in the range of 0.1% by mass or more and 10% by mass or less in terms of oxide.
  • the content of cerium is 49% by mass or more and 91% by mass or less in terms of oxide
  • the content of zirconium is in the range of 1% by mass or more and 43% by mass or less in terms of oxide
  • the content of aluminum is in the range of 1% by mass or more and 8% by mass or less in terms of oxide.
  • the cerium content is 49% by mass or more and 91% by mass or less in terms of oxide
  • the zirconium content is in the range of 1% by mass or more and 43% by mass or less in terms of oxide
  • the aluminum content is in the range of oxide
  • the total content of cerium, zirconium and aluminum is preferably 60% by mass or more in terms of oxides.
  • CeAlO 3 is included.
  • the crystal phase is stabilized and a higher ⁇ value can be achieved.
  • the rare earth element other than cerium is contained within the range of 0.1% by mass or more and 40% by mass or less in terms of oxide.
  • the rare earth element other than cerium is contained within the range of 0.1% by mass or more and 40% by mass or less in terms of oxide, the crystal phase becomes more stable, and a higher ⁇ value can be obtained.
  • the rare earth element other than cerium is preferably one or more selected from the group consisting of yttrium and lanthanum.
  • the crystal phase is stable and a high ⁇ value can be obtained.
  • the above composition may contain an alkaline earth element.
  • alkaline earth elements When alkaline earth elements are included, they are slightly less stable than rare earth elements such as yttria, but can be manufactured at low cost.
  • the cerium-based composite oxide powder When used as a friction material for a brake pad, it has excellent fade resistance, a high ⁇ value, and excellent friction stability. Therefore, it is suitable for use as a friction material. can be used for
  • the friction material composition according to the present invention includes a friction modifier, a fiber base material, and a binder,
  • the cerium-based composite oxide powder is included as the friction modifier.
  • the cerium-based composite oxide powder is included as a friction modifier, when the friction material composition is molded and used as a friction material for a brake pad, it has excellent fade resistance and a high ⁇ value. It is possible to obtain a friction material that is excellent in friction stability while having the
  • the content of the cerium-based composite oxide powder is preferably in the range of 5% by mass or more and 20% by mass or less when the entire friction material composition is taken as 100% by mass.
  • the content of the cerium-based composite oxide powder is in the range of 5% by mass or more and 20% by mass or less when the entire friction material composition is 100% by mass, characteristics such as a high ⁇ value can be easily obtained. can get to
  • the friction material according to the present invention is characterized by comprising a molded body of the friction material composition.
  • the first fade test measured under the following measurement conditions A was performed nine times in accordance with the Society of Automotive Engineers of Japan standard JASO C406, and the maximum It is preferable that the average value of the value ⁇ value and the minimum value ⁇ value is calculated and the average value is 0.20 ⁇ m or more.
  • the sliding ⁇ value which is the average value of the friction coefficients measured under the following measurement conditions B according to the Society of Automotive Engineers of Japan standard JASO C406, is 0.39 or more.
  • the average value of the friction coefficient in eight measurements in the second efficacy test measured under the following measurement condition C is defined as the friction coefficient X
  • the friction coefficient Y when the average value of the friction coefficient in eight measurements in the second efficacy test measured under the following measurement conditions D is taken as the friction coefficient Y,
  • the difference in friction coefficient [(friction coefficient X)-(friction coefficient Y)] is preferably 0.12 or less.
  • a cerium-based composite oxide powder that, when used as a friction material for a brake pad, can provide a friction material that has excellent fade resistance, a high ⁇ value, and excellent friction stability.
  • a friction material composition containing the cerium-based composite oxide powder can be provided. Further, it is possible to provide a friction material composed of a molded body of the friction material composition.
  • FIG. 4 is an X-ray diffraction spectrum of the cerium-based composite oxide powder according to Example 4.
  • FIG. 4 is an X-ray diffraction spectrum of the cerium-based composite oxide powder according to Example 4.
  • zirconia zirconium oxide
  • impurity metal compounds include hafnia.
  • the cerium-based composite oxide powder according to the present embodiment is including cerium and aluminum,
  • the specific surface area is 0.5 m 2 /g or more and 10 m 2 /g or less.
  • the cerium-based composite oxide powder (hereinafter also referred to as “composite oxide powder”) according to the present embodiment contains aluminum in addition to cerium and has a specific surface area of 10 m 2 /g or less.
  • composite oxide powder is used as a friction material for a brake pad, it is possible to obtain a friction material that is excellent in friction stability while having excellent fade resistance and a high ⁇ value. This is also clear from the examples.
  • the composite oxide powder according to the present embodiment contains cerium (Ce) and aluminum (Al) as a whole, and is formed as a composite of multiple kinds of oxides.
  • the composite oxide powder according to this embodiment preferably further contains zirconium (Zr).
  • Zr zirconium
  • a composite of a plurality of types of oxides refers to an integrated product in which two or more oxides having different composition ratios are combined.
  • the composite oxide powder according to this embodiment is not a mixture of ceria (cerium oxide) and alumina (aluminum oxide).
  • zirconium when zirconium is further included, the composite oxide powder according to the present embodiment is not a mixture of ceria (cerium oxide), zirconia (zirconium dioxide), and alumina (aluminum oxide).
  • the content of cerium contained in the composite oxide powder is preferably 40% by mass or more, more preferably 49% by mass or more, even more preferably 53% by mass or more, particularly preferably 56% by mass or more, particularly preferably 56% by mass or more, in terms of oxide. More than % by mass is particularly preferred.
  • the content of cerium contained in the composite oxide powder is preferably 95% by mass or less, more preferably 92% by mass or less, even more preferably 91% by mass or less, particularly preferably 90% by mass or less, in terms of oxide. % by mass or less is particularly preferred.
  • the generated evaporative gas creates a strong reducing atmosphere.
  • the composite oxide powder according to the present embodiment contains cerium oxide, the reduction of the friction material can be suppressed by supplying oxygen due to the change in the valence of cerium oxide.
  • the friction material is usually an oxide, it may be deprived of oxygen in a strongly reducing atmosphere and the hardness may decrease.
  • cerium oxide since cerium oxide is included, the decrease in hardness due to reduction of the friction material is suppressed. be done.
  • the content of zirconium contained in the composite oxide powder is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 3% by mass or more, and particularly preferably 4% by mass or more in terms of oxide. , 5% by weight or more are particularly preferred.
  • the content of zirconium contained in the composite oxide powder is preferably 50% by mass or less, more preferably 45% by mass or less, further preferably 43% by mass or less, particularly preferably 35% by mass or less, particularly preferably 35% by mass or less, in terms of oxide. % by mass or less is particularly preferred.
  • the content of aluminum contained in the composite oxide powder is preferably 0.1% by mass or more, more preferably 1% by mass or more, still more preferably 2% by mass or more, and particularly preferably 3% by mass or more in terms of oxide. .
  • the content of aluminum contained in the composite oxide powder is preferably 24% by mass or less, preferably 10% by mass or less, more preferably 8% by mass or less, further preferably 7% by mass or less, and 6% by mass in terms of oxide. % or less is particularly preferred, and 5% by mass or less is particularly preferred.
  • the content of cerium, zirconium, and aluminum contained in the composite oxide powder is 40% by mass or more and 95% by mass or less in terms of oxide
  • the content of zirconium is 40% by mass or more and 95% by mass or less in terms of oxide.
  • the content of aluminum in terms of oxide is preferably in the range of 0.1% by mass or more and 24% by mass or less.
  • the cerium content is 49% by mass or more and 91% by mass or less in terms of oxide
  • the zirconium content is in the range of 1% by mass or more and 43% by mass or less in terms of oxide
  • the aluminum content is More preferably, it is in the range of 1% by mass or more and 8% by mass or less in terms of oxide.
  • the ratio is suitable for obtaining properties such as a high ⁇ value.
  • the total content of cerium, zirconium and aluminum is preferably 60% by mass or more in terms of oxides.
  • the total content is more preferably 72% by mass or more, more preferably 75% by mass or more, particularly preferably 80% by mass or more, and 85% by mass or more in terms of oxides. is particularly preferred, and 87% by weight is particularly preferred.
  • the total content is preferably as high as possible, it is, for example, 100% by mass or less, 97% by mass or less, 95% by mass or less, or 90% by mass or less in terms of oxides.
  • the composite oxide powder may contain rare earth elements other than cerium.
  • a rare earth element other than cerium is contained, the crystal phase is stabilized and a higher ⁇ value can be obtained.
  • Rare earth elements other than cerium include scandium, yttrium, lanthanum, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
  • the rare earth elements other than cerium contained in the composite oxide powder may be one kind, or two or more kinds.
  • the rare earth elements other than cerium one or more selected from the group consisting of yttrium and lanthanum is preferable, and yttrium is particularly preferable. When yttrium or lanthanum is included, especially when yttrium is included, the crystal phase is more stable, and a higher ⁇ value can be obtained.
  • the content of rare earth elements other than cerium is preferably 0.1% by mass or more, more preferably 1% by mass or more in terms of oxides, when the entire composite oxide powder is taken as 100% by mass.
  • the content of rare earth elements other than cerium is preferably 40% by mass or less, more preferably 15% by mass or less, and even more preferably 10% by mass or less in terms of oxide when the entire composite oxide powder is 100% by mass. , 5% by mass or less is particularly preferable, 4% by mass or less is particularly preferable, and 3% by mass or less is particularly preferable.
  • the composite oxide powder may contain other elements as long as the effects of the present invention are not impaired.
  • the other elements include alkali elements, alkaline earth elements, and transition metal elements.
  • Specific examples of the other elements include calcium, magnesium, silicon and titanium. These are preferably contained in the composite oxide powder as oxides.
  • the content of the other elements is preferably 40% by mass or less in terms of oxides when the entire composite oxide powder is taken as 100% by mass.
  • the specific surface area of the composite oxide powder is 0.5 m 2 /g or more and 10 m 2 /g or less.
  • the specific surface area is preferably 1 m 2 /g or more, more preferably 1.5 m 2 /g or more, even more preferably 1.8 m 2 /g or more, and 2 m 2 /g or more. It is particularly preferred to have
  • the specific surface area is preferably 4.5 m 2 /g or less, more preferably 4 m 2 /g or less, even more preferably 3.5 m 2 /g or less, and 3.2 m 2 /g. It is particularly preferably 3 m 2 /g or less, particularly preferably 3 m 2 /g or less.
  • the composite oxide powder can easily be melted and solidified with desired crystallinity and strength.
  • the melted and solidified material may include a semi-molten and solidified material.
  • a method for obtaining the composite oxide powder having the above specific surface area includes a method of mixing ceria powder with zirconia powder and alumina powder, and then melting and pulverizing the mixture.
  • the specific surface area of the composite oxide powder refers to the value obtained by the method described in Examples.
  • the crystallite size of the composite oxide powder is preferably in the range of 10 nm or more and 80 nm or less.
  • the crystallite size is more preferably 20 nm or more, still more preferably 30 nm or more, and particularly preferably 35 nm or more.
  • the crystallite size is more preferably 70 nm or less, still more preferably 65 nm or less, and particularly preferably 60 nm or less.
  • the crystallite diameter is 10 nm or more, sufficient crystal growth is achieved, and characteristics such as a high ⁇ value can be easily obtained. On the other hand, it is not necessary to promote crystal growth excessively.
  • the crystallite diameter is preferably 80 nm or less in consideration of productivity.
  • the crystallite size is calculated by applying the measurement results of the peak at 2 ⁇ of 40° to 42° in the XRD measurement to the following Scherrer's formula.
  • Dp is the crystallite diameter of the composite oxide powder
  • is the X-ray wavelength
  • is the diffraction angle
  • K is a constant called shape factor
  • is the peak width after correcting for the spread of the diffraction line due to the apparatus. is.
  • the peak at 2 ⁇ of 40° to 42° is a peak derived from (111) of CeAlO 3 .
  • the details of the XRD measurement conditions are as described in Examples.
  • As a method for obtaining the composite oxide powder having the above crystallite size there is a method of mixing ceria powder with zirconia powder and alumina powder, and then melting and pulverizing the mixture.
  • the composite oxide powder contains cerium and aluminum as a whole and is formed as a composite of multiple kinds of oxides. Moreover, when the composite oxide powder further contains zirconium, it contains cerium, zirconium, and aluminum as a whole, and is formed as a composite of multiple types of oxides. Each oxide constituting the composite should contain at least one of cerium, zirconium, and aluminum, and does not need to contain all three.
  • the composite may further contain oxides other than cerium, zirconium, and aluminum as part of the composite.
  • the composite may contain a compound (element) other than the oxide as a part of the composite.
  • the composite oxide powder is, among others, a composite containing an oxide containing cerium and zirconia (hereinafter also referred to as crystal phase A) and an oxide containing cerium and aluminum (hereinafter also referred to as crystal phase B).
  • the crystalline phase A is a solid solution of zirconia in ceria and does not have a specific composition formula.
  • the composition formula of the crystal phase B is CeAlO3 .
  • the composite oxide powder contains a rare earth element other than cerium
  • an oxide corresponding to the added amount of the rare earth element other than cerium is contained as part of the composite.
  • the composite oxide powder contains yttrium and lanthanum as rare earth elements other than cerium, they dissolve in ceria and zirconia.
  • the particle diameter D50 of the composite oxide powder is preferably 20 ⁇ m or less.
  • the particle diameter D50 is more preferably 0.8 ⁇ m or more, even more preferably 1 ⁇ m or more, particularly preferably 1.5 ⁇ m or more, particularly preferably 2 ⁇ m or more, particularly preferably 2.3 ⁇ m or more.
  • the particle diameter D50 is more preferably 15 ⁇ m or less, even more preferably 10 ⁇ m or less, particularly preferably 7 ⁇ m or less, particularly preferably 5 ⁇ m or less, particularly preferably 4 ⁇ m or less.
  • the particle diameter D90 of the composite oxide powder is preferably 25 ⁇ m or less.
  • the particle diameter D90 is more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more, and particularly preferably 6.5 ⁇ m or more.
  • the particle diameter D90 is more preferably 21 ⁇ m or less, even more preferably 15 ⁇ m or less, particularly preferably 10 ⁇ m or less, and particularly preferably 8 ⁇ m or less.
  • properties such as a high ⁇ value can be obtained more easily.
  • the particle diameter D99 of the composite oxide powder is preferably 60 ⁇ m or less.
  • the particle diameter D99 is more preferably 50 ⁇ m or less, even more preferably 48 ⁇ m or less, particularly preferably 20 ⁇ m or less, and particularly preferably 15 ⁇ m or less.
  • the particle diameter D99 is preferably 5 ⁇ m or more, more preferably 7 ⁇ m or more, even more preferably 10 ⁇ m or more, and particularly preferably 11 ⁇ m or more.
  • properties such as a high ⁇ value can be obtained more easily.
  • the particle diameter D50 , particle diameter D90 , and particle diameter D99 of the composite oxide powder refer to values obtained by the method described in Examples.
  • the particle diameter D50 , the particle diameter D90 , and the particle diameter D99 described in this specification are measured on a volume basis, and the particle diameter D50 is measured by a laser diffraction method. It is a particle diameter corresponding to a cumulative value of 50% from the particle diameter value, the particle diameter D 90 is a particle diameter corresponding to a cumulative value of 90% from the minimum particle diameter value measured by a laser diffraction method, and the particle diameter D 99 is a laser It is the particle diameter corresponding to the cumulative value of 99% from the minimum particle diameter measured by the diffraction method.
  • ceria powder is mixed with zirconia powder and alumina powder, melted and pulverized to form a composite oxide.
  • a method of controlling pulverization conditions when obtaining a powder can be mentioned.
  • the single grain crushing strength of the composite oxide powder is preferably in the range of 50N or more and 300N or less.
  • the single grain crushing strength is more preferably 70 N or higher, still more preferably 80 N or higher, particularly preferably 90 N or higher, particularly preferably 100 N or higher, particularly preferably 110 N or higher.
  • the upper limit of the single grain crushing strength is not particularly limited, the single grain crushing strength can be 250 N or less, 230 N or less, 210 N or less, 190 N or less, 180 N or less, or the like.
  • the single grain crushing strength is measured on grains before pulverization. As the particles before pulverization, those having a particle diameter within the range of 2.36 mm to 2.80 mm are used.
  • Particles having the above particle size can be obtained using commercially available sieves.
  • the number of measurements is 50, and the average value is taken as the single grain crushing strength.
  • a tension/compression tester is used as a measuring device. Specifically, SV-201-NSL manufactured by Imada Seisakusho Co., Ltd. is used as the tension/compression tester.
  • the loading speed is 0.50 mm/min.
  • the details of the method for measuring the single grain crushing strength are as described in Examples.
  • As a method for obtaining the composite oxide powder having the single grain crushing strength there is a method of mixing ceria powder with zirconia powder and alumina powder, and then melting and pulverizing the mixture.
  • the true specific gravity of the composite oxide powder is preferably 6.0 g/cm 3 or more and 7.2 g/cm 3 or less.
  • the true specific gravity is preferably 6.3 g/cm 3 or more, more preferably 6.5 g/cm 3 or more, and even more preferably 6.7 g/cm 3 or more.
  • the true specific gravity is preferably 7.1 g/cm 3 or less, more preferably 7.0 g/cm 3 or less, and even more preferably 6.9 g/cm 3 or less.
  • the true specific gravity is a value measured according to JIS Z8807:2012.
  • a method of obtaining the composite oxide powder having the true specific gravity includes a method of mixing ceria powder with zirconia powder and alumina powder, and then melting and pulverizing the mixture.
  • the composite oxide powder according to this embodiment has been described above.
  • Method for producing composite oxide powder An example of the method for producing the composite oxide powder will be described below. However, the method for producing a composite oxide powder according to the present invention is not limited to the following examples.
  • the method for producing a composite oxide powder includes: Step 1 of preparing starting materials; A step 2 of melting the starting material by applying a predetermined amount of heat to the starting material; Step 3 of cooling the melt obtained in Step 2 to form an ingot; a step 4 of pulverizing the ingot obtained in the step 3 into a powder; and a step 5 of heating the powder obtained in the step 4 in an atmosphere of 400 to 1100°C.
  • starting materials are prepared. Specifically, for example, a cerium raw material and an aluminum raw material are prepared. Moreover, a zirconium raw material is further prepared as needed.
  • the cerium raw material is a material for mainly introducing cerium element into the composite oxide powder. “Mainly introducing the cerium element into the composite oxide powder” means introducing more than other elements (zirconium, aluminum, and rare earth elements other than cerium) (introducing more than an equimolar amount). That is, the cerium raw material may contain a rare earth element other than zirconium, aluminum, and cerium in an amount (small number of moles) less than the cerium element. Although the cerium raw material is not particularly limited, it preferably contains cerium oxide. Cerium oxide can be synthesized from various raw materials such as nitrates, carbonates, sulfates, acetates, chlorides and bromides.
  • the cerium raw material may be a composite oxide of cerium and aluminum. Further, the cerium raw material may be a composite oxide of cerium, zirconium and aluminum.
  • the cerium raw material may contain compounds such as cerium nitrates, carbonates, sulfates, chlorides and bromides.
  • the cerium raw material may contain compounds such as zirconium nitrates, carbonates, sulfates, chlorides and bromides.
  • the zirconium raw material is a material for mainly introducing the zirconium element into the composite oxide powder. “Mainly introducing the zirconium element into the composite oxide powder” means introducing more than other elements (cerium, aluminum, rare earth elements other than cerium) (introducing more than equimolar amounts). That is, the zirconium raw material may contain a rare earth element other than zirconium, aluminum, and cerium in an amount (small number of moles) less than the zirconium element.
  • the zirconium raw material is not particularly limited, for example, baddeleyite, desiliconized zirconia, various zirconium-based materials such as zirconium oxide, and other zirconium materials containing zirconium oxide can be used.
  • Zirconium oxide can be synthesized from various raw materials such as nitrates, carbonates, sulfates, acetates, chlorides and bromides.
  • the zirconium raw material may contain a composite oxide of zirconium and at least one of cerium and rare earth elements other than cerium.
  • the zirconium raw material may contain compounds such as cerium nitrate, carbonate, sulfate, chloride, and bromide.
  • the zirconium raw material may contain compounds such as zirconium nitrates, carbonates, sulfates, chlorides and bromides. As the zirconium raw material, it is desirable to use a raw material that does not contain a radioactive element.
  • the aluminum raw material is a material for mainly introducing the aluminum element into the composite oxide powder. “Mainly introducing the aluminum element into the composite oxide powder” means introducing more than other elements (cerium, zirconium, and rare earth elements other than cerium) (introducing more than an equimolar amount). That is, the aluminum raw material may contain cerium, zirconium, and a rare earth element other than cerium as long as the amount (number of moles) is less than that of the aluminum element.
  • the aluminum raw material is not particularly limited, but preferably contains aluminum oxide. Aluminum oxide can be synthesized from various raw materials such as nitrates, carbonates, sulfates, acetates, chlorides and bromides.
  • the aluminum raw material may be a composite oxide of zirconium and at least one of cerium and rare earth elements other than cerium.
  • the aluminum raw material may contain compounds such as cerium nitrate, carbonate, sulfate, chloride, and bromide.
  • the aluminum raw material may contain compounds such as zirconium nitrates, carbonates, sulfates, chlorides and bromides.
  • step 1 a raw material containing a rare earth element other than cerium (hereinafter also referred to as “third element raw material”) may be prepared.
  • the third element raw material is a material for mainly introducing a rare earth element other than cerium (hereinafter also referred to as "third element") into the composite oxide powder.
  • “Mainly introducing the third element into the composite oxide powder” means introducing a larger amount (more than an equimolar amount) compared to the other elements (cerium, zirconium, aluminum). That is, the third element raw material may contain cerium, zirconium, and aluminum in an amount (smaller number of moles) than the third element.
  • Yttria is preferred as the third element.
  • Yttria (yttrium oxide) can be synthesized from various raw materials such as nitrates, carbonates, sulfates, acetates, chlorides and bromides.
  • Step 1 of preparing raw materials means that in this step 1, the material for introducing the cerium element and the material for introducing the aluminum element are finally prepared as a whole. There is no need to clearly distinguish between the cerium raw material and the aluminum raw material.
  • each of the cerium raw material, the zirconium raw material, the aluminum raw material, and the third element raw material contains other substances as long as the properties of the composite oxide powder are not impaired.
  • may be Other substances include nitrates, carbonates, sulfates, chlorides, and bromides of cerium and zirconium, as described above.
  • alkali elements, alkaline earth elements, transition metal elements, and the like may be contained as other substances. Among them, alkaline earth elements are preferred.
  • the composite oxide powder contains an alkaline earth element, it is slightly less stable than rare earth elements such as yttria, but can be produced at low cost.
  • alkaline earth elements Ca, Mg, Sr and Ba are preferred, Ca, Mg and Sr are more preferred, Ca and Mg are still more preferred, and Ca is particularly preferred. Not only is Ca a cheap raw material, but it is relatively easy to form a solid solution in zirconia, which facilitates production.
  • each raw material After preparing the raw materials, each raw material is blended so that the contents of cerium and aluminum are within a predetermined range.
  • zirconium When zirconium is included, after preparing the raw materials, each raw material is blended so that the content of cerium, zirconium, and aluminum is within a predetermined range.
  • Step 2 the starting material is melted by applying a predetermined amount of heat to the starting material.
  • step 2 it is preferred to melt all raw materials.
  • the crystal structure of the obtained composite oxide powder is stabilized, and properties such as high ⁇ can be obtained.
  • heat should be applied to the starting raw materials so that the melting point of the raw materials contained in the starting raw materials is higher than the highest melting point.
  • the method of melting the starting material is not particularly limited, but examples include melting methods such as an arc method and a high-frequency thermal plasma method. Among them, it is preferable to employ a general electromelting method, that is, a melting method using an arc electric furnace (melting apparatus).
  • the starting material for example, heat should be applied with electric power of 0.5 to 2.5 kWh/kg in terms of electric power consumption rate.
  • the starting material can be heated to a temperature exceeding the highest melting point among the melting points of the various raw materials contained in the starting material, and a melt of the starting material can be obtained.
  • step 2 when the melting method using the arc electric furnace is adopted, in performing the heating step (step 2), a predetermined amount of coke or the like is added as a conductive material in advance to promote the initial energization of the starting material. good too.
  • the amount of coke to be added and the like can be appropriately determined according to the mixing ratio of each raw material used in step 1.
  • the atmosphere during the melting of the starting materials in step 2 is not particularly limited, and in addition to air, a nitrogen atmosphere, an inert gas atmosphere such as argon and helium can be used. Also, the pressure during melting is not particularly limited, and may be atmospheric pressure, increased pressure, or reduced pressure, but is usually carried out under atmospheric pressure.
  • the melt obtained in step 2 is cooled (preferably slowly cooled) to form an ingot.
  • the method of forming the ingot is not particularly limited, but for example, when the melting in step 2 is performed in an electric furnace, a carbon lid is attached to the electric furnace and slowly cooled over 10 to 60 hours. be done. Slow cooling time is preferably 20 to 50 hours, more preferably 30 to 45 hours, still more preferably 35 to 40 hours. In slow cooling the melt, for example, the temperature of the melt may be allowed to cool to 100° C. or lower, preferably 50° C. or lower in the atmosphere.
  • the melt will be appropriately heated during the slow cooling process to prevent a rapid temperature drop. should be avoided. As described above, by performing slow cooling while avoiding a rapid temperature drop of the melt during the slow cooling step, the elements contained in the raw material are likely to be uniformly combined with each other.
  • the ingot obtained in step 3 is pulverized into powder.
  • the method of pulverizing the ingot is not particularly limited, but a method of pulverizing with a pulverizer such as a jaw crusher or a roll crusher is exemplified. Pulverization may be performed using a plurality of pulverizers in combination. When pulverizing the ingot, it may be pulverized so that the average particle size of the powder after pulverization is 3 mm or less, and if necessary, 1 mm or less, considering the handling of the powder in the post-process. After pulverization, classification may be performed, and for example, a sieve or the like can be used to collect powder having a desired average particle size.
  • the powder obtained in step 4 is heated in an atmosphere of 400-1100°C. Prior to the heating, it is preferable to separate impurities by magnetically separating the powder in advance. Thereafter, the powder may be heated in an atmosphere of 400 to 1100° C. using an electric furnace or the like. By this heating, the powder is heated and sintered, and the distortion in the crystal caused by the suboxide generated in the melting process in step 3 and supercooling can be removed.
  • the heating temperature is preferably 400° C. to 1000° C., more preferably 600° C. to 800° C. In either case, suboxides and strains in crystals are easily removed.
  • the heating time is not particularly limited, but can be, for example, 1 to 5 hours, preferably 2 to 3 hours. The heating may be performed in the air or in an oxygen atmosphere. As described above, a solid or powdery composite oxide is obtained. When a powdery composite oxide is obtained, it may be used as the composite oxide powder according to the present embodiment.
  • the solid or powdery composite oxide obtained in step 5 above may be further pulverized by a pulverizer such as a planetary mill, ball mill, or jet mill. Fine pulverization may be appropriately performed according to the intended use of the composite oxide. For fine pulverization, the composite oxide may be treated with the pulverizer for about 5 to 30 minutes. Further, when the composite oxide is finely pulverized as described above, the average particle size of the composite oxide is preferably within the above range. As described above, the composite oxide powder according to the present embodiment can be obtained.
  • a pulverizer such as a planetary mill, ball mill, or jet mill.
  • Fine pulverization may be appropriately performed according to the intended use of the composite oxide.
  • the composite oxide may be treated with the pulverizer for about 5 to 30 minutes. Further, when the composite oxide is finely pulverized as described above, the average particle size of the composite oxide is preferably within the above range. As described above, the composite oxide powder according to the present embodiment can be obtained.
  • the friction material composition according to the present embodiment contains a friction modifier, a fiber base material, and a binder, and contains the composite oxide powder as the friction modifier. Since the composite oxide powder is included as a friction modifier, when the friction material composition is molded and used as a friction material for a brake pad, it has excellent fade resistance and a high ⁇ value, while maintaining friction stability. It becomes possible to obtain a friction material excellent in
  • the friction modifier includes an inorganic filler and an organic filler.
  • the inorganic filler is added for the purpose of avoiding deterioration of heat resistance of the friction material, improving wear resistance, improving coefficient of friction, and improving lubricity.
  • the inorganic filler contains the composite oxide powder.
  • the content of the composite oxide powder in the friction material composition is preferably 5% by mass or more and 20% by mass or less, and 7% by mass or more when the entire friction material composition is 100% by mass. It is more preferably 15% by mass or less.
  • the content of the composite oxide powder is in the range of 5% by mass or more and 20% by mass or less when the entire friction material composition is 100% by mass, characteristics such as a high ⁇ value can be obtained more easily. be able to.
  • the inorganic filler includes, for example, tin sulfide, bismuth sulfide, molybdenum disulfide, iron sulfide, antimony trisulfide, zinc sulfide, calcium hydroxide, calcium oxide, sodium carbonate, barium sulfate.
  • coke mica, vermiculite, calcium sulfate, talc, clay, zeolite, mullite, chromite, titanium oxide, magnesium oxide, silica, graphite, mica, dolomite, calcium carbonate, magnesium carbonate, granular or platy titanate, silicic acid Calcium, manganese dioxide, zinc oxide, triiron tetraoxide, PTFE (polytetrafluoroethylene), and the like can be used, and these can be used alone or in combination of two or more.
  • granular or plate-like titanate potassium hexatitanate, potassium octatitanate, potassium lithium titanate, potassium magnesium titanate, sodium titanate, and the like can be used.
  • the content of the inorganic filler in the friction material composition (the content of the entire inorganic filler including the composite oxide powder) is 20 to 70 mass% when the entire friction material composition is 100% by mass. %, more preferably 30 to 65% by mass, particularly preferably 35 to 60% by mass.
  • the organic filler is added for friction adjustment to improve the noise and vibration performance and wear resistance of the friction material.
  • the organic filler is not particularly limited as long as it can exhibit the above performance, and commonly used organic fillers are used.
  • Examples include cashew dust and rubber components.
  • the cashew dust is obtained by pulverizing hardened cashew nut shell oil.
  • Examples of the rubber component include tire rubber, acrylic rubber, isoprene rubber, NBR (nitrile-butadiene rubber), SBR (styrene-butadiene rubber), chlorinated butyl rubber, butyl rubber, silicone rubber, and the like.
  • a species or a combination of two or more species can be used.
  • the content of the organic filler in the friction material composition is preferably 1 to 25% by mass, and preferably 1 to 10% by mass, when the entire friction material composition is 100% by mass.
  • the content of the organic filler is increased, and it is possible to effectively suppress deterioration of noise and vibration performance such as brake squeal. It is possible to effectively suppress deterioration in strength due to history.
  • the fiber base material exhibits a reinforcing effect in the friction material.
  • the friction material composition can use organic fibers, inorganic fibers, metal fibers, carbon-based fibers, etc., which are usually used as fiber base materials, and these can be used alone or in combination of two or more types. can.
  • organic fibers As the organic fibers, aramid fibers, cellulose fibers, acrylic fibers, phenol resin fibers, etc. can be used, and these can be used alone or in combination of two or more.
  • inorganic fibers ceramic fibers, biodegradable ceramic fibers, mineral fibers, glass fibers, silicate fibers, etc. can be used, and one type or two or more types can be used in combination.
  • the metal fibers are not particularly limited as long as they are usually used for friction materials, and examples include metals or alloys such as aluminum, iron, cast iron, zinc, tin, titanium, nickel, magnesium, silicon, copper, and brass. can be used as a main component (however, the content of copper is preferably 5% or less in order to comply with the 2020 regulations).
  • carbon-based fibers flame-resistant fibers, pitch-based carbon fibers, PAN-based carbon fibers, activated carbon fibers, etc. can be used, and these can be used alone or in combination of two or more.
  • the content of the fiber base material in the friction material composition is preferably 5 to 40% by mass, and 5 to 20% by mass when the entire friction material composition is 100% by mass. is more preferred, and 5 to 15% by mass is particularly preferred.
  • the binding material has the function of binding and integrating each material constituting the friction material composition and improving the strength of the friction material (brake friction material).
  • thermosetting resin can be used as a commonly used binder.
  • thermosetting resin examples include epoxy resin; acrylic resin; silicon resin; thermosetting fluorine resin; phenol resin; Modified phenolic resins, silicon-modified phenolic resins, cashew-modified phenolic resins, epoxy-modified phenolic resins, alkylbenzene-modified phenolic resins and the like can be mentioned, and these can be used alone or in combination of two or more.
  • phenolic resins, acrylic-modified phenolic resins, silicon-modified phenolic resins, and alkylbenzene-modified phenolic resins which can provide excellent heat resistance, moldability and coefficient of friction.
  • the content of the binder in the friction material composition is preferably 3 to 20% by mass, more preferably 5 to 10% by mass, when the entire friction material composition is 100% by mass. more preferred. By keeping it within this range, the strength of the friction material can be maintained high, and the porosity of the friction material can be reduced to more effectively suppress the deterioration of noise and vibration performance such as brake squeal due to the high elastic modulus. can.
  • the friction material composition can be obtained by blending each of the above components and optionally optional components in a predetermined ratio. At this time, it may include a step of pulverizing and mixing each of the above-mentioned components and the above-mentioned optional components in a dispersion medium by means of a ball mill or the like for a predetermined period of time, followed by drying to remove the dispersion medium and sieving using a sieve or the like. preferable.
  • the friction material according to the present embodiment is composed of a molded body of the friction material composition.
  • the friction material can be obtained by molding the friction material composition and, if necessary, sintering it.
  • known ceramic forming methods and sintering methods can be used.
  • the molding method include dry molding methods such as uniaxial pressure molding and cold isostatic molding.
  • injection molding, extrusion molding, slurry casting, pressure casting, rotary casting, doctor blade method and the like can be applied.
  • the sintering method include an atmosphere sintering method, a reaction sintering method, a normal pressure sintering method, a thermal plasma sintering method, and the like.
  • the sintering temperature and the holding time at the sintering temperature can be appropriately set according to the raw material used.
  • sintering may be performed in the air, in an inert gas such as nitrogen gas or argon gas, or in a gas such as carbon monoxide gas or hydrogen gas. It may be carried out in a reducing gas. Moreover, you may carry out in a vacuum. Furthermore, sintering may be performed while applying pressure. After that, the friction material according to the present embodiment is obtained by performing processing such as cutting, grinding, and polishing as necessary.
  • the friction material can be integrated with a back plate made of metal such as iron by being bonded together to form a brake pad comprising the friction material and the back plate. Further, the friction material composition can be thermoformed together with the friction material composition to form a brake pad comprising a friction material and a back plate.
  • the friction material was subjected to the first fade test measured under the following measurement conditions A nine times, and at the behavior peak obtained, the maximum Calculate the average value of the value ⁇ value and the minimum value ⁇ value, and the average value is preferably 0.20 ⁇ m or more, more preferably 0.22 ⁇ m or more, and further preferably 0.24 ⁇ m or more , is particularly preferably 0.25 ⁇ m or more, particularly preferably 0.27 ⁇ m or more, and particularly preferably 0.28 ⁇ m or more.
  • the higher the numerical value the more the discomfort during braking can be reduced. It is preferable that the average value of the coefficient of friction is as large as possible.
  • the friction material preferably has a friction coefficient average value of 0.39 or more, and preferably 0.40 or more, which is the average value of the friction coefficient measured under the following measurement condition B in accordance with the Society of Automotive Engineers of Japan standard JASO C406. is more preferably 0.405 or more, particularly preferably 0.41 or more, particularly preferably 0.42 or more, particularly preferably 0.43 or more, particularly preferably 0.44 or more More particularly preferred. It is preferable that the above-mentioned smoothing ⁇ value is as large as possible. When the smoothing ⁇ value is 0.39 or more, a stronger braking force can be obtained with less pressure.
  • the friction material is measured under the following measurement conditions C, and the average value of the friction coefficient in eight measurements in the second efficacy test is defined as the friction coefficient X
  • the Society of Automotive Engineers of Japan standard According to JASO C406, when the average value of the friction coefficient in eight measurements in the second efficacy test measured under the following measurement condition D is the friction coefficient Y
  • the difference in the friction coefficient [(friction coefficient X) - (coefficient of friction Y)] is preferably 0.12 or less, more preferably 0.11 or less, even more preferably 0.10 or less, particularly preferably 0.09 or less, and 0.09 or less. 08 or less is particularly preferred, and 0.05 or less is particularly preferred.
  • the difference between the friction coefficients [(friction coefficient X)-(friction coefficient Y)] is preferably as small as possible.
  • the friction coefficient difference [(friction coefficient X) ⁇ (friction coefficient Y)] is 0.12 or less, it is possible to further reduce discomfort during braking.
  • the composite oxide powder, the friction material composition, and the friction material in Examples and Comparative Examples contain 1.3 to 2.5% by mass of hafnium oxide relative to zirconium oxide as an unavoidable impurity (the following formula ( Z)).
  • ⁇ Formula (Z)> [mass of hafnium oxide]/([mass of zirconium oxide] + [mass of hafnium oxide])) x 100 (%)
  • Example 1 ⁇ Preparation of composite oxide powder> High-purity cerium oxide (99.9% purity, manufactured by Mitsuwa Chemicals), high-purity zirconium oxide (99.9% purity, manufactured by Daiichi Kigenso Kagaku Kogyo), and high-purity aluminum oxide (98.0% purity) , Nippon Light Metal Co., Ltd.) were uniformly mixed according to the compounding ratio shown in Table 1.
  • the collected powder was heat-treated to remove suboxides generated during the melting process and distortions in the crystal due to supercooling.
  • the heat treatment was performed in the atmosphere at 600° C. for 3 hours using an electric furnace.
  • it was pulverized for 15 minutes with a planetary mill (manufactured by Fritsch Japan, device name: PULVERISETTE 6). Specifically, it was pulverized under the following conditions. ⁇ Dry grinding conditions> Grinding device: Planetary ball mill ZrO 2 pot: 500cc ZrO2 beads ( ⁇ 5mm ): 900g Rotation speed: 400rpm Grinding time: 15min
  • the resulting friction material composition was preformed on a preform machine.
  • the resulting preform was thermoformed with a steel pack plate.
  • the thermoforming conditions were a friction surface of 155° C., a B/P side of 160° C., a medium mold of 140° C., and a molding pressure of 500 kg/cm 2 .
  • the degassing conditions were 8 times on the friction surface (300 seconds in total) and 8 times on the B/P side for 10 seconds.
  • a thermoforming press manufactured by Marushichi Co., Ltd., product name: MA250 type
  • the heat treatment conditions were a temperature of 250° C., a pressure of 5 kg/cm 2 and 5 hours.
  • a laminate of the back plate and the molded body (friction material) of the friction material composition was obtained.
  • the obtained laminate of the back plate and the friction material was ground, then scorched at 500°C, and grooved to obtain a brake pad according to Example 1.
  • Example 2 to 29 Preparation of composite oxide powder, friction material composition, friction material and brake pad> Composite oxide powders, friction material compositions, friction materials, and brake pads according to Examples 2 to 29 were prepared in the same manner as in Example 1, except that the mixing ratio of the starting materials was changed to that shown in Table 1.
  • Y 2 O 3 shown in Table 1 is high-purity yttrium oxide (purity 99.99%, manufactured by Wako Pure Chemical Industries, Ltd.), and La 2 O 3 is high-purity lanthanum oxide (purity 99.9% , manufactured by Wako Pure Chemical Industries, Ltd.), CaO is high-purity calcium oxide (purity 99.0%, manufactured by Wako Pure Chemical Industries, Ltd.), and MgO is high-purity magnesium oxide (purity 97.0% , manufactured by Kishida Chemical Co., Ltd.), SiO2 is high-purity silica (purity 99.0%, grade 1, manufactured by Kishida Chemical Co., Ltd.), and TiO2 is high-purity titanium oxide (purity 99.5% , manufactured by Kishida Chemical Co., Ltd.).
  • composition measurement of composite oxide powder The compositions (in terms of oxides) of the composite oxide powders produced in Examples and Comparative Examples were analyzed using ICP-AES (“ULTIMA-2” manufactured by HORIBA). As a result, it was confirmed that the compounding ratio in Table 1 was satisfied.
  • the crystallite size was calculated by applying the measurement results of the peak at 2 ⁇ of 40° to 42° in the XRD measurement to the following Scherrer's formula.
  • Dp is the crystallite diameter of the composite oxide powder
  • is the X-ray wavelength
  • is the diffraction angle
  • K is a constant called shape factor
  • is the peak width after correcting for the spread of the diffraction line due to the apparatus. is.
  • the peak at 2 ⁇ of 40° to 42° is a peak derived from (111) of CeAlO 3 . Table 3 shows the results.
  • the X-ray diffraction spectrum of the composite oxide powder according to Example 4 is shown in FIG.
  • the single grain crushing strength of the composite oxide powders of Examples and Comparative Examples was obtained using particles before pulverization in a planetary mill (particles in the previous stage that were pulverized in a planetary mill to form the composite oxide powders of Examples and Comparative Examples). measured by As the particles before pulverization, those having a particle diameter within the range of 2.36 mm to 2.80 mm were used. Particles having the above particle size were obtained using commercially available sieves. The number of measurements was 50, and the average value was taken as the single grain crushing strength.
  • a tension/compression tester was used as a measuring device. Specifically, SV-201-NSL manufactured by Imada Seisakusho Co., Ltd. was used as the tension/compression tester. The loading speed was 0.5 mm/min. Table 3 shows the results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

セリウム、及び、アルミニウムを含み、比表面積が0.5m/g以上10m/g以下である複合酸化物粉末。

Description

セリウム系複合酸化物粉末、摩擦材組成物、及び、摩擦材
 本発明は、セリウム系複合酸化物粉末、摩擦材組成物、及び、摩擦材に関する。
 自動車などの制動にはブレーキパッドが多く使用される。従来、ブレーキパッドは、アスベストを添加して所望の性能を得ることが主流であった。しかしながら、近年、環境負荷の問題からアスベストフリーのブレーキパッドが要求され、活発に研究開発されている。
 また、従来、一般的に、ブレーキパッドに使用される摩擦材には、ジルコン原鉱石の粉末、又は、原鉱石から珪素等の不純物を除去した酸化ジルコニウムの粉末が用いられることが多い。しかしながら、近年の原料価格の高騰、鉱石由来の放射性元素を含有している等の問題が発生している。
 特許文献1には、繊維基材と摩擦調整剤を熱硬化製樹脂で結合してなる摩擦材において、前記摩擦調整剤の少なくとも一部として、希土類の酸化物を含む摩擦材が開示されている。また、特許文献1には、効果として、CeO、La、Yなどの希土類酸化物は、アルミナ等の一般的なアブレーシブ材に比べて硬度が低く、変質等も起こし難いため、高くて安定した摩擦係数を得ながら相手材への攻撃性を下げることができる旨、開示されている。
 特許文献2には、結合剤、有機充填材、無機充填材および繊維基材を含む摩擦材組成物であって、該摩擦材組成物中に元素として銅を含まず、前記無機充填材が、平均粒径10nm~50μmのγアルミナ、平均粒径1~20μmのドロマイト、平均粒径1~20μmの炭酸カルシウム、平均粒径1~20μmの炭酸マグネシウム、平均粒径1~20μmの二酸化マンガン、平均粒径10nm~1μmの酸化亜鉛、平均粒径1.0μm以下の四三酸化鉄、平均粒径0.5~5μmの酸化セリウム、および平均粒径5~50nmのジルコニアから選ばれる1種または2種以上である摩擦材組成物が開示されている。また、特許文献2には、効果として、自動車用ディスクブレーキパッド等の摩擦材に用いた際に、環境負荷の高い銅を用いなくとも、耐フェード性と500℃を超える高温の耐磨耗性に優れる旨、開示されている。
 特許文献3には、結合剤、有機充填材、無機充填材及び繊維基材を含む摩擦材組成物であって、該摩擦材組成物中に元素として銅を含まず、複数の凸部形状を有するチタン酸カリウムと平均粒径が1~2.5μmの珪酸ジルコニウムとを含有する摩擦材組成物が開示されている。また、特許文献3には、効果として、環境負荷の高い銅を用いなくとも、高温での耐摩耗性に優れ、異音の少ない旨、開示されている。
特開平9-13009号公報 国際公開第2016/060129号 特開2016-79246号公報
 近年、アスベストを使用しないブレーキパッド(ノンアスベストオーガニックブレーキパッド(NAOブレーキパッド))の研究開発が進められている。NAOブレーキパッドの弱点としては、連続使用による制動力の低下(フェード現象)が挙げられる。フェード現象によるμ値の低下が大きい場合、ブレーキング時の違和感につながることとなる。また、近年、高いμ値を有するブレーキパッドが求められる傾向にあるが、高μ値にすることで、急ブレーキ時のμ値と軽いブレーキ時のμ値との差が大きくなりやすいという問題が発生する。急ブレーキ時のμ値と軽いブレーキ時のμ値との差が大きくなると、ブレーキング時の違和感につながることとなる。
 以下、本明細書では、急ブレーキ時のμ値と軽いブレーキ時のμ値との差が小さいことを摩擦安定性に優れるという。
 本発明は前記問題点に鑑みてなされたものであり、その目的は、ブレーキパッドの摩擦材に使用すると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることを可能とするセリウム系複合酸化物粉末を提供することにある。また、本発明の他の目的は、当該セリウム系複合酸化物粉末を含む摩擦材組成物を提供することにある。また、本発明の他の目的は、当該摩擦材組成物の成形体で構成された摩擦材を提供することにある。
 本発明者らは、ブレーキパッドの摩擦材に使用する粉末について鋭意検討を行った。その結果、驚くべきことに、セリア粉末にアルミナ粉末とを混合し、溶融、粉砕して得られた粉末をブレーキパッドの摩擦材に使用すると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材が得られることを見出し、本発明を完成するに至った。
 すなわち、本発明に係るセリウム系複合酸化物粉末は、
 セリウム、及び、アルミニウムを含み、
 比表面積が0.5m/g以上10m/g以下であることを特徴とする。
 本発明者らの検討によれば、アルミニウムを含まない酸化セリウム(セリア)の粉末では、耐フェード性に優れるものの、高μ値を得ることはできず、また、摩擦安定性にも劣る結果となっていた。これに対して、本発明では、セリウムに加えて、アルミニウムを含み比表面積が10m/g以下のセリウム系複合酸化物粉末としたため、当該セリウム系複合酸化物粉末をブレーキパッドの摩擦材に使用すると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることが可能となる。このことは、実施例からも明らかである。
 セリウムに加えてアルミニウムを含むセリウム系複合酸化物粉末とすると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることが可能となる点につき、詳細は明らかではないが、本発明者らは、以下のように推察している。
 セリウムは、主な役割として耐フェード性に寄与する。セリウムは、酸素吸蔵能が高いことが知られている。高負荷時のブレーキングにはブレーキパット表面は摩擦熱により、400℃以上になることがある。そのため、ブレーキパットを固めている樹脂が燃焼することで強還元ガスが発生することがある。そして、そのガスにより、研磨剤として添加されている金属酸化物が還元されて、摩擦係数が低減することがあると考えられる。セリウムは400℃付近で、雰囲気が還元状態であれば酸素を放出する性質がある。そのため、金属酸化物が還元されずに摩擦係数が低減しないことが期待できる。
 また、アルミン酸セリウムは、主な役割として高μ値、及び、摩擦安定性に寄与している。アルミナ単体では硬度が高すぎて、ローターディスクへの攻撃性が高く、実用的ではない。また、セリウム単体では必要な摩擦係数が得られない。一方、アルミン酸セリウムは、アルミナ単体、セリウム単体のような不利益が少なく、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることが可能となる。
 前記構成においては、ジルコニウムを含むことが好ましい。
 セリウムに加えて、ジルコニウム、及び、アルミニウムを含むセリウム系複合酸化物粉末とすると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることが容易となる。セリウムに加えて、ジルコニウム、及び、アルミニウムを含むセリウム系複合酸化物粉末とすると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることが容易となる点につき、詳細は明らかではないが、本発明者らは、当該セリウム系複合酸化物粉末が、ジルコニアとセリアとが固溶した結晶相、及び、セリウムとアルミニウムとを含む結晶相の2つの結晶相を有することとなるために、このような特性が得られたものと推察している。また、比表面積が10m/g以下であるために、高硬度とすることができ、高μ値とすることができたものと推察している。
 なお、特許文献1~3には、セリウム、ジルコニウム、及び、アルミニウムの3つの元素を含むセリウム系複合酸化物粉末は開示されていない。また、特許文献1~3には、耐フェード性に優れ、高μ値を有し、摩擦安定性に優れるという3つの特性を兼ね備えるという課題や効果についても開示されていない。
 前記構成においては、結晶子径が10nm以上80nm以下の範囲内であることが好ましい。
 結晶子径が10nm以上であると、充分な結晶成長ができており、高μ値等の特性を容易に得ることができる。
 前記構成においては、粒子径D50が0.5μm以上20μm以下であることが好ましい。
 粒子径D50が0.5μm以上20μm以下であると、高μ値等の特性をより容易に得ることができる。
 前記構成においては、粒子径D99が60μm以下であることが好ましい。
 粒子径D99が60μm以下であると、高μ値等の特性をさらに容易に得ることができる。
 前記構成においては、単粒圧壊強度が50N以上300N以下の範囲内であることが好ましい。
 単粒圧壊強度が50N以上であると、粒子の強度が高く、高μ値等の特性を特に容易に得ることができる。
 前記構成においては、セリウムの含有量が酸化物換算で40質量%以上95質量%以下であり、
 ジルコニウムの含有量が酸化物換算で0.1質量%以上50質量%以下の範囲内であり、
 アルミニウムの含有量が酸化物換算で0.1質量%以上24質量%以下の範囲内であることが好ましい。
 セリウムの含有量が酸化物換算で40質量%以上95質量%以下であり、ジルコニウムの含有量が酸化物換算で0.1質量%以上50質量%以下の範囲内であり、アルミニウムの含有量が酸化物換算で0.1質量%以上24質量%以下の範囲内であると、高μ値等の特性が得られるのに好適な比率となる。
 上述したように、本発明者らは、当該セリウム系複合酸化物粉末が、ジルコニアとセリアとが固溶した結晶相、及び、セリウムとアルミニウムとを含む結晶相の2つの結晶相を有するために、高μ値等の特性が容易に得られると推察している。
 ここで、セリウムの含有量が酸化物換算で40質量%以上95質量%以下であり、ジルコニウムの含有量が酸化物換算で0.1質量%以上50質量%以下の範囲内であり、アルミニウムの含有量が酸化物換算で0.1質量%以上24質量%以下の範囲内であると、ジルコニアとセリアとが固溶した結晶相と、セリウムとアルミニウムとを含む結晶相との2つが、高μ値等の特性が得られるのに好適な比率となると推察される。
 前記構成においては、アルミニウムの含有量が酸化物換算で0.1質量%以上10質量%以下の範囲内であることが好ましい。
 前記構成においては、ジルコニウムの含有量が酸化物換算で0.1質量%以上40質量%以下の範囲内であり、
 アルミニウムの含有量が酸化物換算で0.1質量%以上10質量%以下の範囲内であることが好ましい。
 前記構成においては、セリウムの含有量が酸化物換算で49質量%以上91質量%以下であり、
 ジルコニウムの含有量が酸化物換算で1質量%以上43質量%以下の範囲内であり、
 アルミニウムの含有量が酸化物換算で1質量%以上8質量%以下の範囲内であることが好ましい。
 セリウムの含有量が酸化物換算で49質量%以上91質量%以下であり、ジルコニウムの含有量が酸化物換算で1質量%以上43質量%以下の範囲内であり、アルミニウムの含有量が酸化物換算で1質量%以上8質量%以下の範囲内であると、高μ値等の特性が得られるのにより好適な比率となる。
 前記構成においては、セリウム、ジルコニウム及びアルミニウムの合計含有量が酸化物換算で60質量%以上であることが好ましい。
 前記構成においては、CeAlOを含むことが好ましい。
 CeAlOを含む場合、高μ値等の特性により優れる。
 前記構成においては、セリウム以外の希土類元素を含むことが好ましい。
 セリウム以外の希土類元素を含むと、結晶相が安定し、より高μ値とすることができる。
 前記構成においては、セリウム以外の希土類元素を酸化物換算で0.1質量%以上40質量%以下の範囲内で含むことが好ましい。
 セリウム以外の希土類元素を酸化物換算で0.1質量%以上40質量%以下の範囲内で含むと、結晶相がより安定し、より高μ値とすることができる。
 前記構成において、前記セリウム以外の希土類元素が、イットリウム、及び、ランタンからなる群より選ばれる1以上であることが好ましい。
 前記セリウム以外の希土類元素が、イットリウム、及び、ランタンからなる群より選ばれる1以上であると、結晶相が安定し、高μ値とすることができる。
 前記構成においては、アルカリ土類元素を含んでも構わない。
 アルカリ土類元素を含むと、イットリア等の希土類に比べて安定性はわずかに劣るものの、安価に製造することができる。
 前記構成においては、摩擦材用であることが好ましい。
 前記セリウム系複合酸化物粉末は、ブレーキパッドの摩擦材に使用すると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材が得られるため、摩擦材用として好適に使用できる。
 また、本発明に係る摩擦材組成物は、摩擦調整剤と、繊維基材と、結合剤とを含み、
 前記摩擦調整剤として、前記セリウム系複合酸化物粉末を含むことを特徴とする。
 前記構成によれば、摩擦調整剤として、前記セリウム系複合酸化物粉末を含むため、当該摩擦材組成物を成形し、ブレーキパッドの摩擦材に使用すると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることが可能となる。
 前記構成において、前記セリウム系複合酸化物粉末の含有量が、摩擦材組成物全体を100質量%としたときに、5質量%以上20質量%以下の範囲内であることが好ましい。
 前記セリウム系複合酸化物粉末の含有量が、摩擦材組成物全体を100質量%としたときに、5質量%以上20質量%以下の範囲内であると、高μ値等の特性をより容易に得ることができる。
 また、本発明に係る摩擦材は、前記摩擦材組成物の成形体で構成されていることを特徴とする。
 前記構成によれば、前記摩擦材組成物の成形体で構成されているため、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることが可能となる。
 前記構成においては、自動車技術会規格JASO C406に準じて、下記測定条件Aにて測定される第1フェード試験を9回実施し、得られた挙動ピークにおいて、最小摩擦係数を示したときの最大値μ値と最小値μ値の平均値を算出し、その平均値が0.20μ以上であることが好ましい。
 <測定条件A>
  制動初速度100km/h
  制動間隔35秒
  第1回目測定時の制動前ブレーキ温度80℃
  制動減速度0.45G
  制動回数9回
 前記の数値が0.20μ以上であると、ブレーキング時の違和感をより低減することができる。
 前記構成においては、自動車技術会規格JASO C406に準じて下記測定条件Bにて測定される摩擦係数の平均値であるすり合わせμ値が0.39以上であることが好ましい。
 <測定条件B>
  制動初速度65km/h
  制動前ブレーキ温度120℃
  制動減速度0.35G
  測定回数200回
 前記すり合わせμ値が0.39以上であると、少ない押圧でより強い制動力が得られる。
 前記構成においては、自動車技術会規格JASO C406に準じて、下記測定条件Cにて測定される第2効力試験での測定回数8回における摩擦係数の平均値を摩擦係数Xとし、
 自動車技術会規格JASO C406に準じて、下記測定条件Dにて測定される第2効力試験での測定回数8回における摩擦係数の平均値を摩擦係数Yとしたとき、
 摩擦係数の差[(摩擦係数X)-(摩擦係数Y)]が、0.12以下であることが好ましい。
 <測定条件C>
  制動初速度100km/h
  制動前ブレーキ温度80℃
  制動減速度0.2G
  測定回数8回
 <測定条件D>
  制動初速度100km/h
  制動前ブレーキ温度80℃
  制動減速度0.7G
  測定回数8回
 前記摩擦係数の差[(摩擦係数X)-(摩擦係数Y)]が、0.12以下であると、ブレーキング時の違和感をさらに低減することができる。
 本発明によれば、ブレーキパッドの摩擦材に使用すると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることを可能とするセリウム系複合酸化物粉末を提供することができる。また、当該セリウム系複合酸化物粉末を含む摩擦材組成物を提供することができる。また、当該摩擦材組成物の成形体で構成された摩擦材を提供することができる。
実施例4に係るセリウム系複合酸化物粉末のX線回折スペクトルである。
 以下、本発明の実施形態について説明する。ただし、本発明はこれらの実施形態のみに限定されるものではない。なお、本明細書において、ジルコニア(酸化ジルコニウム)とは一般的なものであり、ハフニアを含めた10質量%以下の不純物金属化合物(不可避不純物)を含むものである。
[セリウム系複合酸化物粉末]
 本実施形態に係るセリウム系複合酸化物粉末は、
 セリウム、及び、アルミニウムを含み、
 比表面積が0.5m/g以上10m/g以下である。
 本実施形態に係るセリウム系複合酸化物粉末(以下、「複合酸化物粉末」ともいう)は、セリウムに加えて、アルミニウムを含み比表面積が10m/g以下の複合酸化物粉末としたため、当該複合酸化物粉末をブレーキパッドの摩擦材に使用すると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることが可能となる。このことは、実施例からも明らかである。
 (複合酸化物粉末の組成)
 本実施形態に係る複合酸化物粉末は、全体としてセリウム(Ce)、及び、アルミニウム(Al)を含んでおり、複数種の酸化物の複合体として形成されている。本実施形態に係る複合酸化物粉末は、ジルコニウム(Zr)をさらに含むことが好ましい。複数種の酸化物の複合体とは、組成比率の異なる2つ以上の酸化物が合わさって一体となったものをいう。
 なお、本実施形態に係る複合酸化物粉末は、セリア(酸化セリウム)、アルミナ(酸化アルミニウム)の混合物ではない。また、ジルコニウムをさらに含む場合、本実施形態に係る複合酸化物粉末は、セリア(酸化セリウム)、ジルコニア(二酸化ジルコニウム)、アルミナ(酸化アルミニウム)の混合物ではない。
 前記複合酸化物粉末に含まれるセリウムの含有量は、酸化物換算で40質量%以上が好ましく、49質量%以上がより好ましく、53質量%以上がさらに好ましく、56質量%以上が特に好ましく、60質量%以上が特別に好ましい。
 前記複合酸化物粉末に含まれるセリウムの含有量は、酸化物換算で95質量%以下が好ましく、92質量%以下がより好ましく、91質量%以下がさらに好ましく、90質量%以下が特に好ましく、88質量%以下が特別に好ましい。
 摩擦熱により摩擦材表面の温度が400~800℃まで達することで、摩擦材に含まれる樹脂成分が蒸発する。その際、生じる蒸発ガスにより強還元雰囲気となる。本実施形態に係る複合酸化物粉末は、酸化セリウムを含むため、酸化セリウムの価数変化により酸素を供給することで摩擦材の還元を抑制することができる。特に、酸化セリウムを多く含む場合(セリウムを酸化物換算で40質量%以上含む場合)摩擦材の還元をより抑制することができる。通常、摩擦材は酸化物であるため、強還元雰囲気下では酸素が奪われ、硬度低下の可能性があるが、本実施形態では、酸化セリウムを含むため、摩擦材の還元による硬度低下が抑制される。
 前記複合酸化物粉末に含まれるジルコニウムの含有量は、酸化物換算で0.1質量%以上が好ましく、1質量%以上がより好ましく、3質量%以上がさらに好ましく、4質量%以上が特に好ましく、5質量%以上が特別に好ましい。
 前記複合酸化物粉末に含まれるジルコニウムの含有量は、酸化物換算で50質量%以下が好ましく、45質量%以下がより好ましく、43質量%以下がさらに好ましく、35質量%以下が特に好ましく、30質量%以下が特別に好ましい。
 前記複合酸化物粉末に含まれるアルミニウムの含有量は、酸化物換算で0.1質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上がさらに好ましく、3質量%以上が特に好ましい。
 前記複合酸化物粉末に含まれるアルミニウムの含有量は、酸化物換算で24質量%以下が好ましく、10質量%以下が好ましく、8質量%以下がより好ましく、7質量%以下がさらに好ましく、6質量%以下が特に好ましく、5質量%以下が特別に好ましい。
 前記複合酸化物粉末に含まれるセリウム、ジルコニウム、アルミニウムの含有量は、上記の中でも、セリウムの含有量が酸化物換算で40質量%以上95質量%以下であり、ジルコニウムの含有量が酸化物換算で0.1質量%以上50質量%以下の範囲内であり、アルミニウムの含有量が酸化物換算で0.1質量%以上24質量%以下の範囲内であることが好ましい。
 また、セリウムの含有量が酸化物換算で49質量%以上91質量%以下であり、ジルコニウムの含有量が酸化物換算で1質量%以上43質量%以下の範囲内であり、アルミニウムの含有量が酸化物換算で1質量%以上8質量%以下の範囲内であることがより好ましい。
 セリウム、ジルコニウム、アルミニウムの含有量が上記数値範囲内であると、高μ値等の特性が得られるのに好適な比率となる。
 セリウム、ジルコニウム及びアルミニウムの合計含有量は、酸化物換算で60質量%以上であることが好ましい。前記合計含有量は、酸化物換算で72質量%以上であることがより好ましく、75質量%以上であることがさらに好ましく、80質量%以上であることが特に好ましく、85質量%以上であることが特別好ましく、87質量%が格別に好ましい。前記合計含有量は、多いほど好ましいが、例えば、酸化物換算で100質量%以下、97質量%以下、95質量%以下、90質量%以下等である。
 前記複合酸化物粉末は、セリウム以外の希土類元素を含んでいてもよい。セリウム以外の希土類元素を含むと、結晶相が安定し、より高μ値とすることができる。
 セリウム以外の希土類元素としては、スカンジウム、イットリウム、ランタン、プラセオジム、ネオジム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム等が挙げられる。前記複合酸化物粉末に含まれるセリウム以外の希土類元素は、1種であってもよく、2種以上であってもよい。セリウム以外の希土類元素としては、なかでも、イットリウム、及び、ランタンからなる群より選ばれる1以上であることが好ましく、特に、イットリウムが好ましい。イットリウム、ランタンが含まれる場合、特にイットリウムが含まれる場合、結晶相がさらに安定し、さらに高μ値とすることができる。
 セリウム以外の希土類元素の含有量は、複合酸化物粉末全体を100質量%としたときに、酸化物換算で0.1質量%以上が好ましく、1質量%以上がより好ましい。
 セリウム以外の希土類元素の含有量は、複合酸化物粉末全体を100質量%としたときに、酸化物換算で40質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましく、4質量%以下が特別に好ましく、3質量%以下が格別に好ましい。
 セリウム以外の希土類元素を酸化物換算で0.1質量%以上26質量%以下の範囲内で含むと、結晶相がより安定し、より高μ値とすることができる。
 前記複合酸化物粉末は、本発明の効果を阻害しない範囲内において、その他の元素が含まれていてもよい。前記その他の元素としては、アルカリ元素、アルカリ土類元素、遷移金属元素が挙げられる。前記その他の元素の具体例としては、カルシウム、マグネシウム、ケイ素、チタンが挙げられる。これらは、酸化物として複合酸化物粉末に含まれることが好ましい。
 前記その他の元素の含有量は、複合酸化物粉末全体を100質量%としたときに、酸化物換算で40質量%以下が好ましい。
 (比表面積)
 前記複合酸化物粉末の比表面積は、0.5m/g以上10m/g以下である。前記比表面積は、1m/g以上であることが好ましく、1.5m/g以上であることがより好ましく、1.8m/g以上であることがさらに好ましく、2m/g以上であることが特に好ましい。
 前記比表面積は、4.5m/g以下であることが好ましく、4m/g以下であることがより好ましく、3.5m/g以下であることがさらに好ましく、3.2m/g以下であることが特に好ましく、3m/g以下であることが特別に好ましい。
 前記比表面積が0.5m/g以上10m/g以下であると、前記複合酸化物粉末は、所望の結晶性及び強度を有する溶融固化物とし易い。なお、製法の特性上、溶融固化物の中には半溶融固化物も含み得る。
 前記比表面積を有する複合酸化物粉末を得る方法としては、セリア粉末にジルコニア粉末とアルミナ粉末とを混合し、溶融、粉砕する方法が挙げられる。
 前記複合酸化物粉末の比表面積は、実施例に記載の方法により得られた値をいう。
 (結晶子径)
 前記複合酸化物粉末の結晶子径は、10nm以上80nm以下の範囲内であることが好ましい。前記結晶子径は、より好ましくは20nm以上、さらに好ましくは30nm以上、特に好ましくは35nm以上である。前記結晶子径は、より好ましくは70nm以下、さらに好ましくは65nm以下、特に好ましくは60nm以下である。
 前記結晶子径が10nm以上であると、充分な結晶成長ができており、高μ値等の特性を容易に得ることができる。一方、結晶成長を過度に促進する必要はない。前記結晶子径に特に上限はないが、生産性を考慮すると、前記結晶子径が80nm以下であると好ましい。
 前記結晶子径は、XRD測定における2θが40°~42°のピークの測定結果を次のScherrerの式に当てはめ、算出する。
  Dp=(K×λ)/βcosθ
 ここで、Dpは複合酸化物粉末の結晶子径、λはX線の波長、θは回折角、Kは形状因子とよばれる定数、βは装置による回折線の広がりを補正したあとのピーク幅である。
 2θが40°~42°のピークは、CeAlOの(111)に由来するピークである。
 XRD測定条件の詳細は実施例に記載の通りである。
 前記結晶子径を有する複合酸化物粉末を得る方法としては、セリア粉末にジルコニア粉末とアルミナ粉末とを混合し、溶融、粉砕する方法が挙げられる。
 (結晶相)
 上述したように、前記複合酸化物粉末は、全体としてセリウム、及び、アルミニウムを含んでおり、複数種の酸化物の複合体として形成されている。また、前記複合酸化物粉末は、さらに、ジルコニウムを含む場合、全体としてセリウム、ジルコニウム、及び、アルミニウムを含んでおり、複数種の酸化物の複合体として形成されている。複合体を構成する各酸化物は、少なくともセリウム、ジルコニウム、及び、アルミニウムのうちの1種を含んでいればよく、3種全部を含んでいる必要はない。前記複合体は、さらに、セリウム、ジルコニウム、アルミニウム以外の酸化物を複合体の一部として含んでいてもよい。前記複合体は、酸化物以外の化合物(元素)を複合体の一部として含んでいてもよい。
 前記複合酸化物粉末は、中でも、セリウムとジルコニアとを含む酸化物(以下、結晶相Aともいう)と、セリウムとアルミニウムとを含む酸化物(以下、結晶相Bともいう)とを含む複合体であることが好ましい。
 前記結晶相Aは、ジルコニアがセリアに固溶したものであり、特定の組成式を持たない。前記複合酸化物粉末が結晶相Aを有すると、酸素貯蔵・放出能を持ち、硬度低下が抑制される。また、高μ値等の特性により優れる。
 前記結晶相Bの組成式はCeAlOである。
 前記複合酸化物粉末が結晶相Aと結晶相Bとの2相を有する場合、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることが可能となる。
 前記複合酸化物粉末がセリウム以外の希土類元素を含む場合、セリウム以外の希土類元素の添加量に応じた酸化物が複合体の一部として含まれることになる。特に、前記複合酸化物粉末がセリウム以外の希土類元素としてイットリウム、ランタンを含む場合、それらは、セリアとジルコニアに固溶する。
 (粒子径D50
 前記複合酸化物粉末の粒子径D50は、20μm以下であることが好ましい。前記粒子径D50は、より好ましくは0.8μm以上、さらに好ましくは1μm以上、特に好ましくは1.5μm以上、特別に好ましくは2μm以上、格別に好ましくは2.3μm以上である。前記粒子径D50は、より好ましくは15μm以下、さらに好ましくは10μm以下、特に好ましくは7μm以下、特別に好ましくは5μm以下、格別に好ましくは4μm以下である。
 前記粒子径D50が20μm以下であると、高μ値等の特性をさらに容易に得ることができる。
 (粒子径D90
 前記複合酸化物粉末の粒子径D90は、25μm以下であることが好ましい。前記粒子径D90は、より好ましくは3μm以上、さらに好ましくは5μm以上、特に好ましくは6.5μm以上である。前記粒子径D90は、より好ましくは21μm以下、さらに好ましくは15μm以下、特に好ましくは10μm以下であり、特別に好ましくは8μm以下である。
 前記粒子径D90が25μm以下であると、高μ値等の特性をさらに容易に得ることができる。
(粒子径D99
 前記複合酸化物粉末の粒子径D99は、60μm以下であることが好ましい。前記粒子径D99は、より好ましくは50μm以下、さらに好ましくは48μm以下、特に好ましくは20μm以下であり、特別に好ましくは15μm以下である。前記粒子径D99は、好ましくは5μm以上、より好ましくは7μm以上、さらに好ましくは10μm以上であり、特に好ましくは11μm以上である。
 前記粒子径D99が60μm以下であると、高μ値等の特性をさらに容易に得ることができる。
 前記複合酸化物粉末の粒子径D50、粒子径D90、粒子径D99は、実施例に記載の方法により得られた値をいう。なお、本明細書に記載の前記前記粒子径D50、前記粒子径D90、前記粒子径D99は体積基準で測定されており、前記粒子径D50はレーザー回折法により測定される、最少粒径値より累積値50%にあたる粒子径であり、前記粒子径D90はレーザー回折法により測定される、最少粒径値より累積値90%にあたる粒子径であり、前記粒子径D99はレーザー回折法により測定される、最少粒径値より累積値99%にあたる粒子径である。
 前記粒子径D50、前記粒子径D90、前記粒子径D99を有する複合酸化物粉末を得る方法としては、セリア粉末にジルコニア粉末とアルミナ粉末とを混合し、溶融、粉砕して複合酸化物粉末を得る際の粉砕条件をコントロールする方法が挙げられる。
 (単粒圧壊強度)
 前記複合酸化物粉末の単粒圧壊強度は、50N以上300N以下の範囲内であることが好ましい。前記単粒圧壊強度は、より好ましくは70N以上、さらに好ましくは80N以上、特に好ましくは90N以上、特別に好ましくは100N以上、格別に好ましくは110N以上である。前記単粒圧壊強度の上限は特に限定されないが、前記単粒圧壊強度は、250N以下、230N以下、210N以下、190N以下、180N以下等とすることができる。
 前記単粒圧壊強度は、粉砕前の粒子にて測定する。粉砕前の粒子としては、粒子径2.36mm~2.80mmの範囲内のものを用いる。前記粒子径の粒子は、市販の篩を用いて得ることができる。測定個数は50個とし、その平均値を単粒圧壊強度とする。測定装置は引張圧縮試験機を使用する。具体的に、引張圧縮試験機には、(株)今田製作所社製のSV-201-NSLを用いる。ロードスピードは0.50mm/minで行う。
 前記単粒圧壊強度の測定方法の詳細は、実施例に記載の通りである。
 前記単粒圧壊強度を有する複合酸化物粉末を得る方法としては、セリア粉末にジルコニア粉末とアルミナ粉末とを混合し、溶融、粉砕する方法が挙げられる。
 (密度(真比重))
 前記複合酸化物粉末の真比重は、6.0g/cm以上7.2g/cm以下であることが好ましい。前記真比重は、好ましくは6.3g/cm以上、より好ましくは6.5g/cm以上、さらに好ましくは6.7g/cm以上である。前記真比重は、好ましくは7.1g/cm以下、より好ましくは7.0g/cm以下、さらに好ましくは6.9g/cm以下である。
 前記真比重が6.0g/cm以上7.2g/cm以下であると、高μ値等の特性をさらに容易に得ることができる。
 前記真比重は、JIS Z8807:2012に準拠して測定した値をいう。
 前記真比重を有する複合酸化物粉末を得る方法としては、セリア粉末にジルコニア粉末とアルミナ粉末とを混合し、溶融、粉砕する方法が挙げられる。
 以上、本実施形態に係る複合酸化物粉末について説明した。
[複合酸化物粉末の製造方法]
 以下、複合酸化物粉末の製造方法の一例について説明する。ただし、本発明に係る複合酸化物粉末の製造方法は、以下の例示に限定されない。
 本実施形態に係る複合酸化物粉末の製造方法は、
 出発原料を準備する工程1と、
 前記出発原料に所定の熱量を与えることにより、前記出発原料を溶融させる工程2と、
 前記工程2で得られた溶融物を冷却してインゴットを形成する工程3と、
 前記工程3で得られたインゴットを粉砕して粉体とする工程4と、
 前記工程4で得られた粉体を400~1100℃の雰囲気下で加熱する工程5とを含む。
 <工程1>
 本実施形態に係る複合酸化物粉末の製造方法においては、まず、出発原料を準備する。具体的には、例えば、セリウム原料と、アルミニウム原料とを準備する。また、必要に応じて、さらに、ジルコニウム原料を準備する。
 前記セリウム原料は、複合酸化物粉末にセリウム元素を主として導入するための材料である。「複合酸化物粉末にセリウム元素を主として導入する」とは、他の元素(ジルコニウム、アルミニウム、セリウム以外の希土類元素)と比較して多く導入する(等モルよりも多く導入する)ことをいう。つまり、前記セリウム原料は、セリウム元素よりも少ない量(少ないモル数)であれば、ジルコニウム、アルミニウム、セリウム以外の希土類元素を含んでいてもよい。
 前記セリウム原料としては、特に限定されないが、酸化セリウムを含むことが好ましい。酸化セリウムは、例えば、硝酸塩、炭酸塩、硫酸塩、酢酸塩、塩化物、臭化物等の各種原料から合成することができる。前記セリウム原料は、セリウムとアルミニウムとの複合酸化物であってもよい。また、前記セリウム原料は、セリウムとジルコニウムとアルミニウムとの複合酸化物であってもよい。前記セリウム原料は、セリウムの硝酸塩、炭酸塩、硫酸塩、塩化物、臭化物等の化合物を含んでいてもよい。前記セリウム原料は、ジルコニウムの硝酸塩、炭酸塩、硫酸塩、塩化物、臭化物等の化合物を含んでいてもよい。
 前記ジルコニウム原料は、複合酸化物粉末にジルコニウム元素を主として導入するための材料である。「複合酸化物粉末にジルコニウム元素を主として導入する」とは、他の元素(セリウム、アルミニウム、セリウム以外の希土類元素)と比較して多く導入する(等モルより多く導入する)ことをいう。つまり、前記ジルコニウム原料は、ジルコニウム元素よりも少ない量(少ないモル数)であれば、ジルコニウム、アルミニウム、セリウム以外の希土類元素を含んでいてもよい。
 前記ジルコニウム原料としては、特に限定されないが、例えば、バデライト、脱珪ジルコニア、酸化ジルコニウム等の各種ジルコニウム系材料、その他、酸化ジルコニウムを含むジルコニウム材料などを使用することができる。酸化ジルコニウムは、硝酸塩、炭酸塩、硫酸塩、酢酸塩、塩化物、臭化物等の各種原料から合成することができる。前記ジルコニウム原料は、ジルコニウムと、セリウム及びセリウム以外の希土類元素の少なくとも一方の元素との複合酸化物を含んでもよい。前記ジルコニウム原料には、セリウムの硝酸塩、炭酸塩、硫酸塩、塩化物、臭化物等の化合物が含まれていてもよい。前記ジルコニウム原料には、ジルコニウムの硝酸塩、炭酸塩、硫酸塩、塩化物、臭化物等の化合物が含まれていてもよい。前記ジルコニウム原料としては、放射性元素を含有しない原料を用いることが望ましい。
 前記アルミニウム原料は、複合酸化物粉末にアルミニウム元素を主として導入するための材料である。「複合酸化物粉末にアルミニウム元素を主として導入する」とは、他の元素(セリウム、ジルコニウム、セリウム以外の希土類元素)と比較して多く導入する(等モルよりも多く導入する)ことをいう。つまり、前記アルミニウム原料は、アルミニウム元素よりも少ない量(少ないモル数)であれば、セリウム、ジルコニウム、セリウム以外の希土類元素を含んでいてもよい。
 前記アルミニウム原料としては、特に限定されないが、酸化アルミニウムを含むが好ましい。酸化アルミニウムは、硝酸塩、炭酸塩、硫酸塩、酢酸塩、塩化物、臭化物等の各種原料から合成することができる。前記アルミニウム原料は、ジルコニウムと、セリウム及びセリウム以外の希土類元素の少なくとも一方の元素との複合酸化物であってもよい。前記アルミニウム原料には、セリウムの硝酸塩、炭酸塩、硫酸塩、塩化物、臭化物等の化合物が含まれていてもよい。前記アルミニウム原料には、ジルコニウムの硝酸塩、炭酸塩、硫酸塩、塩化物、臭化物等の化合物が含まれていてもよい。
 工程1では、原料として、セリウム以外の希土類元素を含む原料(以下、「第3の元素原料」ともいう)を準備してもよい。
 第3の元素原料は、複合酸化物粉末にセリウム以外の希土類元素(以下、「第3の元素」ともいう)を主として導入するための材料である。「複合酸化物粉末に第3の元素を主として導入する」とは、他の元素(セリウム、ジルコニウム、アルミニウム)と比較して多く導入する(等モルよりも多く導入する)ことをいう。つまり、前記第3の元素原料は、第3の元素よりも少ない量(少ないモル数)であれば、セリウム、ジルコニウム、アルミニウムを含んでいてもよい。
 第3の元素としては、イットリアが好ましい。イットリア(酸化イットリウム)は、硝酸塩、炭酸塩、硫酸塩、酢酸塩、塩化物、臭化物等の各種原料から合成することができる。
 本明細書において、「原料を準備する工程1」とは、この工程1において、セリウム元素を導入するための材料と、アルミニウム元素を導入するための材料とが最終的に全体として準備されていればよく、セリウム原料と、アルミニウム原料とに明確に区別して準備する必要はない。
 前記セリウム原料、前記ジルコニウム原料、前記アルミニウム原料、前記第3の元素原料の純度は、特に限定されるものではないが、目的生成物の純度を高くできるという点で99.9%以上の純度であることが好ましい。なお、上述した通り、前記セリウム原料、前記ジルコニウム原料、前記アルミニウム原料、前記第3の元素原料の各々の原料には、複合酸化物粉末の特性が阻害されない程度であればその他の物質が含まれていてもよい。その他の物質としては、上述した通り、例えば、セリウムやジルコニウムの硝酸塩、炭酸塩、硫酸塩、塩化物、臭化物等が挙げられる。また、その他の物質として、アルカリ元素、アルカリ土類元素、遷移金属元素等が含まれていてもよい。なかでも、アルカリ土類元素が好ましい。前記複合酸化物粉末がアルカリ土類元素を含むと、イットリア等の希土類に比べて安定性はわずかに劣るものの、安価に製造することができる。
 アルカリ土類元素としては、Ca、Mg、Sr、Baが好ましく、Ca、Mg、Srがより好ましく、Ca、Mgがさらに好ましく、Caが特に好ましい。Caは原料が安価であるだけでなく、ジルコニアに比較的固溶しやすく、製造が容易となる。
 前記原料を準備した後、セリウム、アルミニウムの含有量が所定の範囲内となるように各原料を配合する。ジルコニウムを含ませる場合には、前記原料を準備した後、セリウム、ジルコニウム、アルミニウムの含有量が所定の範囲内となるように各原料を配合する。
 <工程2>
 次に、前記出発原料に所定の熱量を与えることにより、前記出発原料を溶融させる。工程2では、すべての原料を溶融させることが好ましい。すべての原料を溶融させた場合、得られる複合酸化物粉末の結晶構造が安定し、高μ等の特性を得ることができる。すべての原料を溶融させるには、出発原料に含まれる各種原料の融点のうちの最も高い融点以上の温度となるように、出発原料に熱量を与えるようにすればよい。
 出発原料を溶融させる方法は、特に限定されないが、例えば、アーク式、高周波熱プラズマ式等の溶融方法が例示される。中でも一般的な電融法、すなわち、アーク式電気炉(溶融装置)を用いた溶融方法を採用することが好ましい。
 出発原料を加熱するには、例えば、電力原単位換算で0.5~2.5kWh/kgの電力によって熱を加えればよい。この加熱により、出発原料に含まれる各種原料の融点のうちの最も高い融点を超える温度にまで出発原料を昇温させることができ、出発原料の溶融物を得ることができる。
 上記アーク式電気炉を用いた溶融方法を採用する場合、加熱工程(工程2)を行うにあたっては、あらかじめ出発原料に初期の通電を促すためにコークス等を導電材として所定量添加しておいてもよい。ただし、コークスの添加量等は、工程1で使用する各原料の混合割合に応じて適宜決定することができる。
 工程2における出発原料の溶融時の雰囲気については、特に限定されず、大気、窒素雰囲気の他、アルゴン、ヘリウムなどの不活性ガス雰囲気を採用できる。また、溶融時の圧力も特に限定されず、大気圧、加圧、減圧のいずれでもよいが、通常は大気圧下で行われる。
 <工程3>
 次に、工程2で得られた溶融物を冷却(好ましくは、徐冷却)してインゴットを形成する。インゴットを形成する方法は、特に限定されないが、例えば、工程2の溶融を電気炉で行った場合には、この電気炉に炭素蓋を装着し、10~60時間かけて徐冷却する方法が挙げられる。徐冷却時間は、好ましくは20~50時間であり、より好ましくは30~45時間であり、さらに好ましくは35~40時間である。また、溶融物を徐冷却するにあたっては、例えば、大気中にて、溶融物の温度が100℃以下、好ましくは50℃以下となるように放冷すればよい。溶融物の温度が急激に下がって徐冷却時間が20~60時間より短くなるおそれがある場合には、適宜、徐冷却工程中に溶融物を加熱するなどして溶融物の急激な温度低下を回避すればよい。
 上記のように徐冷却工程中における溶融物の急激な温度低下を回避しながら徐冷却を行うことで、原料中に含まれる元素が互いに均一に化合しやすくなる。
 <工程4>
 次に、工程3で得られたインゴットを粉砕して粉体とする。インゴットを粉砕する方法は特に限定されないが、ジョークラッシャー、ロールクラッシャー等の粉砕機で粉砕する方法が例示される。粉砕は、複数の粉砕機を併用して行ってもよい。インゴットを粉砕するにあたっては、後工程での粉体の取り扱い性を考慮して、粉砕後の粉体の平均粒子径が3mm以下、必要に応じて1mm以下になるように粉砕してもよい。粉砕後は分級を行ってもよく、例えば、篩等を使用して所望の平均粒子径の粉体を捕集することが可能である。
 <工程5>
 次に、工程4で得られた粉体を400~1100℃の雰囲気下で加熱する。前記加熱をするにあたって、あらかじめ粉体を磁力選鉱して不純物などを分離しておくことが好ましい。その後、電気炉等を用いて、粉体を400~1100℃の雰囲気下で加熱すればよい。この加熱によって粉体は加熱焼成され、工程3における溶融工程で生成した亜酸化物や過冷却によって発生した結晶内の歪みが除去され得る。上記加熱温度は、好ましくは400℃~1000℃、より好ましくは600℃~800℃であり、いずれの場合も亜酸化物や結晶内の歪みが除去されやすくなる。また、加熱の時間は、特に限定されないが、例えば、1~5時間、好ましくは2~3時間とすることができる。上記加熱は、大気下で行ってもよいし、酸素雰囲気下で行ってもよい。
 以上により、固体状又は粉末状の複合酸化物が得られる。粉末状の複合酸化物が得られた場合には、これを本実施形態に係る複合酸化物粉末としてもよい。
 <工程6>
 上記工程5によって得られた固体状又は粉末状の複合酸化物は、遊星ミル、ボールミル、ジェットミル等の粉砕機でさらに微粉砕してもよい。微粉砕は、複合酸化物の使用用途に応じて適宜行えばよい。微粉砕する場合、複合酸化物を上記粉砕機で5~30分程度処理すればよい。また、複合酸化物を上記微粉砕する場合、複合酸化物の平均粒径は、上記の範囲が好ましい。
 以上により、本実施形態に係る複合酸化物粉末を得ることができる。
[摩擦材組成物]
 本実施形態に係る摩擦材組成物は、摩擦調整剤と、繊維基材と、結合剤とを含み、前記摩擦調整剤として、前記複合酸化物粉末を含む。
 摩擦調整剤として、前記複合酸化物粉末を含むため、当該摩擦材組成物を成形し、ブレーキパッドの摩擦材に使用すると、耐フェード性に優れ、高μ値を有しながらも、摩擦安定性に優れる摩擦材を得ることが可能となる。
 (摩擦調整剤)
 前記摩擦調整剤は、無機充填剤と有機充填剤とを含む。
 前記無機充填剤は、摩擦材の耐熱性の悪化を避ける、耐摩耗性を向上させる、摩擦係数を向上する、潤滑性を向上させる等の目的で添加される。
 前記無機充填剤は、前記複合酸化物粉末を含む。
 前記摩擦材組成物中における、前記複合酸化物粉末の含有量は、摩擦材組成物全体を100質量%としたときに、5質量%以上20質量%以下であることが好ましく、7質量%以上15質量%以下であることがより好ましい。前記複合酸化物粉末の含有量が、摩擦材組成物全体を100質量%としたときに、5質量%以上20質量%以下の範囲内であると、高μ値等の特性をより容易に得ることができる。
 また、前記無機充填剤は、前記複合酸化物粉末以外に、例えば、硫化錫、硫化ビスマス、二硫化モリブデン、硫化鉄、三硫化アンチモン、硫化亜鉛、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、硫酸バリウム、コークス、マイカ、バーミキュライト、硫酸カルシウム、タルク、クレー、ゼオライト、ムライト、クロマイト、酸化チタン、酸化マグネシウム、シリカ、黒鉛、雲母、ドロマイト、炭酸カルシウム、炭酸マグネシウム、粒状または板状のチタン酸塩、珪酸カルシウム、二酸化マンガン、酸化亜鉛、四三酸化鉄、PTFE(ポリテトラフルオロエチレン)などを用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。粒状または板状のチタン酸塩としては、6チタン酸カリウム、8チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム、チタン酸ナトリウムなどを用いることができる。
 前記摩擦材組成物中における、無機充填剤の含有量(前記複合酸化物粉末を含む無機充填剤全体の含有量)は、摩擦材組成物全体を100質量%としたときに、20~70質量%であることが好ましく、30~65質量%であることがより好ましく、35~60質量%であることが特に好ましい。無機充填剤の含有量を上記の範囲とすることで、耐熱性の悪化を避けることができ、摩擦剤のその他成分の含有量バランスの点でも好ましい。
 前記有機充填剤は、摩擦材の音振性能や耐摩耗性などを向上させるための摩擦調整用として添加される。
 前記有機充填剤は、上記性能を発揮できるものであれば特に制限はなく、通常に使用される有機充填剤が用いられる。例えば、カシューダストやゴム成分などが挙げられる。
 上記カシューダストは、カシューナッツシェルオイルを硬化させたものを粉砕して得られる。
 上記ゴム成分としては、例えば、タイヤゴム、アクリルゴム、イソプレンゴム、NBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)、塩素化ブチルゴム、ブチルゴム、シリコーンゴム、などが挙げられ、これらから選択される1種又は2種類以上を組み合わせて用いることができる。
 前記摩擦材組成物中における、有機充填剤の含有量は、摩擦材組成物全体を100質量%としたときに、1~25質量%であることが好ましく、1~10質量%であることがより好ましく、2~7質量%であることが特に好ましい。有機充填剤の含有量を上記の範囲とすることで、摩擦材の弾性率が高くなり、ブレーキ鳴きなどの音振性能の悪化を効果的に抑制することができ、さらに耐熱性の悪化や熱履歴による強度低下においても効果的に抑制することができる。
(繊維基材)
 前記繊維基材は、摩擦材において補強作用を示すものである。
 前記摩擦材組成物は、通常、繊維基材として用いられる、有機繊維、無機繊維、金属繊維、炭素系繊維などを用いることができ、これらを単独で又は二種類以上を組み合わせて使用することができる。
 前記有機繊維としては、アラミド繊維、セルロース繊維、アクリル繊維、フェノール樹脂繊維などを用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。
 前記無機繊維としては、セラミック繊維、生分解性セラミック繊維、鉱物繊維、ガラス繊維、シリケート繊維などを用いることができ、1種又は2種以上を組み合わせて用いることができる。
 前記金属繊維としては、通常、摩擦材に用いられるものであれば特に制限はなく、例えば、アルミ、鉄、鋳鉄、亜鉛、錫、チタン、ニッケル、マグネシウム、シリコン、銅、黄銅などの金属または合金を主成分とする繊維を用いることができる(ただし、2020年の規制対応のため銅は5%以下が望ましい)。
 前記炭素系繊維としては、耐炎化繊維、ピッチ系炭素繊維、PAN系炭素繊維、活性炭繊維などを用いることができ、これらを単独で又は2種類以上を組み合わせて使用することができる。
 前記摩擦材組成物中における、前記繊維基材の含有量は、摩擦材組成物全体を100質量%としたときに、5~40質量%であることが好ましく、5~20質量%であることがより好ましく、5~15質量%であることが特に好ましい。前記繊維基材の含有量を5~40質量%の範囲とすることで、摩擦材としての最適な気孔率が得られ、鳴き防止ができ、適正な材料強度が得られ、耐摩耗性を発現し、成形性をよくすることができる。
 (結合材)
 前記結合材は、摩擦材組成物を構成する各材料を結合、一体化し、摩擦材(ブレーキ摩擦材)としての強度を向上させる機能を有するものである。
 前記結合材としては、熱硬化性樹脂を通常用いられる結合材として用いることができる。
 前記熱硬化性樹脂としては、例えば、エポキシ樹脂;アクリル系樹脂;シリコン樹脂;熱硬化性フッ素系樹脂;フェノール樹脂;アクリルエラストマー分散フェノール樹脂、シリコンエラストマー分散フェノール樹脂等の各種エラストマー分散フェノール樹脂;アクリル変性フェノール樹脂、シリコン変性フェノール樹脂、カシュー変性フェノール樹脂、エポキシ変性フェノール樹脂、アルキルベンゼン変性フェノール樹などが挙げられ、これらを単独で又は2種類以上を組み合わせて使用することができる。特に、優れた耐熱性、成形性及び摩擦係数を得ることできる、フェノール樹脂、アクリル変性フェノール樹脂、シリコン変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂を用いることが好ましい。
 前記摩擦材組成物中における、前記結合材の含有量は、摩擦材組成物全体を100質量%としたときに、3~20質量%であることが好ましく、5~10質量%であることがより好ましい。この範囲内とすることで、摩擦材の強度を高く維持でき、また、摩擦材の気孔率を低減し、弾性率が高くなることによるブレーキ鳴きなどの音振性能の悪化をより効果的に抑制できる。
 前記摩擦材組成物は、前記各成分、及び、必要に応じた任意成分を所定の比率で配合して得ることができる。この際、前記各成分、及び、前記任意成分を、分散媒中でボールミル等により所定時間粉砕混合した後、乾燥して分散媒を除去し、ふるい等を用いて整粒する工程を含むことが好ましい。
 [摩擦材]
 本実施形態に係る摩材は、前記摩擦材組成物の成形体で構成されている。
 前記摩擦材は、前記摩擦材組成物を成形し、必要に応じて、焼結することにより得ることができる。上記成形工程及び焼結工程では、公知のセラミックスの成形方法及び焼結方法を用いることができる。前記成形方法としては例えば、一軸加圧成形、冷間静水圧成形等の乾式成形法が挙げられる。前記成形方法としては上記乾式成形法の他、射出成形、押出成形、泥漿鋳込み、加圧鋳込み、回転鋳込み、ドクターブレード法等も適用することができる。前記焼結方法としては、例えば、雰囲気焼結法、反応焼結法、常圧焼結法、熱プラズマ焼結法等が挙げられる。また、焼結温度及び焼結温度での保持時間は使用原料に応じて適宜設定することができる。なお、焼結は、セラミックスの種類や添加する材料の種類によって、大気中や、窒素ガス、アルゴンガス等の不活性ガス中で行ってもよいし、一酸化炭素ガス、水素ガス等のような還元性ガス中で行ってもよい。また、真空中で行ってもよい。さらに、加圧しながら、焼結してもよい。その後、必要に応じて切削、研削、研摩等の処理を施すことにより本実施形態に係る摩擦材が得られる。
 前記摩擦材は、鉄等の金属のバックプレートと貼り合わせて一体化し、摩擦材とバックプレートとを備えるブレーキパッドとすることができる。また、前記摩擦材組成物と共に熱成形して摩擦材とバックプレートとを備えるブレーキパッドとすることもできる。
 前記摩擦材は、自動車技術会規格JASO C406に準じて、下記測定条件Aにて測定される第1フェード試験を9回実施し、得られた挙動ピークにおいて、最小摩擦係数を示したときの最大値μ値と最小値μ値の平均値を算出し、その平均値が0.20μ以上であることが好ましく、0.22μ以上であることがより好ましく、0.24μ以上であることがさらに好ましく、0.25μ以上であることが特に好ましく、0.27μ以上が特別に好ましく、0.28μ以上が格別に好ましい。この数値が高いほど、ブレーキング時の違和感をより低減することができる。前記摩擦係数の平均値は、大きいほど好ましいが、例えば、0.4以下、0.35以下、0.33以下等が挙げられる。
 <測定条件A>
  制動初速度100km/h
  制動間隔35秒
  第1回目測定時の制動前ブレーキ温度80℃
  制動減速度0.45G
  制動回数9回
 前記摩擦材は、自動車技術会規格JASO C406に準じて下記測定条件Bにて測定される摩擦係数の平均値であるすり合わせμ値が0.39以上であることが好ましく、0.40以上であることがより好ましく、0.405以上であることがさらに好ましく、0.41以上であることが特に好ましく、0.42以上が特別に好ましく、0.43以上が格別に好ましく、0.44以上がより格別に好ましい。前記すり合わせμ値は、大きいほど好ましいが、例えば、0.6以下、0.55以下、0.53以下等が挙げられる。前記すり合わせμ値が0.39以上であると、少ない押圧でより強い制動力が得られる。
 <測定条件B>
  制動初速度65km/h
  制動前ブレーキ温度120℃
  制動減速度0.35G
  測定回数200回
 前記摩擦材は、自動車技術会規格JASO C406に準じて、下記測定条件Cにて測定される第2効力試験での測定回数8回における摩擦係数の平均値を摩擦係数Xとし、自動車技術会規格JASO C406に準じて、下記測定条件Dにて測定される第2効力試験での測定回数8回における摩擦係数の平均値を摩擦係数Yとしたとき、摩擦係数の差[(摩擦係数X)-(摩擦係数Y)]が、0.12以下であることが好ましく、0.11以下であることがより好ましく、0.10以下であることがさらに好ましく、0.09以下が特に好ましく、0.08以下が特別に好ましく、0.05以下が格別に好ましい。前記摩擦係数の差[(摩擦係数X)-(摩擦係数Y)]は小さいほど好ましいが、例えば、0.01以上、0.02以上、0.03以上等が挙げられる。前記摩擦係数の差[(摩擦係数X)-(摩擦係数Y)]が、0.12以下であると、ブレーキング時の違和感をさらに低減することができる。
 <測定条件C>
  制動初速度100km/h
  制動前ブレーキ温度80℃
  制動減速度0.2G
  測定回数8回
 <測定条件D>
  制動初速度100km/h
  制動前ブレーキ温度80℃
  制動減速度0.7G
  測定回数8回
 以下、本発明に関し実施例を用いて詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例及び比較例における複合酸化物粉末、摩擦材組成物、及び、摩擦材には、不可避不純物として酸化ハフニウムを酸化ジルコニウムに対して1.3~2.5質量%含有(下記式(Z)にて算出)している。
 <式(Z)>
 ([酸化ハフニウムの質量]/([酸化ジルコニウムの質量]+[酸化ハフニウムの質量]))×100(%)
 (実施例1)
  <複合酸化物粉末の作製>
 高純度酸化セリウム(純度99.9%、三津和化学薬品製)と、高純度酸化ジルコニウム(純度99.9%、第一稀元素化学工業製)と、高純度酸化アルミニウム(純度98.0%、日本軽金属製)とを表1に示す配合比率に従って均一となるように混合した。
 次に、アーク式電気炉を用い、電力原単位換算で2.0kwh/kgを2時間印加し、2400℃以上で溶融を行った。なお、初期の通電を促すためにコークス300gを使用した。溶融終了後、電気炉に炭素蓋をして、大気中で24時間徐冷し、インゴットを得た。得られたインゴットをジョークラッシャー及びロールクラッシャーで粒径(直径)3mm以下まで粉砕した後、篩で1mm以下の粉末を捕集した。
 溶融工程で発生した亜酸化物や過冷却による結晶内の歪みを除去するために、捕集した粉末を熱処理した。熱処理は、電気炉を用いて大気中、600℃で3時間行った。その後、遊星ミル(フリッチュジャパン社製、装置名:PULVERISETTE 6)で15分間粉砕した。
 具体的には、下記の条件で粉砕した。
<乾式粉砕条件>
  粉砕装置:遊星型ボールミル
  ZrOポット:500cc
  ZrOビーズ(φ5mm):900g
  回転数:400rpm
  粉砕時間:15min
 以上により、実施例1に係る複合酸化物粉末を得た。
  <摩擦材組成物の作製>
 表2に示す配合比率に従って各材料を均一となるように混合し、実施例1に係る摩擦材組成物を得た。混合には、(株)日本アイリッヒ製のアイリッヒ インテンシブルミキサーを用いた。
  <摩擦材及びブレーキパッドの作製>
 得られた摩擦材組成物を成形プレス(Preform machine)で予備成形した。得られた予備成形物を鉄製のパックプレートと共に熱成形した。熱成形条件は、摩擦面155℃、B/P側160℃、中型140℃、成形圧力500kg/cmとした。ガス抜き条件は、摩擦面8回(計300秒)、B/P側10秒8回とした。熱成形は、熱成形プレス((株)マルシチ製、製品名:MA250型)を用いた。
 次に、得られた成形品を熱処理した。熱処理条件は、温度250℃、圧力5kg/cm、5時間とした。以上により、バックプレートと摩擦材組成物の成形体(摩擦材)との積層体を得た。
 ロータリー研磨機を用い、得られたバックプレートと摩擦材との積層体を研磨し、続いて、500℃でスコーチ処理を行い、さらにミゾ切りを行って実施例1に係るブレーキパッドを得た。
 (実施例2~実施例29)
  <複合酸化物粉末、摩擦材組成物、摩擦材及びブレーキパッドの作製>
 出発原料の混合比率を表1に示す配合比率に変更したこと以外は、実施例1と同様にして実施例2~実施例29に係る複合酸化物粉末、摩擦材組成物、摩擦材及びブレーキパッドを得た。
 なお、表1に示したYは高純度酸化イットリウム(純度99.99%、和光純薬工業(株)製)であり、Laは高純度酸化ランタン(純度99.9%、和光純薬工業(株)製)であり、CaOは高純度酸化カルシウム(純度99.0%、和光純薬工業(株)製)であり、MgOは高純度酸化マグネシウム(純度97.0%、キシダ化学(株)製)であり、SiOは高純度シリカ(純度99.0%、1級、キシダ化学(株)製)であり、TiOは高純度酸化チタン(純度99.5%、キシダ化学(株)製)である。
 (比較例1、比較例2)
  <複合酸化物粉末、摩擦材組成物、摩擦材及びブレーキパッドの作製>
 高純度酸化セリウム、高純度酸化ジルコニウム、高純度酸化アルミニウムの配合比率を表1に示す配合比率に変更したこと以外は、実施例1と同様にして、比較例1、比較例2に係る複合酸化物粉末、摩擦材組成物、摩擦材及びブレーキパッドを得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[複合酸化物粉末の組成測定]
 実施例、比較例で作製した複合酸化物粉末の組成(酸化物換算)を、ICP-AES(「ULTIMA-2」HORIBA製)を用いて分析した。その結果、表1の配合比率通りであることが確認できた。
[複合酸化物粉末の比表面積の測定]
 実施例、比較例の複合酸化物粉末の比表面積を、比表面積計(「マックソーブ」マウンテック製)を用いてBET法にて測定した。結果を表3に示す。
[複合酸化物粉末の結晶子径の測定]
 実施例、比較例の複合酸化物粉末について、X線回折装置(「RINT2500」リガク製)を用い、X線回折スペクトルを得た。測定条件は下記の通りとした。
<測定条件>
  測定装置:X線回折装置(リガク製、RINT2500)
  線源:CuKα線源
  サンプリング間隔:0.02°
  スキャン速度:2θ=1.0°/分
  発散スリット(DS):1°
  発散縦制限スリット:5mm
  散乱スリット(SS):1°
  受光スリット(RS):0.3mm
  モノクロ受光スリット:0.8mm
  管電圧:50kV
  管電流:300mA
 その後、XRD測定における2θが40°~42°のピークの測定結果を次のScherrerの式に当てはめ、結晶子径を算出した。
  Dp=(K×λ)/βcosθ
 ここで、Dpは複合酸化物粉末の結晶子径、λはX線の波長、θは回折角、Kは形状因子とよばれる定数、βは装置による回折線の広がりを補正したあとのピーク幅である。
 2θが40°~42°のピークは、CeAlOの(111)に由来するピークである。
 結果を表3に示す。
 なお、参考のため、図1に、実施例4に係る複合酸化物粉末のX線回折スペクトルを示した。
[複合酸化物粉末の粒子径D50、粒子径D90、及び粒子径D99の測定]
 実施例、比較例の複合酸化物粉末の粒子径を、レーザー回折/散乱式粒子径分布測定装置「LA-950」((株)堀場製作所製)を用いて測定した。より詳細には、サンプル0.15gと40mlの0.2%ヘキサメタリン酸ナトリウム水溶液とを50mlビーカーに投入し、装置(レーザー回折/散乱式粒子径分布測定装置「LA-950」)に投入して測定した。
 測定条件は下記の通りとした。結果を表3に示す。
  分散条件:100Wで2分超音波分散
  屈折率:1.70-0.0i
[複合酸化物粉末の単粒圧壊強度の測定]
 実施例、比較例の複合酸化物粉末の単粒圧壊強度は、遊星ミルで粉砕前の粒子(遊星ミルで粉砕して実施例、比較例の複合酸化物粉末とする前段階の粒子)を用いて測定した。粉砕前の粒子としては、粒子径2.36mm~2.80mmの範囲内のものを用いた。前記粒子径の粒子は、市販の篩を用いて得た。測定個数は50個とし、その平均値を単粒圧壊強度とした。測定装置は引張圧縮試験機を使用した。具体的に、引張圧縮試験機には、(株)今田製作所社製のSV-201-NSLを用いた。ロードスピードは0.5mm/minで行った。結果を表3に示す。
[複合酸化物粉末の真比重の測定]
 実施例、比較例の複合酸化物粉末の真比重を、JIS Z8807:2012に準拠して測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
[すり合わせμ値の測定]
 自動車技術会規格JASO C406に準じて、下記測定条件Bにて200回の各摩擦係数を得た。その200回の摩擦係数の平均値を求め、これをすり合わせμ値とした。結果を表4に示す。
 <測定条件B>
  制動初速度65km/h
  制動前ブレーキ温度120℃
  制動減速度0.35G
  測定回数200回
 200回の各測定には、それぞれ、製造後、他の試験に使用していないものを用いた。
[摩擦安定性評価]
 自動車技術会規格JASO C406に準じて、下記測定条件Cにて第2効力試験を行い、測定回数8回における摩擦係数の平均値を摩擦係数Xとして求めた。
 また、自動車技術会規格JASO C406に準じて、下記測定条件Dにて第2効力試験を行い、測定回数8回における摩擦係数の平均値を摩擦係数Yとして求めた。
 その後、摩擦係数の差[(摩擦係数X)-(摩擦係数Y)]を求めた。
 結果を表4に示す。
 <測定条件C>
  制動初速度100km/h
  制動前ブレーキ温度80℃
  制動減速度0.2G
  測定回数8回
 <測定条件D>
  制動初速度100km/h
  制動前ブレーキ温度80℃
  制動減速度0.7G
  測定回数8回
 8回の各測定には、それぞれ、製造後、他の試験に使用していないものを用いた。
[耐フェード性評価]
 自動車技術会規格JASO C406に準じて、下記測定条件Aにて第1フェード試験を行い、9回の各摩擦係数を得た。その中の、摩擦係数の最も大きい値と、摩擦係数の最も小さい値、及び、摩擦係数の最も大きい値と摩擦係数の最も小さい値との差を表4に示す。
 <測定条件A>
 制動初速度100km/h
 制動間隔35秒
 第1回目測定時の制動前ブレーキ温度80℃
 制動減速度0.45G
 制動回数9回
[ロータ磨耗性評価]
 ブレーキ一般性能試験項目(JASO-C406ベース)の条件で全項目の試験を行なった後のロータのインナー側、アウター側のロータ磨耗量の平均値を求めた。ロータ磨耗量は少ないほど性能がよいことを示す。
Figure JPOXMLDOC01-appb-T000004

Claims (23)

  1.  セリウム、及び、アルミニウムを含み、
     比表面積が0.5m/g以上10m/g以下であることを特徴とするセリウム系複合酸化物粉末。
  2.  ジルコニウムを含むことを特徴とする請求項1に記載のセリウム系複合酸化物粉末。
  3.  結晶子径が10nm以上80nm以下の範囲内であることを特徴とする請求項1又は2に記載のセリウム系複合酸化物粉末。
  4.  粒子径D50が0.5μm以上20μm以下であることを特徴とする請求項1~3のいずれか1に記載のセリウム系複合酸化物粉末。
  5.  粒子径D99が60μm以下であることを特徴とする請求項1~4のいずれか1に記載のセリウム系複合酸化物粉末。
  6.  単粒圧壊強度が50N以上300N以下の範囲内であることを特徴とする請求項1~5のいずれか1に記載のセリウム系複合酸化物粉末。
  7.  セリウムの含有量が酸化物換算で40質量%以上95質量%以下であり、
     ジルコニウムの含有量が酸化物換算で0.1質量%以上50質量%以下の範囲内であり、
     アルミニウムの含有量が酸化物換算で0.1質量%以上24質量%以下の範囲内であることを特徴とする請求項1~6のいずれか1に記載のセリウム系複合酸化物粉末。
  8.  アルミニウムの含有量が酸化物換算で0.1質量%以上10質量%以下の範囲内である請求項7に記載のセリウム系複合酸化物粉末。
  9.  ジルコニウムの含有量が酸化物換算で0.1質量%以上40質量%以下の範囲内であり、
     アルミニウムの含有量が酸化物換算で0.1質量%以上10質量%以下の範囲内であることを特徴とする請求項7又は8のいずれか1に記載のセリウム系複合酸化物粉末。
  10.  セリウムの含有量が酸化物換算で49質量%以上91質量%以下であり、
     ジルコニウムの含有量が酸化物換算で1質量%以上43質量%以下の範囲内であり、
     アルミニウムの含有量が酸化物換算で1質量%以上8質量%以下の範囲内であることを特徴とする請求項1~9のいずれか1に記載のセリウム系複合酸化物粉末。
  11.  セリウム、ジルコニウム及びアルミニウムの合計含有量が酸化物換算で60質量%以上であることを特徴とする請求項1~10のいずれか1に記載のセリウム系複合酸化物粉末。
  12.  CeAlOを含むことを特徴とする請求項1~11のいずれか1に記載のセリウム系複合酸化物粉末。
  13.  セリウム以外の希土類元素を含むことを特徴とする請求項1~12のいずれか1に記載のセリウム系複合酸化物粉末。
  14.  セリウム以外の希土類元素を酸化物換算で0.1質量%以上40質量%以下の範囲内で含むことを特徴とする請求項1~13のいずれか1に記載のセリウム系複合酸化物粉末。
  15.  前記セリウム以外の希土類元素が、イットリウム、及び、ランタンからなる群より選ばれる1以上であることを特徴とする請求項13又は14に記載のセリウム系複合酸化物粉末。
  16.  アルカリ土類元素を含むことを特徴とする請求項1~15のいずれか1に記載のセリウム系複合酸化物粉末。
  17.  摩擦材用であることを特徴とする請求項1~16のいずれか1に記載のセリウム系複合酸化物粉末。
  18.  摩擦調整剤と、繊維基材と、結合剤とを含み、
     前記摩擦調整剤として、請求項1~17のいずれか1に記載のセリウム系複合酸化物粉末を含むことを特徴とする摩擦材組成物。
  19.  前記セリウム系複合酸化物粉末の含有量が、摩擦材組成物全体を100質量%としたときに、5質量%以上20質量%以下の範囲内であることを特徴とする請求項18に記載の摩擦材組成物。
  20.  請求項18又は19に記載の摩擦材組成物の成形体で構成されていることを特徴とする摩擦材。
  21.  自動車技術会規格JASO C406に準じて、下記測定条件Aにて測定される第1フェード試験を9回実施し、得られた挙動ピークにおいて、最小摩擦係数を示したときの最大値μ値と最小値μ値の平均値を算出し、その平均値が0.20μ以上であることを特徴とする請求項20に記載の摩擦材。
     <測定条件A>
      制動初速度100km/h
      制動間隔35秒
      第1回目測定時の制動前ブレーキ温度80℃
      制動減速度0.45G
      制動回数9回
  22.  自動車技術会規格JASO C406に準じて下記測定条件Bにて測定される摩擦係数の平均値であるすり合わせμ値が0.39以上であることを特徴とする請求項20又は21に記載の摩擦材。
     <測定条件B>
      制動初速度65km/h
      制動前ブレーキ温度120℃
      制動減速度0.35G
      測定回数200回
  23.  自動車技術会規格JASO C406に準じて、下記測定条件Cにて測定される第2効力試験での測定回数8回における摩擦係数の平均値を摩擦係数Xとし、
     自動車技術会規格JASO C406に準じて、下記測定条件Dにて測定される第2効力試験での測定回数8回における摩擦係数の平均値を摩擦係数Yとしたとき、
     摩擦係数の差[(摩擦係数X)-(摩擦係数Y)]が、0.12以下であることを特徴とする請求項20~22のいずれか1に記載の摩擦材。
     <測定条件C>
      制動初速度100km/h
      制動前ブレーキ温度80℃
      制動減速度0.2G
      測定回数8回
     <測定条件D>
      制動初速度100km/h
      制動前ブレーキ温度80℃
      制動減速度0.7G
      測定回数8回
PCT/JP2022/023603 2021-06-14 2022-06-13 セリウム系複合酸化物粉末、摩擦材組成物、及び、摩擦材 WO2022264961A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023529854A JP7568857B2 (ja) 2021-06-14 2022-06-13 セリウム系複合酸化物粉末、摩擦材組成物、及び、摩擦材
KR1020237026882A KR20230128122A (ko) 2021-06-14 2022-06-13 세륨계 복합 산화물 분말, 마찰재 조성물 및 마찰재
US18/547,684 US20240228313A9 (en) 2021-06-14 2022-06-13 Cerium-based complex oxide powder, friction material composition, and friction material
CN202280018621.5A CN116917235A (zh) 2021-06-14 2022-06-13 铈系复合氧化物粉末、摩擦材料组合物、以及摩擦材料
EP22824950.4A EP4357302A1 (en) 2021-06-14 2022-06-13 Cerium-based complex oxide powder, friction material composition, and friction material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2021/022503 2021-06-14
PCT/JP2021/022503 WO2021225181A1 (ja) 2021-06-14 2021-06-14 複合酸化物粉末、摩擦材組成物、及び、摩擦材

Publications (1)

Publication Number Publication Date
WO2022264961A1 true WO2022264961A1 (ja) 2022-12-22

Family

ID=78468032

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/022503 WO2021225181A1 (ja) 2021-06-14 2021-06-14 複合酸化物粉末、摩擦材組成物、及び、摩擦材
PCT/JP2022/023603 WO2022264961A1 (ja) 2021-06-14 2022-06-13 セリウム系複合酸化物粉末、摩擦材組成物、及び、摩擦材

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022503 WO2021225181A1 (ja) 2021-06-14 2021-06-14 複合酸化物粉末、摩擦材組成物、及び、摩擦材

Country Status (6)

Country Link
US (2) US20220396494A1 (ja)
EP (1) EP4357302A1 (ja)
JP (2) JPWO2021225181A1 (ja)
KR (2) KR20240021314A (ja)
CN (2) CN115916921A (ja)
WO (2) WO2021225181A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913009A (ja) 1995-07-04 1997-01-14 Sumitomo Electric Ind Ltd 摩擦材
JP2000302410A (ja) * 1999-04-22 2000-10-31 Matsushita Electric Ind Co Ltd 水素精製装置
JP2004536771A (ja) * 2001-08-02 2004-12-09 スリーエム イノベイティブ プロパティズ カンパニー ガラス−セラミック
JP2007022835A (ja) * 2005-07-14 2007-02-01 Sumitomo Osaka Cement Co Ltd 酸化アルミニウム含有希土類元素添加酸化セリウム粉体
JP2008529758A (ja) * 2005-01-19 2008-08-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング スプレー熱分解による混合酸化物の製造方法
JP2012528782A (ja) * 2009-06-03 2012-11-15 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン アルミナ及びジルコニアに基づく焼結製品
JP2013049627A (ja) * 2001-08-02 2013-03-14 Three M Innovative Properties Co Al2O3−希土類酸化物−ZrO2/HfO2材料およびその製造方法ならびに使用方法
WO2016060129A1 (ja) 2014-10-14 2016-04-21 日本ブレーキ工業株式会社 摩擦材組成物、摩擦材および摩擦部材
JP2016079246A (ja) 2014-10-14 2016-05-16 日本ブレーキ工業株式会社 摩擦材組成物、摩擦材及び摩擦部材
JP2017095336A (ja) * 2015-11-27 2017-06-01 トヨタ自動車株式会社 酸素吸蔵材料の製造方法及び酸素吸蔵材料
WO2021149498A1 (ja) * 2020-01-23 2021-07-29 第一稀元素化学工業株式会社 複合酸化物粉末、摩擦材組成物、及び、摩擦材

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07215760A (ja) * 1994-02-03 1995-08-15 Isuzu Ceramics Kenkyusho:Kk 低温焼成の低摩擦セラミックス
JPH09132449A (ja) * 1995-11-02 1997-05-20 Isuzu Ceramics Kenkyusho:Kk セラミツクス摺動部材
CN1094467C (zh) * 1999-02-15 2002-11-20 上海跃龙有色金属有限公司 纳米铈锆复合氧化物、其制备方法及用途
JP2000355685A (ja) * 1999-06-15 2000-12-26 Tokai Carbon Co Ltd 摩擦材料
JP4789794B2 (ja) * 2005-12-28 2011-10-12 第一稀元素化学工業株式会社 セリウム・ジルコニウム複合酸化物及びその製造方法
JP5008355B2 (ja) * 2006-06-30 2012-08-22 第一稀元素化学工業株式会社 酸化セリウム−酸化ジルコニウム系複合酸化物及びその製造方法
CN100493697C (zh) * 2006-10-16 2009-06-03 华东理工大学 一种球形铈锆基复合氧化物及其制备方法
IN2014DN00080A (ja) * 2011-07-14 2015-05-15 Treibacher Ind Ag
US20130108530A1 (en) * 2011-10-27 2013-05-02 Johnson Matthey Public Limited Company Process for producing ceria-zirconia-alumina composite oxides and applications thereof
CN103908959B (zh) * 2014-03-27 2017-01-25 台州欧信环保净化器有限公司 Ce‑Zr复合氧化铝材料及其制备方法
KR102282169B1 (ko) 2014-12-26 2021-07-27 엘지디스플레이 주식회사 얼룩 보상 장치 및 그를 가지는 평판 표시 장치의 화질 보상 장치
JP2017115135A (ja) * 2015-12-11 2017-06-29 株式会社リコー 摺動部材、部品、および機械装置の騒音低減方法
CN112076740A (zh) * 2020-09-17 2020-12-15 有研稀土新材料股份有限公司 一种元素梯度分布的铈锆基复合氧化物及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913009A (ja) 1995-07-04 1997-01-14 Sumitomo Electric Ind Ltd 摩擦材
JP2000302410A (ja) * 1999-04-22 2000-10-31 Matsushita Electric Ind Co Ltd 水素精製装置
JP2004536771A (ja) * 2001-08-02 2004-12-09 スリーエム イノベイティブ プロパティズ カンパニー ガラス−セラミック
JP2013049627A (ja) * 2001-08-02 2013-03-14 Three M Innovative Properties Co Al2O3−希土類酸化物−ZrO2/HfO2材料およびその製造方法ならびに使用方法
JP2008529758A (ja) * 2005-01-19 2008-08-07 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング スプレー熱分解による混合酸化物の製造方法
JP2007022835A (ja) * 2005-07-14 2007-02-01 Sumitomo Osaka Cement Co Ltd 酸化アルミニウム含有希土類元素添加酸化セリウム粉体
JP2012528782A (ja) * 2009-06-03 2012-11-15 サン−ゴバン サントル ド レシェルシュ エ デテュド ユーロペアン アルミナ及びジルコニアに基づく焼結製品
WO2016060129A1 (ja) 2014-10-14 2016-04-21 日本ブレーキ工業株式会社 摩擦材組成物、摩擦材および摩擦部材
JP2016079246A (ja) 2014-10-14 2016-05-16 日本ブレーキ工業株式会社 摩擦材組成物、摩擦材及び摩擦部材
JP2017095336A (ja) * 2015-11-27 2017-06-01 トヨタ自動車株式会社 酸素吸蔵材料の製造方法及び酸素吸蔵材料
WO2021149498A1 (ja) * 2020-01-23 2021-07-29 第一稀元素化学工業株式会社 複合酸化物粉末、摩擦材組成物、及び、摩擦材

Also Published As

Publication number Publication date
EP4357302A1 (en) 2024-04-24
KR20230128122A (ko) 2023-09-01
JP7568857B2 (ja) 2024-10-16
WO2021225181A1 (ja) 2021-11-11
US20240228313A9 (en) 2024-07-11
KR20240021314A (ko) 2024-02-19
US20240133439A1 (en) 2024-04-25
JPWO2021225181A1 (ja) 2021-11-11
US20220396494A1 (en) 2022-12-15
CN116917235A (zh) 2023-10-20
JPWO2022264961A1 (ja) 2022-12-22
CN115916921A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
JP4673541B2 (ja) レピドクロサイト型チタン酸カリウムマグネシウム及びその製造方法並びに摩擦材
JP6906090B2 (ja) チタン酸カリウム粉末、摩擦調整材、樹脂組成物、摩擦材、並びに摩擦部材
JP5535509B2 (ja) 摩擦材
JP5205638B2 (ja) チタン酸アルカリの製造方法
JP5739425B2 (ja) 融解されたアルミナ−ジルコニアグリット
WO2019003969A1 (ja) 焼結摩擦材及び焼結摩擦材の製造方法
WO2021149498A1 (ja) 複合酸化物粉末、摩擦材組成物、及び、摩擦材
KR100914788B1 (ko) 내화물
WO2022264961A1 (ja) セリウム系複合酸化物粉末、摩擦材組成物、及び、摩擦材
JP6633817B1 (ja) チタン酸アルカリ金属、チタン酸アルカリ金属の製造方法及び摩擦材
JP7441760B2 (ja) ブレーキパッド用複合酸化物粉末、ブレーキパッド用摩擦材組成物、及び、ブレーキパッド用摩擦材
JP3971899B2 (ja) 耐火物原料組成物、その製造方法及びそれを成形してなる耐火物
JP6765987B2 (ja) チタン酸塩化合物粒子及びその製造方法、摩擦調整材、樹脂組成物、摩擦材、並びに摩擦部材
WO2022151007A1 (en) Composite particles and method for producing composite particles
WO2021068139A1 (en) Alumina particles and method for producing alumina particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824950

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023529854

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237026882

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237026882

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18547684

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280018621.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022824950

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022824950

Country of ref document: EP

Effective date: 20240115