WO2022262543A1 - 一种分子筛scr催化剂及制备方法 - Google Patents

一种分子筛scr催化剂及制备方法 Download PDF

Info

Publication number
WO2022262543A1
WO2022262543A1 PCT/CN2022/095100 CN2022095100W WO2022262543A1 WO 2022262543 A1 WO2022262543 A1 WO 2022262543A1 CN 2022095100 W CN2022095100 W CN 2022095100W WO 2022262543 A1 WO2022262543 A1 WO 2022262543A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
scr catalyst
copper
preparation
catalyst
Prior art date
Application number
PCT/CN2022/095100
Other languages
English (en)
French (fr)
Inventor
冯锡
刘志敏
孙睿
王云
张艳华
王瑞芳
魏宽
陈海昆
赖益能
陈耀强
李云
陈启章
Original Assignee
中自环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中自环保科技股份有限公司 filed Critical 中自环保科技股份有限公司
Priority to CN202280001692.4A priority Critical patent/CN115666787B/zh
Publication of WO2022262543A1 publication Critical patent/WO2022262543A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to the technical field of catalyst preparation, in particular to a molecular sieve SCR catalyst and a preparation method.
  • Nitrogen oxides (NO x , NO+NO 2 ) in the atmosphere is one of the main pollutants, and it is an important culprit that causes acid rain, photochemical smog and smog and other bad weather, directly threatens the ecological environment, and seriously affects human health.
  • the most direct and main source is the combustion of fossil fuels; with the continuous development of the automobile industry, the number of various motor vehicles has increased sharply, and the tail gas emitted by engine fuel consumption contains NO x , which also leads to serious air pollution Therefore, the catalytic purification of NO x in motor vehicle exhaust has attracted widespread attention all over the world, especially for diesel vehicles, which are large NO x emitters. Diesel heavy-duty vehicles will implement the National VI(a) standard on July 1, 2021, and the National VI(b) standard on July 1, 2023. The requirements for the conversion capacity of NO x are also increasing. strict.
  • Ammonia Selective Catalytic Reduction Technology (NH 3 -SCR) is one of the most effective flue gas denitrification technologies that have been commercialized so far. Its principle is to use NH 3 as a reducing agent to selectively reduce toxic NO x to non-toxic N 2 and H2O .
  • Catalysts for NOx purification of diesel vehicle exhaust mainly use vanadium-based catalysts and copper-based catalysts. Among them, copper-based catalysts have better low-temperature performance and temperature window, have no biological toxicity, and have more advantages in environmental protection. Therefore, they have gradually become the mainstream of diesel engine exhaust purification. catalyst.
  • Cu-SSZ-13 with a small pore structure exhibits excellent catalytic activity for NH 3 -SCR, and has a relatively high molar ratio of silicon dioxide and aluminum oxide (referred to as the silicon-aluminum ratio, the same below, usually referring to the silicon-aluminum ratio ⁇ 25 ) molecular sieves used in Cu-SCR catalysts show better hydrothermal stability and have been successfully commercialized, but there are still problems such as insufficient reaction temperature window and poor resistance to hydrocarbons, which are prone to carbon Hydrogen poisoning, while its production cost is high, there are many limitations in practical application.
  • Patent CN 102215960 A discloses a Cu-based CHA molecular sieve catalyst with a silicon-to-aluminum ratio of less than 15, and the NO x conversion rate of the catalyst can reach about 70% at 200°C.
  • the exhaust temperature of diesel vehicles can be lower than 200°C, and the conversion rate of NO x still cannot meet the requirements of the new standard for NO x emissions.
  • Patent CN 111135860 A discloses a method of using Cu-TEPA as a template to directly add Cu-SSZ-13 with a silicon-aluminum ratio of 3-5 in the molecular sieve synthesis process, and then part of the non-skeleton through ammonium salt or dilute acid solution Cu was washed and then exchanged for rare earth metals, and a low-silicon-aluminum ratio Cu-SSZ-13 catalyst with good hydrothermal stability was obtained.
  • the prepared catalyst had a good temperature window and hydrothermal stability
  • the Cu-SSZ-13 TEPA is a template agent for hydrothermal synthesis of Cu-SSZ-13.
  • the technical requirements are relatively high. It is difficult to ensure the batch consistency of product crystallinity during scale-up production.
  • the purpose of the present invention is to overcome the low conversion rate of copper-based catalysts in the prior art at low temperatures, the decline in high-temperature performance, and the easy occurrence of hydrocarbon poisoning, and to provide a molecular sieve SCR catalyst and a preparation method that uses a relatively low silicon-aluminum ratio
  • the small-pore molecular sieve material through the addition of the second active component yttrium, the prepared catalyst exhibits excellent catalytic activity for NO x at low and high temperatures, has a wide activity temperature window, high hydrothermal stability and good resistance to Capability of hydrocarbon poisoning.
  • Copper solution configuration heat deionized water to 60-90°C, add soluble copper salt and additives, stir and dissolve, and configure copper solution;
  • step (3) Pulping: cooling the solution prepared in step (2), adding an adhesive to stir, ball milling, and standing for 0.5 to 5 hours to obtain a slurry;
  • step (3) Coating and roasting: coating the slurry prepared in step (3) on the catalyst carrier, drying, and then roasting in air at 300-600° C. for 1-6 hours to obtain a molecular sieve SCR catalyst.
  • the present invention also provides another scheme, a molecular sieve SCR catalyst and a preparation method thereof, comprising the following steps:
  • Copper solution configuration heat deionized water to 20-90°C, add soluble copper salt and additives, stir and dissolve, and configure copper solution;
  • Ion exchange heat deionized water to 20-90°C, add soluble yttrium salt and stir to dissolve, keep the temperature at 20-90°C, add molecular sieves with a silicon-aluminum ratio ⁇ 24 and keep stirring; keep the temperature at 20-90°C Add the copper solution configured in step (1) and continue to stir for ion exchange;
  • step (3) Pulping: cooling the solution prepared in step (2), adding an adhesive to stir, ball milling, and standing to obtain a slurry;
  • the invention provides a molecular sieve SCR catalyst and a preparation method.
  • the molecular sieve SCR catalyst includes a first active component Cu, a second active component Y, a small-pore molecular sieve and a catalyst carrier.
  • the "attachment" rate on the surface of the molecular sieve improves the uniformity of the slurry.
  • the pulping-coating one-step method is used to mix the first active component, additives, small-pore molecular sieve, second active component, and binder. It is mixed with water to form a slurry, coated and dried to obtain a molecular sieve SCR catalyst.
  • the molecular sieve is a mixture of one or two of H-SSZ-13 and H-SSZ-39; more preferably, the silicon-aluminum ratio in the molecular sieve is (6-22): 1.
  • the soluble copper salt includes one or more of copper sulfate, copper nitrate, copper acetate and copper chloride; the additive is citric acid, glycine, humic acid and gluconolactone One of the above; the soluble yttrium salt includes yttrium nitrate.
  • step (1) based on the copper element in the soluble copper salt, the mass ratio of the additive to the copper element is (0.2-2.5):1.
  • the first active component is calculated as copper element, and the mass ratio of copper element to molecular sieve is ⁇ 10wt%; the second active component is calculated as yttrium element, and the mass ratio of yttrium element to molecular sieve is ⁇ 2.5wt%. More preferably, the first active component is calculated as copper element, and the mass ratio of copper element to molecular sieve is ⁇ 6.8wt%, and the second active component is calculated as yttrium element, and the mass ratio of yttrium element to molecular sieve is ⁇ 0.5wt%.
  • the first active component is calculated as copper element, and the mass ratio of copper element and molecular sieve is ⁇ 5.5wt%; the second active component is calculated as yttrium element, and the mass ratio of yttrium element and molecular sieve is Ratio ⁇ 2.5wt%.
  • the ion exchange temperature of the soluble yttrium salt is 70-80°C
  • the ion exchange temperature of the soluble copper salt is 70-80°C.
  • step (2) the time for yttrium ion exchange after adding molecular sieve is 1-3 h; the time for copper ion exchange after adding the copper solution configured in step (1) is 2-4 h.
  • the binder is one or more of silica sol, aluminum sol and zirconium sol, and the mass of the binder calcined into an oxide is 2 to 20 wt% of the mass of the molecular sieve; More preferably, the mass of the binder calcined into oxides is 5-15 wt% of the mass of the molecular sieve.
  • the catalyst carrier is one of a cordierite carrier, a silicon carbide carrier and a metal carrier.
  • the standing time is 1-2 hours.
  • step (3) the solid content of the slurry is 30-60%.
  • the coating amount of the slurry is 50-200 g/L.
  • the drying is rapid drying on a drier, and the method of rapid drying after coating reduces the influence of the slurry on the dealumination of the molecular sieve skeleton by acidity enhancement during the drying process, It is beneficial to improve the low-temperature catalytic performance and stability of the catalyst.
  • the calcination temperature is 350-450° C., and the time is 2-4 hours.
  • Another aspect of the present invention provides a molecular sieve SCR catalyst, which is prepared by the above-mentioned preparation method.
  • the molecular sieve SCR catalyst preparation method of the present invention adopts a small-pore molecular sieve material with a relatively low silicon-aluminum ratio, and through the addition of the second active component yttrium, the additive can adjust the dispersion of the first active component Cu on the surface of the molecular sieve and the dispersibility of the catalyst.
  • the acid density improves the catalytic activity and hydrocarbon resistance of the catalyst, and realizes the catalyst has excellent catalytic activity for NOx at low and high temperatures at a low silicon-aluminum ratio, and has a wide active temperature window and high hydrothermal stability. and better resistance to hydrocarbons; at the same time, the present invention adopts a pulping-coating one-step method, which shortens and simplifies the preparation process and greatly reduces the cost.
  • Fig. 1 is the catalyst of the embodiment of the present invention and comparative example to NOx conversion rate figure
  • Fig. 2 is that the embodiment of the present invention and comparative example catalyst are to HC conversion figure
  • Fig. 3 is a graph of NO x conversion rate after hydrothermal aging at 750°C@50h.
  • step (2) Pulping: the ion-exchanged solution in step (2) is cooled to room temperature, 28 g of silicon solution with a concentration of 30% is added, stirred, ball milled, and left to stand for 1 hour to obtain a slurry;
  • the specifications of the cordierite carriers used in the present invention are all transparent carriers with a cylindrical shape of ⁇ 25.4mm*50.8mm and a mesh number of 400cpsi.
  • step (2) Pulping: the ion-exchanged solution in step (2) was cooled to room temperature, 36 g of a silicon solution with a concentration of 30% was added, stirred, ball milled, and left to stand for 1 hour to obtain a slurry;
  • Coating and roasting coat the slurry prepared in step (3) on the cordierite carrier, the coating amount is 140g/L, dry quickly at 130°C with a drier, and then bake in air at 450°C 2h to obtain molecular sieve SCR catalyst S2.
  • step (3) Pulping: the ion-exchanged solution in step (2) was cooled to room temperature, 57 g of zirconium sol with a concentration of 21% was added, stirred, ball milled, and left standing for 2 hours to obtain a slurry;
  • step (2) Pulping: the ion-exchanged solution in step (2) was lowered to room temperature, 32 g of a silicon solution with a concentration of 30% was added, stirred, ball milled, and allowed to stand for 1 hour to obtain a slurry;
  • step (2) Pulping: the ion-exchanged solution in step (2) was lowered to room temperature, 32 g of a silicon solution with a concentration of 30% was added, stirred, ball milled, and allowed to stand for 1 hour to obtain a slurry;
  • Ion exchange Heat 250g of deionized water to 80°C and keep stirring, add 140g of H-SSZ-13 with a silicon-aluminum ratio of 13 and keep stirring, add 19.03g of copper nitrate trihydrate for ion exchange for 4h.
  • Ion exchange powder making: Heat 210g of deionized water to 80°C, add 140g of H-SSZ-13 with a silicon-aluminum ratio of 13 and 19.03g of copper nitrate trihydrate and keep stirring for 6 hours, then filter, wash, and dry into powder , the Cu content in the resulting product was 3.6 wt%.
  • the molecular sieve SCR catalysts S1-S5 prepared in Examples 1-5 and the molecular sieve SCR catalysts B1-B6 prepared in Comparative Examples 1-6 were tested for NO x conversion rate and HC conversion rate in a fixed bed reactor.
  • the space velocity is 60000h -1 , the reaction temperature is 175-550°C; the gas components used are detected by infrared.
  • the test results of the NO x conversion rate are listed in Table 1, and the test results of the HC conversion rate are listed in Table 2.
  • the unit of the conversion rate is %.
  • the catalysts prepared in Example 1, Example 3, Comparative Examples 1-2, and Comparative Examples 5-6 were hydrothermally aged at 750°C for 50 hours. After the aging was completed, the NOx conversion rate was tested under the above test conditions.
  • the test results are summarized in the table 3 in. Table 1, Table 2, and Table 3 were prepared as Figure 1, Figure 2, and Figure 3, respectively.
  • Comparative Example 6 a molecular sieve with a silicon-aluminum ratio of 27 was used, and the conversion rate of NO x was low.
  • Figure 2 the performance test of the catalyst was carried out under the atmosphere of 250ppm C 3 H 6. At a low temperature of 175°C, the conversion rate of molecular sieve SCR catalysts S1-S6 to HC was 63-76%.
  • the conversion rate of S1 ⁇ S6 to HC is 84 ⁇ 92%; at 175°C, the activity of Example 1 is compared with that of Comparative Examples 1-2, and Comparative Examples 5-6 are increased by 5-21%, and at 550°C, the activity of Example 1 is compared with that of The activities of Comparative Examples 1-2 and Comparative Examples 5-6 are increased by 9-14%, indicating that the catalyst of the present invention has a good ability to resist hydrocarbon poisoning.
  • the present invention adopts a small-pore molecular sieve material with a relatively low silicon-aluminum ratio.
  • the additive can adjust the dispersion of the first active component Cu on the surface of the molecular sieve and the acid density of the catalyst, thereby improving the catalytic activity of the catalyst.
  • the anti-hydrocarbon performance realized that at a lower silicon-aluminum ratio, the catalyst has excellent catalytic activity for NOx at low and high temperatures, has a wide activity temperature window, high hydrothermal stability and good anti-hydrocarbon ability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种分子筛SCR催化剂及制备方法,制备方法包括以下步骤:(1)将去离子水加热至20~90℃,加入可溶性铜盐和添加剂溶解,配置成铜溶液;(2)将去离子水加热至20~90℃,加入可溶性钇盐溶解,保持温度下加入硅铝比≤24的分子筛并搅拌;保持温度下加入铜溶液并搅拌进行离子交换;(3)将步骤(2)中离子交换后的溶液降温,加入粘接剂搅拌、球磨,静置,得到浆料;(4)将浆料涂覆到载体上,干燥,焙烧,得到分子筛SCR催化剂。本发明采用较低硅铝比的小孔分子筛材料,通过第二活性组分钇的添加,制备得到的催化剂在低温和高温下对NO x表现出优异地催化活性,具有宽活性温度窗口、高水热稳定性能和良好的抗碳氢化合物性能。

Description

一种分子筛SCR催化剂及制备方法 技术领域
本发明涉及催化剂制备技术领域,特别涉及一种分子筛SCR催化剂及制备方法。
背景技术
大气中的氮氧化物(NO x,NO+NO 2)是主要污染物之一,是造成酸雨、光化学烟雾以及雾霾等恶劣天气的重要元凶,直接威胁着生态环境,对人类的健康造成严重的危害,而其最直接最主要的来源为化石燃料的燃烧;随着汽车业的不断发展,各类机动车量急剧增加,发动机燃油消耗排放的尾气中包含NO x,这也是导致空气污染严重的重要原因,因此对机动车排气中NO x的催化净化吸引了全世界的广泛关注,尤其对于柴油车这类NO x排放大户的关注更甚。柴油重型车辆的排放即将在2021年的7月1号开始执行国VI(a)标准,将在2023年7月1号执行国VI(b)标准,对NO x的转化能力要求也越来越严格。
氨选择性催化还原技术(NH 3-SCR)是目前已商业化的最为有效的烟气脱硝技术之一,其原理是利用NH 3作为还原剂将有毒的NO x选择性还原为无毒的N 2和H 2O。柴油车尾气NO x净化催化剂主要采用钒基催化剂、铜基催化剂,其中铜基催化剂具有更好的低温性能和温度窗口,没有生物毒性,在环保方面更具优势,因此逐渐成为柴油机尾气净化的主流催化剂。自CN 102974391A公开了一种金属负载的CHA小孔分子筛用于NH 3-SCR具有良好性能后,大量基于小孔分子筛的NH 3-SCR催化剂被陆续开发出来。具有小孔结构的Cu-SSZ-13对于NH 3-SCR表现出优异的催化活性,具有较高二氧化硅和三氧化二铝摩尔比(简称硅铝比,下同,通常指硅铝比≥25)的分子筛用于Cu-SCR催化剂表现出更好的水热稳定性,已被成功地商业化应用,但这种仍然存在反应温度窗口不够和抗碳氢化合物能力较差等问题,容易发生碳氢中毒,同时其生产成本较高,在实际应用中有诸多限制。
为了提高催化剂的低温活性,通常通过提高铜含量改善低温,但是随着铜含量的增加,催化剂的高温性能和水热稳定性随之变差,仍然难以满足越来越严格的排放法规要求。专利CN 102215960 A的专利公开了一种硅铝比小于15的Cu基CHA分子筛催化剂,该催化剂在200℃的NO x转化率达可到70%左右。但是柴油车在实际工况下,其排温可低于200℃以下,对NO x转化率仍达不到新标准对NO x排放的要求。专利CN 111135860 A公开了一种利用Cu-TEPA作为模板,直接让Cu在分子筛合成过程中加入硅铝比为3-5的Cu-SSZ-13,然后通过铵盐或者稀酸溶液将部分非骨架Cu洗涤掉后再交换稀土金属,得到了具有较好水热稳定 性的低硅铝比Cu-SSZ-13催化剂,虽制备的催化剂具有很好的温度窗口和水热稳定性,但以Cu-TEPA为模板剂水热合成Cu-SSZ-13的技术要求较高,放大生产时产品结晶度的批次一致性很难保证,一般厂家也很难具备相应的生产技术条件,且生产过程中使用铵盐或者稀酸溶液洗涤,这个过程不仅复杂,还会产生大量的工业废水。因此,降低原材料的来源要求,在提高催化剂反应温度窗口的同时保持较高的水热稳定性能是本领域的难题。
发明内容
本发明的目的在于克服现有技术中铜基催化剂在低温下转化率较低和高温性能下降以及容易发生碳氢中毒的问题,提供了一种分子筛SCR催化剂及制备方法,采用较低硅铝比的小孔分子筛材料,通过第二活性组分钇的添加,制备得到的催化剂在低温和高温下对NO x表现出优异地催化活性,具有宽活性温度窗口、高水热稳定性能以及良好的抗碳氢中毒的能力。
为了实现上述发明目的,本发明提供了以下技术方案:
一种分子筛SCR催化剂及制备方法,包括以下步骤:
(1)铜溶液配置:将去离子水加热至60~90℃,加入可溶性铜盐和添加剂搅拌溶解,配置成铜溶液;
(2)离子交换:将去离子水加热至60~90℃,加入可溶性钇盐搅拌溶解,保持温度60~90℃下加入硅铝比≤24的分子筛并持续搅拌0.5~5h;保持温度60~90℃下加入步骤(1)配置的铜溶液并持续搅拌1~10h;
(3)制浆:将步骤(2)制得的溶液降温,加入粘接剂搅拌、球磨,静置0.5~5h,得到浆料;
(4)涂覆焙烧:将步骤(3)制备的浆料涂覆到催化剂载体上,干燥,然后在300~600℃空气中焙烧1~6h,得到分子筛SCR催化剂。
本发明还提供了另一个方案,一种分子筛SCR催化剂及制备方法,包括以下步骤:
(1)铜溶液配置:将去离子水加热至20~90℃,加入可溶性铜盐和添加剂搅拌溶解,配置成铜溶液;
(2)离子交换:将去离子水加热至20~90℃,加入可溶性钇盐搅拌溶解,保持温度20~90℃下加入硅铝比≤24的分子筛并持续搅拌;保持温度20~90℃下加入步骤(1)配置的铜溶液并持续搅拌进行离子交换;
(3)制浆:将步骤(2)制得的溶液降温,加入粘接剂搅拌、球磨,静置,得到浆料;
(4)涂覆焙烧:将步骤(3)制备的浆料涂覆到催化剂载体上,干燥,焙烧,得到分子筛SCR催化剂。
本发明提供了分子筛SCR催化剂及制备方法,分子筛SCR催化剂包括第一活性组分Cu、第二活性组分Y、小孔分子筛和催化剂载体,添加剂可以改变溶液中的Cu离子电位,提高Cu离子在分子筛表面的“附着”率,提升浆料的均匀性,在制备过程中采用制浆-涂覆一步法,将第一活性组分、添加剂、小孔分子筛、第二活性组分、粘接剂和水混合成浆料,涂覆,干燥,得到分子筛SCR催化剂。
作为本发明的优选方案,所述分子筛为H-SSZ-13、H-SSZ-39中的一种或两种的混合物;更优选地,所述分子筛中硅铝比为(6~22):1。
作为本发明的优选方案,所述可溶性铜盐包括硫酸铜、硝酸铜、乙酸铜和氯化铜中的一种或多种;所述添加剂为柠檬酸、甘氨酸、腐殖酸和葡萄糖酸内酯中的一种;所述可溶性钇盐包括硝酸钇。
作为本发明的优选方案,步骤(1)中,以所述可溶性铜盐中铜元素计,所述添加剂和铜元素质量比为(0.2~2.5):1。
作为本发明的优选方案,所述催化剂中,第一活性组分以铜元素计算,铜元素和分子筛的质量比<10wt%;第二活性组分以钇元素计算,钇元素和分子筛的质量比<2.5wt%。更优选地,第一活性组分以铜元素计算,铜元素和分子筛的质量比<6.8wt%,第二活性组分以钇元素计算,钇元素和分子筛的质量比<0.5wt%。
作为本发明的优选方案,所述催化剂中,第一活性组分以铜元素计算,铜元素和分子筛的质量比<5.5wt%;第二活性组分以钇元素计算,钇元素和分子筛的质量比<2.5wt%。
作为本发明的优选方案,步骤(2)中,所述可溶性钇盐进行离子交换温度为70~80℃,所述可溶性铜盐进行离子交换的温度为70~80℃。
作为本发明的优选方案,步骤(2)中,加入分子筛后进行钇离子交换的时间为1~3h;加入步骤(1)配置的铜溶液后进行进行铜离子交换的时间为2~4h。
作为本发明的优选方案,所述粘接剂是硅溶胶、铝溶胶和锆溶胶中的一种或多种,所述粘接剂煅烧成氧化物后的质量为分子筛质量的2~20wt%;更优选地,所述粘接剂煅烧成氧化物后的质量为分子筛质量的5~15wt%。
作为本发明的优选方案,所述催化剂载体为堇青石载体、碳化硅载体和金属载体中的一种。
作为本发明的优选方案,步骤(3)中,所述静置时间为1~2h。
作为本发明的优选方案,步骤(3)中,浆料的固含量为30~60%。
作为本发明的优选方案,步骤(4)中,浆料的涂覆量为50~200g/L。
作为本发明的优选方案,步骤(4)中,所述干燥为在干燥机上快速干燥,采用涂覆后快速干燥的方法,降低了浆料在干燥过程中酸性增强对分子筛骨架的脱铝影响,有利于提高催化剂的低温催化性能和稳定性。
作为本发明的优选方案,步骤(4)中,所述焙烧温度为350~450℃,时间为2~4h。
本发明的另一方面提供了一种分子筛SCR催化剂,所述催化剂采用上述的制备方法制备得到。
与现有技术相比,本发明的有益效果:
本发明所述的分子筛SCR催化剂制备方法采用较低硅铝比的小孔分子筛材料,通过第二活性组分钇的添加,添加剂可以调节第一活性组分Cu在分子筛表面的分散性和催化剂的酸密度,提升催化剂的催化活性以及抗碳氢性能,实现了在较低硅铝比下,催化剂在低温和高温下对NO x有优异地催化活性,具有宽活性温度窗口、高水热稳定性能以及较好的抗碳氢化合物能力;同时,本发明采用制浆-涂覆一步法,缩短和简化了制备工艺流程,成本大幅降低。
附图说明
图1为本发明实施例和比较例催化剂对NO x转化率图;
图2为本发明实施例和比较例催化剂对HC转化率图;
图3为经过750℃@50h水热老化后对NO x转化率图。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例1
(1)铜溶液的配置:将50g去离子水加热至60℃,加入19.03g三水硝酸铜、6.05g柠檬酸搅拌溶解,配置成铜溶液。
(2)离子交换:将200g去离子水加热至80℃,加入6.03g六水硝酸钇搅拌溶解完全,保持温度80℃下加入140g硅铝比为13的H-SSZ-13并不断搅拌3h进行离子交换,保持温度80℃下持续搅拌加入步骤(1)配置的铜溶液,并不断搅拌4h。
(3)制浆:将步骤(2)中离子交换后的溶液降至室温,加入28g浓度为30%的硅溶液,搅拌、球磨,静置1h,得到浆料;
(4)涂覆焙烧:将步骤(3)制备的浆料涂覆到堇青石载体上,涂覆量为140g/L,用干燥机在130℃下进行快速干燥,然后在500℃空气中焙烧3h,得到分子筛SCR催化剂S1。
本发明中使用的堇青石载体的规格均为圆柱形φ25.4mm*50.8mm、目数为400cpsi的通透式载体。
实施例2
(1)铜溶液的配置:将100g去离子水加热至80℃,加入20.30g乙酸铜、8.60g柠檬酸和的水在80℃下搅拌溶解,配置成铜溶液。
(2)离子交换:将220g去离子水加热至80℃,加入3.88g六水硝酸钇搅拌溶解完全,保持温度80℃下加入硅铝比为16、180g H-SSZ-13并不断搅拌1h进行离子交换,保持温度70℃下持续搅拌加入步骤(1)配置的铜溶液,并不断搅拌3h。
(3)制浆:将步骤(2)中离子交换后的溶液降至室温,加入36g浓度为30%的硅溶液,搅拌、球磨,静置1h,得到浆料;
(4)涂覆焙烧:将步骤(3)制备的浆料涂覆到堇青石载体上,涂覆量为140g/L,用干燥机在130℃下进行快速干燥,然后在450℃空气中焙烧2h,得到分子筛SCR催化剂S2。
实施例3
(1)铜溶液的配置:将55g去离子水加热至70℃,加入21.88g五水硫酸铜、7.88g甘氨酸搅拌溶解,配置成铜溶液。
(2)离子交换:将300g去离子水加热至70℃,加入8.62g六水硝酸钇搅拌溶解完全,保持温度70℃下加入硅铝比为20、200g H-SSZ-13并不断搅拌6h进行离子交换,保持温度80℃下持续搅拌加入步骤(1)配置的铜溶液,并不断搅拌4h。
(3)制浆:将步骤(2)中离子交换后的溶液降至室温,加入57g浓度为21%的锆溶胶,搅拌、球磨,静置2h,得到浆料;
(4)涂覆焙烧:将步骤(3)制备的浆料涂覆到堇青石载体上,涂覆量为140g/L,用干燥机在120℃下进行快速干燥,然后在500℃空气中焙烧3h,得到分子筛SCR催化剂S3。
实施例4
(1)铜溶液的配置:将50g去离子水加热至60℃,加入30.80g三水硝酸铜、9.79g柠檬酸搅拌溶解,配置成铜溶液。
(2)离子交换:将200g去离子水加热至80℃,加入10.34g六水硝酸钇搅拌溶解完全,保持温度80℃下加入硅铝比为8.5、160g H-SSZ-13不断搅拌4h进行离子交换,保持温度80℃下持续搅拌加入步骤(1)配置的铜溶液,并不断搅拌2h。
(3)制浆:将步骤(2)中离子交换后的溶液降至室温,加入32g浓度为30%的硅溶液,搅拌、球磨,静置1h,得到浆料;
(4)涂覆焙烧:将步骤(3)制备的浆料涂覆到堇青石载体上,涂覆量为140g/L,用干燥机在130℃下进行快速干燥,然后在500℃空气中焙烧3h,得到分子筛SCR催化剂S4。
实施例5
(1)铜溶液的配置:将70g去离子水加热至80℃,加入16g乙酸铜、6.14g柠檬酸搅拌溶解,配置成铜溶液。
(2)离子交换:将240g去离子水加热至80℃,加入0.62g六水硝酸钇搅拌溶解完全,保持温度80℃下加入硅铝比为17、160g H-SSZ-39不断搅拌1h进行离子交换,保持温度80℃下持续搅拌加入步骤(1)配置的铜溶液,并不断搅拌4h。
(3)制浆:将步骤(2)中离子交换后的溶液降至室温,加入32g浓度为30%的硅溶液,搅拌、球磨,静置1h,得到浆料;
(4)涂覆焙烧:将步骤(3)制备的浆料涂覆到堇青石载体上,涂覆量为140g/L,用干燥机在130℃下进行快速干燥,然后在500℃空气中焙烧3h,得到分子筛SCR催化剂S5。
比较例1
(1)离子交换:将250g去离子水加热至80℃持续搅拌,加入140g硅铝比为13的H-SSZ-13并不断搅拌,加入19.03g三水硝酸铜进行离子交换4h。
其他制备步骤同实施例1的步骤(3)和(4),得到分子筛SCR催化剂B1。
比较例2
(1)铜溶液的配置:将50g去离子水加热至60℃,加入19.03g三水硝酸铜、6.05g柠檬酸搅拌溶解,配置成铜溶液。
(2)离子交换:将200g去离子水加热至80℃持续搅拌,加入140g硅铝比为13的H-SSZ-13,持续搅拌下加入步骤(1)配置的铜溶液并搅拌4h。
其他制备步骤同实施例1的步骤(3)和(4),得到分子筛SCR催化剂B2。
比较例3
(1)铜溶液的配置:将55g去离子水加热至80℃,加入21.88g五水硫酸铜、7.88g甘氨酸搅拌溶解,配置成铜溶液。
(2)离子交换:将305g去离子水加热至80℃,加入硅铝比为20、200g H-SSZ-13并不断搅拌,加入步骤(1)配置的铜溶液并搅拌4h。
其他制备步骤同实施例3的步骤(3)和(4),得到分子筛SCR催化剂B3。
比较例4
(1)铜溶液的配置:将50g去离子水加热至60℃,加入30.80g三水硝酸铜、9.79g柠檬酸搅拌溶解,配置成铜溶液。
(2)离子交换:将250g去离子水加热至80℃,加入硅铝比为8.5、160g H-SSZ-13不断搅拌,加入30.80g三水硝酸铜并搅拌2h。
其他制备步骤同实施例5的步骤(3)和(4),得到分子筛SCR催化剂B4。
比较例5
(1)离子交换制粉:将210g去离子水加热至80℃,加入140g硅铝比为13的H-SSZ-13和19.03g三水硝酸铜并不断搅拌6h,然后过滤洗涤、干燥成粉,所得产物中Cu含量为3.6wt%。
(2)制浆:将120g步骤(1)中离子交换后的粉末、180g的水、6.03g硝酸钇以及28g浓度为30%的硅溶液,搅拌、球磨,静置1h,得到浆料;
其他制备步骤同实施例1的步骤(3)和(4),得到分子筛SCR催化剂B5。
比较例6
(1)铜溶液的配置:将50g去离子水加热至60℃,加入19.03g三水硝酸铜、6.05g柠檬酸搅拌溶解,配置成铜溶液。
(2)离子交换:将200g去离子水加热至80℃,加入6.03g六水硝酸钇搅拌溶解完全,保持温度80℃下加入140g硅铝比为27的H-SSZ-13并不断搅拌3h进行离子交换,保持温度80℃下持续搅拌加入步骤(1)配置的铜溶液,并不断搅拌4h。
其他制备步骤同实施例1的步骤(3)和(4),得到分子筛SCR催化剂B6。
将实施例1~5中制备的分子筛SCR催化剂S1~S5、比较例1~6中制备的分子筛SCR催化剂B1-B6在固定床反应器上进行NO x转化率测试和HC转化率测试。测试NO x转化率时模 拟气体组成为:[NO]=[NH 3]=250ppm,[O 2]=10%,[H 2O]=8%,N 2作为平衡气;测试HC转化率时模拟气体组成为:[NO]=[NH 3]=250ppm,[C 3H 3]=250ppm,[O 2]=10%,[H 2O]=8%,N 2作为平衡气,测试NO x转化率和HC转化率过程中,空速为60000h -1,反应温度为175~550℃;所用气体组分均使用红外检测。NO x转化率测试结果统计在表1中,HC转化率测试结果统计在表2中,转化率的单位%。将实施例1、实施例3、比较例1-2、比较例5-6制备的催化剂在750℃下水热老化50h,老化完成后在上述测试条件下测试NO x转化率,测试结果统计在表3中。将表1、表2和表3分别制备成图1、图2和图3。
表1分子筛SCR催化剂S1~S5、B1~B6对NO x转化率
序号 175℃ 200℃ 250℃ 350℃ 450℃ 500℃ 550℃
S1 82 96 99 99 99 98 95
S2 76 94 99 99 98 96 91
S3 77 92 99 99 99 95 88
S4 86 98 99 99 99 99 98
S5 74 92 99 99 99 96 87
B1 73 92 99 99 98 93 83
B2 76 94 99 99 98 94 86
B3 71 90 98 99 98 92 82
B4 64 89 99 99 98 90 75
B5 68 90 99 99 98 94 81
B6 62 90 99 99 98 89 78
表2分子筛SCR催化剂S1~S5、B1~B6对HC转化率
序号 175℃ 200℃ 250℃ 350℃ 450℃ 500℃ 550℃
S1 75 93 98 97 98 96 92
S2 76 94 99 99 98 96 91
S3 67 90 98 97 98 94 84
S4 66 88 96 96 96 95 92
S5 63 90 98 96 99 94 85
B1 68 90 96 95 96 91 81
B2 70 92 96 95 96 92 83
B3 65 88 96 94 96 90 80
B4 52 86 97 95 96 87 74
B5 61 87 96 94 96 92 80
B6 54 87 97 97 97 87 78
表3分子筛SCR催化剂S1、S3、B1-2、B5-6在750℃@50h老化后对NO x转化率
序号 175℃ 200℃ 250℃ 350℃ 450℃ 500℃ 550℃
S1 62 87 98 99 98 95 85
S3 70 94 97 99 97 91 87
B1 53 82 97 99 97 89 73
B2 57 85 97 99 97 91 74
B5 58 84 98 99 98 93 80
B6 54 80 90 98 86 75 65
通过图1中可以看出,在低温175℃下,分子筛SCR催化剂S1~S6对NO x的转化率为74~86%,在高温550℃时,分子筛SCR催化剂S1~S6对NO x的转化率为87~98%;在175℃下实施例1对比于比较例1~2、比较例5~6活性提升6~20%,在550℃下实施例1对比于比较例1~2、比较例5~6活性提升9~17%,说明催化剂在低温和高温下对NO x均具有很好的催化活性,比较例1未添加添加剂,比较例2-4未添加第二活性组分Y,比较例5中Y未采用离子交换的方法加入,比较例6中采用硅铝比为27的分子筛,对NO x的转化率较低。在图2中,催化剂在250ppm C 3H 6气氛下进行性能测试,在低温175℃下,分子筛SCR催化剂S1~S6对HC的转化率为63~76%,在高温550℃时,分子筛SCR催化剂S1~S6对HC的转化率为84~92%;在175℃下实施例1对比于比较例1~2、比较例5~6活性提升5~21%,在550℃下实施例1对比于比较例1~2、比较例5~6活性提升9~14%,说明本发明的催化剂具有很好的抗碳氢中毒的能力。
从图3看,催化剂在750℃下水热老化50h后,相较于比较例1-2、比较例5-6,实施例1和实施例3老化后的NOx转化性能和反应温度窗口都明显更优,说明本发明制备的分子筛SCR催化剂有良好的水热稳定性。
本发明采用较低硅铝比的小孔分子筛材料,通过第二活性组分钇的添加,添加剂可以调节第一活性组分Cu在分子筛表面的分散性和催化剂的酸密度,提升催化剂的催化活性以及抗碳氢性能,实现了在较低硅铝比下,催化剂在低温和高温下对NO x有优异地催化活性,具有宽活性温度窗口、高水热稳定性能以及较好的抗碳氢化合物能力。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种分子筛SCR催化剂的制备方法,其特征在于,包括以下步骤:
    (1)铜溶液配置:将去离子水加热至60~90℃,加入可溶性铜盐和添加剂搅拌溶解,配置成铜溶液;
    (2)离子交换:将去离子水加热至60~90℃,加入可溶性钇盐搅拌溶解,保持温度60~90℃下加入硅铝比≤24的分子筛并持续搅拌0.5~5h;保持温度60~90℃下加入步骤(1)配置的铜溶液并持续搅拌1~10h;
    (3)制浆:将步骤(2)制得的溶液降温,加入粘接剂搅拌、球磨,静置0.5~5h,得到浆料;
    (4)涂覆焙烧:将步骤(3)制备的浆料涂覆到催化剂载体上,干燥,然后在300~600℃空气中焙烧1~6h,得到分子筛SCR催化剂。
  2. 根据权利要求1所述分子筛SCR催化剂的制备方法,其特征在于,所述分子筛为H-SSZ-13、H-SSZ-39中的一种或两种的混合物;所述分子筛中硅铝比为6~22:1。
  3. 根据权利要求1所述分子筛SCR催化剂的制备方法,其特征在于,所述可溶性铜盐包括硫酸铜、硝酸铜、乙酸铜和氯化铜中的一种或多种;所述添加剂为柠檬酸、甘氨酸、腐殖酸和葡萄糖酸内酯中的一种;所述可溶性钇盐包括硝酸钇。
  4. 根据权利要求3所述分子筛SCR催化剂的制备方法,其特征在于,所述催化剂中,第一活性组分以铜元素计算,铜元素和分子筛的质量比<5.5wt%;第二活性组分以钇元素计算,钇元素和分子筛的质量比<2.5wt%。
  5. 根据权利要求3所述分子筛SCR催化剂的制备方法,其特征在于,步骤(1)中,所述添加剂和铜元素质量比为0.2~2.5:1。
  6. 根据权利要求1所述分子筛SCR催化剂的制备方法,其特征在于,步骤(2)中,加入分子筛后进行钇离子交换的时间为1~3h;加入步骤(1)配置的铜溶液后进行进行铜离子交换的时间为2~4h。
  7. 根据权利要求1所述分子筛SCR催化剂的制备方法,其特征在于,所述粘接剂是硅溶胶、铝溶胶和锆溶胶中的一种或多种,所述粘接剂煅烧成氧化物后 的质量为分子筛质量的2~20wt%。
  8. 根据权利要求1所述分子筛SCR催化剂的制备方法,其特征在于,所述催化剂载体为堇青石载体、碳化硅载体和金属载体中的一种。
  9. 根据权利要求1所述分子筛SCR催化剂的制备方法,其特征在于,步骤(3)中,所述浆料的固含量为30~60%,所述浆料的涂覆量为50~200g/L。
  10. 一种分子筛SCR催化剂,其特征在于,所述催化剂是权利要求1-9任一项所述制备方法制备的催化剂。
  11. 一种分子筛SCR催化剂的制备方法,其特征在于,包括以下步骤:
    (1)铜溶液配置:将去离子水加热至20~90℃,加入可溶性铜盐和添加剂搅拌溶解,配置成铜溶液;
    (2)离子交换:将去离子水加热至20~90℃,加入可溶性钇盐搅拌溶解,保持温度20~90℃下加入硅铝比≤24的分子筛并持续搅拌;保持温度20~90℃下加入步骤(1)配置的铜溶液并持续搅拌进行离子交换;
    (3)制浆:将步骤(2)制得的溶液降温,加入粘接剂搅拌、球磨,静置,得到浆料;
    (4)涂覆焙烧:将步骤(3)制备的浆料涂覆到催化剂载体上,干燥,焙烧,得到分子筛SCR催化剂。
  12. 根据权利要求11所述分子筛SCR催化剂的制备方法,其特征在于,所述分子筛为H-SSZ-13、H-SSZ-39中的一种或两种的混合物;所述分子筛的硅铝比为6~22:1。
  13. 根据权利要求11所述分子筛SCR催化剂的制备方法,其特征在于,所述可溶性铜盐包括硫酸铜、硝酸铜、乙酸铜和氯化铜中的一种或多种;所述添加剂为柠檬酸、甘氨酸、腐殖酸和葡萄糖酸内酯中的一种;所述可溶性钇盐包括硝酸钇。
  14. 根据权利要求13所述分子筛SCR催化剂的制备方法,其特征在于,所述催化剂中,第一活性组分以铜元素计算,铜元素和分子筛的质量比<10wt%;第二活性组分以钇元素计算,钇元素和分子筛的质量比<2.5wt%。
  15. 根据权利要求11所述分子筛SCR催化剂的制备方法,其特征在于,步骤(1)中,所述添加剂和铜元素质量比为0.2~2.5:1。
  16. 根据权利要求11所述分子筛SCR催化剂的制备方法,其特征在于,步骤(2)中,加入分子筛后进行钇离子交换的时间为1~3h;加入步骤(1)配置的铜溶液后进行进行铜离子交换的时间为2~4h。
  17. 根据权利要求11所述分子筛SCR催化剂的制备方法,其特征在于,所述粘接剂是硅溶胶、铝溶胶和锆溶胶中的一种或多种,所述粘接剂煅烧成氧化物后的质量为分子筛质量的2~20wt%。
  18. 根据权利要求11任一所述分子筛SCR催化剂的制备方法,其特征在于,所述催化剂载体为堇青石载体、碳化硅载体和金属载体中的一种。
  19. 根据权利要求11所述分子筛SCR催化剂的制备方法,其特征在于,步骤(3)中,所述浆料的固含量为30~60%,所述浆料的涂覆量为50~200g/L。
  20. 一种分子筛SCR催化剂,其特征在于,所述催化剂采用权利要求11-19任一所述分子筛SCR催化剂的制备方法制备得到。
PCT/CN2022/095100 2021-06-17 2022-05-26 一种分子筛scr催化剂及制备方法 WO2022262543A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280001692.4A CN115666787B (zh) 2021-06-17 2022-05-26 一种分子筛scr催化剂及制备方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110673384.3 2021-06-17
CN202110673384.3A CN113318780A (zh) 2021-06-17 2021-06-17 一种分子筛scr催化剂及制备方法
CN202111056248.6 2021-09-09
CN202111056248.6A CN113546678B (zh) 2021-06-17 2021-09-09 一种分子筛scr催化剂及制备方法

Publications (1)

Publication Number Publication Date
WO2022262543A1 true WO2022262543A1 (zh) 2022-12-22

Family

ID=77423745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095100 WO2022262543A1 (zh) 2021-06-17 2022-05-26 一种分子筛scr催化剂及制备方法

Country Status (2)

Country Link
CN (3) CN113318780A (zh)
WO (1) WO2022262543A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739175A (zh) * 2022-12-02 2023-03-07 大唐南京环保科技有限责任公司 一种平板式高温脱硝催化剂及其制备方法和应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113318780A (zh) * 2021-06-17 2021-08-31 中自环保科技股份有限公司 一种分子筛scr催化剂及制备方法
CN113976172A (zh) * 2021-10-12 2022-01-28 中山大学 一种高水热稳定性的助剂掺杂Cu-SSZ-39催化剂的制备与应用
CN114534776B (zh) * 2022-01-19 2023-03-21 中自环保科技股份有限公司 一种抗硫柴油车氧化型催化剂及制备方法
CN114768861B (zh) * 2022-04-02 2023-12-15 潍柴动力股份有限公司 一种氧化物-分子筛复合催化剂及其制备方法和应用
CN115591575B (zh) * 2022-11-01 2024-06-07 山东能源集团有限公司 一种脱硝催化剂及其制备方法和应用
CN116899617B (zh) * 2023-09-13 2023-12-01 无锡威孚环保催化剂有限公司 一种铜分子筛催化剂的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984357A (zh) * 2017-04-17 2017-07-28 中自环保科技股份有限公司 一种用于柴油车尾气净化的scr催化剂及其制备方法
CN110479359A (zh) * 2019-08-27 2019-11-22 无锡威孚环保催化剂有限公司 低硅铝比高稳定性含铜分子筛催化剂及其制备方法
CN110681412A (zh) * 2019-07-17 2020-01-14 凯龙蓝烽新材料科技有限公司 一种耐高温高活性Cu基SCR催化剂及其制备方法
CN111135860A (zh) * 2020-02-17 2020-05-12 中国科学院生态环境研究中心 一种稀土金属修饰Cu-SSZ-13分子筛及其制备方法和应用
CN112156808A (zh) * 2020-09-30 2021-01-01 中汽研(天津)汽车工程研究院有限公司 一种低氨逃逸率分子筛scr催化剂的制备方法及应用
CN113318780A (zh) * 2021-06-17 2021-08-31 中自环保科技股份有限公司 一种分子筛scr催化剂及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11731080B2 (en) * 2018-12-21 2023-08-22 King Fahd University Of Petroleum And Minerals Method of sweetening hydrocarbon gas from hydrogen sulfide
CN110201708B (zh) * 2019-06-13 2020-10-09 中自环保科技股份有限公司 一种scr催化剂及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984357A (zh) * 2017-04-17 2017-07-28 中自环保科技股份有限公司 一种用于柴油车尾气净化的scr催化剂及其制备方法
CN110681412A (zh) * 2019-07-17 2020-01-14 凯龙蓝烽新材料科技有限公司 一种耐高温高活性Cu基SCR催化剂及其制备方法
CN110479359A (zh) * 2019-08-27 2019-11-22 无锡威孚环保催化剂有限公司 低硅铝比高稳定性含铜分子筛催化剂及其制备方法
CN111135860A (zh) * 2020-02-17 2020-05-12 中国科学院生态环境研究中心 一种稀土金属修饰Cu-SSZ-13分子筛及其制备方法和应用
CN112156808A (zh) * 2020-09-30 2021-01-01 中汽研(天津)汽车工程研究院有限公司 一种低氨逃逸率分子筛scr催化剂的制备方法及应用
CN113318780A (zh) * 2021-06-17 2021-08-31 中自环保科技股份有限公司 一种分子筛scr催化剂及制备方法
CN113546678A (zh) * 2021-06-17 2021-10-26 中自环保科技股份有限公司 一种分子筛scr催化剂及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739175A (zh) * 2022-12-02 2023-03-07 大唐南京环保科技有限责任公司 一种平板式高温脱硝催化剂及其制备方法和应用
CN115739175B (zh) * 2022-12-02 2024-02-09 大唐南京环保科技有限责任公司 一种平板式高温脱硝催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN115666787B (zh) 2023-12-01
CN113318780A (zh) 2021-08-31
CN113546678B (zh) 2022-06-14
CN113546678A (zh) 2021-10-26
CN115666787A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
WO2022262543A1 (zh) 一种分子筛scr催化剂及制备方法
CN109174173B (zh) 一种分子筛scr催化剂制备方法及其制备的催化剂
CN106984357B (zh) 一种用于柴油车尾气净化的scr催化剂及其制备方法
WO2020249105A1 (zh) 一种scr催化剂及制备方法
CN111036280B (zh) Fe/Cu-SSZ-13分子筛的制备方法
CN103263912B (zh) 一种柴油车尾气净化催化剂及其制备方法
CN109225203B (zh) 一种钒基氧化物scr催化剂制备方法及其制备的催化剂
CN109433256A (zh) 一种Cu/Mn-SSZ-39催化剂及其制备方法和应用
CN111167487B (zh) 一种多功能催化剂及其制备方法和应用
CN112978751B (zh) 具有核壳结构的Cu-SSZ-13@Cu-SSZ-39复合分子筛及其合成方法
CN105314648A (zh) Cha型硅铝分子筛及其制备方法和应用
CN109759128B (zh) 一种scr催化剂活性组分的制备方法及应用
CN111617800B (zh) 一种含低硅复合金属Beta分子筛的催化剂的制备方法及应用
CN109647501B (zh) 一种多级孔Fe-β分子筛催化剂及其制备方法和用途
CN112958148A (zh) 具有核壳结构的Cu-SSZ-39@Cu-SSZ-13复合分子筛及其合成方法
CN112657541A (zh) 一种分子筛基低温环保型scr脱硝催化剂的制备方法
WO2023130745A1 (zh) 一种aei-cha共生分子筛及其催化剂
CN113289678A (zh) 一种适用于高温烟气的蜂窝式脱硝催化剂及其制备方法
CN109675619B (zh) 一种制备过程中控制分子筛基scr催化剂活性温度窗口的方法
CN115178292A (zh) 一种高抗硫性分子筛基整体式scr催化剂及其制备方法
CN104607198A (zh) 一种无钒板式脱硝催化剂及其制备方法
CN107570205B (zh) 一种改性Beta分子筛催化剂的制备方法
US20240226861A1 (en) Molecular sieve scr catalyst and preparation method
CN114904570A (zh) 一种应用柴油机高氮气选择性氨氧化催化剂及其制备方法
CN112675900A (zh) 一种抗水硫中毒、抗水热老化的scr催化剂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22824023

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18569703

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22824023

Country of ref document: EP

Kind code of ref document: A1