WO2022261912A1 - 一种石墨烯复合散热薄膜及其制备方法 - Google Patents

一种石墨烯复合散热薄膜及其制备方法 Download PDF

Info

Publication number
WO2022261912A1
WO2022261912A1 PCT/CN2021/100738 CN2021100738W WO2022261912A1 WO 2022261912 A1 WO2022261912 A1 WO 2022261912A1 CN 2021100738 W CN2021100738 W CN 2021100738W WO 2022261912 A1 WO2022261912 A1 WO 2022261912A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
graphene
composite heat
film
graphene composite
Prior art date
Application number
PCT/CN2021/100738
Other languages
English (en)
French (fr)
Inventor
周彦伯
刘小清
王文德
李磊
成文俊
Original Assignee
泰兴挚富显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰兴挚富显示技术有限公司 filed Critical 泰兴挚富显示技术有限公司
Priority to PCT/CN2021/100738 priority Critical patent/WO2022261912A1/zh
Publication of WO2022261912A1 publication Critical patent/WO2022261912A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the invention relates to a heat management material, more precisely, a graphene composite heat dissipation film and a preparation method thereof.
  • Traditional heat-conducting materials are mainly metal materials, such as copper, aluminum, silver, etc.
  • the metal material has a high density and a high expansion coefficient, which cannot meet the application requirements in the occasions requiring high thermal conductivity (such as the thermal conductivity coefficients of silver, copper, and aluminum are 430W/m.K, 400W/m.K, and 238 W/m respectively. -K).
  • Graphene is a planar film composed of carbon atoms in a hexagonal honeycomb lattice with sp 2 hybrid orbitals, a two-dimensional material with a thickness of only one carbon atom.
  • the connection between carbon atoms inside graphene is very flexible.
  • This stable lattice structure makes graphene have excellent thermal conductivity.
  • the thermal conductivity of graphene is as high as 5300 W/m K, which is higher than that of carbon nanotubes and diamond. The excellent thermal conductivity makes graphene promising as a heat dissipation material for ultra-large-scale consumer electronics in the future.
  • the prior art discloses a high thermal conductivity flexible graphene composite heat dissipation film, the preparation method of which is to apply a graphene oxide slurry on the surface of a substrate, and obtain a foamed graphene film through drying, carbonization, chemical vapor deposition, and graphitization;
  • the foamed graphene film is combined with worm graphite to obtain a high thermal conductivity flexible graphene composite heat dissipation film;
  • the graphene oxide slurry includes graphite oxide, dispersant, defoamer, leveling agent and solvent.
  • the obtained highly thermally conductive flexible graphene composite heat dissipation film not only has excellent thermal conductivity and mechanical properties, but also has good flexibility, and no delamination or cracks are seen when bent.
  • the preparation process of this method is prone to defects, mainly in the cutting process of the foamed graphene film, which is prone to chipping and cracking, resulting in a large number of scraps, which violates the original intention of the research and development of the technical solution, and transforms from the purpose of reducing costs. to increase costs.
  • the object of the present invention is to provide a graphene composite heat dissipation film and its preparation method.
  • the main improvement is that the graphene film is obtained by calendering and then pressed with expanded graphite powder.
  • the obtained composite heat dissipation film has excellent thermal conductivity and mechanical properties.
  • the purpose of the present invention is achieved through the following technical solutions: first prepare an ideal graphene heat dissipation base film, then acidify, wash and dry the natural graphite sheet to obtain acidified intercalated graphite, and then expand the acidified graphite at high temperature Microwave treatment is used to obtain expanded graphite, and then the expanded graphite powder is evenly piled and densely distributed on the base film, and finally vacuum calendered to obtain a finished graphene composite heat dissipation film.
  • the product of the present invention has no adhesive layer, which not only solves the problem of multi-layer adhesive combination required for the preparation of high-thick graphene heat dissipation film in the prior art, but also provides a product with excellent bending performance when the thickness exceeds 70 ⁇ m, or even 100 ⁇ m.
  • the composite heat dissipation film especially, greatly reduces the cost of the graphene heat dissipation film by adding graphite.
  • the present invention adopts the following technical solutions.
  • a graphene composite heat dissipation film the preparation method of which comprises the following steps of vacuum pressing the expanded graphite powder and the graphene film to obtain the graphene composite heat dissipation film.
  • the expanded graphite powder and the graphene film are vacuum-bonded to obtain a graphene composite heat-dissipating film.
  • the vacuum lamination is carried out at room temperature, the pressure is 20-90MPa, and the vacuum degree is 250-1000Pa;
  • the vacuum pressing process of the invention improves the interface bonding degree between the graphite layer and the graphene layer and reduces thermal resistance.
  • the expanded graphite powder and the graphene film are vacuum-pressed to obtain a graphene composite heat dissipation film composed of an expanded graphite film layer and a graphene film layer, and the combination of the expanded graphite film layer and the graphene film layer is diverse.
  • a single-layer or multi-layer expanded graphite film is set between the olefin films, or a single-layer or multi-layer graphene film is set between two expanded graphite films;
  • non-interval combination means that in the graphene composite heat dissipation film, one side is all expanded graphite The film layer and the other side are all graphene film layers.
  • the thickness of the graphene film is 20 ⁇ m to 100 ⁇ m, the thickness of the graphene composite heat dissipation film is 50 ⁇ m to 2 mm, and the thickness of the graphene composite heat dissipation film is preferably 60 ⁇ m to 1 mm; in the graphene composite heat dissipation film, all graphene The thickness of the film is 20-80% of the thickness of the graphene composite heat dissipation film, preferably 30-70%.
  • the graphene oxide slurry is coated on the substrate, and after drying, low-temperature carbonization, high-temperature carbonization, high-temperature graphitization, and calendering are performed to obtain a graphene film, which is used as a heat dissipation base film for contact with expanded graphite. Lamination.
  • the graphene oxide slurry includes graphene oxide, dispersant and solvent; wherein the graphene oxide, dispersant and solvent are existing products, and their preparation method or acquisition is conventional technology.
  • Graphene oxide and graphene can be prepared by the existing mechanical exfoliation method, epitaxial growth method, CVD method, electrochemical method, organic synthesis method, shearing carbon nanometer method or oxidation exfoliation method.
  • the dispersant is polyvinylpyrrolidone, ammonia water or sodium lauryl sulfate; the solvent is water.
  • the weight ratio of graphene oxide, dispersant and solvent is (60-85): (5-8): (1000-3000).
  • the substrate is polytetrafluoroethylene filter cloth, polypropylene filter cloth or polyvinyl chloride filter cloth;
  • the coating method is conventional technology, and the coating thickness is between 1-7mm, preferably 2-6mm .
  • the drying is conventional drying; the temperature of the low-temperature carbonization is between 80°C and 500°C; the temperature of the high-temperature carbonization is between 700°C and 1300°C; the temperature of the high-temperature graphitization is between 2000°C and Between 3000°C.
  • the calendering is roll pressing, flat pressing or vacuum flat pressing, and the pressure is 30-100 MPa.
  • the natural flake graphite is stirred in the acidified intercalation solution, washed with water, dried, and then subjected to high-temperature expansion and microwave treatment in turn to obtain expanded graphite powder;
  • the acidified intercalation solution is a mixture of nitric acid/sulfuric acid, chromium
  • the stirring speed is 20-60rpm, the temperature It is room temperature, and the time is 20-60 minutes; high-temperature expansion is 3-30s at 700-1500°C;
  • the power of microwave treatment is 1000-2500W, and the time is 2-5s.
  • the final performance of expanded graphite film mainly depends on the quality of acid intercalation and subsequent expanded graphite, so exploring and improving the preparation method to strengthen the modification of graphite is the key to the preparation of high-performance expanded graphite film.
  • the present invention improves the preparation of conventional expanded graphite, limits the acidified intercalation solution, and combines microwave treatment at the same time to obtain a better crystallite orientation after the expanded graphite powder is pressed, which is reflected in the fact that the thermal conductivity is almost not lost after being rolled, and when combined with the graphene film After lamination, in the obtained composite film, the interface strength between the two is high, and it still maintains good thermal conductivity after being laid flat in rolls for many times.
  • the method of the present invention has the following advantages.
  • the invention is easy to manufacture thick graphene heat sinks, and takes into account high thermal conductivity; the introduction of the low-temperature carbonization stage can remove most of the impurities in advance, so that dense and high-degree orientation can be obtained after subsequent high-temperature carbonization and high-temperature graphitization Precursor; for the first time, the composite heat dissipation film was prepared without a polymer adhesive layer, which has the advantage of low thermal resistance.
  • the expanded graphite prepared by the preferred method of the present invention is a new type of carbon material, which not only has the excellent properties of natural graphite itself such as heat resistance, corrosion resistance, and self-lubrication, but also has light, soft, compressible, and resilient properties that natural graphite does not possess. And other properties and especially show the advantages of low cost and good effect. Therefore, obtaining high-quality expanded graphite is of great significance to the research of expanded graphite/graphene composite membranes.
  • Fig. 1 is a photo of the heat dissipation base film of the first embodiment.
  • Fig. 2 is the bending photo of the graphene composite heat dissipation film of the second embodiment.
  • the invention discloses a preparation method of a graphene composite heat dissipation film, comprising the following steps of vacuum pressing expanded graphite powder and a graphene film to obtain a graphene composite heat dissipation film.
  • graphene oxide slurry is composed of graphene oxide, dispersant and solvent, which is conventionally coated on the substrate, and after drying, low-temperature carbonization, high-temperature carbonization, high-temperature graphitization, and calendering are performed to obtain a graphene film, which is used as a heat dissipation base film, used for pressing with expanded graphite powder; the natural flake graphite is stirred in the acidified intercalation solution, washed with water, dried, and then subjected to high-temperature expansion and microwave treatment in turn to obtain expanded graphite powder; the expanded graphite powder and graphene film Vacuum pressing is carried out to obtain a graphene composite heat dissipation film.
  • the specific process steps are exemplified as follows.
  • the frequency of the ultrasonic treatment is 20kHz-50kHz, and the time is 5-15min.
  • the suction flow rate of the degassing is between 50-500m 3 /h, preferably 200m 3 /h.
  • the coating thickness is between 1-7 mm, preferably 3-5 mm.
  • the substrate is polytetrafluoroethylene filter cloth or polypropylene filter cloth or polyvinyl chloride filter cloth, preferably polypropylene filter cloth.
  • the temperature of the low-temperature carbonization is between 80°C and 500°C.
  • the temperature of the high-temperature carbonization is between 700°C and 1300°C.
  • the temperature of the high temperature graphitization is between 2000-3000°C.
  • the mesh number of the natural flake graphite is between 50 and 500 mesh.
  • the oxidation intercalation solution is a mixture of nitric acid and sulfuric acid or a mixture of chromic acid and phosphoric acid or a mixture of nitric acid and chlorate, preferably a mixture of nitric acid and sulfuric acid.
  • the structure of the stacked interaction includes a single-layer graphene heat-dissipating base film and a single-layer expanded graphite laminated or a double-layer graphene heat-dissipating base film laminated with a single-layer expanded graphite or a single-layer graphene heat-dissipating base film bonded with a double-layer expanded graphite Lamination of graphite or lamination of multilayer graphene heat dissipation base film and multilayer expanded graphite, and preferably lamination of multilayer graphene heat dissipation base film and multilayer expanded graphite.
  • the raw materials involved in the present invention are all existing commercially available products, such as graphite oxide (SE2430W-N) is a paste, with a solid (graphite oxide) content of 45%; natural flake graphite has a carbon content of 99.9%, and a particle size of 250 mesh.
  • graphite oxide SE2430W-N
  • the microwave treatment equipment is a special graphite expanded microwave atmosphere tube furnace (MKG-M5TB).
  • the test standard for thermal conductivity is ASTM D5470, which is a conventional method.
  • the specific operating methods and testing methods of the present invention are conventional methods in the art.
  • the graphene heat dissipation base film (named A) and the expanded graphite powder (named B) were vacuum-pressed to obtain a graphene composite heat dissipation film.
  • the theoretical thickness of each film is 40 ⁇ m
  • the thickness of the graphene composite heat dissipation film in Example 1 is 80 ⁇ m (the thickness of the graphene heat dissipation base film is 50% of the thickness of the graphene composite heat dissipation film, that is, 40 ⁇ m/80 ⁇ m)
  • the thickness of the graphene composite heat dissipation film in embodiment two is 120 ⁇ m
  • the thickness of the graphene composite heat dissipation film in embodiment four is 160 ⁇ m
  • the first and fourth embodiments are used as examples to illustrate the pressing steps, and other embodiments are similar to this.
  • the expanded graphite powder is placed on one side of the graphene heat dissipation base film, and pressed together to obtain the product; in embodiment four, two graphene heat dissipation base films are stacked, and then placed on one side of the stacked structure to form a Expanded graphite powder with a thickness of 80 ⁇ m is pressed together to obtain a product. The appearance and size of the product can be trimmed according to customer requirements.
  • It is a conventional method.
  • the specific method is a conventional method.
  • the expanded graphite powder can be spread in a conventional mold, and then covered with graphene base film. It can also be reversed; for specific vacuum lamination operations, it is a conventional method.
  • Example 1 modify the lamination conditions to 60MPa under normal pressure (conventional atmospheric environment) and press for 50s, and the thermal conductivity of the composite film obtained is 965 W/m ⁇ k, which shows that vacuum lamination can significantly improve the performance of the composite film .
  • the pressure is 50MPa
  • the vacuum degree is 900Pa
  • the time is 220s
  • the product is obtained by pressing, with a thickness of 80 ⁇ m.
  • the thermal conductivity is 1625 W/m ⁇ k.
  • Example 11 Put the expanded graphite powder of Example 11 on one side of the graphene heat-dissipating base film, and press them together (at a pressure of 60 MPa, a vacuum of 800 Pa, and a time of 60 s) to obtain a product with a two-layer structure, a thickness of 90 ⁇ m, and a thermal conductivity of 1598 W /m ⁇ k.
  • the expanded graphite powder was placed on one side of the graphene heat-dissipating base film of Example 1, and pressed together to obtain a product, which had a two-layer structure, a thickness of 80 ⁇ m, and a thermal conductivity of 1188 W/m ⁇ k.
  • Example 1 On the basis of Example 1, the graphite film is pressed and then compounded, as follows.
  • the expanded graphite powder was placed on one side of the graphene heat-dissipating base film of Example 1, and pressed to obtain the product, which was a two-layer structure with a thickness of 80 ⁇ m and a thermal conductivity of 1008 W/m ⁇ k.
  • Example 1 On the basis of Example 1, the dispersant was replaced with polyvinylpyrrolidone of equal weight, and the rest remained unchanged to obtain a product with a two-layer structure, a thickness of 80 ⁇ m, and a thermal conductivity of 1308 W/m ⁇ k.
  • Example 1 On the basis of Example 1, the dispersant was replaced with Tween 80 of equal weight, and the rest remained unchanged to obtain a product with a two-layer structure, a thickness of 80 ⁇ m, and a thermal conductivity of 1126 W/m ⁇ k.
  • the expanded graphite powder was placed on one side of the graphene heat-dissipating base film of Example 1, and pressed to obtain a product, which was a two-layer structure with a thickness of 80 ⁇ m and a thermal conductivity of 1308 W/m ⁇ k.
  • the expanded graphite powder is placed on one side of the graphene heat dissipation base film of Example 1, and pressed to obtain a product, which is a two-layer structure with a thickness of 80 ⁇ m and a thermal conductivity of 1305 W/m ⁇ k.
  • the graphene heat dissipation base film obtained by cutting after rolling in the present invention has no edge collapse and no cracks.
  • Fig. 1 it is a photo of the graphene heat dissipation base film in Example 1. According to actual production statistics, the cutting yield of 1000 meters coil 95%; and in the applicant’s previous published patent application, the foamed graphene film used to prepare the high thermal conductivity flexible graphene composite heat dissipation film has poor cutting performance and obvious edge collapse, resulting in low product yield, at 30% about.
  • thermally conductive film especially a composite thermally conductive film
  • it needs to have thermal conductivity and interface strength that meet industry applications. After curling and laying flat, and then calculating the thermal conductivity retention rate, the interface performance of the composite film can be reflected , the method is close to industrial practicality.
  • the composite heat dissipation film is rolled into a cylinder, the height is the width of the film, the two ends are aligned and fixed with clips, placed for 48 hours, then flattened, the thermal conductivity is tested, compared with the initial thermal conductivity, and the retention rate is calculated; then again Roll it into a cylinder, the height is the width of the film, align the two ends and fix it with clips, let it stand for 48 hours, then flatten it, test the thermal conductivity, compare it with the initial thermal conductivity, and calculate the retention rate; cycle like this and test five times.
  • the graphene composite heat dissipation film of the present invention has good bending properties, see FIG. 2 , which is a photo of the product in Example 2.
  • the thermal conductivity retention rates of the product in Example 1 were 100%, 100%, 99%, 98%, and 98% respectively;
  • the thermal conductivity retention rates of the product in Example 2 were 100% and 100% respectively , 100%, 99%, 99%;
  • the thermal conductivity retention rate of the product of embodiment three is respectively 100%, 99%, 99%, 97%, 96%;
  • the first crimp test of other embodiments is above 98%, and all tests All are above 90%.
  • the tenth-to-one rule is adopted.
  • the initial thermal conductivity of Example 2 is 1653.
  • the thermal conductivity is 1644, which is 99.455%, and the statistics are 100%.
  • comparative example 2 has visible cracks during bending and cannot be applied.
  • the thermal conductivity retention rate of the product in Example 12 is 94%, 90%, and 88%, which drop greatly.
  • the thermal conductivity retention rate of the product of Example 13 is 93%, 85%, and the drop is too large.
  • the thermal conductivity retention rate of the product of Example 14 is divided into 98%, 95%, and 85%, and the decline is relatively large.
  • the high thermal conductivity graphene composite heat dissipation film composed of graphene film and expanded graphite film in the present invention has excellent thermal conductivity and bending performance, as well as good mechanical properties, especially when maintaining high thermal conductivity.
  • the product of the present invention greatly reduces the cost, and the expanded graphite with very low price lowers the cost of the whole product.
  • the preparation steps are less glued, especially easy to cut and not Chipping does not increase the difficulty of preparation due to the use of expanded graphite powder.

Abstract

本发明公开了一种石墨烯复合散热薄膜及其制备方法,将氧化石墨烯浆料涂布于衬底之上,干燥后进行低温炭化、高温炭化、高温石墨化、压延得到石墨烯膜,将膨胀石墨粉与石墨烯膜进行真空压合,得到石墨烯复合散热薄膜。本发明以石墨烯膜、膨胀石墨膜组成高导热石墨烯复合散热膜,具有优异的导热性能以及弯曲性能,尤其是,在保持高导热的基础上,本发明产品极大降低了成本。

Description

一种石墨烯复合散热薄膜及其制备方法 技术领域
本发明涉及一种热管理材料,更确切地说,是一种石墨烯复合散热薄膜及其制备方法。
背景技术
消费电子在实现智能化的同时逐步向轻薄化、高性能和多功能方向发展。智能手机轻薄化和便携化的设计要求内部组件散热性和可靠性更好。电子产品的性能越来越强大,而集成度和组装密度不断提高,导致其工作功耗和发热量的急剧增大。据统计,电子元器件因热量集中引起的材料失效占总失效率的65%-80%,热管理技术是电子产品考虑的关键因素。
传统的导热材料主要是金属材料,如铜、铝、银等。但是金属材料密度大,膨胀系数高,在要求高导热效率的场合尚不能满足使用要求(如银、铜、铝的导热系数分别为430W/m﹒K、400W/m﹒K、238 W/m﹒K)。
石墨烯是一种由碳原子以sp 2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯导热系数高达5300 W/m·K,高于纳米碳管和金刚石,优异的导热性能使得石墨烯有望作为未来超大规模消费电子的散热材料。
现有技术公开了高导热柔性石墨烯复合散热膜,其制备方法为将氧化石墨烯浆料涂布于基材表面,经干燥、碳化、化学气相沉积、石墨化,得到发泡石墨烯薄膜;将发泡石墨烯薄膜与蠕虫石墨复合,得到高导热柔性石墨烯复合散热膜;氧化石墨烯浆料包括氧化石墨、分散剂、消泡剂、流平剂和溶剂。得到的高导热柔性石墨烯复合散热膜除了具有优异的导热能力、力学性能外,柔性也很好,弯折未见分层、未见裂纹。但是实际生产发现该方法制备过程容易出现缺陷,主要在发泡石墨烯薄膜裁切过程,极易出现崩边、开裂,导致大量报废,违背了该技术方案的研发初衷,从降低成本的目的转化为增加成本。
技术问题
本发明的目的是提供一种石墨烯复合散热薄膜及其制备方法,主要的改进在于压延得到石墨烯膜之后再与膨胀石墨粉压合,得到的复合散热膜具有优异的导热性能和力学性能。
技术解决方案
本发明的目的是通过以下技术方案来实现的:先制备出理想的石墨烯散热基膜,然后将天然石墨片经过酸化、洗涤和干燥制得酸化插层石墨,然后将酸化石墨经过高温膨化后微波处理,得到膨胀石墨,再将膨胀石墨粉均匀平堆密布在基膜上,最后真空压延制得石墨烯复合散热薄膜成品。本发明的产品没有胶粘层,既解决了现有技术制备高厚石墨烯散热膜需要多层胶粘组合的问题,又提供了一种在厚度超过70μm,甚至100μm的情况下,弯曲性能优异的复合散热膜,尤其是,通过石墨的加入极大降低了石墨烯散热薄膜的成本。
本发明采用如下技术方案。
一种石墨烯复合散热薄膜,其制备方法包括以下步骤,将膨胀石墨粉与石墨烯膜进行真空压合,得到石墨烯复合散热薄膜。
本发明将膨胀石墨粉与石墨烯膜进行真空压合,得到石墨烯复合散热薄膜,真空压合在室温下进行,压力为20~90MPa,真空度为250~1000Pa;较常压环境压合,本发明的真空压合工艺提高了石墨层与石墨烯层的界面结合度、降低了热阻。
上述技术方案中,膨胀石墨粉与石墨烯膜进行真空压合得到膨胀石墨膜层与石墨烯膜层组成的石墨烯复合散热薄膜,膨胀石墨膜层与石墨烯膜层的组合方式具有多样性,包括单层石墨烯膜与单层膨胀石墨膜组合、多层石墨烯膜与多层膨胀石墨膜间隔组合、多层石墨烯膜与多层膨胀石墨膜非间隔组合;其中间隔组合包括两层石墨烯膜之间设置单层或者多层膨胀石墨膜,或者两层膨胀石墨膜之间设置单层或者多层石墨烯膜;非间隔组合是指石墨烯复合散热薄膜中,一侧全部为膨胀石墨膜层、另一侧全部为石墨烯膜层。
上述技术方案中,石墨烯膜的厚度为20μm~100μm,石墨烯复合散热薄膜的厚度为50μm~2mm,优选石墨烯复合散热薄膜的厚度为60μm~1mm;石墨烯复合散热薄膜中,所有石墨烯膜的厚度和为石墨烯复合散热薄膜厚度的20~80%,优选30~70%。
上述技术方案中,将氧化石墨烯浆料涂布于衬底之上,干燥后进行低温炭化、高温炭化、高温石墨化、压延得到石墨烯膜,其作为散热基膜,用于与膨胀石墨的压合。
进一步的,所述氧化石墨烯浆料包括氧化石墨烯、分散剂以及溶剂;其中氧化石墨烯、分散剂以及溶剂为现有产品,其制备方法或者获取为常规技术。采用现有机械剥离法、外延生长法、CVD法、电化学法、有机合成法、剪切碳纳米法或者氧化剥离法可以制备氧化石墨烯、石墨烯。分散剂为聚乙烯吡咯烷酮、氨水或十二烷基硫酸钠;溶剂为水。
上述技术方案中,氧化石墨烯、分散剂以及溶剂的重量比为(60~85)∶(5~8)∶(1000~3000)。
上述技术方案中,所述衬底为聚四氟乙烯滤布、聚丙烯滤布或聚氯乙烯滤布;涂布方法为常规技术,涂布厚度在1~7mm之间,优选为2~6mm。
上述技术方案中,所述干燥为常规干燥;所述低温炭化的温度在80~500℃之间;所述高温炭化的温度在700~1300℃之间;所述高温石墨化的温度在2000~3000℃之间。所述压延为辊压、平压或者真空平压,压力为30~100MPa。
上述技术方案中,将天然鳞片石墨在酸化插层液中搅拌后水洗、干燥,然后依次进行高温膨胀、微波处理,得到膨胀石墨粉;优选的,酸化插层液为硝酸/硫酸的混合物、铬酸/磷酸的混合物或硝酸/氯酸盐的混合物,优选为硝酸和硫酸的混合物,进一步优选的,硫酸、硝酸的体积比为3∶(1~2);搅拌的转速为20~60rpm,温度为室温,时间为20~60min;高温膨胀为700~1500℃下膨胀3~30s;微波处理的功率为1000~2500W,时间为2~5s。膨胀石墨膜的最终性能主要取决于酸插层和后续制得的膨胀石墨的质量,所以探索改进制备方法加强对石墨的改性是制备高性能膨胀石墨膜的关键。本发明改进常规膨胀石墨的制备,限定酸化插层液,同时结合微波处理,得到膨胀石墨粉压合后微晶取向较好,体现在成卷后导热性能几乎不损失,而且在与石墨烯膜压合后,得到的复合膜中,两者界面强度高,在多次成卷放平后,依然保持好的导热性能。
有益效果
与现有技术相比,本发明方法具有以下优点。
本发明很容易制造厚石墨烯散热片,且兼顾高导热性能;低温炭化阶段的引入,可提前去除绝大部分杂质,从而在后续高温炭化、高温石墨化后可制得致密且高取向度的前驱体;首次在无聚合物粘合层的条件下,实现复合散热膜的制备,具有低热阻的优势。本发明优选方法制备的膨胀石墨是新型炭素材料,不仅具备了天然石墨本身的耐热、耐腐蚀、自润滑等优良特性,而且还具备了天然石墨不具备的轻质柔软、可压缩、回弹等性能并特别表现出成本低、效果好等优点。由此,获得优质的膨胀石墨,对膨胀石墨/石墨烯复合膜的研究具有十分重要的意义。
附图说明
图1为实施例一散热基膜的照片。
图2为实施例二石墨烯复合散热膜的弯曲照片。
本发明的实施方式
本发明公开了一种石墨烯复合散热薄膜的制备方法,包括以下步骤,将膨胀石墨粉与石墨烯膜进行真空压合,得到石墨烯复合散热薄膜。
本发明以氧化石墨烯、分散剂以及溶剂组成氧化石墨烯浆料,常规涂布于衬底之上,干燥后进行低温炭化、高温炭化、高温石墨化、压延得到石墨烯膜,其作为散热基膜,用于与膨胀石墨粉的压合;将天然鳞片石墨在酸化插层液中搅拌后水洗、干燥,然后依次进行高温膨胀、微波处理,得到膨胀石墨粉;将膨胀石墨粉与石墨烯膜进行真空压合,得到石墨烯复合散热薄膜。具体工艺步骤举例如下。
(1)室温下,添加60~85g氧化石墨、5~8g分散剂和1000~3000g超纯水到反应釜中,常规搅拌5~30min,制得氧化石墨浆料,经过超声处理、脱泡处理后得到氧化石墨烯浆料,再将氧化石墨烯浆料涂布于衬底之上,在温度40~80℃下干燥,分离收卷得到氧化石墨烯散热基膜前体,然后将氧化石墨烯散热基膜前体进行低温炭化、高温炭化、高温石墨化及压延(常规气压环境辊压、平压或者真空平压,时间没有特别要求)得到石墨烯散热基膜。
(2)将20~70g天然鳞片石墨放置于含有氧化插层液的搅拌釜中,室温下搅拌20~60min,得到酸化插层石墨浆料,再经过水洗、干燥处理后得到酸化插层石墨粉体,然后将酸化插层石墨粉体在700~1500℃的高温条件下膨化3~30s,最后微波处理(功率为1000~2500W,时间为2~5s),得到膨胀石墨粉。
(3)以叠层交互的结构将上述步骤(2)中的膨胀石墨粉与上述步骤(1)中的石墨烯散热基膜在压力20~90MPa,真空度250~1000Pa的条件下进行压合5s~10min制得石墨烯复合散热薄膜成品。
其中所述超声处理的频率为20kHz~50kHz,时间为5~15min。
所述脱泡的抽气流量在50~500m 3/h之间,优选为200m 3/h。
所述涂布厚度在1~7mm之间,优选为3~5mm。
所述衬底为聚四氟乙烯滤布或聚丙烯滤布或聚氯乙烯滤布,优选为聚丙烯滤布。
所述低温炭化的温度在80~500℃之间。
所述高温炭化的温度在700~1300℃之间。
所述高温石墨化的温度在2000~3000℃之间。
所述天然鳞片石墨的目数在50~500目之间。
所述氧化插层液为硝酸和硫酸的混合物或铬酸和磷酸的混合物或硝酸和氯酸盐的混合物,优选为硝酸和硫酸的混合物。
所述叠层交互的结构包括,单层石墨烯散热基膜与单层膨胀石墨压合或双层石墨烯散热基膜与单层膨胀石墨压合或单层石墨烯散热基膜与双层膨胀石墨压合或多层石墨烯散热基膜与多层膨胀石墨压合,进而优选为多层石墨烯散热基膜与多层膨胀石墨压合。
下面对本发明的优选实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。本发明涉及的原料都为现有市售产品,比如氧化石墨(SE2430W-N)为膏状,固(氧化石墨)含量45%;天然鳞片石墨含碳量99.9%,粒径为250目,指250目的筛下物;氨水浓度为25%,工业品,质量浓度;硝酸浓度为50%,工业品,质量浓度;硫酸浓度为70%,工业品,质量浓度;衬底为聚丙烯滤布,可循环利用。微波处理设备为专用石墨膨化型微波气氛管式炉(MKG-M5TB)。导热系数的测试标准为ASTM D5470,为常规方法。本发明的具体操作方法以及测试方法为本领域常规方法。
实施例
室温下,添加160g氧化石墨膏、5g分散剂氨水和2000g超纯水到反应釜中,150rpm搅拌15min,经过30kHz超声处理10min、真空脱泡处理(抽气流量200m 3/h)后得到氧化石墨烯浆料,再将氧化石墨烯浆料涂布于衬底之上,在温度60℃下干燥后分离收卷,然后进行低温炭化、高温炭化、高温石墨化,自然冷却后常温压延(50MPa辊压)得到石墨烯散热基膜,厚度40μm;低温炭化的温度为350℃,时间为3h;所述高温炭化的温度为1000℃,时间为3h;高温石墨化的温度为2800℃,时间为30h。
将20g天然鳞片石墨放置于含有硫酸、硝酸(硫酸、硝酸的体积比为3∶1)的搅拌釜中,室温50rpm搅拌30min,得到酸化插层石墨浆料,再经过常规水洗、干燥处理后得到酸化插层石墨粉体,然后将酸化插层石墨粉体在1200℃的高温条件下膨化9s,最后在功率为1800W下微波处理3s,得到膨胀石墨粉。
按照表1的组合方式,室温下,将石墨烯散热基膜(命名为A)与膨胀石墨粉(命名为B)真空压合,得到石墨烯复合散热薄膜。
Figure 456596dest_path_image001
表1中,每层膜的理论厚度为40μm,实施例一的石墨烯复合散热薄膜的厚度为80μm(石墨烯散热基膜的厚度为石墨烯复合散热薄膜厚度的50%,即40μm/80μm),实施例二的石墨烯复合散热薄膜的厚度为120μm,实施例四的石墨烯复合散热薄膜的厚度为160μm,其它实施例与此计算一致。
在给定压合条件下,以实施例一、实施例四为例说明压合步骤,其他实施例与此近似。实施例一中,将膨胀石墨粉置于石墨烯散热基膜一面,压合,得到产品;实施例四中,将两片石墨烯散热基膜叠放,然后在叠放结构的一面放置能够形成80μm厚度的膨胀石墨粉,压合,得到产品。可根据客户要求进行产品外观尺寸修整,为常规方法,对于膨胀石墨粉与石墨烯散热基膜组合,具体为常规方法,比如可以将膨胀石墨粉铺在常规模具内,再覆盖石墨烯基膜,也可反之;对于具体的真空压合操作,为常规方法。
以实施例一的组合,将压合条件修改为常压(常规大气环境)下60MPa压50s,得到的复合膜导热系数为965 W/m·k,说明真空压合可明显提升复合膜的性能。
实施例九。
室温下,添加160g氧化石墨膏、6g分散剂氨水和2500g超纯水到反应釜中,150rpm搅拌15min,经过30kHz超声处理10min、真空脱泡处理(抽气流量200m 3/h)后得到氧化石墨烯浆料,再将氧化石墨烯浆料涂布于衬底之上,在温度60℃下干燥分离收卷,然后进行低温炭化、高温炭化、高温石墨化,自然冷却后常温压延(60MPa辊压)得到石墨烯散热基膜,厚度为20μm;低温炭化的温度为350℃,时间为3h;所述高温炭化的温度为1200℃,时间为3h;高温石墨化的温度为2800℃,时间为30h。
将20g天然鳞片石墨放置于含有硫酸、硝酸(硫酸、硝酸的体积比为3∶1)的搅拌釜中,室温50rpm搅拌30min,得到酸化插层石墨浆料,再经过常规水洗、干燥处理后得到酸化插层石墨粉体,然后将酸化插层石墨粉体在1200℃的高温条件下膨化9s,最后在功率为1800W下微波处理3s,得到膨胀石墨粉。
在一片实施例一的石墨烯散热基膜、一片实施例九的石墨烯散热基膜间放置膨胀石墨粉,压力为50MPa,真空度为900Pa,时间为220s,压合得到产品,厚度为80μm,导热系数为1625 W/m·k。
实施例十。
将20g天然鳞片石墨放置于含有硫酸、硝酸(硫酸、硝酸的体积比为3∶2)的搅拌釜中,室温60rpm搅拌20min,得到酸化插层石墨浆料,再经过常规水洗、干燥处理后得到酸化插层石墨粉体,然后将酸化插层石墨粉体在1500℃的高温条件下膨化7s,最后在功率为1800W下微波处理4s,得到膨胀石墨粉。
取实施例一的石墨烯散热基膜(A)与上述膨胀石墨粉(C)按照A/C/A/C/A/C/A的组合方式,压力为60MPa,真空度为300Pa,时间为600s,压合得到产品,厚度为320μm,导热系数为1284 W/m·k,其中石墨烯散热基膜的厚度和占产品厚度的50%。
实施例十一。
室温下,添加250g氧化石墨膏、8g分散剂氨水和2500g超纯水到反应釜中,150rpm搅拌10min,经过50kHz超声处理15min、真空脱泡处理(抽气流量250m 3/h)后得到氧化石墨烯浆料,再将氧化石墨烯浆料涂布于衬底之上,在温度80℃下干燥收卷,然后进行低温炭化、高温炭化、高温石墨化,自然冷却后常温压延(70MPa、辊压)得到石墨烯散热基膜,厚度为60μm;低温炭化的温度为400℃,时间为3h;所述高温炭化的温度为1300℃,时间为4h;高温石墨化的温度为3000℃,时间为28h。
将20g天然鳞片石墨放置于含有硫酸、硝酸(硫酸、硝酸的体积比为3∶1)的搅拌釜中,室温50rpm搅拌40min,得到酸化插层石墨浆料,再经过常规水洗、干燥处理后得到酸化插层石墨粉体,然后将酸化插层石墨粉体在1300℃的高温条件下膨化10s,最后在功率为1800W下微波处理3s,得到膨胀石墨粉。
将实施例十一的膨胀石墨粉置于石墨烯散热基膜一面,压合(压力为60MPa,真空度为800Pa,时间为60s),得到产品,为两层结构,厚度90μm,导热系数为1598W/m·k。
在一片实施例十一的石墨烯散热基膜、一片实施例九的石墨烯散热基膜间放置膨胀石墨粉,压力为50MPa,真空度为400Pa,时间为400s,压合得到产品,厚度为130μm,导热系数为1612W/m·k。
以下对比例以及实施例中,膨胀石墨粉与石墨烯散热基膜的真空压合条件与实施例一一致。
对比例一。
在实施例一的基础上,省略微波,具体如下。
将20g天然鳞片石墨放置于含有硫酸、硝酸(硫酸、硝酸的体积比为3∶1)的搅拌釜中,室温50rpm搅拌30min,得到酸化插层石墨浆料,再经过常规水洗、干燥处理后得到酸化插层石墨粉体,然后将酸化插层石墨粉体在1200℃的高温条件下膨化9s,得到膨胀石墨粉。将该膨胀石墨粉置于实施例一的石墨烯散热基膜一面,压合得到产品,为两层结构,厚度80μm,导热系数为1188 W/m·k。
对比例二。
在实施例一的基础上,先压合石墨膜再复合,具体如下。
将实施例一的膨胀石墨粉先单独在50MPa压15s,得到厚度30μm的膨胀石墨膜;然后取实施例一的石墨烯散热基膜与该膨胀石墨膜叠合,压合得到产品,为两层结构,弯曲性能差。
对比例三。
在实施例一的基础上,省略高温膨胀,具体如下。
将20g天然鳞片石墨放置于含有硫酸、硝酸(硫酸、硝酸的体积比为3∶1)的搅拌釜中,室温50rpm搅拌30min,得到酸化插层石墨浆料,再经过常规水洗、干燥处理后得到酸化插层石墨粉体,然后将酸化插层石墨粉体在功率为1800W下微波处理30s,得到石墨粉。将该膨胀石墨粉置于实施例一的石墨烯散热基膜一面,压合得到产品,为两层结构,厚度80μm,导热系数为1008 W/m·k。
实施例十二。
在实施例一的基础上,将分散剂更换为等重量的聚乙烯吡咯烷酮其余不变,得到产品,为两层结构,厚度80μm,导热系数为1308 W/m·k。
实施例十三。
在实施例一的基础上,将分散剂更换为等重量的吐温80,其余不变,得到产品,为两层结构,厚度80μm,导热系数为1126 W/m·k。
实施例十四。
将20g天然鳞片石墨放置于含有硫酸、硝酸(硫酸、硝酸的体积比为7∶1)的搅拌釜中,室温50rpm搅拌30min,得到酸化插层石墨浆料,再经过常规水洗、干燥处理后得到酸化插层石墨粉体,然后将酸化插层石墨粉体在1200℃的高温条件下膨化9s,最后在功率为1800W下微波处理3s,得到膨胀石墨粉。将该膨胀石墨粉置于实施例一的石墨烯散热基膜一面,压合得到产品,为两层结构,厚度80μm,导热系数为1308 W/m·k。
实施例十五。
将20g天然鳞片石墨放置于含有硫酸、硝酸(硫酸、硝酸的体积比为3∶1)的搅拌釜中,室温50rpm搅拌30min,得到酸化插层石墨浆料,再经过常规水洗、干燥处理后得到酸化插层石墨粉体,然后将酸化插层石墨粉体在1200℃的高温条件下膨化9s,最后在功率为1800W下微波处理10s,得到膨胀石墨粉。将该膨胀石墨粉置于实施例一的石墨烯散热基膜一面,压合得到产品,为两层结构,厚度80μm,导热系数为1305W/m·k。
界面强度研究。
本发明辊压后裁切得到的石墨烯散热基膜无崩边、无裂纹,参见图1,为实施例一石墨烯散热基膜实物照片,根据实际生产统计,1000米卷材裁切良率达到95%;而申请人之前公开专利申请中,用于制备高导热柔性石墨烯复合散热膜的发泡石墨烯薄膜裁切性能差,存在明显的崩边,导致产品良率低,在30%左右。
作为导热膜,尤其是复合导热膜,在降低石墨烯膜成本的同时需要具有符合业内应用的导热性能以及界面强度,通过卷曲后放平,再计算导热性能保持率,可以体现复合膜的界面性能,该方法贴近工业实用。具体的,将复合散热膜卷成圆柱体,高为膜的宽度,两端对齐后用夹子固定,放置48小时,然后展平,测试导热系数,与初始导热系数比较,计算保持率;然后再次卷成圆柱,高为膜的宽度,两端对齐后用夹子固定,放置48小时,然后展平,测试导热系数,与初始导热系数比较,计算保持率;如此循环,测试五次。
本发明的石墨烯复合散热膜具有好的弯曲性能,参见图2,为实施例二的产品实物照片。经过五次卷曲放平后,实施例一产品的导热系数保持率分别为100%、100%、99%、98%、98%;实施例二产品的导热系数保持率分别为100%、100%、100%、99%、99%;实施例三产品的导热系数保持率分别为100%、99%、99%、97%、96%;其余实施例首次卷曲测试都在98%以上,所有测试都在90%以上。需要说明的是,在计算保持率时,采用十分位进一的规则,比如实施例二初始导热系数为1653,首次卷曲展平后,导热系数为1644,为99.455%,统计为100%。
作为对比,对比例二在弯折时出现眼见的裂痕,无法应用。经过三次卷曲放平后,实施例十二产品的导热系数保持率分为94%、90%、88%,下降大。经过两次卷曲放平后,实施例十三产品的导热系数保持率为93%、85%,下降太大。经过三次卷曲放平后,实施例十四产品的导热系数保持率分为98%、95%、85%,下降偏大。
实施例十六。
室温下,添加160g氧化石墨膏、5g分散剂氨水和2000g超纯水到反应釜中,150rpm搅拌15min,经过30kHz超声处理10min、真空脱泡处理(抽气流量200m 3/h)后得到氧化石墨烯浆料,再将氧化石墨烯浆料涂布于衬底之上,在温度60℃下干燥后分离裁切,然后进行低温炭化、高温炭化、高温石墨化,自然冷却后常温压延(50MPa真空平压30s,真空度1000Pa)得到石墨烯散热基膜,厚度40μm;低温炭化的温度为350℃,时间为3h;所述高温炭化的温度为1000℃,时间为3h;高温石墨化的温度为2800℃,时间为30h;按照实施例一的组合方式与真空压合条件,室温下,将上述石墨烯散热基膜与实施例一的膨胀石墨粉真空压合,得到石墨烯复合散热薄膜,厚度80μm,导热系数为1408W/m·k。
实施例十七。
室温下,添加160g氧化石墨膏、5g分散剂氨水和2000g超纯水到反应釜中,150rpm搅拌15min,经过30kHz超声处理10min、真空脱泡处理(抽气流量200m 3/h)后得到氧化石墨烯浆料,再将氧化石墨烯浆料涂布于衬底之上,在温度60℃下干燥后分离裁切,然后进行低温炭化、高温炭化、高温石墨化,自然冷却后常温压延(50MPa平压30s,常规空气环境中)得到石墨烯散热基膜,厚度40μm;低温炭化的温度为350℃,时间为3h;所述高温炭化的温度为1000℃,时间为3h;高温石墨化的温度为2800℃,时间为30h;按照实施例一的组合方式与真空压合条件,室温下,将上述石墨烯散热基膜与实施例一的膨胀石墨粉真空压合,得到石墨烯复合散热薄膜,厚度80μm,导热系数为1515W/m·k。
总结:经过实验,可以看出,本发明以石墨烯膜、膨胀石墨膜组成高导热石墨烯复合散热膜,具有优异的导热性能以及弯曲性能,力学性能也好,尤其是,在保持高导热的基础上,本发明产品极大降低了成本,价格非常低的膨胀石墨拉低了整个产品的成本,制备步骤与现有复合石墨烯膜的生产步骤相比少了胶粘,尤其是容易切割不崩边,没有因膨胀石墨粉的使用而增加制备难度。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何不经过创造性劳动想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书所限定的保护范围为准。

Claims (10)

  1. 一种石墨烯复合散热薄膜,其特征在于,所述石墨烯复合散热薄膜的制备方法包括以下步骤,将膨胀石墨粉与石墨烯膜进行真空压合,得到石墨烯复合散热薄膜。
  2. 根据权利要求1所述石墨烯复合散热薄膜,其特征在于,真空压合的压力为20~90MPa,真空度为250~1000Pa。
  3. 根据权利要求1所述石墨烯复合散热薄膜,其特征在于,石墨烯膜的厚度为20μm~100μm,石墨烯复合散热薄膜的厚度为50μm~2mm。
  4. 根据权利要求1所述石墨烯复合散热薄膜,其特征在于,石墨烯复合散热薄膜中,所有石墨烯膜的厚度和为石墨烯复合散热薄膜厚度的20~80%。
  5. 根据权利要求1所述石墨烯复合散热薄膜,其特征在于,将氧化石墨烯浆料涂布于衬底上,干燥后进行低温炭化、高温炭化、高温石墨化、压延得到石墨烯膜。
  6. 根据权利要求5所述石墨烯复合散热薄膜,其特征在于,所述氧化石墨烯浆料包括氧化石墨烯、分散剂以及溶剂。
  7. 根据权利要求1所述石墨烯复合散热薄膜,其特征在于,将天然鳞片石墨在酸化插层液中搅拌后水洗、干燥,然后依次进行高温膨胀、微波处理,得到膨胀石墨粉。
  8. 根据权利要求7所述石墨烯复合散热薄膜,其特征在于,酸化插层液为硝酸/硫酸的混合物、铬酸/磷酸的混合物或硝酸/氯酸盐的混合物;高温膨胀为700~1500℃下膨胀3~30s;微波处理的功率为1000~2500W,时间为2~5s。
  9. 权利要求1所述石墨烯复合散热薄膜在制备散热材料中的应用。
  10. 膨胀石墨粉与石墨烯膜在制备石墨烯复合散热薄膜中的应用。
PCT/CN2021/100738 2021-06-17 2021-06-17 一种石墨烯复合散热薄膜及其制备方法 WO2022261912A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100738 WO2022261912A1 (zh) 2021-06-17 2021-06-17 一种石墨烯复合散热薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100738 WO2022261912A1 (zh) 2021-06-17 2021-06-17 一种石墨烯复合散热薄膜及其制备方法

Publications (1)

Publication Number Publication Date
WO2022261912A1 true WO2022261912A1 (zh) 2022-12-22

Family

ID=84525937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100738 WO2022261912A1 (zh) 2021-06-17 2021-06-17 一种石墨烯复合散热薄膜及其制备方法

Country Status (1)

Country Link
WO (1) WO2022261912A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116042187A (zh) * 2022-12-30 2023-05-02 常州富烯科技股份有限公司 柔性石墨复合导热膜及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264059A (ja) * 2004-03-19 2005-09-29 Calp Corp 複合樹脂組成物の製造方法、複合樹脂組成物及び複合樹脂成形体
CN104003380A (zh) * 2014-06-09 2014-08-27 黑龙江奥星能源科技有限公司 一种超薄石墨纸和氧化石墨烯的复合薄膜的制备方法
CN105111484A (zh) * 2015-08-28 2015-12-02 上海利物盛企业集团有限公司 一种高效连续大面积制备导热石墨膜的方法
KR20170047556A (ko) * 2015-10-23 2017-05-08 리모트솔루션주식회사 고밀도 멀티 그래핀을 포함하는 방열재 및 그의 제조방법
CN107311659A (zh) * 2017-06-22 2017-11-03 李若明 一种石墨膜/石墨烯复合薄膜的制备方法
CN107311165A (zh) * 2017-08-04 2017-11-03 辽宁兰晶科技有限公司 一种化学电解法制备氧化石墨烯的方法
CN109818003A (zh) * 2019-01-30 2019-05-28 日照市烯创新材料科技有限公司 一种高气体阻隔性膨胀石墨单极板的制备方法及氢燃料电池
CN110048110A (zh) * 2019-04-25 2019-07-23 杭州高烯科技有限公司 一种石墨烯复合电极材料的制备方法及其应用
US20190241435A1 (en) * 2016-10-19 2019-08-08 Incubation Alliance, Inc. Graphite/graphene complex material, heat-collecting body, heat-transfer body, thermal radiation body and thermal radiation system
US20200114622A1 (en) * 2018-10-10 2020-04-16 Nanotek Instruments, Inc. Process for highly conductive graphitic thick films
CN112512287A (zh) * 2021-01-06 2021-03-16 泰兴挚富显示技术有限公司 一种高导热柔性石墨烯复合散热膜及其制备方法
CN112897981A (zh) * 2021-01-21 2021-06-04 江苏宝烯新材料科技有限公司 一种石墨烯/碳纤维复合膜的制备方法
CN112969355A (zh) * 2021-04-22 2021-06-15 世星科技股份有限公司 一种石墨烯散热膜及其制备方法
CN113307263A (zh) * 2021-06-02 2021-08-27 泰兴挚富显示技术有限公司 一种石墨烯复合散热薄膜及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264059A (ja) * 2004-03-19 2005-09-29 Calp Corp 複合樹脂組成物の製造方法、複合樹脂組成物及び複合樹脂成形体
CN104003380A (zh) * 2014-06-09 2014-08-27 黑龙江奥星能源科技有限公司 一种超薄石墨纸和氧化石墨烯的复合薄膜的制备方法
CN105111484A (zh) * 2015-08-28 2015-12-02 上海利物盛企业集团有限公司 一种高效连续大面积制备导热石墨膜的方法
KR20170047556A (ko) * 2015-10-23 2017-05-08 리모트솔루션주식회사 고밀도 멀티 그래핀을 포함하는 방열재 및 그의 제조방법
US20190241435A1 (en) * 2016-10-19 2019-08-08 Incubation Alliance, Inc. Graphite/graphene complex material, heat-collecting body, heat-transfer body, thermal radiation body and thermal radiation system
CN107311659A (zh) * 2017-06-22 2017-11-03 李若明 一种石墨膜/石墨烯复合薄膜的制备方法
CN107311165A (zh) * 2017-08-04 2017-11-03 辽宁兰晶科技有限公司 一种化学电解法制备氧化石墨烯的方法
US20200114622A1 (en) * 2018-10-10 2020-04-16 Nanotek Instruments, Inc. Process for highly conductive graphitic thick films
CN109818003A (zh) * 2019-01-30 2019-05-28 日照市烯创新材料科技有限公司 一种高气体阻隔性膨胀石墨单极板的制备方法及氢燃料电池
CN110048110A (zh) * 2019-04-25 2019-07-23 杭州高烯科技有限公司 一种石墨烯复合电极材料的制备方法及其应用
CN112512287A (zh) * 2021-01-06 2021-03-16 泰兴挚富显示技术有限公司 一种高导热柔性石墨烯复合散热膜及其制备方法
CN112897981A (zh) * 2021-01-21 2021-06-04 江苏宝烯新材料科技有限公司 一种石墨烯/碳纤维复合膜的制备方法
CN112969355A (zh) * 2021-04-22 2021-06-15 世星科技股份有限公司 一种石墨烯散热膜及其制备方法
CN113307263A (zh) * 2021-06-02 2021-08-27 泰兴挚富显示技术有限公司 一种石墨烯复合散热薄膜及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116042187A (zh) * 2022-12-30 2023-05-02 常州富烯科技股份有限公司 柔性石墨复合导热膜及其制备方法

Similar Documents

Publication Publication Date Title
CN108770354B (zh) 高导电性的石墨烯-金属复合材料及其制备方法
TWI682848B (zh) 高傳導性石墨烯-金屬複合物及其製造方法
CN112512287A (zh) 一种高导热柔性石墨烯复合散热膜及其制备方法
CN112374492B (zh) 高导电高导热卷材石墨烯膜及其制备方法
CN113307263B (zh) 一种石墨烯复合散热薄膜及其制备方法
JP3186199U (ja) 複合ヒートスプレッダ
CN103626172B (zh) 一种高导热石墨纸的制备方法
TWI592294B (zh) Metal foil and its composite heat sink
CN106847767A (zh) 一种石墨铜箔复合散热片
CN112850701A (zh) 一种人工石墨/石墨烯复合导热膜及其制备方法
CN111145960A (zh) 一种高强高导铜基复合材料及其制备方法
CN110744875A (zh) 一种高导热复合石墨散热片及其制备方法
CN112391150A (zh) 厚度可调高导热石墨烯散热膜及其制备方法
WO2022261912A1 (zh) 一种石墨烯复合散热薄膜及其制备方法
CN107512041A (zh) 一种铜箔‑石墨烯/碳纳米管或铜箔‑石墨烯/碳纳米管‑铜箔导热薄膜的制备方法
CN111908452A (zh) 一种石墨烯碳纳米管复合高导热膜及其制备方法
CN113929074B (zh) 碳材及其应用
CN110788144B (zh) 一种金属铜-石墨烯层状复合材料及其制备方法与装置
CN103660484A (zh) 软性石墨纸及其制造方法及其增厚结构
US11312105B2 (en) Aluminum matrix composites and method thereof
CN212864650U (zh) 一种复合式石墨烯散热膜
CN106495158B (zh) 一种超薄碳化钼材料的制备方法及其产品
CN110775969B (zh) 一种石墨烯复合膜及其制备方法
CN113800504B (zh) 一种连续式的石墨烯导热膜的制备方法
CN114750490B (zh) 一种具有高效散热能力的烯碳复合材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE