WO2022259668A1 - フィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システム - Google Patents

フィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システム Download PDF

Info

Publication number
WO2022259668A1
WO2022259668A1 PCT/JP2022/011225 JP2022011225W WO2022259668A1 WO 2022259668 A1 WO2022259668 A1 WO 2022259668A1 JP 2022011225 W JP2022011225 W JP 2022011225W WO 2022259668 A1 WO2022259668 A1 WO 2022259668A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
range
film thickness
film roll
width
Prior art date
Application number
PCT/JP2022/011225
Other languages
English (en)
French (fr)
Inventor
裕介 市川
俊哉 小野
翔太 橋本
博文 田中
葉月 中江
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020237042569A priority Critical patent/KR20240006649A/ko
Priority to CN202280040193.6A priority patent/CN117460611A/zh
Priority to JP2023527516A priority patent/JPWO2022259668A1/ja
Publication of WO2022259668A1 publication Critical patent/WO2022259668A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/0011Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 for shaping plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0277Apparatus with continuous transport of the material to be cured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/10Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/001Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore a shaping technique combined with cutting, e.g. in parts or slices combined with rearranging and joining the cut parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C2035/0283Thermal pretreatment of the plastics material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0822Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using IR radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C2037/90Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/0027Cutting off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3475Displays, monitors, TV-sets, computer screens
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs

Definitions

  • the present invention relates to a film roll manufacturing method and a projection adjustment system used for film roll manufacturing. More specifically, the present invention relates to a method for manufacturing a film roll suitable for manufacturing by wide-width film processing, which is capable of suppressing fluctuations in orientation angle without occurrence of winding failures, and a protrusion adjustment system used for manufacturing the film roll.
  • Patent Document 1 discloses a technique of oscillating after stretching the film and before trimming (moving the film base in the width direction at the base edge trimming portion in the process prior to winding to perform edge trimming). disclosed. However, it was insufficient to suppress the orientation angle variation without causing winding failure.
  • both ends of a long unstretched film that has been oscillated (for example, a device that supports the transported film is periodically moved) are trimmed in order to improve the above inconvenience. Stretching the film by stretching and trimming it again, suppresses defects caused by continuous thickness unevenness such as gauge bands and transverse bumps, and suppresses orientation angle fluctuations. Winding of stretched film.
  • a technique for producing a winding body (referred to as a "film roll") has been disclosed.
  • the present invention has been made in view of the above problems and situations, and the problem to be solved is a film roll suitable for manufacturing by wide film processing that does not cause winding failure and can suppress orientation angle fluctuations. It is to provide a projection adjustment system used in the manufacturing method of and film roll manufacturing.
  • the present inventors have investigated the causes of the above problems, etc., and found that, during the production of the film roll, local heating of the film causes the number of protrusions in the width direction of the film surface. , height and position, and the positions of the projections are adjusted so as to move continuously in the longitudinal direction of the film surface. That is, the above problems related to the present invention are solved by the following means.
  • a method for manufacturing a film roll by a solution or melt casting method comprising at least a film forming step, a step of adjusting protrusions in the width direction of the film surface, a step of trimming both ends of the film, and the trimming step. and a step of winding the trimmed film, wherein the convex portion adjusting step is a step of adjusting the number, height and position of the convex portions, and by subjecting the film to local heating,
  • the number of protrusions is in the range of 1 to 10 per 1 m in the width direction
  • the height of the protrusions is in the range of 0.05 to 0.50 ⁇ m
  • the positions of the protrusions are in the longitudinal direction of the film surface.
  • the position of the convex portion is adjusted by locally heating the film so that the positions of the convex portions are aligned substantially in a straight line in the longitudinal direction of the film surface, and 3.
  • the local heating is performed by infrared heaters arranged in the width direction and the longitudinal direction of the film, the heat sources of the infrared heaters are arranged at intervals of 10 to 100 mm in the width direction of the film, and The heat source parts are arranged in the longitudinal direction of the film at positions different from the width position, and the average inclination of the straight line connecting each arranged heat source part E A and E B is in the range of 2 to 45 ° with respect to the longitudinal direction. 3.
  • the average value B of the amount of heat A at the central portion of the infrared heater and the amount of heat B at the ends of the infrared heater satisfies the following formula (1): 0.2 ⁇ (B/A) ⁇ 0.6
  • the maximum height difference (PV) of the longitudinal average film thickness at each width position of the film thickness values measured in the order of steps 1 to 3 below in a direction oblique to the width direction of the film is 0.02. 7.
  • Step 2 After step 1, the same measurement as in step 1 is performed until the total distance of the longitudinal movement position reaches 1000 m.
  • Step 3 From the multiple film thickness data obtained in steps 1 and 2, the film thickness values at the same width position are averaged to obtain the longitudinal average film thickness value at each width position. A height difference (PV) between the maximum value and the minimum value is calculated from among them.
  • PV height difference
  • a projection adjustment system used for manufacturing a film roll having a projection adjustment step for adjusting the number, height and position of projections in the width direction of the film surface, a film thickness acquisition means for acquiring a film thickness profile of the film during or after the convex adjustment step; According to the film thickness profile data, whether or not the number of protrusions in the width direction is within the ideal range of 1 to 10 per 1 m, and whether the height of the protrusions in the width direction is Determination means for determining whether or not it is within the ideal value range of 0.05 to 0.50 ⁇ m; In the determination means, when both or one of the number of protrusions and the height of the protrusions is outside the range of the ideal values, both the number of protrusions and the height of the protrusions are ideal values. and means for locally heating the film by an infrared heater so as to be within the range of .
  • a method for manufacturing a film roll suitable for manufacturing by wide-width film processing which is capable of suppressing fluctuations in the orientation angle without occurrence of winding failure, and a protrusion adjustment system used for manufacturing the film roll. can provide.
  • the present inventors have considered the technique of improving the film performance by oscillating before trimming before and after stretching the film disclosed in Patent Document 1 and Patent Document 2 above.
  • Patent Document 1 it has been found that the orientation angle is disturbed by performing an oscillating operation after stretching the film, that is, in a state in which the orientation angle is adjusted.
  • Patent Document 2 the disturbance of the orientation angle is suppressed by performing an oscillating operation before the film is stretched, that is, before the orientation angle is adjusted, but the orientation angle is still disturbed.
  • the oscillating operation is a technique for changing the position of the irregularities in the width direction of the film surface in the macro to prevent overlapping of the convex parts when forming a roll body, for example.
  • Films using this technique Since air is unevenly taken into the film roll during winding, the air is gradually released over time, causing deformation of the roll, for example, deformation into a chain shape, which causes the film to be folded. It was found that marks, scratches, or the like are generated, which poses a problem when incorporated into a display device.
  • the present inventors controlled the number of protrusions and the height of the protrusions in the width direction of the film surface within a certain range, and adjusted the positions of the protrusions so as to move continuously in the longitudinal direction of the film surface. Therefore, it is presumed that the problem of the present application has been solved by preventing the protrusions of the film from overlapping during winding, thereby making it possible to highly control the amount of air taken into the film roll body.
  • Relational diagram between the convex part and the film thickness profile in the width direction Flowchart showing the flow of the manufacturing process of the present invention
  • Schematic diagram of an apparatus for manufacturing a film by the solution casting method Schematic diagram showing continuous arrangement and adjustment of convex portions linearly in the longitudinal direction
  • Diagram showing the relationship between the plotted position of the convex portion and the approximation line
  • Figure showing infrared heaters arranged in a row in the longitudinal direction of the film. Infrared heaters arranged in two rows in the longitudinal direction of the film
  • Infrared heaters are arranged in five rows in the longitudinal direction of the film.
  • a diagram showing the average inclination of the straight line formed by each heat source in the longitudinal direction A diagram showing the average inclination of the straight line formed by each heat source in the longitudinal direction
  • Cross-sectional view of the tenter stretching device viewed from above the plane perpendicular to the film surface Schematic diagram of the nozzle and heater installation parts when viewed from the front of the three zones in the tenter stretcher Side view of the three zones in the tenter stretcher
  • Cross-sectional view of the tenter stretching device viewed from above the plane perpendicular to the film surface Schematic showing the process of film winding and a cross-section of the film roll of the present invention after being wound.
  • Schematic configuration diagram of an apparatus for manufacturing an optical film by a melt-casting film-forming method An example of a heat map used to confirm continuity
  • the method for producing a film roll of the present invention is a method for producing a film roll by a solution or melt casting method, comprising at least a film forming step, a step of adjusting protrusions in the width direction of the film surface, and both ends of the film. and a step of winding the film trimmed by the trimming step, wherein the convex portion adjusting step is a step of adjusting the number, height and position of the convex portions, and the film
  • the number of protrusions is set to 1 to 10 per 1 m in the width direction
  • the height of the protrusions is set to 0.05 to 0.50 ⁇ m
  • the positions of the convex portions are adjusted so as to move continuously in the longitudinal direction of the film surface.
  • the trimming step before trimming both ends of the film, it is preferable to prevent the film from oscillating in the widthwise direction of the film from the viewpoint of exhibiting the effects of the present invention.
  • the position of the convex portion is adjusted by locally heating the film so that the positions of the convex portions are aligned substantially in a straight line in the longitudinal direction of the film surface, and It is more preferable that the absolute value of the slope of the substantially straight line is in the range of 0.01 to 0.6°, from the viewpoint that the convex portions of the film do not overlap each other during the winding process and an extra air layer is not formed.
  • the local heating is performed by infrared heaters arranged in the width direction and the longitudinal direction of the film, the heat sources of the infrared heaters are arranged at intervals of 10 to 100 mm in the width direction of the film, and The heat source parts are arranged in the longitudinal direction of the film at positions different from the width position, and the average inclination of the straight line connecting each arranged heat source part E A and E B is in the range of 2 to 45 ° with respect to the longitudinal direction. It is preferable from the viewpoint of film thickness controllability and stability, and from the viewpoint of providing appropriate intervals between the heat sources.
  • the average value B of the amount of heat A at the central portion of the infrared heater and the amount of heat B at the ends of the infrared heater satisfy the above formula (1).
  • the film is not knurled after the trimming step.
  • the maximum height difference (PV) of the longitudinal average film thickness at each width position of the film thickness values measured in the order of steps 1 to 3 in a direction oblique to the width direction of the film is 0.02. From the viewpoint of exhibiting the effect of the present invention, it is preferable that the thickness is within the range of up to 0.40 ⁇ m.
  • the projection adjusting system used for manufacturing the film roll of the present invention has a projection adjusting process for adjusting the number, height and position of the projections in the width direction of the film surface.
  • a film thickness acquisition means for acquiring a film thickness profile of the film during or after the convex portion adjustment step, and the data of the film thickness profile, the number of convex portions in the width direction per 1 m Determination of whether or not it is within the ideal value range of 1 to 10, and whether the protrusion height in the width direction is within the ideal value range of 0.05 to 0.50 ⁇ m and in the determination means, if both or one of the number of protrusions and the height of the protrusions is outside the range of the ideal values, both the number of protrusions and the height of the protrusions are outside the range of the ideal values. and means for locally heating the film by an infrared heater so that both are within the range of ideal values.
  • the method for producing a film roll of the present invention is a method for producing a film roll by a solution or melt casting method, comprising at least a film forming step, a step of adjusting protrusions in the width direction of the film surface, and both ends of the film.
  • the convex portion adjusting step is a step of adjusting the number, height and position of the convex portions, and the film
  • the number of protrusions is set to 1 to 10 per 1 m in the width direction
  • the height of the protrusions is set to 0.05 to 0.50 ⁇ m
  • the It is characterized in that the positions of the convex portions are adjusted so as to move continuously in the longitudinal direction of the film surface.
  • the air layer (air layer) can be appropriately taken into the film roll in the film winding process by the above-described means, and uneven air intake is suppressed, so that the entire contact surface where the films face each other This has the effect of preventing winding slippage during transportation without causing poor winding of the chain or the like.
  • the film according to the present invention is produced by a solution casting film forming method or a melt casting film forming method, but the solution casting film forming method is more preferable in order to obtain a uniform surface.
  • the “convex portion” refers to a portion higher than the average film thickness, that is, a thicker portion of the peaks and valleys of the uneven shape of the thickness of the optical film measured and observed by film thickness measurement. Details are shown below.
  • Measurement and evaluation of the state of the convex portion is performed after measuring the film thickness at an arbitrary position on the edge of the film, and then measuring the film thickness at a position moved 10 mm in the width direction and 30 mm in the longitudinal direction from the arbitrary position for each measurement. Measure, repeat it to the end of the other film, remove noise by Gaussian filter processing, obtain a film thickness profile in the width direction, and measure and evaluate the state of the convex portion based on the profile ( The final number, height and position of the projections shall be measured from the edge of the film after the cutting step described later).
  • end of the film refers to a region within the range of 15 to 30 mm from the end of the film (roll) in the width direction
  • film roll refers to a film wound into a roll. I mean film.
  • the average film thickness is determined by taking the average value of the measured values of each film thickness in the width direction obtained by the above operation, and the film thickness profile in the width direction is thicker than the average film thickness as shown in FIG.
  • the portion where the tapered portion continues for 50 mm or more in the width direction is defined as a convex portion, and the number of such portions is defined as the number of convex portions. If the number of protrusions is too large, each peak will be sharp and the film will be deformed. occur. Therefore, the effect of the present invention can be expected by setting the number of the protrusions within the range of 1 to 10 per 1 m in the width direction.
  • the position where the maximum value is obtained in each convex portion determined by the above method is the position of the convex portion, and the value obtained by subtracting the average film thickness in the width direction from the maximum value of the convex portion is the height of each convex portion.
  • the height of the protrusions is too high, the film roll will form a chain shape at the foot of the mountain after being left for a long time. Therefore, the effect of the present invention can be expected by setting the height of the convex portion within the range of 0.05 to 0.50 ⁇ m.
  • the positions of the projections are adjusted so that they move continuously in the longitudinal direction of the film surface, and the projections do not overlap each other during film winding, so that the number and height of the projections described above can be adjusted.
  • the effect of the adjustment function of can be further enhanced.
  • the above film thickness was measured using an in-line retardation/film thickness measuring device RE-200L2T-Rth+ film thickness (manufactured by Otsuka Electronics Co., Ltd.).
  • FIG. 2 is a flow chart showing the flow of manufacturing steps of the method for manufacturing a film roll according to the present invention.
  • the solution casting film forming method will be described below with reference to FIGS. 2 and 3.
  • FIG. The method of manufacturing a film roll by the solution casting film forming method of the present invention includes a film forming step (S1), a protrusion adjusting step (S2), a trimming step (S3) and a winding step (S4).
  • a dope is prepared using a cycloolefin resin (hereinafter also referred to as "COP") as a thermoplastic resin
  • COP cycloolefin resin
  • a solvent that is mainly a good solvent for cycloolefin resin (COP) the COP and optionally other compounds are dissolved in a dissolution vessel while stirring to prepare a dope, or in the COP solution, optionally other A dope, which is the main solution, is prepared by mixing the compound solutions of .
  • COP cycloolefin resin
  • the concentration of the cycloolefin resin (COP) in the dope is preferably as high as possible because the drying load after casting onto the support can be reduced. However, if the concentration of COP is too high, the load during filtration will increase and the accuracy will deteriorate.
  • concentration that satisfies these requirements is preferably in the range of 10 to 35% by mass, more preferably in the range of 15 to 30% by mass.
  • solvent a mixed solvent of a good solvent and a poor solvent is used.
  • the solvent used in the dope may be used alone or in combination of two or more, but it is preferable to use a mixture of a good solvent and a poor solvent for the cycloolefin resin (COP) from the viewpoint of production efficiency. In view of the solubility of COP, it is preferable to use a large amount of a good solvent.
  • a preferable range of the mixing ratio of the good solvent and the poor solvent is 70 to 98% by mass of the good solvent and 2 to 30% by mass of the poor solvent.
  • a good solvent and a poor solvent are defined as a good solvent that dissolves the cycloolefin resin (COP) to be used alone, and a poor solvent that swells or does not dissolve alone. there is Therefore, a good solvent and a poor solvent change depending on the average degree of COP substitution.
  • organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, methyl acetoacetate and the like can be mentioned. Particularly preferred are methylene chloride and methyl acetate.
  • the poor solvent used in the present invention is not particularly limited, for example, methanol, ethanol, n-butanol, cyclohexane, cyclohexanone and the like are preferably used. Further, it is preferable that the dope contains 0.01 to 2% by mass of water.
  • the solvent used for dissolving the cycloolefin resin is used by recovering the solvent removed from the film by drying in the film forming process and reusing it.
  • the recovery solvent may contain trace amounts of additives added to the COP, such as plasticizers, UV absorbers, polymers, monomer components, etc., even if these are contained, they should preferably be reused. It can be purified and reused if necessary.
  • a general method can be used as the method for dissolving the COP when preparing the dope described above. Specifically, a method of performing at normal pressure, a method of performing at the boiling point of the main solvent or less, and a method of pressurizing at the boiling point or higher of the main solvent are preferable, and a combination of heating and pressurization enables heating to the boiling point or higher at normal pressure.
  • a method of stirring and dissolving while heating at a temperature above the boiling point of the solvent at normal pressure and within a range in which the solvent does not boil under pressure is also preferable in order to prevent the generation of massive undissolved substances called gels and lumps. .
  • a method of mixing a cycloolefin resin (COP) with a poor solvent to wet or swell it, and then adding a good solvent to dissolve it is also preferably used.
  • COP cycloolefin resin
  • Pressurization may be performed by a method of injecting an inert gas such as nitrogen gas or a method of increasing the vapor pressure of the solvent by heating. Heating is preferably performed from the outside, and for example, a jacket type is preferable because temperature control is easy.
  • an inert gas such as nitrogen gas
  • a jacket type is preferable because temperature control is easy.
  • a higher heating temperature with the addition of a solvent is preferable from the viewpoint of the solubility of the cycloolefin resin (COP), but if the heating temperature is too high, the required pressure increases and productivity deteriorates.
  • COP cycloolefin resin
  • the heating temperature is preferably in the range of 30 to 120°C, more preferably in the range of 60 to 110°C, even more preferably in the range of 70 to 105°C. Also, the pressure is adjusted so that the solvent does not boil at the set temperature.
  • a cooling dissolution method is also preferably used, whereby the cycloolefin resin (COP) can be dissolved in a solvent such as methyl acetate.
  • COP cycloolefin resin
  • the filter medium preferably has a small absolute filtration accuracy in order to remove insoluble matter and the like. For this reason, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium with an absolute filtration accuracy within the range of 0.001 to 0.008 mm is more preferable, and a filter medium with an absolute filtration accuracy within the range of 0.003 to 0.006 mm is even more preferable.
  • the material of the filter medium there are no particular restrictions on the material of the filter medium, and ordinary filter mediums can be used. preferable.
  • a bright spot foreign matter is when two polarizing plates are placed in a crossed Nicols state, a film or the like is placed between them, and light is applied from one polarizing plate side and observed from the other polarizing plate side. It is a point (foreign matter) that looks like light leaking from the side, and the number of bright spots with a diameter of 0.01 mm or more is preferably 200/cm 2 or less. It is more preferably 100/cm 2 or less, still more preferably 50/m 2 or less, still more preferably 0 to 10/cm 2 or less. Also, it is preferable that the number of bright spots of 0.01 mm or less is small.
  • Filtration of the dope can be carried out by an ordinary method, but a method of filtering while heating at a temperature above the boiling point of the solvent at normal pressure and within a range in which the solvent does not boil under pressure is preferred because the filtration pressure before and after filtration is reduced. It is preferable because the difference (referred to as differential pressure) is small.
  • the temperature is preferably in the range of 30-120°C, more preferably in the range of 45-70°C, even more preferably in the range of 45-55°C.
  • the dope cast on the support 3 is sent through a pressurized metering gear pump or the like to the casting die 2 through a conduit, and is infinitely transferred.
  • a dope is cast from a casting die 2 onto a casting position on a support 3 made of an endless belt.
  • the inclination of the casting die 2, that is, the direction in which the dope is discharged from the casting die 2 to the support 3 is an angle of 0 to 90 with respect to the normal to the surface of the support 3 (the surface on which the dope is cast). ° may be set as appropriate.
  • the support 3 is heated to evaporate the solvent until the cast film 5 can be peeled off from the support 3 by a peeling roller (also referred to as "roll") 4 .
  • the casting film after the casting film 5 is solidified and made peelable is simply referred to as a "film”.
  • solvent evaporation method The above evaporation is preferably carried out in an atmosphere within the range of 5 to 75°C.
  • To evaporate the solvent there are a method of applying hot air to the upper surface of the casting film, a method of transferring heat from the back surface of the support 3 with a liquid, and a method of transferring heat from the front and back by radiant heat.
  • a method of transferring heat from the front and back is preferable because of good drying efficiency.
  • the method of combining them is also preferably used.
  • the casting width is preferably 1.3 m or more from the viewpoint of productivity. More preferably, it is within the range of 1.3 to 4.0 m. If the casting width does not exceed 4.0 m, streaks will not occur in the manufacturing process, and the stability in the subsequent transport process will be high. From the viewpoint of transportability and productivity, the range of 1.3 to 3.0 m is more preferable.
  • the support 3 for casting the dope preferably has a mirror-finished surface, and is held by a pair of rollers 3a and 3b and a plurality of rollers positioned therebetween.
  • rollers 3a and 3b are provided with a drive for applying tension to the support 3, whereby the support 3 is used under tension.
  • a stainless steel belt or a cast drum with a plated surface is preferably used as the support 3.
  • the surface temperature of the support 3 in the casting of the dope is within the range of -50°C to the boiling point of the solvent.
  • the support temperature is preferably in the range of 0 to 55°C, more preferably in the range of 22 to 50°C.
  • a method for controlling the temperature of the support 3 is not particularly limited, but there are a method of blowing hot or cold air and a method of contacting the back side of the support with hot water.
  • the use of hot water is preferable because it takes less time to reach a constant temperature of the support because heat is transferred more efficiently.
  • the air may have a higher temperature than the target temperature.
  • the maximum height difference of the longitudinal average film thickness at each width position of the film thickness values measured in the order of the following steps 1 to 3 in the oblique direction with respect to the width direction of the film ( PV) is preferably in the range of 0.02 to 0.40 ⁇ m from the viewpoint of exhibiting the effects of the present invention.
  • Step 1 After measuring the film thickness at an arbitrary position on the edge of the film, the film thickness is measured at a position moved 10 mm in the width direction from the arbitrary position and 30 mm in the longitudinal direction for each measurement, and the width position and the longitudinal position. , record the film thickness value and repeat it to the end of the other film.
  • Step 2 After step 1, the same measurements as in step 1 are performed until the total distance of the moving positions in the longitudinal direction reaches 1000 m.
  • Step 3 From the multiple film thickness data obtained in steps 1 and 2, the film thickness values at the same width position are averaged to obtain the longitudinal average film thickness value at each width position. A height difference (PV) between the maximum value and the minimum value is calculated from among them.
  • PV height difference
  • the maximum height difference (PV) of the longitudinal average film thickness at each width position of the film thickness values measured in the order of the following steps 1 to 3 in a direction oblique to the width direction of the film according to the present invention is desired.
  • the following three film thickness control means can be used in order to adjust to the value of .
  • the maximum height difference (PV) of the longitudinal average film thickness can be adjusted to a desired value in the projection adjustment step as well, which will be described later in the projection adjustment step. Moreover, you may combine them.
  • Thickness control means 1 Pitch control of pump pulsation
  • the film thickness is controlled by the method of controlling the pitch of the pump pulsation. It is known to use a high-precision gear pump in dope feeding (extrusion of resin in the case of melting) in the pipe up to the casting die, but the gear pump controls the rotation speed of the pump by its gear ratio. Thus, the pitch of the pump pulsation can be controlled, and the pulsation during liquid feeding greatly affects the longitudinal film thickness and the average maximum height difference (PV) of the longitudinal average film thickness.
  • PV average maximum height difference
  • the liquid feeding capability of the pump In dope casting, if the length of the pipe from the pump to the casting die is too short, the pulsation will not increase due to the influence of the rotation speed of the pump, and if it is too long, the pressure loss will be too large. Therefore, it is possible to prevent the liquid feeding capability of the pump from exceeding the lower limit and lowering. Also, if the rotation speed of the pump is not too slow, it is possible to prevent the drop in the liquid-feeding ability, and if it is not too fast, the pressure loss does not become too large, and the drop in the liquid-feeding ability can be prevented.
  • the length of the pipe from the pump to the casting die is within the range of 50 to 100 m, and the gear ratio of the gear pump used for feeding the dope (extrusion of the resin in the case of melting) is adjusted. It is preferable that the rotation speed of is within the range of 10 to 50 rpm.
  • the heat bolt of the casting die controls the initial ejection film thickness.
  • the method of controlling the slit gap at the lip portion of the casting die is a method for both the solution casting film forming method and the melt casting film forming method. mentioned.
  • this method has the problem that there is a physical installation limit for the number of heat bolts.
  • the casting die is provided with a mechanism for adjusting the width of the slit for discharging the dope (extrusion of the resin in the case of melting).
  • the heat bolt of the casting die can be technically relatively easily prepared and does not take much time unless the gap on the width of the slit for discharging the dope is too small. Also, if the width of the slit for discharging the dope is too large, the initial film thickness of the cast film cannot be flattened.
  • the width of the slit through which the dope is discharged is set by the heat bolt of the casting die so that the film thickness deviation immediately after discharge is 1.0 to 1.0 for the entire casting film. It is preferable to control the initial ejection film thickness of the cast film by adjusting it within the range of 5.0%.
  • the portion of the casting die slit where the dope comes out is called a lip, and a casting die is preferable because the slit shape of the lip portion can be adjusted and the film thickness can be easily made uniform.
  • Casting dies include coat hanger dies, T dies, and the like, and all of them are preferably used.
  • the casting film means a dope film cast from the lip portion.
  • two or more of the above-mentioned casting dies may be provided on the support, and the dope amount may be divided for layering.
  • the slit can be narrowed by manually turning and pushing in the heat bolt to make the film thinner, or conversely, it can be opened to make it thicker. It is also common to apply a voltage to the heat bolt to push it in by heat, but it is usually used in combination. It is also possible to adopt a method of pushing and pulling.
  • the pitch of the bolts may not be narrowed.
  • dope including melted
  • the pressure load on the lip is large when the casting die is discharged, and the load after discharge is rapid.
  • the film thickness varies due to a decrease in the film thickness and the film thickness becomes large (balance effect). Therefore, it is necessary to design the lip of the casting die so that the internal structure of the casting die does not apply too much load.
  • Film thickness control means 3 Film thickness control by hot air
  • the film thickness is controlled by blowing hot air onto the casting film and flattening the projections with the heat.
  • the wind may be applied while the surface layer of the casting film on the opposite side of the belt is a film, or hot air may be blown immediately after the casting film is peeled off from the belt. .
  • the inside of the casting film contains a solvent and is soft, the protrusions are flattened.
  • the film thickness is controlled by adjusting the amount of residual solvent.
  • the temperature, air velocity or air volume of the drying air, and the amount of residual solvent will be additionally explained. If the temperature of the drying air is not too low, the air velocity is not too low, or the air volume is not too small, the film thickness can be properly controlled. Also, unless the temperature is too high, the wind speed is too high, or the air volume is too high, the film thickness will not be locally uncontrollable.
  • the amount of residual solvent is not too small, it does not occur that the state of the film is already closer to that of a film than that of a casting film and cannot be flattened. Also, if the amount is not too large, the film thickness will not vary during flattening.
  • planarization 3 can be performed with a thin film formed on the surface layer by adjusting the amount of residual solvent to an appropriate level.
  • the temperature of the drying air is preferably within the range of 10 to 80° C.
  • the wind speed is preferably within the range of 5 to 40 m/sec.
  • the residual solvent content is preferably 150 to 550% by mass.
  • the above operation is performed in a state where the surface layer of the casting film on the side opposite to the belt is not formed into a film, streaks will form, and it is not preferable that the inside be dry.
  • peeling roller The position where the film is peeled off from the support is called the peeling point, and the roller that assists the peeling is called the peeling roller.
  • the temperature at the peeling position on the support is preferably within the range of -50 to 40°C, more preferably within the range of 10 to 40°C, and most preferably within the range of 15 to 30°C.
  • the amount of solvent remaining in the film on the support 3 at the time of peeling is appropriately adjusted depending on the strength of the drying conditions, the length of the support 3, and the like. Although it depends on the thickness of the film, if the amount of residual solvent at the peeling point is too large, the film may become too soft and difficult to peel off, resulting in loss of flatness and horizontal sagging, wrinkles, and vertical streaks due to peeling tension. It may occur more easily. Conversely, if the amount of residual solvent is too small, the film may partially peel off during the process. In order for the film to exhibit good flatness, the amount of residual solvent is desirably in the range of 10 to 50% by mass from the viewpoint of balancing economic speed and quality.
  • the film-forming speed can be increased because the film is peeled off while the amount of residual solvent is as large as possible
  • a gel casting method that allows the film to be peeled off even when the amount of residual solvent is large.
  • a poor solvent for the cycloolefin resin (COP) is added to the dope, and after dope casting, the casting film is gelled, and the support is cooled to gel the casting film.
  • COP cycloolefin resin
  • peeling off in a state containing a large amount of residual solvent There is also a method of adding a metal salt to the dope. As described above, by gelling the casting film on the support and strengthening the film, it is possible to accelerate the separation and increase the film forming speed.
  • Residual solvent amount (mass%) ⁇ (MN) / N ⁇ ⁇ 100
  • M is the mass of a sample taken at an arbitrary point during or after the production of the cast film or film
  • N is the mass of the sample of mass M after heating at 115° C. for 1 hour.
  • the peeling tension for peeling the film from the support is preferably 300 N/m or less. More preferably, the tension is in the range of 196 to 245 N/m, but if wrinkles are likely to occur during peeling, it is preferable to peel with a tension of 190 N/m or less.
  • the above operation promotes entanglement between polymer molecules (matrix molecules) in the thickness direction of the film, and even when the film is adhered to the polarizer layer via an adhesive during the production of the polarizing plate, the adhesive acts as the matrix molecule. It becomes easy to permeate into the inside of the film via the intertwined portion (crosslinked portion). As a result, the film can be firmly fixed to the polarizer layer via the adhesive, and the peel strength of the film to the polarizer layer can be improved. That is, it is possible to ensure good adhesiveness between the film and the polarizer layer.
  • methods for shrinking the film include, for example, a method of increasing the density of the film by performing a high-temperature treatment without holding the film widthwise, a method of sharply reducing the amount of residual solvent in the film, and the like.
  • shrinkage rate of film The shrinkage ratio in the present invention is defined by the following formula.
  • Shrinkage rate [%] Width of film after shrinkage [mm] / Width of film at start of shrinkage [mm] x 100
  • the shrinkage rate of the film is preferably in the range of 1 to 40%, more preferably in the range of 5 to 20%.
  • the width of the film was measured with LS-9000 manufactured by Keyence Corporation.
  • the width of the film is measured for 5 minutes (300 seconds) at intervals of 1 second with the above measuring device, and the average value of the values is used as the width of the film, and is substituted into the above formula.
  • the value read from a ruler may be used as the width of the film and substituted into the above formula.
  • the film is heated on the support by the drying device 6, and further dried by evaporating the solvent.
  • the temperature of the support may be the same throughout, or may vary from position to position.
  • roller drying method a method in which the film is alternately passed through a number of rollers arranged vertically to dry it
  • a method in which the film is dried while being transported by a tenter method is adopted.
  • a tenter stretching device When a tenter stretching device is used in the tenter method, it is preferable to use a device that can independently control the left and right gripping lengths of the film (the distance from the start of gripping to the end of gripping) by left and right gripping means of the tenter stretching device. .
  • the film is transported by a plurality of transport rollers arranged in a zigzag pattern when viewed from the side, and the film is dried in the meantime.
  • the drying method in the drying device 6 is not particularly limited, and the film is generally dried using hot air, infrared rays, heating rollers, microwaves, etc. From the viewpoint of simplicity, the method of drying the film with hot air is preferred. preferable. Moreover, the method of combining them is also preferable. Note that the above operation may be performed as necessary.
  • the amount of the residual solvent is preferably about 30% by mass or less, and drying is generally performed within the range of 30 to 250° C. throughout. In particular, it is preferable to dry within the range of 35 to 200° C., and it is preferable to increase the drying temperature stepwise.
  • the amount of solvent remaining in the film on the support 3 when the film is peeled off is appropriately adjusted depending on the strength of the drying conditions, the length of the support 3, and the like. Since the residual solvent amount is greatly affected by the film thickness, the resin, etc., there is a range that overlaps with the preferred range of the residual solvent amount.
  • Convex adjustment step (S2) (1.2.1) Overview of convex portion adjustment step
  • the convex portion preparation step in the width direction of the film surface according to the production method of the present invention is a step of adjusting the number, height and position of the convex portions, By subjecting the film to local heating, the number of protrusions is set within the range of 1 to 10 per 1 m in the width direction, and the height of the protrusions is set within the range of 0.05 to 0.50 ⁇ m. and adjusting the positions of the projections so as to move continuously in the longitudinal direction of the film surface.
  • the film is locally heated as a means for adjusting the convexities.
  • local heating means include an infrared (IR) heater and hot air, but the heat treatment is not particularly limited, and heat treatment may be performed by other methods.
  • IR infrared
  • the advantage of the hot air method is that it has a sufficient ability to adjust the film thickness regardless of the material.
  • the film is stretched while being locally heated in a stretching device.
  • the film thickness profile in the width direction of the target film is measured using an in-line retardation/film thickness measuring device RE-200L2T-Rth+ film thickness (manufactured by Otsuka Electronics Co., Ltd.), and the target film thickness
  • the set temperature of each infrared heater is calculated on the computer, and the set temperature of each heat source is output via PLC KV-8000 (manufactured by Keyence Corporation) to adjust the convex part, This process is automatically repeated to automatically adjust the film thickness.
  • the film may be stretched only in the MD direction in the plane of the film, may be stretched only in the TD direction, or may be stretched in both the MD direction and the TD direction. It may be stretched against or may be stretched in an oblique direction. Moreover, the stretching direction is not limited, but from the viewpoint of obtaining a wide film, it is preferable to stretch at least in the lateral direction.
  • a stretching method at this time a method of stretching in the conveying direction (longitudinal direction of the film; film forming direction; casting direction; MD direction) by providing a roller peripheral speed difference;
  • a tenter method in which the film is fixed at and stretched in the width direction (the direction perpendicular to the film plane; TD direction) is preferable for improving the performance/productivity, flatness and dimensional stability of the film.
  • Width retention and lateral stretching in the film-forming process are preferably carried out by a tenter-stretching device, which may be a pin tenter or a clip tenter.
  • a tenter stretching device 7 drying may be performed in addition to stretching.
  • stretch ratio In the stretching process, it is preferable to stretch the film at a high magnification in order to secure a high retardation, secure a wide width, and promote penetration of the adhesive when bonding to the polarizer layer. However, if the draw ratio is too high, the drawing stress may cause crazes in the film, or the entanglement between matrix molecules that maintain the film strength may be dissociated, thereby weakening the film.
  • the draw ratio of the film is preferably within the range of 1.1 to 5.0 times, more preferably within the range of 1.3 to 3.0 times.
  • the stretching at the highest magnification which has the highest risk of dissociation of matrix molecules, be performed in the final stretch.
  • the amount of residual solvent in the film during stretching is preferably 20% by mass or less, more preferably 15% by mass or less.
  • FIGS. 4A, 4B, and 4C show a series of convex portions with periodicity, they are not limited to those with periodicity.
  • the "substantially straight line” means that, as shown in FIG. 5, when plotting the center point of each protrusion with the width direction of the film as the horizontal axis (x-axis) and the longitudinal direction of the film as the vertical axis (y-axis), A line that can be regarded as a substantially straight line, including points that deviate from a strictly straight line due to variations in the control conditions of the projection adjustment process and film properties.
  • the approximate straight line is an approximate straight line obtained by the method of least squares
  • the absolute value of the correlation coefficient of the linear expression representing the approximate straight line is preferably 0.8 or more.
  • substantially constant rate of change refers to a rate of change within the range of the average value ⁇ 10%.
  • the effect of the present invention is exhibited by adjusting the positions of the protrusions so that they are aligned substantially linearly in the longitudinal direction of the film surface by locally heating the film. preferable from this point of view.
  • the film thickness profile is prevented from changing abruptly in the longitudinal direction of the film, and the continuity of the protrusions is maintained, thereby enhancing the effect of the present invention.
  • the absolute value of the slope of the substantially straight line is within the range of 0.01 to 0.6° from the viewpoint of exhibiting the effects of the present invention.
  • the inclination ⁇ ' of the substantially straight line with respect to the longitudinal direction of the film surface according to the present invention is determined as follows.
  • FIG. 5 shows the film thickness profile measured using an in-line retardation/film thickness measuring device RE-200L2T-Rth+ film thickness (manufactured by Otsuka Electronics Co., Ltd.) and the position of the convex portion calculated from the average film thickness.
  • the width direction of the film is plotted on the horizontal axis (x-axis) and the longitudinal direction of the film is plotted on the vertical axis (y-axis).
  • the position of the convex portion at an arbitrary position on the edge of the film is P 0 (x 0 , y 0 )
  • the coordinates of the other convex portions are P 1 (x 1 , y 1 ), P 2 (x 2 , y 2 ) , .
  • the heat source portions of the infrared heater are arranged at intervals of 10 to 100 mm in the width direction of the film, and the heat source portions are arranged and arranged at positions different from the width position in the longitudinal direction of the film. From the viewpoint of manifesting the effects of the present invention, it is preferable that the average inclination ⁇ E ' of the straight line connecting the heat sources E A and E B is in the range of 2 to 45° with respect to the longitudinal direction. The smaller the distance between the heat sources of the infrared heaters, the finer the profile can be adjusted.
  • the infrared heaters on the film are regularly arranged in one or more rows in the longitudinal direction of the film, for example, as shown in FIGS. 6A, 6B and 6C (FIG. 6A shows one row in the 6B has two rows in the longitudinal direction of the film, and FIG. 6C has five rows in the longitudinal direction of the film.).
  • P1, P2 and P3 represent the pitch of the heat source section installation intervals of the respective infrared heaters.
  • each heat source part in the infrared heater is the central part of each infrared heater, as can be seen from FIGS. 6A, 6B and 6C.
  • the shape of the infrared heater in the present invention is not limited, and the heat source of the actual infrared heater may have a shape such as a point shape, a linear shape, or a planar shape. , the central portion of the heat source portion of the actual infrared heater, regardless of whether the shape of the actual infrared heater is point-like, linear, or planar. Also, the infrared heater is arranged at a position 30 to 120 mm away from the film surface. Also, the heating width was set in the range of 100 to 250 mm. Furthermore, the installation interval of the heat sources of the infrared heaters was set within the range of 10 to 100 mm. Each heat source part of the infrared heater was set within the range of 100 to 1000 W and within the range of 180 to 350°C.
  • each heat source will be specifically described below.
  • the positional relationship between the heat sources EA and EB is determined from the coordinates in the width direction. This is the closest positional relationship with different coordinate positions in the longitudinal direction (see FIG. 6).
  • FIGS. 7A and 7B there are positional relationships as shown in FIGS. 7A and 7B.
  • the average inclination ⁇ E ' of the straight line connecting the arranged heat sources E A and E B with respect to the longitudinal direction is derived as follows.
  • the film thickness control means in the projection adjusting step can be carried out, for example, by changing the furnace temperature in the tenter stretching device or the timing of the heat treatment.
  • the heat treatment was performed by an infrared (IR) heater, but the heat treatment may be performed by other methods.
  • the above film thickness control means 4 can also be carried out by changing the environmental temperature and the timing of the heat treatment in the furnace of another process other than in the tenter stretching apparatus.
  • the furnace temperature defined in the present application is the temperature measured at a position 100 mm above the center of the film immediately before the film passes through the stretching zone in the tenter stretching device (the stretching zone will be described later), and is measured at intervals of 1 minute. The value of each temperature is measured for 1 hour and the average value is calculated. If the temperature difference between the furnace temperature and the heat treatment is neither too small nor too large, it becomes easy to prepare the projections.
  • the temperature difference between the furnace temperature and the heat treatment is preferably within the range of 100 to 200.degree.
  • the furnace temperature is preferably in the range of 120-220°C, more preferably in the range of 120-180°C.
  • the section for heat treatment shall be the target.
  • the amount of residual solvent in the film immediately before the film passes through the stretching zone is preferably 20% by mass or less, more preferably 15% by mass or less.
  • a tenter stretching device is a device that stretches a film by gripping both ends of the film in the width direction with clips and widening the gap while running the clips along with the film, and usually has multiple zones (preheating zone, A stretching zone and a heat setting zone), and the timing of heat treatment in the above three zones is changed as required.
  • Infrared (IR) heaters are used for the above heat treatment, and the number of infrared (IR) heaters is appropriately installed in each zone according to need.
  • a heater other than an infrared (IR) heater can be used as the method of heat treatment in the present invention.
  • FIG. 8 is a plan view schematically showing the internal structure of the tenter stretching device, and is a cross-sectional view of the tenter stretching device as viewed from above the plane perpendicular to the surface of the film. Note that FIG. 8 shows a state in which the cover is removed, and the cover is indicated by a chain double-dashed line.
  • the tenter stretching device 40 has a large number of clips 42 for gripping both ends of the film F in the width direction, and the clips 42 are attached to endless chains 48 at regular intervals.
  • the endless chains 48 are arranged on both sides of the film F, and are stretched between a driving sprocket 50 on the entrance side and a driven sprocket 52 on the exit side.
  • the driving sprocket 50 is connected to a motor (not shown), and the driving sprocket 50 is rotated by driving this motor. As a result, the endless chain 48 circulates between the driving sprocket 50 and the driven sprocket 52, so that the clip 42 attached to the endless chain 48 circulates.
  • a rail 54 is provided between the driving sprocket 50 and the driven sprocket 52 to guide the endless chain 48 (or the clip 42).
  • the rails 54 are arranged on both sides of the film F, and the interval between the rails 54 is configured so that the distance between the rails 54 is wider on the downstream side than on the upstream side in the transport direction of the film F. As a result, the distance between the clips 42 is widened when the clips 42 travel around, so that the optical film F gripped by the clips 42 can be laterally stretched in the width direction.
  • a release member 56 is attached to each of the driving sprocket 50 and the driven sprocket 52 .
  • the opening member 56 is a device for displacing a flapper (not shown) of the clip 42, which will be described later, from a gripping position to an opening position.
  • the interior of the tenter stretching device 40 is provided with a preheating zone, a (lateral) stretching zone and a heat setting zone. Zones are partitioned by wind shield curtains (not shown).
  • hot air is supplied to the film F from above, below, or both.
  • the hot air is uniformly blown out in the width direction of the film F while being controlled at a predetermined temperature for each zone. Thereby, the inside of each zone is controlled to a desired temperature.
  • Each zone will be described below.
  • the preheating zone is a zone for preheating the film F, and heats the film F without widening the gap between the clips 42 .
  • the film F preheated in the preheating zone moves to the transverse stretching zone.
  • the lateral stretching zone is a zone in which the film F is laterally stretched in the width direction by widening the interval between the clips 42 .
  • the draw ratio in this lateral stretching treatment is preferably in the range of 1.0 to 2.5 times, more preferably in the range of 1.05 to 2.3 times, even more preferably in the range of 1.1 to 2 times. .
  • the film F laterally stretched in the lateral stretching zone moves to the heat setting zone.
  • the interior of the tenter 40 is divided into a preheating zone, a (lateral) stretching zone, and a heat setting zone, but the types and arrangements of the zones are not limited to these.
  • a cooling zone for cooling the film F may be provided.
  • a heat relaxation zone may also be provided within the heat setting zone.
  • the tenter 40 performs only lateral stretching, but the longitudinal direction may also be stretched at the same time.
  • the pitch of the clips 42 (interval between the clips 42 in the conveying direction) may be changed when the clips 42 are moved.
  • a mechanism for changing the pitch of the clip 42 for example, a pantograph mechanism or a linear guide mechanism can be used.
  • FIG. 9 is a schematic diagram of the nozzle and heater installation parts when viewed from the front of the three zones in the tenter drawing apparatus. Also, as an example of the case where an infrared (IR) heater is installed in each zone, a side view of three zones in the tenter stretching apparatus when an infrared (IR) heater is installed in the preheating zone is shown in FIG.
  • IR infrared
  • the infrared (IR) heater is located only above the nozzle so that the film does not contact the infrared (IR) heater when the film breaks.
  • the radiant energy from the infrared (IR) heater can be concentrated in a narrower range.
  • IR) Move the heater as close as possible.
  • the distance H A from the film to the infrared (IR) heater is preferably within the range of 30-120 mm. Moreover, it is preferable to use the infrared (IR) heater having a heating width of 100 to 250 mm.
  • the "heating width” in the above description is the width heated by the infrared (IR) heater until the heating intensity reaches 0.2 when the heating intensity directly below the infrared (IR) heater is 1. shall be said.
  • the installation interval (pitch) of the infrared (IR) heaters is preferably 10 to 100 mm, and heating is preferably performed at 100 to 1000 W and within the range of 150 to 400°C.
  • the film thickness profile in the width direction of the film is measured at each position, and the set temperature of each infrared (IR) heater is determined from the difference between the target film thickness profile and the current film thickness profile.
  • set temperature was output to each infrared (IR) heater via Keyence PLC KV-8000, and these operations were automatically repeated to adjust the protrusions.
  • FIG. 9 shows heat treatment mainly from the central nozzle, and although heat treatment by the end nozzles is not performed in this example, it can be used together in this embodiment.
  • infrared (IR) heaters coming out from the nozzle gaps as shown in Fig. 10 can transmit the radiant energy to the film without waste.
  • FIG. 11 is a cross-sectional view of the tenter-stretching device viewed from above a plane perpendicular to the surface of the film from a different viewpoint from that of FIG. 8 .
  • the infrared (IR) heaters were arranged in rows so that the entire width of the film could be heated even before stretching. Note that the heaters may be arranged in a zigzag pattern in the longitudinal direction.
  • the convex portion adjustment step (S2) local heating is performed using an infrared (IR) heater, and the amount of heat A in the central portion of the infrared (IR) heater and the infrared rays 75 mm away from the central portion (IR) It is preferable that the average value B of the heater end portion heat quantity satisfies the following formula (1) from the viewpoint of exhibiting the effect.
  • Formula (1) 0.2 ⁇ (B/A) ⁇ 0.6 If the heat convergence of the infrared radiated light from the infrared heater is good, it is possible to adjust the film thickness profile more finely. Range is effective.
  • central portion of the infrared (IR) heater in the above description refers to each heat source portion in FIG. 6 described above.
  • the "infrared (IR) heater edge” in the above description refers to a position 75 mm in the lateral direction from the central portion.
  • the heat amount A at the central portion of the infrared (IR) heater and the average value B of the heat amount at the ends of the infrared heater are obtained by measuring the temperature distribution with a thermo viewer (VIM-640G2ULC manufactured by Vision Sensing Co., Ltd.). It was calculated by taking the average value, but when the heat treatment was performed by another method, it corresponded to it.
  • the infrared (IR) heater heats the film.
  • the width of the temperature fluctuation of the heated portion is integrated in the longitudinal direction, and the heat quantity A is the central portion of the width. From the above values, the heat amount ratio (B/A) between the heat amount A at the central portion of the infrared (IR) heater and the average value B of the heat amount at the ends of the infrared (IR) heater is calculated.
  • An infrared (IR) heater that can be used in the practice of the present invention differs from general infrared (IR) heaters in that it is designed to narrow the irradiation range of infrared rays with pinpoint accuracy by using a mirror that reflects infrared rays. preferably.
  • Mirrors that reflect infrared rays include, for example, a cold mirror (manufactured by Sigma Koki Co., Ltd.) and a large number of infrared aluminum enhanced reflection mirrors (manufactured by Novo Optics).
  • the mirror used in the practice of the present invention was an infrared aluminum increased reflection mirror (manufactured by Novo Optics), which is a mirror using aluminum.
  • the infrared irradiation range of one current general infrared (IR) heater is, for example, MCHNNS3, irradiation energy 400 W (manufactured by Misumi Corporation) and 500 mm in the width direction.
  • the infrared irradiation range of one infrared (IR) heater is 100 to 150 mm in the width direction at an irradiation energy of 550 W (manufactured by Heattech Co., Ltd.).
  • the cutting section 8 consisting of a slitter cuts (trimming) both ends of the stretched film F in the lateral direction. From the viewpoint of exhibiting the effects of the present invention, it is preferable not to oscillate the film before trimming.
  • the term "oscillate" refers to moving the film itself in the width direction.
  • the portion remaining after cutting the both ends of the film constitutes the product portion which will be the film product.
  • the portion cut from the film F may be recovered and reused as part of the raw material for forming the film.
  • it is possible to knurl the film after the trimming step it is preferable not to knurl the film after the trimming step from the viewpoint of suppressing excessive intake of air.
  • Winding step (S4) Finally, in the winding step (S4), the film F is wound by the winding device 13 to obtain a film roll. That is, in the winding process, the film roll is manufactured by winding the film F around the core while transporting it.
  • a preferable range of the initial tension when winding the film in the winding process is in the range of 20 to 300 N/m.
  • the residual solvent amount is in the range of 0.00 to 0.20% by mass.
  • Winding method The method of winding the film F may use a generally used winder, and there are methods of controlling tension such as a constant torque method, a constant tension method, a taper tension method, and a program tension control method with constant internal stress. should be used properly.
  • edges of the film may be slit to the width of the product and cut off, and surface modification treatment may be applied to both ends of the film to prevent sticking and scratches during winding.
  • the film roll according to the present invention is preferably a long film, and more specifically, it has a length in the range of about 100 to 10,000 m, and is usually provided in roll form.
  • the winding method includes a straight winding step of winding the film around a core so that the side edges of the film are aligned, and after the straight winding step, the side edges are periodically wound in a certain range in the width direction of the film. and an oscillating winding step of winding the film around the core by periodically vibrating the film or the core in the width direction of the film so that the film is displaced.
  • switching from the straight winding process to the oscillating winding process when the winding length of the film reaches a predetermined switching winding length within a range of 1 to 30% of the total winding length of the film. is preferred.
  • a film winding device includes a film winding unit that rotates a core to wind a film around the core, and an oscillating unit that periodically shifts the film on the core within a certain range in the width direction of the film.
  • An oscillating portion that oscillates the film or the core in the width direction of the film in conjunction with the winding of the film so that the film is wound, and the winding length of the film reaches a predetermined winding length at switching.
  • FIG. 12 is a schematic diagram showing the process of winding the film and a cross-section of the film roll according to the present invention after being wound.
  • a film 31 is wound around a roll 32 and a touch roll 33 to form a film roll 30 .
  • melt casting film forming method means heating and melting a composition containing a thermoplastic resin and the above-mentioned additives to a temperature that exhibits fluidity, and then casting the melt containing the fluid thermoplastic resin.
  • Molding methods involving heating and melting can be classified into, in detail, melt extrusion molding, press molding, inflation, injection molding, blow molding, stretch molding, and the like.
  • melt extrusion method is preferred from the viewpoint of mechanical strength, surface precision, and the like.
  • FIG. 13 is a schematic diagram of an apparatus for manufacturing an optical film by a melt-casting film-forming method.
  • the solution casting film forming method will be described below with reference to FIGS. 2 and 13.
  • FIG. 13 is a schematic diagram of an apparatus for manufacturing an optical film by a melt-casting film-forming method. The solution casting film forming method will be described below with reference to FIGS. 2 and 13.
  • FIG. 13 is a schematic diagram of an apparatus for manufacturing an optical film by a melt-casting film-forming method. The solution casting film forming method will be described below with reference to FIGS. 2 and 13.
  • the method of manufacturing a film roll by the melt-casting film-forming method of the present invention includes a film forming step (S1), a protrusion adjusting step (S2), a trimming step (S3) and a winding step (S4).
  • dry resin, plasticizer, and other additives are supplied to an extruder with a feeder, kneaded using a single-screw or twin-screw extruder, extruded from a casting die into strands, water-cooled or air-cooled, and cut. can be pelletized.
  • the additives may be mixed with the resin before being supplied to the extruder, or the additives and the resin may be supplied to the extruder by separate feeders. Also, small amounts of additives such as particles and antioxidants are preferably mixed with the resin in advance in order to be uniformly mixed.
  • the extruder suppresses the shearing force and processes the resin at a temperature as low as possible to allow pelletization so that the resin does not deteriorate (molecular weight reduction, coloration, gel formation, etc.).
  • a film is formed using the pellets obtained as described above.
  • the inclination of the casting die 15, that is, the direction in which the molten resin/pellets are discharged from the casting die 15 to the support 16 is the same as the surface of the casting drum 16 (the surface on which the molten resin/pellets are cast). It may be appropriately set so that the angle with respect to the normal line is within the range of 0 to 90°.
  • the film F may be formed by appropriately using the touch roller 16a and the cooling drum 17 that assists the cast drum 16 either singly or in combination.
  • the film thickness control means and other matters in the film forming process are the same as those in the film roll manufacturing process by the solution casting film forming method described above, and the description of the residual solvent amount, shrinkage rate, drying method, etc. is also duplicated. omitted.
  • the film is stretched while being locally heated.
  • the above film F is stretched by the stretching device 19 .
  • drying may be performed in addition to stretching.
  • the cutting section 20 consisting of a slitter cuts (trimming) both ends of the formed film F in the lateral direction. From the viewpoint of exhibiting the effects of the present invention, it is preferable not to oscillate the film or not to align the film in the width direction of the film during the trimming. In the film F, the portion remaining after cutting the both ends of the film constitutes the product portion which will be the film product. On the other hand, the portion cut from the film F may be recovered and reused as part of the raw material for forming the film. Although the film may be knurled after the trimming step, it is preferred that the film is not knurled after the trimming step from the viewpoint of exhibiting the effects of the present invention.
  • Winding step (S4) Finally, in the winding step (S4), the film F is wound by the winding device 23 to obtain a film roll. That is, in the winding process, the film roll is manufactured by winding the film F around the core while transporting it.
  • the method of winding the film F may use a generally used winder, and there are methods of controlling tension such as a constant torque method, a constant tension method, a taper tension method, and a program tension control method with constant internal stress. should be used properly.
  • the protrusion adjustment system used in the production of the film roll of the present invention is a film having a protrusion adjustment step of adjusting the number, height and position of protrusions in the width direction of the film surface.
  • a convexity adjustment system used for manufacturing a roll comprising a film thickness acquisition means for acquiring a film thickness profile of the film during the convexity adjustment process, and the convexity in the width direction based on the film thickness profile data is within the ideal value range of 1 to 10 per 1 m, and the protrusion height in the width direction is within the ideal value range of 0.05 to 0.50 ⁇ m determination means for determining whether or not the number of protrusions and the height of the protrusions in the determination means, when both or one of the number of protrusions and the height of the protrusions are outside the range of ideal values, the number of protrusions and and means for locally heating the film by an infrared heater so that the heights of the convex portions are
  • Film thickness acquisition means (means 1) As means for obtaining the film thickness in the projection adjustment system in the production of the film roll of the present invention, an in-line retardation/film thickness measuring device RE-200L2T-Rth+ film thickness (manufactured by Otsuka Electronics Co., Ltd.) was used for measurement. . Details such as definitions of terms related to the convex portion are omitted since they have been described above.
  • thermoplastic resin material used for the film according to the present invention is not limited as long as it can be treated as a film roll after film formation.
  • thermoplastic resins used for polarizing plates include cellulose ester resins such as triacetyl cellulose (TAC), cellulose acetate propionate (CAP), diacetyl cellulose (DAC), and cycloolefin polymers (cycloolefin polymers).
  • Cyclic olefin resins such as resin (COP)
  • polypropylene resins such as polypropylene (PP)
  • acrylic resins such as polymethyl methacrylate (PMMA), and polyethylene terephthalate
  • PET polyester resin
  • PET polyethylene terephthalate
  • a film with a low elastic modulus for example, a resin with an elastic modulus of less than 3.0 GPa
  • looking at the above low elastic modulus film from another point of view if there is a height difference between the longitudinal direction of the film and the longitudinal direction, the difference between the expansion and contraction at the high part and the low part of the film will be large. turn into.
  • the maximum height difference (PV) of the average longitudinal film thickness within the range of 0.02 to 0.40 ⁇ m, and the cycloolefin polymer, which is a resin with a low elastic modulus (Cycloolefin resin (COP)) or polymethyl methacrylate (acrylic resin (PMMA)) is effectively applied to a film roll using the thermoplastic resin.
  • COP Cycloolefin resin
  • PMMA polymethyl methacrylate
  • cycloolefin-based resin should be used in terms of ease of control of stretchability and crystallinity, ease of permeation of the adhesive, and ability to ensure better adhesion with the polarizer layer. is desirable.
  • the above film may be subjected to surface modification treatment after production.
  • the film thickness is preferably in the range of 5 to 80 ⁇ m, more preferably in the range of 10 to 65 ⁇ m, and even more preferably in the range of 10 to 45 ⁇ m.
  • the film thickness is 5 ⁇ m or more, the rigidity of the film roll is high, and it becomes easy to maintain the roll shape. If the film thickness is 80 ⁇ m or less, the mass does not increase too much, making it easier to produce a long film roll.
  • the cycloolefin resin contained in the film roll according to the present invention is a polymer of a cycloolefin monomer, or a copolymerizable monomer other than a cycloolefin monomer. It is preferably a copolymer with a monomer.
  • the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2) It is more preferable to have
  • R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group.
  • p represents an integer of 0 to 2; However, R 1 to R 4 do not all represent a hydrogen atom at the same time, R 1 and R 2 do not represent a hydrogen atom at the same time, and R 3 and R 4 do not represent a hydrogen atom at the same time. do.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in general formula (A-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms. 1 to 5 hydrocarbon groups are more preferred.
  • a hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds and thioether bonds. Examples of hydrocarbon groups having 1 to 30 carbon atoms include methyl, ethyl, propyl, butyl and the like.
  • Examples of polar groups represented by R 1 to R 4 in general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amido group and a cyano group. is included. Among them, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferred, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferred from the viewpoint of ensuring solubility during solution film formation.
  • p in the general formula (A-1) is preferably 1 or 2 from the viewpoint of enhancing the heat resistance of the film. This is because when p is 1 or 2, the resulting polymer becomes bulky and the glass transition temperature tends to be improved.
  • R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms.
  • R6 represents a carboxy group, hydroxy group, alkoxycarbonyl group, aryloxycarbonyl group, amino group, amido group, cyano group, or halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom).
  • p represents an integer of 0 to 2;
  • R 5 in general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, more preferably a hydrocarbon group having 1 to 3 carbon atoms.
  • R 6 in general formula (A-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group.
  • An oxycarbonyl group is more preferred.
  • p in the general formula (A-2) preferably represents 1 or 2 from the viewpoint of enhancing the heat resistance of the film. This is because when p is 1 or 2, the resulting polymer becomes bulky and the glass transition temperature tends to be improved.
  • a cycloolefin monomer having a structure represented by general formula (A-2) is preferable from the viewpoint of improving the solubility in organic solvents.
  • breaking the symmetry of an organic compound lowers the crystallinity, thereby improving the solubility in an organic solvent.
  • R 5 and R 6 in general formula (A-2) are substituted only on one ring-constituting carbon atom with respect to the symmetry axis of the molecule, the symmetry of the molecule is low, that is, general formula (A- Since the cycloolefin monomer having the structure represented by 2) is highly soluble, it is suitable for producing a film by a solution casting method.
  • the content of the cycloolefin monomer having the structure represented by the general formula (A-2) in the cycloolefin monomer polymer is based on the total of all cycloolefin monomers constituting the cycloolefin resin. for example, 70 mol % or more, preferably 80 mol % or more, more preferably 100 mol %.
  • the cycloolefin monomer having the structure represented by the general formula (A-2) is contained in a certain amount or more, the orientation of the resin is enhanced, so that the retardation value tends to increase.
  • copolymerizable monomers copolymerizable with cycloolefin monomers examples include copolymerizable monomers capable of ring-opening copolymerization with cycloolefin monomers, and addition copolymerization with cycloolefin monomers. possible copolymerizable monomers and the like.
  • copolymerizable monomers capable of ring-opening copolymerization include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
  • addition-copolymerizable copolymerizable monomers include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, and (meth)acrylates.
  • unsaturated double bond-containing compounds include olefinic compounds having 2 to 12 (preferably 2 to 8) carbon atoms, examples of which include ethylene, propylene and butene.
  • vinyl-based cyclic hydrocarbon monomers examples include vinylcyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • (meth)acrylates examples include alkyl (meth)acrylates having 1 to 20 carbon atoms such as methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate.
  • the content of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol% with respect to the total of all monomers constituting the copolymer. within the range, preferably within the range of 30 to 70 mol %.
  • the cycloolefin resin is obtained by polymerizing or polymerizing a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by general formula (A-1) or (A-2). Polymers obtained by copolymerization, examples of which include polymers (1) to (7) below.
  • a ring-opening polymer of a cycloolefin monomer (2) A ring-opening copolymer of a cycloolefin monomer and a copolymerizable monomer capable of ring-opening copolymerization thereof (3) Above (1) or a hydrogenated product of the ring-opening (co)polymer of (2) (4) the ring-opening (co)polymer of (1) or (2) above is cyclized by the Friedel-Crafts reaction and then hydrogen is added (Co)polymer (5) Saturated copolymer of a cycloolefin monomer and an unsaturated double bond-containing compound (6) Addition copolymerization of a cycloolefin monomer with a vinyl-based cyclic hydrocarbon monomer Coalescence and its hydrogenation product (7) Alternating copolymer of cycloolefin monomer and (meth)acrylate
  • any of the above polymers (1) to (7) can be obtained by known methods such as those described in JP-A-2008-107534 and JP-A-2005-227606.
  • the catalyst and solvent used in the ring-opening copolymerization of (2) above can be those described in paragraphs 0019 to 0024 of JP-A-2008-107534.
  • the catalyst used for the hydrogenated products of (3) and (6) above for example, those described in paragraphs 0025 to 0028 of JP-A-2008-107534 can be used.
  • the acidic compound used in the Friedel-Crafts reaction of (4) above for example, those described in paragraph 0029 of JP-A-2008-107534 can be used.
  • the catalyst used in the addition polymerization of (5) to (7) above for example, those described in paragraphs 0058 to 0063 of JP-A-2005-227606 can be used.
  • the alternating copolymerization reaction (7) above can be carried out, for example, by the method described in paragraphs 0071 and 0072 of JP-A-2005-227606.
  • the polymers (1) to (3) and (5) above are preferred, and the polymers (3) and (5) above are more preferred.
  • the cycloolefin-based resin can increase the glass transition temperature of the obtained cycloolefin-based resin and increase the light transmittance. It preferably contains at least one of the structural units represented by the following general formula (B-2), and contains only the structural unit represented by the general formula (B-2), or the general formula (B-1) It is more preferable to include both the structural unit represented by formula (B-2) and the structural unit represented by general formula (B-2).
  • the structural unit represented by general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by general formula (A-1) described above, and is represented by general formula (B-2). is a structural unit derived from the cycloolefin monomer represented by the general formula (A-2) described above.
  • R 1 to R 4 and p have the same definitions as R 1 to R 4 and p in general formula (A-1), respectively.
  • R 5 to R 6 and p have the same definitions as R 5 to R 6 and p in general formula (A-2), respectively.
  • the cycloolefin resin according to the present invention may be a commercially available product.
  • Examples of commercially available cycloolefin resins include JSR Corporation's Arton G (e.g. G7810), Arton F, Arton R (e.g. R4500, R4900 and R5000), and Arton RX. .
  • the intrinsic viscosity [ ⁇ ]inh of the cycloolefin resin is preferably in the range of 0.2 to 5 cm 3 /g, more preferably in the range of 0.3 to 3 cm 3 /g when measured at 30°C. is more preferable, and more preferably within the range of 0.4 to 1.5 cm 3 /g.
  • the number average molecular weight (Mn) of the cycloolefin resin is preferably within the range of 8000 to 100000, more preferably within the range of 10000 to 80000, and even more preferably within the range of 12000 to 50000. .
  • the weight average molecular weight (Mw) of the cycloolefin resin is preferably within the range of 20000 to 300000, more preferably within the range of 30000 to 250000, and even more preferably within the range of 40000 to 200000. .
  • the number average molecular weight and weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the glass transition temperature (Tg) of the cycloolefin resin is usually 110° C. or higher, preferably in the range of 110 to 350° C., more preferably in the range of 120 to 250° C., and 120 to It is more preferably within the range of 220°C.
  • the glass transition temperature (Tg) is 110°C or higher, it is easy to suppress deformation under high temperature conditions.
  • the glass transition temperature (Tg) is 350° C. or less, the molding process becomes easy, and deterioration of the resin due to heat during the molding process can be easily suppressed.
  • the content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more, relative to the film.
  • the acrylic resin according to the present invention is a polymer of acrylic acid ester or methacrylic acid ester, including copolymers with other monomers. Therefore, the acrylic resin according to the present invention also includes methacrylic resin.
  • the resin is not particularly limited, it contains 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith. is preferred.
  • aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, maleic anhydride, maleimide, N-substituted maleimide, glutar imides, glutaric anhydride, and the like.
  • Examples of copolymerizable monomers forming units other than glutarimide and glutaric anhydride from the above units include monomers corresponding to the above units.
  • alkyl methacrylates having an alkyl number of 2 to 18 carbon atoms alkyl acrylates having an alkyl number of 1 to 18 carbon atoms, isobornyl methacrylate, hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate, acrylic acid, methacrylic acid, etc.
  • ⁇ , ⁇ -unsaturated acids acryloylmorpholine, acrylamides such as N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, unsaturated group-containing divalent carboxylic acids such as maleic acid, fumaric acid, itaconic acid, styrene, ⁇ -methylstyrene monomers such as aromatic vinyl compounds such as acrylonitrile, ⁇ , ⁇ -unsaturated nitriles such as methacrylonitrile, maleic anhydride, maleimide and N-substituted maleimide.
  • acrylamides such as N-hydroxyphenylmethacrylamide
  • N-vinylpyrrolidone unsaturated group-containing divalent carboxylic acids
  • unsaturated group-containing divalent carboxylic acids such as maleic acid, fumaric acid, itaconic acid
  • styrene ⁇ -methylstyrene monomers
  • aromatic vinyl compounds such as acrylonitrile
  • the glutarimide unit can be formed, for example, by reacting an intermediate polymer having (meth)acrylic acid ester units with a primary amine (imidizing agent) to imidize the intermediate polymer (see JP-A-2011-26563). ).
  • a glutaric anhydride unit can be formed, for example, by heating an intermediate polymer having a (meth)acrylate unit (see Japanese Patent No. 4961164).
  • the acrylic resin according to the present invention includes isobornyl methacrylate, acryloylmorpholine, N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, styrene, hydroxyethyl methacrylate, and anhydrous from the viewpoint of mechanical strength.
  • Particular preference is given to including maleic acid, maleimide, N-substituted maleimide, glutaric anhydride or glutarimide.
  • the acrylic resin according to the present invention is used from the viewpoint of controlling dimensional changes due to changes in environmental temperature and humidity, peelability from metal supports during film production, drying of organic solvents, heat resistance and mechanical strength.
  • the weight average molecular weight (Mw) is preferably within the range of 50,000 to 1,000,000, more preferably within the range of 100,000 to 1,000,000, and particularly preferably within the range of 200,000 to 800,000.
  • the method for producing the acrylic resin according to the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • polymerization initiator ordinary peroxide-based and azo-based ones can be used, and redox-based ones can also be used.
  • suspension or emulsion polymerization can be carried out within the range of 30 to 100°C, and bulk or solution polymerization can be carried out within the range of 80 to 160°C.
  • polymerization can be carried out using alkyl mercaptan or the like as a chain transfer agent.
  • the glass transition temperature (Tg) of the acrylic resin is preferably within the range of 80 to 120°C.
  • a commercially available product can also be used as the acrylic resin according to the present invention.
  • Delpet 60N, 80N, 980N, SR8200 manufactured by Asahi Kasei Chemicals Corporation
  • Dianal BR52, BR80, BR83, BR85, BR88, EMB-143, EMB-159, EMB-160, EMB-161, EMB -218, EMB-229, EMB-270, EMB-273 manufactured by Mitsubishi Rayon Co., Ltd.
  • KT75, TX400S and IPX012 manufactured by Denki Kagaku Kogyo Co., Ltd.
  • Two or more acrylic resins may be used in combination.
  • the acrylic resin according to the present invention preferably contains an additive.
  • the acrylic particles (rubber elastic particles) described in WO 2010/001668 are added to improve the mechanical strength of the film. It is preferably contained for improvement and adjustment of the dimensional change rate.
  • Such multi-layered acrylic granular composites include, for example, "Metabrene W-341” manufactured by Mitsubishi Rayon Co., Ltd., “Kaneace” manufactured by Kaneka Corporation, “Paraloid” manufactured by Kureha Corporation, and Rohm and Haas. "Acryloid” manufactured by Aika Co., Ltd., “Staphyloid” manufactured by Aika Co., Ltd., Chemisnow MR-2G, MS-300X (manufactured by Soken Chemical Co., Ltd.) and "Parapet SA” manufactured by Kuraray Co., Ltd. , can be used singly or in combination of two or more.
  • the acrylic particles have a volume average particle diameter of 0.35 ⁇ m or less, preferably in the range of 0.01 to 0.35 ⁇ m, more preferably in the range of 0.05 to 0.30 ⁇ m. If the particle size is above a certain level, the film can be easily stretched under heating, and if the particle size is below a certain level, the transparency of the resulting film is less likely to be impaired.
  • the film according to the present invention preferably has a flexural modulus (JIS K7171) of 10.5 GPa or less.
  • This flexural modulus is more preferably 1.3 GPa or less, still more preferably 1.2 GPa or less.
  • the flexural modulus varies depending on the type and amount of the acrylic resin and rubber elastic particles in the film.
  • acrylic resin using a copolymer of alkyl methacrylate and alkyl acrylate or the like generally results in a lower flexural modulus than using a homopolymer of alkyl methacrylate.
  • the cellulose ester used in the present invention is a part or all of the hydrogen atoms of the 2-, 3-, and 6-position hydroxy groups (—OH) in the ⁇ -1,4-bonded glucose units constituting the cellulose.
  • the cellulose ester to be used is not particularly limited, it is preferably an ester of a linear or branched carboxylic acid having about 2 to 22 carbon atoms.
  • the carboxylic acid that constitutes the ester may be an aliphatic carboxylic acid, may form a ring, or may be an aromatic carboxylic acid.
  • the hydrogen atom of the hydroxyl group portion of cellulose is an acyl group having 2 to 22 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, pivaloyl group, hexanoyl group, octanoyl group, lauroyl group, stearoyl group, etc.
  • acyl group having 2 to 22 carbon atoms such as acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, pivaloyl group, hexanoyl group, octanoyl group, lauroyl group, stearoyl group, etc.
  • Substituted cellulose esters are mentioned.
  • a carboxylic acid (acyl group) constituting an ester may have a substituent.
  • the carboxylic acid constituting the ester is preferably a lower fatty acid having 6 or less carbon atoms, more preferably a lower fatty acid having 3 or less carbon atoms.
  • the acyl group in the cellulose ester may be of a single type, or may be a combination of a plurality of acyl groups.
  • cellulose esters include cellulose acetates such as diacetylcellulose (DAC) and triacetylcellulose (TAC), as well as cellulose acetate propionate (CAP), cellulose acetate butyrate, and cellulose acetate propionate butyrate.
  • DAC diacetylcellulose
  • TAC triacetylcellulose
  • CAP cellulose acetate propionate
  • cellulose acetate butyrate cellulose acetate butyrate
  • CAP cellulose acetate propionate butyrate
  • mixed fatty acid esters of cellulose to which propionate groups or butyrate groups are bonded in addition to such acetyl groups can be mentioned.
  • a single type of these cellulose esters may be used, or a plurality of types may be used in combination.
  • the degree of substitution of acyl groups is high, that is, the carbonyl groups in cellulose are The larger the number, the worse the Rt humidity fluctuation tends to be.
  • the cellulose ester preferably has a total degree of substitution within the range of 2.1 to 2.5.
  • the thickness is in the range of 2.2 to 2.45 from the viewpoint of improving the flowability and stretchability during film formation and further improving the uniformity of the film thickness.
  • the cellulose ester satisfies both the following formulas (a) and (b).
  • X is the degree of substitution of the acetyl group
  • Y is the degree of substitution of the propionyl group or butyryl group, or a mixture thereof.
  • CAP cellulose acetate propionate
  • Cellulose acetate which is particularly preferably used, is 2.1 ⁇ X ⁇ 2.5 (more preferably 2.15 ⁇ X ⁇ 2.45) from the viewpoint of setting the desired range of retardation expression, Rt humidity fluctuation, and film thickness variation. ) is cellulose diacetate (DAC).
  • DAC cellulose diacetate
  • cellulose acetate propionate is 0.95 ⁇ X ⁇ 2.25, 0.1 ⁇ Y ⁇ 1.2, 2.15 ⁇ X+Y ⁇ 2.45.
  • the degree of substitution of acyl groups indicates the average number of acyl groups per glucose unit, and how many of the hydrogen atoms of the 2-, 3-, and 6-position hydroxy groups in one glucose unit are substituted with acyl groups. indicates Therefore, the maximum degree of substitution is 3.0, which means that all the hydrogen atoms of the 2-, 3- and 6-position hydroxy groups are substituted with acyl groups.
  • These acyl groups may be evenly substituted at the 2-, 3-, and 6-positions of the glucose unit, or may be substituted with a distribution.
  • the degree of substitution is determined by the method specified in ASTM-D817-96.
  • a mixture of cellulose acetates having different degrees of substitution may be used to obtain desired optical properties.
  • the mixing ratio of different cellulose acetates is not particularly limited.
  • the number average molecular weight (Mn) of the cellulose ester is in the range of 2 ⁇ 10 4 to 3 ⁇ 10 5 , further in the range of 2 ⁇ 10 4 to 1.2 ⁇ 10 5 , further in the range of 4 ⁇ 10 4 to The range of 8 ⁇ 10 4 is preferable from the viewpoint of increasing the mechanical strength of the resulting film roll.
  • the number average molecular weight Mn of the cellulose ester is calculated by measurement using gel permeation chromatography (GPC) under the measurement conditions described above.
  • the weight average molecular weight (Mw) of the cellulose ester is in the range of 2 ⁇ 10 4 to 1 ⁇ 10 6 , further in the range of 2 ⁇ 10 4 to 1.2 ⁇ 10 5 , further in the range of 4 ⁇ 10 4 to The range of 8 ⁇ 10 4 is preferable from the viewpoint of increasing the mechanical strength of the resulting film roll.
  • Raw material cellulose of cellulose ester is not particularly limited, but cotton linter, wood pulp, kenaf and the like can be mentioned. Moreover, the cellulose esters obtained from them can be mixed and used in an arbitrary ratio.
  • Cellulose esters such as cellulose acetate and cellulose acetate propionate can be produced by known methods.
  • raw cellulose is mixed with a predetermined organic acid (acetic acid, propionic acid, etc.), an acid anhydride (acetic anhydride, propionic anhydride, etc.), and a catalyst (sulfuric acid, etc.) to esterify the cellulose.
  • a predetermined organic acid acetic acid, propionic acid, etc.
  • an acid anhydride acetic anhydride, propionic anhydride, etc.
  • a catalyst sulfuric acid, etc.
  • the three hydroxy groups of the glucose unit are replaced with the acyl acid of an organic acid.
  • a mixed ester type cellulose ester such as cellulose acetate propionate and cellulose acetate butyrate can be produced.
  • the cellulose triester is then hydrolyzed to synthesize a cellulose ester resin having the desired degree of acyl substitution.
  • the cellulose ester resin is completed through processes such as filtration, precipitation, washing with water, dehydration, and drying. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
  • the film roll according to the present invention may contain the following as other additives in addition to the above thermoplastic resins.
  • the film roll according to the present invention preferably contains at least one kind of plasticizer for the purpose of imparting workability to, for example, a polarizing plate protective film.
  • the plasticizers are preferably used singly or in combination of two or more.
  • plasticizers including at least one plasticizer selected from the group consisting of sugar esters, polyesters, and styrene compounds is effective in controlling moisture permeability and compatibility with base resins such as cellulose esters. are highly compatible with each other.
  • the plasticizer preferably has a molecular weight of 15,000 or less, more preferably 10,000 or less, from the viewpoint of achieving both improvement in moist heat resistance and compatibility with the base resin such as cellulose ester.
  • the weight average molecular weight (Mw) is preferably 10,000 or less.
  • a preferred weight average molecular weight (Mw) range is 100 to 10,000, more preferably 400 to 8,000.
  • the compound having a molecular weight of 1500 or less is preferably contained within the range of 6 to 40 parts by mass with respect to 100 parts by mass of the base resin, and 10 to 20 parts by mass. It is more preferable to contain within the range. By containing it within the above range, it is possible to achieve both effective control of moisture permeability and compatibility with the base resin, which is preferable.
  • the film roll according to the present invention may contain a sugar ester compound for the purpose of preventing hydrolysis.
  • a sugar ester compound for the purpose of preventing hydrolysis.
  • a sugar ester compound having at least 1 to 12 pyranose structures or at least one furanose structure and having all or part of the OH groups in that structure esterified can be used. .
  • the film roll according to the present invention can also contain polyester.
  • the polyester is not particularly limited, but for example, a polymer (polyester polyol) having a terminal hydroxy group obtained by a condensation reaction between a dicarboxylic acid or an ester-forming derivative thereof and a glycol, or a terminal hydroxy group of the polyester polyol.
  • a polymer whose groups are blocked with monocarboxylic acid (terminal-blocked polyester) can be used.
  • esteer-forming derivative as used herein means an esterified product of dicarboxylic acid, a dicarboxylic acid chloride, and an anhydride of dicarboxylic acid.
  • a styrenic compound may be used in addition to or instead of the above sugar ester and polyester for the purpose of improving the water resistance of the film.
  • the styrene-based compound may be a homopolymer of a styrene-based monomer, or a copolymer of a styrene-based monomer and another copolymerizable monomer.
  • the content ratio of structural units derived from styrene-based monomers in the styrene-based compound is preferably in the range of 30 to 100 mol%, more preferably in the range of 50 to 100 mol%, in order for the molecular structure to have a certain or higher bulkiness.
  • styrenic monomers include styrene; alkyl-substituted styrenes such as ⁇ -methylstyrene, ⁇ -methylstyrene and p-methylstyrene; halogen-substituted styrenes such as 4-chlorostyrene and 4-bromostyrene; hydroxystyrenes such as styrene, ⁇ -methyl-p-hydroxystyrene, 2-methyl-4-hydroxystyrene, 3,4-dihydroxystyrene; vinylbenzyl alcohols; p-methoxystyrene, p-tert-butoxystyrene, m Alkoxy-substituted styrenes such as -tert-butoxystyrene; vinyl benzoic acids such as 3-vinylbenzoic acid and 4-vinylbenzoic acid; 4-vinylbenzyl acetate; 4-acetoxy
  • the film roll according to the present invention contains other optional components such as antioxidants, colorants, ultraviolet absorbers, matting agents, acrylic particles, hydrogen-bonding solvents, and ionic surfactants. can include These components can be added within the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the base resin.
  • the film roll according to the present invention can use commonly known antioxidants.
  • lactone, sulfur, phenol, double bond, hindered amine, and phosphorus compounds can be preferably used.
  • antioxidants and the like are added within the range of 0.05 to 20% by mass, preferably within the range of 0.1 to 1% by mass, based on the resin which is the main raw material of the film.
  • a synergistic effect can be obtained by using several different types of compounds in combination rather than using only one of these antioxidants. For example, combined use of lactone, phosphorus, phenol and double bond compounds is preferred.
  • the film roll according to the present invention preferably contains a coloring agent for color adjustment within a range that does not impair the effects of the present invention.
  • a coloring agent means a dye or a pigment, and in the present invention, refers to a substance that has the effect of making the color tone of the liquid crystal screen bluish, adjusting the yellow index, or reducing haze.
  • dyes and pigments can be used as coloring agents, but anthraquinone dyes, azo dyes, phthalocyanine pigments, etc. are effective.
  • the film roll according to the present invention can be used on the viewing side or the backlight side of the polarizing plate, it may contain an ultraviolet absorber for the purpose of imparting an ultraviolet absorption function.
  • the ultraviolet absorber is not particularly limited, but includes, for example, benzotriazole-based, 2-hydroxybenzophenone-based, and salicylic acid phenyl ester-based ultraviolet absorbers.
  • benzotriazole-based 2-hydroxybenzophenone-based
  • salicylic acid phenyl ester-based ultraviolet absorbers for example 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole, 2-(3,5 -triazoles such as di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone and 2,2'-dihydroxy-4-methoxybenzophenone, etc. benzophenones can be exemplified.
  • the ultraviolet absorbers may be used singly or in combination of two or more.
  • the amount of the ultraviolet absorber used varies depending on the type of ultraviolet absorber, the conditions of use, etc., but is generally in the range of 0.05 to 10% by mass, preferably 0.1%, based on the base resin. It is added within the range of ⁇ 5% by mass.
  • the film roll according to the present invention preferably contains fine particles that impart slipperiness to the film roll.
  • the addition of fine particles is effective from the viewpoint of improving the slipperiness of the film surface according to the present invention, improving the slipperiness during winding, and preventing the occurrence of scratches and blocking.
  • inorganic fine particles either inorganic fine particles or organic fine particles may be used as long as they do not impair the transparency of the resulting film roll and have heat resistance when melted, but inorganic fine particles are more preferable. These fine particles can be used alone or in combination of two or more.
  • silicon dioxide is particularly preferably used because it has a refractive index close to that of the cycloolefin-based resin, acrylic resin and cellulose ester-based resin and has excellent transparency (haze).
  • silicon dioxide examples include Aerosil (registered trademark) 200V, Aerosil (registered trademark) R972V, Aerosil (registered trademark) R972, R974, R812, 200, 300, R202, OX50, TT600, NAX50 (Nippon Aerosil Co., Ltd.
  • the shape of the particles may be irregular, needle-like, flat, spherical, or the like, but it is preferable to use spherical particles because the resulting film roll can have good transparency.
  • the particle size is close to the wavelength of visible light, the light will scatter and the transparency will deteriorate. .
  • the particle size is in the range of 80 to 180 nm.
  • the size of the particles means the size of the aggregate when the particles are aggregates of primary particles. When the particles are not spherical, it means the diameter of a circle corresponding to their projected area.
  • the fine particles are preferably added within the range of 0.05 to 10% by mass, preferably within the range of 0.1 to 5% by mass, relative to the base resin.
  • the film unwound from the film roll according to the present invention is suitably used as an optical film, such as a protective film for polarizing plates, and can be used in various optical measurement devices and display devices such as liquid crystal display devices and organic electroluminescence display devices. can be done.
  • ⁇ Film forming step (S1)> (Preparation of dope)
  • ⁇ Synthesis of cyclic polyolefin polymer (P-1)> 100 parts by mass of purified toluene and 100 parts by mass of norbornene carboxylic acid methyl ester were put into a stirring device. Then ethylhexanoate-Ni 25mmol% (relative to monomer mass) dissolved in toluene, tri(pentafluorophenyl)boron 0.225mol% (relative to monomer mass) and triethylaluminum 0.25mol% dissolved in toluene (relative to monomer mass) ) was added to the agitator.
  • the reaction was allowed to proceed for 18 hours with stirring at room temperature. After completion of the reaction, the reaction mixture was poured into excess ethanol to form a polymer precipitate.
  • the cyclic polyolefin polymer (P-1) obtained by purifying the precipitate was vacuum dried at 65° C. for 24 hours.
  • composition 1 was put into a mixing tank, stirred to dissolve each component, and then filtered through a filter paper with an average pore size of 34 ⁇ m and a sintered metal filter with an average pore size of 10 ⁇ m to prepare a dope (D-1).
  • composition 1 Cyclic polyolefin polymer (P-1) 150 parts by mass Dichloromethane 380 parts by mass Methanol 70 parts by mass
  • composition 2 containing the cyclic polyolefin solution (dope (D-1)) prepared by the above method was put into a disperser to prepare a fine particle dispersion (M-1) as an additive.
  • composition 2 Fine particles (Aerosil R812: Nippon Aerosil Co., Ltd., primary average particle diameter: 7 nm, apparent specific gravity 50 g / L) 4 parts by mass Dichloromethane 76 parts by mass Methanol 10 parts by mass Cyclic polyolefin solution (Dope (D-1)) 10 parts by mass
  • a support consisting of a rotating stainless steel endless belt that feeds the prepared film-forming dope (resin composition cycloolefin resin COP1) to the casting die through a conduit through a pressure-type constant gear pump and transports it endlessly.
  • the dope is cast on the upper casting position from the casting die to a width of 1800 mm in a film production line, heated on the support until the dope has self-supporting properties, and the casting film is peeled off from the support by a peeling roller. Allowed to dry by evaporating the solvent to form a film.
  • the conditions for casting the above dope are as follows.
  • the width of the slit through which the dope is discharged is adjusted by the heat bolt of the casting die so that the film thickness deviation immediately after discharge is 1.5% of the entire casting film, and the initial film thickness of the casting film is adjusted. was controlled.
  • a film is formed by drying the cast film on the belt until the amount of residual solvent reaches 200% by mass, and after a film is formed on the surface layer, hot air is blown at a wind speed of 16 m/sec (40°C) to flatten the protrusions. did.
  • the amount of residual solvent was analyzed by mass spectrometry by gas chromatography as follows. That is, a piece of film was collected at an arbitrary location, and quickly placed in a vial and capped to prevent volatilization of the solvent remaining in the film. Next, a needle was inserted into the vial, and mass spectrometry was performed using a gas chromatograph (manufactured by Agilent Technologies Inc.).
  • Residual solvent amount (mass%) ⁇ (MN) / N ⁇ ⁇ 100
  • M in the above formula is the mass (g) of a sample taken at an arbitrary point during or after the production of the cast film or film
  • N in the above formula is the mass of the sample at 115 ° C. Mass (g) after heating for hours.
  • An infrared (IR) heater was used as a local heating means.
  • the position of the heat source of each infrared heater on the film was arranged at a distance of 75 mm from the film surface.
  • the heating width was 150 mm (heating width at which the intensity is 0.2 when the intensity directly below the infrared heater is 1).
  • Each heat source of the infrared heater was rated at 750 W and within the range of 180 to 350°C.
  • the infrared heaters were arranged in two rows in the longitudinal direction as shown in FIG. 6B, and the pitch between the heat source portions of the infrared heaters was 30 mm.
  • the infrared heater was set so that the average inclination ⁇ E ' of the straight line connecting the arranged heat sources E A and E B with the longitudinal direction was 5.7°.
  • Heat amount ratio (B/A) between the heat amount A at the central portion of the infrared (IR) heater and the average value B of the heat amount at the edge of the infrared (IR) heater was set to 0.2.
  • the film thickness profile in the width direction of the target film is measured using an in-line retardation/film thickness measuring device RE-200L2T-Rth+ film thickness (manufactured by Otsuka Electronics Co., Ltd.), and the target film thickness From the difference from the profile, the set temperature of each infrared heater is calculated on the computer, and the set temperature of each heat source is output via PLC KV-8000 (manufactured by Keyence Corporation) to adjust the convex part, This process was automatically repeated to automate film thickness adjustment.
  • RE-200L2T-Rth+ film thickness manufactured by Otsuka Electronics Co., Ltd.
  • ⁇ Winding step (S4)> The above film was wound up.
  • the initial tension was 50 N, taper 70%, and corner 25%.
  • the film roll width was 2000 mm, and the winding length was 3900 m.
  • the line speed for transporting the film was 60 m/min.
  • Film roll No. 1 is formed by the above steps. 1 was produced.
  • FIG. 14 shows an example of a heat map used for actual confirmation. Note that FIG. 14 is an example of an actual heat map of the continuity of convex portions corresponding to FIG.
  • the film after the ⁇ trimming step (S3)> was irradiated with a laser beam to form a knurled portion.
  • the knurling width of both ends of the film was set to 15 mm from the film end.
  • the line speed for transporting the film was 60 m/min.
  • the laser device a carbon dioxide gas laser device was used, and the output of the laser device was set to 20 W, the center wavelength of the emitted light wavelength was set to 9.4 ⁇ m, and the emitted light wavelength range was set to ⁇ 0.01 ⁇ m or less around the center wavelength.
  • the film is irradiated with laser light by reflecting a collimated beam emitted from a carbon dioxide laser device by two galvanometer mirrors and concentrating it on the surface of the transported film through an f ⁇ lens (focal length of 200 mm). This was done by illuminating. By controlling the angle of the galvanomirror, the condensing position was moved in the plane direction of the film, thereby controlling the trajectory of the laser beam irradiation on the film surface.
  • ⁇ Atmospheric pressure plasma treatment process Surface modification treatment ⁇ AGP-500 manufactured by Kasuga Denki Co., Ltd. was placed on the back side of the knurled portion of the optical film, and irradiated with 0.5 kW. The distance between the probe that generates the atmospheric pressure plasma and the film was 5 mm. The installation position was set so that the atmospheric pressure plasma to be irradiated could be irradiated to a width of 110% of the knurling width on the back side of the film facing the knurling portion.
  • the infrared heaters are arranged in a row in the longitudinal direction as shown in FIG.
  • the average slope of the straight line connecting A and EB with the longitudinal direction is not calculated because the infrared heaters are arranged in a row in the longitudinal direction.
  • the heat amount ratio (B/A) of the average value B of the infrared (IR) heater edge heat amount was set to 0.9, and (confirmation of film surface characteristics regarding convex portions), substantially straight line in the longitudinal direction of the film surface Film roll no. Film roll no. 11-15 were produced.
  • film roll no. 16 was made.
  • the absolute value of the slope of the substantially straight line with respect to the longitudinal direction of the film surface was calculated by adjusting the continuity of the convex portion so as to draw a curved locus with a curvature that changes at a substantially constant rate of change. didn't.
  • ⁇ Film forming step (S1)> (Melt extrusion of resin) Film roll no.
  • a resin resin composition cycloolefin resin COP2
  • an additive fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g /L)) was supplied to an extruder, melted in the extruder, and extruded into a film form from a casting die onto a casting drum through a pressurized metering gear pump.
  • the width of the slit through which the dope is discharged is adjusted by the heat bolt of the casting die so that the film thickness deviation immediately after discharge is 1.5% of the entire casting film, and the initial film thickness of the casting film is adjusted. was controlled.
  • the cast film on the belt was dried until the amount of residual solvent reached 5% by mass, and after a coating was formed on the surface layer, hot air was blown at 45 m/sec (40°C) to flatten the protrusions.
  • the extruded resin was molded by cooling with a cooling drum to form a film.
  • An infrared (IR) heater was used as a local heating means.
  • the position of the heat source of each infrared heater on the film was arranged at a distance of 75 mm from the film surface.
  • the heating width was 150 mm (heating width at which the intensity is 0.2 when the intensity directly below the infrared heater is 1).
  • Each heat source of the infrared heater was rated at 750 W and within the range of 180 to 350°C.
  • the infrared heaters were arranged in a row in the longitudinal direction as shown in FIG. 6A, and the pitch between the heat source portions of the infrared heaters was 125 mm.
  • Heat amount ratio (B/A) between the heat amount A at the central portion of the infrared (IR) heater and the average value B of the heat amount at the edge of the infrared (IR) heater was set to 0.9.
  • the film thickness profile in the width direction of the target film is measured using an in-line retardation/film thickness measuring device RE-200L2T-Rth+ film thickness (manufactured by Otsuka Electronics Co., Ltd.), and the target film thickness From the difference from the profile, the set temperature of each infrared heater is calculated on the computer, and the set temperature of each heat source is output via PLC KV-8000 (manufactured by Keyence Corporation) to adjust the convex part, This process was automatically repeated to automate film thickness adjustment.
  • RE-200L2T-Rth+ film thickness manufactured by Otsuka Electronics Co., Ltd.
  • the film was oscillated at a width of 100 mm.
  • ⁇ Winding step (S4)> The above film was wound up.
  • the initial tension was 50 N, taper 70%, and corner 25%.
  • the film roll width was 2000 mm, and the winding length was 3900 m.
  • the line speed for transporting the film was 60 m/min.
  • Film roll No. 1 is formed by the above steps. 23 was fabricated.
  • the infrared heaters are arranged in a row in the longitudinal direction as shown in FIG.
  • the average slope of the straight line connecting A and EB with the longitudinal direction is not calculated because the infrared heaters are arranged in a row in the longitudinal direction.
  • the heat amount ratio (B/A) of the average value B of the infrared (IR) heater end portion heat amount was set to 0.9
  • the ⁇ trimming step (S3)> was performed with an oscillating width of 100 mm, (convex Confirmation of the surface characteristics of the film related to the part), the number of protrusions, the height of the protrusions, the continuity of the protrusions, the absolute value of the slope of the substantially straight line with respect to the longitudinal direction of the film surface, the slope of the substantially straight line of the protrusions, and each Film roll no. Film roll no. 24-27 were produced.
  • Film roll no. 1 to 23 are used as examples, and film roll Nos. Nos. 24 to 28 were used as comparative examples, and the following evaluations were made. Film roll no. Each measured value and evaluation for 1 to 28 are summarized in Table I.
  • the data used for calculating the longitudinal average film thickness value in step 3 are the measured values at 30,000 locations.
  • Step 1 After measuring the film thickness at an arbitrary position on the edge of the film, the film thickness is measured at a position moved 10 mm in the width direction from the arbitrary position and 30 mm in the longitudinal direction for each measurement, and the width position and the longitudinal position. , record the film thickness value and repeat it to the end of the other film.
  • Step 2 After step 1, the same measurements as in step 1 are performed until the total distance of the moving positions in the longitudinal direction reaches 1000 m.
  • Step 3 From the multiple film thickness data obtained in steps 1 and 2, the film thickness values at the same width position are averaged to obtain the longitudinal average film thickness value at each width position. A height difference (PV) between the maximum value and the minimum value is calculated from among them.
  • PV height difference
  • orientation angle variation in the longitudinal direction was evaluated based on the following evaluation criteria.
  • the orientation angle ⁇ is defined as the angle of the slow axis of the molecules in the film with respect to the longitudinal direction of the film (film forming direction, transport direction).
  • orientation angle variation refers to the standard deviation ( ⁇ ) of the measured orientation angles.
  • Orientation angle variation within 3000 m in the longitudinal direction is within the range of 0 to 0.10°.
  • Orientation angle fluctuation in 3000 m in the longitudinal direction is greater than 0.10° and 0.12° or less.
  • x Orientation angle variation in the longitudinal direction of 3000 m is greater than 0.12°.
  • the orientation angle variation value in the longitudinal direction of 3000 m is within the range of 0 to 0.10°
  • the orientation angle ⁇ of the film width end is 50 msec in the longitudinal direction at 3000 m in the longitudinal direction of the film.
  • the fluctuation range of all the data of the orientation angle ⁇ is 0 to It means that it falls within the range of 0.10°. Therefore, the closer the evaluation is to ⁇ , the narrower the variation range of the orientation angle ⁇ (the smaller the variation in the value of the orientation angle ⁇ ), and the smaller the orientation angle deviation in the longitudinal direction.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Moulding By Coating Moulds (AREA)
  • Nonlinear Science (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

本発明の課題は、巻状故障が発生せず、配向角変動を小さく抑えることができる広幅なフィルム加工による製造に適したフィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システムを提供することである。 溶液又は溶融流延法によるフィルムロールの製造方法であって、少なくともフィルム形成工程と、前記フィルム表面の幅手方向における凸部調整工程と、前記フィルムの両端部のトリミング工程と、前記トリミング工程によりトリミングされたフィルムの巻取工程と、を有し、前記凸部調整工程が、前記凸部の数、高さ及び位置を調整する工程であり、前記フィルムに局所的な加熱を施すことによって、前記凸部の数を幅手方向1mあたり1~10個の範囲内とし、前記凸部の高さを0.05~0.50μmの範囲内とし、前記凸部の位置を前記フィルム表面の長手方向に連続的に移動するように調整することを特徴とする製造方法。

Description

フィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システム
 本発明は、フィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システムに関する。より詳しくは、巻状故障が発生せず、配向角変動を小さく抑えることができる広幅なフィルム加工による製造に適したフィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システムに関する。
 近年、表示装置の用途拡大に伴い、表示装置の高画質化、高精細化が求められている。最近では、4Kテレビ(フルハイビジョンテレビの約4倍の画素数を有するテレビ)が市販されている。
 また、将来的には、8Kテレビなど、さらなる高コントラスト化を可能とする表示装置が求められている。
 加えて、表示装置の大型化要望があり、当該表示に具備されるフィルムに関しても、供給するフィルムロール幅を広くすることが求められ、ロール体故障に伴うフィルムキズが少なく、フィルムの幅手方向での配向角変動が小さいフィルムを提供することが要望されていた。
 フィルムロールの製造方法に関し、特許文献1ではフィルムの延伸後、トリミング前にオシレート切りする(巻き取る前工程でのベース耳切り部でフィルムベースを幅方向に移動させて耳切りを行なう)技術が開示されている。
 しかし、巻状故障を発生させず、配向角変動を小さく抑えるには不十分であった。
 一方、特許文献2においては、上記の不都合を改善するため、オシレートされた(例えば搬送されるフィルムを支持する装置を周期的に動かした)状態の長尺の延伸前フィルムの両端部をトリミングしてフィルムを延伸し、さらに再度トリミングすることで、ゲージバンド及び横ダン等の、連続的な厚さムラに起因する不具合を抑制し、かつ、配向角変動を小さく抑えることのできる延伸フィルムの巻回体(「フィルムロール」という。)を作製する技術が開示されている。
 しかしながら、本発明者らは冒頭の要望に対して、上記開示技術を用いて大型のフィルムロール体を製造したところ、上記開示技術によっても配向角変動の乱れは残り、まだまだ改善の余地があることが分かった。
特開2002-255409号公報 特開2015-123605号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、巻状故障が発生せず、配向角変動を小さく抑えることができる広幅なフィルム加工による製造に適したフィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システムを提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討した結果、フィルムロールの製造の際に、フィルムに対する局所的な加熱により、前記フィルム表面の幅手方向における凸部の数、高さ及び位置を調整し、前記凸部の位置を前記フィルム表面の長手方向に連続的に移動するように調整することによって上記課題を解決できることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.溶液又は溶融流延法によるフィルムロールの製造方法であって、少なくともフィルム形成工程と、前記フィルム表面の幅手方向における凸部調整工程と、前記フィルムの両端部のトリミング工程と、前記トリミング工程によりトリミングされたフィルムの巻取工程と、を有し、前記凸部調整工程が、前記凸部の数、高さ及び位置を調整する工程であり、前記フィルムに局所的な加熱を施すことによって、前記凸部の数を幅手方向1mあたり1~10個の範囲内とし、前記凸部の高さを0.05~0.50μmの範囲内とし、前記凸部の位置を前記フィルム表面の長手方向に連続的に移動するように調整することを特徴とするフィルムロールの製造方法。
 2.前記トリミング工程において、前記フィルムの両端部をトリミング前に、前記フィルムの幅手方向に前記フィルムをオシレートさせないことを特徴とする第1項に記載のフィルムロールの製造方法。
 3.前記凸部調整工程において、前記フィルムに対する局所的な加熱により、前記凸部の位置が、前記フィルム表面の長手方向に略直線上に並ぶように調整し、かつ、前記フィルム表面の長手方向に対する前記略直線の傾きの絶対値が、0.01~0.6°の範囲内であることを特徴とする第1項又は第2項に記載のフィルムロールの製造方法。
 4.前記局所的な加熱を、フィルムの幅手方向と長手方向に配置された赤外線ヒーターにて行い、前記フィルムの幅手方向において赤外線ヒーターの熱源部は10~100mmの間隔で配置し、かつ、当該熱源部はフィルムの長手方向に幅手位置と異なる位置で配置され、配置された各々の熱源部EとEを結ぶ直線の平均傾きが、長手方向に対して、2~45°の範囲内であることを特徴とする第1項から第3項までのいずれか一項に記載のフィルムロールの製造方法。
 5.前記赤外線ヒーターにおける中央部の熱量Aと赤外線ヒーターの端部の熱量の平均値Bが、下記式(1)を満たす
 式(1): 0.2<(B/A)<0.6
ことを特徴とする第1項から第4項までのいずれか一項に記載のフィルムロールの製造方法。
 6.前記トリミング工程の後に、前記フィルムにナーリング加工を施さないことを特徴とする第1項から第5項までのいずれか一項に記載のフィルムロールの製造方法。
 7.前記フィルムの幅手方向に対して斜め方向に下記ステップ1~ステップ3の順で測定した膜厚値の各幅手位置における長手平均膜厚の最大高低差(P-V)が、0.02~0.40μmの範囲内であることを特徴とする第1項から第6項までのいずれか一項に記載のフィルムロールの製造方法。
 ステップ1:
 フィルムの端部の任意の位置における膜厚測定後、測定毎に前記任意の位置から幅手方向に10mm、かつ長手方向に30mm移動させた位置の膜厚を測定し、幅手位置、長手位置、膜厚値を記録し、それを他方のフィルムの端部まで繰り返す。
 ステップ2:
 前記ステップ1の終了後に、長手方向の移動位置の合計の距離が1000mに到達するまで前記ステップ1と同様の測定を行う
 ステップ3:
 前記ステップ1及び2から得られた多数の膜厚データから、同一の幅手位置における膜厚値を平均処理し、各々の幅手位置における長手平均膜厚値を求める。その中から最大の値と最小の値の高低差(P-V)を算出する。
 8.フィルム表面の幅手方向における凸部の数、高さ及び位置を調整する凸部調整工程を有するフィルムロールの製造に用いる凸部調整システムであって、
 前記凸部調整工程の途中又は終了後のフィルムの膜厚プロファイルを取得する膜厚取得手段と、
 前記膜厚プロファイルのデータにより、前記幅手方向における前記凸部の数が1mあたり1~10個である理想値の範囲内であるか否か、及び前記幅手方向における前記凸部高さが0.05~0.50μmである理想値の範囲内であるか否かの判定手段と、
 前記判定手段において、前記凸部の数と前記凸部の高さが両方、又は一方が理想値の範囲外である場合に、前記凸部の数と前記凸部の高さが両方とも理想値の範囲内になるように、前記フィルムに対する局所的な加熱を赤外線ヒーターによって行う手段と、を有することを特徴とするフィルムロールの製造に用いる凸部調整システム。
 本発明の上記手段により、巻状故障が発生せず、配向角変動を小さく抑えることができる広幅なフィルム加工による製造に適したフィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システムを提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 本発明者らは、前述の特許文献1及び特許文献2に開示されているフィルムの延伸前と延伸後において、トリミング前にオシレートすることにより、フィルム性能を向上させる技術に関して考察を行った。
 特許文献1では、フィルムの延伸後、即ち配向角が整った状態においてオシレート操作をすることで、配向角を乱すことがわかった。
 特許文献2では、フィルムの延伸前、即ち配向角が整う前の状態においてにオシレート操作をすることで、配向角の乱れを抑制しているが、それでもまだ配向角の乱れは残っていた。
 ここで、オシレート操作とは、マクロでのフィルム表面の幅手方向の凹凸を位置変化させて、例えばロール体を形成した際の凸部の重なりを防ぐ技術であるが、この技術を用いたフィルムは、巻取り時にフィルムロール体に不均一に空気を取り込んでしまうため、その空気が時間経過とともに徐々に抜けることで、ロール体の変形が生じ、例えばチェーン状に変形し、それによりフィルムに折り痕又は傷等が生じ、表示装置に組み込んだ際に問題となることがわかった。
 そこで、本発明者らは、フィルム表面の幅手方向における凸部数及び凸部高さを一定の範囲内に制御し、凸部位置をフィルム表面の長手方向に連続的に移動するよう調整することで、巻取り時のフィルムの凸部の重なりを防ぎ、これによってフィルムロール体への空気の取り込み量を高度に制御することができ、本願課題の解決に至ったと推測する。
凸部と幅手方向の膜厚プロファイルとの関係図 本発明の製造工程の流れを示すフローチャート 溶液流延製膜法によってフィルムを製造する装置の概略図 凸部を長手方向に直線的に凸部を連続的に配置・調整することを示す模式図 凸部を長手方向に直線的に凸部を連続的に配置・調整することを示す模式図 凸部を長手方向に曲線に沿って配置・調整することを示す模式図 凸部の位置のプロット図と近似直線の関係を表す図 赤外線ヒーターが、フィルムの長手方向に1列で配置された図 赤外線ヒーターが、フィルムの長手方向に2列で配置された図 赤外線ヒーターが、フィルムの長手方向に5列で配置された図 各熱源部が、長手方向となす直線の平均傾きを表す図 各熱源部が、長手方向となす直線の平均傾きを表す図 テンター延伸装置をフィルムの面に垂直な面を上側から見た断面図 テンター延伸装置内の3つのゾーンを正面から見たときのノズルとヒーター設置部分の概略図 テンター延伸装置内の3つのゾーンの側面図 テンター延伸装置をフィルムの面に垂直な面を上側から見た断面図 フィルムが巻き取られる工程と、巻き取られた後の本発明のフィルムロールの断面を示す概略図 溶融流延製膜法によって光学フィルムを製造する装置の概略構成図 連続性を確認するのに用いたヒートマップの一例
 本発明のフィルムロールの製造方法は、溶液又は溶融流延法によるフィルムロールの製造方法であって、少なくともフィルム形成工程と、前記フィルム表面の幅手方向における凸部調整工程と、前記フィルムの両端部のトリミング工程と、前記トリミング工程によりトリミングされたフィルムの巻取工程と、を有し、前記凸部調整工程が、前記凸部の数、高さ及び位置を調整する工程であり、前記フィルムに局所的な加熱を施すことによって、前記凸部の数を幅手方向1mあたり1~10個の範囲内とし、前記凸部の高さを0.05~0.50μmの範囲内とし、前記凸部の位置を前記フィルム表面の長手方向に連続的に移動するように調整することを特徴とする。
 この特徴は、下記各実施形態(態様)に共通する又は対応する技術的特徴である。
 本発明の実施形態としては、前記トリミング工程において、前記フィルムの両端部をトリミングする前に、前記フィルムの幅手方向に前記フィルムをオシレートさせないことが本発明の効果発現の観点から好ましい。
 前記凸部調整工程において、前記フィルムに対する局所的な加熱により、前記凸部の位置が、前記フィルム表面の長手方向に略直線上に並ぶように調整し、かつ、前記フィルム表面の長手方向に対する前記略直線の傾きの絶対値が、0.01~0.6°の範囲内であることが、フィルムの凸部どうしが巻取工程において重ならず、余分な空気層ができない観点からより好ましい。
 前記局所的な加熱を、フィルムの幅手方向と長手方向に配置された赤外線ヒーターにて行い、前記フィルムの幅手方向において赤外線ヒーターの熱源部は10~100mmの間隔で配置し、かつ、当該熱源部はフィルムの長手方向に幅手位置と異なる位置で配置され、配置された各々の熱源部EとEを結ぶ直線の平均傾きが、長手方向に対して、2~45°の範囲内であることが、膜厚制御性、安定性の観点から好ましく、各々の熱源部を適切な間隔にする観点から好ましい。
 前記赤外線ヒーターにおける中央部の熱量Aと赤外線ヒーターの端部の熱量の平均値Bが、前記式(1)を満たすことが本発明の効果発現の観点から好ましい。
 前記トリミング工程の後に、前記フィルムにナーリング加工を施さないことが空気の過剰な取込みを抑制する観点から好ましい。
 前記フィルムの幅手方向に対して斜め方向に前記ステップ1~ステップ3の順で測定した膜厚値の各幅手位置における長手平均膜厚の最大高低差(P-V)が、0.02~0.40μmの範囲内であることが本発明の効果発現の観点から好ましい。
 本発明のフィルムロールの製造に用いる凸部調整システムは、フィルム表面の幅手方向における凸部の数、高さ及び位置を調整する凸部調整工程を有するフィルムロールの製造に用いる凸部調整システムであって、前記凸部調整工程の途中又は終了後のフィルムの膜厚プロファイルを取得する膜厚取得手段と、前記膜厚プロファイルのデータにより、前記幅手方向における前記凸部の数が1mあたり1~10個である理想値の範囲内であるか否か、及び前記幅手方向における前記凸部高さが0.05~0.50μmである理想値の範囲内であるか否かの判定手段と、前記判定手段において、前記凸部の数と前記凸部の高さが両方、又は一方が理想値の範囲外である場合に、前記凸部の数と前記凸部の高さが両方とも理想値の範囲内になるように、前記フィルムに対する局所的な加熱を赤外線ヒーターによって行う手段と、を有することを特徴とする。
 これによって、本発明の効果が発現し、課題を解決することができる。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
[本発明のフィルムロールの製造方法の概要]
 本発明のフィルムロールの製造方法は、溶液又は溶融流延法によるフィルムロールの製造方法であって、少なくともフィルム形成工程と、前記フィルム表面の幅手方向における凸部調整工程と、前記フィルムの両端部のトリミング工程と、前記トリミング工程によりトリミングされたフィルムの巻取工程と、を有し、前記凸部調整工程が、前記凸部の数、高さ及び位置を調整する工程であり、前記フィルムに局所的な加熱を施すことによって、前記凸部の数を幅手方向1mあたり1~10個の範囲内とし、前記凸部の高さを0.05~0.50μmの範囲内とし、前記凸部の位置を前記フィルム表面の長手方向に連続的に移動するように調整することを特徴とする。
 本発明では、上記手段により、フィルムの巻取工程においてフィルムロールにエアー層(空気層)を適度に取り込むことができ、空気の不均一な取込みを抑制するので、フィルム同士が向かい合う接触面全面にて適度で微小な接触が生じ、チェーン等の巻状不良を起こさずに、輸送中の巻ずれを防止する効果がある。
 本発明に係るフィルムの製膜は、溶液流延製膜法又は溶融流延製膜法であるが、特に溶液流延製膜法であることが、均一な表面を得るためにより好ましい。
 まず、以下において、本発明に係る主要な用語の意義について説明する。
 <凸部に関する用語の定義>
 本発明において、「凸部」とは、膜厚測定によって測定・観察される光学フィルムの厚さの凹凸形状の山と谷の高さのうち平均膜厚よりも高い、すなわち厚い部分をいう。
 詳細は下記に示すとおりである。
 凸部の状態の測定・評価は、フィルムの端部の任意の位置における膜厚測定後、測定毎に前記任意の位置から幅手方向に10mm、かつ長手方向に30mm移動させた位置の膜厚を測定し、それを他方のフィルムの端部まで繰り返し、ガウシアンフィルタ処理によりノイズを除去し、幅手方向の膜厚プロファイルを得て、当該プロファイルに基づいて凸部の状態を測定・評価する(最終的な凸部の数、高さ及び位置については、後述する切断工程後のフィルムの端部から測定するものとする。)。
 なお、本発明において「フィルムの端部」とは、フィルム(ロール)の幅手方向の末端から15~30mm内側の範囲内の領域部分をいい、「フィルムロール」とは、ロール状に巻いたフィルムをいう。
 (凸部の個数)
 上記の操作により得られた幅手方向の各膜厚の測定値の平均値をとることにより平均膜厚を決定し、図1のように幅手方向の膜厚プロファイルが平均膜厚より厚くなった部分が、幅手方向に50mm以上連続している部分を凸部とし、その部分の数を凸部の個数とする。
 上記の凸部の個数が多すぎると一つ一つの山が鋭くなりフィルムに変形が生じてしまい、少なすぎるとフィルム巻取時に、少数の凸部に応力が集中しすぎてしまい、ネジレ等が生じる。
 よって、前記凸部の数を幅手方向1mあたり1~10個の範囲内とすることで本発明の効果が期待できる。
 (凸部の位置と高さ)
 また、上記の方法により決定された各凸部において最大値をとった位置を凸部の位置とし、その凸部の最大値から幅手方向の平均膜厚を引いた値を各凸部の高さhとする。
 上記の凸部の高さが高すぎると、フィルムロールを長時間放置した後に山裾部でチェーン状が生じ、凸部の高さが低すぎると膜厚散らし効果が無くなってしまう。
 よって、前記凸部の高さを0.05~0.50μmの範囲内とすることで本発明の効果が期待できる。
 また、凸部の位置は、前記フィルム表面の長手方向に連続的に移動するように調整し、フィルム巻取時に凸部どうしが重ならないようにすることで、前述の凸部の個数や高さの調整機能の効果をより高めることができる。
 なお、上記の膜厚は、インラインリターデーション・膜厚測定装置RE-200L2T-Rth+膜厚(大塚電子(株)製)を用いて測定した。
1.溶液流延製膜法によるフィルムロールの製造方法
 本発明のフィルムロールの製造方法の製造工程の流れを示すフローチャートを図2に示す。
 以下溶液流延製膜法において、図2及び図3を参照しながら説明する。
 本発明の溶液流延製膜法によるフィルムロールの製造方法は、フィルム形成工程(S1)、凸部調整工程(S2)、トリミング工程(S3)及び巻取工程(S4)を含む。
 (1.1)フィルム形成工程(S1)
 (1.1.1)ドープの調製
 フィルム形成工程(S1)では、まず、攪拌装置1の攪拌槽1aにて、少なくとも樹脂及び溶媒を攪拌し、支持体3(エンドレスベルト)上に流延するドープを調製する。
 以下、本発明の一実施形態として、熱可塑性樹脂としてシクロオレフィン系樹脂(以下、「COP」ともいう。)を使用してドープを調製する場合を一例として説明するが、本発明はこれに限定されない。
 シクロオレフィン系樹脂(COP)に対する良溶媒を主とする溶媒に、溶解釜中で該COP、場合によって、その他の化合物を攪拌しながら溶解しドープを調製する、あるいは該COP溶液に、場合によってその他の化合物溶液を混合して主溶解液であるドープを調製する。
 (樹脂の濃度)
 樹脂の種類等の詳細については、後述する。
 ドープ中のシクロオレフィン系樹脂(COP)の濃度は、濃い方が支持体に流延した後の乾燥負荷が低減できて好ましい。
 ただし、COPの濃度が濃過ぎると、ろ過時の負荷が増えて精度が悪くなる。
 これらを両立する濃度としては、10~35質量%の範囲内が好ましく、更に好ましくは、15~30質量%の範囲内である。
 (溶媒)
 上記溶媒としては、良溶媒及び貧溶媒の混合溶媒を用いる。
 ドープで用いられる溶媒は、単独で用いても二種以上を併用してもよいが、シクロオレフィン系樹脂(COP)の良溶媒と貧溶媒を混合して使用することが生産効率の点で好ましく、良溶媒が多い方がCOPの溶解性の点で好ましい。
 良溶媒と貧溶媒の混合比率の好ましい範囲は、良溶媒が70~98質量%の範囲内であり、貧溶剤が2~30質量%の範囲内である。
 なお、本発明においては、良溶媒、貧溶媒とは、使用するシクロオレフィン系樹脂(COP)を単独で溶解するものを良溶媒、単独で膨潤するか又は溶解しないものを貧溶媒と定義している。
 そのため、COPの平均置換度によって良溶媒、貧溶媒が変わる。
 本発明に用いられる良溶媒は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。
 特に好ましくはメチレンクロライド又は酢酸メチルが挙げられる。
 また、本発明に用いられる貧溶媒は特に限定されないが、例えばメタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。
 また、ドープ中には水が、0.01~2質量%含有されていることが好ましい。
 また、シクロオレフィン系樹脂(COP)の溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いられる。
 回収溶媒中に、COPに添加されている添加剤、例えば可塑剤、紫外線吸収剤、ポリマー、モノマー成分等が微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。
 上記記載の、ドープを調製する時のCOPの溶解方法としては、一般的な方法を用いることができる。
 具体的には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法が好ましく、加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。
 また、溶媒の常圧での沸点以上で、かつ、加圧下で溶媒が沸騰しない範囲の温度で加熱しながら攪拌溶解する方法も、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。
 また、シクロオレフィン系樹脂(COP)を貧溶媒と混合して湿潤あるいは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶媒の蒸気圧を上昇させる方法によって行ってもよい。
 加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
 溶媒を添加しての加熱温度は、高い方がシクロオレフィン系樹脂(COP)の溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。
 好ましい加熱温度は30~120℃の範囲内であり、60~110℃の範囲内がより好ましく、70~105℃の範囲内が更に好ましい。
 また、圧力は設定温度で溶媒が沸騰しないように調整される。
 又は、冷却溶解法も好ましく用いられ、これによって酢酸メチル等の溶媒にシクロオレフィン系樹脂(COP)を溶解させることができる。
 (ろ過)
 次に、このシクロオレフィン系樹脂(COP)溶液(溶解中又は溶解後のドープ)を濾紙等の適当なろ過材を用いてろ過することが好ましい。
 ろ過材としては、不溶物等を除去するために絶対ろ過精度が小さい方が好ましいが、絶対ろ過精度が小さ過ぎると、ろ過材の目詰まりが発生しやすいという問題がある。
 このため絶対ろ過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの範囲内の濾材がより好ましく、0.003~0.006mmの範囲内の濾材が更に好ましい。
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。
 ろ過により、原料のシクロオレフィン系樹脂(COP)に含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間にフィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が、0.01mm以上である輝点数が200個/cm以下であることが好ましい。
 より好ましくは100個/cm以下であり、更に好ましくは50個/m以下であり、更に好ましくは0~10個/cm以下である。
 また、0.01mm以下の輝点も少ない方が好ましい。
 ドープのろ過は通常の方法で行うことができるが、溶媒の常圧での沸点以上で、かつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながらろ過する方法が、ろ過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。
 好ましい温度は30~120℃の範囲内であり、45~70℃の範囲内がより好ましく、45~55℃の範囲内であることが更に好ましい。
 濾圧は小さい方が好ましい。
 具体的には1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
 (1.1.2)ドープの流延
 支持体3上に流延されたドープを、加圧型定量ギアポンプ等を通して、導管によって流延ダイ2に送液し、無限に移送する回転駆動ステンレス鋼製エンドレスベルトよりなる支持体3上の流延位置に流延ダイ2からドープを流延する。
 その際、流延ダイ2の傾き、すなわち流延ダイ2から支持体3へのドープの吐出方向は、支持体3の面(ドープが流延される面)の法線に対する角度で0~90°の範囲内となるように適宜設定されればよい。
 このとき、支持体3上で加熱し、支持体3から剥離ローラー(「ロール」ともいう。)4によって流延膜5が、剥離可能になるまで溶媒を蒸発させる。
 なお、流延膜5が固化され剥離可能になった以降の流延膜を単に「フィルム」と称することにする。
 (溶媒蒸発方法)
 上記の蒸発は、5~75℃の範囲内の雰囲気下にて行うことが好ましい。
 溶媒を蒸発させるには、温風を流延膜上面に当てる方法や及び/又は支持体3の裏面から液体により伝熱させる方法、及び輻射熱により表裏から伝熱する方法等があるが、輻射熱により表裏から伝熱する方法が、乾燥効率が良く好ましい。
 また、それらを組み合わせる方法も好ましく用いられる。
 (流延の幅)
 流延(キャスト)の幅は生産性の観点から1.3m以上が好ましい。
 より好ましくは1.3~4.0mの範囲内である。
 流延(キャスト)の幅が4.0mを超えなければ、製造工程で縞が入らず、その後の搬送工程での安定性が高くなる。
 搬送性、生産性の観点では、1.3~3.0mの範囲内がさらに好ましい。
 (支持体)
 ドープの流延における支持体3は、表面を鏡面仕上げしたものが好ましく、一対のローラー3a、3b及びこれらの間に位置する複数のローラーによって保持されている。
 ローラー3a及び3bの一方、又は両方には、支持体3に張力を付与する駆動装置が設けられており、これによって支持体3は張力が掛けられて張った状態で使用される。
 支持体3としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
 ドープの流延における支持体3の表面温度は-50℃~溶媒の沸点の範囲内の温度で、温度が高い方が流延膜の乾燥速度が速くできるので好ましい。
 好ましい支持体温度は0~55℃の範囲内であり、22~50℃の範囲内が更に好ましい。
 支持体3の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を支持体の裏側に接触させる方法がある。
 温水を用いる方が熱の伝達が効率的に行われるため、支持体の温度が一定になるまでの時間が短く好ましい。
 温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。
 <フィルム形成工程における膜厚制御手段>
 本発明のフィルムロールの製造方法において、フィルムの幅手方向に対して斜め方向に下記ステップ1~ステップ3の順で測定した膜厚値の各幅手位置における長手平均膜厚の最大高低差(P-V)が、0.02~0.40μmの範囲内であることが本発明の効果発現の観点から好ましい。
 ステップ1:
 フィルムの端部の任意の位置における膜厚測定後、測定毎に前記任意の位置から幅手方向に10mm、かつ長手方向に30mm移動させた位置の膜厚を測定し、幅手位置、長手位置、膜厚値を記録しそれを他方のフィルムの端部まで繰り返す。
 ステップ2:
 前記ステップ1の終了後に、長手方向の移動位置の合計の距離が1000mに到達するまで前記ステップ1と同様の測定を行う。
 ステップ3:
 前記ステップ1及び2から得られた多数の膜厚データから、同一の幅手位置における膜厚値を平均処理し、各々の幅手位置における長手平均膜厚値を求める。その中から最大の値と最小の値の高低差(P-V)を算出する。
 本発明に係るフィルムの幅手方向に対して斜め方向に下記ステップ1~ステップ3の順で測定した膜厚値の各幅手位置における長手平均膜厚の最大高低差(P-V)を所望の値になるように調節するためには、フィルム形成工程においては、例えば以下の三つの膜厚制御手段が挙げられる。
 また、凸部調整工程においても上記の長手平均膜厚の最大高低差(P-V)を所望の値になるように調節することができるが、それについては凸部調整工程において後述する。
 また、それらを組み合わせても良い。
 (膜厚制御手段1:ポンプ脈動のピッチ制御)
 ポンプ脈動のピッチを制御する方法により膜厚を制御する。
 流延ダイに至るまでの配管内のドープ送液(溶融の場合は樹脂の押出し)において高精度のギアポンプを用いることは知られているが、ギアポンプはそのギア比によりポンプの回転速度を制御することでポンプ脈動のピッチを制御することができ、その送液時の脈動が長手の膜厚、長手平均膜厚の平均最大高低差(P-V)に大きく影響する。
 ここで、ポンプの送液能力について補足説明する。
 ドープの流延において、ポンプから流延ダイに至るまでの配管の長さが短すぎなければポンプの回転速度の影響を受けて脈動が大きくなることもなく、長すぎなければ圧力損失が大きすぎず、ポンプの送液能力が下限を超えて低下することを防ぐことができる。
 また、ポンプの回転速度は遅すぎなければ送液能力が低下することを防ぐことができ、速すぎなければ圧力損失が大きくなりすぎず、送液能力が低下することを防ぐことができる。
 上記の観点から、ポンプから流延ダイに至るまでの配管の長さを50~100mの範囲内とし、ドープ送液(溶融の場合は樹脂の押出し)時に用いるギアポンプのギア比を調節し、ポンプの回転速度を10~50rpmの範囲内とすることが好ましい。
 (膜厚制御手段2:ヒートボルトによる膜厚制御)
 流延ダイのヒートボルトにより初期吐出膜厚を制御する。
 当業者がドープの流延において膜厚の均一性を上げるためには、溶液流延製膜法と溶融流延製膜法のいずれにおいても流延ダイのリップ部分のスリットギャップを制御する方法が挙げられる。
 例えば粘度の高いドープ(メルト含む)を押し出す際には、上記スリットギャップの幅手のバラつきが生じるが、このことを防ぐために幅手でヒートボルトを複数本設置してスリットギャップを制御する方法である。
 ただし、この方法はヒートボルト数の物理的な設置限界があるという問題がある。
 また、上記スリットギャップの幅手のバラつきを生じさせる幅手での圧力変動を抑制するために流延ダイの内部構造を幅手で変化させる方法があるが、生産品種ごとに流延ダイを切り替えなくてはならず、時間及びコストがかかるという問題がある。
 流延ダイにはドープを吐出(溶融の場合は樹脂の押出し)するスリットを幅手に調節する機構が設けられている。
 ここで流延ダイのヒートボルトにより、ドープを吐出するスリットの幅手の間隙を調節し、流延膜の初期吐出膜厚の制御を行う方法について補足説明する。
 ドープの流延において、流延ダイのヒートボルトにより、ドープを吐出するスリットの幅手の間隙が小さすぎなければ技術的にも比較的容易に調製が行うことができ、時間がかからない。
 また、ドープを吐出するスリットの幅手の間隙が大きすぎると流延膜の初期吐出膜厚が平坦化できない。
 上記の観点から、後述する流延工程において、流延ダイのヒートボルトにより、ドープを吐出するスリットの幅手の間隙を、吐出直後の膜厚偏差を流延膜全体に対して1.0~5.0%の範囲内に調整し、流延膜の初期吐出膜厚の制御を行うことが好ましい。
 ここで、流延ダイスリットのドープの出るところをリップと呼ぶが、リップ部分のスリット形状を調整することができ、膜厚を均一にしやすい流延ダイが好ましい。
 流延ダイには、コートハンガーダイやTダイ等があるが、いずれも好ましく用いられる。
 なお、本発明において、流延膜とは、上記のリップ部分から流延されるドープ膜のことをいう。
 本発明に係るフィルムの製膜速度を上げるために、上記の流延ダイを支持体上に二基以上設け、ドープ量を分割して重層してもよい。
 あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムロールを得ることも好ましい。
 スリットは、ヒートボルトを手動で回して押し込むことで狭めたりして膜厚を薄くしたり、逆に開いて厚くしたりもする。
 ヒートボルトに電圧をかけることで、熱による押し込みをする方式も一般的であるが、通常は組み合わせて使用する。
 また、押し引きをする方式をとることも可能である。
 ただし、ボルトのピッチが流延ダイの機構上、狭く出来なかったりすることがあり、粘度が高いドープ(溶融含む)の場合は流延ダイ吐出時のリップに圧力負荷が大きく吐出後負荷が急激に低下して膜厚が大きくなったりする(バラス効果)といった幅手膜厚にバラつきが生じることがある。
 従って、流延ダイ内部の構造により流延ダイのリップに負荷がかかり過ぎないような設計が必要となる。
 (膜厚制御手段3:熱風による膜厚制御)
 流延膜に熱風を吹きつけ、その熱により突起部を平坦化することで膜厚を制御する。
 ドープの流延時のベルト上にて、流延膜の反ベルト側の表層が膜になった状態で風を当ててもいいし、流延膜をベルトから剥離した直後に熱風を吹き付けても良い。
 このとき、流延膜の内部は溶媒を含んで柔らかいため突起を平坦化して行うために、流延膜の幅手方向の不均一性をオンラインで測定し、乾燥風の温度や風速あるいは風量を調整し、残留溶媒量を調整することにより膜厚を制御する。
 ここで、乾燥風の温度や風速あるいは風量、及び残留溶媒量について補足説明する。
 乾燥風の温度が低すぎたり、風速が小さすぎたり、あるいは風量が少なすぎたりしなければ、適切に膜厚を制御することができる。
 また、温度が高すぎたり、風速が大きすぎたり、あるいは風量が多なすぎたりしなければ、膜厚が局所的に制御できなくなることはない
 残留溶媒量は、少なすぎなければ、流延膜という状態よりも既にフィルムに近い状態で柔らかくなく平坦化できないといったことが起こらない。
 また、多すぎなければ、平坦化するときに膜厚にバラつきが生じない。
 これらのことから、適切な残留溶媒量にすることにより薄い膜が表層にできた状態で平坦化3を行うことができる。
 上記の観点から、乾燥風の温度は、10~80℃の範囲内であることが好ましく、風速は、5~40m/secの範囲内であることが好ましい。
 また、残留溶媒量は、150~550質量%であることが好ましい。
 なお、流延膜の反ベルト側の表層が膜になっていない状態で上記の操作を行うと筋になり、内部が乾燥していることは好ましくない。
 ドープの流延時のベルト上にて、流延膜の膜厚偏差の幅手方向の不均一性をオンラインで測定し、その不均一性を減少させるように熱風を吹付ける際に、温度を調節することにより、膜厚を制御する。
 (1.1.3)フィルムの剥離
 支持体3上で流延膜5が剥離可能な膜強度となるまで溶媒を蒸発させ、乾燥固化又は冷却凝固させた後、支持体3をフィルムが一周する前にフィルムを支持体3から自己支持性を持たせたまま剥離ローラー4によって剥離する。
 なお、流延膜5が固化され剥離可能になった以降の流延膜を単に「フィルム」と称することにする。
 このとき、面品質、透湿性、剥離性の観点から、30~600秒の範囲内で該フィルムを支持体から剥離することが好ましい。
 なお、支持体からフィルムを剥離する位置のことを剥離点といい、また、剥離を助けるローラーを剥離ローラーという。
 支持体上の剥離位置における温度は-50~40℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~30℃の範囲内とするのが最も好ましい。
 (フィルム剥離時の残留溶媒量)
 剥離時での支持体3上でのフィルムの残留溶媒量は、乾燥の条件の強弱、支持体3の長さ等によって適宜調節される。
 フィルムの厚さにもよるが、剥離点での残留溶媒量が多すぎるとフィルムが柔らか過ぎて剥離しにくくなることがあり、平面性を損なったり、剥離張力による横ダン、ツレや縦スジが発生しやすくなることがある。
 逆に、残留溶媒量が少なすぎると、途中でフィルムの一部が剥がれたりすることがある。
 フィルムが良好な平面性を示すためには、経済速度と品質との兼ね合いの観点から残留溶媒量が10~50質量%の範囲内であることが望ましい。
 製膜速度を上げる方法(残留溶媒量ができるだけ多いうちに剥離するため製膜速度を上げることができる)として、残留溶媒量が多くとも剥離できるゲル流延法(ゲルキャスティング)がある。
 その方法としては、ドープ中にシクロオレフィン系樹脂(COP)に対する貧溶媒を加えて、ドープ流延後、流延膜をゲル化する方法、支持体を冷却することによって流延膜をゲル化させて残留溶媒を多く含んだ状態で剥離する方法等がある。
 また、ドープ中に金属塩を加える方法もある。
 上記のように、支持体上で流延膜をゲル化させ、膜を強くすることによって剥離を早め製膜速度を上げることができる。
 なお、残留溶媒量は、下記式で定義される。
  残留溶媒量(質量%)={(M-N)/N}×100
 なお、Mは流延膜又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量で、Nは質量Mの試料を115℃で1時間の加熱後の質量である。
 (剥離張力)
 支持体とフィルムを剥離する際の剥離張力は、300N/m以下とすることが好ましい。
 より好ましくは、196~245N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。
 (1.1.4)フィルム面内での収縮
 支持体から剥離後のフィルムを搬送方向(Machine Direction、以下「MD方向」ともいう。)に張力をかけて延伸することによって収縮させる。
 この場合、フィルムは、フィルム面内でMD方向と直交する幅手方向(Traverse Direction、以下「TD方向」ともいう。)に収縮する。
 上記の操作によって、フィルム厚さ方向におけるポリマー分子(マトリックス分子)間の絡み合いが促進され、偏光板作製時に、フィルムを偏光子層と接着剤を介して接着する場合でも、上記接着剤がマトリックス分子間の絡み合いの部分(架橋部分)を介してフィルム内部に浸透しやすくなる。
 その結果、フィルムを接着剤を介して偏光子層に強固に固定することができ、偏光子層に対するフィルムの剥離強度を向上させることができる。
 つまり、フィルムと偏光子層との良好な接着性を確保することできる。
 上記の他にも、フィルムを収縮させる方法としては、例えばフィルムを幅手保持しない状態で高温処理してフィルムの密度を高める方法や、急峻にフィルムの残留溶媒量を減少させる方法等がある。
 (フィルムの収縮率)
 本発明において収縮率とは、下記式にて定義される。
 式:収縮率[%]=収縮後のフィルムの幅[mm]/収縮開始時のフィルムの幅[mm]×100
 ここで、フィルムの収縮率が小さすぎると、マトリックス分子間の絡み合いを促進する効果が不十分となり、大きすぎると、フィルムの生産効率が低下することが懸念される。
 このため、フィルムの収縮率は、1~40%の範囲内であることが好ましく、5~20%の範囲内であることがより好ましい。
 (収縮率の測定方法と算出方法)
 本発明においては、フィルムの幅を株式会社キーエンス製のLS-9000にて測定した。
 なお、本発明に係るフィルムの収縮率は、フィルムの幅を上記の測定器により1秒毎で5分間(300秒)測定した各値の平均値をフィルムの幅とし、上記式に代入することにより求めたが、上記の方法に限る必要はなく、例えばフィルムの幅を定規から読み取った値を用いてフィルムの幅とし、上記式に代入してもよい。
 (1.1.5)フィルムの乾燥
 乾燥装置6により、フィルムを支持体上で加熱し、溶媒を蒸発させることにより更に乾燥する。
 支持体の温度は、全体が同じでも、位置によって異なっていてもよい。
 フィルムの乾燥では、一般にローラー乾燥方式(上下に配置した多数のローラーにフィルムを交互に通し乾燥させる方式)やテンター方式でフィルムを搬送させながら乾燥する方式が採られる。
 上記のテンター方式にて、テンター延伸装置を用いる場合は、テンター延伸装置の左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。
 前述の図3における乾燥装置6内では、側面から見て千鳥状に配置された複数の搬送ローラーによってフィルムが搬送され、その間にフィルムが乾燥される。
 乾燥装置6での乾燥方法は、特に制限はなく、一般的に熱風、赤外線、加熱ローラー、マイクロ波等を用いてフィルムを乾燥させるが、簡便さの点から、熱風でフィルムを乾燥させる方法が好ましい。
 また、それらを組み合わせる方法も好ましい。
 なお、上記の操作は、必要に応じて行われればよい。
 フィルムの膜厚が薄ければ乾燥が早いが、あまり急激な乾燥は、出来上がりのフィルムの平面性を損ねやすい。
 (フィルム乾燥時の残留溶媒量)
 高温による乾燥を行う際には、残留溶媒量を考慮する必要があるが、残留溶媒量は、多すぎないことで溶媒の発泡による故障を防ぐことができる。
 上記残留溶媒量は、30質量%以下くらいから行うのがよく、全体を通して乾燥はおおむね30~250℃の範囲内で行われる。
 特に35~200℃の範囲内で乾燥させることが好ましく、乾燥温度は、段階的に高くしていくことが好ましい。
 なお、フィルム剥離時での支持体3上でのフィルムの残留溶媒量は、乾燥の条件の強弱、支持体3の長さ等によって適宜調節され、フィルム面内での収縮や、フィルムの乾燥における上記の残留溶媒量は、膜厚、樹脂等が大きく影響するため、残留溶媒量の好ましい範囲に重複する範囲がある。
 (1.2)凸部調整工程(S2)
 (1.2.1)凸部調整工程の概要
 本発明の製造方法に係るフィルム表面の幅手方向における凸部調製工程は、前記凸部の数、高さ及び位置を調整する工程であり、前記フィルムに局所的な加熱を施すことによって、前記凸部の数を幅手方向1mあたり1~10個の範囲内とし、前記凸部の高さを0.05~0.50μmの範囲内とし、前記凸部の位置を前記フィルム表面の長手方向に連続的に移動するように調整することを特徴とする。
 本発明では、凸部を調整する手段としてフィルムに局所的な加熱を施す。
 局所的な加熱手段としては、赤外線(IR)ヒーターや熱風等が挙げられるが、熱処理は特に限定されるものではなく、他の方法により熱処理を行ってもよい。
 熱風式は材料を問わず十分な膜厚調整能力があることが利点である。
 一方、山谷の連続移動制御はやや難しいが、温度や風量、ノズル圧などを適宜制御することで凸部を連続的に移動させることが出来る。
 本発明においては、前記局所的な加熱を、フィルムの幅手方向と長手方向に配置された赤外線ヒーターにて行うことが膜厚制御性、安定性の観点からは好ましい。
 凸部調整工程においては、延伸装置内にてフィルムに局所的な加熱を施しながらフィルムを延伸する。
 また、その際インラインリターデーション・膜厚測定装置RE-200L2T-Rth+膜厚(大塚電子(株)製)を用いてターゲットとするフィルムの幅手方向の膜厚プロファイルを測定し、目標の膜厚プロファイルとの差分から、各々の赤外線ヒーターの設定温度をコンピューター上で算出し、PLC KV-8000(キーエンス(株)製)を介して各々の熱源の設定温度を出力して凸部を調整し、それを自動で繰り返し、膜厚調整を自動化して行う。
 (1.2.2)フィルムの延伸
 フィルムの延伸は、フィルムをフィルム面内でMD方向にのみ延伸してもよいし、TD方向にのみ延伸してもよいし、MD方向及びTD方向の両方に対して延伸してもよいし、斜め方向に延伸してもよい。
 また、延伸方向に限定はないが、広幅のフィルムを得る観点では、少なくとも幅手方向の延伸することが好ましい。
 このときの延伸方法としては、ローラーの周速差を設けて搬送方向(フィルムの長手方向;製膜方向;流延方向;MD方向)に延伸する方式や、フィルムFの両側縁部をクリップ等で固定して幅手方向(フィルム面内で直交する方向;TD方向)に延伸するテンター方式が、フィルムの性能・生産性、平面性や寸法安定性を向上させるために好ましい。
 また、いわゆるテンター法の場合、リニアドライブ方式でクリップ部分を駆動すると滑らかな延伸をすることができ、破断等の危険性が減少できるので好ましい。
 製膜工程のこれらの幅保持あるいは横方向の延伸はテンター延伸装置によって行うことが好ましく、ピンテンターでもクリップテンターでもよい。
 なお、テンター延伸装置7内では、延伸に加えて乾燥を行ってもよい。
 (延伸倍率)
 高位相差確保、広幅確保、及び偏光子層と接着の際の接着剤浸透促進のためには、延伸工程においてフィルムを高倍率で延伸することが好ましい。
 ただし、延伸倍率が高すぎると、延伸応力により、フィルム内にクレーズが発生したり、フィルム強度を保っているマトリックス分子間の絡み合いが解離して、フィルムが脆弱化する場合があり得る。
 このため、フィルムの延伸倍率は、1.1~5.0倍の範囲内であることが好ましく、1.3~3.0倍の範囲内であることがより好ましい。
 なお、延伸が複数回行われる場合、複数回の延伸のうちでマトリックス分子の解離のリスクが最も高い最高倍率の延伸は、最終回に行われることが好ましい。
 (フィルム延伸時の残留溶媒量)
 延伸時におけるフィルム中の残留溶媒量は20質量%以下が好ましく、さらに好ましくは15質量%以下で延伸するのが好ましい。
 (1.2.3)凸部調整工程における各用語の定義
 (凸部に関する用語の定義)
 凸部に関する用語の定義については、前述したので省略する。
 (凸部の長手方向への連続性:凸部の位置の長手方向への調整)
 本発明に係る凸部調整工程において調製される凸部の位置は、フィルム表面の長手方向に連続的に移動するように調製され、凸部の位置は後述の定義によって決定されるが、その凸部の位置同士を結ぶと、例えば図4A及び図4Bに示すように略直線の軌跡を描く。又は、図4Cに示すように略一定の変化率で変化する曲率をもった曲線の軌跡を描く。
 なお、図4A、図4B及び図4Cは、本発明を理解しやすくするために、便宜上幅手方向と長手方向の縮尺幅を変えて表現している。
 よって、本発明に係る「フィルム表面の長手方向に連続的に移動する」との表現は、上記のように、凸部の位置どうしを結んだときに、略直線又は略一定の変化率で変化する曲率をもった曲線の軌跡を描くことを意味する。なお、当該略直線又は略一定の変化率で変化する曲率をもった曲線は周期性を有しても良い。
 なお、図4A、図4B及び図4Cに関しては周期性をもった凸部の連なりであるが、周期性をもっているものに限定されない。
 「略直線」とは、図5に示すように、フィルムの幅手方向を横軸(x軸)、フィルムの長手方向を縦軸(y軸)として各凸部の中心点をプロットしたとき、凸部調整工程の制御条件及びフィルムの性状のバラツキによって、厳密な意味での直線から逸脱する点も含めて見たとき、実質上直線と同視できる線をいう。
 なお、当該略直線を最小二乗法で求めた近似直線とした場合、当該近似直線を表す一次式の相関係数の絶対値が、0.8以上であることが好ましい。
 また、「略一定の変化率」とは、平均値±10%の範囲内での変化率をいう。
 (フィルム表面の長手方向に対する略直線の傾きθ′)
 本発明に係る凸部調整工程において、前記フィルムに対する局所的な加熱により、前記凸部の位置が、前記フィルム表面の長手方向に略直線上に並ぶように調整することが本発明の効果発現の観点から好ましい。
 上記のように凸部を制御することで、フィルムの長手方向で急激に膜厚プロファイルが変わらないようにし、凸部の連続性を維持することで本発明の効果をより高めている。
 また、前記略直線の傾きの絶対値が0.01~0.6°の範囲内であることが本発明の効果発現の観点から好ましい。
 本発明に係るフィルム表面の長手方向に対する略直線の傾きθ′は、下記のように決定される。
 インラインリターデーション・膜厚測定装置RE-200L2T-Rth+膜厚(大塚電子(株)製)を用いて測定された膜厚プロファイルと平均膜厚により算出された凸部の位置を、図5に示すように、フィルムの幅手方向を横軸(x軸)、フィルムの長手方向を縦軸(y軸)としてプロットする。
 フィルムの端部の任意の位置における前記凸部の位置をP(x,y)としたときの他の各凸部の座標をP(x,y)、P(x,y)、・・・・・、P(x,y)としてプロットした(nは1以上の整数)。
 上記の操作により得られる凸部の位置のプロット図と近似直線の関係を図5に示す。
 上記のプロットされた凸部の軌跡より、フィルムの端部の任意の位置における前記凸部の位置をP(x,y)=P(0,0)として、最小二乗法で求めた近似直線の傾きをaとする一次関数y=ax(x及びyは変数)の直線を描き(相関係数Rは0.9以上)、そのときの傾きaに相当する角度θ[°]を求める。
 このとき、フィルム表面の長手方向に対する略直線の傾きθ′[°]は、θ′[°]=(90-θ)[°]となる。
 (熱源部EAとEBを結ぶ直線の長手方向に対する直線の平均傾きθ′)
 本発明において、前記フィルムの幅手方向において赤外線ヒーターの熱源部は10~100mmの間隔で配置し、かつ、当該熱源部はフィルムの長手方向に幅手位置と異なる位置で配置され、配置された各々の熱源部EとEを結ぶ直線の平均傾きθ′が、長手方向に対して、2~45°の範囲内であることが本発明の効果発現の観点から好ましい。
 上記の赤外線ヒーターの熱源部の間隔は、より小さい方が細かいプロファイル調整ができるが、コストパフォーマンスが悪くなりすぎない程度に効果的な配置の範囲が上記の範囲である。
 なお、フィルム上の赤外線ヒーターは、例えば図6A、図6B及び図6Cのように規則正しくフィルムの長手方向に1列又は複数の列で配置される(図6Aはフィルムの長手方向に1列、図6Bはフィルムの長手方向に2列、図6Cはフィルムの長手方向に5列。)。
 図6において、P1、P2及びP3は各赤外線ヒーターの熱源部設置間隔のピッチを表す。
 ここで、赤外線ヒーターにおける各々の熱源部は、図6A、図6B及び図6Cを見るとわかるように、各々の赤外線ヒーターの中央部である。
 なお、本発明における赤外線ヒーターの形は限定されず、実際の赤外線ヒーターの熱源部には、点状、線状又は面状等の形があり、本発明における「赤外線ヒーターの熱源部」とは、実際の赤外線ヒーターの形が点状、線状又は面状等のいずれの形をとった際にも、実際の赤外線ヒーターの熱源部の中央部をいうものとする。
 また、赤外線ヒーターは、フィルム表面から30~120mm離れた位置に配置されている。
 また、加熱幅は、100~250mmの範囲内とした。
 さらに、赤外線ヒーターの熱源部設置間隔はピッチ10~100mmの範囲内とした。
 赤外線ヒーターの各熱源部は、100~1000Wの範囲内で180~350℃の範囲内とした。
 以下各熱源部の位置関係を具体的に説明する。
 本発明に係る配置された各々の熱源部EとEとを結ぶ直線の平均傾きθ′を求める際に、熱源部EAとEBとの位置関係は、幅手方向の座標と長手方向の座標位置を異にする最も近い位置関係である(図6参照)。
 具体的には、例えば図7Aや図7Bのような位置関係が挙げられる。
 なお、配置された各々の熱源部EAとEBを結ぶ直線の長手方向に対する直線の平均傾きθ′は、下記のように導かれる。
 以下図7Aを用いて説明する。
 図7Aのように、フィルムの幅手方向にx軸をとり、長手方向にy軸をとったとき、熱源部EAの座標を(x,y)、熱源部EBの座標を(x,y)とする。
 |x-x|を三角形の底辺とし、|y-y|を三角形の高さとしたときに導かれる角度θ[°](0°≦θ≦90°)の値に対して、90-θ[°]の値を算出することにより、直線の平均傾きθ′が導かれる。
 <凸部調整工程における膜厚制御手段>
 (膜厚制御手段4)
 凸部調整工程における膜厚制御手段は、例えばテンター延伸装置内の炉内温度や熱処理のタイミングを変えることにより行うことができる。
 なお、本発明においては、上記熱処理は赤外線(IR)ヒーターにより行ったが、他の方法により熱処理を行ってもよい。
 また、上記の膜厚制御手段4はテンター延伸装置内以外でも、別の工程の炉内、該当の環境温度や熱処理のタイミングを変えることによって行うこともできる。
 (テンター延伸装置)
 〔炉内温度〕
 本願で規定する炉内温度とは、テンター延伸装置内においてフィルムが延伸ゾーンを通過する直前(延伸ゾーンについては後述する。)のフィルム中央から100mm上側の位置を測定した温度であり、1分間ごとの各温度の値を1時間測定し、それらの平均値を算出したものをいう。
 上記の炉内温度と熱処理の温度差が、小さすぎたり、大きすぎたりしなければ凸部の調製が容易となる。
 上記の観点から、炉内温度と熱処理の温度差は、100~200℃の範囲内であることが好ましい。
 通常、炉内温度は120~220℃の範囲内が好ましく、さらに好ましくは120~180℃の範囲内である。
 ここで、複数の区画で長手に温度勾配をつけている際は、熱処理の区画を対象とするものとする。
 〔フィルムが延伸ゾーンを通過する直前の残留溶媒量〕
 フィルムが延伸ゾーンを通過する直前のフィルム中の残留溶媒量は20質量%以下が好ましく、さらに好ましくは15質量%以下で延伸するのが好ましい。
 〔テンター延伸装置の内部構成1〕
 テンター延伸装置は、フィルムの幅方向のフィルムの両端部をクリップで把持し、このクリップをフィルムとともに走行させながら間隔を拡げることによって、フィルムを延伸する装置であり、通常、複数ゾーン(予熱ゾーン、延伸ゾーン及び熱固定ゾーン)に分けられており、上記3つのゾーンのうち熱処理を加えるタイミングを必要に応じて変えることにより行う。
 上記の熱処理には、赤外線(IR)ヒーターを用いており、赤外線(IR)ヒーターは必要に応じた個数が各ゾーンに適宜設置される。
 ただし、本発明における熱処理の方法としては、赤外線(IR)ヒーター以外も用いることができる。
 以下、図8を参照しながらテンター延伸装置7として用いられる装置を説明する。
 図8は、テンター延伸装置の内部構成を模式的に表す平面図であり、テンター延伸装置をフィルムの面に垂直な面を上側から見た断面図である。
 なお、図8は、カバーを取り外した状態を示しており、カバーは二点鎖線で示している。
 テンター延伸装置40は、フィルムFの幅方向のフィルムの両端部を把持する多数のクリップ42を備え、クリップ42は、無端チェーン48に一定の間隔で取り付けられている。
 無端チェーン48は、フィルムFを挟んで両側に配置されており、それぞれが入口側の原動スプロケット50と出口側の従動スプロケット52との間に掛け渡される。
 原動スプロケット50は不図示のモータに接続されており、このモータを駆動することによって原動スプロケット50が回転される。
 これにより、無端チェーン48が原動スプロケット50と従動スプロケット52との間を周回走行するので、無端チェーン48に取り付けたクリップ42が周回走行される。
 原動スプロケット50と従動スプロケット52との間には、無端チェーン48(又はクリップ42)をガイドするためのレール54が設けられる。
 レール54は、フィルムFを挟んで両側に配置されており、レール54同士の間隔はフィルムFの搬送方向の上流側よりも下流側が広くなるように構成される。
 これにより、クリップ42が周回走行する際に、クリップ42同士の間隔が拡げられるので、クリップ42に把持された光学フィルムFを幅方向に横延伸することができる。
 原動スプロケット50と従動スプロケット52にはそれぞれ開放部材56が取り付けられている。
 開放部材56は、後述するクリップ42のフラッパ(図示せず)を把持位置から開放位置に変位させる装置であり、この開放部材56によって、フィルムFの把持動作と開放動作が自動的に行われる。
 〔テンター延伸装置の内部構成2〕
 ところで、テンター延伸装置40の内部は図8に示すように、予熱ゾーン、(横)延伸ゾーン及び熱固定ゾーンが設けられている。
 ゾーン同士の間は、不図示の遮風カーテン(不図示)によって仕切られている。
 また、各ゾーンの内部では、フィルムFに対して上方又は下方、若しくはその両方から、熱風が給気される。
 熱風は、ゾーン毎に所定の温度に管理された状態で、フィルムFの幅方向に均一に吹き出される。
 これにより、各ゾーンの内部が所望の温度に制御される。
 以下、各ゾーンについて説明する。
 予熱ゾーンは、フィルムFを予熱処理するゾーンであり、クリップ42の間隔を拡げることなく、フィルムFを加熱する。
 予熱ゾーンで予熱されたフィルムFは、横延伸ゾーンに移動する。
 横延伸ゾーンは、クリップ42の間隔を広げることによってフィルムFを幅方向に横延伸するゾーンである。
 この横延伸処理における延伸倍率は、1.0~2.5倍の範囲内が好ましく、1.05~2.3倍の範囲内がより好ましく、1.1~2倍の範囲内がさらに好ましい。
 横延伸ゾーンで横延伸されたフィルムFは、熱固定ゾーンに移動する。
 なお、本実施の形態では、テンター40の内部を予熱ゾーン、(横)延伸ゾーン、熱固定ゾーンに分けたが、ゾーンの種類や配置はこれに限定するものではなく、例えば横延伸ゾーンの後に、フィルムFを冷却する冷却ゾーンを設けてもよい。
 また、熱固定ゾーンの中に熱緩和ゾーンを設けてもよい。
 なお、本実施の形態では、テンター40で横延伸のみを行ったが、縦方向にも同時に延伸してもよい。
 この場合、クリップ42の移動時に、クリップ42のピッチ(搬送方向におけるクリップ42同士の間隔)を変化させればよい。
 クリップ42のピッチを変化させる機構としては、例えばパンタグラフ機構やリニアガイド機構を利用することができる。
 〔テンター延伸装置の内部構成3〕
 図9は、テンター延伸装置内の3つのゾーンを正面から見たときのノズルとヒーター設置部分の概略図である。
 また、各ゾーンに赤外線(IR)ヒーターが設置された場合における一例として、赤外線(IR)ヒーターが予熱ゾーンに設置された場合のテンター延伸装置内の3つのゾーンの側面図を図10に示す。
 図9のように、赤外線(IR)ヒーターは、フィルム破断時に赤外線(IR)ヒーターにフィルムが接触しないようにノズルの上側にのみ配置されている。
 また、フィルムに赤外線(IR)ヒーターを近づけた方が、赤外線(IR)ヒーターによる放射エネルギーをより狭い範囲に集中させることができるため、クリップによる幅だし動作に干渉しない範囲で、フィルムに赤外線(IR)ヒーターをなるべく近づける。
 図9において、フィルムから赤外線(IR)ヒーターまでの距離Hは、30~120mmの範囲内が好ましい。
 また、上記赤外線(IR)ヒーターの加熱幅は、100~250mmであるものを用いることが好ましい。
 なお、上記記載における「加熱幅」とは、赤外線(IR)ヒーターの直下の加熱強度を1としたとき、その加熱強度が0.2となるまでの赤外線(IR)ヒーターにより加熱される幅をいうものとする。
 赤外線(IR)ヒーターの設置間隔(ピッチ)としては、10~100mmが好ましく、100~1000Wにて、150~400℃の範囲内で加熱することが好ましい。
 本発明においては、フィルムの幅手方向の膜厚プロファイルを各位置にて測定し、ターゲットとする膜厚プロファイルと現在の膜厚プロファイルとの差分から、各々の赤外線(IR)ヒーターの設定温度をコンピューター上で算出し、キーエンスPLC KV-8000を介して各々の赤外線(IR)ヒーターに設定温度を出力し、これらの操作を自動で繰り返すことにより凸部を調整した。
 図9では、主に中央ノズルからの熱処理が示されており、今回の実施例では端部ノズルによる熱処理は行われていないが、本実施形態では併用可能である。
 延伸装置においては、図10のようにノズルすき間から赤外線(IR)ヒーターが出ている方が放射エネルギーを無駄なくフィルムに伝えることができる。
 図11は、図8とは別の視点でテンター延伸装置をフィルムの面に垂直な面を上側から見た断面図である。
 図11のように、延伸前のフィルムにおいても、全ての幅を加熱できるように赤外線(IR)ヒーターは列に配置した。
 なお、ヒーターは、長手方向に千鳥状に配置しても良い。
 (赤外線ヒーターにおける中央部の熱量Aと赤外線ヒーターの端部の熱量の平均値Bとの関係性)
 前記凸部調整工程(S2)において、局所的な加熱が赤外線(IR)ヒーターを用いて行われ、かつ、前記赤外線(IR)ヒーターにおける中央部の熱量Aと、その中央部から75mm離れた赤外線(IR)ヒーター端部熱量の平均値Bが下記式(1)を満たすことが効果発現の観点から好ましい。
 式(1): 0.2<(B/A)<0.6
 上記の赤外線ヒーターによる赤外線の照射光による熱の収束性が良ければ、より細かい膜厚プロファイル調整ができるので、熱制御が難しくなりすぎない程度の収率を考慮した結果本発明には、上記の範囲が効果的である。
 なお、上記記載における「赤外線(IR)ヒーターにおける中央部」とは、前述の図6における各熱源部のことをいう。
 また、上記記載における「赤外線(IR)ヒーター端部」とは、中央部から幅手方向に75mmの位置をいう。
 本発明においては、赤外線(IR)ヒーターにおける中央部の熱量Aと赤外線ヒーターの端部の熱量の平均値Bは、サーモビューアー(株式会社ビジョンセンシング製VIM-640G2ULC)で温度分布を測定し、その平均値をとることにより算出したが、他の方法により熱処理を行った場合は、それに応じた。
 以下にその原理と算出方法を詳細に示す。
 上記赤外線(IR)ヒーターによりフィルムが熱せられる。
 熱せられた部分の温度変動幅を長手方向に積算し、その幅手中央部を熱量Aとし、幅手方向に75mmの位置の平均値を赤外線ヒーターの端部の熱量の平均値Bとする。
 上記の値より、赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A)を算出する。
 このとき、(B/A)が大すぎるときは、上記赤外線(IR)ヒーターはピンポイントで赤外線の照射範囲を狭くできるように設計されていないが、(B/A)が小さすぎるときは、上記赤外線(IR)ヒーターの幅手の設置台数を増やすことで(B/A)の値の範囲を制御することができる。
 〔赤外線(IR)ヒーター〕
 本発明に用いる赤外線(IR)ヒーターの詳細について説明する。
 本発明の実施に用いることのできる赤外線(IR)ヒーターとしては、一般の赤外線(IR)ヒーターと異なり、赤外線を反射させるミラーを用いることによりピンポイントで赤外線の照射範囲を狭くできるように設計されていることが好ましい。
 赤外線を反射させるミラーとしては、例えばコールドミラー(シグマ光機株式会社製)や、赤外用アルミ増反射ミラー(ノヴォ・オプティクス社製)等多数挙げられる。
 本発明の実施に用いたミラーはアルミニウムを用いたミラーである赤外用アルミ増反射ミラー(ノヴォ・オプティクス社製)を用いた。
 現行の一般的な赤外線(IR)ヒーター1個の赤外線の照射範囲は、例えばMCHNNS3、照射エネルギー400W(ミスミ株式会社製)で幅手方向に500mmであるのに対し、本発明の実施において用いた赤外線(IR)ヒーター1個の赤外線の照射範囲は、照射エネルギー550W(株式会社ヒートテック社製)で幅手方向に100~150mmである。
 (1.3)トリミング工程(S3)
 トリミング工程(S3)では、スリッターからなる切断部8が、延伸されたフィルムFの幅手方向のフィルムの両端部を切断(トリミング)する。
 上記のトリミングの前に、前記フィルムをオシレートさせないことが、本発明の効果発現の観点からは好ましい。
 なお、本明細書において「オシレート」とは、フィルム自体を幅方向に動かすことをいう。
 フィルムFにおいて、フィルムの両端部の切断後に残った部分は、フィルム製品となる製品部を構成する。
 一方、フィルムFから切断された部分は、回収され、再び原材料の一部としてフィルムの製膜に再利用してもよい。
 前記トリミング工程の後に、前記フィルムにナーリング加工を施すことも可能であるが、前記トリミング工程の後に、前記フィルムにナーリング加工を施さないことが、空気の過剰な取込みを抑制する観点からは好ましい。
 (1.4)巻取工程(S4)
 最後に、巻取工程(S4)にて、フィルムFを、巻取装置13によって巻取り、フィルムロールを得る。
 すなわち、巻取工程では、フィルムFを搬送しながら巻芯に巻き取ることにより、フィルムロールが製造される。
 巻取工程におけるフィルムを巻取る際の初期張力の好ましい範囲は、20~300N/mの範囲内である。
 (巻取直前の残留溶媒量)
 より具体的には、フィルム中の残留溶媒量が2質量%以下となってからフィルムとして巻取装置12により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。
 特に、残留溶媒量が、0.00~0.20質量%の範囲内で巻き取ることが好ましい。
 (巻取り方法)
 フィルムFの巻取り方法は、一般に使用されているワインダーを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の張力をコントロールする方法があり、それらを使い分ければよい。
 巻き取る前に、製品となる幅にフィルムの端部をスリットして裁ち落とし、巻き中の貼りつきや擦り傷防止のために、表面改質処理をフィルム両端に施してもよい。
 (巻取り後)
 本発明に係るフィルムロールは、長尺フィルムであることが好ましく、具体的には、100~10000m程度の範囲内のものを示し、通常、ロール状で提供される形態のものである。
 〈フィルムの巻取り方法の詳細〉
 本発明に係るフィルムは以下の巻取方法で巻取ることが好ましい。
 巻取方法は、フィルムの側縁が揃うように前記フィルムを巻芯に巻き取るストレート巻き工程と、前記ストレート巻き工程の後に、前記側縁が前記フィルムの幅方向に対して一定範囲で周期的にずれるように、前記フィルムの幅方向に前記フィルム又は前記巻芯を周期的に振動させて前記フィルムを前記巻芯に巻き取るオシレート巻き工程とを有することが好ましい。
 特に、前記フィルムの巻長が、前記フィルムの全巻長に対して1~30%の範囲内であらかじめ定められる切替時巻長に達したときに、前記ストレート巻き工程から前記オシレート巻き工程に切り替えることが好ましい。
 フィルムの巻取装置は、巻芯を回転させて前記巻芯にフィルムを巻き取るフィルム巻取部と、前記フィルムが前記巻芯上で前記フィルムの幅方向に一定範囲内で周期的にずれるオシレート巻きになるように、前記フィルムの巻取りに連動させて前記フィルム又は前記巻芯を前記フィルムの幅方向に振動させるオシレート部と、前記フィルムの巻長があらかじめ定められる切替時巻長に達したときに、前記フィルムの巻取りを前記ストレート巻きから前記オシレート巻きに切り替える切替部とを備えることが好ましい。
 以下オシレート巻きについての詳細は、省略する。
 図12は、フィルムが巻き取られる工程と、巻き取られた後の本発明に係るフィルムロールの断面を示す概略図である。
 図11では、製膜されたフィルム31はロール32及びタッチロール33によって巻き回され、フィルムロール30として巻き取られる。
2.溶融流延製膜法によるフィルムロールの製造方法
 本発明に係るフィルムは、溶融流延製膜法により製膜することもできる。
 「溶融流延製膜法」とは、熱可塑性樹脂及び上述した添加剤を含む組成物を、流動性を示す温度まで加熱溶融し、その後、流動性の熱可塑性樹脂を含む溶融物を流延する方法をいう。
 加熱溶融する成形方法としては、詳細には、溶融押出成形法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法等に分類できる。
 これらの成形法の中では、機械的強度及び表面精度等の点から、溶融押出し法が好ましい。
 以下、溶融流延製膜法の製造工程の流れについても前述した溶液流延製膜法についての図2と同様の流れで説明する。
 また、図13は、溶融流延製膜法によって光学フィルムを製造する装置の概略図である。
 以下溶液流延製膜法において、図2及び図13を参照しながら説明する。
 本発明の溶融流延製膜法によるフィルムロールの製造方法は、フィルム形成工程(S1)、凸部調整工程(S2)、トリミング工程(S3)及び巻取工程(S4)を含む。
 (2.1)フィルム形成工程(S1)
 (2.1.1)樹脂の溶融押出
 押出し機14にて、少なくとも樹脂を溶融押出しして、キャストドラム16上に成形する。
 本発明に用いることのできる上記樹脂についての詳細は後述するが、樹脂はあらかじめ混錬してペレット化しておくことが好ましく、ペレット化は、公知の方法で行えばよい。
 例えば乾燥樹脂や可塑剤、その他添加剤をフィーダーで押出し機に供給し、一軸や二軸の押出し機を用いて混錬し、流延ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでペレット化できる。
 添加剤は、押出し機に供給する前に樹脂に混合しておいてもよいし、添加剤及び樹脂をそれぞれ個別のフィーダーで押出し機に供給してもよい。
 また、粒子や酸化防止剤等の少量の添加剤は、均一に混合するため、事前に樹脂に混合しておくことが好ましい。
 供給ホッパーから押出し機へ、ペレットを導入する際は、乾燥、真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。
 押出し機は、剪断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。
 例えば二軸押出し機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。
 混錬の均一性から、噛み合いタイプが好ましい。
 樹脂・ペレットは溶融時に、リーフディスクタイプのフィルター等でろ過して異物を除去することが好ましい。
 以上のようにして得られたペレットを用いてフィルム製膜を行う。
 勿論、ペレット化せず、原材料の樹脂(粉末等)をそのままフィーダーで押出し機に供給し、そのままフィルム製膜することも可能である。
 (2.1.2)溶融した樹脂・ペレットの流延、成形
 溶融した樹脂・ペレットを、加圧型定量ギアポンプ等を通して、導管によって流延ダイ15からフィルム状に流延し、無限に移送する回転駆動ステンレス鋼製エンドレスキャストドラム16上の流延位置に流延ダイ15から溶融した樹脂・ペレットを流延する。
 そして、流延した溶融状態の樹脂・ペレットをキャストドラム16上で成形させて、フィルムFを形成する。
 流延ダイ15の傾き、すなわち、流延ダイ15から支持体16への溶融状態の樹脂・ペレットの吐出方向は、キャストドラム16の面(溶融状態の樹脂・ペレットが流延される面)の法線に対する角度で0~90°の範囲内となるように適宜設定されればよい。
 タッチローラー16aやキャストドラム16を補助する冷却ドラム17を適宜、単独であるいは組み合わせてフィルムFを形成してもよい。
 フィルム形成工程における膜厚制御手段及びその他の事項については、前述した溶液流延製膜法によるフィルムロールの製造工程と同様であり、残留溶媒量、収縮率及び乾燥方法等の記載も重複するので省略する。
 (2.2)凸部調整工程(S2)
 凸部調整工程における凸部調整工程の概要、凸部調整工程の詳細、フィルムの延伸、凸部調整工程における各用語の定義、凸部調整工程における膜厚制御手段及びその他の事項については、前述した溶液流延製膜法によるフィルムロールの製造工程と同様の記載については省略する。
 凸部調整工程においては、フィルムに局所的な加熱を施すと同時にフィルムを延伸する。
 上記のフィルムFを延伸装置19によって延伸する。
 延伸装置19内では、延伸に加えて乾燥を行ってもよい。
 (2.3)トリミング工程(S3)
 トリミング工程(S3)では、スリッターからなる切断部20が、製膜されたフィルムFの幅手方向のフィルムの両端部を切断(トリミング)する。
 上記のトリミングの際には、前記フィルムをオシレートさせない又はフィルムの幅手方向に前記フィルムをさせないことが、本発明の効果発現の観点からは好ましい。
 フィルムFにおいて、フィルムの両端部の切断後に残った部分は、フィルム製品となる製品部を構成する。
 一方、フィルムFから切断された部分は、回収され、再び原材料の一部としてフィルムの製膜に再利用してもよい。
 前記トリミング工程の後に、前記フィルムにナーリング加工を施すことも可能であるが、前記トリミング工程の後に、前記フィルムにナーリング加工を施さないことが、本発明の効果発現の観点からは好ましい。
 (2.4)巻取工程(S4)
 最後に、巻取工程(S4)にて、フィルムFを、巻取装置23によって巻取り、フィルムロールを得る。
 すなわち、巻取工程では、フィルムFを搬送しながら巻芯に巻き取ることにより、フィルムロールが製造される。
 フィルムFの巻取り方法は、一般に使用されているワインダーを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の張力をコントロールする方法があり、それらを使い分ければよい。
3.フィルムロールの製造における凸部調整システム
 本発明のフィルムロールの製造に用いる凸部調整システムは、フィルム表面の幅手方向における凸部の数、高さ及び位置を調整する凸部調整工程を有するフィルムロールの製造に用いる凸部調整システムであって、前記凸部調整工程中のフィルムの膜厚プロファイルを取得する膜厚取得手段と、前記膜厚プロファイルのデータにより、前記幅手方向における前記凸部の数が1mあたり1~10個である理想値の範囲内であるか否か、及び前記幅手方向における前記凸部高さが0.05~0.50μmである理想値の範囲内であるか否か、を判定する判定手段と、前記判定手段において、前記凸部の数と前記凸部の高さが両方、又は一方が理想値の範囲外である場合に、前記凸部の数と前記凸部の高さが両方とも理想値の範囲内になるように、前記フィルムに対する局所的な加熱を赤外線ヒーターによって行う手段と、からなることを特徴とする。
 (3.1)膜厚取得手段
 (手段1)
 本発明のフィルムロールの製造における凸部調整システムにおけるフィルムの膜厚取得手段としては、インラインリターデーション・膜厚測定装置RE-200L2T-Rth+膜厚(大塚電子(株)製)を用いて測定した。
 凸部に関する用語の定義等の詳細は前述したので省略する。
 (手段2)
 凸部調整工程においては、延伸装置内にてフィルムに局所的な加熱を施しながらフィルムを延伸する。
 (3.2)判定手段
 前記膜厚プロファイルのデータにより、前記幅手方向における前記凸部の数が1mあたり1~10個である理想値の範囲内であるか否か、及び前記幅手方向における前記凸部高さが0.05~0.50μmである理想値の範囲内であるか否か、を判定する。
 (3.3)フィルムに対する局所的な加熱を赤外線ヒーターによって行う手段
 前記凸部の数と前記凸部の高さが両方、又は一方が理想値の範囲外である場合に、前記凸部の数と前記凸部の高さが両方とも理想値の範囲内になるように、現在の膜厚プロファイルとの差分から、各々の赤外線ヒーターの設定温度をコンピューター上で算出し、各々の設定温度を出力してフィルムに対する局所的な加熱を赤外線ヒーターによって行うことにより凸部を調整し、それを自動で繰り返し、膜厚調整を自動化して行う。
4.フィルムを構成する樹脂
 (4.1)熱可塑性樹脂
 本発明に係るフィルムに用いられる熱可塑性樹脂材料としては、製膜後フィルムロールとして扱えるものであれば限定はない。
 例えば偏光板用途として使用されている熱可塑性樹脂としては、トリアセチルセルロース(TAC)、セルロースアセテートプロピオネート(CAP)、ジアセチルセルロース(DAC)等のセルロースエステル系樹脂やシクロオレフィンポリマー(シクロオレフィン系樹脂(COP))等の環状オレフィン系樹脂(以下、シクロオレフィン系樹脂ともいう。)、ポリプロピレン(PP)等のポリプロピレン系樹脂、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、及びポリエチレンテレフターレート(PET)等のポリエステル系樹脂が適用できる。
 特に、低弾性率のフィルム、例えば弾性率3.0GPa未満の樹脂においては、フィルムロールを形成する際に当該フィルムの複数の箇所に係る応力を緩和しにくいため、幅手方向及び長手方向にて伸び縮みしづらくなり、当該フィルムがロールの状態では面にて応力が吸収しきれず、巻きずれが起きやすい。
 また、上記の低弾性率のフィルムを別の観点から見ると、当該フィルムの長手方向及び長手方向で高低差があると、当該フィルムの高いところの伸び縮みと低いところの伸び縮みの差が大きくなってしまう。
 したがって、本発明の実施形態において、長手平均膜厚の最大高低差(P-V)を0.02~0.40μmの範囲内に制御することが好ましく、低弾性率の樹脂であるシクロオレフィンポリマー(シクロオレフィン系樹脂(COP))やポリメチルメタクリレート(アクリル系樹脂(PMMA))を熱可塑性樹脂として用いたフィルムロールに適用することが効果的である。
 ただし、延伸性や結晶化度のコントロールがしやすい点、及び、接着剤が浸透しやすく、偏光子層とのより良好な接着性を確保できる点では、シクロオレフィン系樹脂(COP)を用いることが望ましい。
 なお、上記フィルムは、製造後に表面改質処理を施しても良い。
 また、本発明の効果は、薄膜領域にて価値が高まる。
 フィルムの膜厚としては5~80μmの範囲内が好ましく、10~65μmの範囲内がより好ましく、10~45μmの範囲内がさらに好ましい。
 膜厚が5μm以上であれば、フィルムロールの剛性が高く、ロール形状を保つことが容易となる。
 膜厚が80μm以下であれば質量が増えすぎず、長尺のフィルムロールを作製し易くなる。
 (4.1.1)シクロオレフィン系樹脂
 本発明に係るフィルムロールに含有されるシクロオレフィン系樹脂は、シクロオレフィン単量体の重合体、又はシクロオレフィン単量体とそれ以外の共重合性単量体との共重合体であることが好ましい。
 シクロオレフィン単量体としては、ノルボルネン骨格を有するシクロオレフィン単量体であることが好ましく、下記一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000001
 一般式(A-1)中、R~Rは、各々独立して、水素原子、炭素原子数1~30の炭化水素基、又は極性基を表す。pは、0~2の整数を表す。ただし、R~Rの全てが同時に水素原子を表すことはなく、RとRが同時に水素原子を表すことはなく、RとRが同時に水素原子を表すことはないものとする。
 一般式(A-1)においてR~Rで表される炭素原子数1~30の炭化水素基としては、例えば炭素原子数1~10の炭化水素基であることが好ましく、炭素原子数1~5の炭化水素基であることがより好ましい。
 炭素原子数1~30の炭化水素基は、例えばハロゲン原子、酸素原子、窒素原子、硫黄原子又はケイ素原子を含む連結基を更に有していても良い。
 そのような連結基の例には、カルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合等の2価の極性基が含まれる。
 炭素原子数1~30の炭化水素基の例には、メチル基、エチル基、プロピル基及びブチル基等が含まれる。
 一般式(A-1)においてR~Rで表される極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基及びシアノ基が含まれる。
 中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましい。
 一般式(A-1)におけるpは、フィルムの耐熱性を高める観点から、1又は2であることが好ましい。
 pが1又は2であると、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。
Figure JPOXMLDOC01-appb-C000002
 一般式(A-2)中、Rは、水素原子、炭素数1~5の炭化水素基、又は炭素数1~5のアルキル基を有するアルキルシリル基を表す。Rは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、又はハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子)を表す。pは、0~2の整数を表す。
 一般式(A-2)におけるRは、炭素数1~5の炭化水素基を表すことが好ましく、炭素数1~3の炭化水素基を表すことがより好ましい。
 一般式(A-2)におけるRは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基を表すことが好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基がより好ましい。
 一般式(A-2)におけるpは、フィルムの耐熱性を高める観点から、1又は2を表すことが好ましい。
 pが1又は2を表すと、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。
 一般式(A-2)で表される構造を有するシクロオレフィン単量体は、有機溶媒への溶解性を向上させる点から好ましい。
 一般的に有機化合物は対称性を崩すことによって結晶性が低下するため、有機溶媒への溶解性が向上する。
 一般式(A-2)におけるR及びRは、分子の対称軸に対して片側の環構成炭素原子のみに置換されているので、分子の対称性が低く、すなわち、一般式(A-2)で表される構造を有するシクロオレフィン単量体は溶解性が高いため、フィルムを溶液流延法によって製造する場合に適している。
 シクロオレフィン単量体の重合体における一般式(A-2)で表される構造を有するシクロオレフィン単量体の含有割合は、シクロオレフィン系樹脂を構成する全シクロオレフィン単量体の合計に対して、例えば70mol%以上、好ましくは80mol%以上、より好ましくは100mol%とし得る。
 一般式(A-2)で表される構造を有するシクロオレフィン単量体を一定以上含むと、樹脂の配向性が高まるため、位相差(リターデーション)値が上昇しやすい。
 以下、一般式(A-1)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物1~14に示し、一般式(A-2)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物15~34に示す。
Figure JPOXMLDOC01-appb-C000003
 シクロオレフィン単量体と共重合可能な共重合性単量体の例には、シクロオレフィン単量体と開環共重合可能な共重合性単量体、及びシクロオレフィン単量体と付加共重合可能な共重合性単量体等が含まれる。
 開環共重合可能な共重合性単量体の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン及びジシクロペンタジエン等のシクロオレフィンが含まれる。
 付加共重合可能な共重合性単量体の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素単量体及び(メタ)アクリレート等が含まれる。
 不飽和二重結合含有化合物の例には、炭素原子数2~12(好ましくは2~8)のオレフィン系化合物が含まれ、その例には、エチレン、プロピレン及びブテン等が含まれる。
 ビニル系環状炭化水素単量体の例には、4-ビニルシクロペンテン及び2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系単量体が含まれる。
 (メタ)アクリレートの例には、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが含まれる。
 シクロオレフィン単量体と共重合性単量体との共重合体におけるシクロオレフィン単量体の含有割合は、共重合体を構成する全単量体の合計に対して、例えば20~80mol%の範囲内、好ましくは30~70mol%の範囲内とし得る。
 シクロオレフィン系樹脂は、前述のとおり、ノルボルネン骨格を有するシクロオレフィン単量体、好ましくは一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体を重合又は共重合して得られる重合体であり、その例には、以下(1)~(7)の重合体が含まれる。
 (1)シクロオレフィン単量体の開環重合体
 (2)シクロオレフィン単量体と、それと開環共重合可能な共重合性単量体との開環共重合体
 (3)上記(1)又は(2)の開環(共)重合体の水素添加物
 (4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素を添加した(共)重合体
 (5)シクロオレフィン単量体と、不飽和二重結合含有化合物との飽和共重合体
 (6)シクロオレフィン単量体のビニル系環状炭化水素単量体との付加共重合体及びその水素添加物
 (7)シクロオレフィン単量体と、(メタ)アクリレートとの交互共重合体
 上記(1)~(7)の重合体は、いずれも公知の方法、例えば特開2008-107534号公報や特開2005-227606号公報に記載の方法で得ることができる。
 例えば上記(2)の開環共重合に用いられる触媒や溶媒は、例えば特開2008-107534号公報の段落0019~0024に記載のものを使用できる。
 上記(3)及び(6)の水素添加物に用いられる触媒は、例えば特開2008-107534号公報の段落0025~0028に記載のものを使用できる。
 上記(4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば特開2008-107534号公報の段落0029に記載のものを使用できる。
 上記(5)~(7)の付加重合に用いられる触媒は、例えば特開2005-227606号公報の段落0058~0063に記載のものを使用できる。
 上記(7)の交互共重合反応は、例えば特開2005-227606号公報の段落0071及び0072に記載の方法で行うことができる。
 中でも、上記(1)~(3)及び(5)の重合体が好ましく、上記(3)及び(5)の重合体がより好ましい。
 すなわち、シクロオレフィン系樹脂は、得られるシクロオレフィン系樹脂のガラス転移温度を高くし、かつ光透過率を高くすることができる点で、下記一般式(B-1)で表される構造単位と下記一般式(B-2)で表される構造単位の少なくとも一方を含むことが好ましく、一般式(B-2)で表される構造単位のみを含むか、又は一般式(B-1)で表される構造単位と一般式(B-2)で表される構造単位の両方を含むことがより好ましい。
 一般式(B-1)で表される構造単位は、前述の一般式(A-1)で表されるシクロオレフィン単量体由来の構造単位であり、一般式(B-2)で表される構造単位は、前述の一般式(A-2)で表されるシクロオレフィン単量体由来の構造単位である。
Figure JPOXMLDOC01-appb-C000004
 一般式(B-1)中、Xは、-CH=CH-又は-CHCH-を表す。R~R及びpは、それぞれ一般式(A-1)のR~R及びpと同義である。
Figure JPOXMLDOC01-appb-C000005
 一般式(B-2)中、Xは、-CH=CH-又は-CHCH-を表す。R~R及びpは、それぞれ一般式(A-2)のR~R及びpと同義である。
 本発明に係るシクロオレフィン系樹脂は、市販品であっても良い。
 シクロオレフィン系樹脂の市販品の例には、JSR(株)製のアートン(Arton)G(例えばG7810等)、アートンF、アートンR(例えばR4500、R4900及びR5000等)、及びアートンRXが含まれる。
 シクロオレフィン系樹脂の固有粘度〔η〕inhは、30℃の測定において、0.2~5cm/gの範囲内であることが好ましく、0.3~3cm/gの範囲内であることがより好ましく、0.4~1.5cm/gの範囲内であることが更に好ましい。
 シクロオレフィン系樹脂の数平均分子量(Mn)は、8000~100000の範囲内であることが好ましく、10000~80000の範囲内であることがより好ましく、12000~50000の範囲内であることが更に好ましい。
 シクロオレフィン系樹脂の重量平均分子量(Mw)は、20000~300000の範囲内であることが好ましく、30000~250000の範囲内であることがより好ましく、40000~200000の範囲内であることが更に好ましい。
 シクロオレフィン系樹脂の数平均分子量や重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にてポリスチレン換算にて測定することができる。
 (ゲルパーミエーションクロマトグラフィー)
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0ml/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあると、シクロオレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性、及びフィルムとしての成形加工性が良好となる。
 シクロオレフィン系樹脂のガラス転移温度(Tg)は、通常、110℃以上であり、110~350℃の範囲内であることが好ましく、120~250℃の範囲内であることがより好ましく、120~220℃の範囲内であることが更に好ましい。
 ガラス転移温度(Tg)が110℃以上であると、高温条件下での変形を抑制しやすい。
 一方、ガラス転移温度(Tg)が350℃以下であると、成形加工が容易となり、成形加工時の熱による樹脂の劣化も抑制しやすい。
 シクロオレフィン系樹脂の含有量は、フィルムに対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 (4.1.2)アクリル系樹脂
 本発明に係るアクリル系樹脂は、アクリル酸エステル又はメタアクリル酸エステルの重合体であって、他のモノマーとの共重合体も含まれる。
 したがって、本発明に係るアクリル系樹脂には、メタクリル樹脂も含まれる。
 樹脂としては特に制限されるものではないが、メチルメタクリレート単位が50~99質量%の範囲内、及びこれと共重合可能なほかの単量体単位が1~50質量%の範囲内からなるものが好ましい。
 共重合で形成されるアクリル系樹脂を構成するほかの単位としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、メタクリル酸イソボルニル、2-ヒドロキシエチルアクリレート等のヒドロキシアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、アクリロイルモルホリン、Nヒドロキシフェニルメタクリルアミド等のアクリルアミド、N-ビニルピロリドン、マレイン酸、フマル酸、イタコン酸等の不飽和基含有2価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタルイミド及びグルタル酸無水物等が挙げられる。
 上記単位より、グルタルイミド及びグルタル酸無水物を除いた単位を形成する共重合可能な単量体としては、上記単位に対応した単量体が挙げられる。
 すなわち、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、メタクリル酸イソボルニル、2-ヒドロキシエチルアクリレート等のヒドロキシアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、アクリロイルモルホリン、Nヒドロキシフェニルメタクリルアミド等のアクリルアミド、N-ビニルピロリドン、マレイン酸、フマル酸、イタコン酸等の不飽和基含有2価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド及びN-置換マレイミド、等の単量体が挙げられる。
 また、グルタルイミド単位は、例えば(メタ)アクリル酸エステル単位を有する中間体ポリマーに1級アミン(イミド化剤)を反応させてイミド化することにより形成できる(特開2011-26563号公報参照。)。
 グルタル酸無水物単位は、例えば(メタ)アクリル酸エステル単位を有する中間体ポリマーを加熱することにより形成することができる(特許第4961164号公報参照。)。
 本発明に係るアクリル系樹脂には、上記の構成単位の中でも、機械的強度の観点から、メタクリル酸イソボルニル、アクリロイルモルホリン、N-ヒドロキシフェニルメタクリルアミド、N-ビニルピロリドン、スチレン、ヒドロキシエチルメタクリレート、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物又はグルタルイミドが含まれることが、特に好ましい。
 本発明に係るアクリル系樹脂は、環境の温湿度雰囲気の変化に対する寸法変化を制御する観点や、フィルム生産時の金属支持体からの剥離性、有機溶媒の乾燥性、耐熱性及び機械的強度の改善の観点から、重量平均分子量(Mw)が50000~1000000の範囲内であることが好ましく、100000~1000000の範囲内であることがより好ましく、200000~800000の範囲内であることが特に好ましい。
 50000以上であれば、耐熱性及び機械的強度が優れ、1000000以下であれば、金属支持体からの剥離性及び有機溶媒の乾燥性に優れる。
 本発明に係るアクリル系樹脂の製造方法としては、特に制限はなく、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。
 ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。
 重合温度については、懸濁又は乳化重合では30~100℃の範囲内、塊状又は溶液重合では80~160℃の範囲内で実施しうる。
 得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。
 アクリル系樹脂のガラス転移温度(Tg)は、80~120℃の範囲内であることが、フィルムの機械的強度を保持する観点から、好ましい。
 本発明に係るアクリル系樹脂としては、市販のものも使用することができる。
 例えばデルペット60N、80N、980N、SR8200(以上、旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88、EMB-143、EMB-159、EMB-160、EMB-161、EMB-218、EMB-229、EMB-270、EMB-273(以上、三菱レイヨン(株)製)、KT75、TX400S及びIPX012(以上、電気化学工業(株)製)等が挙げられる。
 アクリル系樹脂は二種以上を併用することもできる。
 本発明に係るアクリル系樹脂は、添加剤を含有することが好ましく、添加剤の一例としては、国際公開第2010/001668号に記載のアクリル粒子(ゴム弾性体粒子)を、フィルムの機械的強度向上や寸法変化率の調整のために含有することが好ましい。
 このような多層構造アクリル系粒状複合体の市販品の例としては、例えば三菱レイヨン社製の「メタブレンW-341」、カネカ社製の「カネエース」、クレハ社製の「パラロイド」、ロームアンドハース社製の「アクリロイド」、アイカ社製の「スタフィロイド」、ケミスノーMR-2G、MS-300X(以上、綜研化学(株)製)及びクラレ社製の「パラペットSA」等が挙げられ、これらは、単独ないし二種以上を用いることができる。
 アクリル粒子の体積平均粒子径は0.35μm以下であり、好ましくは0.01~0.35μmの範囲内であり、より好ましくは0.05~0.30μmの範囲内である。
 粒子径が一定以上であれば、フィルムを加熱下で伸びやすくでき、粒子径が一定以下であれば、得られるフィルムの透明性を損ないにくい。
 本発明に係るフィルムは、柔軟性の観点から、曲げ弾性率(JIS K7171)が10.5GPa以下であることが好ましい。
 この曲げ弾性率は、より好ましくは1.3GPa以下であり、更に好ましくは1.2GPa以下である。
 この曲げ弾性率は、フィルム中のアクリル系樹脂やゴム弾性体粒子の種類や量等によって変動し、例えばゴム弾性体粒子の含有量が多いほど、一般に曲げ弾性率は小さくなる。
 また、アクリル系樹脂として、メタクリル酸アルキルの単独重合体を用いるよりも、メタクリル酸アルキルとアクリル酸アルキル等との共重合体を用いる方が、一般に曲げ弾性率は小さくなる。
 (4.1.3)セルロースエステル系樹脂
 本発明に係るフィルムロールにおいては、セルロースエステル系樹脂を用いることも好ましい。
 本発明に用いられるセルロースエステルとは、セルロースを構成するβ-1,4結合しているグルコース単位中の2位、3位及び6位のヒドロキシ基(-OH)の水素原子の一部又は全部がアシル基で置換されたセルロースアシレート樹脂をいう。
 用いられるセルロースエステルは特に限定されないが、炭素数2~22程度の直鎖又は分岐のカルボン酸のエステルであることが好ましい。
 エステルを構成するカルボン酸は脂肪族カルボン酸でもよいし、環を形成してもよく、芳香族カルボン酸でもよい。
 例えばセルロースのヒドロキシ基部分の水素原子が、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、ラウロイル基、ステアロイル等の炭素数2~22のアシル基で置換されたセルロースエステルが挙げられる。
 エステルを構成するカルボン酸(アシル基)は、置換基を有してもよい。
 エステルを構成するカルボン酸は、特に炭素数が6以下の低級脂肪酸であることが好ましく、炭素数が3以下の低級脂肪酸であることがさらに好ましい。
 なお、セルロースエステル中のアシル基は単一種であってもよいし、複数のアシル基の組み合わせであってもよい。
 好ましいセルロースエステルの具体例には、ジアセチルセルロース(DAC)、トリアセチルセルロース(TAC)等のセルロースアセテートの他、セルロースアセテートプロピオネート(CAP)、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基又はブチレート基が結合したセルロースの混合脂肪酸エステルが挙げられる。
 これらのセルロースエステルは単一種を使用してもよいし、複数種を組み合わせて用いてもよい。
 (アシル基の種類・置換度)
 セルロースエステルのアシル基の種類及び置換度を調節することによって位相差の湿度変動を所望の範囲に制御することができ、膜厚の均一性を向上させることができる。
 セルロースエステルのアシル基の置換度が小さいほど位相差発現性が向上するため、薄膜化が可能となる。
 一方で、アシル基の置換度が小さすぎると、耐久性が悪化するおそれがあり好ましくない。
 一方、セルロースエステルのアシル基の置換度が大きいほど位相差が発現しないため、製膜の際に延伸倍率を増加させる必要があるが、高延伸倍率で均一に延伸させることは難しく、このため、膜厚バラつきが大きくなる(悪化する)。
 また、厚さ方向のリターデーション(位相差)であるRt湿度変動はセルロースのカルボニル基に水分子が配位することで生じるため、アシル基の置換度が高い、すなわち、セルロース中のカルボニル基が多いほど、Rt湿度変動が悪くなる傾向がある。
 セルロースエステルは総置換度が、2.1~2.5の範囲内であることが好ましい。
 当該範囲とすることによって、環境変動(特に湿度によるRt変動)を抑制するとともに、膜厚の均一性が向上しうる。
 より好ましくは、製膜の際の流延性及び延伸性を向上させ、膜厚の均一性が一層向上する観点から、2.2~2.45の範囲内である。
 より具体的には、セルロースエステルは、下記式(a)及び(b)をともに満足する。下記式(a)及び(b)中、Xはアセチル基の置換度、Yはプロピオニル基又はブチリル基の置換度、若しくはその混合物の置換度である。
 式(a): 2.1≦X+Y≦2.5
 式(b): 0≦Y≦1.5
 セルロースエステルは、セルロースアセテート(Y=0)、及びセルロースアセテートプロピオネート(CAP)(Y;プロピオニル基、Y>0)がより好ましく、さらに好ましくは膜厚バラつきを低減させる点からY=0であるセルロースアセテートである。
 特に好ましく用いられるセルロースアセテートは、位相差発現性、Rt湿度変動、膜厚バラつきを所望の範囲とする点から2.1≦X≦2.5(一層好ましくは2.15≦X≦2.45)のセルロースジアセテート(DAC)である。
 また、Y>0の場合には、特に好ましく用いられるセルロースアセテートプロピオネート(CAP)は、0.95≦X≦2.25、0.1≦Y≦1.2、2.15≦X+Y≦2.45である。
 上述のセルロースアセテート若しくはセルロースアセテートプロピオネートを用いることで、リターデーションに優れ、機械的強度、環境変動に優れたフィルムロールが得られる。
 なお、アシル基の置換度は、1グルコース単位あたりのアシル基の平均数を示し、1グルコース単位の2位、3位及び6位のヒドロキシ基の水素原子のいくつがアシル基に置換されているかを示す。
 従って、最大の置換度は3.0であり、この場合には2位、3位及び6位のヒドロキシ基の水素原子がすべてアシル基で置換されていることを意味する。
 これらアシル基は、グルコース単位の2位、3位、6位に平均的に置換していてもよいし、分布をもって置換していてもよい。
 置換度は、ASTM-D817-96に規定の方法により求められる。
 所望の光学特性を得るために置換度の異なるセルロースアセテートを混合して用いてもよい。
 上記の場合、異なるセルロースアセテートの混合比率は特に限定されない。
 セルロースエステルの数平均分子量(Mn)は、2×10~3×10の範囲内、さらには2×10~1.2×10の範囲内、また、さらには4×10~8×10の範囲内であると、得られるフィルムロールの機械的強度が高くなる観点から好ましい。
 セルロースエステルの数平均分子量Mnは、前述の測定条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いた測定により算出する。
 セルロースエステルの重量平均分子量(Mw)は、2×10~1×10の範囲内、さらには2×10~1.2×10の範囲内、また、さらには4×10~8×10の範囲内であると得られるフィルムロールの機械的強度が高くなる観点から好ましい。
 セルロースエステルの原料セルロースは、特に限定されないが、綿花リンター、木材パルプ、ケナフ等を挙げることができる。
 また、それらから得られたセルロースエステルは、それぞれ任意の割合で混合使用することができる。
 セルロースアセテート、セルロースアセテートプロピオネート等のセルロースエステルは、公知の方法により製造することができる。
 一般的には、原料のセルロースと所定の有機酸(酢酸、プロピオン酸等)と酸無水物(無水酢酸、無水プロピオン酸等)、触媒(硫酸等)と混合して、セルロースをエステル化し、セルロースのトリエステルができるまで反応を進める。
 トリエステルにおいては、グルコース単位の三個のヒドロキシ基は、有機酸のアシル酸で置換されている。
 同時に二種類の有機酸を使用すると、混合エステル型のセルロースエステル、例えばセルロースアセテートプロピオネートやセルロースアセテートブチレートを作製することができる。
 次いで、セルロースのトリエステルを加水分解することで、所望のアシル置換度を有するセルロースエステル樹脂を合成する。
 その後、ろ過、沈殿、水洗、脱水、乾燥等の工程を経て、セルロースエステル樹脂ができあがる。具体的には特開平10-45804号に記載の方法を参考にして合成することができる。
 (4.2)その他の添加剤
 本発明に係るフィルムロールは、その他の添加剤として上記熱可塑性樹脂の他に以下のものを含有していてもよい。
 (4.2.1)可塑剤
 本発明に係るフィルムロールは、例えば偏光板保護フィルム等に加工性を付与する目的で少なくとも一種の可塑剤を含むことが好ましい。
 可塑剤は単独で又は二種以上混合して用いることが好ましい。
 可塑剤の中でも、糖エステル、ポリエステル、及びスチレン系化合物からなる群から選択される少なくとも一種の可塑剤を含むことが、透湿性の効果的な制御及びセルロースエステル等の基材樹脂との相溶性を高度に両立できる観点から好ましい。
 当該可塑剤は、分子量が15000以下、さらには10000以下であることが、耐湿熱性の改善とセルロースエステル等の基材樹脂との相溶性を両立する観点から好ましい。
 当該分子量が10000以下である化合物が重合体である場合は、重量平均分子量(Mw)が10000以下であることが好ましい。
 好ましい重量平均分子量(Mw)の範囲は100~10000の範囲内であり、更に好ましくは、400~8000の範囲内である。
 特に本発明の効果を得るためには、当該分子量が1500以下の化合物を、基材樹脂100質量部に対して6~40質量部の範囲内で含有することが好ましく、10~20質量部の範囲内で含有させることがより好ましい。
 上記範囲内で含有させることにより、透湿性の効果的な制御と基材樹脂との相溶性を両立することができ、好ましい。
 〈糖エステル〉
 本発明に係るフィルムロールには、加水分解防止を目的として、糖エステル化合物を含有させてもよい。
 具体的には、糖エステル化合物として、ピラノース構造又はフラノース構造の少なくとも一種を1個以上12個以下有し、その構造のOH基の全て若しくは一部をエステル化した糖エステルを使用することができる。
 〈ポリエステル〉
 本発明に係るフィルムロールには、ポリエステルを含有させることもできる。
 ポリエステルは特に限定されないが、例えばジカルボン酸、又はこれらのエステル形成性誘導体とグリコールとの縮合反応により得ることができる末端がヒドロキシ基となる重合体(ポリエステルポリオール)、又は当該ポリエステルポリオールの末端のヒドロキシ基がモノカルボン酸で封止された重合体(末端封止ポリエステル)を用いることができる。
 ここでいうエステル形成性誘導体とは、ジカルボン酸のエステル化物、ジカルボン酸クロライド、ジカルボン酸の無水物のことである。
 〈スチレン系化合物〉
 本発明に係るフィルムロールには、上記糖エステル、ポリエステルに加えて又はこれに代えて、フィルムの耐水性改善を目的として、スチレン系化合物を用いることもできる。
 スチレン系化合物は、スチレン系モノマーの単独重合体であってもよいし、スチレン系モノマーとそれ以外の共重合モノマーとの共重合体であってもよい。
 スチレン系化合物におけるスチレン系モノマー由来の構成単位の含有割合は、分子構造が一定以上の嵩高さを有するためには、好ましくは30~100mol%の範囲内、より好ましくは50~100mol%の範囲内でありうる。
 スチレン系モノマーの例には、スチレン;α-メチルスチレン、β-メチルスチレン、p-メチルスチレン等のアルキル置換スチレン類;4-クロロスチレン、4-ブロモスチレン等のハロゲン置換スチレン類;p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン、2-メチル-4-ヒドロキシスチレン、3,4-ジヒドロキシスチレン等のヒドロキシスチレン類;ビニルベンジルアルコール類;p-メトキシスチレン、p-tert-ブトキシスチレン、m-tert-ブトキシスチレン等のアルコキシ置換スチレン類;3-ビニル安息香酸、4-ビニル安息香酸等のビニル安息香酸類;4-ビニルベンジルアセテート;4-アセトキシスチレン;2-ブチルアミドスチレン、4-メチルアミドスチレン、p-スルホンアミドスチレン等のアミドスチレン類;3-アミノスチレン、4-アミノスチレン、2-イソプロペニルアニリン、ビニルベンジルジメチルアミン等のアミノスチレン類;3-ニトロスチレン、4-ニトロスチレン等のニトロスチレン類;3-シアノスチレン、4-シアノスチレン等のシアノスチレン類;ビニルフェニルアセトニトリル;フェニルスチレン等のアリールスチレン類、インデン類等が含まれる。
 スチレン系モノマーは、一種類であっても、二種類以上を組み合わせてもよい。
 (4.2.2)任意成分
 本発明に係るフィルムロールは、酸化防止剤、着色剤、紫外線吸収剤、マット剤、アクリル粒子、水素結合性溶媒及びイオン性界面活性剤等の他の任意成分を含みうる。
 これらの成分は、基材樹脂100質量部に対して0.01~20質量部の範囲内で添加することができる。
 (酸化防止剤)
 本発明に係るフィルムロールは、酸化防止剤としては、通常知られているものを使用することができる。
 特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系の各化合物を好ましく用いることができる。
 これらの酸化防止剤等は、フィルムの主原料である樹脂に対して0.05~20質量%の範囲内、好ましくは0.1~1質量%の範囲内で添加される。
 これらの酸化防止剤等は、一種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。
 例えばラクトン系、リン系、フェノール系及び二重結合系化合物の併用は好ましい。
 (着色剤)
 本発明に係るフィルムロールは、本発明の効果を損なわない範囲内で、色味調整のために、着色剤を含むことが好ましい。
 着色剤というのは染料や顔料を意味し、本発明では、液晶画面の色調を青色調にする効果又はイエローインデックスの調整、ヘイズの低減を有するものを指す。
 着色剤としては各種の染料、顔料が使用可能だが、アントラキノン染料、アゾ染料、フタロシアニン顔料等が有効である。
 (紫外線吸収剤)
 本発明に係るフィルムロールは、偏光板の視認側やバックライト側に用いられることもできることから、紫外線吸収機能を付与することを目的として、紫外線吸収剤を含有してもよい。
 紫外線吸収剤としては、特に限定されないが、例えばベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系等の紫外線吸収剤が挙げられる。
 例えば2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン及び2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。
 上記紫外線吸収剤は、一種単独で又は二種以上組み合わせて用いることができる。
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、一般には、基材樹脂に対して、0.05~10質量%の範囲内、好ましくは0.1~5質量%の範囲内で添加される。
 (微粒子)
 本発明に係るフィルムロールは、フィルムロールに滑り性を付与する微粒子を添加することが好ましい。
 特に、本発明に係るフィルム表面の滑り性を向上し、巻取り時の滑り性を向上し、傷の発生やブロッキングの発生を防止する観点からも、微粒子を添加することは有効である。
 微粒子としては、得られるフィルムロールの透明性を損なうことがなく、溶融時の耐熱性があれば無機微粒子又は有機微粒子どちらでもよいが、無機微粒子がより好ましい。
 これらの微粒子は、単独でも二種以上併用しても使用できる。
 粒径や形状(例えば針状と球状等)の異なる粒子を併用することで高度に透明性と滑り性を両立させることもできる。
 上記微粒子を構成する化合物の中でも、前記シクロオレフィン系樹脂、アクリル系樹脂やセルロースエステル系樹脂と屈折率が近いので透明性(ヘイズ)に優れる二酸化ケイ素が特に好ましく用いられる。
 二酸化ケイ素の具体例としては、アエロジル(登録商標)200V、アエロジル(登録商標)R972V、アエロジル(登録商標)R972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上日本アエロジル株式会社製)、シーホスター(登録商標)KEP-10、シーホスター(登録商標)KEP-30、シーホスター(登録商標)KEP-50(以上、株式会社日本触媒製)、サイロホービック(登録商標)100(富士シリシア株式会社製)、ニップシール(登録商標)E220A(日本シリカ工業株式会社製)及びアドマファイン(登録商標)SO(株式会社アドマテックス製)等の商品名を有する市販品等が好ましく使用できる。
 粒子の形状としては、不定形、針状、扁平、球状等特に制限なく使用できるが、特に球状の粒子を用いると得られるフィルムロールの透明性が良好にできるので好ましい。
 粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が悪くなるので、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。
 粒子の大きさが小さすぎると滑り性が改善されない場合があるので、80~180nmの範囲内であることが特に好ましい。
 なお、粒子の大きさとは、粒子が1次粒子の凝集体の場合は凝集体の大きさを意味する。
 また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。
 微粒子は、基材樹脂に対して、0.05~10質量%の範囲内、好ましくは0.1~5質量%の範囲内で添加されることが好ましい。
 (フィルムの用途)
 本発明に係るフィルムロールから繰り出されたフィルムは、光学フィルムとして偏光板の保護フィルム等に好適に利用され、種々の光学測定装置及び液晶表示装置や有機エレクトロルミネッセンス表示装置等の表示装置に用いることができる。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
[フィルムロールの作製]
 (フィルムロールNo.1の作製)
 フィルムの製膜には、溶液流延製膜法を用いた。
 <フィルム形成工程(S1)>
 (ドープの調製)
 〈環状ポリオレフィン重合体(P-1)の合成〉
 精製トルエン100質量部とノルボルネンカルボン酸メチルエステル100質量部を撹拌装置に投入した。
 次いでトルエン中に溶解したエチルヘキサノエート-Ni25mmol%(対モノマー質量)、トリ(ペンタフルオロフェニル)ボロン0.225mol%(対モノマー質量)及びトルエンに溶解したトリエチルアルミニウム0.25mol%(対モノマー質量)を撹拌装置に投入した。
 室温で撹拌しながら18時間反応させた。
 反応終了後過剰のエタノール中に反応混合物を投入し、重合物沈殿を生成させた。
 沈殿を精製し得られた環状ポリオレフィン重合体(P-1)を真空乾燥で65℃にて24時間乾燥した。
 〈ドープ(D-1)の調製〉
 下記組成物1をミキシングタンクに投入し、撹拌して各成分を溶解した後、平均孔径34μmの濾紙及び平均孔径10μmの焼結金属フィルターでろ過してドープ(D-1)を調製した。
 (組成物1)
 環状ポリオレフィン重合体(P-1)      150質量部
 ジクロロメタン                380質量部
 メタノール                   70質量部
 次に上記方法で調製した環状ポリオレフィン溶液(ドープ(D-1))を含む下記(組成物2)を分散機に投入し、添加剤として微粒子分散液(M-1)を調製した。
 (組成物2)
 微粒子(アエロジルR812:日本アエロジル社製、一次平均粒子径:7nm、見掛け比重50g/L)            4質量部
 ジクロロメタン                 76質量部
 メタノール                   10質量部
 環状ポリオレフィン溶液(ドープ(D-1))   10質量部
 上記環状ポリオレフィン溶液(D-1)を100質量部、微粒子分散液(M-1)を0.75質量部を混合し、製膜用ドープ(樹脂組成物シクロオレフィン系樹脂COP1)を調製した。
 (ドープの流延)
 調製された製膜用ドープ(樹脂組成物シクロオレフィン系樹脂COP1)を、加圧型定量ギアポンプを通して、導管によって流延ダイに送液し、無限に移送する回転駆動ステンレス鋼製エンドレスベルトよりなる支持体上の流延位置に流延ダイからドープを製膜ラインで1800mm幅で流延し、ドープが自己支持性を持つまで、支持体上で加熱し、支持体から剥離ローラーによって流延膜が剥離可能になるまで溶媒を蒸発させることにより乾燥させ、フィルムを形成した。
 上記のドープの流延における各条件は、以下のとおりである。
 〈条件〉
 ポンプから流延ダイに至るまでの配管の長さを60mとし、ドープ送液に用いるギアポンプのギア比を調整し、ポンプの回転速度を20rpmとした。
 流延ダイのヒートボルトにより、ドープを吐出するスリットの幅手の間隙を、吐出直後の膜厚偏差を流延膜全体に対して1.5%に調整し、流延膜の初期吐出膜厚の制御を行った。
 ベルト上の流延膜の残留溶媒量が200質量%になるまで乾燥させることによりフィルムとし、表層に被膜ができた後に、風速16m/sec(40℃)の温風を吹き付けて突起を平坦化した。
 (フィルムの剥離)
 フィルムを形成した後、フィルムを支持体から剥離ローラーによって自己支持性をもたせたまま剥離した。
 (フィルム面内での収縮)
 フィルムを幅手保持しない状態で高温処理して、フィルムの密度を高めることによりフィルムを幅手方向に収縮率7%で収縮させた。
 (フィルムの乾燥)
 その後、フィルムを支持体上で加熱し、溶媒を蒸発させた。
 フィルムの残留溶媒量を下記の方法により測定したところ、5質量%以下であった。
 (残留溶媒量測定)
 残留溶媒量は、ガスクロマトグラフィーにより下記のように質量分析した。
 すなわち、任意の場所のフィルム片を採取し、フィルム中に残留している溶媒の揮発を防ぐため、速やかにバイアル瓶に確保して栓をした。
 次に、バイアル瓶に針を差し込み、ガスクロマトグラフ(アジレント・テクノロジー(株)製)を用いて質量分析した。
 なお、残留溶媒量は、下記式で定義される。
 残留溶媒量(質量%)={(M-N)/N}×100
 なお、上記式中のMは、流延膜又はフィルムを製造中又は製造後の任意の時点で採取した試料の質量(g)であり、上記式中のNは、上記試料を115℃で1時間の加熱した後の質量(g)である。
 <凸部調製工程(S2)>
 (フィルムの延伸)
 その後、フィルムをテンター延伸装置内で搬送させ、フィルムに局所的な加熱を施しながらフィルムを横延伸した。
 (局所的な加熱手段)
 局所的な加熱手段としては、赤外線(IR)ヒーターを用いた。
 フィルム上の各赤外線ヒーターの熱源部の位置は、フィルム表面から75mm離れた位置に配置した。
 また、加熱幅は150mmとした(赤外線ヒーターの直下の強度を1とした時、強度が0.2となる加熱幅)。
 赤外線ヒーターの各熱源部は、定格750Wで180~350℃の範囲内とした。
 (赤外線ヒーター配列と熱源部設置間隔)
 赤外線ヒーターは図6Bのように長手方向に2列に並べ、各赤外線ヒーターの熱源部設置間隔はピッチ30mmとした。
 (熱源部EAとEBを結ぶ直線の長手方向に対する直線の平均傾きθ′)
 配置された各々の熱源部EとEを結ぶ直線が、長手方向となす直線の平均傾きθ′が5.7°になるように赤外線ヒーターを設定した。
 (赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A))
 赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A)を0.2とした。
 また、その際インラインリターデーション・膜厚測定装置RE-200L2T-Rth+膜厚(大塚電子(株)製)を用いてターゲットとするフィルムの幅手方向の膜厚プロファイルを測定し、目標の膜厚プロファイルとの差分から、各々の赤外線ヒーターの設定温度をコンピューター上で算出し、PLC KV-8000(キーエンス(株)製)を介して各々の熱源の設定温度を出力して凸部を調整し、それを自動で繰り返し、膜厚調整を自動化して行った。
 (各幅手位置における長手平均膜厚の最大高低差(P-V))
 上記の操作と同時に、各幅手位置における長手平均膜厚の最大高低差(P-V)を表Iの値になるように制御した(膜厚制御は、上記の操作により行うが、測定方法については、後述する。)。
 <トリミング工程(S3)>
 延伸されたフィルムの幅手方向のフィルムの両端部を切断(トリミング)した。
 (オシレート有無)
 なお、トリミングの際には、フィルムをオシレートさせなかった。
 (ナーリング有無)
 その後、フィルムにナーリング加工は施さなかった。
 <巻取工程(S4)>
 上記のフィルムを巻き取った。
 初期張力は50N、テーパー70%、及びコーナー25%にて実施した。
 フィルムロール幅は2000mm、巻長は3900mで実施した。
 フィルムを搬送するラインスピードは60m/分とした。
 以上の工程により、フィルムロールNo.1の作製を行った。
 (凸部に関するフィルムの表面特性の確認)
 トリミング後巻取工程直前に、凸部に関するフィルム特性として、凸部の個数、凸部の高さを測定し、凸部の連続性を確認した。
 また、フィルム表面の長手方向に対する略直線の傾きの絶対値についても測定を行った。
 連続性の確認方法については以下に示す。
 《連続性の確認方法》
 凸部の連続性を確認する方法としては、具体的には、インラインリターデーション・膜厚測定装置RE-200L2T-Rth+膜厚(大塚電子(株)製)で測定したデータをコンピューター上でヒートマップ(横軸:フィルム幅位置、縦軸:フィルム長手位置、濃淡:膜厚値)の形で表示し、凸部の連続性を確認した。
 図14に実際に確認するのに用いたヒートマップの一例を示す。
 なお、図14は、図4Aにあたる凸部の連続性の実際のヒートマップの一例であり、表I中の「直線」の表現にあたるものの一例である。
 (フィルムロールNo.2~4の作製)
 <凸部調製工程(S2)>において、各幅手位置における長手平均膜厚の最大高低差(P-V)を表Iの値になるように制御したこと以外は、フィルムロールNo.1と同様にしてフィルムロールNo.2~4を作製した。
 (フィルムロールNo.5の作製)
 フィルムの製膜には、溶液流延製膜法を用いた。
 <フィルム形成工程(S1)>と<凸部調製工程(S2)>においては、フィルムロールNo.1と同様の操作を行った。
 <トリミング工程(S3)>
 延伸されたフィルムの幅手方向のフィルムの両端部を切断(トリミング)した。
 (オシレート有無)
 なお、トリミングの際には、フィルムをオシレートさせなかった。
 (ナーリング有無)
 その後、フィルムに高さ1μmのナーリング加工を施した。
 以下にその詳細を示す。
 <トリミング工程(S3)>後のフィルムに、レーザー光を照射し、ナーリング加工部を形成した。
 フィルムの両端部のナーリング加工幅はフィルム端から15mmとした。
 フィルムを搬送するラインスピードは60m/分とした。
 レーザー装置としては、炭酸ガスレーザー装置を用い、レーザー装置の出力を20W、出光波長の中心波長を9.4μm、出光波長範囲を、中心波長を中心として±0.01μm以下とした。
 レーザー光のフィルムへの照射は、炭酸ガスレーザー装置から発光した平行化したビームを、2枚のガルバノミラーで反射し、fθレンズ(焦点距離200mm)を介して、搬送されるフィルムの表面に集光させることにより行った。
 ガルバノミラーの角度を制御することで、集光位置を、フィルム平面方向に移動させ、それにより、フィルム表面上へのレーザー光の照射の軌跡を制御した。
 《大気圧プラズマ処理工程:表面改質処理》
 春日電機製AGP-500を光学フィルムのナーリング加工部の裏面側に設置し、0.5kW照射した。
 大気圧プラズマを発するプローブとフィルムとの距離は5mmで実施した。
 照射する大気圧プラズマはナーリング加工部に対向するフィルム裏面側で、ナーリング加工幅の110%の幅に照射できるよう設置位置を設定した。
 <巻取工程(S4)>
 上記のフィルムを巻き取った。
 初期張力は50N、テーパー70%、及びコーナー25%にて実施した。
 フィルムロール幅は2000mm、巻長は3900mで実施した。
 フィルムを搬送するラインスピードは60m/分とした。
 以上の工程により、フィルムロールNo.5の作製を行った。
 (フィルムロールNo.6の作製)
 <フィルム形成工程(S1)>のドープの調製において、樹脂組成物としてCOP1の代わりにトリアセチルセルロース(TAC)を用いることと、<トリミング工程(S3)>において、フィルムに高さ2μmのナーリング加工を施したこと以外は、フィルムロールNo.5と同様の手順にてフィルムロールNo.6を作製した。
 (フィルムロールNo.7の作製)
 <凸部調製工程(S2)>において、赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A)を0.6としたこと以外は、フィルムロールNo.5と同様の手順にてフィルムロールNo.7を作製した。
 (フィルムロールNo.8の作製)
 <凸部調製工程(S2)>において、赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A)を0.1としたこと以外は、フィルムロールNo.5と同様にしてフィルムロールNo.8を作製した。
 (フィルムロールNo.9の作製)
 <凸部調製工程(S2)>において、赤外線ヒーターは図6Cのように長手方向に5列に並べ、各赤外線ヒーターの熱源部設置間隔はピッチ10mmとしたこと、配置された各々の熱源部EとEを結ぶ直線が、長手方向となす直線の平均傾きが2.0°になるように赤外線ヒーターを設定したこと、赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A)を0.1としたこと以外は、フィルムロールNo.5と同様にしてフィルムロールNo.9を作製した。
 (フィルムロールNo.10の作製)
 <凸部調製工程(S2)>において、赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A)を0.9としたこと以外は、フィルムロールNo.5と同様にしてフィルムロールNo.10を作製した。
 (フィルムロールNo.11~15の作製)
 <凸部調製工程(S2)>において、赤外線ヒーターは図6Aのように長手方向に1列に並べ、各赤外線ヒーターの熱源部設置間隔はピッチ125mmとしたこと、配置された各々の熱源部EとEを結ぶ直線が、長手方向となす直線の平均傾きは、赤外線ヒーターが長手方向に1列に並べられていることから算出しないこと、赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A)を0.9としたこと、(凸部に関するフィルムの表面特性の確認)において、フィルム表面の長手方向に対する略直線の傾きの絶対値が表Iに記載の値となるようにすること以外は、フィルムロールNo.5と同様にしてフィルムロールNo.11~15を作製した。
 (フィルムロールNo.16の作製)
 (凸部に関するフィルムの表面特性の確認)において、凸部の連続性を略一定の変化率で変化する曲率をもった曲線の軌跡を描くように調整すること以外は、フィルムロールNo.11と同様にしてフィルムロールNo.16を作製した。
 なお、上記の凸部の連続性を略一定の変化率で変化する曲率をもった曲線の軌跡を描くように調整したことにより、フィルム表面の長手方向に対する略直線の傾きの絶対値については算出しなかった。
 (フィルムロールNo.17及び18の作製)
 <トリミング工程(S3)>において、オシレートを100mm幅にて実施したことと、(凸部に関するフィルムの表面特性の確認)において、凸部の高さを表Iに記載の値となるように調整すること以外は、フィルムロールNo.16と同様にしてフィルムロールNo.17及び18を作製した。
 (フィルムロールNo.19及び20の作製)
 <トリミング工程(S3)>において、オシレートを100mm幅にて実施したことと、(凸部に関するフィルムの表面特性の確認)において、凸部の個数を表Iに記載の値となるように調整すること以外は、フィルムロールNo.16と同様にしてフィルムロールNo.19及び20を作製した。
 (フィルムロールNo.21の作製)
 <トリミング工程(S3)>において、オシレートを100mm幅にて実施したこと以外は、フィルムロールNo.16と同様にしてフィルムロールNo.21を作製した。
 (フィルムロールNo.22の作製)
 <凸部調製工程(S2)>において、局所的な加熱手段を熱風にて行ったことと、<トリミング工程(S3)>において、オシレートを100mm幅にて実施したこと以外は、フィルムロールNo.16と同様にしてフィルムロールNo.22を作製した。
 (フィルムロールNo.23の作製)
 フィルムの製膜には、溶融流延製膜法を用いた。
 <フィルム形成工程(S1)>
 (樹脂の溶融押出)
 フィルムロールNo.1と同様の手順にて樹脂(樹脂組成物シクロオレフィン系樹脂COP2)を調製し、ペレット化したものと添加剤(微粒子(アエロジルR812:日本アエロジル社製、一次平均粒子径:7nm、見掛け比重50g/L))を押出機に供給し、押出機内で溶融させ、加圧型定量ギアポンプを通して、流延ダイからキャストドラム上にフィルム状に押し出した。
 (溶融した樹脂・ペレットの流延、成形)
 上記押出し工程において、ポンプから流延ダイに至るまでの配管の長さを60mとし、送液に用いるギアポンプのギア比を調節し、ポンプの回転速度を20rpmとした。
 流延ダイのヒートボルトにより、ドープを吐出するスリットの幅手の間隙を、吐出直後の膜厚偏差を流延膜全体に対して1.5%に調整し、流延膜の初期吐出膜厚の制御を行った。
 ベルト上の流延膜の残留溶媒量が5質量%になるまで乾燥させることにより表層に被膜ができた後に、45m/sec(40℃)の温風を吹き付けて突起を平坦化した。
 押し出された樹脂は、冷却ドラムにて冷却することで成形し、フィルムを形成した。
 <凸部調製工程(S2)>
 (フィルムの延伸)
 その後、フィルムをテンター延伸装置内で搬送させ、フィルムに局所的な加熱を施しながらフィルムを横延伸した。
 (局所的な加熱手段)
 局所的な加熱手段としては、赤外線(IR)ヒーターを用いた。
 フィルム上の各赤外線ヒーターの熱源部の位置は、フィルム表面から75mm離れた位置に配置した。
 また、加熱幅は150mmとした(赤外線ヒーターの直下の強度を1とした時、強度が0.2となる加熱幅)。
 赤外線ヒーターの各熱源部は、定格750Wで180~350℃の範囲内とした。
 (赤外線ヒーター配列と熱源部設置間隔)
 赤外線ヒーターは図6Aのように長手方向に1列に並べ、各赤外線ヒーターの熱源部設置間隔はピッチ125mmとした。
 (熱源部EAとEBを結ぶ直線の長手方向に対する直線の平均傾きθ′)
 配置された各々の熱源部EとEを結ぶ直線が、長手方向となす直線の平均傾きは、赤外線ヒーターが長手方向に1列に並べられていることから算出しなかった。
 (赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A))
 赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A)を0.9とした。
 また、その際インラインリターデーション・膜厚測定装置RE-200L2T-Rth+膜厚(大塚電子(株)製)を用いてターゲットとするフィルムの幅手方向の膜厚プロファイルを測定し、目標の膜厚プロファイルとの差分から、各々の赤外線ヒーターの設定温度をコンピューター上で算出し、PLC KV-8000(キーエンス(株)製)を介して各々の熱源の設定温度を出力して凸部を調整し、それを自動で繰り返し、膜厚調整を自動化して行った。
 (各幅手位置における長手平均膜厚の最大高低差(P-V))
 上記の操作と同時に、各幅手位置における長手平均膜厚の最大高低差(P-V)を表Iの値になるように制御した(膜厚制御は、上記の操作により行うが、測定方法については、後述する。)。
 <トリミング工程(S3)>
 延伸されたフィルムの幅手方向のフィルムの両端部を切断(トリミング)した。
 (オシレート有無)
 なお、トリミングの際には、フィルムを100mm幅にてオシレートした。
 (ナーリング有無)
 その後、フィルムに高さ1μmのナーリング加工を施した。
 なお、ナーリング加工は、フィルムロールNo.5と同様の方法にて行った。
 <巻取工程(S4)>
 上記のフィルムを巻き取った。
 初期張力は50N、テーパー70%、及びコーナー25%にて実施した。
 フィルムロール幅は2000mm、巻長は3900mで実施した。
 フィルムを搬送するラインスピードは60m/分とした。
 以上の工程により、フィルムロールNo.23の作製を行った。
 (凸部に関するフィルムの表面特性の確認)
 前述のように、トリミング後巻取工程直前に、凸部に関するフィルム特性として、凸部の個数、凸部の高さを測定し、凸部の連続性を確認した。
 また、フィルム表面の長手方向に対する略直線の傾きの絶対値についても測定を行った
 (フィルムロールNo.24~27の作製)
 <凸部調製工程(S2)>において、赤外線ヒーターは図6Aのように長手方向に1列に並べ、各赤外線ヒーターの熱源部設置間隔はピッチ125mmとしたこと、配置された各々の熱源部EとEを結ぶ直線が、長手方向となす直線の平均傾きは、赤外線ヒーターが長手方向に1列に並べられていることから算出しないこと、赤外線(IR)ヒーターにおける中央部の熱量Aと、赤外線(IR)ヒーター端部熱量の平均値Bの熱量比率(B/A)を0.9としたこと、<トリミング工程(S3)>において、オシレートを100mm幅にて実施したこと、(凸部に関するフィルムの表面特性の確認)において、凸部の個数、凸部の高さ、凸部の連続性、フィルム表面の長手方向に対する略直線の傾きの絶対値及び凸部の略直線傾きと各幅手位置における長手平均膜厚の最大高低差(P-V)を表Iに記載の値となるようにすること以外は、フィルムロールNo.5と同様にしてフィルムロールNo.24~27を作製した。
 (フィルムロールNo.28の作製)
 <凸部調製工程(S2)>における(局所的な加熱手段)を用いないこと、凸部に関するフィルムの表面特性の値を表Iのように制御すること以外は、フィルムロールNo.24と同様にしてフィルムロールNo.28を作製した。
 (実施例と比較例)
 フィルムロールNo.1~23を実施例とし、フィルムロールNo.24~28を比較例として以下の評価を行った。
 フィルムロールNo.1~28に関する各測定値及び評価を表Iにまとめて示す。
Figure JPOXMLDOC01-appb-T000006
[各種測定と評価]
 上記各種フィルムロールの外径等の特性の測定・算出方法及び評価方法を以下に示す。
A.各幅手位置における長手平均膜厚の最大高低差(P-V)
 (測定方法)
 フィルムの幅手方向に対して斜め方向に下記ステップ1~ステップ3の順で測定した膜厚値の各幅手位置における長手平均膜厚の最大高低差(P-V)の測定は、インラインリターデーション・膜厚測定装置RE-200L2T-Rth+膜厚(大塚電子(株)製)によって3万箇所測定することにより実施した。
 なお、測定のタイミングは、溶液流延製膜法、溶融流延製膜法いずれの工程においても、常温にて巻取工程直前とした。
 このとき、トラバース移動速度は100mm/secで行った。
 なお、ステップ3にて長手平均膜厚値を算出するために用いられたデータは3万箇所についての測定値である。
 ステップ1:
 フィルムの端部の任意の位置における膜厚測定後、測定毎に前記任意の位置から幅手方向に10mm、かつ長手方向に30mm移動させた位置の膜厚を測定し、幅手位置、長手位置、膜厚値を記録しそれを他方のフィルムの端部まで繰り返す。
 ステップ2:
 前記ステップ1の終了後に、長手方向の移動位置の合計の距離が1000mに到達するまで前記ステップ1と同様の測定を行う。
 ステップ3:
 前記ステップ1及び2から得られた多数の膜厚データから、同一の幅手位置における膜厚値を平均処理し、各々の幅手位置における長手平均膜厚値を求める。その中から最大の値と最小の値の高低差(P-V)を算出する。
B.配向角
 (測定方法)
 インラインリターデーション・膜厚測定装置RE-200L2T-Rth+膜厚(大塚電子(株)製)を用い、幅手方向のフィルム端部(例えば幅手最端部から15mm内側の位置)において、フィルム長手方向にサンプリング周期50msecにて、フィルムの光学値(配向角)を測定した。
 測定位置(測定装置の設置位置)は、フィルム端部(巻取位置)からフィルム長で100mの位置になるように設定した。
 そして、以下の評価基準に基づいて、長手方向の配向角変動について評価した。
 なお、ここでは、フィルム長手方向(製膜方向、搬送方向)に対するフィルム中の分子の遅相軸の角度を、配向角θとした。
 また、ここで、「配向角変動」とは、測定された配向角の標準偏差(σ)のことをいう。
 (評価基準)
 ◎:長手方向3000m中の配向角変動が、0~0.10°の範囲内。
 ○:長手方向3000m中の配向角変動が、0.10°より大きく0.12°以下。
 ×:長手方向3000m中の配向角変動が、0.12°より大きい。
 なお、例えば「長手方向3000m中の配向角変動値が、0~0.10°の範囲内」とは、フィルム長手方向の3000mにおいて、フィルム幅手端部の配向角θを長手方向に50msecの周期で測定した際の(このとき、幅手端部の配向角の測定点は50msecの周期に対応するピッチでフィルムの長手方向に並ぶ)、配向角θの全データの変動幅が、0~0.10°の範囲内の範囲に収まることを意味する。
 したがって、評価が◎に近いほど、配向角θの変動範囲が狭く(配向角θの値の変動が小さく)、長手方向における配向角偏差が小さいことを意味する。
C.チェーン状評価
 (評価方法)
 実施例及び比較例によって得られたフィルムロールを、巻上がり後室温23℃・湿度55%環境に15分静置し、フィルムロールの最表層にチェーン状の変形があるか否かを目視で確認した。
 そして、以下の評価基準に基づいて、チェーン状変形について評価した。
 (評価基準)
 良:変形は確認されなかった。
 可:若干の変形が確認されたが、弾性変形のため、実用上問題はない。
 不良:実用上問題のある1本以上のチェーン状変形が確認された。
D.スリキズ評価
 (評価方法)
 実施例で得られたフィルムロール及び比較例で得られたフィルムロールのフィルムのスリキズの外観を目視で観察し、以下の評価基準に従って評価した。
 なお、巻きズレが認められない場合でもスリキズがわずかに確認されることがある。
 これは、フィルムロール中で、フィルムがきしむ(こすれあう)ことで発生するものであり、このような場合のスリキズが下記評価における「○」にあたる。
 (評価基準)
 ◎:フィルム上にほとんどスリキズが見られなかった。
 ○:フィルム上にわずかにスリキズが見られたが、製品上問題はなかった。
 ×:フィルム上に多数のスリキズが見られ、製品上問題があった。
 (まとめ)
 以上のことより、表Iにて実施例と比較例の各種性能評価を比べてみると、実施例の方が総合的に優れていることが分かる。
 巻状故障が発生せず、配向角変動を小さく抑えることができる広幅なフィルム加工による製造に適したフィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システムを提供することができる。
 1、1a 攪拌装置(攪拌槽)
 2 流延ダイ
 3 支持体(エンドレスベルト、ドラム)
 3a、3b ローラー
 4 剥離ローラー
 5 流延膜
 6 乾燥装置
 7 延伸装置(テンター延伸装置、斜め延伸装置)
 8 切断部
 10 切断部
 11 乾燥装置
 12 切断部
 13 巻取装置
 14 押出し機
 15 流延ダイ
 16 キャストドラム、支持体
 16a タッチローラー
 17 冷却ドラム
 19 延伸装置(テンター延伸装置)
 20 切断部
 23 巻取装置
 30 フィルムロール
 31 フィルム
 32 ローラー
 33 タッチローラー
 40 延伸装置(テンター延伸装置)
 42 クリップ
 46 カバー
 48 無端チェーン
 50 原動スプロケット
 52 従動スプロケット
 54 レール
 56 開放部材
 80 温度分布センサ
 101 ノズル固定部分
 102 ノズル
 103 流延膜
 104 端部ノズル
 105 中央ノズル
 106 クリップカバー
 A フィルムロールの端部の一部分
 B ナーリング加工の凹凸形状の一部分
 C 幅手方向の貼りつき部分
 D 長手方向の貼りつき部分
 F フィルム
 H、H 幅
 Q 赤外線(IR)ヒーター
 h 凸部高さ
 E、E、 熱源部
 θ′ フィルム表面の長手方向に対する略直線の傾き
 θ′ 熱源部EAとEBを結ぶ直線の長手方向に対する直線の平均傾き
 P1、P2、P3 各赤外線ヒーターの熱源部設置間隔のピッチ

Claims (8)

  1.  溶液又は溶融流延法によるフィルムロールの製造方法であって、
     少なくともフィルム形成工程と、
     前記フィルム表面の幅手方向における凸部調整工程と、
     前記フィルムの両端部のトリミング工程と、前記トリミング工程によりトリミングされたフィルムの巻取工程と、を有し、
     前記凸部調整工程が、前記凸部の数、高さ及び位置を調整する工程であり、前記フィルムに局所的な加熱を施すことによって、前記凸部の数を幅手方向1mあたり1~10個の範囲内とし、前記凸部の高さを0.05~0.50μmの範囲内とし、前記凸部の位置を前記フィルム表面の長手方向に連続的に移動するように調整する
    ことを特徴とするフィルムロールの製造方法。
  2.  前記トリミング工程において、前記フィルムの両端部をトリミングする前に、前記フィルムの幅手方向に前記フィルムをオシレートさせない
    ことを特徴とする請求項1に記載のフィルムロールの製造方法。
  3.  前記凸部調整工程において、前記フィルムに対する局所的な加熱により、前記凸部の位置が、前記フィルム表面の長手方向に略直線上に並ぶように調整し、かつ、
     前記フィルム表面の長手方向に対する前記略直線の傾きの絶対値が、0.01~0.6°の範囲内である
    ことを特徴とする請求項1又は請求項2に記載のフィルムロールの製造方法。
  4.  前記局所的な加熱を、フィルムの幅手方向と長手方向に配置された赤外線ヒーターにて行い、前記フィルムの幅手方向において赤外線ヒーターの熱源部は10~100mmの間隔で配置し、かつ、当該熱源部はフィルムの長手方向に幅手位置と異なる位置で配置され、配置された各々の熱源部EとEを結ぶ直線の平均傾きθ′が、長手方向に対して、2~45°の範囲内である
    ことを特徴とする請求項1から請求項3までのいずれか一項に記載のフィルムロールの製造方法。
  5.  前記赤外線ヒーターにおける中央部の熱量Aと赤外線ヒーターの端部の熱量の平均値Bが、下記式(1)を満たす
     式(1): 0.2<(B/A)<0.6
    ことを特徴とする請求項1から請求項4までのいずれか一項に記載のフィルムロールの製造方法。
  6.  前記トリミング工程の後に、前記フィルムにナーリング加工を施さない
    ことを特徴とする請求項1から請求項5までのいずれか一項に記載のフィルムロールの製造方法。
  7.  前記フィルムの幅手方向に対して斜め方向に下記ステップ1~ステップ3の順で測定した膜厚値の各幅手位置における長手平均膜厚の最大高低差(P-V)が、0.02~0.40μmの範囲内である
    ことを特徴とする請求項1から請求項6までのいずれか一項に記載のフィルムロールの製造方法。
     ステップ1:
     フィルムの端部の任意の位置における膜厚測定後、測定毎に前記任意の位置から幅手方向に10mm、かつ長手方向に30mm移動させた位置の膜厚を測定し、幅手位置、長手位置、膜厚値を記録しそれを他方のフィルムの端部まで繰り返す。
     ステップ2:
     前記ステップ1の終了後に、長手方向の移動位置の合計の距離が1000mに到達するまで前記ステップ1と同様の測定を行う
     ステップ3:
     前記ステップ1及び2から得られた多数の膜厚データから、同一の幅手位置における膜厚値を平均処理し、各々の幅手位置における長手平均膜厚値を求める。その中から最大の値と最小の値の高低差(P-V)を算出する。
  8.  フィルム表面の幅手方向における凸部の数、高さ及び位置を調整する凸部調整工程を有するフィルムロールの製造に用いる凸部調整システムであって、
     前記凸部調整工程の途中又は終了後のフィルムの膜厚プロファイルを取得する膜厚取得手段と、
     前記膜厚プロファイルのデータにより、前記幅手方向における前記凸部の数が1mあたり1~10個である理想値の範囲内であるか否か、及び前記幅手方向における前記凸部高さが0.05~0.50μmである理想値の範囲内であるか否かの判定手段と、
     前記判定手段において、前記凸部の数と前記凸部の高さが両方、又は一方が理想値の範囲外である場合に、前記凸部の数と前記凸部の高さが両方とも理想値の範囲内になるように、前記フィルムに対する局所的な加熱を赤外線ヒーターによって行う手段と、を有する
    ことを特徴とするフィルムロールの製造に用いる凸部調整システム。
PCT/JP2022/011225 2021-06-09 2022-03-14 フィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システム WO2022259668A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237042569A KR20240006649A (ko) 2021-06-09 2022-03-14 필름 롤의 제조 방법 및 필름 롤의 제조에 사용하는 볼록부 조정 시스템
CN202280040193.6A CN117460611A (zh) 2021-06-09 2022-03-14 膜卷的制造方法和膜卷的制造中使用的凸部调整系统
JP2023527516A JPWO2022259668A1 (ja) 2021-06-09 2022-03-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-096891 2021-06-09
JP2021096891 2021-06-09

Publications (1)

Publication Number Publication Date
WO2022259668A1 true WO2022259668A1 (ja) 2022-12-15

Family

ID=84425787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011225 WO2022259668A1 (ja) 2021-06-09 2022-03-14 フィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システム

Country Status (5)

Country Link
JP (1) JPWO2022259668A1 (ja)
KR (1) KR20240006649A (ja)
CN (1) CN117460611A (ja)
TW (1) TWI822053B (ja)
WO (1) WO2022259668A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052333A (ja) * 2005-08-19 2007-03-01 Konica Minolta Opto Inc 表面凹凸形状光学フィルム、その製造方法及び偏光板、画像表示装置
JP2009255548A (ja) * 2008-03-26 2009-11-05 Unitika Ltd 二軸延伸ポリアミドフィルムの製造装置
JP2012171222A (ja) * 2011-02-22 2012-09-10 Toray Ind Inc シートの製造方法、製造装置、厚み制御方法および厚み制御装置
JP2019119181A (ja) * 2018-01-10 2019-07-22 コニカミノルタ株式会社 延伸フィルムの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002255409A (ja) 2001-03-01 2002-09-11 Fuji Photo Film Co Ltd フイルムの巻き取り方法及びロール並びに保護フイルム
JP2015123605A (ja) 2013-12-25 2015-07-06 日本ゼオン株式会社 延伸フィルムの巻回体の製造方法
JP2017100372A (ja) * 2015-12-02 2017-06-08 コニカミノルタ株式会社 フィルムロールの製造方法
JP7125996B2 (ja) * 2018-09-28 2022-08-25 富士フイルム株式会社 フィルム製造方法及び設備、フィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052333A (ja) * 2005-08-19 2007-03-01 Konica Minolta Opto Inc 表面凹凸形状光学フィルム、その製造方法及び偏光板、画像表示装置
JP2009255548A (ja) * 2008-03-26 2009-11-05 Unitika Ltd 二軸延伸ポリアミドフィルムの製造装置
JP2012171222A (ja) * 2011-02-22 2012-09-10 Toray Ind Inc シートの製造方法、製造装置、厚み制御方法および厚み制御装置
JP2019119181A (ja) * 2018-01-10 2019-07-22 コニカミノルタ株式会社 延伸フィルムの製造方法

Also Published As

Publication number Publication date
CN117460611A (zh) 2024-01-26
JPWO2022259668A1 (ja) 2022-12-15
TWI822053B (zh) 2023-11-11
TW202313309A (zh) 2023-04-01
KR20240006649A (ko) 2024-01-15

Similar Documents

Publication Publication Date Title
KR102444730B1 (ko) 필름 롤 및 그의 제조 방법
KR20150046266A (ko) 광학 필름 및 광학 필름의 제조 방법, 편광판 및 액정 표시 장치
JP5186122B2 (ja) 熱可塑性フイルムの製造方法
WO2022259668A1 (ja) フィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システム
JP2008265167A (ja) 熱可塑性フイルム及びその製造方法、並びに、偏光板、液晶表示板用光学補償フイルム、反射防止フイルム及び液晶表示装置
WO2013027414A1 (ja) 長尺延伸フィルムの製造方法及び円偏光板の製造方法
WO2022153785A1 (ja) フィルムロール及びフィルムロールの製造方法
KR20230167314A (ko) 필름 롤 및 그 제조 방법
CN112213809A (zh) 偏振片的制造方法和偏振片
WO2023223903A1 (ja) フィルムロール保持装置、フィルムロールの故障抑制方法、および制御プログラム
TW202406821A (zh) 薄膜輥、其製造方法、偏光板及顯示裝置
TW202408915A (zh) 薄膜卷、其製造方法、偏光板及顯示裝置
JP2023173157A (ja) フィルムロール、その製造方法、偏光板、及び表示装置
TW202415611A (zh) 膜卷及其製造方法
WO2023248896A1 (ja) フィルムロール及びフィルムロールの製造方法
WO2011093222A1 (ja) 光制御フィルムとその製造方法
WO2023248894A1 (ja) フィルムロール及びフィルムロールの製造方法
TW201235194A (en) Method for producing optical film, optical film, polarization plate, and liquid crystal display device
TWI475059B (zh) A polarizer protective film, a polarizing plate using the same, and a method for manufacturing the same
TW202411151A (zh) 薄膜卷及薄膜卷的製造方法
TW202413255A (zh) 薄膜滾輪保持裝置、薄膜滾輪的故障抑制方法、及控制程式
JP2010234747A (ja) フィルムとその製造方法、液晶表示板用光学補償フィルム、偏光板および液晶表示装置
JP2008213325A (ja) 熱可塑性フイルム及びその製造方法、並びに、偏光板、光学補償フイルム、反射防止フイルム、及び、液晶表示装置
JP2006309029A (ja) 位相差補償フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22819858

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527516

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280040193.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237042569

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237042569

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE