WO2023248894A1 - フィルムロール及びフィルムロールの製造方法 - Google Patents

フィルムロール及びフィルムロールの製造方法 Download PDF

Info

Publication number
WO2023248894A1
WO2023248894A1 PCT/JP2023/022087 JP2023022087W WO2023248894A1 WO 2023248894 A1 WO2023248894 A1 WO 2023248894A1 JP 2023022087 W JP2023022087 W JP 2023022087W WO 2023248894 A1 WO2023248894 A1 WO 2023248894A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
film body
convex
width direction
roll
Prior art date
Application number
PCT/JP2023/022087
Other languages
English (en)
French (fr)
Inventor
研一 風間
由紀 金子
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2023248894A1 publication Critical patent/WO2023248894A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/28Wound package of webs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a film roll and a method for manufacturing a film roll.
  • JP2014-210435A Japanese Patent Application Publication No. 2014-126822
  • the present inventors tilted the convex part unit composed of a plurality of convex parts with respect to the width direction of the film (specifically, the convex part unit made up of a plurality of convex parts was tilted from the inside to the outside in the width direction of the film). It has been found that the discharge of entrained air at the time of winding can be improved by tilting the wire from the upstream side to the downstream side in the feeding direction. Specifically, at the time of winding, the film comes into contact with the already wound film in the order from the inner convex part to the outer convex part in the width direction of the film, so that the effect of inducing the discharge of entrained air is obtained.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a film roll that can sufficiently suppress vertical wrinkles and suppress deformation of the film roll, and a method for manufacturing the same.
  • a film roll comprising a long film wound into a roll, the long film including a film main body and a knurling part disposed at an end in the width direction of the film main body.
  • the knurling portion has a plurality of protrusion units arranged along the length direction of the film body and includes a plurality of protrusions, and the plurality of protrusions constituting the protrusion unit are: In a plan view of the long film, they are arranged in order from the inside to the outside with respect to the width direction of the film main body, and from the upstream side to the downstream side in the feeding direction of the long film, and the innermost A film roll, wherein an inclination angle ⁇ of a straight line connecting the convex portion and the outermost convex portion with respect to the width direction of the film body is greater than 0° and less than or equal to 0.5°.
  • FIG. 1 is a schematic perspective view showing the appearance of a film roll according to an embodiment of the present invention.
  • 2A is a schematic plan view of the film roll of FIG. 1
  • FIG. 2B is a partially enlarged view of FIG. 2A.
  • 3A and 3B are partially enlarged views of FIG. 2A.
  • FIGS. 4A to 4C are conceptual diagrams illustrating various knurling methods. Of these, FIGS. 4A and 4B are schematic diagrams showing the heating and pressing method, and FIG. 4C is a schematic diagram showing the laser method.
  • FIG. 5 is a schematic diagram showing a method for evaluating a horse's back injury in an example.
  • FIG. 1 is a schematic perspective view showing the appearance of a film roll 100 according to an embodiment of the present invention.
  • 2A is a schematic plan view of the film unwound from the film roll 100 of FIG. 1, and
  • FIG. 2B is a partially enlarged view of FIG. 2A.
  • the film roll 100 includes a long film wound into a roll.
  • the long film includes a film body 110 and a knurling portion 120.
  • the film body 110 is preferably a long resin film.
  • the materials and physical properties of the film body 110 will be explained in detail later.
  • the knurling portion 120 is a knurling-treated portion disposed at the end of the film body 110 in the width direction.
  • the knurling process is a process of forming unevenness on the film body 110.
  • the knurling section 120 includes a plurality of protrusion units 121 arranged along the length direction Y of the film body 110; each of the plurality of protrusion units 121 includes a plurality of protrusions 122. In FIG. 2B, each protrusion unit 121 includes six protrusions 122. In FIG.
  • the plurality of convex portions 122 constituting the convex portion unit 121 are arranged on the upstream side in the feeding direction (unwinding direction) of the long film from the inside to the outside with respect to the width direction X of the film body 110. They are arranged in order from the beginning to the downstream side (see FIG. 2A).
  • the inclination angle of the straight line L connecting the innermost protrusion 122-1 and the outermost protrusion 122-2 among the plurality of protrusions 122 constituting the protrusion unit 121 with respect to the width direction X of the film body 110 is determined.
  • is greater than 0° and less than or equal to 0.5° (see FIG. 2B).
  • the convex part unit 121 including the plurality of convex parts 122 contributes to guiding the entrained air, and the entrained air is easily discharged.
  • the air layer taken in during winding can be actively discharged to the outside, and a uniform air layer can be formed in the width direction of the film body. This can prevent back injuries to the horse.
  • the inclination angle ⁇ is 0.5° or less
  • the inclination of the convex unit 121 is not too large, so that the gripping force of the convex portion 122 during winding is unlikely to be impaired.
  • the tension from the inside to the outside in the width direction X of the film body 110 is less likely to be impaired, so that winding misalignment during winding is less likely to occur and vertical wrinkles can be suppressed.
  • the angle is 0.5° or less, the length of the air flow path formed between the convex unit units 121 is unlikely to become long, so the effect of discharging the entrained air is unlikely to be impaired, and the effect of suppressing horse back injuries can also be maintained. .
  • the inclination angle ⁇ is more preferably greater than 0° and less than or equal to 0.3°.
  • the inclination angle ⁇ may be the same as or different from the orientation angle ⁇ of the film body 110, which will be described later.
  • the convex unit 121 can be identified by the following method.
  • 3A and 3B are schematic plan views illustrating a procedure for identifying the convex unit 121.
  • 1) select the outermost protrusion 122-2 in the width direction Draw a straight line B perpendicular to the edge of the main body 110 (see FIG. 3A).
  • the convex part 122-3 having the smallest distance from the straight line B (at the end A) is identified (see FIG. 3A). .
  • the inclination angle ⁇ can be determined by the following method.
  • the angle of the straight line L connecting the innermost protrusion 122-1 and the outermost protrusion 122-2 among the plurality of protrusions 122 constituting the above-specified protrusion unit 121 with respect to the width direction X of the film body 110 The smaller of these is defined as the "inclination angle ⁇ " (see FIG. 2B).
  • the straight line L connecting the innermost convex portion 122-1 and the outermost convex portion 122-2 preferably connects the endmost portions A of the innermost convex portion 122-1 and the outermost convex portion 122-2. It is a straight line.
  • the six protrusions 122 constituting the protrusion unit 121 are all arranged on the straight line L, but the arrangement is not limited thereto.
  • the four protrusions 122 located between the outermost protrusion 122-1 and the innermost protrusion 122-2 extend from the inside to the outside in the width direction It is sufficient that they are arranged sequentially from the upstream side to the downstream side in the film feeding direction, and they do not need to be on the straight line L.
  • the number of protrusions 122 constituting the protrusion unit 121 is not particularly limited, but is preferably 3 or more, more preferably 3 to 8. The greater the number of convex portions 122, the easier it is to increase the grip force and the ability to discharge entrained air. In FIG. 2B, the number of protrusions 122 forming the protrusion unit 121 is six.
  • the height of the protrusions 122 constituting the protrusion unit 121 is not particularly limited, but is preferably 0.1 to 20 ⁇ m, more preferably 0.2 to 10 ⁇ m.
  • the height of the convex portion 122 is 0.1 ⁇ m or more, the ability to discharge entrained air during winding is likely to be enhanced, and the grip strength is also likely to be enhanced.
  • the height of the convex portion 122 is 20 ⁇ m or less, the diameter of the end portion after winding is completed becomes large, and the tension at the end portion of the film does not become excessive.
  • the height of the convex part 122 means the maximum height from the surface of the film main body 110 of the part where the knurling part 120 is not arranged.
  • the interval px between the plurality of protrusions 122 in the width direction X of the film body 110 is not particularly limited, but is preferably 1 to 7 mm, more preferably 2 to 5 mm.
  • the interval py between the plurality of convex units 121 in the length direction Y of the film body 110 is not particularly limited, but is preferably 1 to 10 mm, more preferably 3 to 7 mm. If the interval px or py is at least the lower limit value, it will be easier to discharge entrained air during winding, and if the interval px or py is less than the upper limit value, it will be easier to prevent the film bodies 110 from sticking to each other. In addition, the ability to discharge entrained air is also less likely to be impaired.
  • the height of the convex portions 122, the distance px between the convex portions 122, and the distance py between the convex portion units 121 can be measured using a laser microscope, for example, Laser Microscope VK-X1000 manufactured by Keyence Corporation. Specifically, the height of the convex part 122 is determined by measuring the maximum height of the convex part 122 from the surface of the film body 110 for the knurling area at both ends of 200 mm in the length direction Y of the film body 110, and then determining the height of the convex part 122.
  • the spacing px between the convex portions 122 is determined by measuring the distance between the extreme ends of the plurality of convex portions 122 in the width direction X of the film body 110 for the knurling area at both ends of 200 mm in the length direction Y of the film body 110, It can be determined as their average value.
  • the interval py between the convex units 121 can be obtained by measuring the distance between the straight lines L of each convex unit 121 in the knurling area at both ends of 200 mm in the length direction Y of the film body 110, and finding the average value thereof. can.
  • the shape of the convex portion 122 is not particularly limited, and may be an island-shaped convex portion or a ring-shaped convex portion.
  • the ring-shaped convex portion includes a shape in which the center portion is concave and the peripheral portion is convex (see FIGS. 4A and 4C described below).
  • the shape of the convex portion 122 in plan view is not particularly limited, and may be rectangular (including rhombus), polygon, circular, elliptical, or linear. In FIG. 2B, the shape of the convex portion 122 is rectangular (diamond). Further, at least some of the plurality of convex portions 122 constituting the convex portion unit 121 may be connected.
  • the knurling portion 120 may be disposed at at least one end of the film body 110 in the width direction, but is preferably disposed at both ends (see FIG. 2A).
  • the width W (width in the X direction) of the knurling portion 120 is not particularly limited, but may be, for example, 2 to 100 mm, preferably 4 to 50 mm, and more preferably 5 to 20 mm.
  • the above film roll includes 1) a process of preparing a long film body 110, 2) a process of forming a knurling part 120 at the end of the film body 110 in the width direction, and 3) a process of preparing a long film body 110. It is obtained through the process of winding up the film into a roll.
  • Step of preparing a film body In this step, a long film body 110 is prepared. The method for manufacturing the film body 110 will be described in detail later along with the materials that make up the film body 110.
  • Step of Forming a Knurling Portion a knurling process is performed on the width direction end portions of the obtained film body 110 to form a knurling portion 120 .
  • the plurality of convex unit units 121 form a knurling part 120 arranged in the length direction of the film body 110.
  • the knurling process can be performed in various ways, and may be a process of forming an uneven structure on the film surface (also called knurling process) or a process of applying a knurling liquid. Knurling is preferred. Knurling can be done by heating and pressing a convex metal roll (also called an embossed ring) while heating it, or by heating it by selectively applying a wavelength that the film absorbs using a laser or the like. A laser method that deforms the material by deforming the material may also be used.
  • FIGS. 4A to 4C are conceptual diagrams illustrating various knurling methods. Of these, FIGS. 4A and 4B are schematic diagrams showing the heating and pressing method, and FIG. 4C is a schematic diagram showing the laser method.
  • FIG. 4A shows a method in which an embossing ring ER having a convex shape formed on a metal roll is pressed against the metal roll while heating it, and the back roll BR is a metal roll. Since the back roll is made of metal, the stress generated when the embossing ring ER is pushed into the film body 110 is directed to the inside of the film body 110 and around the embossing ring ER. As a result, a ring-shaped convex portion 122 is formed on the surface side of the film body 110, as shown in the right figure.
  • the material of the embossed ring ER is not particularly limited, and may be carbon steel, stainless steel, ceramic coating, HCr plating, etc.
  • the protrusion forming portion of the embossing ring ER is provided so that a predetermined convex portion 122 can be formed. That is, the shape, size, and height of the protrusion forming portion of the embossing ring ER are set to correspond to the shape, size, and height of the convex portion 122.
  • FIG. 4B shows a case where the back roll BR is a rubber roll. Since the back roll BR is made of rubber, the stress generated when the embossing ring ER is pushed into the film body 110 is directed toward the rubber roll side. As a result, island-shaped convex portions 122 are formed on the back side of the film body 110, as shown in the right figure.
  • the heating temperature in the heating and pressing method can preferably be set in a range from the glass transition point to the melting point of the thermoplastic resin contained in the film body 110.
  • FIG. 4C shows the case of the laser method, and the film body 110 at the portion irradiated with the laser beam Ls is thermally deformed, and a ring-shaped convex portion 122 as shown in the right figure is formed.
  • the film body 110 containing a thermoplastic resin when the film body 110 containing a thermoplastic resin is irradiated with laser light, the film body 110 locally undergoes thermal melting or ablation at the point where the laser light is irradiated.
  • the laser method is preferable for the knurling process, from the viewpoints that it is easy to form the convex shape uniformly and that it is difficult to cause breakage even in a thin film.
  • the shape of the uneven structure can be any shape and arrangement depending on the purpose of use. By controlling the locus of irradiating the film surface with laser light, it is possible to draw a concavo-convex structure of a desired shape with the laser light.
  • the type of laser light used is not particularly limited, and examples include ArF excimer laser, KrF excimer laser, XeCl excimer laser, third harmonic or fourth harmonic of YAG laser, and third harmonic of YLF or YVO 4 solid-state laser.
  • a fourth harmonic, Ti:S laser, semiconductor laser, fiber laser, carbon dioxide laser, or the like can be used.
  • a carbon dioxide laser is preferred from the viewpoint of efficiently obtaining an output suitable for film processing.
  • the center wavelength of the laser beam is not particularly limited, but a laser beam within the range of 9 to 12 ⁇ m can be used, for example.
  • a laser beam having a center wavelength of around 9.3 ⁇ m for example, 9.2 to 9.4 ⁇ m can be used.
  • the output of the laser beam is preferably 1 to 120W, more preferably 5 to 100W, and even more preferably 15 to 80W.
  • Winding process In this process, the obtained film is wound to obtain a film roll.
  • a commonly used winder may be used, and there are methods of controlling tension such as a constant torque method, a constant tension method, a taper tension method, and a program tension control method with constant internal stress.
  • the initial tension when winding the film may be, for example, 20 to 300 N/m.
  • the winding length of the film roll 100 is not particularly limited, but is, for example, 100 m or more, preferably 7000 m or more.
  • the upper limit of the winding length of the film roll 100 is not particularly limited, but is, for example, 10,000 m or less.
  • the width of the film roll 100 (width of the film body 110) is, for example, 1.5 m or more, preferably 2.4 m or more.
  • the upper limit of the width of the film roll 100 is not particularly limited, but is, for example, 3 m or less.
  • the present invention is particularly effective.
  • the film unrolled from the film roll is suitably used as an optical film as a protective film for a polarizing plate, etc., and can be used in various optical measuring devices and display devices such as liquid crystal display devices and organic electroluminescent display devices.
  • the film unwound from the film roll obtained in this embodiment includes a knurling part 120 including a plurality of convex units 121 inclined at an inclination angle ⁇ .
  • Film body 110 The film body 110 is a long resin film, and is preferably an optical film.
  • thermoplastic resin material used for the film body 110 is not limited as long as it can be used as a film roll after film formation.
  • thermoplastic resins used for polarizing plates include cellulose ester resins such as triacetylcellulose (TAC), cellulose acetate propionate (CAP), and diacetylcellulose (DAC), and cycloolefin polymers (cycloolefin polymers).
  • Cyclic olefin resins such as resin (COP)
  • polypropylene resins such as polypropylene (PP)
  • acrylic resins such as polymethyl methacrylate (PMMA), and polyethylene terephthalate. (PET) and other polyester resins can be used.
  • COP cycloolefin resin
  • the cycloolefin resin contained in the film body 110 is preferably a polymer of cycloolefin monomers or a copolymer of cycloolefin monomers and other copolymerizable monomers.
  • the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2). It is more preferable that there be.
  • R 1 to R 4 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group.
  • p represents an integer from 0 to 2.
  • R 1 to R 4 do not all represent hydrogen atoms at the same time
  • R 1 and R 2 do not represent hydrogen atoms at the same time
  • R 3 and R 4 do not represent hydrogen atoms at the same time.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 is preferably a hydrocarbon group having 1 to 10 carbon atoms; More preferably, it is a hydrocarbon group of number 1 to 5.
  • the hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom.
  • linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds, and thioether bonds.
  • Examples of hydrocarbon groups having 1 to 30 carbon atoms include methyl, ethyl, propyl, butyl, and the like.
  • examples of the polar groups represented by R 1 to R 4 include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, and a cyano group.
  • a carboxy group, a hydroxy group, an alkoxycarbonyl group, and an aryloxycarbonyl group are preferable, and from the viewpoint of ensuring solubility during solution film formation, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable.
  • p is preferably 1 or 2 from the viewpoint of increasing the heat resistance of the film body 110. This is because when p is 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to increase.
  • R 5 represents a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkylsilyl group having an alkyl group having 1 to 5 carbon atoms.
  • R 6 represents a carboxyl group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom, or iodine atom).
  • p represents an integer from 0 to 2.
  • the content ratio of the cycloolefin monomer having the structure represented by general formula (A-2) in the cycloolefin monomer polymer is relative to the total of all cycloolefin monomers constituting the cycloolefin resin. For example, it may be 70 mol% or more, preferably 80 mol% or more, and more preferably 100 mol%.
  • a certain amount or more of a cycloolefin monomer having a structure represented by general formula (A-2) is contained, the orientation of the resin increases, so that the retardation value tends to increase.
  • (meth)acrylates examples include alkyl (meth)acrylates having 1 to 20 carbon atoms such as methyl (meth)acrylate, 2-ethylhexyl (meth)acrylate and cyclohexyl (meth)acrylate.
  • the content of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol%, based on the total of all monomers constituting the copolymer. Preferably, it may be 30 to 70 mol%.
  • the polymers (1) to (7) above can all be obtained by known methods, for example, the methods described in JP-A No. 2008-107534 and JP-A No. 2005-227606.
  • the catalyst and solvent used in the ring-opening copolymerization in (2) above those described in paragraphs 0019 to 0024 of JP-A No. 2008-107534 can be used.
  • the catalyst used for the hydrogenation in (3) and (6) above for example, those described in paragraphs 0025 to 0028 of JP-A No. 2008-107534 can be used.
  • As the acidic compound used in the Friedel-Crafts reaction in (4) above for example, those described in paragraph 0029 of JP-A No. 2008-107534 can be used.
  • the cycloolefin resin has a structural unit represented by the following general formula (B-1) and a structural unit represented by the following general formula (B-1) in that the resulting cycloolefin resin can have a high glass transition temperature and a high light transmittance. It is preferable to contain at least one of the structural units represented by the following general formula (B-2), only contain the structural unit represented by the general formula (B-2), or contain the structural unit represented by the general formula (B-1). It is more preferable to include both the structural unit represented by the formula (B-2) and the structural unit represented by the general formula (B-2).
  • the structural unit represented by the general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-1), and is represented by the general formula (B-2).
  • the structural unit represented by the above-mentioned general formula (A-2) is a structural unit derived from a cycloolefin monomer.
  • the cycloolefin resin may be a commercially available product.
  • Examples of commercially available cycloolefin resins include Arton G (for example, G7810, etc.), Arton F, Arton R (for example, R4500, R4900, and R5000, etc.) manufactured by JSR Corporation, and Arton RX. included.
  • Acrylic resins are polymers of acrylic esters or methacrylic esters, and also include copolymers with other monomers. Therefore, acrylic resin also includes methacrylic resin.
  • ⁇ , ⁇ -unsaturated acids acryloylmorpholine, acrylamide such as N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, unsaturated group-containing dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, styrene, ⁇ -methylstyrene monomers such as aromatic vinyl compounds such as, ⁇ , ⁇ -unsaturated nitriles such as acrylonitrile and methacrylonitrile, maleic anhydride, maleimide and N-substituted maleimide.
  • acrylamide such as N-hydroxyphenylmethacrylamide
  • N-vinylpyrrolidone unsaturated group-containing dicarboxylic acids
  • unsaturated group-containing dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid
  • styrene ⁇ -methylstyrene monomers
  • aromatic vinyl compounds such as, ⁇ , ⁇ -
  • the glass transition temperature (Tg) of the acrylic resin is preferably within the range of 80 to 120°C from the viewpoint of maintaining the mechanical strength of the film.
  • acrylic resins can also be used.
  • Delpet 60N, 80N, 980N, SR8200 manufactured by Asahi Kasei Chemicals
  • Dianal BR52, BR80, BR83, BR85, BR88, EMB-143, EMB-159, EMB-160, EMB-161, EMB -218, EMB-229, EMB-270, EMB-273 all manufactured by Mitsubishi Rayon Co., Ltd.
  • KT75, TX400S and IPX012 (all manufactured by Denki Kagaku Kogyo Co., Ltd.).
  • Two or more types of acrylic resins can also be used in combination.
  • Examples of commercially available multilayered acrylic granular composites include “Metablen W-341” manufactured by Mitsubishi Rayon, “Kane Ace” manufactured by Kaneka, “Paraloid” manufactured by Kureha, and Rohm and Haas. "Acryloid” manufactured by Aika, “Stafyloid” manufactured by Aica, Chemisnow MR-2G, MS-300X (manufactured by Souken Kagaku Co., Ltd.), and “Parapet SA” manufactured by Kuraray, etc. , can be used alone or in combination of two or more.
  • the film body 110 may include cellulose ester resin.
  • the humidity fluctuation of the phase difference can be controlled within a desired range, and the uniformity of the film thickness can be improved.
  • cellulose acetate propionate is 0.95 ⁇ X ⁇ 2.25, 0.1 ⁇ Y ⁇ 1.2, 2.15 ⁇ X+Y ⁇ It is 2.45.
  • the degree of substitution of acyl groups indicates the average number of acyl groups per glucose unit, and how many hydrogen atoms of the hydroxy groups at the 2nd, 3rd, and 6th positions of 1 glucose unit are substituted with acyl groups. shows. Therefore, the maximum degree of substitution is 3.0, which means that the hydrogen atoms of the hydroxyl groups at the 2nd, 3rd, and 6th positions are all substituted with acyl groups.
  • These acyl groups may be substituted on the 2nd, 3rd, and 6th positions of the glucose unit on an average basis, or may be substituted with a distribution. The degree of substitution is determined by the method specified in ASTM-D817-96.
  • the number average molecular weight (Mn) of the cellulose ester is within the range of 2 x 10 4 to 3 x 10 5 , more preferably within the range of 2 x 10 4 to 1.2 x 10 5 , and further still within the range of 4 x 10 4 to 1.2 x 10 5 . If it is within the range of 8 ⁇ 10 4 , it is preferable from the viewpoint of increasing the mechanical strength of the obtained film roll.
  • the weight average molecular weight (Mw) of the cellulose ester is within the range of 2 ⁇ 10 4 to 1 ⁇ 10 6 , more preferably within the range of 2 ⁇ 10 4 to 1.2 ⁇ 10 5 , and further within the range of 4 ⁇ 10 4 to 8 ⁇ It is preferable that it is within the range of 10 4 from the viewpoint of increasing the mechanical strength of the resulting film roll.
  • the raw material cellulose for cellulose ester is not particularly limited, but examples include cotton linters, wood pulp, and kenaf. Moreover, the cellulose esters obtained from these can be mixed and used in arbitrary proportions.
  • Cellulose esters such as cellulose acetate and cellulose acetate propionate can be produced by known methods.
  • raw material cellulose is mixed with specified organic acids (acetic acid, propionic acid, etc.), acid anhydrides (acetic anhydride, propionic anhydride, etc.), and catalysts (sulfuric acid, etc.) to esterify cellulose.
  • the reaction proceeds until the triester is produced.
  • triesters the three hydroxy groups of the glucose unit are replaced with acylic acids of organic acids.
  • mixed ester type cellulose esters such as cellulose acetate propionate and cellulose acetate butyrate, can be produced.
  • a cellulose ester resin having a desired degree of acyl substitution is synthesized. Thereafter, cellulose ester resin is completed through steps such as filtration, precipitation, washing, dehydration, and drying. Specifically, it can be synthesized with reference to the method described in JP-A-10-45804.
  • the film body 110 may contain the following as other additives.
  • plasticizers it is preferable to include at least one plasticizer selected from the group consisting of sugar esters, polyesters, and styrene compounds for effective control of moisture permeability and compatibility with base resins such as cellulose esters. It is preferable from the viewpoint of achieving both high solubility.
  • the weight average molecular weight (Mw) is preferably 10,000 or less.
  • the weight average molecular weight (Mw) is preferably within the range of 100 to 10,000, more preferably within the range of 400 to 8,000.
  • the film body 110 can also use a styrene compound for the purpose of improving water resistance.
  • the styrene compound may be a homopolymer of styrene monomers, or a copolymer of styrene monomers and other comonomers.
  • the content of the constituent units derived from the styrene monomer in the styrene compound is preferably in the range of 30 to 100 mol%, more preferably 50 to 100 mol%. It can be within the range.
  • styrenic monomers include styrene; alkyl-substituted styrenes such as ⁇ -methylstyrene, ⁇ -methylstyrene, and p-methylstyrene; halogen-substituted styrenes such as 4-chlorostyrene and 4-bromostyrene; p-hydroxy Hydroxystyrenes such as styrene, ⁇ -methyl-p-hydroxystyrene, 2-methyl-4-hydroxystyrene, and 3,4-dihydroxystyrene; vinylbenzyl alcohols; p-methoxystyrene, p-tert-butoxystyrene, m -Alkoxy-substituted styrenes such as tert-butoxystyrene; Vinylbenzoic acids such as 3-vinylbenzoic acid and 4-vinylbenzoic acid; 4-vinylbenzyl
  • Nitrostyrenes such as 3-cyanostyrene and 4-cyanostyrene; vinylphenylacetonitrile; arylstyrenes such as phenylstyrene; indenes; and the like.
  • the styrenic monomer may be used alone or in combination of two or more types.
  • the film body 110 may further contain other components such as an antioxidant, a colorant, an ultraviolet absorber, a matting agent, an acrylic particle, a hydrogen-bonding solvent, and an ionic surfactant. These components can be added in an amount of 0.01 to 20 parts by weight per 100 parts by weight of the base resin.
  • the film body 110 can use commonly known antioxidants.
  • lactone-based, sulfur-based, phenol-based, double bond-based, hindered amine-based, and phosphorus-based compounds can be preferably used.
  • antioxidants and the like are added in an amount of 0.05 to 20% by mass, preferably 0.1 to 1% by mass, based on the resin component. Rather than using only one type of these antioxidants, a synergistic effect can be obtained by using several different types of compounds together. For example, it is preferable to use lactone-based, phosphorus-based, phenol-based, and double bond-based compounds in combination.
  • the film body 110 may contain a colorant for color adjustment.
  • the colorant means, for example, a dye or a pigment, and has the effect of making the color tone of the liquid crystal screen blue, adjusting the yellow index, and reducing haze.
  • dyes and pigments can be used as the colorant, but anthraquinone dyes, azo dyes, phthalocyanine pigments, etc. are effective.
  • the ultraviolet absorber is not particularly limited, but includes, for example, benzotriazole-based, 2-hydroxybenzophenone-based, or salicylic acid phenyl ester-based ultraviolet absorbers.
  • benzotriazole-based 2-hydroxybenzophenone-based, or salicylic acid phenyl ester-based ultraviolet absorbers.
  • 2-(5-methyl-2-hydroxyphenyl)benzotriazole 2-[2-hydroxy-3,5-bis( ⁇ , ⁇ -dimethylbenzyl)phenyl]-2H-benzotriazole
  • 2-(3,5 Triazoles such as -di-t-butyl-2-hydroxyphenyl)benzotriazole, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 2,2'-dihydroxy-4-methoxybenzophenone, etc.
  • Examples include benzophenones.
  • the above ultraviolet absorbers can be used alone or in combination of two or more.
  • the film body 110 preferably contains fine particles that impart slipperiness. In particular, it is effective to add fine particles from the viewpoint of improving the slipperiness of the surface of the film body 110, improving the slipperiness during winding, and preventing the occurrence of scratches and blocking.
  • silicon dioxide is particularly preferably used because it has a refractive index close to that of the cycloolefin resin, acrylic resin, or cellulose ester resin, and thus has excellent transparency (haze).
  • the particle size is close to the wavelength of visible light, light will be scattered and transparency will deteriorate, so it is preferably smaller than the wavelength of visible light, and more preferably 1/2 or less of the wavelength of visible light. .
  • the particle size means the size of the aggregate when the particle is an aggregate of primary particles.
  • the particle when the particle is not spherical, it means the diameter of a circle corresponding to its projected area.
  • the thickness of the film body 110 is not particularly limited, but is, for example, 5 to 80 ⁇ m, preferably 10 to 65 ⁇ m, and more preferably 10 to 45 ⁇ m.
  • the thickness is at least the lower limit, the rigidity of the film roll 100 is high and the roll shape is more easily maintained.
  • the thickness is below the upper limit, the mass does not increase too much and it is easy to produce a long film roll.
  • the orientation angle ⁇ can be measured using an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.).
  • KOBRA-21ADH manufactured by Oji Scientific Instruments Co., Ltd.
  • the film manufacturing process using the solution drooling method in this embodiment includes a step of preparing a dope by dissolving a thermoplastic resin and any other components in a solvent (dope preparation step (S1)), and dissolving the dope on a metal support. (casting step (S2)), peeling off the obtained cast film from the metal support (peeling step (S3)), and shrinking the cast film (shrinking step (S4)) , and a step of drying the cast film (drying step (S5)), a step of stretching the cast film (stretching step (S6)), and a cutting step (S7) of slitting the widthwise ends of the obtained film. It is preferable to include.
  • This step is a step of dissolving the COP and, if necessary, other compounds in a dissolution pot with stirring in a solvent that is mainly a good solvent for COP, or a step of forming a dope by dissolving the COP and, if necessary, other compounds into the COP solution.
  • This is a step of mixing compound solutions to form a dope, which is the main solution.
  • the solvent used in dope may be used alone or in combination of two or more types, but it is preferable to use a mixture of a good solvent and a poor solvent for COP in terms of production efficiency, and the one with more good solvent is preferable from the viewpoint of solubility of COP.
  • the preferred range of the mixing ratio of the good solvent and poor solvent is 70 to 98% by mass of the good solvent and 2 to 30% by mass of the poor solvent.
  • a good solvent and a poor solvent are defined as a good solvent that dissolves the COP used alone, and a poor solvent as a solvent that swells or does not dissolve the COP used alone. Therefore, a good solvent or a poor solvent changes depending on the average degree of substitution of COP.
  • the good solvent used is not particularly limited, but includes organic halogen compounds such as methylene chloride, dioxolanes, acetone, methyl acetate, methyl acetoacetate, and the like. Particularly preferred are methylene chloride and methyl acetate.
  • the solvent used for dissolving COP is used by recovering the solvent removed from the film by drying in the film forming process and reusing it.
  • the recovered solvent may contain trace amounts of additives added to COP, such as plasticizers, ultraviolet absorbers, polymers, and monomer components, but even if these are contained, it is preferable to reuse them. It can also be purified and reused if necessary.
  • additives added to COP such as plasticizers, ultraviolet absorbers, polymers, and monomer components, but even if these are contained, it is preferable to reuse them. It can also be purified and reused if necessary.
  • a general method can be used to dissolve COP. Specifically, preferred are a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, and a method carried out under pressure above the boiling point of the main solvent.If heating and pressurization are combined, heating can be carried out above the boiling point at normal pressure.
  • a method of stirring and dissolving while heating at a temperature above the boiling point of the solvent at normal pressure and within a range where the solvent does not boil under pressure is also preferable in order to prevent the generation of lumpy undissolved substances called gels and mako.
  • COP is mixed with a poor solvent to make it wet or swell, and then a good solvent is further added to dissolve it.
  • a higher heating temperature after adding the solvent is preferable from the viewpoint of solubility of COP, but if the heating temperature is too high, the required pressure will increase and productivity will deteriorate.
  • the preferred heating temperature is 45 to 120°C, more preferably 60 to 110°C, and even more preferably 70 to 105°C. Further, the pressure is adjusted so that the solvent does not boil at the set temperature. Alternatively, a cooling dissolution method is also preferably used, by which COP can be dissolved in a solvent such as methyl acetate.
  • the filter medium it is preferable for the filter medium to have a small absolute filtration accuracy in order to remove insoluble matters, but if the absolute filtration accuracy is too small, there is a problem in that the filter medium is likely to become clogged. For this reason, a filter medium with an absolute filtration accuracy of 0.008 mm or less is preferable, a filter medium of 0.001 to 0.008 mm is more preferable, and a filter medium of 0.003 to 0.006 mm is even more preferable.
  • a bright spot foreign substance is a phenomenon in which two polarizing plates are arranged in a crossed nicol state, a film, etc. is placed between them, and when light is applied from one polarizing plate side and observed from the other polarizing plate side, the opposite image appears.
  • Filtration of the dope can be carried out in the usual way, but the method of filtering while heating at a temperature above the boiling point of the solvent at normal pressure and within the range where the solvent does not boil under pressure is the most effective method for reducing the filtration pressure before and after filtration. This is preferable because the increase in the difference (referred to as differential pressure) is small.
  • the preferred temperature is 30 to 120°C, more preferably 45 to 70°C, even more preferably 45 to 55°C.
  • the filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, even more preferably 1.0 MPa or less.
  • the above evaporation is preferably performed in an atmosphere within the range of 5 to 75°C.
  • To evaporate the solvent there are methods such as applying hot air to the top surface of the cast film, transferring heat from the back side of the support using a liquid, and using radiant heat to transfer heat from the front and back sides.
  • a method in which heat is transferred from the drying layer is preferable because it has good drying efficiency.
  • a method of combining them is also preferably used.
  • the width of the casting is preferably 1.3 m or more from the viewpoint of productivity, and more preferably within the range of 1.3 to 4.0 m. If the width of the casting does not exceed 4.0 m, no stripes will appear in the manufacturing process, and stability in the subsequent conveyance process will be high. From the viewpoint of transportability and productivity, a range of 1.3 to 3.0 m is more preferable.
  • the support used in the casting process preferably has a mirror-finished surface, and a stainless steel belt or a cast drum with a plated surface is preferably used as the support.
  • the surface temperature of the support during the casting process is within the range of -50°C to the boiling point of the solvent, and higher temperatures are preferred because the drying rate of the cast membrane can be faster.
  • the preferred support temperature is within the range of 0 to 55°C, more preferably within the range of 22 to 50°C.
  • the method of controlling the temperature of the support is not particularly limited, but there are methods such as blowing hot or cold air or bringing hot water into contact with the back side of the support. It is preferable to use hot water because heat transfer is more efficient and the time required for the temperature of the support to become constant is shorter.
  • hot air air at a temperature higher than the target temperature may be used.
  • the dope prepared in the dope preparation process is sent to the casting die via a conduit through a pressurized metering gear pump, etc., and is made of a rotatably driven stainless steel endless belt that transports the dope indefinitely.
  • the dope is cast from a casting die onto a casting position on the support.
  • a method of controlling the slit gap at the lip of the casting die For example, when extruding a highly viscous dope, variations in the width of the slit gap occur, but in order to prevent this, a method of controlling the slit gap is to install a plurality of heat bolts in the width. However, this method has a problem in that there is a physical installation limit on the number of heat bolts. In addition, there is a method of changing the internal structure of the casting die depending on the width in order to suppress pressure fluctuations in the width that cause variations in the width of the slit gap, but the casting die can be changed depending on the product type. There is a problem in that it is indispensable and requires time and cost.
  • the thickness of the cast film can be determined, for example, by controlling the initial discharge film thickness using a heat bolt of a casting die.
  • the casting die is provided with a mechanism that adjusts the width of the slit for discharging the dope (extruding the resin in the case of melting).
  • the width gap of the slit through which the dope is discharged is adjusted by the heat bolt of the casting die so that the film thickness deviation immediately after the dope is discharged is within the range of 1.0 to 5.0% with respect to the entire cast film. It is preferable to control the initial discharge film thickness of the cast film.
  • the cast dope is dried on the support to form a cast film.
  • the inclination of the casting die 2 that is, the direction in which the dope is discharged from the casting die to the support, is in the range of 0 to 90 degrees as an angle to the normal to the surface of the support (the surface on which the dope is cast). It may be set as appropriate so that it is within the range.
  • the support is made of, for example, a stainless steel belt, and is held by a pair of rolls and a plurality of rolls located between them. At this time, the surface of the support is preferably a mirror surface.
  • One or both of the pair of rolls is provided with a drive device that applies tension to the support, so that the support is used in a tensioned state.
  • the support may be a drum.
  • the cast membrane is peeled off using a peeling roll while maintaining self-supporting properties.
  • the temperature at the peeling position on the support is preferably in the range of -50 to 40°C, more preferably in the range of 10 to 40°C, and most preferably in the range of 15 to 30°C.
  • the amount of solvent remaining in the cast film on the support at the time of peeling is appropriately adjusted depending on the strength of the drying conditions, the length of the support, and the like. Although it depends on the thickness of the cast film, if the amount of residual solvent at the peeling point is too large, the cast film may become too soft and difficult to peel, resulting in loss of flatness and the possibility of horizontal steps or warping due to peeling tension. or vertical streaks may be more likely to occur. On the other hand, if the amount of residual solvent is too small, part of the cast membrane may peel off during the casting process. In order for the cast film to exhibit good flatness, the amount of residual solvent is preferably within the range of 10 to 50% by mass from the viewpoint of balance between economical speed and quality.
  • the film forming speed can be increased because the film is peeled off while the amount of residual solvent is as large as possible
  • a gel casting method that allows separation even if the amount of residual solvent is large.
  • Methods include adding a poor solvent for cycloolefin resin (COP) to the dope and gelling the cast film after dope casting, and gelling the cast film by cooling the support.
  • COP cycloolefin resin
  • Another method is to add a metal salt to the dope. As described above, by gelling the cast membrane on the support and strengthening the membrane, peeling can be accelerated and the film forming rate can be increased.
  • the peeling tension is preferably 300 N/m or less. More preferably, the tension is within the range of 196 to 245 N/m, but if wrinkles are likely to occur during peeling, it is preferable to peel with a tension of 190 N/m or less.
  • the shrinking step is a step of shrinking the cast membrane within the plane. This shrinking step is performed by stretching the cast film peeled from the support in the machine direction (hereinafter also referred to as "MD direction"). In this case, the cast membrane contracts in the width direction (traverse direction, hereinafter also referred to as "TD direction”) perpendicular to the length direction within the plane of the cast membrane.
  • MD direction machine direction
  • TD direction width direction
  • the shrinking process promotes entanglement between polymer molecules (matrix molecules) in the thickness direction of the cast film.
  • the adhesive easily penetrates into the optical film through the entangled portions (crosslinked portions) between matrix molecules. .
  • the optical film can be firmly fixed to the polarizer via the adhesive, and the peel strength of the optical film to the polarizer can be improved. In other words, good adhesion between the optical film and the polarizer can be ensured.
  • Shrinkage rate (%) Width of the cast membrane at the end of the shrinking process (mm) / Width of the cast membrane at the start of the shrinking process (mm) x 100
  • the shrinkage rate of the cast membrane in the shrinking step is preferably within the range of 1 to 40%, more preferably within the range of 5 to 20%.
  • the width of the cast membrane can be measured using LS-9000 manufactured by Keyence Corporation.
  • the shrinkage rate is determined by measuring the width of the cast membrane using the above-mentioned measuring device at 1-second intervals for 5 minutes (300 seconds), taking the average value as the width of the cast membrane, and substituting it into the above formula. . It is not necessary to limit the method to the above method, and for example, the width of the cast film may be determined using a value read from a ruler and substituted into the above formula.
  • the cast membrane is shrunk in the width direction.
  • shrinking methods include (1) treating the optical film at high temperature without holding its width to increase the density of the cast film, and (2) applying tension to the cast film in the transport direction (MD direction).
  • MD direction transport direction
  • shrinking methods include (3) shrinking the cast film in the width direction (TD direction) and (3) sharply reducing the amount of residual solvent in the cast film.
  • the drying step is a step of heating the cast membrane on the support to evaporate the solvent.
  • the cast film is transported by a plurality of transport rolls arranged in a staggered manner when viewed from the side, and the cast film is dried during this time.
  • the drying method in the drying device is not particularly limited, and generally hot air, infrared rays, heated rolls, microwaves, etc. are used for drying, but from the viewpoint of simplicity, drying with hot air is preferred. Moreover, a method of combining them is also preferable.
  • the temperature of the support may be the same throughout or may vary depending on location.
  • the drying step (S5) the cast membrane is peeled off from the support using a drying device and further dried.
  • a tenter stretching device When using a tenter stretching device, it is preferable to use a device that can independently control the gripping length (distance from the start of gripping to the end of gripping) of the cast film on the left and right sides by the left and right gripping means of the tenter stretching device in the stretching process described later. . Further, in the stretching process, it is also preferable to intentionally create sections having different temperatures in order to improve flatness.
  • the stretching ratio in the stretching step is preferably within the range of 1.1 to 5.0 times, more preferably within the range of 1.3 to 3.0 times.
  • the stretching step may be performed multiple times.
  • the stretching process with the highest magnification with the highest risk of dissociation of matrix molecules among the multiple stretching processes is preferably performed in the second and subsequent stretching steps, preferably in the final stretching process.
  • the entanglement of the matrix molecules can be strengthened by the time of stretching at the maximum magnification, so even if the stretching is performed at the maximum magnification, the dissociation of the entanglement of the matrix molecules can be suppressed and cohesive failure can be suppressed.
  • the stretching temperature depends on the amount of residual solvent, it is generally preferable to carry out the stretching in a temperature range of Tg to Tg + 60° C. of the resin constituting the film body 110.
  • the stretching temperature may be 120 to 190°C.
  • cyclic olefin polymer solution D-1 (Preparation of cyclic olefin polymer solution D-1) The following components were put into a mixing tank, stirred and dissolved, and then filtered through a filter paper with an average pore size of 34 ⁇ m and a sintered metal filter with an average pore size of 10 ⁇ m to prepare a cyclic olefin polymer solution (D-1). Cyclic olefin polymer P-1: 150 parts by mass Dichloromethane: 380 parts by mass Methanol: 70 parts by mass
  • Fine particle dispersion M-1 A fine particle dispersion (M-1) was prepared by adding the following components to a dispersing machine. Fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle diameter: 7 nm, apparent specific gravity 50 g/L): 4 parts by mass Dichloromethane: 76 parts by mass Methanol: 10 parts by mass Cyclic olefin polymer solution D-1: 10 parts by mass
  • a film-forming dope was prepared by mixing 100 parts by mass of the cyclic olefin polymer solution D-1 prepared above and 0.75 parts by mass of the fine particle dispersion M-1 prepared above.
  • Knurling portions 120 were formed at both ends of the obtained film in the width direction using the following procedure.
  • the width W of the knurling portion 120 was 15 mm from the edge of the film.
  • the line speed for conveying the film was 50 m/min.
  • the laser device a carbon dioxide laser device was used, the output of the laser device was 20 W, the center wavelength of the light emission wavelength was 9.4 ⁇ m, and the light emission wavelength range was set to ⁇ 0.01 ⁇ m or less around the center wavelength.
  • a collimated beam emitted from a carbon dioxide laser device is reflected by two galvanometer mirrors, and focused on the surface of the film being transported via an f ⁇ lens (focal length 200 mm). This was done by lighting it.
  • a plurality of protrusion units 121 each having six protrusions 122 arranged in a row were formed in the Y direction.
  • the six protrusions 122 constituting each protrusion unit 121 were arranged in order from the inside to the outside in the width direction of the film and from the upstream side to the downstream side in the feeding direction.
  • Film rolls 6 and 7 were produced in the same manner as film roll 1 except that the width or winding length of the film was changed as shown in Table 1.
  • Film rolls 8 to 11 were produced in the same manner as film roll 1, except that the interval px between the protrusions 122 or the interval py between the protrusion units 121 was changed as shown in Table 1.
  • the height of the protrusions, the interval px between the plurality of protrusions, and the interval py between the plurality of protrusion units were measured using a laser microscope.
  • the laser microscope Keyence Laser Microscope VK-X1000 was used.
  • the height of the convex portion was determined by measuring the height of the convex portion in the knurling area of 200 mm in the length direction (Y direction) of the film, and from the average value thereof.
  • the distance px between the plurality of convex portions was determined by measuring the distance between the ends of the convex portions in the X direction in the above region, and calculating the average value thereof.
  • the interval py between the plurality of convex units was determined by measuring the intervals between the straight lines L of the convex units in the above region, and from the average value thereof.
  • Table 1 shows the evaluation results for film rolls 1 to 13.
  • the direction of the slope of the straight line L is such that among the plurality of protrusions 122 constituting the protrusion unit 121, the outermost protrusion 122-2 is relative to the innermost protrusion 122-1.
  • the case where it was on the downstream side in the film feeding direction was defined as "positive”; the case where it was on the upstream side in the film feeding direction was defined as "negative”.
  • film rolls 1 to 11 each of which has an inclination angle ⁇ of more than 0° and less than or equal to 0.5°, are able to suppress vertical wrinkles and also reduce back problems in horses.
  • the film roll 12 whose inclination angle ⁇ is too large, exceeding 0.5°, causes vertical wrinkles. This is thought to be because the gripping force of the knurling portion was reduced, causing winding misalignment.
  • the film roll 13 in which the inclination angle ⁇ is negative causes back failure. This is thought to be because entrained air could not be sufficiently removed during winding, making it easier to deform during storage.
  • Polarizing plate 1 was produced according to the following method. First, a KC4UA film (manufactured by Konica Minolta, Inc.) was prepared as the protective film 1, and the active energy ray-curable adhesive liquid prepared above was applied using a microgravure coater (gravure roller: #300, rotation speed 140%/line). An active energy ray-curable adhesive layer a was formed by coating the adhesive layer to a thickness of 5 ⁇ m using a 5 ⁇ m adhesive.
  • a KC4UA film manufactured by Konica Minolta, Inc.
  • An active energy ray-curable adhesive layer a was formed by coating the adhesive layer to a thickness of 5 ⁇ m using a 5 ⁇ m adhesive.
  • the active energy ray curable adhesive liquid prepared above is applied to the retardation film 1 obtained from the film roll 1 to a thickness of 5 ⁇ m in the same manner as above to form an active energy ray curable adhesive.
  • a coating layer b was formed.
  • the polyvinyl alcohol-iodine polarizer prepared above was placed between the active energy ray curable adhesive layers a and b, and the polarizer was laminated with a roller machine, and the protective film 1/active energy ray curable adhesive layer A laminate was obtained in which: /polarizer/active energy ray curable adhesive layer/retardation film 1 were laminated.
  • Polarizing plate 1 was produced by irradiating electron beams from both sides of this laminate.
  • Polarizing plate 2 was produced in the same manner as polarizing plate 1 except that the retardation film was changed to the film obtained from film roll 12, and a display device was obtained.
  • display device 2 using the film obtained from film roll 12 had significant light leakage due to the horse's back failure; In display device 1, no light leakage caused by the horse's back failure was observed.
  • the present invention it is possible to provide a film roll that can sufficiently suppress vertical wrinkles and suppress physical deformation of the roll body, and a method for manufacturing the same.
  • Film roll 110 Film body 120 Knurling portion 121 Convex unit 122 Convex portion

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

ロール状に巻き取られた長尺フィルムを備えたフィルムロールであって、前記長尺フィルムは、フィルム本体と、前記フィルム本体の幅方向の端部に配置されたナーリング部と、を有し、前記ナーリング部は、前記フィルム本体の長さ方向に沿って配置され、複数の凸部で構成された複数の凸部ユニットを有し、前記凸部ユニットを構成する前記複数の凸部は、前記長尺フィルムの平面視において、前記フィルム本体の幅方向に対して内側から外側に向かって、該長尺フィルムの送り出し方向の上流側から下流側へと順に並んで配置されると共に、最も内側の凸部と最も外側の凸部とを結ぶ直線の前記フィルム本体の幅方向に対する傾斜角αが0°超0.5°以下である。

Description

フィルムロール及びフィルムロールの製造方法
 本発明は、フィルムロール及びフィルムロールの製造方法に関する。
 光学フィルムは、取り扱い性や製造効率の観点から、通常、ロール状に巻き取られた状態で保管又は輸送される。光学フィルムをロール状に巻き取る際、幅方向の端部にナーリング領域を形成することは広く知られている。ナーリング領域は、例えばエンボス加工やレーザー照射によって形成される凸凹構造であり、光学フィルムの巻き取りの際にフィルムが巻きズレを起こさないようにするための滑り止めの役目を果たす。
 近年、生産速度の高速化や広幅化、長尺化に伴い、フィルムの貼り付き等の問題を抑制するための検討がなされている。例えば、特許文献1では、フィルムの幅方向の両端部にエンボスを有するフィルムロールの製造方法において、凸部の幅や高さを所定の範囲に調整することが開示されている。特許文献2では、光学フィルムの幅方向の両端部にナール構造を有するフィルムロールの製造方法において、ナール構造の高さや巻き取り張力を所定の範囲に調整することが開示されている。
特開2014-210435号公報 特開2014-126822号公報
 ところで、ナーリング領域は、通常、特許文献2にも示されるように、複数の凸部がランダムに配置されるか、又は、フィルムの幅方向に平行に並べられた複数の凸部で構成された凸部ユニットが、フィルムの長さ方向に沿って複数配置された構造を有する。
 しかしながら、そのようなナーリング領域を有するフィルムロールは、巻き取り時に同伴エアが排出されにくい。そのため、フィルムロールを生産後、出荷するまで長期間保管する間に、フィルムロール内に取り込まれた同伴エアが徐々に抜けやすく、フィルムの幅方向の中央部が自重で撓むような物理的な変形(「馬の背故障」ともいう)を生じやすいという問題があった。
 これに対し本発明者らは、複数の凸部で構成される凸部ユニットを、フィルムの幅方向に対して傾斜させる(具体的には、フィルムの幅方向の内側から外側へ向かって、フィルムの送り出し方向の上流側から下流側に向かう方向に傾斜させる)ことで、巻き取り時の同伴エアの排出性を高めうることを見出した。具体的には、巻き取り時に、フィルムの幅方向の内側の凸部から外側の凸部に向かう順に、既に巻き取られたフィルムと接触するため、同伴エアの排出を誘導する作用が得られ、それにより、馬の背故障を抑制できると考えられる。また、巻き取り時にフィルムの幅方向の内側から外側へと向かう張力も生じるため、フィルムの長さ方向に沿ったシワ(「縦ジワ」ともいう)も抑制できることを見出した。一方で、傾斜の度合いが大き過ぎると、ナーリング領域によるフィルムのグリップ力が低下するため、フィルムの幅方向の内側から外側へと向かう張力が機能しなくなり、縦ジワを生じやすいという新たな問題が見出された。これらの現象は、広幅で、長尺なフィルムほど特に生じやすかった。このような馬の背故障や縦ジワは、光学フィルムの光学特性を低下させる原因となる。
 本発明は、上記事情に鑑みてなされたものであり、縦ジワを十分に抑制しつつ、フィルムロールの変形を抑制できるフィルムロール及びその製造方法を提供することを目的とする。
 [1] ロール状に巻き取られた長尺フィルムを備えたフィルムロールであって、前記長尺フィルムは、フィルム本体と、前記フィルム本体の幅方向の端部に配置されたナーリング部と、を有し、前記ナーリング部は、前記フィルム本体の長さ方向に沿って配置され、複数の凸部を含む複数の凸部ユニットを有し、前記凸部ユニットを構成する前記複数の凸部は、前記長尺フィルムの平面視において、前記フィルム本体の幅方向に対して内側から外側に向かって、該長尺フィルムの送り出し方向の上流側から下流側へと順に並んで配置されると共に、最も内側の凸部と最も外側の凸部とを結ぶ直線の前記フィルム本体の幅方向に対する傾斜角αが0°超0.5°以下である、フィルムロール。
 [2] 前記フィルム本体の遅相軸は、前記フィルム本体の幅方向と略平行である、[1]に記載のフィルムロール。
 [3] 前記凸部ユニットは、3個以上の前記凸部を含む、[1]又は[2]に記載のフィルムロール。
 [4] 前記フィルム本体の長さ方向における前記複数の凸部ユニット同士の間隔pyは、1~10mmである、[1]~[3]のいずれかに記載のフィルムロール。
 [5] 前記フィルム本体の厚みは、10~45μmである、[1]~[4]のいずれかに記載のフィルムロール。
 [6] 前記フィルム本体の幅は、2.4m以上である、[1]~[5]のいずれかに記載のフィルムロール。
 [7] 前記フィルム本体の長さは、7000m以上である、[1]~[6]のいずれかに記載のフィルムロール。
 [8] 前記フィルム本体は、光学フィルムである、[1]~[7]のいずれかに記載のフィルムロール。
 [9] [1]~[8]のいずれかに記載のフィルムロールの製造方法であって、長尺のフィルム本体を準備する工程と、前記フィルム本体の幅方向の端部にナーリング部を形成する工程と、前記ナーリング部を形成したフィルム本体を巻き取る工程とを含む、フィルムロールの製造方法。
 [10] 前記複数の凸部は、レーザー加工により形成する、[9]に記載のフィルムロールの製造方法。
 本発明によれば、縦ジワを十分に抑制しつつ、ロール体の物理的な変形を抑制できるフィルムロール及びその製造方法を提供することができる。
図1は、本発明の一実施形態に係るフィルムロールの外観を示す模式的な斜視図である。 図2Aは、図1のフィルムロールの模式的な平面図であり、図2Bは、図2Aの部分拡大図である。 図3Aおよび図3Bは、図2Aの部分拡大図である。 図4は、図4A~4Cは、種々のナーリング加工の方式を説明する概念図である。このうち、図4A及び4Bは、加熱押圧方式を示す模式図であり、図4Cは、レーザー方式を示す模式図である。 図5は、実施例における馬の背故障の評価方法を示す模式図である。
 以下、本発明について、実施形態に基づき、詳細に説明する。但し、本発明は、これらの実施形態に限定されない。
 1.フィルムロール
 図1は、本発明の一実施形態に係るフィルムロール100の外観を示す模式的な斜視図である。図2Aは、図1のフィルムロール100から巻き出したフィルムの模式的な平面図であり、図2Bは、図2Aの部分拡大図である。
 図1及び図2Aに示されるように、フィルムロール100は、ロール状に巻き取られた長尺フィルムを備える。長尺フィルムは、フィルム本体110と、ナーリング部120とを含む。
 (フィルム本体110)
 フィルム本体110は、長尺状の樹脂フィルムであることが好ましい。フィルム本体110を構成する材料や物性については、後で詳細に説明する。
 (ナーリング部120)
 ナーリング部120は、フィルム本体110の幅方向の端部に配置された、ナーリング処理された部分である。ナーリング処理は、フィルム本体110に凹凸を形成する処理である。ナーリング部120は、フィルム本体110の長さ方向Yに沿って配置された複数の凸部ユニット121を含み;複数の凸部ユニット121のそれぞれは、複数の凸部122を含む。図2Bでは、各凸部ユニット121は、それぞれ6個の凸部122を含む。
 凸部ユニット121を構成する複数の凸部122は、上記の通り、フィルム本体110の幅方向Xに対して内側から外側に向かって、該長尺フィルムの送り出し方向(巻き出し方向)の上流側から下流側へと順に並んで配置されている(図2A参照)。そして、凸部ユニット121を構成する複数の凸部122のうち、最も内側の凸部122-1と最も外側の凸部122-2とを結ぶ直線Lのフィルム本体110の幅方向Xに対する傾斜角αが0°超0.5°以下である(図2B参照)。
 傾斜角αが0°超であると、フィルム本体110をロール状に巻き取る際に、フィルム本体110の幅方向Xの最も内側にある凸部122-1から、最も外側にある凸部122-2に向かう順番で、既に巻き取られたフィルム本体110と接触する。そのため、複数の凸部122を含む凸部ユニット121が、同伴エアの誘導に寄与し、同伴エアが排出されやすい。それにより、巻き取り時に取り込まれるエア層を積極的に外部に排出でき、フィルム本体の幅方向に均一なエア層を形成できる。それにより、馬の背故障を抑制できる。
 一方、傾斜角αが0.5°以下であると、凸部ユニット121の傾きが大きすぎないため、巻き取り時の凸部122によるグリップ力が損なわれにくい。それにより、フィルム本体110の幅方向Xの内側から外側に向かう張力が損なわれにくくなるため、巻き取り時の巻きズレを生じにくく、縦ジワを抑制しうる。また、0.5°以下であれば、凸部ユニット121同士間に形成されるエア流路の長さも長くなりにくいため、同伴エア排出効果が損なわれにくく、馬の背故障の抑制効果も維持しうる。
 即ち、傾斜角αを0°超0.5°以下とすることで、馬の背故障と縦ジワを高度に抑制できる。同様の観点から、傾斜角αは、0°超0.3°以下であることがより好ましい。傾斜角αは、後述するフィルム本体110の配向角βと同じであってもよいし、異なってもよい。
 凸部ユニット121は、以下の方法で特定することができる。図3A及び図3Bは、凸部ユニット121の特定手順を説明する模式的な平面図である。
 1)まず、フィルム本体110の幅方向Xにおいて、最も外側にある凸部122-2を選択し、フィルム本体110の送り出し方向とは反対方向(巻き取り方向)の最端部Aを通る、フィルム本体110の縁に垂直な直線Bを引く(図3A参照)。次いで、凸部122-2よりも幅方向Xの内側にある凸部122のうち、(最端部Aの)直線Bとの距離が最も小さい凸部122-3を特定する(図3A参照)。
 2)特定した凸部122-3を起点にして、上記と同様に、フィルム本体の送り出し方向とは反対方向(巻き取り方向)の最端部Aを通る、フィルム本体110の縁に垂直な直線Bを引く(図3B参照)。次いで、凸部122-3よりも幅方向Xの内側にある凸部122のうち、(最端部Aの)直線Bとの距離が最も小さい凸部122-4を特定する(図3B参照)。
 この操作を、幅方向Xにおいて最も内側にある凸部122-1に到達するまで繰り返し、凸部ユニット121を構成する複数の凸部122を特定する。
 傾斜角αは、以下の方法で特定することができる。
 上記特定した凸部ユニット121を構成する複数の凸部122のうち、最も内側の凸部122-1と最も外側の凸部122-2とを結ぶ直線Lのフィルム本体110の幅方向Xに対する角度のうち小さい方を「傾斜角α」とする(図2B参照)。最も内側の凸部122-1と最も外側の凸部122-2とを結ぶ直線Lとは、好ましくは最も内側の凸部122-1と最も外側の122-2の最端部A同士を結ぶ直線である。
 なお、図2B及び図3では、凸部ユニット121を構成する6個の凸部122は、いずれも直線L上に配置されているが、これに限定されない。例えば、最も外側の凸部122-1と最も内側の凸部122-2との間に位置する4つの凸部122は、全体として幅方向Xに対して内側から外側に向かって、該長尺フィルムの送り出し方向の上流側から下流側へと順に並んで配置されていればよく、直線L上になくてもよい。
 凸部ユニット121を構成する凸部122の数は、特に制限されないが、3個以上であることが好ましく、3~8個であることがより好ましい。凸部122の数が多いほど、グリップ力や同伴エアの排出性がより高まりやすい。図2Bでは、凸部ユニット121を構成する凸部122の数は6個である。
 凸部ユニット121を構成する凸部122の高さは、特に制限されないが、0.1~20μmであることが好ましく、0.2~10μmであることがより好ましい。凸部122の高さが0.1μm以上であると、巻き取り時に同伴エアの排出性が高まりやすく、グリップ力も高まりやすい。凸部122の高さが20μm以下であると、巻き取り完了後の端部の直径が大きくなり、フィルム端部の張力が過大になることがない。なお、凸部122の高さは、ナーリング部120が配置されていない部分のフィルム本体110の表面からの最大高さを意味する。
 フィルム本体110の幅方向Xにおける、複数の凸部122の間隔pxは、特に制限されないが、1~7mmであることが好ましく、2~5mmであることがより好ましい。フィルム本体110の長さ方向Yにおける、複数の凸部ユニット121の間隔pyは、特に制限されないが、1~10mmであることが好ましく、3~7mmであることがより好ましい。間隔pxやpyが下限値以上であると、巻き取り時に同伴エアの排出性を一層高めやすく、間隔pxやpyが上限値以下であると、フィルム本体110同士の貼り付きを一層抑制しやすいだけでなく、同伴エアの排出性も損なわれにくい。
 凸部122の高さ、凸部122の間隔px及び凸部ユニット121の間隔pyは、レーザー顕微鏡、例えばキーエンス社製laser Microscope VK-X1000を用いて測定することができる。
 具体的には、凸部122の高さは、フィルム本体110の長さ方向Yの200mmの両端部のナーリング領域について、凸部122の、フィルム本体110表面からの最大高さを測定し、それらの平均値として求めることができる。
 凸部122の間隔pxは、フィルム本体110の長さ方向Yの200mmの両端部のナーリング領域について、フィルム本体110の幅方向Xにおける複数の凸部122の最端部同士の間隔を測定し、それらの平均値として求めることができる。
 凸部ユニット121の間隔pyは、フィルム本体110の長さ方向Yの200mmの両端部のナーリング領域について、各凸部ユニット121の直線L同士の間隔を測定し、それらの平均値として求めることができる。
 凸部122の形状は、特に制限されず、島状の凸部であってもよいし、リング状の凸部であってもよい。リング状の凸部には、中央部が凹、周縁部が凸となる形状が含まれる(後述の図4A及び図4C参照)。凸部122の平面視形状も、特に制限されず、矩形(菱形も含む)や多角形、円形、楕円形、線状のいずれであってもよい。図2Bでは、凸部122の形状は、矩形(菱形)である。また、凸部ユニット121を構成する複数の凸部122の少なくとも一部はつながっていてもよい。
 ナーリング部120は、フィルム本体110の幅方向の少なくとも一方の端部に配置されていればよいが、好ましくは両方の端部に配置されていることが好ましい(図2A参照)。ナーリング部120の幅W(X方向の幅)は、特に制限されないが、例えば2~100mm、好ましくは4~50mm、より好ましくは5~20mmとしうる。
 2.フィルムロールの製造方法
 上記フィルムロールは、1)長尺のフィルム本体110を準備する工程と、2)フィルム本体110の幅方向の端部にナーリング部120を形成する工程と、3)得られたフィルムをロール状に巻取る工程とを経て得られる。
 2-1.フィルム本体を準備する工程
 本工程では、長尺のフィルム本体110を準備する。フィルム本体110の製造方法については、フィルム本体110を構成する材料と合わせて、後で詳細に説明する。
 2-2.ナーリング部を形成する工程
 本工程では、得られたフィルム本体110の幅方向端部をナーリング加工して、ナーリング部120を形成する。具体的には、複数の凸部ユニット121が、フィルム本体110の長さ方向に配置されたナーリング部120を形成する。
 ナーリング加工は、種々の方法で行うことができ、フィルム面上に凹凸構造を形成する加工(ローレット加工ともいう)であってもよいし、ナーリング用液を塗布する処理であってもよいが、好ましくはローレット加工である。ローレット加工は、凸形状を有した金属ロール(エンボス・リングともいう)を加熱しながら押し当てる加熱押圧方式であってもよいし、レーザー等でフィルムが吸収する波長を選択的に与えることで加熱して変形させるレーザー方式であってもよい。
 図4A~4Cは、種々のナーリング加工の方式を説明する概念図である。このうち、図4A及び4Bは、加熱押圧方式を示す模式図であり、図4Cは、レーザー方式を示す模式図である。
 (加熱押圧方式)
 図4Aは、金属ロール上に形成された凸形状を有したエンボス・リングERによって、金属ロールを加熱しながら押し当てる方式を示し、バックロールBRが金属ロールの場合である。バックロールが金属であることにより、エンボス・リングERをフィルム本体110に押し込んだ際に生じる応力は、フィルム本体110の内部と、エンボス・リングER周辺に向かう。それにより、右図のように、フィルム本体110の表面側にリング状の凸部122が形成される。
 エンボス・リングERの材質は、特に制限されず、炭素鋼、ステンレススティール、セラミックコーティング及びHCrメッキ等でありうる。エンボス・リングERの突起形成部分は、所定の凸部122を形成可能に設けられている。即ち、エンボス・リングERの突起形成部分の形状や大きさ、高さは、凸部122の形状や大きさ、高さに対応するように設定されている。
 図4Bは、バックロールBRがゴムロールの場合である。バックロールBRがゴムであることにより、エンボス・リングERをフィルム本体110に押し込んだ際に生じる応力は、ゴムロール側に向かう。それにより、右図のように、フィルム本体110の裏面側に島状の凸部122が形成される。
 加熱押圧方式における加熱の温度は、好ましくは上記フィルム本体110に含まれる熱可塑性樹脂のガラス転移点以上融点以下の範囲で設定されうる。
 (レーザー方式)
 図4Cは、レーザー方式の場合であるが、レーザー光Lsを照射した部位のフィルム本体110が熱変形し、右図のようなリング状の凸部122が形成される。
 レーザー方式では、熱可塑性樹脂を含む上記フィルム本体110にレーザー光を照射すると、レーザー光が照射された地点において、フィルム本体110が局所的に熱溶融又はアブレーションを生じる。
 中でも、ナーリング加工は、凸部形状を均一に成形しやすく、厚みの薄いフィルムに対しても破断を生じにくい等の観点から、レーザー方式であることが好ましい。
 凹凸構造の形状は、使用目的に応じた任意の形状及び配置としうる。レーザー光をフィルム表面に照射する軌跡を制御することにより、レーザー光により所望の形状の凹凸構造を描画することができる。
 使用するレーザー光の種類は特に限定されず、例えばArFエキシマレーザー、KrFエキシマレーザー、XeClエキシマレーザー、YAGレーザーの第3高調波若しくは第4高調波、YLF若しくはYVOの固体レーザーの第3高調波若しくは第4高調波、Ti:Sレーザー、半導体レーザー、ファイバーレーザー又は炭酸ガスレーザー等を使用することができる。これらのレーザー光のうち、フィルムの加工に適した出力が効率的に得られる観点から、炭酸ガスレーザーが好ましい。
 レーザー光の中心波長は、特に限定されないが、例えば9~12μmの範囲内であるレーザー光を用いることができる。特にレーザー装置として炭酸ガスレーザー装置を用いる場合、中心波長として9.3μm付近の波長(例えば、9.2~9.4μm)を含むレーザー光を用いることができる。
 レーザー光の出力は、好ましくは1~120W、より好ましくは5~100W、さらに好ましくは15~80Wである。
 2-3.巻き取り工程
 本工程では、得られたフィルムを巻取って、フィルムロールを得る。
 巻き取り方法は、一般に使用されているワインダーを用いればよく、例えば定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の張力をコントロールする方法がある。フィルムを巻取る際の初期張力は、例えば20~300N/mとしうる。
 フィルムロール100の巻長さは、特に制限されないが、例えば100m以上、好ましくは7000m以上である。フィルムロール100の巻長さの上限は、特に制限されないが、例えば10000m以下である。
 フィルムロール100の幅(フィルム本体110の幅)は、例えば1.5m以上、好ましくは2.4m以上である。フィルムロール100の幅の上限は、特に制限されないが、例えば3m以下である。
 このように、フィルムロール100の巻長さや幅(フィルム本体110の長さや幅)が大きくなるほど、巻き取り時に縦ジワを生じやすいだけでなく、長期間保管している間に自重により変形しやすいため、本発明が特に有効である。
 上記フィルムロールから繰り出されたフィルムは、光学フィルムとして偏光板の保護フィルム等に好適に利用され、種々の光学測定装置及び液晶表示装置や有機エレクトロルミネッセンス表示装置等の表示装置に用いることができる。
 本実施形態において得られるフィルムロールから巻き出されるフィルムは、傾斜角αで傾斜した複数の凸部ユニット121を含むナーリング部120を備える。それにより、縦ジワ及び馬の背故障が高度に抑制されるため、これらの故障に起因する表示ムラ等を低減することができる。
 3.フィルム本体110及びその製造方法について
 上記フィルムロール100を構成するフィルム本体110及びその製造方法について、以下、説明する。
 3-1.フィルム本体110
 フィルム本体110は、長尺状の樹脂フィルムであり、光学フィルムであることが好ましい。
 フィルム本体110に用いられる熱可塑性樹脂材料としては、製膜後フィルムロールとして扱えるものであれば限定はない。
 例えば偏光板用途として使用されている熱可塑性樹脂としては、トリアセチルセルロース(TAC)、セルロースアセテートプロピオネート(CAP)、ジアセチルセルロース(DAC)等のセルロースエステル系樹脂やシクロオレフィンポリマー(シクロオレフィン系樹脂(COP))等の環状オレフィン系樹脂(以下、シクロオレフィン系樹脂ともいう。)、ポリプロピレン(PP)等のポリプロピレン系樹脂、ポリメチルメタクリレート(PMMA)等のアクリル系樹脂、及びポリエチレンテレフターレート(PET)等のポリエステル系樹脂が適用できる。
 ただし、延伸性や結晶化度のコントロールがしやすい点、及び、接着剤が浸透しやすく、偏光子とのより良好な接着性を確保できる点では、シクロオレフィン系樹脂(COP)を用いることが望ましい。
 (シクロオレフィン系樹脂)
 フィルム本体110に含有されるシクロオレフィン系樹脂は、シクロオレフィン単量体の重合体、又はシクロオレフィン単量体とそれ以外の共重合性単量体との共重合体であることが好ましい。
 シクロオレフィン単量体としては、ノルボルネン骨格を有するシクロオレフィン単量体であることが好ましく、下記一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体であることがより好ましい。
 一般式(A-1)中、R~Rは、各々独立して、水素原子、炭素原子数1~30の炭化水素基、又は極性基を表す。pは、0~2の整数を表す。ただし、R~Rの全てが同時に水素原子を表すことはなく、RとRが同時に水素原子を表すことはなく、R3とR4が同時に水素原子を表すことはないものとする。
 一般式(A-1)においてR~Rで表される炭素原子数1~30の炭化水素基としては、例えば、炭素原子数1~10の炭化水素基であることが好ましく、炭素原子数1~5の炭化水素基であることがより好ましい。炭素原子数1~30の炭化水素基は、例えば、ハロゲン原子、酸素原子、窒素原子、硫黄原子又はケイ素原子を含む連結基を更に有していても良い。そのような連結基の例には、カルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合等の2価の極性基が含まれる。炭素原子数1~30の炭化水素基の例には、メチル基、エチル基、プロピル基及びブチル基等が含まれる。
 一般式(A-1)において、R~Rで表される極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基及びシアノ基が含まれる。中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましい。
 一般式(A-1)におけるpは、フィルム本体110の耐熱性を高める観点から、1又は2であることが好ましい。pが1又は2であると、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。
 一般式(A-2)中、Rは、水素原子、炭素数1~5の炭化水素基、又は炭素数1~5のアルキル基を有するアルキルシリル基を表す。Rは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、又はハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子)を表す。pは、0~2の整数を表す。
 一般式(A-2)におけるRは、炭素数1~5の炭化水素基を表すことが好ましく、炭素数1~3の炭化水素基を表すことがより好ましい。
 一般式(A-2)におけるRは、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基を表すことが好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基がより好ましい。
 一般式(A-2)におけるpは、フィルム本体110の耐熱性を高める観点から、1又は2を表すことが好ましい。pが1又は2を表すと、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。
 一般式(A-2)で表される構造を有するシクロオレフィン単量体は、有機溶媒への溶解性を向上させる点から好ましい。一般的に有機化合物は対称性を崩すことによって結晶性が低下するため、有機溶媒への溶解性が向上する。一般式(A-2)におけるR及びRは、分子の対称軸に対して片側の環構成炭素原子のみに置換されているので、分子の対称性が低く、すなわち、一般式(A-2)で表される構造を有するシクロオレフィン単量体は溶解性が高いため、フィルム本体110を溶液流延法によって製造する場合に適している。
 シクロオレフィン単量体の重合体における一般式(A-2)で表される構造を有するシクロオレフィン単量体の含有割合は、シクロオレフィン系樹脂を構成する全シクロオレフィン単量体の合計に対して例えば、70モル%以上、好ましくは80モル%以上、より好ましくは100モル%とし得る。一般式(A-2)で表される構造を有するシクロオレフィン単量体を一定以上含むと、樹脂の配向性が高まるため、位相差(リターデーション)値が上昇しやすい。
 以下、一般式(A-1)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物1~14に示し、一般式(A-2)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物15~34に示す。
 シクロオレフィン単量体と共重合可能な共重合性単量体の例には、シクロオレフィン単量体と開環共重合可能な共重合性単量体、及びシクロオレフィン単量体と付加共重合可能な共重合性単量体等が含まれる。
 開環共重合可能な共重合性単量体の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン及びジシクロペンタジエン等のシクロオレフィンが含まれる。
 付加共重合可能な共重合性単量体の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素単量体及び(メタ)アクリレート等が含まれる。不飽和二重結合含有化合物の例には、炭素原子数2~12(好ましくは2~8)のオレフィン系化合物が含まれ、その例には、エチレン、プロピレン及びブテン等が含まれる。ビニル系環状炭化水素単量体の例には、4-ビニルシクロペンテン及び2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系単量体が含まれる。(メタ)アクリレートの例には、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが含まれる。
 シクロオレフィン単量体と共重合性単量体との共重合体におけるシクロオレフィン単量体の含有割合は、共重合体を構成する全単量体の合計に対して例えば、20~80mol%、好ましくは30~70mol%とし得る。
 シクロオレフィン系樹脂は、前述のとおり、ノルボルネン骨格を有するシクロオレフィン単量体、好ましくは一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体を重合又は共重合して得られる重合体であり、その例には、以下のものが含まれる。
 (1)シクロオレフィン単量体の開環重合体
 (2)シクロオレフィン単量体と、それと開環共重合可能な共重合性単量体との開環共重合体
 (3)上記(1)又は(2)の開環(共)重合体の水素添加物
 (4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素添加した(共)重合体
 (5)シクロオレフィン単量体と、不飽和二重結合含有化合物との飽和共重合体
 (6)シクロオレフィン単量体のビニル系環状炭化水素単量体との付加共重合体及びその水素添加物
 (7)シクロオレフィン単量体と、(メタ)アクリレートとの交互共重合体
 上記(1)~(7)の重合体は、いずれも公知の方法、例えば、特開2008-107534号公報や特開2005-227606号公報に記載の方法で得ることができる。例えば、上記(2)の開環共重合に用いられる触媒や溶媒は、例えば、特開2008-107534号公報の段落0019~0024に記載のものを使用できる。上記(3)及び(6)の水素添加に用いられる触媒は、例えば、特開2008-107534号公報の段落0025~0028に記載のものを使用できる。上記(4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば、特開2008-107534号公報の段落0029に記載のものを使用できる。上記(5)~(7)の付加重合に用いられる触媒は、例えば、特開2005-227606号公報の段落0058~0063に記載のものを使用できる。上記(7)の交互共重合反応は、例えば、特開2005-227606号公報の段落0071及び0072に記載の方法で行うことができる。
 中でも、上記(1)~(3)及び(5)の重合体が好ましく、上記(3)及び(5)の重合体がより好ましい。すなわち、シクロオレフィン系樹脂は、得られるシクロオレフィン系樹脂のガラス転移温度を高くし、かつ光透過率を高くすることができる点で、下記一般式(B-1)で表される構造単位と下記一般式(B-2)で表される構造単位の少なくとも一方を含むことが好ましく、一般式(B-2)で表される構造単位のみを含むか、又は一般式(B-1)で表される構造単位と一般式(B-2)で表される構造単位の両方を含むことがより好ましい。一般式(B-1)で表される構造単位は、前述の一般式(A-1)で表されるシクロオレフィン単量体由来の構造単位であり、一般式(B-2)で表される構造単位は、前述の一般式(A-2)で表されるシクロオレフィン単量体由来の構造単位である。
 一般式(B-1)中、Xは、-CH=CH-又は-CHCH-を表す。R~R及びpは、それぞれ一般式(A-1)のR~R及びpと同義である。
 一般式(B-2)中、Xは、-CH=CH-又は-CHCH-を表す。R~R及びpは、それぞれ一般式(A-2)のR~R及びpと同義である。
 シクロオレフィン系樹脂は、市販品であっても良い。シクロオレフィン系樹脂の市販品の例には、JSR(株)製のアートン(Arton)G(例えば、G7810等)、アートンF、アートンR(例えば、R4500、R4900及びR5000等)、及びアートンRXが含まれる。
 シクロオレフィン系樹脂の固有粘度〔η〕inhは、30℃の測定において、0.2~5cm/gであることが好ましく、0.3~3cm/gであることがより好ましく、0.4~1.5cm/gであることが更に好ましい。
 シクロオレフィン系樹脂の数平均分子量(Mn)は、8000~100000であることが好ましく、10000~80000であることがより好ましく、12000~50000であることが更に好ましい。シクロオレフィン系樹脂の重量平均分子量(Mw)は、20000~300000であることが好ましく、30000~250000であることがより好ましく、40000~200000であることが更に好ましい。シクロオレフィン系樹脂の数平均分子量や重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にてポリスチレン換算にて測定することができる。
 <ゲルパーミエーションクロマトグラフィー>
 溶媒:      メチレンクロライド
 カラム:    Shodex  K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度:  0.1質量%
 検出器:    RI  Model  504(GLサイエンス社製)
 ポンプ:    L6000(日立製作所(株)製)
 流量:      1.0ml/min
 校正曲線:  標準ポリスチレンSTK  standard  ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあると、シクロオレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性、及びフィルムとしての成形加工性が良好となる。
 シクロオレフィン系樹脂のガラス転移温度(Tg)は、通常、110℃以上であり、110~350℃であることが好ましく、120~250℃であることがより好ましく、120~220℃であることが更に好ましい。Tgが110℃以上であると、高温条件下での変形を抑制しやすい。一方、Tgが350℃以下であると、成形加工が容易となり、成形加工時の熱による樹脂の劣化も抑制しやすい。
 シクロオレフィン系樹脂の含有量は、フィルムに対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。
 (アクリル系樹脂)
 アクリル系樹脂は、アクリル酸エステル又はメタアクリル酸エステルの重合体であって、他のモノマーとの共重合体も含まれる。したがって、アクリル系樹脂には、メタクリル樹脂も含まれる。
 樹脂としては特に制限されるものではないが、メチルメタクリレート単位が50~99質量%の範囲内、及びこれと共重合可能なほかの単量体単位が1~50質量%の範囲内からなるものが好ましい。
 共重合で形成されるアクリル系樹脂を構成するほかの単位としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、メタクリル酸イソボルニル、2-ヒドロキシエチルアクリレート等のヒドロキシアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、アクリロイルモルホリン、Nヒドロキシフェニルメタクリルアミド等のアクリルアミド、N-ビニルピロリドン、マレイン酸、フマル酸、イタコン酸等の不飽和基含有2価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタルイミド及びグルタル酸無水物等が挙げられる。
 上記単位より、グルタルイミド及びグルタル酸無水物を除いた単位を形成する共重合可能な単量体としては、上記単位に対応した単量体が挙げられる。
 すなわち、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、メタクリル酸イソボルニル、2-ヒドロキシエチルアクリレート等のヒドロキシアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、アクリロイルモルホリン、Nヒドロキシフェニルメタクリルアミド等のアクリルアミド、N-ビニルピロリドン、マレイン酸、フマル酸、イタコン酸等の不飽和基含有2価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド及びN-置換マレイミド、等の単量体が挙げられる。
 また、グルタルイミド単位は、例えば(メタ)アクリル酸エステル単位を有する中間体ポリマーに1級アミン(イミド化剤)を反応させてイミド化することにより形成できる(特開2011-26563号公報参照。)。
 グルタル酸無水物単位は、例えば(メタ)アクリル酸エステル単位を有する中間体ポリマーを加熱することにより形成することができる(特許第4961164号公報参照。)。
 アクリル系樹脂には、上記の構成単位の中でも、機械的強度の観点から、メタクリル酸イソボルニル、アクリロイルモルホリン、N-ヒドロキシフェニルメタクリルアミド、N-ビニルピロリドン、スチレン、ヒドロキシエチルメタクリレート、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物又はグルタルイミドが含まれることが、特に好ましい。
 アクリル系樹脂は、環境の温湿度雰囲気の変化に対する寸法変化を制御する観点や、フィルム生産時の金属支持体からの剥離性、有機溶媒の乾燥性、耐熱性及び機械的強度の改善の観点から、重量平均分子量(Mw)が50000~1000000の範囲内であることが好ましく、100000~1000000の範囲内であることがより好ましく、200000~800000の範囲内であることが特に好ましい。
 50000以上であれば、耐熱性及び機械的強度が優れ、1000000以下であれば、金属支持体からの剥離性及び有機溶媒の乾燥性に優れる。
 アクリル系樹脂の製造方法としては、特に制限はなく、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。
 ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。
 重合温度については、懸濁又は乳化重合では30~100℃の範囲内、塊状又は溶液重合では80~160℃の範囲内で実施しうる。
 得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。
 アクリル系樹脂のガラス転移温度(Tg)は、80~120℃の範囲内であることが、フィルムの機械的強度を保持する観点から、好ましい。
 アクリル系樹脂としては、市販のものも使用することができる。例えばデルペット60N、80N、980N、SR8200(以上、旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88、EMB-143、EMB-159、EMB-160、EMB-161、EMB-218、EMB-229、EMB-270、EMB-273(以上、三菱レイヨン(株)製)、KT75、TX400S及びIPX012(以上、電気化学工業(株)製)等が挙げられる。アクリル系樹脂は2種以上を併用することもできる。
 アクリル系樹脂は、添加剤を含有することが好ましく、添加剤の一例としては、国際公開第2010/001668号に記載のアクリル粒子(ゴム弾性体粒子)を、フィルムの機械的強度向上や寸法変化率の調整のために含有することが好ましい。
 このような多層構造アクリル系粒状複合体の市販品の例としては、例えば三菱レイヨン社製の「メタブレンW-341」、カネカ社製の「カネエース」、クレハ社製の「パラロイド」、ロームアンドハース社製の「アクリロイド」、アイカ社製の「スタフィロイド」、ケミスノーMR-2G、MS-300X(以上、綜研化学(株)製)及びクラレ社製の「パラペットSA」等が挙げられ、これらは、単独ないし2種以上を用いることができる。
 アクリル粒子の体積平均粒子径は0.35μm以下であり、好ましくは0.01~0.35μmの範囲内であり、より好ましくは0.05~0.30μmの範囲内である。粒子径が一定以上であれば、フィルムを加熱下で伸びやすくでき、粒子径が一定以下であれば、得られるフィルムの透明性を損ないにくい。
 フィルムは、柔軟性の観点から、曲げ弾性率(JIS K7171)が10.5GPa以下であることが好ましい。この曲げ弾性率は、より好ましくは1.3GPa以下であり、更に好ましくは1.2GPa以下である。この曲げ弾性率は、フィルム中のアクリル系樹脂やゴム弾性体粒子の種類や量等によって変動し、例えばゴム弾性体粒子の含有量が多いほど、一般に曲げ弾性率は小さくなる。
 また、アクリル系樹脂として、メタクリル酸アルキルの単独重合体を用いるよりも、メタクリル酸アルキルとアクリル酸アルキル等との共重合体を用いる方が、一般に曲げ弾性率は小さくなる。
 (セルロースエステル系樹脂)
 フィルム本体110は、セルロースエステル系樹脂を含んでもよい。
 セルロースエステルとは、セルロースを構成するβ-1,4結合しているグルコース単位中の2位、3位及び6位のヒドロキシ基(-OH)の水素原子の一部又は全部がアシル基で置換されたセルロースアシレート樹脂をいう。
 用いられるセルロースエステルは特に限定されないが、炭素数2~22程度の直鎖又は分岐のカルボン酸のエステルであることが好ましい。エステルを構成するカルボン酸は脂肪族カルボン酸でもよいし、環を形成してもよく、芳香族カルボン酸でもよい。
 例えばセルロースのヒドロキシ基部分の水素原子が、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、ラウロイル基、ステアロイル等の炭素数2~22のアシル基で置換されたセルロースエステルが挙げられる。
 エステルを構成するカルボン酸(アシル基)は、置換基を有してもよい。エステルを構成するカルボン酸は、特に炭素数が6以下の低級脂肪酸であることが好ましく、炭素数が3以下の低級脂肪酸であることがさらに好ましい。なお、セルロースエステル中のアシル基は単一種であってもよいし、複数のアシル基の組み合わせであってもよい。
 好ましいセルロースエステルの具体例には、ジアセチルセルロース(DAC)、トリアセチルセルロース(TAC)等のセルロースアセテートの他、セルロースアセテートプロピオネート(CAP)、セルロースアセテートブチレート、セルロースアセテートプロピオネートブチレートのようなアセチル基の他にプロピオネート基又はブチレート基が結合したセルロースの混合脂肪酸エステルが挙げられる。これらのセルロースエステルは単一種を使用してもよいし、複数種を組み合わせて用いてもよい。
 セルロースエステルのアシル基の種類及び置換度を調節することによって位相差の湿度変動を所望の範囲に制御することができ、膜厚の均一性を向上させることができる。
 セルロースエステルのアシル基の置換度が小さいほど位相差発現性が向上するため、薄膜化が可能となる。一方で、アシル基の置換度が小さすぎると、耐久性が悪化するおそれがあり好ましくない。
 一方、セルロースエステルのアシル基の置換度が大きいほど位相差が発現しないため、製膜の際に延伸倍率を増加させる必要があるが、高延伸倍率で均一に延伸させることは難しく、このため、膜厚バラつきが大きくなる(悪化する)。また、厚さ方向のリターデーション(位相差)であるRt湿度変動はセルロースのカルボニル基に水分子が配位することで生じるため、アシル基の置換度が高い、すなわち、セルロース中のカルボニル基が多いほど、Rt湿度変動が悪くなる傾向がある。
 セルロースエステルは総置換度が、2.1~2.5の範囲内であることが好ましい。当該範囲とすることによって、環境変動(特に湿度によるRt変動)を抑制するとともに、膜厚の均一性が向上しうる。より好ましくは、製膜の際の流延性及び延伸性を向上させ、膜厚の均一性が一層向上する観点から、2.2~2.45の範囲内である。
 より具体的には、セルロースエステルは、下記式(a)及び(b)をともに満足する。下記式(a)及び(b)中、Xはアセチル基の置換度、Yはプロピオニル基又はブチリル基の置換度、若しくはその混合物の置換度である。
 式(a):2.1≦X+Y≦2.5
 式(b):0≦Y≦1.5
 セルロースエステルは、セルロースアセテート(Y=0)、及びセルロースアセテートプロピオネート(CAP)(Y;プロピオニル基、Y>0)がより好ましく、さらに好ましくは膜厚バラつきを低減させる点からY=0であるセルロースアセテートである。
 特に好ましく用いられるセルロースアセテートは、位相差発現性、Rt湿度変動、膜厚バラつきを所望の範囲とする点から2.1≦X≦2.5(一層好ましくは2.15≦X≦2.45)のセルロースジアセテート(DAC)である。
 また、Y>0の場合には、特に好ましく用いられるセルロースアセテートプロピオネート(CAP)は、0.95≦X≦2.25、0.1≦Y≦1.2、2.15≦X+Y≦2.45である。
 上述のセルロースアセテート若しくはセルロースアセテートプロピオネートを用いることで、リターデーションに優れ、機械的強度、環境変動に優れたフィルムロールが得られる。
 なお、アシル基の置換度は、1グルコース単位あたりのアシル基の平均数を示し、1グルコース単位の2位、3位及び6位のヒドロキシ基の水素原子のいくつがアシル基に置換されているかを示す。従って、最大の置換度は3.0であり、この場合には2位、3位及び6位のヒドロキシ基の水素原子がすべてアシル基で置換されていることを意味する。これらアシル基は、グルコース単位の2位、3位、6位に平均的に置換していてもよいし、分布をもって置換していてもよい。置換度は、ASTM-D817-96に規定の方法により求められる。
 所望の光学特性を得るために置換度の異なるセルロースアセテートを混合して用いてもよい。上記の場合、異なるセルロースアセテートの混合比率は特に限定されない。
 セルロースエステルの数平均分子量(Mn)は、2×10~3×10の範囲内、さらには2×10~1.2×10の範囲内、また、さらには4×10~8×10の範囲内であると、得られるフィルムロールの機械的強度が高くなる観点から好ましい。
 セルロースエステルの数平均分子量Mnは、前述の測定条件によるゲルパーミエーションクロマトグラフィー(GPC)を用いた測定により算出する。
 セルロースエステルの重量平均分子量(Mw)は、2×10~1×10の範囲内、さらには2×10~1.2×10の範囲内、さらには4×10~8×10の範囲内であると得られるフィルムロールの機械的強度が高くなる観点から好ましい。
 セルロースエステルの原料セルロースは、特に限定されないが、綿花リンター、木材パルプ、ケナフ等を挙げることができる。また、それらから得られたセルロースエステルは、それぞれ任意の割合で混合使用することができる。
 セルロースアセテート、セルロースアセテートプロピオネート等のセルロースエステルは、公知の方法により製造することができる。
 一般的には、原料のセルロースと所定の有機酸(酢酸、プロピオン酸等)と酸無水物(無水酢酸、無水プロピオン酸等)、触媒(硫酸等)と混合して、セルロースをエステル化し、セルロースのトリエステルができるまで反応を進める。トリエステルにおいては、グルコース単位の三個のヒドロキシ基は、有機酸のアシル酸で置換されている。同時に二種類の有機酸を使用すると、混合エステル型のセルロースエステル、例えばセルロースアセテートプロピオネートやセルロースアセテートブチレートを作製することができる。
 次いで、セルロースのトリエステルを加水分解することで、所望のアシル置換度を有するセルロースエステル樹脂を合成する。その後、ろ過、沈殿、水洗、脱水、乾燥等の工程を経て、セルロースエステル樹脂ができあがる。具体的には特開平10-45804号公報に記載の方法を参考にして合成することができる。
 上記フィルム本体110は、その他の添加剤として、上記熱可塑性樹脂の他に以下のものを含有していてもよい。
 (可塑剤)
 フィルム本体110は、加工性を付与する目的で少なくとも1種の可塑剤を含むことが好ましい。可塑剤は単独で又は2種以上混合して用いることが好ましい。
 可塑剤の中でも、糖エステル、ポリエステル、及びスチレン系化合物からなる群から選択される少なくとも1種の可塑剤を含むことが、透湿性の効果的な制御及びセルロースエステル等の基材樹脂との相溶性を高度に両立できる観点から好ましい。
 当該可塑剤は、分子量が15000以下、さらには10000以下であることが、耐湿熱性の改善とセルロースエステル等の基材樹脂との相溶性を両立する観点から好ましい。
 当該分子量が10000以下である化合物が重合体である場合は、重量平均分子量(Mw)が10000以下であることが好ましい。好ましい重量平均分子量(Mw)の範囲は100~10000の範囲内であり、更に好ましくは、400~8000の範囲内である。
 当該分子量が1500以下の化合物を、基材樹脂100質量部に対して6~40質量部の範囲内で含有することが好ましく、10~20質量部の範囲内で含有させることがより好ましい。上記範囲内で含有させることにより、透湿性の効果的な制御と基材樹脂との相溶性を両立することができ、好ましい。
 (糖エステル)
 フィルムは、加水分解防止を目的として、糖エステル化合物を含有させてもよい。具体的には、糖エステル化合物として、ピラノース構造又はフラノース構造の少なくとも1種を1個以上12個以下有し、その構造のOH基の全て若しくは一部をエステル化した糖エステルを使用することができる。
 (ポリエステル)
 フィルムは、ポリエステルを含有させることもできる。ポリエステルは特に限定されないが、例えばジカルボン酸、又はこれらのエステル形成性誘導体とグリコールとの縮合反応により得ることができる末端がヒドロキシ基となる重合体(ポリエステルポリオール)、又は当該ポリエステルポリオールの末端のヒドロキシ基がモノカルボン酸で封止された重合体(末端封止ポリエステル)を用いることができる。ここでいうエステル形成性誘導体とは、ジカルボン酸のエステル化物、ジカルボン酸クロライド、ジカルボン酸の無水物のことである。
 (スチレン系化合物)
 フィルム本体110は、上記糖エステル、ポリエステルに加えて又はこれに代えて、耐水性改善を目的として、スチレン系化合物を用いることもできる。
 スチレン系化合物は、スチレン系モノマーの単独重合体であってもよいし、スチレン系モノマーとそれ以外の共重合モノマーとの共重合体であってもよい。スチレン系化合物におけるスチレン系モノマー由来の構成単位の含有割合は、分子構造が一定以上の嵩高さを有するためには、好ましくは30~100モル%の範囲内、より好ましくは50~100モル%の範囲内でありうる。
 スチレン系モノマーの例には、スチレン;α-メチルスチレン、β-メチルスチレン、p-メチルスチレン等のアルキル置換スチレン類;4-クロロスチレン、4-ブロモスチレン等のハロゲン置換スチレン類;p-ヒドロキシスチレン、α-メチル-p-ヒドロキシスチレン、2-メチル-4-ヒドロキシスチレン、3,4-ジヒドロキシスチレン等のヒドロキシスチレン類;ビニルベンジルアルコール類;p-メトキシスチレン、p-tert-ブトキシスチレン、m-tert-ブトキシスチレン等のアルコキシ置換スチレン類;3-ビニル安息香酸、4-ビニル安息香酸等のビニル安息香酸類;4-ビニルベンジルアセテート;4-アセトキシスチレン;2-ブチルアミドスチレン、4-メチルアミドスチレン、p-スルホンアミドスチレン等のアミドスチレン類;3-アミノスチレン、4-アミノスチレン、2-イソプロペニルアニリン、ビニルベンジルジメチルアミン等のアミノスチレン類;3-ニトロスチレン、4-ニトロスチレン等のニトロスチレン類;3-シアノスチレン、4-シアノスチレン等のシアノスチレン類;ビニルフェニルアセトニトリル;フェニルスチレン等のアリールスチレン類、インデン類等が含まれる。スチレン系モノマーは、一種類であっても、二種類以上を組み合わせてもよい。
 また、フィルム本体110は、酸化防止剤、着色剤、紫外線吸収剤、マット剤、アクリル粒子、水素結合性溶媒及びイオン性界面活性剤等の他の成分をさらに含んでもよい。これらの成分は、基材樹脂100質量部に対して0.01~20質量部の範囲内で添加することができる。
 (酸化防止剤)
 フィルム本体110は、酸化防止剤としては、通常知られているものを使用することができる。特に、ラクトン系、イオウ系、フェノール系、二重結合系、ヒンダードアミン系、リン系の各化合物を好ましく用いることができる。
 これらの酸化防止剤等は、樹脂成分に対して0.05~20質量%の範囲内、好ましくは0.1~1質量%の範囲内で添加される。これらの酸化防止剤等は、1種のみを用いるよりも数種の異なった系の化合物を併用することで相乗効果を得ることができる。例えばラクトン系、リン系、フェノール系及び二重結合系化合物の併用は好ましい。
 (着色剤)
 フィルム本体110は、色味調整のために、着色剤を含んでもよい。着色剤は、例えば染料や顔料を意味し、液晶画面の色調を青色調にする効果又はイエローインデックスの調整、ヘイズの低減を有するものである。
 着色剤としては、各種の染料、顔料が使用可能だが、アントラキノン染料、アゾ染料、フタロシアニン顔料等が有効である。
 (紫外線吸収剤)
 フィルム本体110は、例えば偏光板の視認側やバックライト側に配置される光学フィルムとして用いる場合、紫外線吸収機能を付与することを目的として、紫外線吸収剤を含有してもよい。
 紫外線吸収剤としては、特に限定されないが、例えばベンゾトリアゾール系、2-ヒドロキシベンゾフェノン系又はサリチル酸フェニルエステル系等の紫外線吸収剤が挙げられる。例えば2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール等のトリアゾール類、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン及び2,2’-ジヒドロキシ-4-メトキシベンゾフェノン等のベンゾフェノン類を例示することができる。上記紫外線吸収剤は、1種単独で又は2種以上組み合わせて用いることができる。
 紫外線吸収剤の使用量は、紫外線吸収剤の種類、使用条件等により一様ではないが、一般には、基材樹脂に対して、0.05~10質量%の範囲内、好ましくは0.1~5質量%の範囲内で添加される。
 (微粒子)
 フィルム本体110は、滑り性を付与する微粒子を添加することが好ましい。特に、フィルム本体110表面の滑り性を向上し、巻取り時の滑り性を向上し、傷の発生やブロッキングの発生を防止する観点からも、微粒子を添加することは有効である。
 微粒子としては、得られるフィルムロールの透明性を損なうことがなく、溶融時の耐熱性があれば無機微粒子又は有機微粒子どちらでもよいが、無機微粒子がより好ましい。これらの微粒子は、単独でも2種以上併用しても使用できる。
 粒径や形状(例えば針状と球状等)の異なる粒子を併用することで高度に透明性と滑り性を両立させることもできる。
 上記微粒子を構成する化合物の中でも、前記シクロオレフィン系樹脂、アクリル系樹脂やセルロースエステル系樹脂と屈折率が近いので透明性(ヘイズ)に優れる二酸化ケイ素が特に好ましく用いられる。
 二酸化ケイ素の具体例としては、アエロジル(登録商標)200V、アエロジル(登録商標)R972V、アエロジル(登録商標)R972、R974、R812、200、300、R202、OX50、TT600、NAX50(以上日本アエロジル株式会社製)、シーホスター(登録商標)KEP-10、シーホスター(登録商標)KEP-30、シーホスター(登録商標)KEP-50(以上、株式会社日本触媒製)、サイロホービック(登録商標)100(富士シリシア株式会社製)、ニップシール(登録商標)E220A(日本シリカ工業株式会社製)及びアドマファイン(登録商標)SO(株式会社アドマテックス製)等の商品名を有する市販品等が好ましく使用できる。
 粒子の形状としては、不定形、針状、扁平、球状等特に制限なく使用できるが、特に球状の粒子を用いると得られるフィルムロールの透明性が良好にできるので好ましい。
 粒子の大きさは、可視光の波長に近いと光が散乱し、透明性が悪くなるので、可視光の波長より小さいことが好ましく、さらに可視光の波長の1/2以下であることが好ましい。
 粒子の大きさが小さすぎると滑り性が改善されない場合があるので、80~180nmの範囲内であることが特に好ましい。なお、粒子の大きさとは、粒子が1次粒子の凝集体の場合は凝集体の大きさを意味する。また、粒子が球状でない場合は、その投影面積に相当する円の直径を意味する。
 微粒子は、基材樹脂に対して、0.05~10質量%の範囲内、好ましくは0.1~5質量%の範囲内で添加されることが好ましい。
 フィルム本体110の厚みは、特に制限されないが、例えば5~80μm、好ましくは10~65μm、より好ましくは10~45μmである。厚みが下限値以上であると、フィルムロール100の剛性が高く、ロール形状を一層保ちやすい。厚みが上限値以下であると、質量が増えすぎず、長尺のフィルムロールを作製し易い。
 フィルム本体110の遅相軸は、フィルム面内に存在し、フィルム本体110の幅方向Xと略平行であることが好ましい。本願明細書において、フィルム本体110の幅方向Xと略平行であるとは、フィルム本体1110の幅方向Xとのなす角のうち小さい方(配向角)βが、好ましくは1°以下、より好ましくは0.5°以下であることを意味する。遅相軸とは、フィルム面内において、最も屈折率が高い方向を意味する。
 配向角βの測定は、自動複屈折計KOBRA-21ADH(王子計測機器株式会社製)を用いて行うことができる。配向角βが上記範囲内であると、例えば表示画像において光漏れを抑制又は防止し、高い輝度が得られやすいだけでなく、忠実な色再現が可能となる。
 3-2.フィルム本体110の製造方法
 フィルム本体110の製膜は、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイライン等の光学欠点の抑制等の観点から、溶液流延製膜法と溶融流延製膜法が好ましく、特に溶液流延製膜法であることが、均一な表面を得るためにより好ましい。
 本実施形態における溶液流涎法によるフィルムの製造工程は、熱可塑性樹脂と任意の他の成分とを溶媒に溶解させてドープを調製する工程(ドープ調製工程(S1))、ドープを金属支持体上に流延する工程(流延工程(S2))、得られた流延膜を金属支持体から剥離する工程(剥離工程(S3))、流延膜を収縮させる工程(収縮工程(S4))、及び流延膜を乾燥させる工程(乾燥工程(S5))、流延膜を延伸する工程(延伸工程(S6)、及び得られたフィルムの幅方向端部をスリットする切断工程(S7)を含むことが好ましい。
 1)ドープ調製工程(S1)
 以下、本発明の一実施形態として、熱可塑性樹脂としてシクロオレフィン系樹脂(以下、COPともいう。)を使用する場合を一例として溶解工程を説明するが、本発明はこれに限定されない。
 本工程は、COPに対する良溶媒を主とする溶媒に、溶解釜中で該COP、場合によって、その他の化合物を攪拌しながら溶解しドープを形成する工程、あるいは該COP溶液に、場合によってその他の化合物溶液を混合して主溶解液であるドープを形成する工程である。
 ドープ中のCOPの濃度は、濃い方が金属支持体に流延した後の乾燥負荷が低減できて好ましいが、COPの濃度が濃過ぎると濾過時の負荷が増えて、濾過精度が悪くなる。これらを両立する濃度としては、10~35質量%が好ましく、更に好ましくは、15~30質量%である。
 ドープで用いられる溶媒は、単独で用いても2種以上を併用してもよいが、COPの良溶媒と貧溶媒を混合して使用することが生産効率の点で好ましく、良溶媒が多い方がCOPの溶解性の点で好ましい。
 良溶媒と貧溶媒の混合比率の好ましい範囲は、良溶媒が70~98質量%であり、貧溶剤が2~30質量%である。良溶媒、貧溶媒とは、使用するCOPを単独で溶解するものを良溶媒、単独で膨潤するか又は溶解しないものを貧溶媒と定義している。そのため、COPの平均置換度によって良溶媒、貧溶媒が変わる。
 用いられる良溶媒は特に限定されないが、メチレンクロライド等の有機ハロゲン化合物やジオキソラン類、アセトン、酢酸メチル、アセト酢酸メチル等が挙げられる。特に好ましくはメチレンクロライド又は酢酸メチルが挙げられる。
 また、用いられる貧溶媒は特に限定されないが、例えば、メタノール、エタノール、n-ブタノール、シクロヘキサン、シクロヘキサノン等が好ましく用いられる。また、ドープ中には水が0.01~2質量%含有していることが好ましい。
 また、COPの溶解に用いられる溶媒は、フィルム製膜工程で乾燥によりフィルムから除去された溶媒を回収し、これを再利用して用いられる。
 回収溶媒中に、COPに添加されている添加剤、例えば可塑剤、紫外線吸収剤、ポリマー、モノマー成分などが微量含有されていることもあるが、これらが含まれていても好ましく再利用することができるし、必要であれば精製して再利用することもできる。
 上記記載のドープを調製する時の、COPの溶解方法としては、一般的な方法を用いることができる。具体的には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法が好ましく、加熱と加圧を組み合わせると常圧における沸点以上に加熱できる。
 また、溶媒の常圧での沸点以上でかつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら攪拌溶解する方法も、ゲルやママコと呼ばれる塊状未溶解物の発生を防止するため好ましい。
 また、COPを貧溶媒と混合して湿潤あるいは膨潤させた後、更に良溶剤を添加して溶解する方法も好ましく用いられる。
 加圧は窒素ガス等の不活性気体を圧入する方法や、加熱によって溶媒の蒸気圧を上昇させる方法によって行ってもよい。加熱は外部から行うことが好ましく、例えばジャケットタイプのものは温度コントロールが容易で好ましい。
 溶媒を添加しての加熱温度は、高い方がCOPの溶解性の観点から好ましいが、加熱温度が高過ぎると必要とされる圧力が大きくなり生産性が悪くなる。
 好ましい加熱温度は45~120℃であり、60~110℃がより好ましく、70~105℃が更に好ましい。また、圧力は設定温度で溶媒が沸騰しないように調整される。又は、冷却溶解法も好ましく用いられ、これによって酢酸メチルなどの溶媒にCOPを溶解させることができる。
 次に、このCOP溶液(溶解中又は溶解後のドープ)を濾紙等の適当な濾過材を用いて濾過することが好ましい。
 濾過材としては、不溶物等を除去するために絶対濾過精度が小さい方が好ましいが、絶対濾過精度が小さ過ぎると濾過材の目詰まりが発生し易いという問題がある。このため絶対濾過精度0.008mm以下の濾材が好ましく、0.001~0.008mmの濾材がより好ましく、0.003~0.006mmの濾材が更に好ましい。
 濾材の材質は特に制限はなく、通常の濾材を使用することができるが、ポリプロピレン、テフロン(登録商標)等のプラスチック製の濾材や、ステンレススティール等の金属製の濾材が繊維の脱落等がなく好ましい。
 濾過により、原料のCOPに含まれていた不純物、特に輝点異物を除去、低減することが好ましい。
 輝点異物とは、2枚の偏光板をクロスニコル状態にして配置し、その間にフィルム等を置き、一方の偏光板の側から光を当てて、他方の偏光板の側から観察した時に反対側からの光が漏れて見える点(異物)のことであり、径が0.01mm以上である輝点数が200個/cm以下であることが好ましい。より好ましくは100個/cm以下であり、更に好ましくは50個/cm以下であり、更に好ましくは0~10個/cm以下である。また、0.01mm以下の輝点も少ない方が好ましい。
 ドープの濾過は通常の方法で行うことができるが、溶媒の常圧での沸点以上で、かつ加圧下で溶媒が沸騰しない範囲の温度で加熱しながら濾過する方法が、濾過前後の濾圧の差(差圧という)の上昇が小さく、好ましい。
 好ましい温度は30~120℃であり、45~70℃がより好ましく、45~55℃であることが更に好ましい。
 濾圧は小さい方が好ましい。濾圧は1.6MPa以下であることが好ましく、1.2MPa以下であることがより好ましく、1.0MPa以下であることが更に好ましい。
 2)流延工程(S2)
 流延工程では、支持体上に流延されたドープにより形成された流延膜を支持体上で加熱し、剥離ロールによって流延膜を剥離可能になるまで溶媒を蒸発させる。
 上記の蒸発は、5~75℃の範囲内の雰囲気下行うことが好ましい。溶媒を蒸発させるには、温風を流延膜上面に当てる方法や及び/又は支持体の裏面から液体により伝熱させる方法、及び輻射熱により表裏から伝熱する方法等があるが、輻射熱により表裏から伝熱する方法が、乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。
 流延(キャスト)の幅は、生産性の観点から1.3m以上が好ましく、より好ましくは1.3~4.0mの範囲内である。流延(キャスト)の幅が4.0mを超えなければ、製造工程で縞が入らず、その後の搬送工程での安定性が高くなる。搬送性、生産性の観点では、1.3~3.0mの範囲内がさらに好ましい。
 流延工程における支持体は、表面を鏡面仕上げしたものが好ましく、支持体としては、ステンレススティールベルト若しくは鋳物で表面をメッキ仕上げしたドラムが好ましく用いられる。
 流延工程の支持体の表面温度は-50℃~溶媒の沸点の範囲内の温度で、温度が高い方が流延膜の乾燥速度が速くできるので好ましい。好ましい支持体温度は0~55℃の範囲内であり、22~50℃の範囲内が更に好ましい。
 支持体の温度を制御する方法は特に制限されないが、温風又は冷風を吹きかける方法や、温水を支持体の裏側に接触させる方法がある。温水を用いる方が熱の伝達が効率的に行われるため、支持体の温度が一定になるまでの時間が短く好ましい。温風を用いる場合は目的の温度よりも高い温度の風を使う場合がある。
 流延工程では、ドープ調製工程で調製されたドープを、加圧型定量ギアポンプ等を通して、導管によって流延ダイ(流延ダイ)に送液し、無限に移送する回転駆動ステンレス鋼製エンドレスベルトよりなる支持体上の流延位置に流延ダイからドープを流延する。
 当業者が流延工程において膜厚の均一性を上げるためには、流延ダイのリップ部分のスリットギャップを制御する方法が挙げられる。例えば粘度の高いドープを押し出す際には、上記スリットギャップの幅手のバラつきが生じるが、このことを防ぐために幅手でヒートボルトを複数本設置してスリットギャップを制御する方法である。ただし、この方法はヒートボルト数の物理的な設置限界があるという問題がある。また、上記スリットギャップの幅手のバラつきを生じさせる幅手での圧力変動を抑制するために流延ダイの内部構造を幅手で変化させる方法があるが、生産品種ごとに流延ダイを切り替えなくてはならず、時間及びコストがかかるという問題がある。
 流延膜の厚みは、例えば流延ダイのヒートボルトにより初期吐出膜厚を制御することによって行うことができる。流延ダイには、ドープを吐出(溶融の場合は樹脂の押出し)するスリットを幅手に調整する機構が設けられている。上記流延ダイのヒートボルトにより、ドープを吐出するスリットの幅手の間隙を、吐出直後の膜厚偏差を流延膜全体に対して1.0~5.0%の範囲内に調整することで、流延膜の初期吐出膜厚の制御を行うことが好ましい。
 次いで、流延したドープを支持体上で乾燥させて、流延膜を形成する。その際、流延ダイ2の傾き、すなわち流延ダイから支持体へのドープの吐出方向は、支持体の面(ドープが流延される面)の法線に対する角度で0~90°の範囲内となるように適宜設定されればよい。
 支持体は、例えばステンレスベルトで構成され、一対のロール及びこれらの間に位置する複数のロールによって保持されている。このとき、支持体の表面は鏡面となっていることが好ましい。
 一対のロールの一方、又は両方には、支持体に張力を付与する駆動装置が設けられており、これによって支持体は張力が掛けられて張った状態で使用される。なお、支持体は、ドラムであってもよい。
 3)剥離工程(S3)
 本工程では、流延膜を支持体から剥離する。
 面品質、透湿性、剥離性の観点から、30~600秒の範囲内で流延膜を支持体から剥離することが好ましい。なお、支持体から流延膜を剥離する位置のことを剥離点といい、また、剥離を助けるロールを剥離ロールという。
 剥離工程(S3)では、流延膜を、自己支持性を持たせたまま剥離ロールによって剥離する。支持体上の剥離位置における温度は-50~40℃の範囲内とするのが好ましく、10~40℃の範囲内がより好ましく、15~30℃の範囲内とするのが最も好ましい。
 (残留溶媒量)
 剥離時での支持体上での流延膜の残留溶媒量は、乾燥の条件の強弱、支持体の長さ等によって適宜調節される。流延膜の厚さにもよるが、剥離点での残留溶媒量が多すぎると流延膜が柔らか過ぎて剥離しにくくなることがあり、平面性を損なったり、剥離張力による横段、ツレや縦スジが発生しやすくなることがある。逆に、残留溶媒量が少なすぎると、途中で流延膜の一部が剥がれたりすることがある。流延膜が良好な平面性を示すためには、経済速度と品質との兼ね合いの観点から残留溶媒量が10~50質量%の範囲内であることが望ましい。
 製膜速度を上げる方法(残留溶媒量ができるだけ多いうちに剥離するため製膜速度を上げることができる)として、残留溶媒量が多くとも剥離できるゲル流延法(ゲルキャスティング)がある。
 その方法としては、ドープ中にシクロオレフィン系樹脂(COP)に対する貧溶媒を加えて、ドープ流延後、流延膜をゲル化する方法、支持体を冷却することによって流延膜をゲル化させて残留溶媒を多く含んだ状態で剥離する方法等がある。
 また、ドープ中に金属塩を加える方法もある。
 上記のように、支持体上で流延膜をゲル化させ、膜を強くすることによって剥離を早め製膜速度を上げることができる。
 なお、残留溶媒量は、下記式で定義される。
  残留溶媒量(質量%)={(M-N)/N}×100
 Mは流延膜を製造中又は製造後の任意の時点で採取した試料の質量で、NはMを115℃で1時間の加熱後の質量である。
 (剥離張力)
 剥離張力は、300N/m以下とすることが好ましい。より好ましくは、196~245N/mの範囲内であるが、剥離の際に皺が入りやすい場合、190N/m以下の張力で剥離することが好ましい。
 4)収縮工程(S4)
 収縮工程は、流延膜を面内で収縮させる工程である。
 この収縮工程は、支持体から剥離後の流延膜を長さ方向(Machine Direction、以下「MD方向」ともいう。)に延伸することによって行われる。この場合、流延膜は、流延膜面内で長さ方向と直交する幅方向(Traverse Direction、以下「TD方向」ともいう。)に収縮する。
 収縮工程によって、流延膜の厚さ方向におけるポリマー分子(マトリックス分子)間の絡み合いが促進される。それにより、偏光板作製時に、光学フィルムを偏光子と接着剤を介して接着する場合でも、上記接着剤がマトリックス分子間の絡み合いの部分(架橋部分)を介して光学フィルム内部に浸透しやすくなる。その結果、光学フィルムを接着剤を介して偏光子に強固に固定することができ、偏光子に対する光学フィルムの剥離強度を向上させることができる。つまり、光学フィルムと偏光子との良好な接着性を確保することできる。
 (収縮率)
 収縮率とは、下記式にて定義される。
 収縮率(%)=収縮工程終了時の流延膜の幅(mm)/収縮工程開始時の流延膜の幅(mm)×100
 ここで、収縮工程において、流延膜の収縮率が小さすぎると、マトリックス分子間の絡み合いを促進する効果が不十分となり、大きすぎると、光学フィルムの生産効率が低下することが懸念される。このため、収縮工程における流延膜の収縮率は、1~40%の範囲内であることが好ましく、5~20%の範囲内であることがより好ましい。
 (収縮率の測定方法と算出方法)
 流延膜の幅を株式会社キーエンス製のLS-9000にて測定することができる。
 なお、収縮率は、流延膜の幅を上記の測定器により1秒毎で5分間(300秒)測定した各値の平均値を流延膜の幅とし、上記式に代入することにより求める。上記の方法に限る必要はなく、例えば流延膜の幅を定規から読み取った値を用いて流延膜の幅とし、上記式に代入してもよい。
 収縮工程では、流延膜を幅手方向に収縮させる。収縮させる方法としては、例えば(1)光学フィルムを幅手保持しない状態で高温処理して、流延膜の密度を高める、(2)流延膜に対して搬送方向(MD方向)に張力をかけて、流延膜を幅手方向(TD方向)に収縮させる、及び(3)急峻に流延膜の残留溶媒量を減少させる、等の方法がある。
 5)乾燥工程(S5)
 乾燥工程は、流延膜を支持体上で加熱し、溶媒を蒸発させる工程である。
 例えば乾燥装置内では、側面から見て千鳥状に配置された複数の搬送ロールによって流延膜が搬送され、その間に流延膜が乾燥される。乾燥装置での乾燥方法は、特に制限はなく、一般的に熱風、赤外線、加熱ロール、マイクロ波等を用いて乾燥させるが、簡便さの点から、熱風で乾燥させる方法が好ましい。また、それらを組み合わせる方法も好ましい。
 流延膜の膜厚が薄ければ乾燥が早いが、あまり急激な乾燥は、出来上がりのフィルムの平面性を損ねやすい。高温による乾燥を行う際には、残留溶媒量を考慮する必要があるが、残留溶媒量は、多すぎないことで溶媒の発泡による故障を防ぐことが出来る。
 上記残留溶媒量は、30質量%以下くらいから行うのがよく、全体を通して乾燥はおおむね30~250℃の範囲内で行われる。特に35~200℃の範囲内で乾燥させることが好ましく、乾燥温度は、段階的に高くしていくことが好ましい。
 なお、剥離工程(S3)における剥離時での支持体上での流延膜の残留溶媒量は、乾燥の条件の強弱、支持体の長さ等によって適宜調節され、収縮工程(S4)における上記の残留溶媒量は、膜厚、樹脂等が大きく影響するため、剥離工程(S3)と収縮工程(S4)では、残留溶媒量の好ましい範囲に重複する範囲がある。
 支持体の温度は、全体が同じでも、位置によって異なっていてもよい。
 乾燥工程(S5)では、乾燥装置により、流延膜を支持体より剥離し、更に乾燥する。
 乾燥工程では一般にロール乾燥方式(上下に配置した多数のロールに流延膜を交互に通し乾燥させる方式)やテンター方式で流延膜を搬送させながら乾燥する方式が採られる。
 テンター延伸装置を用いる場合は、後述する延伸工程においてテンター延伸装置の左右把持手段によって流延膜の把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。また、延伸工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。
 6)延伸工程(S6)
 延伸工程では、求められる特性に応じて流延膜を延伸して、フィルム本体110を得る。
 延伸工程は、流延膜を面内で長さ方向(図2のY方向)に延伸する工程であってもよいし、幅方向(図2のX方向)に延伸する工程であってもよいし、幅方向と長さ方向の両方に延伸する工程であってもよいし、斜め方向に延伸する工程であってもよい。中でも、広幅の光学フィルムを得る観点では、少なくとも幅方向に延伸する工程を含むことが好ましい。幅方向の延伸は、テンター延伸装置によって行うことが好ましく、ピンテンターでもクリップテンターでもよい。
 高位相差、広幅の確保、及び接着剤浸透促進の観点では、延伸工程では、流延膜を高倍率で延伸することが好ましい。ただし、延伸倍率が高すぎると、延伸応力により、流延膜内にクレーズが発生したり、膜強度を保っているマトリックス分子間の絡み合いが解離したりし、得られるフィルムが脆弱化する場合があり得る。このため、延伸工程における延伸倍率は、1.1~5.0倍の範囲内であることが好ましく、1.3~3.0倍の範囲内であることがより好ましい。
 なお、延伸工程は、複数回行ってもよい。延伸工程を複数回行う場合、複数回の延伸工程のうち、マトリックス分子の解離のリスクが最も高い最高倍率の延伸工程は、2回目以降の延伸工程、好ましくは最終回に行われることが好ましい。この場合、最高倍率の延伸までに、マトリックス分子の絡み合いを強固にできるため、最高倍率の延伸を行っても、マトリックス分子の絡み合いの解離を抑えて、凝集破壊を抑えることができる。
 延伸温度は、残留溶媒量にもよるが、通常、フィルム本体110を構成する樹脂のTg~Tg+60℃の温度範囲で行われることが好ましい。例えば、COP樹脂を用いる場合、延伸温度は120~190℃としうる。
 7)切断工程(S7)
 得られた流延膜の幅手方向の両端部を、スリッター等の切断部で切断してもよい。切断後に残った部分は、光学フィルム製品となる製品部を構成する。一方、切断された部分は、回収され、再び原材料の一部としてフィルムの製膜に再利用してもよい。
 なお、上記実施形態において、必要に応じて乾燥工程(S5)、延伸工程(S6)、切断工程(S7)をこの順に繰り返してもよい。また、収縮工程(S4)や乾燥工程(S5)は、必要に応じて行えばよく、行わなくてもよい。
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 1.フィルムロールの作製
 <フィルムロール1の作製>
 (1)ドープ調製工程
 (環状オレフィン重合体P-1の合成)
 精製トルエン100質量部とノルボルネンカルボン酸メチルエステル100質量部を撹拌装置に投入した。次いで、トルエン中に溶解したエチルヘキサノエート-Ni25mmol%(対モノマー質量)、トリ(ペンタフルオロフェニル)ボロン0.225mol%(対モノマー質量)及びトルエンに溶解したトリエチルアルミニウム0.25mol%(対モノマー質量)を撹拌装置に投入した。室温で撹拌しながら18時間反応させた。反応終了後過剰のエタノール中に反応混合物を投入し、重合物沈殿を生成させた。沈殿を精製し得られた重合体P-1を真空乾燥で65℃にて24時間乾燥した。
 (環状オレフィン重合体溶液D-1の調製)
 下記成分をミキシングタンクに投入し、撹拌して溶解させた後、平均孔径34μmの濾紙及び平均孔径10μmの焼結金属フィルターでろ過して、環状オレフィン重合体溶液(D-1)を調製した。
 環状オレフィン重合体P-1:150質量部
 ジクロロメタン:380質量部
 メタノール:70質量部
 (微粒子分散液M-1の調製)
 下記成分を分散機に投入して、微粒子分散液(M-1)を調製した。
 微粒子(アエロジルR812:日本アエロジル社製、一次平均粒子径:7nm、見掛け比重50g/L):4質量部
 ジクロロメタン:76質量部
 メタノール:10質量部
 環状オレフィン重合体溶液D-1:10質量部
 (ドープ液の調製)
 上記調製した環状オレフィン重合体溶液D-1を100質量部と、上記調製した微粒子分散液M-1を0.75質量部とを混合して、製膜用ドープを調製した。
 (2)流延、剥離工程
 上記調製したドープを、製膜ラインで、回転駆動ステンレス鋼製エンドレスベルト上に流延ダイから流延した。そして、ドープが自己支持性を持つまでベルト上で乾燥させた後、剥離して、流延膜を得た。
 (3)収縮、乾燥、延伸工程
 得られた流延膜を高温処理して、幅方向に収縮率7%で収縮させた。次いで、この流延膜を支持体上で加熱し、残留溶媒量が5質量%以下となるまで溶媒を蒸発させた。次いで、この流延膜を、テンター延伸装置内で搬送させ、テンター内温度130℃、テンターで幅方向の延伸倍率1.4倍で横延伸した。得られたフィルムの幅方向の両端部を切断した後、再度、テンター延伸装置により上記と同様の条件で横延伸した。そして、得られたフィルムの幅方向の両端部を切断し、幅2200mm、厚み40μmの長尺のフィルム(フィルム本体110)を得た。得られたフィルムの配向角βはフィルムの幅方向に対して0°であった。
 (4)ナーリング工程
 得られたフィルムの幅方向の両端部に、以下の手順でナーリング部120を形成した。ナーリング部120の幅Wは、フィルム端から15mmとした。フィルムを搬送するラインスピードは50m/分とした。
 レーザー装置としては、炭酸ガスレーザー装置を用い、レーザー装置の出力を20W、出光波長の中心波長を9.4μm、出光波長範囲を、中心波長を中心として±0.01μm以下とした。レーザー光のフィルムへの照射は、炭酸ガスレーザー装置から発光した平行化したビームを、2枚のガルバノミラーで反射し、fθレンズ(焦点距離200mm)を介して、搬送されるフィルムの表面に集光させることにより行った。ガルバノミラーの角度を制御することで、フィルム表面上へのレーザー光の照射の軌跡を制御し、集光位置をフィルム面内でX方向及びY方向にそれぞれ移動させて、平面視で菱形形状の凸部122が6個並んだ凸部ユニット121を、Y方向に複数形成した。各凸部ユニット121を構成する6個の凸部122は、フィルムの幅方向の内側から外側に向かって、送り出し方向の上流側から下流側へと順に並ぶように配置した。
 そして、凸部ユニット121を構成する6個の凸部122のうち、X方向の最も内側の凸部122-1と最も外側の凸部122-2の最端部A同士を結ぶ直線LのX方向とのなす角を測定した。この操作を、n=20で繰り返し、それらの平均値を傾斜角αとした。
 (5)巻取工程
 得られたフィルムを、以下の条件で巻き取った。初期張力は50N、テーパーは70%、コーナーは25%とした。また、TR(タッチロール)を使用して、フィルムロールに含まれる平均エア層(空気層)厚みを0.8μmに抑えた。また、ラインスピードは60m/分とした。それにより、ロール幅2200mm、巻長4000mのフィルムロール1を得た。
 <フィルムロール2、3、12及び13の作製>
 複数の凸部を結ぶ直線のフィルムの幅方向に対する傾斜角αを表1に示されるように変更した以外はフィルムロール1と同様にして、フィルムロール2、3、12及び13を作成した。
 <フィルムロール4の作製>
 ナーリング部の形成方法を型押し方式(エンボス加工)に変更した以外はフィルムロール1と同様にしてフィルムロール4を作製した。具体的には、金属ロール上に菱形の凸形状を有したエンボスリングを用いて型押し加工を行った。
 〈加工条件〉
 加工温度:250℃
 加工圧力:0.5MPa
 ナーリング対向ロール:金属製バックロール
 <フィルムロール5の作製>
 環状オレフィン重合体P-1を、セルローストリアセテート(TAC)に変更した以外はフィルムロール1と同様にしてフィルムロール5を作製した。
 <フィルムロール6及び7の作製>
 フィルムの幅又は巻長さを表1に示されるように変更した以外はフィルムロール1と同様にしてフィルムロール6及び7を作製した。
 <フィルムロール8~11の作製>
 凸部122の間隔px又は凸部ユニット121の間隔pyを表1に示されるように変更した以外はフィルムロール1と同様にしてフィルムロール8~11を作製した。
 2.評価
 得られたフィルムロールについて、ナーリング部の物性(凸部の高さ、凸部ユニット間の間隔)、縦ジワ及び馬の背故障を、以下の方法で評価した。
 [ナーリング部の物性]
 凸部の高さ、複数の凸部の間隔px及び複数の凸部ユニットの間隔pyを、レーザー顕微鏡を用いて測定した。レーザー顕微鏡としては、キーエンス社製laser Microscope VK-X1000を用いた。
 具体的には、凸部の高さは、フィルムの長さ方向(Y方向)に200mmのナーリング領域の凸部の高さを測定し、それらの平均値から求めた。複数の凸部の間隔pxは、上記領域について、X方向の凸部の最端部同士の間隔を測定し、それらの平均値から求めた。複数の凸部ユニットの間隔pyは、上記領域について、凸部ユニットの直線L同士の間隔を測定し、それらの平均値から求めた。
 [縦ジワ]
 フィルムロールから幅90cm、長さ100cmの大きさの試料を切り出し、台の上に置いた。40Wの蛍光灯(パナソニック社製の「FLR40S-EX-D/M」)を5本並べ、台上の試料に対して45°の角度から光が照射されるように、台から1.5mの高さに固定した。蛍光灯のスイッチを入れて試料を照らし、試料の表面を目視で観察し、次の基準で評価した。
 ◎:蛍光灯が5本とも真っ直ぐに見える
 ○:蛍光灯が少し曲がって見える部分がある 
 △:蛍光灯が全体的に少し曲がって見える
 ×:蛍光灯が大きくうねって見える
 [馬の背故障]
 フィルムロール100をポリエチレンシートで2重に包み、図5に示すように、巻き芯200の両端部を支持台300で支持して固定した。これを、箱の中で、25℃、65%の条件下で30日間保存した。その後、箱から取り出し、ポリエチレンシートを開け、試料表面に点灯している蛍光灯400の管を反射させて映し、その歪み又は細かい乱れを観察した。そして、馬の背故障を、以下の基準に基づいて評価した。
 ◎:蛍光灯が真っすぐに見える
 ○:蛍光灯が部分的に曲がって見える
 △:蛍光灯が曲がって見える
 ×:蛍光灯がまだらに映って見える
 フィルムロール1~13の評価結果を表1に示す。なお、表1において、直線Lの傾きの方向は、凸部ユニット121を構成する複数の凸部122のうち、最も内側の凸部122-1に対して、最も外側の凸部122-2がフィルムの送り出し方向の下流側にある場合を「正」;フィルムの送り出し方向の上流側にある場合を「負」とした。
 表1に示されるように、傾斜角αが0°超0.5°以下であるフィルムロール1~11は、いずれも縦ジワを抑制しつつ、馬の背故障も低減できることがわかる。
 特に、レーザー加工方式でナーリング部を形成することで、型押し方式でナーリング部を形成するよりも馬の背故障を一層抑制できることがわかる(フィルムロール2、4の対比)。これは、レーザー加工方式のほうが、型押し方式よりも、形状が均一な凸部を形成しやすく、巻き取り時に同伴エアを一層排出しやすくなるためと考えられる。
 また、間隔pyやpxが適度に大きいと、隙間が小さくなりすぎないため、同伴エアの排出性が一層高まりやすく、馬の背故障を一層抑制しうる(フィルムロール1、10及び11の対比)。一方、間隔pyやpxが大きすぎなければ、フィルムを支えきれなくなることによって凸部の間でフィルム同士間の隙間が小さくなったり、エア排出の誘導作用が損なわれたりしにくいため、同伴エアの排出性が損なわれにくく、馬の背故障を一層抑制できることがわかる(フィルムロール1、8及び9の対比)。
 これに対して傾斜角αが0.5°を超えて大きすぎるフィルムロール12は、縦ジワが生じることがわかる。これは、ナーリング部によるグリップ力が低下し、巻きズレを生じたためと考えられる。一方、傾斜角αが負となるフィルムロール13は、馬の背故障が生じることがわかる。これは、巻き取り時に同伴エアを十分には排除できないため、保管時に変形しやすくなったためと考えられる。
 2.表示装置における評価
 <表示装置1の作製>
 (偏光子の作製)
 厚さ30μmのポリビニルアルコールフィルムを、35℃の水で膨潤させた。得られたフィルムを、ヨウ素0.075g、ヨウ化カリウム5g及び水100gからなる水溶液に60秒間浸漬し、さらにヨウ化カリウム3g、ホウ酸7.5g及び水100gからなる45℃の水溶液に浸漬した。得られたフィルムを、延伸温度55℃、延伸倍率5倍の条件で一軸延伸した。この一軸延伸フィルムを、水洗した後、乾燥させて、厚さ10μmの偏光子を得た。
 (活性エネルギー線硬化性接着剤液の調製)
 下記の各成分を混合した後、脱泡して、活性エネルギー線硬化性接着剤液を調製した。なお、トリアリールスルホニウムヘキサフルオロホスフェートは、50%プロピレンカーボネート溶液として配合し、下記にはトリアリールスルホニウムヘキサフルオロホスフェートの固形分量を表示した。
 3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート:45質量部
 エポリードGT-301(ダイセル化学社製の脂環式エポキシ樹脂):40質量部
 1,4-ブタンジオールジグリシジルエーテル:15質量部
 トリアリールスルホニウムヘキサフルオロホスフェート:2.3質量部
 9,10-ジブトキシアントラセン:0.1質量部
 1,4-ジエトキシナフタレン:2.0質量部
 (偏光板の作製)
 下記の方法に従って、偏光板1を作製した。
 まず、保護フィルム1として、KC4UAフィルム(コニカミノルタ(株)製)を準備し、上記調製した活性エネルギー線硬化性接着剤液を、マイクログラビアコーター(グラビアローラー:#300、回転速度140%/ライン速)を用いて、厚さ5μmになるように塗工して活性エネルギー線硬化性接着剤層aを形成した。
 次いで、フィルムロール1から得られた位相差フィルム1に、上記調製した活性エネルギー線硬化性接着剤液を、上記と同様に、厚さ5μmとなるように塗工して活性エネルギー線硬化性接着剤層bを形成した。
 上記活性エネルギー線硬化性接着剤層a及びbの間に、上記作製したポリビニルアルコール-ヨウ素系の偏光子を配置し、ローラー機で貼合し、保護フィルム1/活性エネルギー線硬化性接着剤層/偏光子/活性エネルギー線硬化性接着剤層/位相差フィルム1が積層された積層物を得た。その際に、位相差フィルムの遅相軸と偏光子の吸収軸が互いに直交になるようにローラー機で貼合した。この積層物の両面側から、電子線を照射して、偏光板1を作製した。
 (表示装置の作製)
 市販のVAモード型液晶表示装置(SONY製40型ディスプレイKLV-40J3000)を用い、液晶セルの両面に貼合されていた偏光板を剥離し、上記作製した偏光板1を、液晶セルの両面に貼合して液晶表示装置を作製した。その際、位相差フィルム側を液晶セル側に貼合し、偏光板の吸収軸の向きはあらかじめ貼合されていた偏光板と同じ向きに調整した。
 <表示装置2の作製>
 位相差フィルムを、フィルムロール12から得られたフィルムに変更した以外は偏光板1と同様にして偏光板2を作製し、表示装置を得た。
 <評価>
 上記作製した表示装置について、馬の背故障に伴う表示ムラの評価を行った。
 [表示ムラ]
 各液晶表示装置を60℃、相対湿度90%の環境下で1500時間処理した後、25℃、相対湿度60%の環境下で20時間調湿後、バックライトを点灯させ、黒表示での光漏れを観察し、下記の基準に従って偏光板の表示ムラの評価を行った。
 その結果、フィルムロール12から得られるフィルム(比較例)を用いた表示装置2は、馬の背故障に起因する光漏れが著しかったのに対し;フィルムロール1から得られるフィルム(実施例)を用いた表示装置1は、馬の背故障に起因する光漏れは全く認められなかった。
 本出願は、2022年6月22日出願の特願2022-100616に基づく優先権を主張する。当該出願明細書及び図面に記載された内容は、すべて本願明細書に援用される。
 本発明によれば、縦ジワを十分に抑制しつつ、ロール体の物理的な変形を抑制できるフィルムロール及びその製造方法を提供することができる。
 100 フィルムロール
 110 フィルム本体
 120 ナーリング部
 121 凸部ユニット
 122 凸部

Claims (10)

  1.  ロール状に巻き取られた長尺フィルムを備えたフィルムロールであって、
     前記長尺フィルムは、
     フィルム本体と、
     前記フィルム本体の幅方向の端部に配置されたナーリング部と、を有し、
     前記ナーリング部は、前記フィルム本体の長さ方向に沿って配置され、複数の凸部を含む複数の凸部ユニットを有し、
     前記凸部ユニットを構成する前記複数の凸部は、前記長尺フィルムの平面視において、前記フィルム本体の幅方向に対して内側から外側に向かって、該長尺フィルムの送り出し方向の上流側から下流側へと順に並んで配置されると共に、最も内側の凸部と最も外側の凸部とを結ぶ直線の前記フィルム本体の幅方向に対する傾斜角αが0°超0.5°以下である、
     フィルムロール。
  2.  前記フィルム本体の遅相軸は、前記フィルム本体の幅方向と略平行である、
     請求項1に記載のフィルムロール。
  3.  前記凸部ユニットは、3個以上の前記凸部を含む、
     請求項1に記載のフィルムロール。
  4.  前記フィルム本体の長さ方向における前記複数の凸部ユニット同士の間隔pyは、1~10mmである、
     請求項1に記載のフィルムロール。
  5.  前記フィルム本体の厚みは、10~45μmである、
     請求項1に記載のフィルムロール。
  6.  前記フィルム本体の幅は、2.4m以上である、
     請求項1に記載のフィルムロール。
  7.  前記フィルム本体の長さは、7000m以上である、
     請求項1に記載のフィルムロール。
  8.  前記フィルム本体は、光学フィルムである、
     請求項1に記載のフィルムロール。
  9.  請求項1~8のいずれか1項に記載のフィルムロールの製造方法であって、
     長尺のフィルム本体を準備する工程と、
     前記フィルム本体の幅方向の端部にナーリング部を形成する工程と、
     前記ナーリング部を形成したフィルム本体を巻き取る工程と、を含む、
     フィルムロールの製造方法。
  10.  前記複数の凸部は、レーザー加工により形成する、
     請求項9に記載のフィルムロールの製造方法。
PCT/JP2023/022087 2022-06-22 2023-06-14 フィルムロール及びフィルムロールの製造方法 WO2023248894A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022100616 2022-06-22
JP2022-100616 2022-06-22

Publications (1)

Publication Number Publication Date
WO2023248894A1 true WO2023248894A1 (ja) 2023-12-28

Family

ID=89379820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/022087 WO2023248894A1 (ja) 2022-06-22 2023-06-14 フィルムロール及びフィルムロールの製造方法

Country Status (2)

Country Link
TW (1) TW202411150A (ja)
WO (1) WO2023248894A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374850A (ja) * 1986-09-19 1988-04-05 Toray Ind Inc フイルムの巻取方法
JP2008001893A (ja) * 2006-05-24 2008-01-10 Fujifilm Corp セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
WO2011098376A1 (en) * 2010-02-09 2011-08-18 Boegli Gravures Sa Device for embossing wrapping films
JP2013136773A (ja) * 2013-02-25 2013-07-11 Fujifilm Corp アクリルフィルムおよびその製造方法
JP2014019077A (ja) * 2012-07-19 2014-02-03 Fujifilm Corp ナーリング装置、ナーリング方法、フィルムロール製造方法
JP2017007236A (ja) * 2015-06-24 2017-01-12 富士フイルム株式会社 ウエブ製造方法、および、ウエブ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374850A (ja) * 1986-09-19 1988-04-05 Toray Ind Inc フイルムの巻取方法
JP2008001893A (ja) * 2006-05-24 2008-01-10 Fujifilm Corp セルロースアシレートフィルム、セルロースアシレートフィルムの製造方法、光学補償フィルム、偏光板および液晶表示装置
WO2011098376A1 (en) * 2010-02-09 2011-08-18 Boegli Gravures Sa Device for embossing wrapping films
JP2014019077A (ja) * 2012-07-19 2014-02-03 Fujifilm Corp ナーリング装置、ナーリング方法、フィルムロール製造方法
JP2013136773A (ja) * 2013-02-25 2013-07-11 Fujifilm Corp アクリルフィルムおよびその製造方法
JP2017007236A (ja) * 2015-06-24 2017-01-12 富士フイルム株式会社 ウエブ製造方法、および、ウエブ

Also Published As

Publication number Publication date
TW202411150A (zh) 2024-03-16

Similar Documents

Publication Publication Date Title
JP4587307B2 (ja) ポリビニルアルコール系フィルム、及び偏光膜、偏光板
JP5040688B2 (ja) アクリル樹脂含有フィルム、それを用いた偏光板及び表示装置
JP5402925B2 (ja) 偏光板及び液晶表示装置
CN112574442B (zh) 膜卷及其制造方法
WO2011055624A1 (ja) 偏光板、及び液晶表示装置
JP5609427B2 (ja) 偏光子保護フィルム、ロール状偏光板、及び液晶表示装置
JP5980465B2 (ja) 偏光板及びそれを用いた液晶表示装置
WO2023248894A1 (ja) フィルムロール及びフィルムロールの製造方法
WO2023248896A1 (ja) フィルムロール及びフィルムロールの製造方法
TW200301374A (en) Polarizing plate, production method thereof and liquid crystal display
JP2006219638A (ja) ポリビニルアルコール系フィルム、およびその製造方法
WO2022153785A1 (ja) フィルムロール及びフィルムロールの製造方法
JP2021012331A (ja) 偏光板の製造方法及び偏光板
US20120207976A1 (en) Polarizing plate and liquid crystal display employing the same
WO2023223903A1 (ja) フィルムロール保持装置、フィルムロールの故障抑制方法、および制御プログラム
JP2023176991A (ja) フィルムロールおよびその製造方法
JP2023173157A (ja) フィルムロール、その製造方法、偏光板、及び表示装置
JP2023173151A (ja) フィルムロール、その製造方法、偏光板、及び表示装置
WO2022215407A1 (ja) 偏光板保護フィルムの製造方法
WO2022259668A1 (ja) フィルムロールの製造方法及びフィルムロールの製造に用いる凸部調整システム
JP2009083308A (ja) 環状オレフィンフィルムの製造方法
WO2022215427A1 (ja) 延伸フィルム、延伸フィルムの製造方法、偏光板及び液晶表示装置
JP2009069693A (ja) フィルム、偏光板
JP2009114303A (ja) 環状オレフィンフィルム
CN116806234A (zh) 膜、膜卷和膜的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827080

Country of ref document: EP

Kind code of ref document: A1