WO2022255803A1 - 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지 - Google Patents

리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지 Download PDF

Info

Publication number
WO2022255803A1
WO2022255803A1 PCT/KR2022/007802 KR2022007802W WO2022255803A1 WO 2022255803 A1 WO2022255803 A1 WO 2022255803A1 KR 2022007802 W KR2022007802 W KR 2022007802W WO 2022255803 A1 WO2022255803 A1 WO 2022255803A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
lithium
substituted
dioxolane
unsubstituted
Prior art date
Application number
PCT/KR2022/007802
Other languages
English (en)
French (fr)
Inventor
정언호
장은지
이재길
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/027,297 priority Critical patent/US20230378533A1/en
Priority to JP2023524949A priority patent/JP2023546723A/ja
Priority to CN202280006573.8A priority patent/CN116391283A/zh
Priority to EP22816462.0A priority patent/EP4199169A4/en
Publication of WO2022255803A1 publication Critical patent/WO2022255803A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte solution for a lithium-sulfur battery and a lithium-sulfur battery including the same.
  • Lithium metal has theoretically a very high specific capacity of 3,860 mAh/g, has a low potential as an anode material, and has a very low density, so various attempts have been made to use it as a negative electrode of a battery.
  • the lithium-sulfur secondary battery refers to a battery system that uses a sulfur-based material having a 'S-S bond' as a positive electrode active material and lithium metal as a negative electrode active material.
  • Sulfur the main material of the positive electrode active material, has characteristics in that it has a low weight per atom, is abundant in resources, is easy to supply and demand is cheap, can lower the manufacturing cost of a battery, and is environmentally friendly because it is non-toxic.
  • the lithium-sulfur secondary battery has a theoretical discharge capacity of 1,675 mAh/g-sulfur and can theoretically realize a high energy storage density of 2,600 Wh/kg compared to its weight
  • other battery systems currently being researched Ni-MH cell: 450 Wh/kg
  • Li-MnO 2 cell 1,000 Wh/kg
  • Deterioration of the lithium negative electrode may be mentioned as a factor affecting the lifespan of the lithium-sulfur secondary battery, which may occur due to a reaction with a positive electrode active material or a reaction with an electrolyte. It has been pointed out that the deterioration of the negative electrode results in the formation of dendrites and a decrease in Coulombic Efficiency (C.E). In particular, when dendrites are formed in a one-dimensional form, an internal short circuit may occur through a separator including pores, which may cause problems in safety or lifespan reduction due to combustion of the electrolyte.
  • the inventors of the present invention intend to provide a lithium-sulfur battery with improved lifespan and efficiency by adding a dioxolane-based derivative to an electrolyte solution for a lithium-sulfur battery.
  • the additive provides an electrolyte solution for a lithium-sulfur battery including a compound represented by Formula 1 below.
  • R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; A substituted or unsubstituted C1 to C60 alkoxy group; and a substituted or unsubstituted C6 to C60 aryloxy group, wherein at least one of R1 to R6 is not H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C6 to C20 aryl group; A substituted or unsubstituted C1 to C20 alkoxy group; and a substituted or unsubstituted C6 to C20 aryloxy group, and at least one of R1 to R6 may not be H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; and a substituted or unsubstituted C1 to C10 alkyl group, and at least one of R1 to R6 may not be H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; methyl group; ethyl group; propyl group; n-propyl group; isopropyl group; butyl group; n-butyl group; isobutyl group; tert-butyl group; sec-butyl group; 1-methyl-butyl group; 1-ethyl-butyl group; pentyl group; n-pentyl group; isopentyl group; neopentyl group; tert-pentyl group; hexyl group; n-hexyl group; 1-methylpentyl group; 2-methylpentyl group; 4-methyl-2-pentyl group; 3,3-dimethylbutyl group; and a 2-ethylbutyl group; and at least one of R1 to R6 may not be H.
  • the compound represented by Formula 1 is 2-methyl-1,3-dioxolane (2-methyl-1,3-dioxolane), 4-methyl-1,3-dioxolane ( 4-methyl-1,3-dioxolane), 2-ethyl-2-methyl-1,3-dioxolane (2-ethyl-2-methyl-1,3-dioxolane) and combinations thereof it could be
  • the electrolyte solution for a lithium-sulfur battery may include 0.1 to 5% by weight of the compound represented by Formula 1 based on the total weight of the electrolyte solution.
  • the compound represented by Formula 1 is 2-methyl-1,3-dioxolane, and the electrolyte solution for a lithium-sulfur battery is the total weight of the electrolyte solution. 0.1 to 5% by weight of the compound represented by Formula 1 may be included.
  • anode cathode; a separator interposed between the anode and the cathode; And it provides a lithium-sulfur battery comprising the electrolyte solution.
  • the lithium-sulfur battery according to the present invention includes a dioxolane-based derivative as an additive in the electrolyte to form a protective film through ring opening polymerization on the surface of a lithium-based metal anode, thereby suppressing the generation of lithium dendrites and may have an effect of improving battery life and coulombic efficiency.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited to a position where a hydrogen atom is substituted, that is, a position where a substituent can be substituted, and two or more When substituted, two or more substituents may be the same as or different from each other.
  • substituents of the term "substituted or unsubstituted" as used herein include deuterium; halogen; cyano group; an alkyl group having 1 to 60 carbon atoms; an alkenyl group having 2 to 60 carbon atoms; an alkynyl group having 2 to 60 carbon atoms; A cycloalkyl group having 3 to 60 carbon atoms; a heterocycloalkyl group having 2 to 60 carbon atoms; an aryl group having 5 to 60 carbon atoms; a heteroaryl group having 2 to 60 carbon atoms; an alkoxy group having 1 to 60 carbon atoms; Aryloxy group having 5 to 60 carbon atoms; an alkylsilyl group having 1 to 60 carbon atoms; And one or more substituents selected from the group consisting of arylsilyl groups having 6 to 60 carbon atoms, and when the substituents are plural, they may be the same as or different from each other.
  • the additive provides an electrolyte solution for a lithium-sulfur battery including a compound represented by Formula 1 below.
  • R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; A substituted or unsubstituted C1 to C60 alkoxy group; and a substituted or unsubstituted C6 to C60 aryloxy group, wherein at least one of R1 to R6 is not H.
  • the electrolyte for the lithium-sulfur battery includes dioxolane derivatives, which are compounds represented by Formula 1, as additives, so that through ring opening polymerization on the surface of a lithium-based metal used as an anode, A negative electrode protective film may be formed to reduce the formation of dendrites and improve lifespan and efficiency characteristics of the battery through efficient plating and stripping processes.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C60 alkyl group; A substituted or unsubstituted C6 to C60 aryl group; A substituted or unsubstituted C1 to C60 alkoxy group; and a substituted or unsubstituted C6 to C60 aryloxy group, and at least one of R1 to R6 may not be H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C40 alkyl group; A substituted or unsubstituted C6 to C40 aryl group; A substituted or unsubstituted C1 to C40 alkoxy group; and a substituted or unsubstituted C6 to C40 aryloxy group, and at least one of R1 to R6 may not be H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C20 alkyl group; A substituted or unsubstituted C6 to C20 aryl group; A substituted or unsubstituted C1 to C20 alkoxy group; and a substituted or unsubstituted C6 to C20 aryloxy group, and at least one of R1 to R6 may not be H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C10 alkyl group; A substituted or unsubstituted C6 to C10 aryl group; A substituted or unsubstituted C1 to C10 alkoxy group; and a substituted or unsubstituted C6 to C10 aryloxy group, and at least one of R1 to R6 may not be H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C10 alkyl group; A substituted or unsubstituted C6 to C10 aryl group; and a substituted or unsubstituted C1 to C10 alkoxy group; It is selected from the group consisting of, and at least one of R1 to R6 may not be H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C10 alkyl group; A substituted or unsubstituted C6 to C10 aryl group; and a substituted or unsubstituted C6 to C10 aryloxy group, and at least one of R1 to R6 may not be H.
  • R1 to R6 in Formula 1 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C10 alkyl group; A substituted or unsubstituted C1 to C10 alkoxy group; and a substituted or unsubstituted C6 to C10 aryloxy group, and at least one of R1 to R6 may not be H.
  • R1 to R6 in Formula 1 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C6 to C10 aryl group; A substituted or unsubstituted C1 to C10 alkoxy group; and a substituted or unsubstituted C6 to C10 aryloxy group, and at least one of R1 to R6 may not be H.
  • R1 to R6 in Formula 1 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; A substituted or unsubstituted C1 to C10 alkyl group; and a substituted or unsubstituted C6 to C10 aryl group; It is selected from the group consisting of, and at least one of R1 to R6 may not be H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; and a substituted or unsubstituted C1 to C10 alkyl group; wherein at least one of R1 to R6 may not be H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; methyl group; ethyl group; propyl group; n-propyl group; isopropyl group; butyl group; n-butyl group; isobutyl group; tert-butyl group; sec-butyl group; 1-methyl-butyl group; 1-ethyl-butyl group; pentyl group; n-pentyl group; isopentyl group; neopentyl group; tert-pentyl group; hexyl group; n-hexyl group; 1-methylpentyl group; 2-methylpentyl group; 4-methyl-2-pentyl group; 3,3-dimethylbutyl group; 2-ethylbutyl group; heptyl group; n-heptyl group; 1-methylhexyl group; Cyclopentylmethyl group; cyclohexyl
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; methyl group; ethyl group; propyl group; n-propyl group; isopropyl group; butyl group; n-butyl group; isobutyl group; tert-butyl group; sec-butyl group; 1-methyl-butyl group; 1-ethyl-butyl group; pentyl group; n-pentyl group; isopentyl group; neopentyl group; tert-pentyl group; hexyl group; n-hexyl group; 1-methylpentyl group; 2-methylpentyl group; 4-methyl-2-pentyl group; 3,3-dimethylbutyl group; and a 2-ethylbutyl group; and at least one of R1 to R6 may not be H.
  • the R1 to R6 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; methyl group; ethyl group; propyl group; n-propyl group; isopropyl group; butyl group; n-butyl group; isobutyl group; tert-butyl group; and a sec-butyl group; and at least one of R1 to R6 may not be H.
  • the alkyl group is specifically hydrogen; heavy hydrogen; methyl group; ethyl group; propyl group; n-propyl group; isopropyl group; butyl group; n-butyl group; isobutyl group; tert-butyl group; sec-butyl group; 1-methyl-butyl group; 1-ethyl-butyl group; pentyl group; n-pentyl group; isopentyl group; neopentyl group; tert-pentyl group; hexyl group; n-hexyl group; 1-methylpentyl group; 2-methylpentyl group; 4-methyl-2-pentyl group; 3,3-dimethylbutyl group; 2-ethylbutyl group; heptyl group; n-heptyl group; 1-methylhexyl group; Cyclopentylmethyl group; cyclohexylmethyl group; octylmethyl group;
  • the aryl group is specifically a phenyl group; biphenyl group; terphenyl group; Quarter phenyl group; naphthyl group; Anthracenyl group; phenanthrenyl group; pyrenyl group; Perylenyl group; triphenyl group; Chrysenyl group; fluorenyl group; And it may be selected from the group consisting of a triphenylenyl group, but is not limited thereto.
  • the alkoxy group is specifically methoxy; ethoxy; n-propoxy; i-propyloxy; n-butoxy; isobutoxy; tert-butoxy; sec-butoxy; n-pentyloxy; neopentyloxy; isopentyloxy; n-hexyloxy; 3,3-dimethylbutyloxy; 2-ethylbutyloxy; n-octyloxy; n-nonyloxy; And it may be selected from the group consisting of n-decyloxy, but is not limited thereto.
  • the aryloxy group is specifically a phenoxy group; p-tolyloxy group; m- toryloxy group; 3,5-dimethyl-phenoxy group; 2,4,6-trimethylphenoxy group; p-tert-butylphenoxy group; 3-biphenyloxy group; 4-biphenyloxy group; 1-naphthyloxy group; 2-naphthyloxy group; 4-methyl-1-naphthyloxy group; 5-methyl-2-naphthyloxy group; 1-anthryloxy group; 2-anthryloxy group; 9-anthryloxy group; 1-phenanthryloxy group; 3-phenanthryloxy group; And it may be selected from the group consisting of a 9-phenanthryloxy group, but is not limited thereto.
  • the compound represented by Formula 1 is 2-methyl-1,3-dioxolane (2-methyl-1,3-dioxolane), 4-methyl-1,3-dioxolane (4-methyl-1,3-dioxolane ), 2-ethyl-2-methyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane -1,3-dioxolane), 2,2,4-trimethyl-1,3-dioxolane (2,2,4-trimethyl-1,3-dioxolane), and may be selected from the group consisting of combinations thereof , Preferably 2-methyl-1,3-dioxolane (2-methyl-1,3-dioxolane), 4-methyl-1,3-dioxolane (4-methyl-1,3-dioxolane), 2- It may be selected from the group consisting of ethyl-2-methyl-1,3-dioxolane (2-ethyl-2-methyl-1,3-dio
  • the electrolyte solution for a lithium-sulfur battery may include the compound represented by Formula 1 in an amount of 0.1% by weight or more, 0.3% by weight or more, 0.5% by weight or more, 0.7% by weight or more, or 0.9% by weight or more based on the total weight of the electrolyte, and 5% by weight % or less, 4.6 wt% or less, 4.2 wt% or less, 3.8 wt% or less, 3.4 wt% or less, or 3 wt% or less of the compound represented by Formula 1 may be included.
  • the electrolyte for a lithium-sulfur battery contains less than 0.1% by weight of the compound represented by Formula 1 based on the total weight of the electrolyte, the amount added is so small that the formation of a negative electrode protective film is insignificant, so that the desired function according to the addition of the dioxolane-based derivative additive is not achieved. There may be problems that cannot be performed.
  • the electrolyte for a lithium-sulfur battery includes the compound represented by Formula 1 in an amount greater than 5% by weight based on the total weight of the electrolyte, overvoltage may be induced in the battery, resulting in problems in driving the battery.
  • the compound represented by Formula 1 is 2-methyl-1,3-dioxolane, and the lithium-sulfur battery electrolyte contains 0.1% of the total weight of the electrolyte. to 5% by weight of the compound represented by Formula 1 above.
  • the organic solvent may include one selected from the group consisting of linear ether compounds, cyclic ether compounds, and combinations thereof.
  • the linear ether compound is dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, diisobutyl ether, ethylmethyl ether, ethylpropyl ether, ethyl tertbutyl ether, dimethoxymethane, trimethoxymethane, dimethoxyethane , diethoxyethane, dimethoxypropane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol Divinyl ether, dipropylene glycol dimethylene ether, butylene glycol ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol butyl methyl ether, diethylene glycol tert-
  • the cyclic ether compounds are 1,3-dioxolane, 4,5-dimethyl-dioxolane, 4,5-diethyl-dioxolane, 4-methyl-1,3-dioxolane, 4-ethyl-1,3 -dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, 2,5-dimethyltetrahydrofuran, 2,5-dimethoxytetrahydrofuran, 2-ethoxytetrahydrofuran, 2-methyl-1,3- Dioxolane, 2-vinyl-1,3-dioxolane, 2,2-dimethyl-1,3-dioxolane, 2-methoxy-1,3-dioxolane, 2-ethyl-2-methyl-1,3 -dioxolane, tetrahydropyran, 1,4-dioxane, 1,2-dimethoxy benzene, 1,3-dimethoxy benz
  • the electrolyte solution for a lithium-sulfur battery of the present invention may include a lithium salt.
  • the lithium salt is a material that is easily soluble in an organic solvent, and is LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB(Ph) 4, LiC 4 BO 8 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSO 3 CH 3 , LiSO 3 CF 3 , LiSCN, LiC(CF 3 SO 2 ) 3 , LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , LiN(SO 2 F) 2 , lithium chloroborane, lithium lower aliphatic carbonate, lithium tetraphenyl borate, and lithium imide, preferably selected from the group consisting of LiN(CF 3 SO 2 ) 2 (LITFS
  • the concentration of the lithium salt depends on several factors, such as the precise composition of the mixture in the electrolyte, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the battery, the operating temperature and other factors known in the lithium battery art, ranging from 0.1 to 0.1 5.0 M, preferably 0.2 to 3.0 M, more specifically 0.5 to 2.5 M. If less than 0.1 M is used, the conductivity of the electrolyte solution may be lowered, resulting in deterioration of electrolyte performance, and if it is used in excess of 5.0 M, the viscosity of the electrolyte solution may be increased and the mobility of lithium ions (Li + ) may be reduced.
  • the electrolyte solution for a lithium-sulfur battery of the present invention may further include additives commonly used in the art in addition to the above-described composition.
  • additives commonly used in the art in addition to the above-described composition.
  • the method for preparing the electrolyte for a lithium-sulfur battery according to the present invention is not particularly limited in the present invention, and may be prepared by a conventional method known in the art.
  • a lithium-sulfur battery according to the present invention includes a positive electrode; cathode; a separator interposed between the anode and the cathode; and an electrolyte solution, wherein the electrolyte solution includes an electrolyte solution for a lithium-sulfur battery according to the present invention.
  • the positive electrode may include a positive electrode current collector and a positive electrode active material layer coated on one or both surfaces of the positive electrode current collector.
  • the cathode current collector supports the cathode active material and is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, palladium, calcined carbon, copper or stainless steel surface treated with carbon, nickel, silver, etc., aluminum-cadmium alloy, etc. may be used.
  • the cathode current collector may form fine irregularities on its surface to enhance bonding strength with the cathode active material, and various forms such as films, sheets, foils, meshes, nets, porous materials, foams, and nonwoven fabrics may be used.
  • the cathode active material layer may include a cathode active material, a binder, and a conductive material.
  • sulfur included in the cathode active material does not have electrical conductivity alone, it is used in combination with a conductive material such as a carbon material. Accordingly, the sulfur is included in the form of a sulfur-carbon complex, and preferably, the cathode active material may be a sulfur-carbon complex.
  • the carbon included in the sulfur-carbon composite is a porous carbon material and provides a skeleton to which the sulfur can be uniformly and stably fixed, and complements the low electrical conductivity of sulfur so that the electrochemical reaction can proceed smoothly.
  • the porous carbon material may be generally prepared by carbonizing various carbon precursors.
  • the porous carbon material includes irregular pores therein, the average diameter of the pores is in the range of 1 to 200 nm, and the porosity or porosity may be in the range of 10 to 90% of the total volume of the porous carbon material. If the average diameter of the pores is less than the above range, the pore size is only at the molecular level, and sulfur impregnation is impossible. Not desirable.
  • the shape of the porous carbon material is spherical, rod-shaped, needle-shaped, plate-shaped, tubular, or bulk, and may be used without limitation as long as it is commonly used in lithium-sulfur batteries.
  • the porous carbon material may have a porous structure or a high specific surface area and may be any one commonly used in the art.
  • the porous carbon material includes graphite; graphene; Carbon black, such as Denka black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; carbon nanotubes (CNTs) such as single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs); carbon fibers such as graphite nanofibers (GNF), carbon nanofibers (CNF), and activated carbon fibers (ACF); It may be at least one selected from the group consisting of natural graphite, artificial graphite, graphite such as expanded graphite, and activated carbon, but is not limited thereto.
  • the manufacturing method of the sulfur-carbon composite is not particularly limited in the present invention, and a method commonly used in the art may be used.
  • the positive electrode may further include one or more additives selected from a transition metal element, a group IIIA element, a group IVA element, a sulfur compound of these elements, and an alloy of these elements and sulfur, in addition to the positive electrode active material.
  • the transition metal elements include Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au or Hg and the like are included, the IIIA group elements include Al, Ga, In, Ti, and the like, and the IVA group elements may include Ge, Sn, Pb, and the like.
  • the conductive material serves as a path for electrons to move from a current collector to the positive electrode active material by electrically connecting the electrolyte and the positive electrode active material, and any conductive material may be used without limitation.
  • the conductive material may include graphite such as natural graphite and artificial graphite; carbon blacks such as Super-P, Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, and Summer Black; carbon derivatives such as carbon nanotubes and fullerenes; conductive fibers such as carbon fibers and metal fibers; fluorinated carbon; A metal powder such as aluminum or nickel powder or a conductive polymer such as polyaniline, polythiophene, polyacetylene, or polypyrrole may be used alone or in combination.
  • graphite such as natural graphite and artificial graphite
  • carbon blacks such as Super-P, Denka Black, Acetylene Black, Ketjen Black, Channel Black, Furnace Black, Lamp Black, and Summer Black
  • carbon derivatives such as carbon nanotubes and fullerenes
  • conductive fibers such as carbon fibers and metal fibers
  • fluorinated carbon A metal powder such as aluminum or nickel powder or a conductive
  • the binder maintains the positive electrode active material in the positive electrode current collector and organically connects the positive electrode active materials to further increase the bonding strength between them, and all binders known in the art may be used.
  • the binder may be a fluororesin-based binder including polyvinylidene fluoride (PVdF) or polytetrafluoroethylene (PTFE); rubber-based binders including styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber, and styrene-isoprene rubber; cellulosic binders including carboxyl methyl cellulose (CMC), starch, hydroxypropyl cellulose, and regenerated cellulose; A polyalcohol-based binder including polyvinyl alcohol (PVA); A polyacrylic binder containing polyacrylic acid (PAA); polyolefin binders including polyethylene and polypropylene; polyimide-based binders; polyester-based binder; And a silane-based binder; one selected from the group consisting of, two or more mixtures or copolymers may be used.
  • PVdF polyvinylidene fluoride
  • PTFE polyte
  • the manufacturing method of the positive electrode is not particularly limited in the present invention, and a method commonly used in the art may be used.
  • the positive electrode may be manufactured by preparing a positive electrode slurry composition and then applying the positive electrode slurry composition to at least one surface of the positive electrode current collector.
  • the positive electrode slurry composition includes the above-described positive electrode active material, conductive material, and binder, and may further include a solvent other than that.
  • the solvent one capable of uniformly dispersing the cathode active material, the conductive material, and the binder is used.
  • water is most preferable as an aqueous solvent, and in this case, the water may be distilled water or deionized water.
  • a lower alcohol that can be easily mixed with water may be used.
  • the lower alcohol includes methanol, ethanol, propanol, isopropanol, and butanol, and the like, preferably mixed with water.
  • the loading amount of sulfur in the positive electrode may be 1 to 10 mAh/cm 2 , preferably 1 to 6 mAh/cm 2 .
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer coated on one or both surfaces of the negative electrode current collector.
  • the negative electrode may be a lithium metal plate.
  • the anode current collector is for supporting the anode active material layer, and is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity. Copper, aluminum, stainless steel, zinc, titanium, silver, palladium, nickel, It may be selected from the group consisting of iron, chromium, alloys thereof, and combinations thereof.
  • the stainless steel may be surface-treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy, and in addition, calcined carbon, a non-conductive polymer surface-treated with a conductive material, or a conductive polymer can also be used. In general, a thin copper plate is applied as an anode current collector.
  • the anode active material layer may include a conductive material, a binder, and the like in addition to the anode active material.
  • the conductive material and the binder are as described above.
  • the anode active material includes a material capable of reversibly intercalating or deintercalating lithium (Li + ), a material capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal, or a lithium alloy.
  • a material capable of reversibly intercalating or deintercalating lithium (Li + ) capable of reacting with lithium ions to reversibly form a lithium-containing compound, lithium metal, or a lithium alloy.
  • the material capable of reversibly intercalating or deintercalating lithium ions may be, for example, crystalline carbon, amorphous carbon, or a mixture thereof.
  • a material capable of reversibly forming a lithium-containing compound by reacting with the lithium ion (Li + ) may be, for example, tin oxide, titanium nitrate, or silicon.
  • the lithium alloy is, for example, lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), and tin (Sn).
  • the negative electrode active material may be lithium metal, and specifically, may be in the form of a lithium metal thin film or lithium metal powder.
  • the method of forming the negative electrode active material is not particularly limited, and a method of forming a layer or film commonly used in the art may be used. For example, methods such as compression, coating, and deposition may be used. In addition, a case in which a metal lithium thin film is formed on a metal plate by initial charging after assembling a battery in a state in which the lithium thin film is not present on the current collector is also included in the negative electrode of the present invention.
  • the electrolyte solution is used to cause an electrochemical oxidation or reduction reaction at the anode and the cathode through this, and follows the above description.
  • Injection of the electrolyte solution may be performed at an appropriate stage during the manufacturing process of the lithium-sulfur battery according to the manufacturing process and required physical properties of the final product. That is, it may be applied before assembling a lithium-sulfur battery or at a final stage of assembly.
  • a conventional separator may be interposed between the anode and the cathode.
  • the separator is a physical separator having a function of physically separating electrodes, and can be used without particular limitation as long as it is used as a normal separator, and in particular, has low resistance to ion movement of the electrolyte and excellent ability to wet the electrolyte. It is preferable.
  • the separator separates or insulates the positive electrode and the negative electrode from each other and enables lithium ion transport between the positive electrode and the negative electrode, and may be made of a porous non-conductive or insulating material.
  • the separator may be used without particular limitation as long as it is commonly used as a separator in a lithium-sulfur battery.
  • the separator may be an independent member such as a film or may be a coating layer added to an anode and/or a cathode.
  • the separator may be made of a porous substrate.
  • a porous substrate any porous substrate commonly used in a lithium-sulfur battery may be used, and a porous polymer film may be used alone or in a laminated manner.
  • Non-woven fabrics or polyolefin-based porous membranes made of melting glass fibers, polyethylene terephthalate fibers, etc. may be used, but are not limited thereto.
  • the material of the porous substrate is not particularly limited in the present invention, and any porous substrate commonly used in a lithium-sulfur battery can be used.
  • the porous substrate may be a polyolefin such as polyethylene or polypropylene, polyester such as polyethyleneterephthalate or polybutyleneterephthalate, or polyamide.
  • polyamide polyamide
  • polyacetal polycarbonate
  • polyimide polyetheretherketone
  • polyethersulfone polyphenyleneoxide
  • polyphenylene sulfide polyphenylenesulfide, polyethylenenaphthalate, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, polyacrylonitrile, cellulose, nylon (nylon), poly(p-phenylene benzobisoxazole), and polyarylate.
  • the thickness of the porous substrate is not particularly limited, but may be 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m. Although the thickness range of the porous substrate is not limited to the aforementioned range, if the thickness is too thin than the aforementioned lower limit, mechanical properties may deteriorate and the separator may be easily damaged during use of the battery.
  • the average diameter and porosity of pores present in the porous substrate are also not particularly limited, but may be 0.1 to 50 ⁇ m and 10 to 95%, respectively.
  • the shape of the lithium-sulfur battery is not particularly limited and may be in various shapes such as a cylindrical shape, a stacked shape, and a coin shape.
  • An electrolyte solution for a lithium-sulfur battery was prepared in the same manner as in Preparation Example 1, except that the weight ratio of the additive 2-methyl-1,3-dioxolane was changed as shown in Table 1 below.
  • An electrolyte solution for a lithium-sulfur battery was prepared in the same manner as in Preparation Example 1, except that no additive was used.
  • An electrolyte solution for a lithium-sulfur battery was prepared in the same manner as in Preparation Example 1, except that 1,3-dioxolane was additionally added as an additive in a weight ratio shown in Table 1 below.
  • a cathode active material slurry was prepared by using water as a solvent and mixing a sulfur-carbon composite, a conductive material, and a binder as cathode active materials in a ratio of 87.5:5:7.5.
  • the sulfur-carbon composite was prepared by mixing sulfur and carbon nanotubes (CNT) at a weight ratio of 75:25.
  • the cathode active material slurry was applied to one surface of an aluminum current collector, dried at 100° C., and then rolled to prepare a cathode having a porosity of 68% and a loading amount of 5.6 mAh/cm 2 .
  • Lithium metal with a thickness of 45 ⁇ m was used as the negative electrode.
  • a polyethylene separator having a thickness of 16 ⁇ m and a porosity of 45% was interposed between the positive electrode and the negative electrode to prepare an electrode assembly.
  • a lithium-sulfur battery was prepared by injecting the electrolyte solution for a lithium-sulfur battery of Preparation Example 1 into the case.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that the electrolyte solutions of Preparation Examples 2 to 21 were used as the electrolyte for a lithium-sulfur battery.
  • a lithium-sulfur battery was prepared in the same manner as in Example 1, except that the electrolytes of Preparation Examples 22 to 24 were used as the electrolyte for a lithium-sulfur battery.
  • the ratio (%) of the discharge capacity in the corresponding cycle to the discharge capacity in the cycle starting 0.3 C charge / 0.5 C discharge is defined as retention, and also, to evaluate the lifespan, retention (%) is When it reached 80%, the number of cycles was shown in Table 3 below.
  • the lithium-sulfur batteries of Examples 1 to 7 containing '2-methyl-1,3-dioxolane' among the dioxolane-based derivatives as an electrolyte additive do not contain any 'electrolyte additive'.
  • Comparative Example 1' or Comparative Examples 2 and 3 in which 1,3-dioxolane was additionally added as an electrolyte additive the capacity retention rate was maintained high even if the cycle was repeated, and it was confirmed that the battery had excellent battery life characteristics.
  • electrolyte additive '4-methyl-1,3-dioxolane' and '2-ethyl-2-methyl-1,3-dioxolane' were used in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte, respectively.
  • electrolyte additive '4-methyl-1,3-dioxolane' and '2-ethyl-2-methyl-1,3-dioxolane' were used in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte, respectively.
  • Examples 8 to 12 or Examples 15 to 19 it was confirmed that they had excellent life characteristics with a high capacity retention rate compared to the case where the additive was added in excess of 5% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 리튬염, 유기용매 및 첨가제를 포함하는 리튬-황 전지용 전해액에 있어서, 상기 첨가제는 화학식 1로 표시되는 화합물을 포함하며, 상기 화학식 1에 있어서 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 및 치환 또는 비치환된 C6 내지 C60의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닌, 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지에 관한 것이다.

Description

리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
본 출원은 2021년 6월 3일자 한국 특허 출원 제10-2021-0071883호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.
본 발명은 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지에 관한 것이다.
이차전지가 활용되는 범위가 소형의 휴대형 전자기기부터 중대형의 전기 자동차(Electric vehicle; EV), 에너지 저장 장치(Energy Storage System, ESS), 전기선박 등으로 확장되면서, 고 용량, 고 에너지 밀도 및 긴 수명을 갖는 리튬 이차전지에 대한 수요가 급증하고 있다.
리튬 금속은 이론적으로 3,860mAh/g의 매우 높은 비용량(Specific capacity)을 가지며, 음극재로써 전위가 낮고, 밀도가 매우 작다는 점에서, 전지의 음극으로 사용하려는 다양한 시도가 있어 왔다.
그 중에서도 리튬-황 이차전지는 'S-S 결합(Sulfur-Sulfur Bond)'을 갖는 황 계열 물질을 양극 활물질로, 리튬 금속을 음극 활물질로 사용하는 전지 시스템을 의미한다. 상기 양극 활물질의 주재료인 황은 낮은 원자당 무게를 가지면서도 자원이 풍부하여, 수급이 용이할 뿐 아니라 가격이 저렴하여 전지의 제조단가를 낮출 수 있고, 독성이 없어 환경 친화적이라는 점에서 특성을 가진다.
특히, 리튬-황 이차전지는 이론 방전용량이 1,675mAh/g-sulfur이며, 이론상으로는 무게 대비 2,600Wh/kg의 높은 에너지 저장 밀도를 구현할 수 있기 때문에, 현재 연구되고 있는 다른 전지 시스템 (Ni-MH 전지: 450 Wh/kg, Li-FeS 전지: 480 Wh/kg, Li-MnO2 전지: 1,000 Wh/kg, Na-S 전지: 800 Wh/kg) 및 리튬 이온 전지(250 Wh/kg)의 이론 에너지 밀도에 비하여 매우 높은 수치를 가지기 때문에 현재까지 개발되고 있는 중대형의 이차전지 시장에서 큰 주목을 받고 있다.
상기 리튬-황 이차전지의 수명에 영향을 미치는 요인으로 리튬 음극의 퇴화를 들 수 있으며, 이는 양극 활물질과의 반응이나 전해액과의 반응 등이 원인이 되어 발생할 수 있다. 상기 음극의 퇴화는 결과적으로 덴드라이트를 형성시키고 쿨롱 효율(Coulombic Efficiency, C.E)을 저하시키는 문제점이 지적되어 왔다. 특히 덴드라이트가 1차원의 형태로 형성되면 기공을 포함하는 분리막을 통하여 Internal short circuit이 발생하여, 전해액의 연소에 따른 안전이나 수명 감소의 문제점이 발생할 수 있다.
따라서, 상기 덴드라이트 현상에 따른 리튬-황 전지의 문제점을 개선하기 위하여, 음극 표면에 균일하게 리튬을 증착(plating) 및 박리(stripping)시켜 덴드라이트의 형성을 억제하기 위한 연구가 필요한 실정이다.
[선행기술문헌]
[특허문헌]
대한민국 공개특허공보 제10-2019-0119963호 "전해액 첨가제, 이를 포함한 전해질, 상기 전해질을 포함한 양극, 상기 양극을 포함하는 리튬공기전지"
본 발명자들은 상기 문제를 해결하기 위하여, 리튬-황 전지용 전해액에 디옥솔란계 유도체를 첨가하여, 전지의 수명 및 효율을 개선시킨 리튬-황 전지를 제공하고자 한다.
본 발명의 제1측면에 따르면,
리튬염, 유기용매 및 첨가제를 포함하는 리튬-황 전지용 전해액에 있어서, 상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는, 리튬-황 전지용 전해액을 제공한다.
[화학식 1]
Figure PCTKR2022007802-appb-img-000001
상기 화학식 1에 있어서, R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 및 치환 또는 비치환된 C6 내지 C60의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아니다.
본 발명의 일 구체예에 있어서, 상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 및 치환 또는 비치환된 C6 내지 C20의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
본 발명의 일 구체예에 있어서, 상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 및 치환 또는 비치환된 C1 내지 C10의 알킬기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
본 발명의 일 구체예에 있어서, 상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 메틸기; 에틸기; 프로필기; n-프로필기; 이소프로필기; 부틸기; n-부틸기; 이소부틸기; tert-부틸기; sec-부틸기; 1-메틸-부틸기; 1-에틸-부틸기; 펜틸기; n-펜틸기; 이소펜틸기; 네오펜틸기; tert-펜틸기; 헥실기; n-헥실기; 1-메틸펜틸기; 2-메틸펜틸기; 4-메틸-2-펜틸기; 3,3-디메틸부틸기; 및 2-에틸부틸기;로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
본 발명의 일 구체예에 있어서, 상기 화학식 1로 표시되는 화합물은 2-메틸-1,3-디옥솔란(2-methyl-1,3-dioxolane), 4-메틸-1,3-디옥솔란(4-methyl-1,3-dioxolane), 2-에틸-2-메틸-1,3-디옥솔란(2-ethyl-2-methyl-1,3-dioxolane) 및 이들의 조합으로 이루어진 군으로부터 선택되는 것일 수 있다.
본 발명의 일 구체예에 있어서, 상기 리튬-황 전지용 전해액은 전해액 총 중량 대비 0.1 내지 5 중량%의 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
본 발명의 일 구체예에 있어서, 상기 화학식 1로 표시되는 화합물은 2-메틸-1,3-디옥솔란(2-methyl-1,3-dioxolane)이고, 상기 리튬-황 전지용 전해액은 전해액 총 중량 대비 0.1 내지 5중량%의 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
본 발명의 제2측면에 따르면,
양극; 음극; 상기 양극과 음극 사이에 개재되는 분리막; 및 상기 전해액을 포함하는, 리튬-황 전지를 제공한다.
본 발명에 따른 리튬-황 전지는 디옥솔란계 유도체를 전해액 내 첨가제로 포함하여 리튬계 금속인 음극 표면에서 고리 열림 중합반응(Ring opening polymerization)을 통해 보호막을 형성하여, 리튬 덴드라이트의 생성을 억제하고 전지 수명 및 쿨롱 효율을 향상시키는 효과를 가질 수 있다.
본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.
본 명세서에서 사용되고 있는 용어 "폴리설파이드"는 "폴리설파이드 이온(Sx 2-, x = 8, 6, 4, 2))" 및 "리튬 폴리설파이드(Li2Sx 또는 LiSx -, x = 8, 6, 4, 2)"를 모두 포함하는 개념이다.
본 명세서에서 사용되고 있는 용어 "치환"은 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 사용되고 있는 용어 "치환 또는 비치환"의 임의의 치환기로서는 중수소; 할로겐; 시아노기; 탄소수 1 내지 60의 알킬기; 탄소수 2 내지 60의 알케닐기; 탄소수 2 내지 60의 알키닐기; 탄소수 3 내지 60의 시클로알킬기; 탄소수 2 내지 60의 헤테로시클로알킬기; 탄소수 5 내지 60의 아릴기; 탄소수 2 내지 60의 헤테로아릴기; 탄소수 1 내지 60의 알콕시기; 탄소수 5 내지 60의 아릴옥시기; 탄소수 1 내지 60의 알킬실릴기; 및 탄소수 6 내지 60의 아릴실릴기로 이루어진 군으로부터 선택된 1 이상의 치환기일 수 있고, 치환기가 복수인 경우에는 서로 동일하거나 상이할 수 있다.
리튬-황 전지용 전해액
본 발명에 따른 리튬염, 유기용매 및 첨가제를 포함하는 리튬-황 전지용 전해액에 있어서, 상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는, 리튬-황 전지용 전해액을 제공한다.
[화학식 1]
Figure PCTKR2022007802-appb-img-000002
상기 화학식 1에 있어서,
R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 및 치환 또는 비치환된 C6 내지 C60의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아니다.
상기 리튬-황 전지용 전해액에 대하여 첨가제로 상기 화학식 1로 표시되는 화합물인 디옥솔란계 유도체(dioxolane derivatives)이 포함됨으로써, 음극으로 사용되는 리튬계 금속 표면에서 고리 열림 중합반응(Ring opening polymerization)을 통하여 음극 보호막이 형성되어, 덴드라이트의 형성을 감소시키고 효율적인 증착(plating) 및 박리(stripping) 과정을 통해 전지의 수명 및 효율 특성을 개선시키는 효과가 나타날 수 있다.
상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 및 치환 또는 비치환된 C6 내지 C60의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C40의 알킬기; 치환 또는 비치환된 C6 내지 C40의 아릴기; 치환 또는 비치환된 C1 내지 C40의 알콕시기; 및 치환 또는 비치환된 C6 내지 C40의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 및 치환 또는 비치환된 C6 내지 C20의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C10의 알킬기; 치환 또는 비치환된 C6 내지 C10의 아릴기; 치환 또는 비치환된 C1 내지 C10의 알콕시기; 및 치환 또는 비치환된 C6 내지 C10의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C10의 알킬기; 치환 또는 비치환된 C6 내지 C10의 아릴기; 및 치환 또는 비치환된 C1 내지 C10의 알콕시기; 로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C10의 알킬기; 치환 또는 비치환된 C6 내지 C10의 아릴기; 및 치환 또는 비치환된 C6 내지 C10의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 화학식 1의 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C10의 알킬기; 치환 또는 비치환된 C1 내지 C10의 알콕시기; 및 치환 또는 비치환된 C6 내지 C10의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 화학식 1의 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C6 내지 C10의 아릴기; 치환 또는 비치환된 C1 내지 C10의 알콕시기; 및 치환 또는 비치환된 C6 내지 C10의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 화학식 1의 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C10의 알킬기; 및 치환 또는 비치환된 C6 내지 C10의 아릴기; 로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 및 치환 또는 비치환된 C1 내지 C10의 알킬기;로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 메틸기; 에틸기; 프로필기; n-프로필기; 이소프로필기; 부틸기; n-부틸기; 이소부틸기; tert-부틸기; sec-부틸기; 1-메틸-부틸기; 1-에틸-부틸기; 펜틸기; n-펜틸기; 이소펜틸기; 네오펜틸기; tert-펜틸기; 헥실기; n-헥실기; 1-메틸펜틸기; 2-메틸펜틸기; 4-메틸-2-펜틸기; 3,3-디메틸부틸기; 2-에틸부틸기; 헵틸기; n-헵틸기; 1-메틸헥실기; 시클로펜틸메틸기; 시클로헥실메틸기; 옥틸기; n-옥틸기; tert-옥틸기; 1-메틸헵틸기; 2-에틸헥실기; 2-프로필펜틸기; n-노닐기; 2,2-디메틸헵틸기; 1-에틸-프로필기; 1,1-디메틸-프로필기; 이소헥실기; 2-메틸펜틸기; 4-메틸헥실기; 및 5-메틸헥실기;로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 메틸기; 에틸기; 프로필기; n-프로필기; 이소프로필기; 부틸기; n-부틸기; 이소부틸기; tert-부틸기; sec-부틸기; 1-메틸-부틸기; 1-에틸-부틸기; 펜틸기; n-펜틸기; 이소펜틸기; 네오펜틸기; tert-펜틸기; 헥실기; n-헥실기; 1-메틸펜틸기; 2-메틸펜틸기; 4-메틸-2-펜틸기; 3,3-디메틸부틸기; 및 2-에틸부틸기;로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 메틸기; 에틸기; 프로필기; n-프로필기; 이소프로필기; 부틸기; n-부틸기; 이소부틸기; tert-부틸기; 및 sec-부틸기;로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닐 수 있다.
본 명세서에서, 상기 알킬기는 구체적으로 수소; 중수소; 메틸기; 에틸기; 프로필기; n-프로필기; 이소프로필기; 부틸기; n-부틸기; 이소부틸기; tert-부틸기; sec-부틸기; 1-메틸-부틸기; 1-에틸-부틸기; 펜틸기; n-펜틸기; 이소펜틸기; 네오펜틸기; tert-펜틸기; 헥실기; n-헥실기; 1-메틸펜틸기; 2-메틸펜틸기; 4-메틸-2-펜틸기; 3,3-디메틸부틸기; 2-에틸부틸기; 헵틸기; n-헵틸기; 1-메틸헥실기; 시클로펜틸메틸기; 시클로헥실메틸기; 옥틸기; n-옥틸기; tert-옥틸기; 1-메틸헵틸기; 2-에틸헥실기; 2-프로필펜틸기; n-노닐기; 2,2-디메틸헵틸기; 1-에틸-프로필기; 1,1-디메틸-프로필기; 이소헥실기; 2-메틸펜틸기; 4-메틸헥실기; 및 5-메틸헥실기로 이루어진 군으로부터 선택될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서, 상기 아릴기는 구체적으로 페닐기; 바이페닐기; 터페닐기; 쿼터페닐기; 나프틸기; 안트라세닐기; 페난트레닐기; 파이레닐기; 페릴레닐기; 트리페닐기; 크라이세닐기; 플루오레닐기; 및 트리페닐레닐기로 이루어진 군으로부터 선택될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서, 상기 알콕시기는 구체적으로 메톡시; 에톡시; n-프로폭시; i-프로필옥시; n-부톡시; 이소부톡시; tert-부톡시; sec-부톡시; n-펜틸옥시; 네오펜틸옥시; 이소펜틸옥시; n-헥실옥시; 3,3-디메틸부틸옥시; 2-에틸부틸옥시; n-옥틸옥시; n-노닐옥시; 및 n-데실옥시로 이루어진 군으로부터 선택될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서, 상기 아릴옥시기는 구체적으로 페녹시기; p-토릴옥시기; m-토릴옥시기; 3,5-디메틸-페녹시기; 2,4,6-트리메틸페녹시기; p-tert-부틸페녹시기; 3-바이페닐옥시기; 4-바이페닐옥시기; 1-나프틸옥시기; 2-나프틸옥시기; 4-메틸-1-나프틸옥시기; 5-메틸-2-나프틸옥시기; 1-안트릴옥시기; 2-안트릴옥시기; 9-안트릴옥시기; 1-페난트릴옥시기; 3-페난트릴옥시기; 및 9-페난트릴옥시기로 이루어진 군으로부터 선택될 수 있으나, 이에 한정되는 것은 아니다.
상기 화학식 1로 표시되는 화합물은 2-메틸-1,3-디옥솔란(2-methyl-1,3-dioxolane), 4-메틸-1,3-디옥솔란(4-methyl-1,3-dioxolane), 2-에틸-2-메틸-1,3-디옥솔란(2-ethyl-2-methyl-1,3-dioxolane), 2,2-디메틸-1,3-디옥솔란(2,2-dimethyl-1,3-dioxolane), 2,2,4-트리메틸-1,3-디옥솔란(2,2,4-trimethyl-1,3-dioxolane) 및 이들의 조합으로 이루어진 군으로부터 선택되는 것일 수 있고, 바람직하게는 2-메틸-1,3-디옥솔란(2-methyl-1,3-dioxolane), 4-메틸-1,3-디옥솔란(4-methyl-1,3-dioxolane), 2-에틸-2-메틸-1,3-디옥솔란(2-ethyl-2-methyl-1,3-dioxolane) 및 이들의 조합으로 이루어진 군으로부터 선택되는 것일 수 있다.
상기 리튬-황 전지용 전해액은 전해액 총 중량 대비 0.1 중량% 이상, 0.3 중량% 이상, 0.5 중량% 이상, 0.7 중량% 이상, 0.9 중량% 이상의 상기 화학식 1로 표시되는 화합물을 포함할 수 있고, 5 중량% 이하, 4.6 중량% 이하, 4.2 중량% 이하, 3.8 중량% 이하, 3.4 중량% 이하, 3 중량% 이하의 상기 화학식 1로 표시되는 화합물을 포함할 수 있다. 상기 리튬-황 전지용 전해액이 전해액 총 중량 대비 0.1 중량% 미만의 상기 화학식 1로 표시되는 화합물을 포함한다면, 첨가되는 양이 적어 음극 보호막의 형성이 미미하여 디옥솔란계 유도체 첨가제 투입에 따른 목적한 기능을 발휘하지 못하는 문제점이 발생할 수 있다. 또한 상기 리튬-황 전지용 전해액이 전해액 총 중량 대비 5 중량%를 초과하는 상기 화학식 1로 표시되는 화합물을 포함한다면, 전지에 과전압이 유도되어 전지 구동 상의 문제점이 발생할 수 있다.
상기 리튬-황 전지용 전해액은 상기 화학식 1로 표시되는 화합물은 2-메틸-1,3-디옥솔란(2-methyl-1,3-dioxolane)이고, 상기 리튬-황 전지용 전해액은 전해액 총 중량 대비 0.1 내지 5 중량%의 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
상기 유기 용매는 선형 에테르 화합물, 고리형 에테르 화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함할 수 있다.
상기 선형 에테르 화합물은 디메틸 에테르, 디에틸 에테르, 디프로필 에테르, 디부틸 에테르, 디이소부틸 에테르, 에틸메틸 에테르, 에틸프로필 에테르, 에틸터트부틸 에테르, 디메톡시메탄, 트리메톡시메탄, 디메톡시에탄, 디에톡시에탄, 디메톡시프로판, 디에틸렌글리콜 디메틸에테르, 디에틸렌글리콜 디에틸에테르, 트리에틸렌글리콜 디메틸에테르, 테트라에틸렌글리콜 디메틸에테르, 에틸렌글리콜 디비닐에테르, 디에틸렌글리콜 디비닐에테르, 트리에틸렌글리콜 디비닐에테르, 디프로필렌 글리콜 디메틸렌 에테르, 부틸렌 글리콜 에테르, 디에틸렌글리콜 에틸메틸에테르, 디에틸렌글리콜 이소프로필메틸에테르, 디에틸렌글리콜 부틸메틸에테르, 디에틸렌글리콜 터트부틸에틸에테르, 에틸렌글리콜 에틸메틸에테르 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함할 수 있다.
상기 고리형 에테르 화합물은 1,3-디옥솔란, 4,5-디메틸-디옥솔란, 4,5-디에틸-디옥솔란, 4-메틸-1,3-디옥솔란, 4-에틸-1,3-디옥솔란, 테트라하이드로퓨란, 2-메틸테트라하이드로퓨란, 2,5-디메틸테트라하이드로퓨란, 2,5-디메톡시테트라하이드로퓨란, 2-에톡시테트라하이드로퓨란, 2-메틸-1,3-디옥솔란, 2-비닐-1,3-디옥솔란, 2,2-디메틸-1,3-디옥솔란, 2-메톡시-1,3-디옥솔란, 2-에틸-2-메틸-1,3-디옥솔란, 테트라하이드로파이란, 1,4-디옥산, 1,2-디메톡시 벤젠, 1,3-디메톡시 벤젠, 1,4-디메톡시 벤젠, 아이소소바이드 디메틸 에테르(isosorbide dimethyl ether) 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함할 수 있다.
본 발명의 리튬-황 전지용 전해액은 리튬염을 포함할 수 있다. 상기 리튬염은 유기 용매에 용해되기 좋은 물질로써, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 선택되는 것일 수 있고, 바람직하게는 LiN(CF3SO2)2 (LITFSI)일 수 있다.
상기 리튬염의 농도는, 전해액에 포함된 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.1 ~ 5.0 M, 바람직하게는 0.2 ~ 3.0 M, 더욱 구체적으로 0.5 ~ 2.5 M일 수 있다. 0.1 M 미만으로 사용하면 전해액의 전도도가 낮아져서 전해액 성능이 저하될 수 있고, 5.0 M을 초과하여 사용하면 전해액의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있다.
본 발명의 리튬-황 전지용 전해액은 전술한 조성 이외에 해당 기술분야에서 통상적으로 사용되는 첨가제를 추가로 포함할 수 있다. 일례로, 질산리튬(LiNO3), 질산칼륨(KNO3), 질산세슘(CsNO3), 질산마그네슘(MgNO3), 질산바륨(BaNO3), 아질산리튬(LiNO2), 아질산칼륨(KNO2), 아질산세슘(CsNO2) 및 이들의 조합으로 이루어진 군으로부터 선택된 것을 포함할 수 있다.
본 발명에 따른 리튬-황 전지용 전해액의 제조방법은 본 발명에서 특별히 한정하지 않으며, 당업계에서 공지된 통상적인 방법에 의해 제조될 수 있다.
리튬-황 전지
본 발명에 따른 리튬-황 전지는 양극; 음극; 상기 양극과 음극 사이에 개재된 분리막; 및 전해액;을 포함하며, 상기 전해액으로서 본 발명에 따른 리튬-황 전지용 전해액을 포함한다.
상기 양극은 양극 집전체와 상기 양극 집전체의 일면 또는 양면에 도포된 양극 활물질층을 포함할 수 있다.
상기 양극 집전체는 양극 활물질을 지지하며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니다. 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티타늄, 팔라듐, 소성 탄소, 구리나 스테인리스 스틸 표면에 카본, 니켈, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
상기 양극 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질과의 결합력을 강화시킬 수 있으며, 필름, 시트, 호일, 메쉬, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.
상기 양극 활물질층은 양극 활물질, 바인더 및 도전재를 포함할 수 있다.
상기 양극 활물질은 황 원소(Elemental sulfur, S8), 유기황 화합물 Li2Sn(n≥1) 및 탄소-황 폴리머((C2Sx)n: x=2.5 ~ 50, n≥2) 이루어진 군으로부터 선택된 1종 이상일 수 있다. 바람직하게는 무기 황(S8)을 사용할 수 있다.
상기 양극 활물질에 포함되는 황의 경우 단독으로는 전기 전도성이 없기 때문에 탄소재와 같은 전도성 소재와 복합화하여 사용된다. 이에 따라, 상기 황은 황-탄소 복합체의 형태로 포함되며, 바람직하기로, 상기 양극 활물질은 황-탄소 복합체일 수 있다.
상기 황-탄소 복합체에 포함되는 탄소는 다공성 탄소재로 상기 황이 균일하고 안정적으로 고정될 수 있는 골격을 제공하며, 황의 낮은 전기 전도도를 보완하여 전기화학적 반응이 원활하게 진행될 수 있도록 한다.
상기 다공성 탄소재는 일반적으로 다양한 탄소 재질의 전구체를 탄화시킴으로써 제조될 수 있다. 상기 다공성 탄소재는 내부에 일정하지 않은 기공을 포함하며, 상기 기공의 평균 직경은 1 내지 200 ㎚ 범위이며, 기공도 또는 공극률은 다공성 탄소재 전체 체적의 10 내지 90 % 범위일 수 있다. 만일 상기 기공의 평균 직경이 상기 범위 미만인 경우 기공 크기가 분자 수준에 불과하여 황의 함침이 불가능하며, 이와 반대로 상기 범위를 초과하는 경우 다공성 탄소재의 기계적 강도가 약화되어 전극의 제조공정에 적용하기에 바람직하지 않다.
상기 다공성 탄소재의 형태는 구형, 봉형, 침상형, 판상형, 튜브형 또는 벌크형으로 리튬-황 전지에 통상적으로 사용되는 것이라면 제한없이 사용될 수 있다.
상기 다공성 탄소재는 다공성 구조이거나 비표면적이 높은 것으로 당업계에서 통상적으로 사용되는 것이라면 어느 것이든 무방하다. 예를 들어, 상기 다공성 탄소재로는 그래파이트(graphite); 그래핀(graphene); 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 단일벽 탄소 나노튜브(SWCNT), 다중벽 탄소 나노튜브(MWCNT) 등의 탄소 나노튜브(CNT); 그라파이트 나노파이버(GNF), 카본 나노파이버(CNF), 활성화 탄소 파이버(ACF) 등의 탄소 섬유; 천연 흑연, 인조 흑연, 팽창 흑연 등의 흑연 및 활성탄소로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 제한되지 않는다.
상기 황-탄소 복합체의 제조방법은 본 발명에서 특별히 한정하지 않으며 당 업계에서 통상적으로 사용되는 방법이 사용될 수 있다.
상기 양극은 상기 양극 활물질 이외에 전이금속 원소, ⅢA족 원소, ⅣA족 원소, 이들 원소들의 황 화합물, 및 이들 원소들과 황의 합금 중에서 선택되는 하나 이상의 첨가제를 더 포함할 수 있다.
상기 전이금속 원소로는 Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Os, Ir, Pt, Au 또는 Hg 등이 포함되고, 상기 ⅢA족 원소로는 Al, Ga, In, Ti 등이 포함되며, 상기 ⅣA족 원소로는 Ge, Sn, Pb 등이 포함될 수 있다.
상기 도전재는 전해액과 양극 활물질을 전기적으로 연결시켜 주어 집전체(current collector)로부터 전자가 양극 활물질까지 이동하는 경로의 역할을 하는 물질로서, 도전성을 갖는 것이라면 제한없이 사용할 수 있다.
예를 들어, 상기 도전재로는 천연 흑연, 인조 흑연 등의 흑연; 슈퍼 P(Super-P), 덴카 블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본 블랙; 탄소 나노튜브, 플러렌 등의 탄소 유도체; 탄소 섬유, 금속 섬유 등의 도전성 섬유; 불화 카본; 알루미늄, 니켈 분말 등의 금속 분말 또는 폴리아닐린, 폴리티오펜, 폴리아세틸렌, 폴리피롤 등의 전도성 고분자를 단독 또는 혼합하여 사용할 수 있다.
상기 바인더는 양극 활물질을 양극 집전체에 유지시키고, 양극 활물질 사이를 유기적으로 연결시켜 이들 간의 결착력을 보다 높이는 것으로, 당해 업계에서 공지된 모든 바인더를 사용할 수 있다.
예를 들어 상기 바인더는 폴리비닐리덴 플루오라이드(polyvinylidene fluoride, PVdF) 또는 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함하는 불소 수지계 바인더; 스티렌-부타디엔 고무(styrene butadiene rubber, SBR), 아크릴로니트릴-부티디엔 고무, 스티렌-이소프렌 고무를 포함하는 고무계 바인더; 카르복시메틸셀룰로오스(carboxyl methyl cellulose, CMC), 전분, 히드록시 프로필셀룰로우즈, 재생 셀룰로오스를 포함하는 셀룰로오스계 바인더; 폴리비닐 알코올(polyvinyl alcohol, PVA)을 포함하는 폴리 알코올계 바인더; 폴리아크릴산(polyacrylic acid, PAA)을 포함하는 폴리아크릴계 바인더; 폴리에틸렌, 폴리프로필렌를 포함하는 폴리 올레핀계 바인더; 폴리 이미드계 바인더; 폴리 에스테르계 바인더; 및 실란계 바인더;로 이루어진 군으로부터 선택된 1종, 2종 이상의 혼합물 또는 공중합체를 사용할 수 있다.
상기 양극의 제조방법은 본 발명에서 특별히 한정하지 않으며 당 업계에서 통상적으로 사용되는 방법이 사용될 수 있다. 일례로, 상기 양극은 양극 슬러리 조성물을 제조한 후, 이를 상기 양극 집전체의 적어도 일면에 도포함으로써 제조된 것일 수 있다.
상기 양극 슬러리 조성물은 전술한 바의 양극 활물질, 도전재 및 바인더를 포함하며, 이외 용매를 더 포함할 수 있다.
상기 용매로는 양극 활물질, 도전재 및 바인더를 균일하게 분산시킬 수 있는 것을 사용한다. 이러한 용매로는 수계 용매로서 물이 가장 바람직하며, 이때 물은 증류수(distilled water), 탈이온수(deionzied water)일 수 있다. 다만 반드시 이에 한정하는 것은 아니며, 필요한 경우 물과 쉽게 혼합이 가능한 저급 알코올이 사용될 수 있다. 상기 저급 알코올로는 메탄올, 에탄올, 프로판올, 이소프로판올 및 부탄올 등이 있으며, 바람직하기로 이들은 물과 함께 혼합하여 사용될 수 있다.
상기 양극에서 황의 로딩량은 1 내지 10 mAh/cm2, 바람직하게는 1 내지 6 mAh/cm2 일 수 있다.
상기 음극은 음극 집전체 및 상기 음극집전체의 일면 또는 양면에 도포된 음극 활물질층을 포함할 수 있다. 또는 상기 음극은 리튬 금속판일 수 있다.
상기 음극 집전체는 음극 활물질층의 지지를 위한 것으로, 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특히 제한하지 않으며, 구리, 알루미늄, 스테인리스 스틸, 아연, 티타늄, 은, 팔라듐, 니켈, 철, 크롬, 이들의 합금 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있다. 상기 스테인리스 스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금을 사용할 수 있고, 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등을 사용할 수도 있다. 일반적으로 음극 집전체로는 구리 박판을 적용한다.
또한, 그 형태는 표면에 미세한 요철이 형성된/미형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 사용될 수 있다.
상기 음극 활물질층은 음극 활물질 이외에 도전재, 바인더 등을 포함할 수 있다. 이때 상기 도전재 및 바인더는 전술한 바를 따른다.
상기 음극 활물질은 리튬 (Li+)을 가역적으로 삽입(intercalation) 또는 탈삽입(deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 포함할 수 있다.
상기 리튬 이온(Li+)을 가역적으로 삽입 또는 탈삽입할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
바람직하게 상기 음극 활물질은 리튬 금속일 수 있으며, 구체적으로, 리튬 금속 박막 또는 리튬 금속 분말의 형태일 수 있다.
상기 음극 활물질의 형성방법은 특별히 제한되지 않으며, 당업계에서 통상적으로 사용되는 층 또는 막의 형성방법을 이용할 수 있다. 예컨대 압착, 코팅, 증착 등의 방법을 이용할 수 있다. 또한, 집전체에 리튬 박막이 없는 상태로 전지를 조립한 후 초기 충전에 의해 금속판 상에 금속 리튬 박막이 형성되는 경우도 본 발명의 음극에 포함된다.
상기 전해액은 이를 매개로 상기 양극과 음극에서 전기화학적 산화 또는 환원 반응을 일으키기 위한 것으로, 상기 전술한 바를 따른다.
상기 전해액의 주입은 최종 제품의 제조 공정 및 요구 물성에 따라, 리튬-황 전지의 제조 공정 중 적절한 단계에서 행해질 수 있다. 즉, 리튬-황 전지의 조립 전 또는 조립 최종 단계 등에서 적용될 수 있다.
상기 양극과 음극 사이는 통상적인 분리막이 개재될 수 있다. 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.
또한 상기 분리막은 상기 양극과 음극을 서로 분리 또는 절연시키고, 양극과 음극 사이에 리튬 이온 수송을 가능하게 하는 것으로 다공성 비전도성 또는 절연성 물질로 이루어질 수 있다. 상기 분리막은 통상 리튬-황 전지에서 분리막으로 사용되는 것이라면 특별한 제한없이 사용 가능하다. 상기 분리막은 필름과 같은 독립적인 부재일 수도 있고, 양극 및/또는 음극에 부가된 코팅층일 수도 있다.
상기 분리막은 다공성 기재로 이루어질 수 있는데 상기 다공성 기재는 통상적으로 리튬-황 전지에 사용되는 다공성 기재라면 모두 사용이 가능하고, 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 예를 들어, 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포 또는 폴리올레핀계 다공성 막을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 다공성 기재의 재질로는 본 발명에서 특별히 한정하지 않고, 통상적으로 리튬-황 전지에 사용되는 다공성 기재라면 모두 사용이 가능하다. 예를 들어, 상기 다공성 기재는 폴리에틸렌(polyethylene), 폴리프로필렌(polypropylene) 등의 폴리올레핀(polyolefin), 폴리에틸렌테레프탈레이트(polyethyleneterephthalate), 폴리부틸렌테레프탈레이트(polybutyleneterephthalate) 등의 폴리에스테르(polyester), 폴리아미드(polyamide), 폴리아세탈(polyacetal), 폴리카보네이트(polycarbonate), 폴리이미드(polyimide), 폴리에테르에테르케톤(polyetheretherketone), 폴리에테르설폰(polyethersulfone), 폴리페닐렌옥사이드(polyphenyleneoxide), 폴리페닐렌설파이드(polyphenylenesulfide), 폴리에틸렌나프탈렌(polyethylenenaphthalate), 폴리테트라플루오로에틸렌(polytetrafluoroethylene), 폴리비닐리덴 플루오라이드(polyvinylidene fluoride), 폴리염화비닐(polyvinyl chloride), 폴리아크릴로니트릴(polyacrylonitrile), 셀룰로오스(cellulose), 나일론(nylon), 폴리파라페닐렌벤조비스옥사졸(poly(p-phenylene benzobisoxazole) 및 폴리아릴레이트(polyarylate)로 이루어진 군에서 선택된 1종 이상의 재질을 포함할 수 있다.
상기 다공성 기재의 두께는 특별히 제한되지 않으나, 1 내지 100 ㎛, 바람직하게는 5 내지 50 ㎛일 수 있다. 상기 다공성 기재의 두께 범위가 전술한 범위로 한정되는 것은 아니지만, 두께가 전술한 하한보다 지나치게 얇을 경우에는 기계적 물성이 저하되어 전지 사용 중 분리막이 쉽게 손상될 수 있다.
상기 다공성 기재에 존재하는 기공의 평균 직경 및 기공도 역시 특별히 제한되지 않으나 각각 0.1 내지 50 ㎛ 및 10 내지 95 %일 수 있다.
본 발명에 따른 리튬-황 전지는 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination, stack) 및 접음(folding) 공정이 가능하다.
상기 리튬-황 전지의 형상은 특별히 제한되지 않으며 원통형, 적층형, 코인형 등 다양한 형상으로 할 수 있다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.
실시예 : 리튬-황 전지의 제조
리튬-황 전지용 전해액의 제조: 제조예 1 내지 24
[제조예 1]
유기용매인 1,3-디옥솔란(1,3-dioxolane)과 1,2-디메톡시에탄(1,2-dimethoxyethane)을 1:1의 부피비(v/v)로 혼합 및 첨가제로 2-메틸-1,3-디옥솔란(2-methyl-1,3-dioxolane) 0.5 중량%를 첨가하고, 1 M의 리튬 비스(트리플루오로메탄설포닐)이미드(LiTFSI)와 1 중량%의 LiNO3을 용해시켜 리튬-황 전지용 전해액을 제조하였다.
[제조예 2 내지 7]
첨가제인 2-메틸-1,3-디옥솔란의 첨가 중량비를 하기 표 1과 같이 달리하는 것을 제외하고는, 상기 제조예 1과 동일한 방법으로 리튬-황 전지용 전해액을 제조하였다.
[제조예 8 내지 14]
첨가제로 4-메틸-1,3-디옥솔란(4-methyl-1,3-dioxolane)을 사용하고 첨가 중량비를 하기 표 1과 같이 달리하는 것을 제외하고는, 상기 제조예 1과 동일한 방법으로 리튬-황 전지용 전해액을 제조하였다.
[제조예 15 내지 21]
첨가제로 2-에틸-2-메틸-1,3-디옥솔란(2-ethyl-2-methyl-1,3-dioxolane)을 사용하고 첨가 중량비를 하기 표 1과 같이 달리하는 것을 제외하고는, 상기 제조예 1과 동일한 방법으로 리튬-황 전지용 전해액을 제조하였다.
[제조예 22]
첨가제를 사용하지 않은 것을 제외하고는, 상기 제조예 1과 동일한 방법으로 리튬-황 전지용 전해액을 제조하였다.
[제조예 23 및 24]
첨가제로 1,3-디옥솔란을 하기 표 1의 중량비로 추가적으로 첨가한 것을 제외하고는, 상기 제조예 1과 동일한 방법으로 리튬-황 전지용 전해액을 제조하였다.
[표 1]
Figure PCTKR2022007802-appb-img-000003
리튬-황 전지의 제조: 실시예 1 내지 21 및 비교예 1 내지 3
[실시예 1]
물을 용매로 하고, 양극 활물질로 황-탄소 복합체, 도전재 및 바인더를 87.5:5:7.5의 비율로 혼합하여 양극 활물질 슬러리를 제조하였다. 이때, 황-탄소 복합체는, 황과 탄소나노튜브(CNT)를 75:25의 중량비로 혼합하여 제조하였다. 또한 도전재로는 덴카블랙을, 바인더로는 스티렌-부타디엔 고무/카르복시메틸 셀룰로오스(SBR:CMC=70:30, 중량비)를 혼합하여, 양극 슬러리 조성물을 제조하였다.
상기 양극 활물질 슬러리를 알루미늄 집전체의 일면에 도포한 후, 100 ℃에서 건조 후 압연하여 기공도 68 % 및 로딩량 5.6 mAh/cm2의 양극을 제조하였다.
음극으로는 두께 45 μm의 리튬 금속을 사용하였다.
상기 제조된 양극과 음극을 대면하도록 위치시킨 후에, 두께 16 μm 및 기공도 45 %의 폴리에틸렌 분리막을 양극과 음극 사이에 게재하여 전극 조립체를 제조하였다. 이후, 상기 전극 조립체를 케이스 내부에 위치시킨 후, 케이스 내부로 상기 제조예 1의 리튬-황 전지용 전해액을 주입하여 리튬-황 전지를 제조하였다.
[실시예 2 내지 21]
리튬-황 전지용 전해액으로 상기 제조예 2 내지 21의 전해액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 전지를 제조하였다.
[비교예 1 내지 3]
리튬-황 전지용 전해액으로 상기 제조예 22 내지 24의 전해액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 전지를 제조하였다.
[표 2]
Figure PCTKR2022007802-appb-img-000004
실험예 1 : 전지의 수명특성 평가
상기 실시예 1 내지 21 및 비교예 1 내지 3에 의해 제조된 리튬-황 전지에 대하여, 충/방전 사이클 반복을 통하여 전지의 수명 특성을 평가하였다. 평가 결과는 하기 표 3에 나타내었다.
구체적으로, 리튬-황 전지에 대하여 25 ℃의 전지 구동 온도조건에서 CC모드로 0.1 C로 1.8 V까지 방전 및 0.1 C로 2.5 V까지 충전을 2회 반복한 후, 0.2 C로 충전 및 방전을 1회 반복하고, 0.3 C 충전 / 0.5 C 방전을 200사이클까지 반복하여 전지의 수명특성을 평가하였다.
상기 전지 수명특성 평가에서는 0.3 C 충전 / 0.5 C 방전을 시작하는 사이클에서의 방전용량 대비 해당 사이클에서의 방전용량의 비율(%)을 Retention으로 정의하고, 또한 수명을 평가하기 위하여 Retention(%)이 80 %가 되었을 때 사이클 수를 하기 표 3과 같이 나타내었다.
[표 3]
Figure PCTKR2022007802-appb-img-000005
상기 표 3의 결과를 통하여, 전해액 첨가제로 디옥솔란계 유도체 중 '2-메틸-1,3-디옥솔란'을 포함하는 실시예 1 내지 7의 리튬-황 전지는, '전해액 첨가제를 전혀 포함하지 않은 비교예 1' 또는 '전해액 첨가제로 1,3-디옥솔란을 추가적으로 첨가하는 비교예 2 및 3'에 비하여, 사이클이 반복되더라도 용량 유지율이 높게 유지되어 우수한 전지 수명특성을 갖는 것을 확인할 수 있었다.
구체적으로, 전해액 첨가제로 디옥솔란계 유도체인 '2-메틸-1,3-디옥솔란'을 포함하는 실시예 1 내지 7은 적어도 61 사이클에 도달해야 Retention이 80 %에 도달하는 것을 알 수 있었다. 그러나, 상기 비교예 1 내지 3의 경우에는 47 사이클 이전에 이미 80 % Retention에 도달하여 충·방전에 따른 용량 유지율이 현저히 떨어지는 것을 확인할 수 있었다.
특히, 전해액 첨가제인 '2-메틸-1,3-디옥솔란'을 전해액 총 중량 대비 0.1 내지 5 중량% 포함하는 실시예 1 내지 5의 경우, 100 사이클 이상의 충·방전이 진행되었음에도 80% 이상의 용량 유지율을 나타내어, 우수한 수명특성을 갖는 것을 확인할 수 있었다.
또한, 전해액 첨가제로 '4-메틸-1,3-디옥솔란'과 '2-에틸-2-메틸-1,3-디옥솔란'을 각각 전해액 총 중량 대비 0.1 내지 5 중량%를 포함하도록 사용한 실시예 8 내지 12 또는 실시예 15 내지 19의 경우가, 5 중량%를 초과하여 첨가제를 투입한 경우 대비 높은 용량 유지율로 우수한 수명특성을 갖는 것을 확인할 수 있었다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (8)

  1. 리튬염, 유기용매 및 첨가제를 포함하는 리튬-황 전지용 전해액에 있어서,
    상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하는, 리튬-황 전지용 전해액:
    [화학식 1]
    Figure PCTKR2022007802-appb-img-000006
    상기 화학식 1에 있어서,
    R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C60의 알킬기; 치환 또는 비치환된 C6 내지 C60의 아릴기; 치환 또는 비치환된 C1 내지 C60의 알콕시기; 및 치환 또는 비치환된 C6 내지 C60의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아니다.
  2. 제1항에 있어서,
    상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C1 내지 C20의 알킬기; 치환 또는 비치환된 C6 내지 C20의 아릴기; 치환 또는 비치환된 C1 내지 C20의 알콕시기; 및 치환 또는 비치환된 C6 내지 C20의 아릴옥시기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닌, 리튬-황 전지용 전해액.
  3. 제1항에 있어서,
    상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 및 치환 또는 비치환된 C1 내지 C10의 알킬기로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닌, 리튬-황 전지용 전해액.
  4. 제1항에 있어서,
    상기 R1 내지 R6은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 메틸기; 에틸기; 프로필기; n-프로필기; 이소프로필기; 부틸기; n-부틸기; 이소부틸기; tert-부틸기; sec-부틸기; 1-메틸-부틸기; 1-에틸-부틸기; 펜틸기; n-펜틸기; 이소펜틸기; 네오펜틸기; tert-펜틸기; 헥실기; n-헥실기; 1-메틸펜틸기; 2-메틸펜틸기; 4-메틸-2-펜틸기; 3,3-디메틸부틸기; 및 2-에틸부틸기;로 이루어진 군으로부터 선택되며, 상기 R1 내지 R6 중 적어도 하나는 H가 아닌, 리튬-황 전지용 전해액.
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 2-메틸-1,3-디옥솔란(2-methyl-1,3-dioxolane), 4-메틸-1,3-디옥솔란(4-methyl-1,3-dioxolane), 2-에틸-2-메틸-1,3-디옥솔란(2-ethyl-2-methyl-1,3-dioxolane), 2,2-디메틸-1,3-디옥솔란(2,2-dimethyl-1,3-dioxolane), 2,2,4-트리메틸-1,3-디옥솔란(2,2,4-trimethyl-1,3-dioxolane) 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 리튬-황 전지용 전해액.
  6. 제1항에 있어서,
    상기 리튬-황 전지용 전해액은 전해액 총 중량 대비 0.1 내지 5 중량%의 상기 화학식 1로 표시되는 화합물을 포함하는, 리튬-황 전지용 전해액.
  7. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 2-메틸-1,3-디옥솔란(2-methyl-1,3-dioxolane)이고,
    상기 리튬-황 전지용 전해액은 전해액 총 중량 대비 0.1 내지 5 중량%의 상기 화학식 1로 표시되는 화합물을 포함하는, 리튬-황 전지용 전해액.
  8. 양극;
    음극;
    상기 양극과 음극 사이에 개재되는 분리막; 및
    제1항 내지 제7항 중 어느 하나의 항의 전해액을 포함하는, 리튬-황 전지.
PCT/KR2022/007802 2021-06-03 2022-06-02 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지 WO2022255803A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/027,297 US20230378533A1 (en) 2021-06-03 2022-06-02 Electrolyte solution for lithium-sulfur battery and lithium-sulfur battery comprising same
JP2023524949A JP2023546723A (ja) 2021-06-03 2022-06-02 リチウム-硫黄電池用電解液及びこれを含むリチウム-硫黄電池
CN202280006573.8A CN116391283A (zh) 2021-06-03 2022-06-02 锂硫电池用电解液和包含其的锂硫电池
EP22816462.0A EP4199169A4 (en) 2021-06-03 2022-06-02 ELECTROLYTE FOR LITHIUM/SULFUR BATTERY AND LITHIUM/SULFUR BATTERY INCLUDING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210071883A KR20220163578A (ko) 2021-06-03 2021-06-03 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
KR10-2021-0071883 2021-06-03

Publications (1)

Publication Number Publication Date
WO2022255803A1 true WO2022255803A1 (ko) 2022-12-08

Family

ID=84324439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/007802 WO2022255803A1 (ko) 2021-06-03 2022-06-02 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지

Country Status (6)

Country Link
US (1) US20230378533A1 (ko)
EP (1) EP4199169A4 (ko)
JP (1) JP2023546723A (ko)
KR (1) KR20220163578A (ko)
CN (1) CN116391283A (ko)
WO (1) WO2022255803A1 (ko)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166275B1 (ko) * 2004-02-11 2012-07-17 싸이언 파워 코포레이션 리튬-황 전기화학 전지용 전해질
CN104022310A (zh) * 2014-06-18 2014-09-03 厦门首能科技有限公司 锂离子二次电池及含有该电解液的锂离子电池
US20190036169A1 (en) * 2017-07-27 2019-01-31 Contemporary Amperex Technology Co., Limited Electrolyte and electrochemical energy storage device
KR20190119963A (ko) 2018-04-13 2019-10-23 삼성전자주식회사 전해액 첨가제, 이를 포함한 전해질, 상기 전해질을 포함한 양극, 상기 양극을 포함하는 리튬공기전지
WO2019222346A1 (en) * 2018-05-18 2019-11-21 South 8 Technologies, Inc. Chemical formulations for electrochemical device
KR102126252B1 (ko) * 2018-11-23 2020-06-24 주식회사 엘지화학 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
KR20210071883A (ko) 2020-05-25 2021-06-16 베이징 바이두 넷컴 사이언스 앤 테크놀로지 코., 엘티디. 마사지 프롬프팅 방법 및 장치

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005141998A (ja) * 2003-11-05 2005-06-02 Sony Corp リチウム/二硫化鉄一次電池
EP3131152A1 (de) * 2015-08-10 2017-02-15 LANXESS Deutschland GmbH Flammwidrige, phosphorsäureester enthaltende batterieelektrolyte
WO2017190364A1 (zh) * 2016-05-06 2017-11-09 深圳先进技术研究院 一种二次电池及其制备方法
JP2019212616A (ja) * 2018-05-30 2019-12-12 パナソニックIpマネジメント株式会社 フロー電池
WO2019230347A1 (ja) * 2018-05-30 2019-12-05 パナソニックIpマネジメント株式会社 フロー電池
JP6902742B2 (ja) * 2018-05-30 2021-07-14 パナソニックIpマネジメント株式会社 リチウム二次電池
JP7051620B2 (ja) * 2018-07-05 2022-04-11 株式会社日立製作所 電池セルシートの製造方法、及び二次電池の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166275B1 (ko) * 2004-02-11 2012-07-17 싸이언 파워 코포레이션 리튬-황 전기화학 전지용 전해질
CN104022310A (zh) * 2014-06-18 2014-09-03 厦门首能科技有限公司 锂离子二次电池及含有该电解液的锂离子电池
US20190036169A1 (en) * 2017-07-27 2019-01-31 Contemporary Amperex Technology Co., Limited Electrolyte and electrochemical energy storage device
KR20190119963A (ko) 2018-04-13 2019-10-23 삼성전자주식회사 전해액 첨가제, 이를 포함한 전해질, 상기 전해질을 포함한 양극, 상기 양극을 포함하는 리튬공기전지
WO2019222346A1 (en) * 2018-05-18 2019-11-21 South 8 Technologies, Inc. Chemical formulations for electrochemical device
KR102126252B1 (ko) * 2018-11-23 2020-06-24 주식회사 엘지화학 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
KR20210071883A (ko) 2020-05-25 2021-06-16 베이징 바이두 넷컴 사이언스 앤 테크놀로지 코., 엘티디. 마사지 프롬프팅 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199169A4

Also Published As

Publication number Publication date
US20230378533A1 (en) 2023-11-23
EP4199169A1 (en) 2023-06-21
KR20220163578A (ko) 2022-12-12
EP4199169A4 (en) 2024-04-17
CN116391283A (zh) 2023-07-04
JP2023546723A (ja) 2023-11-07

Similar Documents

Publication Publication Date Title
WO2017131377A1 (ko) 폴리도파민을 포함하는 복합 코팅층이 형성된 리튬-황 전지용 분리막, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2017213325A1 (ko) 카본 나이트라이드와 그래핀 옥사이드의 자기조립 복합체 및 그 제조방법, 이를 적용한 양극 및 이를 포함하는 리튬-황 전지
WO2018030616A1 (ko) 황-탄소 복합체, 이의 제조방법 및 이를 포함하는 리튬-황 전지
WO2019103326A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019088475A1 (ko) 황-탄소 복합체 및 이를 포함하는 리튬-황 전지
WO2021235760A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019103409A1 (ko) 황-탄소 복합체의 제조방법
WO2019088628A2 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019107752A1 (ko) 황-탄소 복합체, 그의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022164107A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2020105981A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2021210814A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2019088630A2 (ko) 황-탄소 복합체 및 그의 제조방법
WO2022045852A1 (ko) 음극 및 상기 음극을 포함하는 이차 전지
WO2019083257A1 (ko) 리튬-황 전지용 분리막 및 이를 포함하는 리튬-황 전지
WO2020166871A1 (ko) 리튬 이차전지용 양극 활물질
WO2023008783A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2019022358A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2022149751A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2021177723A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지
WO2022255803A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2020009333A1 (ko) 황-탄소 복합체, 이의 제조방법, 이를 포함하는 리튬-황 전지용 양극 및 리튬-황 전지
WO2022270739A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2018216866A1 (ko) 리튬-황 전지용 전해액 및 이를 포함하는 리튬-황 전지
WO2021194231A1 (ko) 리튬-황 전지용 전해질 및 이를 포함하는 리튬-황 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022816462

Country of ref document: EP

Effective date: 20230316

WWE Wipo information: entry into national phase

Ref document number: 2023524949

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE