WO2022255150A1 - 樹脂組成物および光学素子 - Google Patents

樹脂組成物および光学素子 Download PDF

Info

Publication number
WO2022255150A1
WO2022255150A1 PCT/JP2022/021136 JP2022021136W WO2022255150A1 WO 2022255150 A1 WO2022255150 A1 WO 2022255150A1 JP 2022021136 W JP2022021136 W JP 2022021136W WO 2022255150 A1 WO2022255150 A1 WO 2022255150A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
alicyclic structure
strontium carbonate
mass
carbonate powder
Prior art date
Application number
PCT/JP2022/021136
Other languages
English (en)
French (fr)
Inventor
太一 澤口
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN202280030334.6A priority Critical patent/CN117203286A/zh
Priority to KR1020237037530A priority patent/KR20240015066A/ko
Priority to JP2023525738A priority patent/JPWO2022255150A1/ja
Priority to EP22815900.0A priority patent/EP4349921A1/en
Publication of WO2022255150A1 publication Critical patent/WO2022255150A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L45/00Compositions of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to resin compositions and optical elements.
  • Optical members are required to have excellent optical properties such as transparency and birefringence, as well as weather resistance such as moisture resistance and heat resistance.
  • Materials for such optical members include, for example, alicyclic structure-containing polymers such as cyclic olefin polymers, polycarbonate, polyethylene terephthalate, and polyacrylate.
  • Patent Document 1 proposes the use of an optical resin containing alkaline earth metal carbonate fine powder in order to adjust the birefringence of an optical member such as a film that is used in a bent state.
  • an optical member such as a film that is used in a bent state.
  • the alkaline earth metal carbonate fine powder itself is a birefringent powder, the birefringence of the optical member can be controlled.
  • resin compositions used for forming optical elements such as lenses are required to exhibit high transparency and low birefringence when molded into optical elements.
  • optical elements such as lenses can be formed by, for example, injection molding resin compositions
  • resin compositions are required to be able to suppress the occurrence of molding defects such as stringiness. .
  • the present invention provides a resin composition capable of forming an optical element having high transparency and low birefringence while suppressing the occurrence of molding defects such as stringiness, and an optical element obtained by molding the resin composition. intended to provide
  • the inventor of the present invention conducted intensive studies with the aim of solving the above problems. Further, the present inventors found that a resin composition containing an alicyclic structure-containing polymer and strontium carbonate powder, wherein the content ratio of the strontium carbonate powder is within a specific range, prevents molding defects such as stringiness. The present inventors have newly found that it is possible to form an optical element having high transparency and low birefringence while suppressing the occurrence of such a phenomenon, and completed the present invention.
  • an object of the present invention is to solve the above problems.
  • the resin composition wherein the content of the strontium carbonate powder in the composition is 0.2% by mass or more and 1.0% by mass or less. With such a resin composition, it is possible to form an optical element having high transparency and low birefringence while suppressing molding defects such as stringiness.
  • the strontium carbonate powder preferably contains strontium carbonate nanoparticles and a surfactant adhering to the surface of the strontium carbonate nanoparticles.
  • a strontium carbonate powder can improve the dispersibility of the strontium carbonate powder in the resin composition.
  • the resin composition of [1] or [2] above has a melt flow rate of 40 g/10 min or more measured at a temperature of 280° C. and a load of 21.18 N in accordance with JIS K6719. preferable. If the melt flow rate of the resin composition is equal to or higher than the lower limit, the birefringence of the resulting optical element can be further reduced. Moreover, if the resin composition has a melt flow rate equal to or higher than the lower limit, it is possible to suppress the occurrence of molding defects such as weld lines.
  • the strontium carbonate powder preferably has an aspect ratio (ratio of average major axis/average minor axis) of 1.1 or more. If the aspect ratio of the strontium carbonate powder is at least the above lower limit, the birefringence of the resulting optical element can be effectively suppressed.
  • the average major axis and average minor axis of the strontium carbonate powder are measured by a method of automatically processing a scanning electron micrograph of the strontium carbonate powder.
  • the strontium carbonate powder preferably has an average diameter of 10 nm or more and 100 nm or less. If the average diameter of the strontium carbonate powder is at least the above lower limit, it is possible to control the decrease in transparency of the resulting optical element. On the other hand, if the average diameter of the strontium carbonate powder is equal to or less than the above upper limit, the surface of the obtained optical element can be kept smooth.
  • optical element of the present invention is obtained by molding the resin composition according to any one of [1] to [5] above.
  • a resin composition capable of forming an optical element having high transparency and low birefringence while suppressing the occurrence of molding defects such as stringiness, and an optical element obtained by molding the resin composition. can provide
  • the resin composition of the present invention contains an alicyclic structure-containing polymer, strontium carbonate powder, and optionally other compounding agents.
  • an alicyclic structure-containing polymer refers to a polymer obtained by polymerizing one or more alicyclic structure-containing monomers and/or a hydride thereof.
  • the alicyclic structure-containing monomer is polymerized to obtain the alicyclic structure-containing polymer, only the alicyclic structure-containing monomer may be polymerized, or the alicyclic structure-containing monomer may be polymerized may be copolymerized with a monomer other than the alicyclic structure-containing monomer. That is, in the present specification, an alicyclic structure-containing polymer includes structural units derived from an alicyclic structure-containing monomer, and optionally other monomers other than the alicyclic structure-containing monomer. may contain structural units derived from
  • alicyclic structure-containing monomer examples include but 1-ring (monocyclic), 2-, 3-, 4-, and 5- or more-ring alicyclic structure-containing monomers, and Derivatives of these having substituents on the ring are included.
  • Monocyclic (monocyclic) alicyclic structure-containing monomers include, but are not limited to, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclopentadiene, 1,3-cyclohexadiene, and the like. Two or more of these alicyclic structure-containing monomers may be combined for the monocyclic alicyclic structure-containing monomer.
  • the bicyclic alicyclic structure-containing monomer is not particularly limited, but bicyclo[2.2.1]hept-2-ene (common name: norbornene, hereinafter sometimes abbreviated as "NB").
  • NB norbornene
  • the tricyclic alicyclic structure-containing monomer is not particularly limited, but tricyclo[5.2.1.0 2,6 ]deca-3,8-diene (common name: dicyclopentadiene, hereinafter referred to as "DCP"), tricyclo[5.2.1.0 2,6 ]dec-3-ene, tricyclo[6.2.1.0 2,7 ]undeca-3,9-diene , tricyclo[6.2.1.0 2,7 ]undec-4,9-diene, tricyclo[6.2.1.0 2,7 ]undec-9-ene, 5-cyclopentyl-bicyclo[2.2 .1]hept-2-ene, 5-cyclohexyl-bicyclo[2.2.1]hept-2-ene, 5-cyclohexenylbicyclo[2.2.1]hept-2-ene, 5-phenyl-bicyclo [2.2.1] Hept-2-ene and the like. Two or more of these alicyclic structure-containing monomers may be combined for the tricyclic
  • the 4-ring alicyclic structure-containing monomer is not particularly limited, but may be tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene (also simply referred to as “tetracyclododecene”; hereinafter sometimes abbreviated as “TCD”), 9-methyltetracyclo[6.2.1.1 3, 6 . 0 2,7 ]dodeca-4-ene, 9-ethyltetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene (hereinafter sometimes abbreviated as “ETD”), 9-methylidenetetracyclo[6.2.1.1 3,6 .
  • TCD tetracyclododecene
  • ETD 9-methyltetracyclo[6.2.1.1 3,6 .
  • the 4-ring alicyclic structure-containing monomer is at least one or two selected from the group consisting of tetracyclododecene and 1,4-methano-1,4,4a,9a-tetrahydrofluorene. More than one species of monomer is preferred.
  • the alicyclic structure-containing monomer having five or more rings is not particularly limited, but (E) 9-cyclopentyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene, 9-cyclohexyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene, 9-cyclohexenyl-tetracyclo[6.2.1.1 3,6 . 0 2,7 ]dodeca-4-ene, pentacyclo[6.6.1.1 3,6 . 0 2, 7 . 0 9,14 ]-4-hexadecene, pentacyclo[6.5.1.1 3,6 . 0 2, 7 .
  • alicyclic structure-containing monomer having five or more rings may be a combination of two or more of these alicyclic structure-containing monomers.
  • the substituent that the above derivative has on the ring is not particularly limited, but examples thereof include an alkyl group, an alkylene group, a vinyl group, an alkoxycarbonyl group, and an alkylidene group.
  • alicyclic structure-containing monomers are not particularly limited as long as they are copolymerizable with the alicyclic structure-containing monomers.
  • examples include ethylene, propylene, 1-butene, ⁇ -olefins having 2 to 20 carbon atoms such as 1-pentene and 1-hexene, and derivatives thereof; 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, and non-conjugated dienes such as 1,7-octadiene.
  • ⁇ -olefins are preferred, and ethylene is particularly preferred.
  • the alicyclic structure-containing polymer when obtaining an alicyclic structure-containing polymer by polymerizing an alicyclic structure-containing monomer and a monomer other than the alicyclic structure-containing monomer, the alicyclic structure
  • the mass ratio of the amount of other monomer used to the amount of contained monomer (other monomer/alicyclic structure-containing monomer) is 30/30 from the viewpoint of transparency and birefringence. It is preferably 70 or less, more preferably 20/80 or less, even more preferably 10/90 or less, and particularly preferably 1/99 or less.
  • the alicyclic structure-containing polymer is a polymer of an alicyclic structure-containing monomer, that is, the mass ratio of the amount of the other monomer used to the amount of the alicyclic structure-containing monomer used ( Other monomer/alicyclic structure-containing monomer) is preferably 0/100.
  • the alicyclic structure-containing polymer when obtaining an alicyclic structure-containing polymer by polymerizing an alicyclic structure-containing monomer and a monomer other than the alicyclic structure-containing monomer, the alicyclic
  • the mass ratio of the amount of the other monomer used to the amount of the structure-containing monomer used (other monomer/alicyclic structure-containing monomer) is preferably 1/99 or more, and 3/ It is more preferably 97 or more, further preferably 5/95 or more, preferably 70/30 or less, more preferably 50/50 or less, and further preferably 40/60 or less. preferable.
  • the alicyclic structure-containing polymer is, for example, a polymer obtained by addition polymerization of an alicyclic structure-containing monomer (an alicyclic structure-containing addition polymer).
  • a polymer obtained by ring polymerization (an alicyclic structure-containing ring-opening polymer) may also be used.
  • an alicyclic structure-containing ring-opening polymer is preferable because of its excellent mechanical strength.
  • the alicyclic structure-containing ring-opening polymer can be obtained by polymerizing one or more alicyclic structure-containing monomers having two or more rings.
  • the above-mentioned alicyclic structure-containing ring-opening polymer is, for example, a method using a metathesis reaction catalyst (ring-opening polymerization catalyst) such as a ruthenium carbene complex catalyst described in WO 2010/110323, and JP-A-2015- It can be produced by a method using a ring-opening polymerization catalyst such as a tungsten (phenylimide) tetrachloride/tetrahydrofuran complex described in JP-A-54885.
  • a metathesis reaction catalyst ring-opening polymerization catalyst
  • a ruthenium carbene complex catalyst described in WO 2010/110323
  • JP-A-2015- JP-A-2015- It can be produced by a method using a ring-opening polymerization catalyst such as a tungsten (phenylimide) tetrachloride/tetrahydrofuran complex described in JP-A-54885.
  • the above-mentioned alicyclic structure-containing addition polymer can be produced by a conventionally known polymerization method. It can be produced by a method using a system or the like.
  • the alicyclic structure-containing polymer may be an alicyclic structure-containing addition polymer, an alicyclic structure-containing ring-opening polymer, or a hydride thereof. Hydrides (hereinafter, hydrides of alicyclic structure-containing addition polymers and hydrides of alicyclic structure-containing ring-opening polymers may be collectively referred to as "alicyclic structure-containing polymer hydrides" ) is preferred.
  • the alicyclic structure-containing polymer is particularly preferably a hydride of an alicyclic structure-containing ring-opening polymer obtained by hydrogenating an alicyclic structure-containing ring-opening polymer.
  • Examples of the method for producing a hydrogenated alicyclic structure-containing ring-opening polymer by hydrogenating an alicyclic structure-containing ring-opening polymer include, for example, a method using a hydrogenation catalyst described in WO 2010/110323. is mentioned. Further, for example, after producing an alicyclic structure-containing polymer using the ruthenium carbene complex catalyst described above as a ring-opening polymerization catalyst, the ruthenium carbene catalyst is used as it is as a hydrogenation catalyst, and the alicyclic structure-containing An alicyclic structure-containing ring-opening polymer hydride can also be produced by hydrogenating the ring-opening polymer.
  • the hydrogenation rate of the hydrogenated alicyclic structure-containing polymer is preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more.
  • the hydrogenation rate of the hydrogenated alicyclic structure-containing polymer can be adjusted, for example, by changing the hydrogenation reaction conditions. In this specification, the hydrogenation rate of the hydrogenated alicyclic structure-containing polymer can be specified by 1 H-NMR measurement.
  • the glass transition temperature (hereinafter sometimes abbreviated as “Tg”) of the alicyclic structure-containing polymer is preferably 70° C. or higher, and preferably 100° C. or higher, although it varies depending on the type of polymer. more preferably 130° C. or higher, preferably 300° C. or lower, more preferably 250° C. or lower, and even more preferably 200° C. or lower. If the Tg of the alicyclic structure-containing polymer is at least the above lower limit, an optical element having high heat resistance can be obtained.
  • Tg of the alicyclic structure-containing polymer is equal to or less than the above upper limit, it is possible to prevent the molding temperature of the resin composition from becoming too high, and to prevent the resin composition from burning.
  • Tg is measured using a differential scanning calorimeter under conditions of a temperature increase rate of 10° C./min in accordance with JIS K7121.
  • DSC6220 manufactured by SII Nano Technology can be used as a differential scanning calorimeter.
  • the weight average molecular weight (hereinafter sometimes abbreviated as "Mw") of the alicyclic structure-containing polymer is preferably 5,000 or more, more preferably 8,000 or more. 000 or more, preferably 40,000 or less, more preferably 35,000 or less, and even more preferably 30,000 or less. If the Mw of the alicyclic structure-containing polymer is at least the above lower limit, the viscosity of the resin composition will be at a satisfactory height, and the moldability of the resin composition can be improved. On the other hand, when the Mw of the alicyclic structure-containing polymer is equal to or less than the above upper limit, the viscosity of the resin composition is satisfactorily low, and the residual stress of the resulting optical element can be reduced.
  • a weld line means a fine line generated at a portion where flows of molten resin join together and are fused in a mold during resin molding.
  • the Mw of the alicyclic structure-containing polymer is polyisoprene ( In the case of a tetrahydrofuran solution, it is a converted value of polystyrene).
  • the content of the alicyclic structure-containing polymer in the resin composition is preferably 90.0% by mass or more, more preferably 95.0% by mass or more, and 99.0% by mass or more. is more preferably 99.2% by mass or more, even more preferably 99.35% by mass or more, particularly preferably 99.35% by mass or more, preferably 99.8% by mass or less, and 99.7% by mass or less is more preferably 99.6% by mass or less.
  • Strontium carbonate powder contains strontium carbonate.
  • the strontium carbonate powder may contain auxiliary components such as surfactants described below in addition to strontium carbonate.
  • the content of strontium carbonate in the strontium carbonate powder is, for example, 30% by mass or more, preferably 35% by mass or more.
  • the strontium carbonate powder comprises nanoparticles formed from strontium carbonate (hereinafter also referred to as "strontium carbonate nanoparticles").
  • the content of the strontium carbonate powder in the resin composition is 0.2% by mass or more and 1.0% by mass or less.
  • the molding temperature is increased, the viscosity of the resin composition is lowered, and stringiness may occur during molding of the optical element. If the content of the strontium carbonate powder in the resin composition is 0.2% by mass or more, the resin composition can suppress the occurrence of stringiness even at high molding temperatures, and an optical element having low birefringence can be produced. can be formed. Moreover, since the molding temperature can be increased, the occurrence of weld lines can be suppressed when the resin composition is molded to obtain an optical element.
  • the resin composition when the content of the strontium carbonate powder in the resin composition is 1.0% by mass or less, the resin composition can suppress light scattering due to the powder and form an optical element with high transparency. Further, since the strontium carbonate powder has the effect of suppressing birefringence, if the content of the strontium carbonate powder in the resin composition is 1.0% by mass or less, an optical element having low birefringence can be formed. It was amazing what it could do. The reason for this is not necessarily clear, but according to Examples and Comparative Examples described later, when the content of the strontium carbonate powder is 1.0% by mass or less, an optical element having a low birefringence is obtained. It is clear that it can be formed.
  • the content of the strontium carbonate powder in the resin composition is preferably 0.3% by mass or more, more preferably 0.4% by mass or more, and preferably 0.8% by mass or less, It is more preferably 0.65% by mass or less.
  • the strontium carbonate powder has an aspect ratio (ratio of average major axis/average minor axis) of preferably 1.1 or more, more preferably 1.2 or more, even more preferably 1.3 or more, It is preferably 5.0 or less, more preferably 4.0 or less.
  • aspect ratio of the strontium carbonate powder is at least the above lower limit and below the above upper limit, the birefringence of the resulting optical element can be effectively suppressed.
  • the average diameter of the strontium carbonate powder is preferably 10 nm or more, more preferably 15 nm or more, preferably 100 nm or less, and more preferably 75 nm or less.
  • the average diameter of the strontium carbonate powder is at least the above lower limit, aggregation of particles can be suppressed, and deterioration in transparency of the resulting optical element can be controlled.
  • the average diameter of the strontium carbonate powder is equal to or less than the above upper limit, the surface of the obtained optical element can be kept smooth.
  • the average major axis and average minor axis of the strontium carbonate powder are measured by a method of automatic image processing of scanning electron microscope (hereinafter sometimes abbreviated as "SEM") photographs of the strontium carbonate powder.
  • SEM scanning electron microscope
  • the major axis of the strontium carbonate powder is measured as the length in the longitudinal direction (long side length) when the strontium carbonate powder is assumed to be rectangular.
  • the minor axis of the strontium carbonate powder is measured as the length in the lateral direction (the length of the minor side) when the strontium carbonate powder is regarded as a rectangle.
  • a rectangle with the smallest area is calculated by circumscribing the strontium carbonate powder of the image, and the major axis and minor axis are obtained from the lengths of the long sides and short sides.
  • the "average” means the average value obtained by measuring the major axis and minor axis of the strontium carbonate powder of the number (N number) with statistical reliability, and the number is usually It is 100 or more, preferably 300 or more, more preferably 500 or more.
  • the strontium carbonate powder preferably contains strontium carbonate nanoparticles and a surfactant attached to the surface of the strontium carbonate nanoparticles. Such a strontium carbonate powder can improve the dispersibility of the strontium carbonate powder in the resin composition.
  • the surfactant may be a compound that has a hydrophilic group, a hydrophobic group, and a group that forms an anion in water.
  • This compound is a compound in which the hydrophilic group is a polyoxyalkylene group, a hydrophobic group is bonded to one end of the polyoxyalkylene group, and a group that forms an anion in water is bonded to the other end of the polyoxyalkylene group.
  • the hydrophobic group is preferably an alkyl group or an aryl group, more preferably a phenyl group.
  • the group that forms an anion in water is preferably a carboxylic acid group, a sulfate group or a phosphate group.
  • the surfactant is preferably a phosphate ester in which the group that forms an anion in water is a phosphate group. Since phosphate esters have higher heat resistance than carboxylate esters and sulfate esters, resin compositions containing strontium carbonate nanoparticles surface-treated with phosphate esters are colored due to thermal decomposition of surfactants. is unlikely to occur.
  • Phosphates include, for example, polyoxyethylene styrenated phenyl ether phosphates and polyoxyethylene alkyl ether phosphates.
  • the content of the surfactant is preferably 1 part by mass or more, more preferably 3 parts by mass or more, and preferably 40 parts by mass or less with respect to 100 parts by mass of the strontium carbonate nanoparticles. It is more preferably 30 parts by mass or less. If the content of the surfactant is at least the above lower limit, the dispersibility of the strontium carbonate powder in the resin composition can be further improved. On the other hand, if the content of the surfactant is equal to or less than the above upper limit, it is possible to suppress the surfactant from becoming a foreign substance during the production of the resin composition, thereby further improving the transparency of the resulting optical element.
  • the surfactant content of the strontium carbonate powder is measured by, for example, a thermogravimetric differential thermal analysis (hereinafter sometimes abbreviated as "TG-DTA") device.
  • TG-DTA thermogravimetric differential thermal analysis
  • a method for producing strontium carbonate powder includes, for example, the method described in JP-A-2021-47402.
  • the resin composition of the present invention may optionally contain other known compounding agents as long as the effects of the present invention are not impaired.
  • Other known compounding agents include lubricants, release agents, dispersing aids, lubricants, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, infrared absorbers, antistatic agents, dispersants, chlorine. Scavengers, flame retardants, crystallization nucleating agents, antifog agents, pigments, organic fillers, neutralizers, decomposing agents, metal deactivators, antifouling agents, antibacterial agents, thermoplastic elastomers and the like.
  • the resin composition of the present invention has a melt flow rate (hereinafter sometimes abbreviated as "MFR") measured at a temperature of 280° C. and a load of 21.18 N in accordance with JIS K6719 of 40 g/10 min. It is preferably 45 g/10 min or more, still more preferably 50 g/10 min or more, preferably 80 g/10 min or less, and more preferably 60 g/10 min or less. If the resin composition has an MFR equal to or higher than the lower limit, the birefringence of the obtained optical element can be further reduced, and the occurrence of molding defects such as weld lines can be suppressed.
  • MFR melt flow rate
  • the MFR of the resin composition can be adjusted by the MFR of the alicyclic structure-containing polymer, the content ratio of the alicyclic structure-containing polymer, and the like.
  • the resin composition of the present invention can form an optical element having high transparency and low birefringence while suppressing the occurrence of molding defects such as stringiness, it is particularly suitable for optical elements obtained by injection molding. can be used. That is, it is particularly preferable that the resin composition of the present invention is a resin composition for optical elements.
  • optical elements include optical lenses, diffraction gratings, filters, prisms, and the like.
  • the method for producing the resin composition of the present invention is not particularly limited.
  • the resin composition of the present invention can be produced by kneading an alicyclic structure-containing polymer and strontium carbonate powder.
  • the resin composition may be obtained, for example, in the form of resin pellets.
  • the kneading temperature is not particularly limited, but is, for example, 180° C. or higher, preferably 190° C. or higher, more preferably 200° C. or higher, and for example, 300° C. or lower and 290° C. or lower. It is preferably 280° C. or lower, and more preferably 280° C. or lower.
  • the resin composition of the present invention is produced by mixing an alicyclic structure-containing polymer with strontium carbonate powder and optional compounding agents at a high concentration and kneading to form a masterbatch. It can also be produced by mixing the formula structure-containing polymer in a desired proportion and then melt-kneading.
  • concentration of the strontium carbonate powder and various compounding agents in the masterbatch is not particularly limited, but is preferably 2 to 30 times, and preferably 4 to 25 times, the mass concentration in the final product. more preferred.
  • Mixing of the alicyclic structure-containing polymer, strontium carbonate powder, and compounding agent used as necessary is not particularly limited, but for example, mixing with a Henschel mixer, V blender, ribbon blender, tumbler blender, conical blender, etc. It can be done using a device. Further, after this mixing, the resin composition is obtained by melt-kneading with a single-screw extruder, a twin-screw extruder, a kneader, or the like, although not particularly limited.
  • the shape of the resin composition is not particularly limited, it is preferably in the form of granules, pulverized material, or pellets so that the optical element can be easily molded.
  • optical element of the present invention is obtained by molding the resin composition of the present invention. Since the optical element of the present invention is obtained by molding the resin composition of the present invention, it has high transparency and low birefringence. Moreover, since the resin composition of the present invention can suppress the occurrence of molding defects such as stringiness, the optical element of the present invention is preferably formed by injection molding the resin composition. Examples of optical elements include optical lenses, diffraction gratings, filters, and prisms.
  • the melting temperature during molding varies depending on the alicyclic structure-containing polymer and resin composition used, but is preferably 200° C. or higher, more preferably 250° C. or higher, and 300° C. or higher. is more preferably 400° C. or lower, and more preferably 350° C. or lower. If the melting temperature during molding is equal to or higher than the above lower limit, the residual stress of the optical element can be reduced, so that an optical element having lower birefringence can be obtained. In addition, the occurrence of molding defects such as weld lines can be suppressed. On the other hand, if the melting temperature during molding is equal to or lower than the above upper limit, it is possible to reduce resin burning of the resin composition, and an optical element having superior transparency can be obtained. In addition, it is possible to further suppress the occurrence of molding defects such as stringiness. In the injection molding of this specification, the melting temperature at the time of molding means the temperature of the resin composition in a molten state.
  • the mold temperature is preferably (Tg-30°C) or higher, where Tg (unit: °C) is the glass transition temperature of the alicyclic structure-containing polymer, and (Tg-20 ° C.) or more, more preferably (Tg ⁇ 10° C.) or more, preferably (Tg+15° C.) or less, more preferably (Tg+10° C.) or less, (Tg+5° C. ) or less.
  • the weight average molecular weight (Mw) of the alicyclic structure-containing polymer was measured by gel permeation chromatography (GPC) using cyclohexane as an eluent, and calculated as a standard polyisoprene equivalent.
  • GPC gel permeation chromatography
  • the measurement was performed using three columns (TSKgelG5000HXL, TSKgelG4000HXL and TSKgel G2000HXL manufactured by Tosoh Corporation) connected in series under conditions of a flow rate of 1.0 mL/min, a sample injection amount of 100 ⁇ L, and a column temperature of 40°C.
  • the glass transition temperature (Tg) of the alicyclic structure-containing polymer was measured using a differential scanning calorimeter (manufactured by SII Nanotechnology, "DSC6220") in accordance with JIS K7121 at a heating rate of 10°C/min. was measured under the conditions of
  • melt flow rate (MFR) of the resin composition was measured according to JIS K6719 under the conditions of a temperature of 280° C. and a load of 21.18 N (load of 2.16 kgf).
  • ⁇ Haze> Pellets of a resin composition containing an alicyclic structure-containing polymer are put into an injection molding machine (manufactured by Fanuc, product name "ROBOSHOT S2000i100A"), resin temperature 270 ° C., mold temperature (Tg-20) ° C., injection Injection molding was performed at a pressure of 80 MPa to produce a resin plate of length 65 mm, width 65 mm, and thickness 3 mm. Next, using this resin plate as a test piece, the haze in the 3 mm thickness direction of the test piece was measured using a turbidity meter (NDH7000SPII, manufactured by Nippon Denshoku Industries Co., Ltd.) according to the method of JIS K7105.
  • a turbidity meter NDH7000SPII, manufactured by Nippon Denshoku Industries Co., Ltd.
  • ⁇ Weld line> The surface of the lens obtained above was observed using an optical microscope (manufactured by Olympus, "BX60"), and the length of the weld line generated in the anti-gate direction was measured.
  • ⁇ Birefringence> The birefringence at the center of the lens obtained above was measured using a resin-molded lens inspection system ("WPA-100" manufactured by Photonics Lattice). A birefringence value is obtained as a value normalized by the measurement wavelength (543 nm). A smaller value indicates a lower birefringence.
  • diatomaceous earth manufactured by Showa Kagaku Kogyo Co., Ltd., "Radiolite (registered trademark) #500" is used as a filter bed, and a pressure filter (manufactured by IHI; "Funda Filter”) is used to remove hydrogen.
  • the polymerization reaction solution was pressure-filtered at a pressure of 0.25 MPa to obtain a colorless and transparent solution.
  • the alicyclic structure-containing polymer (A) had an Mw of 25,000, an Mw/Mn of 1.6, a hydrogenation rate of 99.9%, and a Tg of 141°C.
  • Mn means number average molecular weight.
  • alicyclic structure-containing polymer (B) was produced in the same manner as the alicyclic structure-containing polymer (A), except that the amount of 1-hexene used was 0.5 parts by mass.
  • the alicyclic structure-containing polymer (B) had an Mw of 26,500, an Mw/Mn of 1.7, a hydrogenation rate of 99.9%, and a Tg of 142°C.
  • a catalyst system comprising diphenylmethylidene-cyclopentadienylfluorenylzirconium dichloride as a catalyst (polymerization catalyst) and methylalumoxane (10% by mass toluene solution) as a cocatalyst was supplied to the continuous polymerization apparatus.
  • An addition polymer was obtained by keeping the temperature of the continuous polymerization apparatus at 70°C.
  • Pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (Ciba Specialty Co., Ltd.) is added as an antioxidant to this addition polymer in the stirring tank of the next step.
  • a catalyst system comprising diphenylmethylidene-cyclopentadienylindenylzirconium dichloride as a catalyst (polymerization catalyst) and methylalumoxane (10 mass % toluene solution) as a cocatalyst was supplied to the continuous polymerization apparatus.
  • An addition polymer was obtained by keeping the temperature of the continuous polymerization apparatus at 70°C.
  • Pentaerythrityl-tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate] (Ciba Specialty Co., Ltd.) is added as an antioxidant to this addition polymer in the stirring tank of the next step.
  • ⁇ Aging process> The obtained aqueous suspension of strontium carbonate was placed in a stainless steel tank and heat-treated at a temperature of 80° C. for 24 hours to grow needle-like strontium carbonate. Then, the mixture was allowed to cool to room temperature to produce an aqueous slurry of strontium carbonate nanoparticles.
  • TK Homomixer Mark II manufactured by Primix Co., Ltd.
  • the aqueous slurry after stirring and mixing was dried to obtain a surface-treated strontium carbonate powder.
  • a surface-treated strontium carbonate powder As a result of observing the obtained strontium carbonate powder with an electron microscope, it was confirmed to be acicular powder (average length: 60 nm).
  • Example 1 0.2 parts by mass of strontium carbonate powder was mixed with 99.8 parts by mass of pellets of the alicyclic structure-containing polymer (A). This mixture is kneaded using a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd., product name "TEM35B") at a resin temperature of 245 ° C. and a screw rotation speed of 180 rpm, extruded into strands, water-cooled, and then cut with a pelletizer. , and 4 mm long resin composition pellets were produced. Various measurements were performed using the resin composition pellets. Table 1 shows the results.
  • Example 2 Resin composition pellets were prepared in the same manner as in Example 1, except that 0.5 parts by mass of strontium carbonate powder was mixed with 99.5 parts by mass of pellets of the alicyclic structure-containing polymer (A). I made a measurement. Table 1 shows the results.
  • Example 3 Resin composition pellets were prepared in the same manner as in Example 1 except that 0.75 parts by mass of strontium carbonate powder was mixed with 99.25 parts by mass of pellets of the alicyclic structure-containing polymer (A). I made a measurement. Table 1 shows the results.
  • Example 4 Resin composition pellets were prepared in the same manner as in Example 1, except that 99 parts by mass of pellets of the alicyclic structure-containing polymer (A) were mixed with 1 part by mass of strontium carbonate powder, and various measurements were performed. . Table 1 shows the results.
  • Example 5 Alicyclic structure-containing polymer (B) was used instead of alicyclic structure-containing polymer (A), and strontium carbonate powder was added to 99.5 parts by mass of pellets of alicyclic structure-containing polymer (B). Resin composition pellets were prepared in the same manner as in Example 1, except that 0.5 part by mass was mixed, and various measurements were performed. Table 1 shows the results.
  • Comparative example 2 Resin composition pellets were prepared in the same manner as in Example 1, except that 0.1 part by mass of strontium carbonate powder was mixed with 99.9 parts by mass of pellets of the alicyclic structure-containing polymer (A). I made a measurement. Table 1 shows the results.
  • Example 6 0.2 parts by mass of strontium carbonate powder was mixed with 99.8 parts by mass of pellets of the alicyclic structure-containing polymer (C). This mixture is kneaded using a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd., product name "TEM35B") at a resin temperature of 240 ° C. and a screw rotation speed of 160 rpm, extruded into strands, water-cooled, and cut with a pelletizer. , and 4 mm long resin composition pellets were produced. Using the resin composition pellets, resin composition pellets were produced and various measurements were performed. Table 2 shows the results.
  • TEM35B twin-screw extruder
  • Example 7 Resin composition pellets were prepared in the same manner as in Example 6, except that 0.5 parts by mass of strontium carbonate powder was mixed with 99.5 parts by mass of pellets of the alicyclic structure-containing polymer (C). I made a measurement. Table 2 shows the results.
  • Example 8 Resin composition pellets were prepared in the same manner as in Example 6 except that 0.75 parts by mass of strontium carbonate powder was mixed with 99.25 parts by mass of pellets of the alicyclic structure-containing polymer (C). I made a measurement. Table 2 shows the results.
  • Example 9 Resin composition pellets were prepared in the same manner as in Example 6, except that 99 parts by mass of pellets of the alicyclic structure-containing polymer (C) were mixed with 1 part by mass of strontium carbonate powder, and various measurements were performed. . Table 2 shows the results.
  • Example 10 0.5 part by mass of strontium carbonate powder was mixed with 99.5 parts by mass of pellets of the alicyclic structure-containing polymer (D). This mixture is kneaded using a twin-screw extruder (manufactured by Toshiba Machine Co., Ltd., product name “TEM35B”) at a resin temperature of 245° C. and a screw rotation speed of 160 rpm, extruded into strands, water-cooled, and then cut with a pelletizer. , and 4 mm long resin composition pellets were produced. Using the resin composition pellets, resin composition pellets were produced and various measurements were performed. Table 2 shows the results.
  • TEM35B twin-screw extruder
  • Examples 1 to 10 are resin compositions capable of forming an optical element having high transparency and low birefringence while suppressing stringiness.
  • a resin composition capable of forming an optical element having high transparency and low birefringence while suppressing the occurrence of molding defects such as stringiness, and an optical element obtained by molding the resin composition. can provide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、糸引き等の成形不良の発生を抑制しつつ、高い透明性および低い複屈折を有する光学素子を形成可能な樹脂組成物を提供することを目的とする。本発明は、脂環式構造含有重合体と、炭酸ストロンチウム粉末とを含む、樹脂組成物であって、樹脂組成物中の前記炭酸ストロンチウム粉末の含有割合が、0.2質量%以上1.0質量%以下である、樹脂組成物である。

Description

樹脂組成物および光学素子
 本発明は、樹脂組成物および光学素子に関する。
 光学部材は、透明性および複屈折性等の光学特性、並びに耐湿性および耐熱性等の耐候性に優れることが求められている。このような光学部材の材料には、例えば、環状オレフィン重合体等の脂環式構造含有重合体、ポリカーボネート、ポリエチレンテレフタレート、ポリアクリレート等が用いられている。
 近年では、光学特性に更に優れる光学部材を得るために、種々の材料が提案されている。例えば、特許文献1では、屈曲した状態で用いるフィルム等の光学部材において、光学部材の複屈折を調整するために、アルカリ土類金属炭酸塩微粉末を含有する光学樹脂を用いることが提案されている。特許文献1によれば、アルカリ土類金属炭酸塩微粉末は、それ自体が複屈折性の粉末であるため、光学部材の複屈折を制御できる。
特開2021-47402号公報
 ここで、例えばレンズ等の光学素子の形成に用いられる樹脂組成物は、成形して光学素子にした際に高い透明性および低い複屈折を発揮することが求められている。
 また、レンズ等の光学素子は、樹脂組成物を例えば射出成形して形成し得るところ、このような樹脂組成物には、糸引き等の成形不良の発生を抑制し得ることも求められている。
 そこで、本発明は、糸引き等の成形不良の発生を抑制しつつ、高い透明性および低い複屈折を有する光学素子を形成可能な樹脂組成物、および該樹脂組成物を成形してなる光学素子を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、脂環式構造含有重合体と、炭酸ストロンチウム粉末とを含み、炭酸ストロンチウム粉末の含有割合を特定の範囲内とした樹脂組成物であれば、糸引き等の成形不良の発生を抑制しつつ、高い透明性および低い複屈折を有する光学素子を形成可能であることを新たに見出し、本発明を完成させた。
 即ち、この発明は上記課題を解決することを目的とするものであり、[1]本発明は、脂環式構造含有重合体と、炭酸ストロンチウム粉末とを含む樹脂組成物であって、前記樹脂組成物中の前記炭酸ストロンチウム粉末の含有割合が、0.2質量%以上1.0質量%以下である、樹脂組成物である。
 このような樹脂組成物であれば、糸引き等の成形不良の発生を抑制しつつ、高い透明性および低い複屈折を有する光学素子を形成可能である。
 [2]上記[1]の樹脂組成物において、炭酸ストロンチウム粉末は、炭酸ストロンチウムナノ粒子と、該炭酸ストロンチウムナノ粒子の表面に付着した界面活性剤とを含むことが好ましい。
 このような炭酸ストロンチウム粉末であれば、樹脂組成物中の炭酸ストロンチウム粉末の分散性を向上できる。
 [3]上記[1]または[2]の樹脂組成物は、JIS K6719に準拠して、280℃の温度および21.18Nの荷重において測定したメルトフローレートが、40g/10min以上であることが好ましい。
 上記メルトフローレートが上記下限以上の樹脂組成物であれば、得られる光学素子の複屈折をより低減できる。また、上記メルトフローレートが上記下限以上の樹脂組成物であれば、ウェルドライン等の成形不良の発生を抑制できる。
 [4]上記[1]~[3]のいずれかの樹脂組成物において、炭酸ストロンチウム粉末のアスペクト比(平均長径/平均短径の比)は、1.1以上であることが好ましい。
 炭酸ストロンチウム粉末のアスペクト比が上記下限以上であれば、得られる光学素子の複屈折を効果的に抑制できる。
 なお、本明細書において、炭酸ストロンチウム粉末の平均長径および平均短径は、炭酸ストロンチウム粉末の走査型電子顕微鏡写真を自動的に画像処理する方法で測定する。
 [5]上記[1]~[4]のいずれかの樹脂組成物において、炭酸ストロンチウム粉末の平均直径は、10nm以上100nm以下であることが好ましい。
 炭酸ストロンチウム粉末の平均直径が上記下限以上であれば、得られる光学素子の透明性低下を制御できる。一方、炭酸ストロンチウム粉末の平均直径が上記上限以下であれば、得られる光学素子の表面を平滑に保つことができる。
 [6]本発明の光学素子は、上記[1]~[5]のいずれかの樹脂組成物を成形してなるものである。
 本発明によれば、糸引き等の成形不良の発生を抑制しつつ、高い透明性および低い複屈折を有する光学素子を形成可能な樹脂組成物、および該樹脂組成物を成形してなる光学素子を提供できる。
実施例で作製した光学レンズを示す概略図である。
 以下、本発明の実施形態について、その詳細を説明する。
(樹脂組成物)
 本発明の樹脂組成物は、脂環式構造含有重合体と、炭酸ストロンチウム粉末とを含み、任意にその他の配合剤を更に含む。
<脂環式構造含有重合体>
 本明細書において、脂環式構造含有重合体は、1種または2種以上の脂環式構造含有単量体を重合して得られる重合体および/またはその水素化物を指す。脂環式構造含有単量体を重合して脂環式構造含有重合体を得る際には、脂環式構造含有単量体のみを重合してもよいし、脂環式構造含有単量体と、脂環式構造含有単量体以外のその他の単量体とを共重合してもよい。即ち、本明細書において、脂環式構造含有重合体は、脂環式構造含有単量体に由来する構造単位を含み、任意に、脂環式構造含有単量体以外のその他の単量体に由来する構造単位を含み得る。
 脂環式構造含有単量体の具体例としては、特に限定されないが、1環(単環)、2環、3環、4環、および5環以上の脂環式構造含有単量体、ならびに環に置換基を有するこれらの誘導体が挙げられる。
 1環(単環)の脂環式構造含有単量体としては、特に限定されないが、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロオクテン、シクロペンタジエン、1,3-シクロヘキサジエン等が挙げられる。1環の脂環式構造含有単量体は、これらの脂環式構造含有単量体を2種以上組み合わせてもよい。
 2環の脂環式構造含有単量体としては、特に限定されないが、ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:ノルボルネン、以下「NB」と略記することがある。)、5-メチル-ビシクロ[2.2.1]ヘプタ-2-エン、5,5-ジメチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクタデシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプタ-2-エン、5-プロペニル-ビシクロ[2.2.1]ヘプタ-2-エン等が挙げられる。2環の脂環式構造含有単量体は、これらの脂環式構造含有単量体を2種以上組み合わせてもよい。これらの中でも、2環の脂環式構造含有単量体は、ノルボルネンが好ましい。
 3環の脂環式構造含有単量体としては、特に限定されないが、トリシクロ[5.2.1.02,6]デカ-3,8-ジエン(慣用名:ジシクロペンタジエン、以下、「DCP」と略記することがある。)、トリシクロ[5.2.1.02,6]デカ-3-エン、トリシクロ[6.2.1.02,7]ウンデカ-3,9-ジエン、トリシクロ[6.2.1.02,7]ウンデカ-4,9-ジエン、トリシクロ[6.2.1.02,7]ウンデカ-9-エン、5-シクロペンチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキセニルビシクロ[2.2.1]ヘプタ-2-エン、5-フェニル-ビシクロ[2.2.1]ヘプタ-2-エン等が挙げられる。3環の脂環式構造含有単量体は、これらの脂環式構造含有単量体を2種以上組み合わせてもよい。
 4環の脂環式構造含有単量体としては、特に限定されないが、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(単に「テトラシクロドデセン」ともいう。以下、「TCD」と略記することがある。)、9-メチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン(以下、「ETD」と略記することがある。)、9-メチリデンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチリデンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ビニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-プロペニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう。以下、「MTF」と略記することがある。)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンともいう)等が挙げられる。4環の脂環式構造含有単量体は、これらの脂環式構造含有単量体を2種以上組み合わせてもよい。これらの中でも、4環の脂環式構造含有単量体は、テトラシクロドデセンおよび1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンからなる群から選択される少なくとも1種または2種以上の単量体が好ましい。
 5環以上の脂環式構造含有単量体としては、特に限定されないが、(E)9-シクロペンチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロヘキシル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロヘキセニル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、ペンタシクロ[6.6.1.13,6.02,7.09,14]-4-ヘキサデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]-4-ペンタデセン、ペンタシクロ[7.4.0.02,7.13,6.110,13]-4-ペンタデセン、9-フェニル-シクロペンチル-テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]-5-エイコセン、ヘプタシクロ[8.7.0.12,9.03,8.14,7.012,17.113,16]-14-エイコセン等が挙げられる。5環以上の脂環式構造含有単量体は、これらの脂環式構造含有単量体を2種以上組み合わせてもよい。
 上記の誘導体が環に有する置換基としては、特に限定されないが、例えば、アルキル基、アルキレン基、ビニル基、アルコキシカルボニル基、アルキリデン基等が挙げられる。
 脂環式構造含有単量体以外のその他の単量体としては、上記脂環式構造含有単量体と共重合可能であれば、特に限定されないが、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、および1-ヘキセン等の炭素数2~20のα-オレフィン並びにこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、および1,7-オクタジエン等の非共役ジエンが挙げられる。これらの中でも、α-オレフィンが好ましく、エチレンが特に好ましい。
 一実施形態において、脂環式構造含有単量体と、脂環式構造含有単量体以外のその他の単量体とを重合して脂環式構造含有重合体を得る場合、脂環式構造含有単量体の使用量に対するその他の単量体の使用量の質量比(その他の単量体/脂環式構造含有単量体)は、透明性および複屈折性の観点からは、30/70以下であることが好ましく、20/80以下であることがより好ましく、10/90以下であることが更に好ましく、1/99以下であることが特に好ましい。
 脂環式構造含有重合体は、脂環式構造含有単量体の重合体であること、即ち、脂環式構造含有単量体の使用量に対するその他の単量体の使用量の質量比(その他の単量体/脂環式構造含有単量体)が0/100であることが好ましい。
 別の実施形態において、脂環式構造含有単量体と、脂環式構造含有単量体以外のその他の単量体とを重合して脂環式構造含有重合体を得る場合、脂環式構造含有単量体の使用量に対するその他の単量体の使用量の質量比(その他の単量体/脂環式構造含有単量体)は、1/99以上であることが好ましく、3/97以上であることがより好ましく、5/95以上であることが更に好ましく、70/30以下であることが好ましく、50/50以下であることがより好ましく、40/60以下であることが更に好ましい。
 脂環式構造含有重合体は、例えば、脂環式構造含有単量体を付加重合して得られる重合体(脂環式構造含有付加重合体)でも、脂環式構造含有単量体を開環重合して得られる重合体(脂環式構造含有開環重合体)でもよい。中でも、機械的強度に優れるため、脂環式構造含有開環重合体が好ましい。
 なお、脂環式構造含有開環重合体は、2環以上の脂環式構造含有単量体を1種または2種以上重合して得ることができる。
 上述した脂環式構造含有開環重合体は、例えば、国際公開第2010/110323号に記載のルテニウムカルベン錯体触媒等のメタセシス反応触媒(開環重合触媒)を用いる方法、および、特開2015-54885号公報に記載のタングステン(フェニルイミド)テトラクロリド・テトラヒドロフラン錯体等の開環重合触媒を用いる方法等により製造できる。
 上述した脂環式構造含有付加重合体は、従来公知の重合方法により製造でき、例えば、チタン化合物、ジルコニウム化合物およびバナジウム化合物等の付加重合触媒と、有機アルミニウム化合物等の助触媒とを組み合わせた触媒系を用いる方法等により製造できる。
 脂環式構造含有重合体は、脂環式構造含有付加重合体、脂環式構造含有開環重合体、または、それらの水素化物のいずれであってもよいが、機械的強度に優れるため、水素化物(以下、脂環式構造含有付加重合体の水素化物と、脂環式構造含有開環重合体の水素化物とをあわせて「脂環式構造含有重合体水素化物」と称することがある。)であることが好ましい。脂環式構造含有重合体は、脂環式構造含有開環重合体を水素化して得られた脂環式構造含有開環重合体水素化物であることが特に好ましい。
 脂環式構造含有開環重合体を水素化して脂環式構造含有開環重合体水素化物を製造する方法としては、例えば、国際公開第2010/110323号に記載の水素化触媒を用いる方法等が挙げられる。また、例えば、開環重合触媒として上述したルテニウムカルベン錯体触媒を用いて、脂環式構造含有重合体を製造した後、当該ルテニウムカルベン触媒をそのまま水素化触媒としても使用し、脂環式構造含有開環重合体を水素化して脂環式構造含有開環重合体水素化物を製造することもできる。
 脂環式構造含有重合体水素化物の水素化率は、90%以上であることが好ましく、95%以上であることがより好ましく、99%以上であることが更に好ましい。
 脂環式構造含有重合体水素化物の水素化率が上記下限以上であれば、耐候性および耐熱性を向上できる。脂環式構造含有重合体水素化物の水素化率は、例えば、水素化反応の条件を変更することで調整できる。
 なお、本明細書において、脂環式構造含有重合体水素化物の水素化率は、H-NMR測定により特定できる。
 脂環式構造含有重合体のガラス転移温度(以下、「Tg」と略記することがある。)は、重合体の種類によっても異なるが、70℃以上であることが好ましく、100℃以上であることがより好ましく、130℃以上であることが更に好ましく、300℃以下であることが好ましく、250℃以下であることがより好ましく、200℃以下であることが更に好ましい。
 脂環式構造含有重合体のTgが上記下限以上であれば、高い耐熱性を有する光学素子が得られる。一方、脂環式構造含有重合体のTgが上記上限以下であれば、樹脂組成物の成形温度が高くなりすぎることを抑制でき、樹脂組成物の樹脂焼けを抑制できる。
 なお、本明細書において、Tgは、JIS K7121に準拠して、示差走査熱量分析計を用いて、昇温速度10℃/分の条件で測定する。示差走査熱量分析計としては、SIIナノテクノロジー社製のDSC6220を用いることができる。
 脂環式構造含有重合体の重量平均分子量(以下、「Mw」と略記することがある。)は、5,000以上であることが好ましく、8,000以上であることがより好ましく、10,000以上であることが更に好ましく、40,000以下であることが好ましく、35,000以下であることがより好ましく、30,000以下であることが更に好ましい。
 脂環式構造含有重合体のMwが上記下限以上であれば、樹脂組成物の粘性が良好な高さとなり、樹脂組成物の成形性を向上できる。一方、脂環式構造含有重合体のMwが上記上限以下であれば、樹脂組成物の粘性が良好な低さとなり、得られる光学素子の残存応力を低減でき、この結果、光学素子の複屈折をより低減できる。また、ウェルドライン等の成形不良の発生を抑制できる。なお、本明細書において、ウェルドラインとは、樹脂の成形において、金型内で溶融樹脂の流れが合流して融着した部分に発生する細い線を意味する。
 なお、本明細書において、脂環式構造含有重合体のMwは、シクロヘキサン溶液(脂環式構造含有重合体が溶解しない場合はテトラヒドロフラン溶液)のゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン(テトラヒドロフラン溶液の場合にはポリスチレン)の換算値である。
 樹脂組成物中の脂環式構造含有重合体の含有割合は、90.0質量%以上であることが好ましく、95.0質量%以上であることがより好ましく、99.0質量%以上であることが更に好ましく、99.2質量%以上であることが更により好ましく、99.35質量%以上であることが特に好ましく、99.8質量%以下であることが好ましく、99.7質量%以下であることがより好ましく、99.6質量%以下であることが更に好ましい。
<炭酸ストロンチウム粉末>
 炭酸ストロンチウム粉末は、炭酸ストロンチウムを含むものである。炭酸ストロンチウム粉末は、炭酸ストロンチウム以外に後述の界面活性剤等の補助的な成分を含んでもよい。炭酸ストロンチウム粉末中の炭酸ストロンチウムの含有割合は、例えば30質量%以上であり、35質量%以上であることが好ましい。
 一実施形態において、炭酸ストロンチウム粉末は、炭酸ストロンチウムから形成されたナノ粒子(以下、「炭酸ストロンチウムナノ粒子」ともいう)を含むものである。
 本発明の樹脂組成物において、樹脂組成物中の炭酸ストロンチウム粉末の含有割合は、0.2質量%以上1.0質量%以下である。このような樹脂組成物であれば、糸引き等の成形不良の発生を抑制しつつ、高い透明性および低い複屈折を有する光学素子を形成可能である。その理由は、以下の通りであると考えられる。
 樹脂組成物を成形して光学素子を得る際には、光学素子の残存応力を低減して複屈折を低くするために、比較的高い温度で成形することが望まれる。その一方で、成形温度を高くすると、樹脂組成物の粘性が低下し、光学素子の成形時に糸引きが発生する場合がある。樹脂組成物中の炭酸ストロンチウム粉末の含有割合が0.2質量%以上であれば、樹脂組成物は、高い成形温度であっても糸引きの発生を抑制でき、低い複屈折を有する光学素子を形成できる。また、成形温度を高くすることができるため、樹脂組成物を成形して光学素子を得る際に、ウェルドラインの発生を抑制できる。
 一方、樹脂組成物中の炭酸ストロンチウム粉末の含有割合が1.0質量%以下であれば、樹脂組成物は、粉末による光の散乱を抑制でき、高い透明性を有する光学素子を形成できる。また、炭酸ストロンチウム粉末は複屈折を抑制する効果を有するものであるところ、樹脂組成物中の炭酸ストロンチウム粉末の含有割合が1.0質量%以下であると、低い複屈折を有する光学素子の形成できることは驚くべきことであった。この理由については必ずしも明らかとはなっていないが、後述の実施例および比較例によれば、炭酸ストロンチウム粉末の含有割合を1.0質量%以下であるときに、低い複屈折を有する光学素子の形成できることは明らかである。
 樹脂組成物中の炭酸ストロンチウム粉末の含有割合は、0.3質量%以上であることが好ましく、0.4質量%以上であることがより好ましく、0.8質量%以下であることが好ましく、0.65質量%以下であることがより好ましい。
 炭酸ストロンチウム粉末のアスペクト比(平均長径/平均短径の比)は、1.1以上であることが好ましく、1.2以上であることがより好ましく、1.3以上であることが更に好ましく、5.0以下であることが好ましく、4.0以下であることがより好ましい。
 炭酸ストロンチウム粉末のアスペクト比が上記下限以上および上記上限以下であれば、得られる光学素子の複屈折を効果的に抑制できる。
 炭酸ストロンチウム粉末の平均直径は、10nm以上であることが好ましく、15nm以上であることがより好ましく、100nm以下であることが好ましく、75nm以下であることがより好ましい。
 炭酸ストロンチウム粉末の平均直径が上記下限以上であれば、粒子の凝集を抑制でき、得られる光学素子の透明性低下を制御できる。一方、炭酸ストロンチウム粉末の平均直径が上記上限以下であれば、得られる光学素子の表面を平滑に保つことができる。
 炭酸ストロンチウム粉末の平均長径および平均短径は、炭酸ストロンチウム粉末の走査型電子顕微鏡(以下、「SEM」と略記することがある。)写真を自動的に画像処理する方法で測定する。炭酸ストロンチウム粉末の長径は、炭酸ストロンチウム粉末を長方形とみなしたときの長手方向の長さ(長辺の長さ)として測定する。また、炭酸ストロンチウム粉末の短径は、炭酸ストロンチウム粉末を長方形とみなしたときの短手方向の長さ(短辺の長さ)として測定する。具体的には、画像の炭酸ストロンチウム粉末に外接し、面積が最少となる長方形を算出し、その長辺および短辺の長さから長径および短径を求める。さらに、「平均」とは、統計学上の信頼性のある個数(N数)の炭酸ストロンチウム粉末の長径および短径を測定して得られた平均値を意味し、その個数としては、通常は100個以上であり、300個以上であることが好ましく、500個以上であることがより好ましい。
 炭酸ストロンチウム粉末は、炭酸ストロンチウムナノ粒子と、該炭酸ストロンチウムナノ粒子の表面に付着した界面活性剤とを含むことが好ましい。このような炭酸ストロンチウム粉末であれば、樹脂組成物中の炭酸ストロンチウム粉末の分散性を向上できる。
 界面活性剤は、親水性基と疎水性基とを有し、更に水中でアニオンを形成する基を有する化合物でもよい。この化合物は、親水性基がポリオキシアルキレン基であって、このポリオキシアルキレン基の一方の末端に疎水性基が結合し、他方の末端に水中でアニオンを形成する基が結合している化合物であることが好ましい。疎水性基は、アルキル基またはアリール基であることが好ましく、フェニル基であることがより好ましい。水中でアニオンを形成する基は、カルボン酸基、硫酸基またはリン酸基であることが好ましい。
 界面活性剤は、水中でアニオンを形成する基がリン酸基であるリン酸エステルであることが好ましい。リン酸エステルは、カルボン酸エステルおよび硫酸エステルと比較して耐熱性が高いため、リン酸エステルで表面処理されている炭酸ストロンチウムナノ粒子を添加した樹脂組成物は、界面活性剤の熱分解による着色が起こりにくい。リン酸エステルとしては、例えば、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステルおよびポリオキシエチレンアルキルエーテルリン酸エステルが挙げられる。
 界面活性剤の含有量は、炭酸ストロンチウムナノ粒子100質量部に対して、1質量部以上であることが好ましく、3質量部以上であることがより好ましく、40質量部以下であることが好ましく、30質量部以下であることがより好ましい。
 界面活性剤の含有量が上記下限以上であれば、樹脂組成物中の炭酸ストロンチウム粉末の分散性をより向上できる。一方、界面活性剤の含有量が上記上限以下であれば、樹脂組成物の製造時において、界面活性剤が異物となることが抑制され、得られる光学素子の透明性をより向上できる。
 なお、本明細書において、炭酸ストロンチウム粉末の界面活性剤の含有量は、例えば、熱重量示差熱分析(以下、「TG-DTA」と略記することがある。)装置によって測定する。
 炭酸ストロンチウム粉末を製造する方法としては、例えば、特開2021-47402号公報に記載の方法が挙げられる。
<その他の配合剤>
 本発明の樹脂組成物は、必要に応じて、その他の公知の配合剤を発明の効果が損なわれない範囲で含んでもよい。その他の公知の配合剤としては、滑剤、離型剤、分散助剤、潤滑剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、赤外線吸収剤、帯電防止剤、分散剤、塩素捕捉剤、難燃剤、結晶化核剤、防曇剤、顔料、有機物充填材、中和剤、分解剤、金属不活性化剤、汚染防止材、抗菌剤、熱可塑性エラストマー等が挙げられる。
<樹脂組成物の物性>
 本発明の樹脂組成物は、JIS K6719に準拠して、280℃の温度および21.18Nの荷重において測定したメルトフローレート(以下、「MFR」と略記することがある。)が、40g/10min以上であることが好ましく、45g/10min以上であることがより好ましく、50g/10min以上であることが更に好ましく、80g/10min以下であることが好ましく、60g/10min以下であることがより好ましい。
 上記MFRが上記下限以上の樹脂組成物であれば、得られる光学素子の複屈折をより低減でき、ウェルドライン等の成形不良の発生を抑制できる。一方、上記MFRが上記上限以下であれば、樹脂組成物の成形性を向上できる。
 樹脂組成物のMFRは、脂環式構造含有重合体のMFR、脂環式構造含有重合体の含有割合等により調整できる。
<樹脂組成物の用途>
 本発明の樹脂組成物は、糸引き等の成形不良の発生を抑制しつつ、高い透明性および低い複屈折を有する光学素子を形成可能であるため、射出成形により得られる光学素子に特に好適に用いることができる。即ち、本発明の樹脂組成物は、光学素子用樹脂組成物であることが特に好ましい。このような光学素子としては、光学レンズ、回折格子、フィルター、プリズム等が挙げられる。
(樹脂組成物の製造方法および形態)
 本発明の樹脂組成物の製造方法は、特に限定されない。例えば、本発明の樹脂組成物は、脂環式構造含有重合体と炭酸ストロンチウム粉末とを混練することにより製造できる。樹脂組成物は、例えば、樹脂ペレットの形態で得てもよい。混練の温度は、特に限定されないが、例えば180℃以上であり、190℃以上であることが好ましく、200℃以上であることがより好ましく、例えば300℃以下であり、290℃以下であることが好ましく、280℃以下であることがより好ましい。
 本発明の樹脂組成物は、脂環式構造含有重合体に、炭酸ストロンチウム粉末および必要に応じて用いる配合剤を高濃度で混合し、混練してマスターバッチ化し、その後、該マスターバッチと脂環式構造含有重合体とを所望の割合で混合し、次いで溶融混練することによっても製造できる。
 マスターバッチ中の炭酸ストロンチウム粉末、および各種配合剤の濃度は、特に限定されないが、最終生成物中の質量濃度の2倍以上30倍以下であることが好ましく、4以上25倍以下であることがより好ましい。
 脂環式構造含有重合体と、炭酸ストロンチウム粉末と、必要に応じて用いる配合剤との混合は、特に限定されないが、例えば、ヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダー、コニカルブレンダー等の混合器を用いて行うことができる。更にこの混合後は、特に限定されないが、一軸押出機、二軸押出機、ニーダー等により溶融混練することによって樹脂組成物が得られる。
 樹脂組成物の形状は、特に限定されないが、光学素子を成形しやすいように、造粒状もしくは粉砕物、またはペレット状であることが好ましい。
(光学素子)
 本発明の光学素子は、本発明の樹脂組成物を成形してなるものである。本発明の光学素子は、本発明の樹脂組成物を成形してなるものであるため、高い透明性および低い複屈折を有する。また、本発明の樹脂組成物は糸引き等の成形不良の発生を抑制できるため、本発明の光学素子は樹脂組成物を射出成形してなるものであることが好ましい。光学素子としては、例えば、光学レンズ、回折格子、フィルター、プリズム等が挙げられる。
 成形時の溶融温度は、用いられる脂環式構造含有重合体および樹脂組成物によっても異なるが、200℃以上であることが好ましく、250℃以上であることがより好ましく、300℃以上であることが更に好ましく、400℃以下であることが好ましく、350℃以下であることがより好ましい。
 成形時の溶融温度が上記下限以上であれば、光学素子の残存応力を低減できるため、より低い複屈折を有する光学素子が得られる。また、ウェルドライン等の成形不良の発生を抑制できる。
 一方、成形時の溶融温度が上記上限以下であれば、樹脂組成物の樹脂焼けを低減でき、より優れた透明性を有する光学素子が得られる。また、糸引き等の成形不良の発生をより抑制できる。
 なお、本明細書の射出成形において、成形時の溶融温度とは、溶融状態の樹脂組成物の温度を意味する。
 金型を使用する場合の金型温度は、脂環式構造含有重合体のガラス転移温度をTg(単位:℃)とすると、(Tg-30℃)以上であることが好ましく、(Tg-20℃)以上であることがより好ましく、(Tg-10℃)以上であることが更に好ましく、(Tg+15℃)以下であることが好ましく、(Tg+10℃)以下であることがより好ましく、(Tg+5℃)以下であることが更に好ましい。
 以下、実施例および比較例を挙げて、本発明をさらに詳細に説明する。なお、本発明はこれらの例に何ら限定されるものではない。
 以下の実施例および比較例において、各種の物性は、下記の方法に従って測定した。
<重量平均分子量>
 脂環式構造含有重合体の重量平均分子量(Mw)は、シクロヘキサンを溶離液とするゲル・パーミエーション・クロマトグラフィー(GPC)により測定し、標準ポリイソプレン換算値として求めた。
 標準ポリイソプレンとしては、東ソー社製の標準ポリイソプレン(Mw=602、1390、3920、8050、13800、22700、58800、71300、109000、280000)を用いた。
 測定は、カラム(東ソー社製、TSKgelG5000HXL、TSKgelG4000HXLおよびTSKgel G2000HXL)を3本直列に繋いで用い、流速1.0mL/分、サンプル注入量100μL、カラム温度40℃の条件で行った。
<ガラス転移温度>
 脂環式構造含有重合体のガラス転移温度(Tg)は、示差走査熱量分析計(SIIナノテクノロジー社製、「DSC6220」)を用いて、JIS K7121に準拠して、昇温速度10℃/分の条件で測定した。
<水素化率(炭素-炭素二重結合残存率)>
 脂環式構造含有重合体の水素化率は、H-NMR測定により特定した。
<メルトフローレート>
 樹脂組成物のメルトフローレート(MFR)は、JIS K6719に準拠して、温度280℃および荷重21.18N(荷重2.16kgf)の条件で測定した。
<ヘイズ>
 脂環式構造含有重合体を含む樹脂組成物のペレットを射出成形機(ファナック社製、製品名「ROBOSHOT S2000i100A」)に投入し、樹脂温度270℃、金型温度(Tg-20)℃、射出圧力80MPaの条件で射出成形し、長さ65mm×幅65mm×厚さ3mmの樹脂板を作製した。
 次いで、この樹脂板を試験片として、JIS K7105の方法に従って、濁度計(NDH7000SPII、日本電色工業社製)を用いて、試験片の3mm厚方向のヘイズを測定した。
<糸引き>
 脂環式構造含有重合体を含む樹脂組成物のペレットを射出成形機(ファナック社製、製品名「ROBOSHOT αS―50iA」)に投入し、金型を用いて、樹脂温度310℃、金型温度(Tg-5)℃、射出圧力50MPa、型開距離150mmの条件で射出成形し、凸面の曲率半径が5.73mm、凹面の曲率半径が3.01mm、大きさが直径4.5mm、レンズ部分(光学有効面)の直径が3mm、レンズ部分の中心厚が0.20mmの光学レンズ(図1)を作製した。なお、図1において、Aはゲート方向を示し、Bは反ゲート方向を示す。
 レンズを金型から取り出した際の成形機ノズルとスプルー部分との間に発生した糸引きの長さを測定した
<ウェルドライン>
 上記で得られたレンズの表面を、光学顕微鏡(オリンパス社製、「BX60」)を用いて観察し、反ゲート方向に生じたウェルドラインの長さを測定した。
<複屈折>
 上記で得られたレンズの中心部の複屈折を、樹脂成形レンズ検査システム(フォトニックスラティス社製、「WPA-100」)を用いて測定した。複屈折の値は、測定波長(543nm)で規格化した値として得られる。値が小さいほど、複屈折が低いことを示す。
 以下の実施例および比較例において、脂環式構造含有重合体(A)~(D)および炭酸ストロンチウム粉末としては、以下の方法で製造したものを用いた。
(脂環式構造含有重合体(A)の製造)
 乾燥し、窒素置換した重合反応器に、メタノテトラヒドロフルオレン(MTF)70質量%、テトラシクロドデセン(TCD)23質量%、およびノルボルネン(NB)7質量%からなる単量体混合物7質量部(重合に使用する単量体全量に対して1質量%)、脱水したシクロヘキサン1,600質量部、1-ヘキセン0.55質量部、ジイソプロピルエ-テル1.3質量部、イソブチルアルコール0.33質量部、トリイソブチルアルミニウム0.84質量部並びに六塩化タングステン0.66質量%シクロヘキサン溶液30質量部を入れ、55℃で10分間攪拌した。
 次いで、反応系を55℃に保持し、攪拌しながら、上記重合反応器中に上記単量体混合物693質量部と、六塩化タングステン0.77質量%シクロヘキサン溶液72質量部とを各々150分かけて連続的に滴下した。滴下終了後、これを30分間攪拌し、イソプロピルアルコール1.0質量部を添加して開環重合反応を停止させた。ガスクロマトグラフィーによって重合反応溶液を測定したしたところ、モノマーの重合体への転化率は100%であった。
 次いで、上記重合体を含有する重合反応溶液300質量部を攪拌器付きオートクレーブに移し、シクロヘキサン100質量部および珪藻土担持ニッケル触媒(日揮化学社製;「T8400RL」、ニッケル担持率58質量%)2.0質量部を加えた。オートクレーブ内を水素で置換した後、180℃、4.5MPaの水素圧力下で6時間反応させた。
 水素化反応終了後、珪藻土(昭和化学工業社製、「ラヂオライト(登録商標)♯500」)を濾過床として、加圧濾過器(IHI社製;「フンダフィルタ-」)を使用し、水素化反応終了後の重合反応溶液を圧力0.25MPaで加圧濾過して、無色透明な溶液を得た。
 次いで、得られた溶液に、上記水素化物100質量部当たり、酸化防止剤として、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製;「イルガノックス(登録商標)1010」)0.25質量部を加えて溶解させた。
 この溶液をフィルター(キュノーフィルター社製;「ゼータプラス(登録商標)30H」、孔径0.5~1μm)で濾過した後、濾液を金属ファイバー製フィルター(ニチダイ社製、孔径0.4μm)にて濾過して異物を除去した。
 次いで、上記で得られた濾液(溶液)から、円筒型濃縮乾燥機(日立製作所社製)を用いて、温度260℃、圧力1kPa以下で、溶媒であるシクロヘキサンおよびその他の揮発成分を除去し、残ったものを濃縮機に直結したダイから溶融状態でストランド状に押出し、水冷後、ペレタイザー(長田製作所社製;「OSP-2」)でカッティングして脂環式構造含有重合体(A)のペレットを得た。
 脂環式構造含有重合体(A)のMwは25,000、Mw/Mnは1.6であり、水素化率は99.9%、Tgは141℃であった。Mnは、数平均分子量を意味する。
(脂環式構造含有重合体(B)の製造)
 1-ヘキセンの使用量を0.5質量部にしたこと以外は、脂環式構造含有重合体(A)の製造方法と同様にして、脂環式構造含有重合体(B)を製造した。
 脂環式構造含有重合体(B)のMwは26,500、Mw/Mnは1.7であり、水素化率は99.9%、Tgは142℃であった。
(脂環式構造含有重合体(C)の製造)
 連続重合装置に、ノルボルネン、炭化水素系溶媒(重合溶媒)、エチレン、および水素を、ノルボルネンの供給量を52kg/h、重合溶媒の供給量を23kg/h、エチレンの供給量を4.0kg/h、水素の供給量を0.67g/hで供給した。同時に触媒(重合触媒)としてジフェニルメチリデン-シクロペンタジエニルフルオレニルジルコニウムジクロライド、助触媒としてメチルアルモキサン(10質量%トルエン溶液)からなる触媒系を連続重合装置に供給した。連続重合装置の温度を70℃に保ち付加重合体を得た。次工程の撹拌槽でこの付加重合体に対して、酸化防止剤として、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製;「イルガノックス(登録商標)1010」)を0.2質量%加え、続く脱溶媒工程において高温・減圧下で溶媒を除去した。溶融状態にある共重合体をストランド状に押出し、ペレタイザー(長田製作所社製;「OSP-2」)でカッティングして脂環式構造含有重合体(C)のペレットを得た。
 脂環式構造含有重合体(C)のTgは137℃であった。
(脂環式構造含有重合体(D)の製造)
 連続重合装置に、ノルボルネン、炭化水素系溶媒(重合溶媒)、エチレン、および水素を、ノルボルネンの供給量を36kg/h、重合溶媒の供給量を22kg/h、エチレンの供給量を3.0kg/h、水素の供給量を0.45g/hで供給した。同時に触媒(重合触媒)としてジフェニルメチリデン-シクロペンタジエニルインデニルジルコニウムジクロライド、助触媒としてメチルアルモキサン(10質量%トルエン溶液)からなる触媒系を連続重合装置に供給した。連続重合装置の温度を70℃に保ち付加重合体を得た。次工程の撹拌槽でこの付加重合体に対して、酸化防止剤として、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](チバ・スペシャルティ・ケミカルズ社製;「イルガノックス(登録商標)1010」)を0.2質量%加え、続く脱溶媒工程において高温・減圧下で溶媒を除去した。溶融状態にある共重合体をストランド状に押出し、ペレタイザー(長田製作所社製;「OSP-2」)でカッティングして脂環式構造含有重合体(D)のペレットを得た。
 脂環式構造含有重合体(D)のTgは、139℃であった。
(炭酸ストロンチウム粉末の製造)
<反応工程>
 水温10℃の純水3Lに水酸化ストロンチウム八水和物(特級試薬、純度:96質量%以上)366gを投入し、混合して濃度5.6質量%の水酸化ストロンチウム水性懸濁液を調製した。この水酸化ストロンチウム水性懸濁液に、DL-酒石酸(特級試薬、純度:99%以上)を加えて撹拌して水性懸濁液中に溶解させた。次いで、水酸化ストロンチウム水性懸濁液の液温を10℃に維持しつつ、撹拌を続けながら、水性懸濁液に二酸化炭素ガスを0.5L/分の流量(水酸化ストロンチウム1gに対して3mL/分の流量)にて、水性懸濁液のpHが7になるまで吹き込み、炭酸ストロンチウムを生成させた。その後、さらに30分間撹拌を続け、炭酸ストロンチウムの水性懸濁液を得た。
<熟成工程>
 得られた炭酸ストロンチウムの水性懸濁液をステンレスタンクに入れ、80℃の温度にて24時間加熱処理して炭酸ストロンチウムを針状に成長させた。その後、室温まで放冷して、炭酸ストロンチウムナノ粒子の水性スラリーを製造した。
<表面処理工程および乾燥工程>
 炭酸ストロンチウムナノ粒子の水性スラリー(濃度:5.8質量%)3500gをホモミキサー(プライミクス株式会社製、T.K.ホモミキサーMarkII)に投入し、ホモミキサーの撹拌羽根を7.85m/秒の周速で回転させて撹拌しながら、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステルを水性スラリーに56.8g(炭酸ストロンチウムナノ粒子100質量部に対して28質量部)添加して溶解させた。その後1時間撹拌混合を続けた。撹拌混合後の水性スラリーを乾燥して、表面処理がなされた炭酸ストロンチウム粉末を得た。得られた炭酸ストロンチウム粉末を電子顕微鏡で観察した結果、針状の粉末(平均長径:60nm)であることが確認された。
(実施例1)
 脂環式構造含有重合体(A)のペレット99.8質量部に対して炭酸ストロンチウム粉末を0.2質量部混合した。この混合物を、二軸押出機(東芝機械社製、製品名「TEM35B」)を用いて、樹脂温度245℃、スクリュー回転数180rpmで混練し、ストランド状に押出し、水冷した後、ペレタイザーによりカッティングし、4mm長さの樹脂組成物ペレットを作製した。
 樹脂組成物ペレットを用いて、各種測定を行った。結果を表1に示す。
(実施例2)
 脂環式構造含有重合体(A)のペレット99.5質量部に対して炭酸ストロンチウム粉末を0.5質量部混合した以外は、実施例1と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表1に示す。
(実施例3)
 脂環式構造含有重合体(A)のペレット99.25質量部に対して炭酸ストロンチウム粉末を0.75質量部混合した以外は、実施例1と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表1に示す。
(実施例4)
 脂環式構造含有重合体(A)のペレット99質量部に対して炭酸ストロンチウム粉末を1質量部混合した以外は、実施例1と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表1に示す。
(実施例5)
 脂環式構造含有重合体(A)に替えて脂環式構造含有重合体(B)を用い、脂環式構造含有重合体(B)のペレット99.5質量部に対して炭酸ストロンチウム粉末を0.5質量部混合した以外は、実施例1と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表1に示す。
(比較例1)
 脂環式構造含有重合体(A)のペレットに対して炭酸ストロンチウム粉末を混合しなかった以外は、実施例1と同様にして各種評価を行った。結果を表1に示す。
(比較例2)
 脂環式構造含有重合体(A)のペレット99.9質量部に対して炭酸ストロンチウム粉末を0.1質量部混合した以外は、実施例1と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表1に示す。
(比較例3)
 脂環式構造含有重合体(A)のペレット98.5質量部に対して炭酸ストロンチウム粉末を1.5質量部混合した以外は、実施例1と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表1に示す。
(実施例6)
 脂環式構造含有重合体(C)のペレット99.8質量部に対して炭酸ストロンチウム粉末を0.2質量部混合した。この混合物を、二軸押出機(東芝機械社製、製品名「TEM35B」)を用いて、樹脂温度240℃、スクリュー回転数160rpmで混練し、ストランド状に押出し、水冷した後、ペレタイザーによりカッティングし、4mm長さの樹脂組成物ペレットを作製した。
 樹脂組成物ペレットを用いて、樹脂組成物ペレットを作製し、各種測定を行った。結果を表2に示す。
(実施例7)
 脂環式構造含有重合体(C)のペレット99.5質量部に対して炭酸ストロンチウム粉末を0.5質量部混合した以外は、実施例6と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表2に示す。
(実施例8)
 脂環式構造含有重合体(C)のペレット99.25質量部に対して炭酸ストロンチウム粉末を0.75質量部混合した以外は、実施例6と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表2に示す。
(実施例9)
 脂環式構造含有重合体(C)のペレット99質量部に対して炭酸ストロンチウム粉末を1質量部混合した以外は、実施例6と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表2に示す。
(実施例10)
 脂環式構造含有重合体(D)のペレット99.5質量部に対して炭酸ストロンチウム粉末を0.5質量部混合した。この混合物を、二軸押出機(東芝機械社製、製品名「TEM35B」)を用いて、樹脂温度245℃、スクリュー回転数160rpmで混練し、ストランド状に押出し、水冷した後、ペレタイザーによりカッティングし、4mm長さの樹脂組成物ペレットを作製した。
 樹脂組成物ペレットを用いて、樹脂組成物ペレットを作製し、各種測定を行った。結果を表2に示す。
(比較例4)
 脂環式構造含有重合体(C)のペレットに対して炭酸ストロンチウム粉末を混合しなかった以外は、実施例6と同様にして各種評価を行った。結果を表2に示す。
(比較例5)
 脂環式構造含有重合体(C)のペレット99.9質量部に対して炭酸ストロンチウム粉末を0.1質量部混合した以外は、実施例6と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表2に示す。
(比較例6)
 脂環式構造含有重合体(C)のペレット98.5質量部に対して炭酸ストロンチウム粉末を1.5質量部混合した以外は、実施例6と同様にして樹脂組成物ペレットを作製し、各種測定を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および表2より、実施例1~10は、糸引きの発生を抑制しつつ、高い透明性および低い複屈折を有する光学素子を形成可能な樹脂組成物であることが分かる。
 本発明によれば、糸引き等の成形不良の発生を抑制しつつ、高い透明性および低い複屈折を有する光学素子を形成可能な樹脂組成物、および該樹脂組成物を成形してなる光学素子を提供できる。
A ゲート方向
B 反ゲート方向

Claims (6)

  1.  脂環式構造含有重合体と、炭酸ストロンチウム粉末とを含む、樹脂組成物であって、
     前記樹脂組成物中の前記炭酸ストロンチウム粉末の含有割合が、0.2質量%以上1.0質量%以下である、樹脂組成物。
  2.  前記炭酸ストロンチウム粉末が、炭酸ストロンチウムナノ粒子と、前記炭酸ストロンチウムナノ粒子の表面に付着した界面活性剤とを含む、請求項1に記載の樹脂組成物。
  3.  JIS K6719に準拠して、280℃の温度および21.18Nの荷重において測定したメルトフローレートが、40g/10min以上である、請求項1または2に記載の樹脂組成物。
  4.  前記炭酸ストロンチウム粉末のアスペクト比が、1.1以上である、請求項1または2に記載の樹脂組成物。
  5.  前記炭酸ストロンチウム粉末の平均直径が、10nm以上100nm以下である、請求項1または2に記載の樹脂組成物。
  6.  請求項1または2に記載の樹脂組成物を成形してなる、光学素子。
     
PCT/JP2022/021136 2021-05-31 2022-05-23 樹脂組成物および光学素子 WO2022255150A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280030334.6A CN117203286A (zh) 2021-05-31 2022-05-23 树脂组合物和光学元件
KR1020237037530A KR20240015066A (ko) 2021-05-31 2022-05-23 수지 조성물 및 광학 소자
JP2023525738A JPWO2022255150A1 (ja) 2021-05-31 2022-05-23
EP22815900.0A EP4349921A1 (en) 2021-05-31 2022-05-23 Resin composition and optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021091503 2021-05-31
JP2021-091503 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022255150A1 true WO2022255150A1 (ja) 2022-12-08

Family

ID=84323317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021136 WO2022255150A1 (ja) 2021-05-31 2022-05-23 樹脂組成物および光学素子

Country Status (6)

Country Link
EP (1) EP4349921A1 (ja)
JP (1) JPWO2022255150A1 (ja)
KR (1) KR20240015066A (ja)
CN (1) CN117203286A (ja)
TW (1) TW202311325A (ja)
WO (1) WO2022255150A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008779A (ja) * 2003-06-20 2005-01-13 Nippon Zeon Co Ltd 脂環式構造含有重合体樹脂組成物
JP2006126774A (ja) * 2004-09-30 2006-05-18 Nitto Denko Corp 光学素子及びこれを用いた偏光面光源並びにこれを用いた表示装置
WO2010110323A1 (ja) 2009-03-26 2010-09-30 日本ゼオン株式会社 重合体、水素添加物、樹脂組成物、樹脂膜及び電子部品
JP2015054885A (ja) 2013-09-11 2015-03-23 日本ゼオン株式会社 結晶性樹脂組成物
JP2021047402A (ja) 2019-09-13 2021-03-25 宇部興産株式会社 光学部材及び画像表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008779A (ja) * 2003-06-20 2005-01-13 Nippon Zeon Co Ltd 脂環式構造含有重合体樹脂組成物
JP2006126774A (ja) * 2004-09-30 2006-05-18 Nitto Denko Corp 光学素子及びこれを用いた偏光面光源並びにこれを用いた表示装置
WO2010110323A1 (ja) 2009-03-26 2010-09-30 日本ゼオン株式会社 重合体、水素添加物、樹脂組成物、樹脂膜及び電子部品
JP2015054885A (ja) 2013-09-11 2015-03-23 日本ゼオン株式会社 結晶性樹脂組成物
JP2021047402A (ja) 2019-09-13 2021-03-25 宇部興産株式会社 光学部材及び画像表示装置

Also Published As

Publication number Publication date
JPWO2022255150A1 (ja) 2022-12-08
KR20240015066A (ko) 2024-02-02
TW202311325A (zh) 2023-03-16
EP4349921A1 (en) 2024-04-10
CN117203286A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
JPWO2005073321A1 (ja) 樹脂組成物
WO2022255150A1 (ja) 樹脂組成物および光学素子
JP4745253B2 (ja) 環状オレフィン系樹脂組成物の製造方法
JP2013245345A (ja) オレフィン系重合体組成物および該組成物からなるフィルム
US10030123B2 (en) Resin composition, resin molded article, and optical component
EP0652253B1 (en) Cycloolefin resin compositions
WO2012043721A1 (ja) 樹脂組成物および樹脂成形体
JP2005213410A (ja) 高屈折率樹脂組成物
JP2006321902A (ja) 透明性樹脂組成物及びそれよりなる光学フィルム
JP5803322B2 (ja) 樹脂組成物及び成形体
JP2002284971A (ja) 熱可塑性樹脂組成物およびその用途
JP6311143B2 (ja) 樹脂組成物、樹脂成形体、及び光学部品
CN112029259B (zh) 一种动态硫化有机硅光扩散母粒及其制备方法
JP4691844B2 (ja) 成形材料およびこれによる成形品
JP6256353B2 (ja) 光学用重合体及びそれを成形してなる光学素子
JP5803304B2 (ja) 樹脂組成物及び光反射体
JP2018172588A (ja) 環状オレフィン系樹脂組成物、成形体および光学部品
JP5007688B2 (ja) 光学用樹脂組成物及び光学部品
WO2023189303A1 (ja) 樹脂組成物、成形体及び光学部材
WO2023189302A1 (ja) 樹脂組成物、成形体及び光学部材
WO2023074504A1 (ja) 樹脂組成物及び光学素子
JP2005239740A (ja) 熱可塑性樹脂組成物
JP2010082849A (ja) 樹脂組成物、樹脂型及び当該樹脂型を使用する成形体の製造方法
JP2021134336A (ja) 樹脂組成物、樹脂成形体、及び光学素子
JP2018090818A (ja) 樹脂組成物、樹脂成形体、及び光学部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525738

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280030334.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18560405

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022815900

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022815900

Country of ref document: EP

Effective date: 20240102