WO2022254753A1 - イオン伝導性固体及び全固体電池 - Google Patents

イオン伝導性固体及び全固体電池 Download PDF

Info

Publication number
WO2022254753A1
WO2022254753A1 PCT/JP2021/045274 JP2021045274W WO2022254753A1 WO 2022254753 A1 WO2022254753 A1 WO 2022254753A1 JP 2021045274 W JP2021045274 W JP 2021045274W WO 2022254753 A1 WO2022254753 A1 WO 2022254753A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
solid
conductive solid
conductive
present disclosure
Prior art date
Application number
PCT/JP2021/045274
Other languages
English (en)
French (fr)
Inventor
恵隆 柴
典子 坂本
健志 小林
紗央莉 橋本
Original Assignee
キヤノンオプトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンオプトロン株式会社 filed Critical キヤノンオプトロン株式会社
Priority to CN202180096446.7A priority Critical patent/CN117751413A/zh
Priority to JP2022548535A priority patent/JP7196368B1/ja
Priority to DE112021007751.1T priority patent/DE112021007751T5/de
Publication of WO2022254753A1 publication Critical patent/WO2022254753A1/ja
Priority to US18/242,204 priority patent/US20230411591A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to ion-conducting solid-state and all-solid-state batteries.
  • lithium-ion secondary batteries Conventionally, lightweight and high-capacity lithium-ion secondary batteries have been mounted in mobile devices such as smartphones and notebook computers, and in transportation devices such as electric vehicles and hybrid electric vehicles.
  • a liquid containing a flammable solvent is used as an electrolyte in a conventional lithium ion secondary battery, there is a fear of leakage of the flammable solvent and ignition when the battery is short-circuited. Therefore, in recent years, in order to ensure safety, a secondary battery using an ion-conductive solid as an electrolyte, which is different from a liquid electrolyte, has attracted attention, and such a secondary battery is called an all-solid battery.
  • Solid electrolytes such as oxide-based solid electrolytes and sulfide-based solid electrolytes are widely known as electrolytes used in all-solid-state batteries. Among them, oxide-based solid electrolytes do not react with moisture in the air to generate hydrogen sulfide, and are more safe than sulfide-based solid electrolytes.
  • an all-solid-state battery includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative electrode active material, an electrolyte containing an ion-conductive solid disposed between the positive electrode and the negative electrode, and optionally a current collector. and (the positive electrode active material and the negative electrode active material are also collectively referred to as “electrode active material”).
  • electrode active material When producing an all-solid-state battery using an oxide-based solid electrolyte, heat treatment is performed to reduce the contact resistance between particles of the oxide-based material contained in the solid electrolyte.
  • the conventional oxide-based solid electrolyte requires a high temperature of 900° C.
  • Li 2+x C 1-x B x O 3 is an example of an oxide-based solid electrolyte that can be produced by heat treatment at a temperature lower than 900° C. (Non-Patent Document 1).
  • the present disclosure provides an ion-conductive solid that can be produced by heat treatment at a low temperature and has high ion conductivity, and an all-solid-state battery having the same.
  • the ion-conducting solid of the present disclosure is characterized by comprising an oxide represented by the general formula Li 6-xyz Y 1-yz C x Zr y Ce z B 3-x O 9 It is an ionically conductive solid.
  • x is a real number that satisfies 0.010 ⁇ x ⁇ 1.500
  • y is 0.000 ⁇ y ⁇ 0.400
  • z is a real number that satisfies 0.000 ⁇ z ⁇ 0.400.
  • the all-solid-state battery of the present disclosure is a positive electrode; a negative electrode; an electrolyte; An all-solid-state battery having at least An all-solid battery characterized in that at least one selected from the group consisting of the positive electrode, the negative electrode and the electrolyte contains the ion-conductive solid of the present disclosure.
  • an ion-conductive solid that can be produced by heat treatment at a low temperature and has high ion conductivity, and an all-solid-state battery having the same.
  • the ion-conducting solid of the present disclosure is an ion-conducting solid comprising an oxide represented by the general formula Li 6-xyz Y 1-yz C x Zr y Ce z B 3-x O 9 be.
  • x is a real number satisfying 0.010 ⁇ x ⁇ 1.500
  • y is 0.000 ⁇ y ⁇ 0.400
  • z is a real number satisfying 0.000 ⁇ z ⁇ 0.400.
  • the present inventors speculate as follows as the reason why the ion conductivity is improved in the ion conductive solid containing the oxide represented by the above general formula.
  • the charge balance is adjusted by the element substitution with different valences, so Li + in the crystal lattice is becomes missing.
  • the ionic conductivity is improved because surrounding Li + moves to fill the Li + defect.
  • the ion-conducting solids of the present disclosure preferably have a monoclinic crystal structure.
  • the ion-conducting solid has a monoclinic crystal structure, it does not contain C when part of B 3+ is replaced by C 4+ , an element with a higher valence than B 3+ , within the scope of the present disclosure.
  • the effect on the lattice constant also affects the lattice volume, which in turn affects the ionic conductivity. can also be affected.
  • the ion conductive solid of the present disclosure preferably has a diffraction peak in the range of 27.91° ⁇ 2 ⁇ 28.04° in XRD using CuK ⁇ rays.
  • V is preferably 752.59 ⁇ 3 ⁇ V ⁇ 758.51 ⁇ 3 where V is the lattice volume of the ion-conductive solid.
  • the lattice volume of ionically conductive solids can be controlled by adjusting the values of x, y, and z in the general formula above.
  • x is a real number that satisfies 0.010 ⁇ x ⁇ 1.500.
  • x is 0.010 ⁇ x ⁇ 1.500, preferably 0.010 ⁇ x ⁇ 0.900, more preferably 0.010 ⁇ x ⁇ 0.600, still more preferably 0.010 ⁇ x ⁇ 0 .300, particularly preferably 0.030 ⁇ x ⁇ 0.100.
  • y is a real number that satisfies 0.000 ⁇ y ⁇ 0.400.
  • y is 0.000 ⁇ y ⁇ 0.400, preferably 0.010 ⁇ y ⁇ 0.200, more preferably 0.010 ⁇ y ⁇ 0.100, particularly preferably 0.030 ⁇ y ⁇ 0 .100.
  • z is a real number that satisfies 0.000 ⁇ z ⁇ 0.400.
  • z is 0.000 ⁇ z ⁇ 0.400, preferably 0.010 ⁇ z ⁇ 0.200, more preferably 0.010 ⁇ z ⁇ 0.100, particularly preferably 0.010 ⁇ z ⁇ 0 .030.
  • x+y+z preferably satisfies 0.010 ⁇ x+y+z ⁇ 1.000, more preferably 0.050 ⁇ x+y+z ⁇ 0.500, and still more preferably 0.050 ⁇ x+y+z ⁇ 0.200.
  • the ion-conducting solid of the present disclosure can be, for example, the following embodiments, but is not limited to these embodiments.
  • x preferably satisfies 0.010 ⁇ x ⁇ 0.600, y satisfies 0.000 ⁇ y ⁇ 0.200, and z satisfies 0.000 ⁇ z ⁇ 0.200.
  • x preferably satisfies 0.010 ⁇ x ⁇ 0.300, y satisfies 0.030 ⁇ y ⁇ 0.100, and z satisfies 0.010 ⁇ z ⁇ 0.030.
  • a method for producing an ion-conductive solid comprising an oxide represented by the general formula Li 6-xyz Y 1-y-z C x Zr y Ce z B 3-x O 9 , It can have a primary firing step of heat-treating the raw materials mixed so as to obtain the oxide represented by the general formula at a temperature below the melting point of the oxide.
  • x is a real number satisfying 0.010 ⁇ x ⁇ 1.500
  • y is 0.000 ⁇ y ⁇ 0.400
  • z is a real number satisfying 0.000 ⁇ z ⁇ 0.400.
  • the method for producing an ion-conductive solid according to the present disclosure includes weighing and mixing raw materials so as to obtain the oxide represented by the above general formula, and heat-treating the raw material at a temperature below the melting point of the oxide. , a primary calcination step to produce an ionically conductive solid comprising said oxide.
  • the production method includes heat-treating the obtained ion-conductive solid containing the oxide at a temperature below the melting point of the oxide to produce a sintered body of the ion-conductive solid containing the oxide.
  • a subsequent firing step may be included.
  • the method for producing an ion-conductive solid according to the present disclosure which includes the primary firing step and the secondary firing step, will be described in detail below, but the present disclosure is not limited to the following manufacturing method.
  • Li 6-xy-z Y 1-y-z C x Zr y Ce z B 3-x O 9 (where x is 0.010 ⁇ x ⁇ 1.0).
  • y is 0.000 ⁇ y ⁇ 0.400
  • z is a real number satisfying 0.000 ⁇ z ⁇ 0.400
  • chemical reagent grade Li 3 BO 3 , H 3 BO 3 , Raw materials such as Y 2 O 3 , ZrO 2 , CeO 2 , Li 2 CO 3 are weighed in stoichiometric amounts and mixed.
  • the device used for mixing is not particularly limited, for example, a pulverizing mixer such as a planetary ball mill can be used.
  • the material and capacity of the container used for mixing and the material and diameter of the ball are not particularly limited, and can be appropriately selected according to the type and amount of raw materials used.
  • a zirconia 45 mL container and a zirconia 5 mm diameter ball can be used.
  • the conditions for the mixing treatment are not particularly limited, but can be, for example, a rotation speed of 50 to 2000 rpm and a time of 10 to 60 minutes. After obtaining a mixed powder of the above raw materials by the mixing treatment, the obtained mixed powder is press-molded into pellets.
  • the pressure molding method a known pressure molding method such as a cold uniaxial molding method and a cold isostatic pressure molding method can be used.
  • the conditions for pressure molding in the primary firing step are not particularly limited, but the pressure can be, for example, 100 MPa to 200 MPa.
  • the obtained pellets are calcined using a calcining device such as an atmospheric calcining device.
  • the temperature at which solid phase synthesis is performed by primary firing is the melting point of the ion conductive solid represented by the general formula Li 6-xy-z Y 1-y-z C x Zr y Ce z B 3-x O 9
  • the temperature for the primary firing can be, for example, less than 700° C., 680° C. or less, 670° C. or less, 660° C. or less, or 650° C. or less, and can be, for example, 500° C.
  • the numerical ranges can be combined arbitrarily. If the temperature is within the above range, solid-phase synthesis can be sufficiently performed.
  • the time for the primary firing step is not particularly limited, but can be, for example, about 700 to 750 minutes.
  • an ion conductive solid containing the oxide represented by the general formula Li 6-xyz Y 1-yz C x Zr y Ce z B 3-x O 9 is produced. be able to.
  • the ion conductive solid containing the oxide can also be pulverized using a mortar/pestle or a planetary mill to obtain a powder of the ion conductive solid containing the oxide.
  • Secondary firing step In the secondary firing step, at least one selected from the group consisting of the ion-conductive solid containing the oxide obtained in the primary firing step and the powder of the ion-conductive solid containing the oxide is pressure-molded. and sintering to obtain an ion conductive solid sintered body containing the oxide of the present disclosure.
  • Pressure molding and secondary firing may be performed simultaneously using spark plasma sintering (hereinafter also simply referred to as "SPS") or hot pressing, and pellets are produced by cold uniaxial molding and then in an atmosphere.
  • the secondary firing may be performed in an oxidizing atmosphere or a reducing atmosphere. Under the above conditions, an ion-conductive solid with high ion conductivity can be obtained without melting due to heat treatment.
  • Conditions for pressure molding in the secondary firing step are not particularly limited, but the pressure can be, for example, 10 MPa to 100 MPa.
  • the secondary firing temperature is lower than the melting point of the ion conductive solid represented by the general formula Li 6-xyz Y 1-yz C x Zr y Ce z B 3-x O 9 .
  • the temperature for secondary firing is preferably less than 700°C, more preferably 680°C or less, still more preferably 670°C or less, and particularly preferably 660°C or less.
  • the lower limit of the temperature is not particularly limited, and is preferably 500° C. or higher, although the lower the better.
  • the numerical ranges can be combined arbitrarily, they can be, for example, a range of 500°C or higher and lower than 700°C.
  • the time for the secondary firing step can be appropriately changed according to the temperature of the secondary firing and the like, but is preferably 24 hours or less, and may be 1 hour or less.
  • the duration of the secondary baking process may be, for example, 5 minutes or longer.
  • the method for cooling the sintered body of the ion-conductive solid containing the oxide of the present disclosure obtained by the secondary firing step is not particularly limited, and may be naturally cooled (cooled in a furnace) or rapidly. It may be cooled, it may be cooled more gradually than natural cooling, or it may be maintained at a certain temperature during cooling.
  • All-solid-state batteries generally have a positive electrode, a negative electrode, an electrolyte comprising an ionically conductive solid disposed between the positive and negative electrodes, and optionally a current collector.
  • the all-solid-state battery of the present disclosure is a positive electrode; a negative electrode; an electrolyte; An all-solid-state battery having at least At least one selected from the group consisting of the positive electrode, the negative electrode and the electrolyte comprises the ionically conductive solid of the present disclosure.
  • the all-solid-state battery of the present disclosure may be a bulk-type battery or a thin-film battery.
  • a specific shape of the all-solid-state battery of the present disclosure is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, and the like.
  • the all-solid-state battery of the present disclosure has an electrolyte. Moreover, in the all-solid-state battery of the present disclosure, at least the electrolyte preferably contains the ion-conductive solid of the present disclosure.
  • the solid electrolyte in the all-solid-state battery of the present disclosure may consist of the ion-conductive solid of the present disclosure, may contain other ion-conductive solids, and may contain ionic liquids and gel polymers. Other ion-conductive solids are not particularly limited , and may include ion-conductive solids commonly used in all-solid-state batteries, such as LiI, Li3PO4 , Li7La3Zr2O12 , and the like . good.
  • the content of the ion-conductive solid of the present disclosure in the electrolyte in the all-solid-state battery of the present disclosure is not particularly limited, and is preferably 25% by mass or more, more preferably 50% by mass or more, and still more preferably It is 75% by mass or more, and particularly preferably 100% by mass.
  • An all-solid-state battery of the present disclosure has a positive electrode.
  • the positive electrode may include a positive electrode active material and may include the positive electrode active material and the ionically conductive solid of the present disclosure.
  • As the positive electrode active material a known positive electrode active material such as a sulfide containing a transition metal element or an oxide containing lithium and a transition metal element can be used without particular limitation.
  • the positive electrode may contain a binder, a conductive agent, and the like.
  • binders include polyvinylidene fluoride, polytetrafluoroethylene, and polyvinyl alcohol.
  • Examples of conductive agents include natural graphite, artificial graphite, acetylene black, and ethylene black.
  • the all-solid-state battery of the present disclosure has a negative electrode.
  • the negative electrode may comprise a negative electrode active material and may comprise the negative electrode active material and the ionically conductive solid of the present disclosure.
  • the negative electrode active material known negative electrode active materials such as lithium, lithium alloys, inorganic compounds such as tin compounds, carbonaceous materials capable of absorbing and releasing lithium ions, and conductive polymers can be used without particular limitation.
  • the negative electrode may contain a binder, a conductive agent, and the like. As the binder and the conductive agent, the same ones as those mentioned for the positive electrode can be used.
  • the electrode "contains" the electrode active material means that the electrode has the electrode active material as a component/element/property.
  • both the case of containing the electrode active material in the electrode and the case of the electrode surface being coated with the electrode active material correspond to the above "include”.
  • the positive electrode and the negative electrode can be obtained by known methods such as mixing raw materials, molding, and heat treatment.
  • the ion-conducting solid enters the gaps between the electrode active materials, making it easier to secure the conduction path of lithium ions. Since the ion conductive solid of the present disclosure can be produced by heat treatment at a lower temperature than the conventional technology, it is thought that the formation of a high resistance phase caused by the reaction between the ion conductive solid and the electrode active material can be suppressed.
  • the positive electrode and the negative electrode may have current collectors.
  • the current collector known current collectors such as aluminum, titanium, stainless steel, nickel, iron, calcined carbon, conductive polymer, and conductive glass can be used.
  • the surface of aluminum, copper or the like treated with carbon, nickel, titanium, silver or the like can be used as the current collector.
  • the all-solid-state battery of the present disclosure can be obtained by a known method such as laminating a positive electrode, a solid electrolyte, and a negative electrode, molding, and heat-treating, for example. Since the ion-conductive solid of the present disclosure can be produced by heat treatment at a lower temperature than the conventional technology, it is thought that the formation of a high-resistance phase caused by the reaction between the ion-conductive solid and the electrode active material can be suppressed. It is believed that an all-solid-state battery with excellent characteristics can be obtained.
  • composition analysis of the ion conductive solid is performed by wavelength dispersive X-ray fluorescence analysis (hereinafter also referred to as XRF) using a sample solidified by the pressure molding method. conduct.
  • XRF wavelength dispersive X-ray fluorescence analysis
  • ICP-AES inductively coupled plasma atomic emission spectrometry
  • the analyzer used is ZSX Primus II manufactured by Rigaku Corporation.
  • the analysis conditions are as follows: Rh is used for the anode of the X-ray tube, vacuum atmosphere, analysis diameter is 10 mm, analysis range is 17 deg to 81 deg, step is 0.01 deg, and scan speed is 5 sec/step.
  • a proportional counter is used to measure light elements, and a scintillation counter is used to measure heavy elements. Elements are identified based on the peak position of the spectrum obtained by XRF, and the molar concentration ratio Y / C, Y / Zr and Y / Calculate Ce and obtain x, y, and z.
  • the lattice volume of the crystal phase is calculated using the diffraction curve obtained by XRD and structural analysis software TOPAS manufactured by BrukerAXS. The lattice volume is calculated by fitting and analyzing the diffraction curve obtained by XRD and the diffraction pattern of the monoclinic crystal phase by TOPAS.
  • Example 1 - Primary firing process Li3BO3 (manufactured by Toshima Seisakusho, purity 99.9% by mass), H3BO3 (manufactured by Kanto Chemical, purity 99.5%), Y2O3 (manufactured by Shin - Etsu Chemical, purity 99.9%). 9% by mass ) and Li 2 CO 3 (manufactured by Nacalai Tesque , purity 99.0 % by mass) as raw materials, and chemically chemically Stoichiometric amounts were weighed and mixed in a Fritsch planetary mill P-7 at 300 rpm disk speed for 30 minutes. A zirconia ⁇ 5 mm ball and a 45 mL container were used for the planetary mill.
  • the mixed powder was cold uniaxially molded at 147 MPa using a 100 kN electric press P3052-10 manufactured by NPA Systems, and fired in an air atmosphere.
  • the heating temperature was 650° C. and the holding time was 720 minutes.
  • the resulting ion-conductive solid containing oxide was pulverized with a planetary mill P-7 manufactured by Fritsch at a disk rotation speed of 230 rpm for 180 minutes to prepare a powder of ion-conductive solid containing oxide.
  • Secondary Firing Step The powder of the ion-conductive solid containing the oxide obtained above was molded and secondary-fired to prepare a sintered body of the ion-conductive solid containing the oxide of Example 1. Secondary firing was performed in an air atmosphere at a heating temperature of 650° C. and a holding time of 720 minutes.
  • Example 2 A sintered body of an ion-conductive solid containing the oxide of Example 2 was prepared in the same process as in Example 1, except that the above raw materials were weighed in stoichiometric amounts so that x was the value shown in Table 1. was made.
  • Example 3 Li 3 BO 3 (manufactured by Toshima Seisakusho, purity 99.9% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Y 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass) , Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass) and ZrO 2 (manufactured by New Nippon Denko, purity 99.9%) as raw materials, Li 5.750 Y 0.800 C 0.050 A sintered body of an ion-conductive solid containing the oxide of Example 3 was prepared in the same process as in Example 1, except that each raw material was weighed in a stoichiometric amount so that Zr 0.200 B 2.950 O 9 was obtained. was made.
  • Example 4 The ion-conductive solid containing the oxide of Example 4 was baked in the same process as in Example 3, except that the above raw materials were weighed in stoichiometric amounts so that x and y were the values shown in Table 1. A body was produced.
  • Example 5 Li 3 BO 3 (manufactured by Toshima Seisakusho, purity 99.9% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Y 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass) , Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass) and CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) as raw materials, Li 5.750 Y 0.800 C 0.050 An ion-conductive solid sintered body containing the oxide of Example 5 was prepared in the same process as in Example 1, except that each raw material was weighed in a stoichiometric amount so that Ce 0.200 B 2.950 O 9 was obtained. was made.
  • Example 6 An ion-conductive solid containing an oxide of Example 6 was baked in the same process as in Example 5, except that the above raw materials were weighed in stoichiometric amounts so that x and z were the values shown in Table 1. A body was produced.
  • Example 7 Li 3 BO 3 (manufactured by Toshima Seisakusho, purity 99.9% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Y 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass) , Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass) and ZrO 2 (manufactured by Shin Nippon Denko, purity 99.9%) and CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) as raw materials Li 5.915 Y 0.965 C 0.050 Zr 0.010 Ce 0.025 B 2.950 O 9 using A sintered compact of the ion-conducting solid containing the oxide of Example 7 was produced by the same process.
  • Example 8 to 19 The ionic conduction containing oxides of Examples 8 to 19 was performed in the same process as in Example 7, except that the above raw materials were weighed in stoichiometric amounts so that x, y, and z were the values shown in Table 1. A sintered body of a flexible solid was produced.
  • ⁇ Secondary sintering step The powder of the ion-conductive solid obtained above is molded by spark plasma sintering (SPS) and secondary-fired to prepare a sintered body of the ion-conductive solid containing the oxide of Comparative Example 1. did.
  • the heating temperature was 700° C.
  • the pressure was 30 MPa
  • the holding time was 10 minutes.
  • the sintered bodies of ion conductive solids containing oxides of Examples 1 to 19 were subjected to composition analysis by the above method. Further, for the sintered bodies of the ion-conductive solids containing oxides of Examples 1 to 19, the X-ray diffraction peak was measured and the lattice volume was calculated. Also, the sintered bodies of Examples 1 to 19 and Comparative Examples 1 and 2 were measured for ion conductivity by the following method. A method for measuring ionic conductivity is described below. In addition, Tables 1 and 2 show the obtained evaluation results.
  • the sintered body of the ion-conductive solid containing a flat plate-shaped oxide obtained by the secondary firing two surfaces facing each other in parallel and having a large area were polished with sandpaper.
  • the dimensions of the sintered body of the ion-conductive solid containing the plate-shaped oxide can be, for example, 0.9 cm ⁇ 0.9 cm ⁇ 0.05 cm, but are not limited thereto. Polish first with #500 for 15 to 30 minutes, then with #1000 for 10 to 20 minutes, and finally with #2000 for 5 to 10 minutes. Completed. After polishing, a gold film was formed on the polished surface of the sintered body of the ion conductive solid containing oxide using a Sanyu Denshi SC-701MkII ADVANCE sputtering apparatus.
  • the film formation conditions were as follows: process gas: Ar, degree of vacuum: 2 Pa to 5 Pa, film formation time: 5 minutes. After the film formation, AC impedance measurement of the measurement sample was performed.
  • An impedance/gain phase analyzer SI1260 and a dielectric interface system 1296 (both manufactured by Solartron) were used for impedance measurement, and the measurement conditions were a temperature of 27° C., an amplitude of 20 mV, and a frequency of 0.1 Hz to 1 MHz.
  • the resistance of the sintered body of the ion conductive solid containing oxide was calculated using the Nyquist plot obtained by the impedance measurement and AC analysis software ZVIEW manufactured by Scribner.
  • Ionic conductivity (S/cm) Thickness (cm) of sintered body of ion-conductive solid containing oxide/ (Resistance ( ⁇ ) of sintered body of ion-conductive solid containing oxide x electrode area (cm 2 ))
  • Table 1 shows the stoichiometric amount of raw materials (general formula Li 6-x- The values of x, y and z in yz Y 1-yz C x Zr y Ce z B 3-x O 9 ) and ionic conductivity were summarized.
  • Table 2 summarizes the diffraction peak positions and lattice volumes of the sintered bodies obtained in Examples 1-19.
  • all of the sintered bodies of the ion-conductive solids containing oxides of Examples 1 to 19 and Comparative Example 1 have the composition as the stoichiometric amounts of the raw materials listed in Table 1. was confirmed.
  • the sintered bodies of the ion-conductive solids containing oxides of Examples 1 to 19 were ion-conductive solids exhibiting high ion conductivity even when fired at a temperature of less than 700°C.
  • the main crystal structure of the sintered body of Comparative Example 2 was a mixture of ZrO 2 and CeO 2 used as raw materials.

Abstract

低温での加熱処理によって作製可能で、かつイオン伝導性の高いイオン伝導性固体、及びこれを有する全固体電池を提供する。 一般式Li6-x-y-z1-y-zZrCe3-xで表される酸化物を含むイオン伝導性固体、並びに、正極と、負極と、電解質と、を少なくとも有し、正極、負極及び電解質からなる群から選択される少なくとも一が該イオン伝導性固体を含む全固体電池。 (式中、xは、0.010≦x≦1.500、yは、0.000≦y≦0.400、zは、0.000≦z≦0.400を満たす実数である。)

Description

イオン伝導性固体及び全固体電池
 本開示は、イオン伝導性固体及び全固体電池に関するものである。
 従来、スマートフォンやノートパソコンのようなモバイル機器において、また、電気自動車やハイブリッド電気自動車のような輸送機器において、軽量かつ高容量なリチウムイオン二次電池が搭載されている。
 しかし、従来のリチウムイオン二次電池は可燃性溶媒を含む液体が電解質として用いられるため、可燃性溶媒の液漏れ、電池短絡時の発火が危惧されている。そこで近年、安全性を確保するため、液体の電解質とは異なる、イオン伝導性固体を電解質として用いた二次電池が注目されており、かかる二次電池は全固体電池と呼ばれている。
 全固体電池に用いられる電解質としては、酸化物系固体電解質や硫化物系固体電解質などの固体電解質が広く知られている。その中でも酸化物系固体電解質は、大気中の水分と反応を起こして硫化水素を発生することがなく、硫化物系固体電解質と比較して安全性が高い。
 ところで、全固体電池は、正極活物質を含む正極と、負極活物質を含む負極と、該正極及び該負極の間に配置されたイオン伝導性固体を含む電解質と、必要に応じて集電体と、を有する(正極活物質と負極活物質を総称して「電極活物質」ともいう。)。酸化物系固体電解質を用いて全固体電池を作製する場合、固体電解質に含まれる酸化物系材料の粒子間の接触抵抗を低減するために加熱処理が行われる。しかしながら、従来の酸化物系固体電解質では加熱処理で900℃以上の高温を必要とするため、固体電解質と電極活物質が反応して高抵抗相を形成するおそれがある。該高抵抗相はイオン伝導性固体のイオン伝導率の低下、ひいては全固体電池の出力低下に繋がるおそれがある。
 900℃より低い温度での加熱処理によって作製可能な酸化物系固体電解質として、Li2+x1-xが挙げられる(非特許文献1)。
Solid State Ionic 288 (2016) 248-252
 本開示は、低温での加熱処理によって作製可能で、かつイオン伝導性の高いイオン伝導性固体、及びこれを有する全固体電池を提供するものである。
 本開示のイオン伝導性固体は、一般式Li6-x-y-z1-y-zZrCe3-xで表される酸化物を含むことを特徴とするイオン伝導性固体である。
(式中、xは、0.010≦x≦1.500、yは、0.000≦y≦0.400、zは、0.000≦z≦0.400を満たす実数である。)
 また、本開示の全固体電池は、
 正極と、
 負極と、
 電解質と、
を少なくとも有する全固体電池であって、
 該正極、該負極及び該電解質からなる群から選択される少なくとも一が、本開示のイオン伝導性固体を含むことを特徴とする全固体電池である。
 本開示の一態様によれば、低温での加熱処理によって作製可能で、かつイオン伝導性の高いイオン伝導性固体、及びこれを有する全固体電池を得ることができる。
 本開示において、数値範囲を表す「XX以上YY以下」や「XX~YY」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。
 数値範囲が段階的に記載されている場合、各数値範囲の上限及び下限は任意に組み合わせることができる。
 また、本開示において「固体」とは、物質の3態のうち一定の形状と体積とを有するものをいい、粉末状態は「固体」に含まれる。
 本開示のイオン伝導性固体は、一般式Li6-x-y-z1-y-zZrCe3-xで表される酸化物を含むイオン伝導性固体である。
 式中、xは、0.010≦x≦1.500、yは、0.000≦y≦0.400、zは、0.000≦z≦0.400を満たす実数である。
 上述の一般式で表される酸化物を含むイオン伝導性固体において、イオン伝導率が向上する理由として、本発明者らは以下のように推察している。
 4価の元素であるCで3価の元素であるBの一部を本開示の範囲で置換すると、異なる価数の元素置換によって電荷のバランスが調整されるため、結晶格子中のLiが欠損した状態になる。そのLiの欠損を埋めようと周囲のLiが移動するため、イオン伝導率が向上する。
 本開示のイオン伝導性固体は、単斜晶型の結晶構造を備えることが好ましい。イオン伝導性固体が単斜晶型の結晶構造を備えると、B3+よりも価数が大きい元素であるC4+でB3+の一部を本開示の範囲で置換した場合に、Cを含まないLi6-y-z1-y-zZrCe(つまり、x=0.000、0.000≦y≦0.400、0.000≦z≦0.400の場合。)や、LiYB(つまりx=y=z=0.000の場合。)と比べて、格子定数に影響が及ぶことで格子体積にも影響が及び、さらにイオン伝導率にも影響が及び得る。
 CuKα線を用いたX線回折分析(以下、単に「XRD」とも称する。)において、2θ=28°付近に発生する回折ピークは、上述のイオン伝導性固体の組成によって変化し得る。
 本開示のイオン伝導性固体においては、CuKα線を用いたXRDにおいて、27.91°≦2θ≦28.04°の範囲に回折ピークを有することが好ましい。
 CuKα線を用いたXRDにおいて2θ=28°付近に発生する回折ピークの位置は、上記一般式中のx、y、およびzの値を調整することにより、制御することができる。
 本開示のイオン伝導性固体は、イオン伝導性固体の格子体積をVとすると、Vが、752.59Å≦V≦758.51Åであることが好ましい。
 イオン伝導性固体の格子体積は、上記一般式中のx、y、およびzの値を調整することにより制御することができる。
 上記一般式中、xは、0.010≦x≦1.500を満たす実数である。
 xは、0.010≦x≦1.500であり、好ましくは0.010≦x≦0.900、より好ましくは0.010≦x≦0.600、さらに好ましくは0.010≦x≦0.300、特に好ましくは0.030≦x≦0.100である。
 上記一般式中、yは、0.000≦y≦0.400を満たす実数である。
 yは、0.000≦y≦0.400であり、好ましくは0.010≦y≦0.200、より好ましくは0.010≦y≦0.100、特に好ましくは0.030≦y≦0.100である。
 上記一般式中、zは、0.000≦z≦0.400を満たす実数である。
 zは、0.000≦z≦0.400であり、好ましくは0.010≦z≦0.200、より好ましくは0.010≦z≦0.100、特に好ましくは0.010≦z≦0.030である。
 上記一般式中、x+y+zは、好ましくは0.010≦x+y+z<1.000、より好ましくは0.050≦x+y+z≦0.500、さらに好ましくは0.050≦x+y+z≦0.200である。
 本開示のイオン伝導性固体としては、例えば以下の実施形態とすることができるが、これらの実施形態に限定されない。
(1)
 xは、0.010≦x≦0.600、yは、0.000≦y≦0.200、zは、0.000≦z≦0.200を満たすとよい。
(2)
 xは、0.010≦x≦0.300、yは、0.030≦y≦0.100、zは、0.010≦z≦0.030を満たすとよい。
 次に、本開示のイオン伝導性固体の製造方法について説明する。
 本開示のイオン伝導性固体の製造方法は、以下のような態様とすることができるが、これに限定されない。
 一般式Li6-x-y-z1-y-zZrCe3-xで表される酸化物を含むイオン伝導性固体の製造方法であって、
 該一般式で表される酸化物が得られるように混合した原材料を、該酸化物の融点未満の温度で加熱処理する一次焼成工程を有することができる。
 式中、xは、0.010≦x≦1.500、yは、0.000≦y≦0.400、zは、0.000≦z≦0.400を満たす実数である。
 本開示のイオン伝導性固体の製造方法は、上記一般式で表される酸化物が得られるように原材料を秤量・混合し、該原材料を該酸化物の融点未満の温度で加熱処理することにより、該酸化物を含むイオン伝導性固体を作製する一次焼成工程を含むことができる。また、該製造方法は、得られた酸化物を含むイオン伝導性固体を、該酸化物の融点未満の温度で加熱処理し、該酸化物を含むイオン伝導性固体の焼結体を作製する二次焼成工程を含んでもよい。
 以下、上記一次焼成工程、および上記二次焼成工程を含む本開示のイオン伝導性固体の製造方法について詳細に説明するが、本開示は下記製造方法に限定されるものではない。
 一次焼成工程
 一次焼成工程では、一般式Li6-x-y-z1-y-zZrCe3-x(ただし、xは、0.010≦x≦1.500、yは、0.000≦y≦0.400、zは、0.000≦z≦0.400を満たす実数)となるように、化学試薬グレードのLiBO、HBO、Y、ZrO、CeO、LiCOなどの原材料を化学量論量で秤量して、混合する。
 混合に用いる装置は特に制限されないが、例えば遊星型ボールミルなどの粉砕型混合機を用いることができる。混合の際に用いる容器の材質及び容量、並びにボールの材質及び直径は特に制限されず、使用する原料の種類及び使用量に応じて適宜選択することができる。一例としては、ジルコニア製の45mL容器と、ジルコニア製の直径5mmボールを使用することができる。また、混合処理の条件は特に制限されないが、例えば回転数50rpm~2000rpm、時間10分~60分とすることができる。
 該混合処理により上記各原材料の混合粉末を得た後、得られた混合粉末を加圧成型してペレットとする。加圧成型法としては、冷間一軸成型法、冷間静水圧加圧成型法など公知の加圧成型法を用いることができる。一次焼成工程での加圧成型の条件としては、特に制限されないが、例えば圧力100MPa~200MPaとすることができる。
 得られたペレットについて、大気焼成装置のような焼成装置を用いて焼成を行う。一次焼成して固相合成を行う温度は、一般式Li6-x-y-z1-y-zZrCe3-xで表されるイオン伝導性固体の融点未満であれば特に制限されない。一次焼成する際の温度は、例えば700℃未満、680℃以下、670℃以下、660℃以下または650℃以下とすることができ、例えば500℃以上とすることができる。該数値範囲は任意に組み合わせることができる。上記範囲の温度であれば、十分に固相合成を行うことができる。一次焼成工程の時間は特に限定されないが、例えば700分~750分程度とすることができる。
 上記一次焼成工程により、上記一般式Li6-x-y-z1-y-zZrCe3-xで表される酸化物を含むイオン伝導性固体を作製することができる。該酸化物を含むイオン伝導性固体を、乳鉢・乳棒や遊星ミルを用いて粉砕することで該酸化物を含むイオン伝導性固体の粉末を得ることもできる。
 二次焼成工程
 二次焼成工程では、一次焼成工程で得られた酸化物を含むイオン伝導性固体、及び酸化物を含むイオン伝導性固体の粉末からなる群から選択される少なくとも一を加圧成型し、焼成して本開示の酸化物を含むイオン伝導性固体の焼結体を得る。
 加圧成型と二次焼成は、放電プラズマ焼結(以下、単に「SPS」とも称する。)やホットプレスなどを用いて同時に行ってもよく、冷間一軸成型でペレットを作製してから大気雰囲気、酸化雰囲気又は還元雰囲気などで二次焼成を行ってもよい。上述の条件であれば、加熱処理による溶融を起こすことなく、イオン伝導率が高いイオン伝導性固体を得ることができる。二次焼成工程での加圧成型の条件としては、特に制限されないが、例えば圧力10MPa~100MPaとすることができる。
 二次焼成する温度は、一般式Li6-x-y-z1-y-zZrCe3-xで表されるイオン伝導性固体の融点未満である。二次焼成する際の温度は、好ましくは700℃未満、より好ましくは680℃以下、さらに好ましくは670℃以下、特に好ましくは660℃以下である。該温度の下限は特に制限されず、低いほど好ましいが、例えば500℃以上である。該数値範囲は任意に組み合わせることができるが、例えば500℃以上700℃未満の範囲とすることができる。上述の範囲であれば、二次焼成工程において本開示の酸化物を含むイオン伝導性固体が溶融したり分解したりすることを抑制でき、十分に焼結した本開示の酸化物を含むイオン伝導性固体の焼結体を得ることができる。
 二次焼成工程の時間は、二次焼成の温度等に応じて適宜変更することができるが、24時間以下が好ましく、1時間以下としてもよい。二次焼成工程の時間は、例えば5分以上としてもよい。
 二次焼成工程により得られた本開示の酸化物を含むイオン伝導性固体の焼結体を冷却する方法は特に限定されず、自然放冷(炉内放冷)してもよいし、急速に冷却してもよいし、自然放冷よりも徐々に冷却してもよいし、冷却中にある温度で維持してもよい。
 次に、本開示の全固体電池について説明する。
 全固体電池は一般的に、正極と、負極と、該正極及び該負極の間に配置されたイオン伝導性固体を含む電解質と、必要に応じて集電体と、を有する。
 本開示の全固体電池は、
 正極と、
 負極と、
 電解質と、
を少なくとも有する全固体電池であって、
 該正極、該負極及び該電解質からなる群から選択される少なくとも一が、本開示のイオン伝導性固体を含む。
 本開示の全固体電池は、バルク型電池であってもよく、薄膜電池であってもよい。本開示の全固体電池の具体的な形状は特に限定されないが、例えば、コイン型、ボタン型、シート型、積層型などが挙げられる。
 本開示の全固体電池は電解質を有する。また、本開示の全固体電池においては、少なくとも前記電解質が、本開示のイオン伝導性固体を含むことが好ましい。
 本開示の全固体電池における固体電解質は、本開示のイオン伝導性固体からなってもよく、その他のイオン伝導性固体を含んでいてもよく、イオン液体やゲルポリマーを含んでいてもよい。その他のイオン伝導性固体としては、特に制限されず、全固体電池に通常使用されるイオン伝導性固体、例えばLiI、LiPO、LiLaZr12などが含まれていてもよい。本開示の全固体電池における電解質中の、本開示のイオン伝導性固体の含有量は、特に制限されず、好ましくは25質量%以上であり、より好ましくは50質量%以上であり、さらに好ましくは75質量%以上であり、特に好ましくは100質量%である。
 本開示の全固体電池は、正極を有する。該正極は、正極活物質を含んでいてもよく、該正極活物質と本開示のイオン伝導性固体とを含んでいてもよい。正極活物質としては、遷移金属元素を含む硫化物やリチウムと遷移金属元素を含む酸化物などの公知の正極活物質を特に制限なく用いることができる。
 さらに、正極は結着剤、導電剤などを含んでいてもよい。結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコールなどが挙げられる。導電剤としては、例えば、天然黒鉛、人工黒鉛、アセチレンブラック、エチレンブラックなどが挙げられる。
 本開示の全固体電池は、負極を有する。該負極は負極活物質を含んでいてもよく、該負極活物質と本開示のイオン伝導性固体とを含んでいてもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸収及び放出可能な炭素質材料、導電性ポリマーなどの公知の負極活物質を特に制限なく用いることができる。
 さらに、負極は結着剤、導電剤などを含んでいてもよい。該結着剤及び該導電剤としては、正極で挙げたものと同様のものを使用できる。
 ここで、電極が電極活物質を「含む」とは、電極が電極活物質を成分・要素・性質としてもつことをいう。例えば、電極内に電極活物質を含有する場合も、電極表面に電極活物質が塗布されている場合も、上記「含む」に該当する。
 該正極や該負極は、原料を混合、成型、加熱処理をするなど公知の方法で得ることができる。それによりイオン伝導性固体が電極活物質同士の隙間などに入り込んで、リチウムイオンの伝導経路を確保しやすくなると考えられる。本開示のイオン伝導性固体は、従来技術と比較して低温の加熱処理で作製できるため、イオン伝導性固体と電極活物質が反応して生じる高抵抗相の形成を抑制できると考えられる。
 上記正極及び上記負極は、集電体を有していてもよい。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどの公知の集電体を用いることができる。このほか、接着性、導電性,耐酸化性などの向上を目的として、アルミニウム、銅などの表面をカーボン、ニッケル、チタン、銀などで処理したものを集電体として用いることができる。
 本開示の全固体電池は、例えば、正極と固体電解質と負極を積層し、成型、加熱処理するなど、公知の方法により得ることができる。本開示のイオン伝導性固体は、従来技術と比較して低温の加熱処理で作製できるため、イオン伝導性固体と電極活物質が反応して生じる高抵抗相の形成を抑制できると考えられ、出力特性に優れた全固体電池を得ることができると考えられる。
 次に、本開示にかかる組成及び各物性の測定方法について説明する。
・C、Zr及びCeの同定方法と分析方法
 イオン伝導性固体の組成分析は、加圧成型法により固型化した試料を用いて、波長分散型蛍光X線分析(以下、XRFともいう)により行う。ただし、粒度効果などにより分析困難な場合は、ガラスビード法によりイオン伝導性固体をガラス化してXRFによる組成分析を行うとよい。また、XRFではイットリウムのピークとZr及びCeのピークが重なる場合は、誘導結合高周波プラズマ発光分光分析(ICP-AES)で組成分析を行うとよい。
 XRFの場合、分析装置は(株)リガク製ZSX Primus IIを使用する。分析条件は、X線管球のアノードにはRhを用いて、真空雰囲気、分析径は10mm、分析範囲は17deg~81deg、ステップは0.01deg、スキャンスピードは5sec/ステップとする。また、軽元素を測定する場合にはプロポーショナルカウンタ、重元素を測定する場合にはシンチレーションカウンタで検出する。
 XRFで得られたスペクトルのピーク位置をもとに元素を同定し、単位時間あたりのX線光子の数である計数率(単位:cps)からモル濃度比Y/C、Y/ZrおよびY/Ceを算出し、x、y、zを求める。
・X線回折ピークの測定及び格子体積の算出
 イオン伝導性固体のX線回折分析には、BrukerAXS(株)製D8 ADVANCEを使用する。
 イオン伝導性固体を乳鉢・乳棒で粉砕して得た粉末をホルダーに入れた後、ガラスの平板で上から押し付けて平らに敷き詰めたものを分析試料として、CuKα線源を使用してX線回折分析(XRD)を行う。
 温度は室温(25℃)、分析範囲は10deg~70deg、ステップは0.007とし、スキャンスピードを0.1ステップ/秒とする。
 XRDで得られた回折曲線において、LiYB由来の2θ=28.00±0.200degに発生するピークトップの2θをピーク位置として求める。
 結晶相の格子体積は、XRDで得られた回折曲線とBrukerAXS(株)製構造解析ソフトウエアTOPASを用いて算出する。格子体積は、XRDで得た回折曲線と単斜晶構造の結晶相の回折パターンを、TOPASによりフィッティング、解析することで算出する。
 以下に、本開示のイオン伝導性固体を具体的に作製および評価した例を実施例として説明する。なお、本開示は、以下の実施例に限定されるものではない。
[実施例1]
・一次焼成工程
 LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、及びLiCO(ナカライテスク製、純度99.0質量%)を原料として用いて、Li5.950YC0.0502.950となるように各原料を化学量論量で秤量し、フリッチュ社製遊星ミルP-7でディスク回転数300rpmにおいて30分間混合した。遊星ミルにはジルコニア製のφ5mmボールと45mL容器を用いた。
 混合後、混合した粉末を、エヌピーエーシステム製100kN電動プレス装置P3052-10を用いて147MPaで冷間一軸成型し、大気雰囲気で焼成した。加熱温度は650℃、保持時間は720分間とした。
 得られた酸化物を含むイオン伝導性固体をフリッチュ社製遊星ミルP-7でディスク回転数230rpmにおいて180分間粉砕して酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
 上記で得られた酸化物を含むイオン伝導性固体の粉末を、成型、二次焼成して実施例1の酸化物を含むイオン伝導性固体の焼結体を作製した。二次焼成は、大気雰囲気で実施し、加熱温度は650℃、保持時間は720分間とした。
[実施例2]
 xが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例2の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例3]
 LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、LiCO(ナカライテスク製、純度99.0質量%)及びZrO(新日本電工製、純度99.9%)を原料として用いて、Li5.7500.8000.050Zr0.2002.950となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例3の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例4]
 xとyが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例3と同じ工程で実施例4の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例5]
 LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、LiCO(ナカライテスク製、純度99.0質量%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、Li5.7500.8000.050Ce0.2002.950となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例5の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例6]
 xとzが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例5と同じ工程で実施例6の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例7]
 LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、LiCO(ナカライテスク製、純度99.0質量%)及びZrO(新日本電工製、純度99.9%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、Li5.9150.9650.050Zr0.010Ce0.0252.950となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例7の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例8~19]
 x、y及びzが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例7と同じ工程で実施例8~19の酸化物を含むイオン伝導性固体の焼結体を作製した。
[比較例1]
・一次焼成工程
 LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、及びY(信越化学工業製、純度99.9質量%)を原料として用いて、LiYBとなるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程でイオン伝導性固体及びイオン伝導性固体の粉末を作製した。
・二次焼成工程
 上記で得られたイオン伝導性固体の粉末を放電プラズマ焼結(SPS)で成型、二次焼成して比較例1の酸化物を含むイオン伝導性固体の焼結体を作製した。加熱温度は700℃、圧力は30MPa、保持時間は10分間とした。
[比較例2]
・一次焼成工程
 LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、ZrO(新日本電工製、純度99.9%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、Li5.000Zr0.800Ce0.200となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で固体及び固体の粉末を作製した。
・二次焼成工程
 上記で得られた固体の粉末を成型、二次焼成して比較例2の酸化物を含む焼結体を作製した。二次焼成は大気雰囲気で実施し、加熱温度は550℃、保持時間は720分間とした。
 実施例1~19の酸化物を含むイオン伝導性固体の焼結体について、上記方法により組成分析を行った。また、実施例1~19の酸化物を含むイオン伝導性固体の焼結体について、X線回折ピークの測定及び格子体積の算出を行った。また、実施例1~19、および比較例1~2の焼結体について、以下の方法によりイオン伝導率の測定を行った。
 イオン伝導率の測定方法を以下に述べる。また、得られた評価結果を表1及び表2に示す。
・イオン伝導率の測定
 二次焼成で得られた平板形状の酸化物を含むイオン伝導性固体の焼結体において、平行に向かい合い、面積が大きい2面をサンドペーパーで研磨した。該平板形状の酸化物を含むイオン伝導性固体の焼結体の寸法は、例えば0.9cm×0.9cm×0.05cmとすることができるが、これに限定されるものではない。研磨は、始めに#500で15分~30分、次いで#1000で10分~20分、最後に#2000で5分~10分研磨して、目視で目立った凹凸や傷が研磨面になければ完了とした。
 研磨後、サンユー電子製スパッタ装置SC―701MkII ADVANCEを用いて、酸化物を含むイオン伝導性固体の焼結体の研磨面に金を成膜した。成膜条件は、プロセスガスをAr、真空度を2Pa~5Pa、成膜時間を5分間としたものを測定試料とした。成膜後、測定試料の交流インピーダンス測定を行った。
 インピーダンス測定にはインピーダンス/ゲイン相分析器SI1260及び誘電インターフェースシステム1296(いずれもソーラトロン社製)を使用し、測定条件は、温度27℃、振幅20mV、周波数0.1Hz~1MHzとした。
 酸化物を含むイオン伝導性固体の焼結体の抵抗は、インピーダンス測定で得られたナイキストプロットと、Scribner社製交流解析ソフトウエアZVIEWを用いて算出した。ZVIEWで測定試料に相当する等価回路を設定し、等価回路とナイキストプロットをフィッティング、解析することで酸化物を含むイオン伝導性固体の焼結体の抵抗を算出した。算出した抵抗と酸化物を含むイオン伝導性固体の焼結体の厚み、電極面積を用いて、以下の式からイオン伝導率を算出した。
 イオン伝導率(S/cm)=酸化物を含むイオン伝導性固体の焼結体の厚み(cm)/
(酸化物を含むイオン伝導性固体の焼結体の抵抗(Ω)×電極面積(cm))
・結果
 表1に、実施例1~19及び比較例1~2の各酸化物を含むイオン伝導性固体の焼結体を製造する際の原料の化学量論量(一般式Li6-x-y-z1-y-zZrCe3-x中のx、y及びzの値)及びイオン伝導率をまとめた。また、表2に、実施例1~19で得られた各焼結体における回折ピーク位置及び格子体積をまとめた。
 上記組成分析の結果、実施例1~19及び比較例1の酸化物を含むイオン伝導性固体の焼結体はいずれも、表1に記載された原料の化学量論量の通りの組成を有することが確認された。また、実施例1~19の酸化物を含むイオン伝導性固体の焼結体は、700℃未満の温度で焼成しても高いイオン伝導率を示すイオン伝導性固体であった。一方、比較例2の焼結体の主たる結晶構造は、原料として用いたZrO及びCeOが混在したものであった。
Figure JPOXMLDOC01-appb-T000001

 
 イオン伝導率の列における「※1」は、高抵抗であってイオン伝導率の測定が不可能であったことを示す。
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  一般式Li6-x-y-z1-y-zZrCe3-xで表される酸化物を含むイオン伝導性固体。
    (式中、xは、0.010≦x≦1.500、yは、0.000≦y≦0.400、zは、0.000≦z≦0.400を満たす実数である。)
  2.  前記xが、0.010≦x≦0.900である請求項1に記載のイオン伝導性固体。
  3.  前記xが、0.010≦x≦0.600である請求項1又は2に記載のイオン伝導性固体。
  4.  前記xが、0.010≦x≦0.300である請求項1~3のいずれか一項に記載のイオン伝導性固体。
  5.  正極と、
     負極と、
     電解質と、
    を少なくとも有する全固体電池であって、
     該正極、該負極及び該電解質からなる群から選択される少なくとも一が、請求項1~4のいずれか一項に記載のイオン伝導性固体を含む、全固体電池。
  6.  少なくとも前記電解質が、前記イオン伝導性固体を含む、請求項5に記載の全固体電池。
     
PCT/JP2021/045274 2021-05-31 2021-12-09 イオン伝導性固体及び全固体電池 WO2022254753A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180096446.7A CN117751413A (zh) 2021-05-31 2021-12-09 离子传导性固体及全固体电池
JP2022548535A JP7196368B1 (ja) 2021-05-31 2021-12-09 イオン伝導性固体及び全固体電池
DE112021007751.1T DE112021007751T5 (de) 2021-05-31 2021-12-09 Ionenleitender feststoff und feststoffbatterie
US18/242,204 US20230411591A1 (en) 2021-05-31 2023-09-05 Ion-conductive solid and all-solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021090936 2021-05-31
JP2021-090936 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/242,204 Continuation US20230411591A1 (en) 2021-05-31 2023-09-05 Ion-conductive solid and all-solid-state battery

Publications (1)

Publication Number Publication Date
WO2022254753A1 true WO2022254753A1 (ja) 2022-12-08

Family

ID=84324068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045274 WO2022254753A1 (ja) 2021-05-31 2021-12-09 イオン伝導性固体及び全固体電池

Country Status (5)

Country Link
US (1) US20230411591A1 (ja)
JP (1) JP7196368B1 (ja)
CN (1) CN117751413A (ja)
DE (1) DE112021007751T5 (ja)
WO (1) WO2022254753A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091955A (ja) * 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP2017091953A (ja) * 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017091955A (ja) * 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池
JP2017091953A (ja) * 2015-11-16 2017-05-25 旭化成株式会社 リチウムイオン伝導体及びこれを用いたリチウムイオン電池

Also Published As

Publication number Publication date
JP7196368B1 (ja) 2022-12-26
DE112021007751T5 (de) 2024-04-11
US20230411591A1 (en) 2023-12-21
JPWO2022254753A1 (ja) 2022-12-08
CN117751413A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
JP6672848B2 (ja) ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料
WO2021124812A1 (ja) イオン伝導性固体及び全固体電池
JP7196371B1 (ja) イオン伝導性固体及び全固体電池
JP6109672B2 (ja) セラミック正極−固体電解質複合体
WO2017018488A1 (ja) チタン酸リチウムとチタン酸リチウムランタンとを含む焼結体、その製造方法、及びリチウム電池
WO2019212026A1 (ja) イオン伝導性粉末、イオン伝導性成形体および蓄電デバイス
JP2016169142A (ja) ガーネット型リチウムイオン伝導性酸化物及び全固体型リチウムイオン二次電池
CN111033859A (zh) 固体电解质及全固体电池
JP2013149493A (ja) リチウムイオン伝導性材料
CN112573574A (zh) 一种通过调控锂空位含量制备石榴石型固态电解质的方法
US20230411684A1 (en) Ion-conductive solid and all-solid-state battery
JP2014096352A (ja) セラミック正極−固体電解質複合体
JP6948676B2 (ja) イオン伝導性固体及び全固体電池
JP7196368B1 (ja) イオン伝導性固体及び全固体電池
JP7196369B1 (ja) イオン伝導性固体及び全固体電池
JP7196370B1 (ja) イオン伝導性固体及び全固体電池
JP7274670B2 (ja) イオン伝導性固体及び全固体電池
JP2014096351A (ja) セラミック正極−固体電解質複合体
KR20230013089A (ko) 고체 전해질 재료, 고체 전해질, 이것들의 제조 방법 및 전고체 전지
WO2023176235A1 (ja) イオン伝導性固体及び全固体電池
WO2024034184A1 (ja) イオン伝導性固体及び全固体電池
WO2023176251A1 (ja) イオン伝導性固体及び全固体電池
WO2023162669A1 (ja) リチウムイオン伝導性固体電解質
JP2023133791A (ja) イオン伝導性固体及び全固体電池
KR20230013091A (ko) 고체 전해질 재료, 고체 전해질, 고체 전해질의 제조 방법 및 전고체 전지

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022548535

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944245

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112021007751

Country of ref document: DE