WO2024034184A1 - イオン伝導性固体及び全固体電池 - Google Patents

イオン伝導性固体及び全固体電池 Download PDF

Info

Publication number
WO2024034184A1
WO2024034184A1 PCT/JP2023/014777 JP2023014777W WO2024034184A1 WO 2024034184 A1 WO2024034184 A1 WO 2024034184A1 JP 2023014777 W JP2023014777 W JP 2023014777W WO 2024034184 A1 WO2024034184 A1 WO 2024034184A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufactured
purity
mass
oxide
conductive solid
Prior art date
Application number
PCT/JP2023/014777
Other languages
English (en)
French (fr)
Inventor
紗央莉 橋本
典子 坂本
健志 小林
恵隆 柴
Original Assignee
キヤノンオプトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンオプトロン株式会社 filed Critical キヤノンオプトロン株式会社
Publication of WO2024034184A1 publication Critical patent/WO2024034184A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers

Definitions

  • the present disclosure relates to ionically conductive solid-state and all-solid-state batteries.
  • lithium ion secondary batteries Conventionally, lightweight and high-capacity lithium ion secondary batteries have been installed in mobile devices such as smartphones and notebook computers, and in transportation devices such as electric vehicles and hybrid electric vehicles.
  • conventional lithium ion secondary batteries use a liquid containing a flammable solvent as an electrolyte, there are concerns that the flammable solvent may leak or catch fire when the battery is short-circuited. Therefore, in recent years, in order to ensure safety, secondary batteries that use an ion-conductive solid as an electrolyte, which is different from a liquid electrolyte, have attracted attention, and such secondary batteries are called all-solid-state batteries.
  • Solid electrolytes such as oxide-based solid electrolytes and sulfide-based solid electrolytes are widely known as electrolytes used in all-solid-state batteries. Among them, oxide-based solid electrolytes do not react with moisture in the atmosphere to generate hydrogen sulfide, and are safer than sulfide-based solid electrolytes.
  • an all-solid-state battery includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, an electrolyte including an ion conductive solid disposed between the positive electrode and the negative electrode, and a current collector as necessary.
  • the positive electrode active material and the negative electrode active material are also collectively referred to as "electrode active material."
  • heat treatment is performed to reduce contact resistance between particles of the oxide-based material contained in the solid electrolyte.
  • conventional oxide-based solid electrolytes require a high temperature of 900° C.
  • Non-Patent Document 1 Li 2+x C 1-x B x O 3
  • Patent Document 1 Li 2+x C 1-x B x O 3
  • the present disclosure provides an ion-conductive solid that can be produced by heat treatment at low temperatures and has high ion-conductivity, and an all-solid-state battery having the same.
  • the ion conductive solid of the present disclosure is characterized by containing an oxide represented by the general formula Li 6+ac-2d X 1-abc-d M1 a M2 b M3 c M4 d B 3 O 9 It is an ion conductive solid.
  • X is at least one metal element selected from the group consisting of Lu, Ho, Er, and Tm
  • M1 is at least one metal element selected from the group consisting of Mg, Mn, Zn, Ni, Ca, Sr and Ba
  • M2 is at least one metal element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, In, Fe, and Sc
  • M3 is at least one metal element selected from the group consisting of Zr, Ce, Hf, Sn and Ti
  • M4 is at least one metal element selected from the group consisting of Nb and Ta
  • a is 0.000 ⁇ a ⁇ 0.800
  • b is 0.000 ⁇ b ⁇ 0.900
  • c is 0.000 ⁇ c ⁇ 0.800
  • d is 0.000 ⁇ d ⁇ 0. 800
  • a, b, c, and d are real numbers satisfying 0.000 ⁇ a+b+c+d ⁇ 1.000. However, this excludes the case where X and M2 are
  • the all-solid-state battery of the present disclosure includes: a positive electrode; a negative electrode; electrolyte and An all-solid-state battery having at least An all-solid-state battery characterized in that at least one selected from the group consisting of the positive electrode, the negative electrode, and the electrolyte includes the ion-conductive solid of the present disclosure.
  • an ion-conductive solid that can be produced by heat treatment at low temperatures and has high ion-conductivity, and an all-solid-state battery having the same.
  • XX to YY and “XX to YY” expressing a numerical range mean a numerical range including the lower limit and upper limit, which are the endpoints, unless otherwise specified.
  • the upper and lower limits of each numerical range can be arbitrarily combined.
  • a “solid” refers to a substance that has a certain shape and volume among the three states, and a powder state is included in the "solid".
  • the ion conductive solid of the present disclosure is an ion conductive solid containing an oxide represented by the general formula Li 6+ac-2d X 1-a-b-c-d M1 a M2 b M3 c M4 d B 3 O 9 It is solid.
  • X is at least one metal element selected from the group consisting of Lu, Ho, Er and Tm
  • M1 is at least one metal element selected from the group consisting of Mg, Mn, Zn, Ni, Ca, Sr and Ba
  • M2 is at least one metal element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, In, Fe, and Sc
  • M3 is at least one metal element selected from the group consisting of Zr, Ce, Hf, Sn and Ti
  • M4 is at least one metal element selected from the group consisting of Nb and Ta
  • a is 0.000 ⁇ a ⁇ 0.800
  • b is 0.000 ⁇ b ⁇ 0.900
  • c is 0.000 ⁇ c ⁇ 0.800
  • d is 0.000 ⁇ d ⁇ 0.
  • M2 is at least one metal element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, In, Fe, and Sc.
  • X is Lu
  • M2 is at least one metal element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, Lu, In, Fe, and Sc.
  • M2 is at least one metal element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Lu, In, Fe, and Sc.
  • M2 is at least one metal element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Lu, In, Fe, and Sc. say something.
  • the present inventors speculate that the reason why the ionic conductivity improves in the ion conductive solid containing the oxide represented by the above general formula is as follows.
  • Y in Li 6 YB 3 O 9 listed in Comparative Example 1 in Patent Document 1 is replaced with at least one selected from the group consisting of Lu, Ho, Er, and Tm, which are metal elements with a smaller ionic radius than Y.
  • Lu, Ho, Er, and Tm which are metal elements with a smaller ionic radius than Y.
  • Patent Document 1 a part of Y, which is a trivalent metal element, is replaced with a tetravalent or pentavalent metal element, that is, by element substitution with different valences, the charge balance is adjusted, and the ionic conductivity is improved. is improving.
  • the lattice constant and lattice volume can be reduced.
  • Li + becomes more mobile, and the ionic conductivity is further improved.
  • X preferably has an ionic radius of 0.900 to 1.017 ⁇ , more preferably 0.920 to 1.015 ⁇ , even more preferably 0.940 to 1.015 ⁇ , and 0.975 Particularly preferred is ⁇ 1.015 ⁇ .
  • the lattice constant and lattice volume become small.
  • Li + becomes easier to move, resulting in improved ionic conductivity.
  • the ionic radius is less than 0.900 ⁇ , the desired monoclinic structure cannot be obtained, and an ion-conducting solid cannot be obtained.
  • the value of the ionic radius the value described in Non-Patent Document 2 can be used.
  • the ionic radius of Y 3+ is 1.019 ⁇
  • the ionic radius of Lu 3+ is 0.977 ⁇
  • the ionic radius of Ho 3+ is 1.015 ⁇
  • the ionic radius of Er 3+ is 1.004 ⁇
  • the ionic radius of Tm 3+ is 0.994 ⁇ .
  • the ion conductive solid of the present disclosure preferably has a monoclinic crystal structure.
  • the ion conductive solid of the present disclosure preferably has a volume average particle size of 0.1 ⁇ m or more and 28.0 ⁇ m or less, more preferably 0.2 ⁇ m or more and 26.0 ⁇ m or less, and 0.3 ⁇ m or more and 20.0 ⁇ m or more. It is more preferably 0 ⁇ m or less, even more preferably 0.3 ⁇ m or more and 15.0 ⁇ m or less, even more preferably 0.5 ⁇ m or more and 10.0 ⁇ m or less. Within the above range, grain boundary resistance within the ion conductive solid is reduced and ionic conductivity is further improved.
  • the volume average particle size of the ion conductive solid can be controlled by grinding or classification.
  • a is a real number satisfying 0.000 ⁇ a ⁇ 0.800.
  • a is 0.000 ⁇ a ⁇ 0.800, preferably 0.000 ⁇ a ⁇ 0.600, more preferably 0.000 ⁇ a ⁇ 0.400, even more preferably 0.000 ⁇ a ⁇ 0 .100, particularly preferably 0.000 ⁇ a ⁇ 0.050, very preferably 0.000 ⁇ a ⁇ 0.030.
  • b is a real number satisfying 0.000 ⁇ b ⁇ 0.900.
  • b is 0.000 ⁇ b ⁇ 0.900, preferably 0.000 ⁇ b ⁇ 0.600, more preferably 0.000 ⁇ b ⁇ 0.500, even more preferably 0.000 ⁇ b ⁇ 0 .400, even more preferably 0.000 ⁇ b ⁇ 0.100, particularly preferably 0.000 ⁇ b ⁇ 0.050, extremely preferably 0.000 ⁇ b ⁇ 0.030.
  • c is a real number satisfying 0.000 ⁇ c ⁇ 0.800.
  • c is 0.000 ⁇ c ⁇ 0.800, preferably 0.000 ⁇ c ⁇ 0.600, more preferably 0.000 ⁇ c ⁇ 0.400, even more preferably 0.000 ⁇ c ⁇ 0 .150, even more preferably 0.000 ⁇ c ⁇ 0.100, particularly preferably 0.000 ⁇ c ⁇ 0.050, extremely preferably 0.000 ⁇ c ⁇ 0.030.
  • C may preferably be 0.050 ⁇ c ⁇ 0.200, more preferably 0.080 ⁇ c ⁇ 0.150.
  • d is a real number satisfying 0.000 ⁇ d ⁇ 0.800.
  • d is 0.000 ⁇ d ⁇ 0.800, preferably 0.000 ⁇ d ⁇ 0.600, more preferably 0.000 ⁇ d ⁇ 0.400, even more preferably 0.000 ⁇ d ⁇ 0. .100, particularly preferably 0.000 ⁇ d ⁇ 0.050, very preferably 0.010 ⁇ d ⁇ 0.030.
  • a+b+c+d is a real number satisfying 0.000 ⁇ a+b+c+d ⁇ 1.000.
  • a+b+c+d is 0.000 ⁇ a+b+c+d ⁇ 1.000, preferably 0.000 ⁇ a+b+c+d ⁇ 0.900, more preferably 0.000 ⁇ a+b+c+d ⁇ 0.800, still more preferably 0.000 ⁇ a+b+c+d ⁇ 0 .700, even more preferably 0.000 ⁇ a+b+c+d ⁇ 0.600, particularly preferably 0.010 ⁇ a+b+c+d ⁇ 0.500, particularly preferably 0.050 ⁇ a+b+c+d ⁇ 0.300, extremely preferably 0.080 ⁇ a+b+c+d ⁇ 0.250.
  • 1 -abc-d in X 1-abc-d is preferably 0.300 ⁇ 1-abc-d, and 0.500 ⁇ 1-abc- d is more preferable, 0.700 ⁇ 1-abc-d is even more preferable, and 0.750 ⁇ 1-abc-d is even more preferable.
  • the upper limit is not particularly limited, but is preferably less than 1.000, 0.950 or less, and 0.900 or less.
  • the range c ⁇ d ⁇ 0.900 is mentioned.
  • the ion conductive solid of the present disclosure can be, for example, the following embodiments, but is not limited to these embodiments.
  • (1) a is 0.010 ⁇ a ⁇ 0.100, b is 0.000 ⁇ b ⁇ 0.200, c is 0.000 ⁇ c ⁇ 0.200, d is 0.010 ⁇ d ⁇ 0. 100, a, b, c, and d preferably satisfy 0.010 ⁇ a+b+c+d ⁇ 0.300.
  • a is 0.010 ⁇ a ⁇ 0.030, b is 0.030 ⁇ b ⁇ 0.100, c is 0.010 ⁇ c ⁇ 0.030, d is 0.010 ⁇ d ⁇ 0. 030, a, b, c, and d preferably satisfy 0.050 ⁇ a+b+c+d ⁇ 0.160.
  • a is 0.000 ⁇ a ⁇ 0.010
  • b is 0.000 ⁇ b ⁇ 0.100
  • c is 0.050 ⁇ c ⁇ 0.150
  • d is 0.000 ⁇ d ⁇ 0. 030
  • a, b, c, and d preferably satisfy 0.050 ⁇ a+b+c+d ⁇ 0.250.
  • M1, M2, M3, and M4 in the above general formula may or may not be included in the formula. That is, at least one of a, b, c, and d may be 0.
  • M1 is at least one metal element selected from the group consisting of Mg, Mn, Zn, Ni, Ca, Sr, and Ba.
  • M1 is at least one selected from the group consisting of Mg, Mn, Zn, Ni, Ca, Sr and Ba, preferably at least one selected from the group consisting of Mg, Zn, Ca, Sr and Ba. , more preferably at least one selected from the group consisting of Mg, Ca, and Sr.
  • M2 is at least one metal element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, In, Fe, and Sc. be.
  • M2 is at least one selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, In, Fe, and Sc, preferably La, Eu, At least one selected from the group consisting of Gd, Tb, Dy, Lu, In, and Fe, more preferably at least one selected from the group consisting of Gd, Dy, Lu, In, and Fe.
  • M2 may be at least one selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, In, Fe, and Sc.
  • M3 is at least one metal element selected from the group consisting of Zr, Ce, Hf, Sn, and Ti.
  • M3 is at least one selected from the group consisting of Zr, Ce, Hf, Sn and Ti, preferably at least one selected from the group consisting of Zr, Ce, Hf and Sn, more preferably Zr, At least one selected from the group consisting of Ce and Hf.
  • M4 is at least one metal element selected from the group consisting of Nb and Ta.
  • M4 is at least one selected from the group consisting of Nb and Ta, preferably Nb.
  • a method for producing an ion conductive solid containing an oxide represented by the general formula Li 6+a-c-2d X 1-a-b-c-d M1 a M2 b M3 c M4 d B 3 O 9 The method may include a primary firing step in which mixed raw materials are heat-treated at a temperature lower than the melting point of the oxide so as to obtain the oxide represented by the general formula.
  • X is at least one metal element selected from the group consisting of Lu, Ho, Er and Tm
  • M1 is at least one metal element selected from the group consisting of Mg, Mn, Zn, Ni, Ca, Sr and Ba
  • M2 is at least one metal element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, In, Fe, and Sc
  • M3 is at least one metal element selected from the group consisting of Zr, Ce, Hf, Sn and Ti
  • M4 is at least one metal element selected from the group consisting of Nb and Ta
  • a is 0.000 ⁇ a ⁇ 0.800
  • b is 0.000 ⁇ b ⁇ 0.900
  • c is 0.000 ⁇ c ⁇ 0.800
  • d is 0.000 ⁇ d ⁇ 0. 800
  • a, b, c, and d are real numbers satisfying 0.000 ⁇ a+b+c+d ⁇ 1.000. However, this excludes the case where X and M2 are the
  • the method for producing an ion conductive solid of the present disclosure includes weighing and mixing raw materials so as to obtain an oxide represented by the above general formula, and heat-treating the raw materials at a temperature below the melting point of the oxide. , can include a primary firing step to produce an ion-conducting solid containing the oxide. An ion conductive solid can be obtained through the primary firing step. Furthermore, the manufacturing method includes, if necessary, heat-treating the obtained ion conductive solid containing the oxide at a temperature below the melting point of the oxide, and sintering the ion conductive solid containing the oxide. It may also include a secondary firing step to produce the body.
  • a method for producing an ion conductive solid according to the present disclosure including the above-mentioned primary firing step and above-mentioned secondary firing step will be described in detail, but the present disclosure is not limited to the following manufacturing method.
  • M1 is at least one metal element selected from the group consisting of Mg, Mn, Zn, Ni, Ca, Sr and Ba
  • M2 is at least one metal element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Lu, In, Fe, and Sc
  • M3 is at least one metal element selected from the group consisting of Zr, Ce, Hf, Sn and Ti
  • M4 is at least one metal element selected from the group consisting of Nb and Ta
  • a is 0.000 ⁇ a ⁇ 0.800
  • b is 0.000 ⁇ b ⁇ 0.900
  • c is 0.000 ⁇ c ⁇ 0.800
  • d is 0.000 ⁇ d ⁇ 0.
  • the device used for mixing is not particularly limited, but a grinding type mixer such as a planetary ball mill can be used, for example.
  • the material and capacity of the container used for mixing, as well as the material and diameter of the ball, are not particularly limited and can be appropriately selected depending on the type and amount of raw materials used.
  • a 45 mL container made of zirconia and a 5 mm diameter ball made of zirconia can be used.
  • the conditions for the mixing treatment are not particularly limited, but may be, for example, a rotation speed of 50 rpm to 2000 rpm and a time of 10 minutes to 60 minutes.
  • the pressure molding method a known pressure molding method such as a cold uniaxial molding method or a cold isostatic pressure molding method can be used.
  • the conditions for pressure molding in the primary firing step are not particularly limited, but may be, for example, a pressure of 100 MPa to 200 MPa.
  • the obtained pellets are fired using a firing device such as an atmospheric firing device.
  • the temperature at which the solid phase synthesis is performed by primary firing is the ion conductive solid expressed by the general formula Li 6+ac-2d X 1-a-b-c-d M1 a M2 b M3 c M4 d B 3 O 9 There is no particular restriction as long as it is below the melting point.
  • the temperature during the primary firing can be, for example, lower than 700°C, 680°C or lower, 670°C or lower, 660°C or lower, or 650°C or lower, and can be, for example, 500°C or higher.
  • the numerical ranges can be combined arbitrarily. If the temperature is within the above range, solid phase synthesis can be carried out satisfactorily.
  • the time for the primary firing step is not particularly limited, but can be, for example, about 700 minutes to 750 minutes.
  • an ion conductive solid containing an oxide represented by the general formula Li 6+ac-2d X 1-a-b-c-d M1 a M2 b M3 c M4 d B 3 O 9 is produced. It can be made.
  • a powder of the ion conductive solid containing the oxide can also be obtained by pulverizing the ion conductive solid containing the oxide using a mortar and pestle or a planetary mill.
  • Secondary firing process In the secondary firing process, at least one selected from the group consisting of the ion conductive solid containing the oxide obtained in the primary firing process and the powder of the ion conductive solid containing the oxide is optionally added. Accordingly, the material is pressure-molded and fired to obtain a sintered body of an ion-conductive solid containing an oxide. Pressure molding and secondary sintering may be performed simultaneously using discharge plasma sintering (hereinafter also simply referred to as "SPS") or hot pressing, or pellets are produced by cold uniaxial molding and then exposed to air. , secondary firing may be performed in an oxidizing atmosphere or a reducing atmosphere. Under the above conditions, an ion conductive solid with high ionic conductivity can be obtained without melting due to heat treatment.
  • SPS discharge plasma sintering
  • the conditions for pressure molding in the secondary firing step are not particularly limited, but may be, for example, a pressure of 10 MPa to 100 MPa.
  • the temperature for secondary firing is below the melting point of the ion conductive solid represented by the general formula Li 6+ac-2d X 1-ab-c-d M1 a M2 b M3 c M4 d B 3 O 9 .
  • the temperature during secondary firing is preferably less than 700°C, more preferably 680°C or less, even more preferably 670°C or less, particularly preferably 660°C or less.
  • the lower limit of the temperature is not particularly limited, and is preferably as low as possible, but is, for example, 500° C. or higher.
  • the numerical ranges can be arbitrarily combined, and can be, for example, in the range of 500°C or more and less than 700°C.
  • the ion conductive solid containing the oxide of the present disclosure can be suppressed from melting or decomposing in the secondary firing step, and the ion conductive solid containing the oxide of the present disclosure can be sufficiently sintered.
  • a solid sintered body can be obtained.
  • the time for the secondary firing step can be changed as appropriate depending on the temperature, pressure, etc. of the secondary firing, but is preferably 24 hours or less, and may be 14 hours or less.
  • the time for the secondary firing step may be, for example, 5 minutes or more, 1 hour or more, or 6 hours or more.
  • the method for cooling the sintered body of the ion conductive solid containing the oxide of the present disclosure obtained through the secondary firing step is not particularly limited, and may be naturally cooled (cooled in a furnace) or rapidly cooled. It may be cooled, it may be cooled more gradually than natural cooling, or it may be maintained at a certain temperature during cooling.
  • All-solid-state batteries generally have a positive electrode, a negative electrode, an electrolyte containing an ion-conducting solid disposed between the positive electrode and the negative electrode, and optionally a current collector.
  • the all-solid-state battery of the present disclosure includes: a positive electrode; a negative electrode; electrolyte and An all-solid-state battery having at least At least one selected from the group consisting of the positive electrode, the negative electrode, and the electrolyte includes the ion conductive solid of the present disclosure.
  • the all-solid-state battery of the present disclosure may be a bulk type battery or a thin film battery.
  • the specific shape of the all-solid-state battery of the present disclosure is not particularly limited, and examples thereof include a coin shape, a button shape, a sheet shape, a stacked type, and the like.
  • the all-solid-state battery of the present disclosure has an electrolyte. Further, in the all-solid-state battery of the present disclosure, it is preferable that at least the electrolyte includes the ion conductive solid of the present disclosure.
  • the solid electrolyte in the all-solid-state battery of the present disclosure may be made of the ion conductive solid of the present disclosure, may contain other ion conductive solids, or may contain an ionic liquid or a gel polymer. Other ion conductive solids are not particularly limited, and may include ion conductive solids commonly used in all-solid-state batteries, such as LiI, Li 3 PO 4 , Li 7 La 3 Zr 2 O 12 , etc. good.
  • the content of the ion conductive solid of the present disclosure in the electrolyte of the all-solid battery of the present disclosure is not particularly limited, and is preferably 25% by mass or more, more preferably 50% by mass or more, and even more preferably It is 75% by mass or more, particularly preferably 100% by mass.
  • the all-solid-state battery of the present disclosure has a positive electrode.
  • the positive electrode may include a positive electrode active material, and may include the positive electrode active material and the ion conductive solid of the present disclosure.
  • the positive electrode active material known positive electrode active materials such as sulfides containing transition metal elements and oxides containing lithium and transition metal elements can be used without particular limitation.
  • the positive electrode may contain a binder, a conductive agent, and the like.
  • the binder include polyvinylidene fluoride, polytetrafluoroethylene, and polyvinyl alcohol.
  • the conductive agent include natural graphite, artificial graphite, acetylene black, and ethylene black.
  • the all-solid-state battery of the present disclosure has a negative electrode.
  • the negative electrode may include a negative electrode active material, or may include the negative electrode active material and the ion conductive solid of the present disclosure.
  • the negative electrode active material known negative electrode active materials such as lithium, lithium alloys, inorganic compounds such as tin compounds, carbonaceous materials capable of absorbing and releasing lithium ions, and conductive polymers can be used without particular limitation.
  • Li 4 Ti 5 O 12 and the like can be mentioned.
  • the negative electrode may contain a binder, a conductive agent, and the like.
  • the binder and the conductive agent the same materials as those mentioned for the positive electrode can be used.
  • the expression that the electrode "contains" the electrode active material means that the electrode has the electrode active material as a component, element, or property.
  • the electrode active material is contained in the electrode and the case where the electrode active material is coated on the electrode surface fall under the above-mentioned "contains”.
  • the positive electrode and the negative electrode can be obtained by known methods such as mixing raw materials, molding, and heat treatment. It is thought that this allows the ion-conductive solid to enter the gaps between the electrode active materials, making it easier to secure a conduction path for lithium ions. Since the ion conductive solid of the present disclosure can be produced by heat treatment at a lower temperature than that of the conventional technology, it is thought that the formation of a high resistance phase caused by the reaction between the ion conductive solid and the electrode active material can be suppressed.
  • the positive electrode and the negative electrode may have a current collector.
  • a current collector known current collectors such as aluminum, titanium, stainless steel, nickel, iron, fired carbon, conductive polymer, and conductive glass can be used.
  • aluminum, copper, or the like whose surface has been treated with carbon, nickel, titanium, silver, or the like can be used as the current collector in order to improve adhesiveness, conductivity, oxidation resistance, and the like.
  • the all-solid-state battery of the present disclosure can be obtained by a known method, for example, by stacking a positive electrode, a solid electrolyte, and a negative electrode, and then molding and heat-treating the stack.
  • the ion-conducting solid of the present disclosure can be produced by heat treatment at a lower temperature compared to conventional techniques, so it is thought that the formation of a high-resistance phase caused by the reaction between the ion-conducting solid and the electrode active material can be suppressed, and the output It is believed that an all-solid-state battery with excellent characteristics can be obtained.
  • compositional analysis of the ion conductive solid is performed by wavelength dispersive X-ray fluorescence analysis (hereinafter also referred to as XRF) using a sample solidified by pressure molding.
  • XRF wavelength dispersive X-ray fluorescence analysis
  • composition analysis may be performed using inductively coupled radio frequency plasma emission spectroscopy (ICP-AES).
  • the analyzer used is ZSX Primus II manufactured by Rigaku Corporation.
  • the analysis conditions are as follows: Rh is used for the anode of the X-ray tube, vacuum atmosphere is used, the analysis diameter is 10 mm, the analysis range is 17 deg to 81 deg, the step is 0.01 deg, and the scan speed is 5 sec/step. Further, when measuring light elements, a proportional counter is used, and when measuring heavy elements, a scintillation counter is used. The element is identified based on the peak position of the spectrum obtained by XRF, and the molar concentration ratio is calculated from the counting rate (unit: cps), which is the number of X-ray photons per unit time, and Find d.
  • Example 1 ⁇ Primary firing process Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Kagaku, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9% by mass) and Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%) as raw materials, each raw material was adjusted to a stoichiometric amount so that d was the value listed in Table 1. and mixed for 30 minutes at a disk rotation speed of 300 rpm in a planetary mill P-7 manufactured by Fritsch.
  • a zirconia ⁇ 5 mm ball and a 45 mL container were used for the planetary mill. After mixing, the mixed powder was cold uniaxially molded at 147 MPa using a 100 kN electric press P3052-10 manufactured by NP Systems, and fired in an air atmosphere. The heating temperature was 650°C and the holding time was 720 minutes. The obtained ion conductive solid containing an oxide was pulverized for 180 minutes using a planetary mill P-7 manufactured by Fritsch at a disk rotation speed of 230 rpm to produce a powder of an ion conductive solid containing an oxide.
  • the powder of the ion conductive solid containing the oxide obtained above was molded and secondary firing to produce the sintered body of the ion conductive solid containing the oxide of Example 1.
  • the powder was cold uniaxially molded at 147 MPa using a 100 kN electric press machine P3052-10 manufactured by NPA System.
  • the secondary firing was carried out in an air atmosphere, with a heating temperature of 650° C. and a holding time of 720 minutes.
  • Example 2 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Using Lu 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) and CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) as raw materials, c was the value listed in Table 1.
  • the sintered body of the ion conductive solid containing the oxide of Example 2 was produced in the same process as in Example 1 except that each raw material was weighed in stoichiometric amounts so that the following was obtained.
  • Example 3 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), ZrO 2 (manufactured by Nippon Denko, purity 99.9%), CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) and Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%).
  • Ion conduction containing the oxide of Example 3 was carried out in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so that c and d had the values listed in Table 1. A sintered solid body was prepared.
  • Example 4 The ion conductive solid containing the oxide of Example 4 was prepared using the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts to give the values listed in Table 1. A sintered body was produced.
  • Example 5 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %) and HfO 2 (manufactured by Nu Metals, purity 99.9%) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that c was the value listed in Table 1.
  • a sintered body of an ion conductive solid containing the oxide of Example 5 was produced in the same process as in Example 1.
  • Example 6 Ion conductivity containing the oxide of Example 6 was prepared using the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that c had the value listed in Table 1. A solid sintered body was produced.
  • Example 7 Ions containing the oxide of Example 7 were produced in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that c and d had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 8 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), In 2 O 3 (manufactured by Shinko Chemical Co., Ltd., purity 99% by mass), SnO 2 (manufactured by Mitsuwa Chemical Co., Ltd., purity 99.9%), and CeO 2 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9%).
  • Ion conduction containing the oxide of Example 8 was carried out in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so that b and c had the values listed in Table 1. A sintered solid body was prepared.
  • Example 9 Ions containing the oxide of Example 9 were produced in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 10 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Fe 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 95.0% by mass) and TiO 2 (manufactured by Toho Titanium, purity 99%) were used as raw materials, and b and c were the values listed in Table 1.
  • An ion conductive solid sintered body containing the oxide of Example 10 was produced in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so that.
  • Example 11 Ions containing the oxide of Example 11 were produced in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 12 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), B 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 99.9%), Ho 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.0%).
  • 9% by mass and Lu 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) as raw materials, each raw material was stoichiometrically adjusted so that b was the value listed in Table 1.
  • a sintered body of an ion conductive solid containing an oxide of Example 12 was produced in the same process as in Example 1 except that the weight was weighed.
  • Example 13 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), MgO (manufactured by Ube Materials, purity 99.0% by mass) and CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) were used as raw materials, and a and c were set to the values listed in Table 1.
  • An ion conductive solid sintered body containing the oxide of Example 13 was produced in the same process as in Example 1 except that each raw material was weighed in stoichiometric amounts so that the following results were obtained.
  • Example 14 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), La 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 99.9% by mass), MgO (manufactured by Ube Materials, purity 99.0% by mass), and CaO (manufactured by Kanto Chemical, purity 97.0% by mass) Ions containing the oxide of Example 14 were prepared in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 15 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), La 2 O 3 (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass) and MnO (manufactured by Kanto Chemical, purity 80.0% by mass) as raw materials, a and b are listed in Table 1.
  • a sintered body of an ion conductive solid containing the oxide of Example 15 was produced in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so as to obtain the same value.
  • Example 16 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Tb 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass) and MnO (manufactured by Kanto Chemical, purity 80.0% by mass) were used as raw materials, and a and b were listed in Table 1.
  • a sintered body of an ion conductive solid containing the oxide of Example 16 was produced in the same process as in Example 1 except that each raw material was weighed in stoichiometric amounts so as to obtain the following values.
  • Example 17 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) and MnO (manufactured by Kanto Kagaku, purity 80.0% by mass) as raw materials, a and b are listed in Table 1.
  • a sintered body of an ion conductive solid containing the oxide of Example 17 was produced in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so as to obtain the values shown in Table 1.
  • Example 18 Ions containing the oxide of Example 18 were prepared in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that c and d had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 19 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), In 2 O 3 (manufactured by Shinko Kagaku Kogyo, purity 99% by mass), Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%), and Ta 2 O 5 (manufactured by Kanto Chemical, purity 99% by mass). Ions containing the oxide of Example 19 were prepared in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so that b and d had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 20 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %) and Pr 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 1. produced a sintered body of an ion conductive solid containing the oxide of Example 20 using the same steps as Example 1.
  • Example 21 Ions containing the oxide of Example 21 were produced in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 22 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Sm 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 99.9% by mass), HfO 2 (manufactured by New Metals, purity 99.9%), and Ta 2 O 5 (manufactured by Kanto Chemical, purity 99% by mass)
  • the oxide of Example 22 was prepared in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 1.
  • a sintered body of an ion-conducting solid was fabricated.
  • Example 23 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Kagaku, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Nd 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9% by mass), Sm 2 O 3 (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass), and ZnO (manufactured by Wako Pure Chemical Industries, Ltd., purity 99%).
  • Example 23 The oxide of Example 23 was prepared in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 1. An ion-conducting solid sintered body containing the following was fabricated.
  • Example 24 Ions containing the oxide of Example 24 were produced in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 25 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %) and Eu 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 1.
  • a sintered body of an ion conductive solid containing the oxide of Example 25 was produced using the same steps as in Example 1.
  • Example 26 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Eu2O3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 95% by mass) and NiO (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0% by mass) were used as raw materials, and a and b were listed in Table 1.
  • An ion conductive solid sintered body containing the oxide of Example 26 was produced in the same process as in Example 1 except that each raw material was weighed in stoichiometric amounts so as to obtain the following values.
  • Example 27 Ions containing the oxide of Example 27 were prepared in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 28 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Kagaku, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Gd 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass), Dy 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), and CaO (manufactured by Kanto Chemical, purity 99.0% by mass)
  • Ions containing the oxide of Example 28 were prepared in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 1.
  • a conductive solid sintered body was fabricated.
  • Example 29 Ions containing the oxide of Example 29 were prepared in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 30 Ions containing the oxide of Example 30 were produced in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 31 Ion conductivity containing the oxide of Example 31 was prepared using the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b had the value listed in Table 1. A solid sintered body was produced.
  • Example 32 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Tb 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass), NiO (manufactured by Wako Pure Chemical Industries, purity 99.0% by mass), and BaO (manufactured by Wako Pure Chemical Industries, purity 90.0% by mass) %) as a raw material, and the oxide of Example 32 was prepared in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 1. A sintered body of an ion-conducting solid was fabricated.
  • Example 33 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Tb 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9% by mass), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9% by mass), and BaO (manufactured by Wako Pure Chemical Industries, purity Example 33 was carried out in the same manner as in Example 1, except that 90.0% by mass) was used as a raw material and each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 1.
  • Example 34 The oxide of Example 34 was prepared in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 1. A sintered body of an ion-conducting solid was fabricated.
  • Example 35 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Er2O3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Tm2O3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass), and SrO (manufactured by Kojundo Kagaku Kenkyusho, purity 98).
  • Example 35 The oxide of Example 35 was prepared in the same process as in Example 1, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 1. An ion-conductive solid sintered body containing the following was fabricated.
  • Example 36 Ions containing the oxide of Example 36 were prepared in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 37 The oxide of Example 37 was prepared in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that a, b, and c had the values listed in Table 1. A sintered body of an ion-conducting solid was fabricated.
  • Example 38 Ions containing the oxide of Example 38 were prepared in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 39 The oxide of Example 39 was prepared in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 1. A sintered body of an ion-conducting solid was fabricated.
  • Example 40 The oxide of Example 40 was prepared in the same process as Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that a, b, and c had the values listed in Table 1. A sintered body of an ion-conducting solid was fabricated.
  • Example 41 Ions containing the oxide of Example 41 were produced in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 42 Ions containing the oxide of Example 42 were produced in the same process as in Example 1, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 1. A conductive solid sintered body was fabricated.
  • Example 43 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Lu 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %) and Sc 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) as raw materials, each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 1.
  • a sintered body of an ion conductive solid containing an oxide of Example 26 was produced using the same steps as in Example 1 except for the following steps.
  • Example 44 Example 1 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 1, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 44 was produced in the same process.
  • Example 45 Example 1 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 1, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 45 was produced in the same process.
  • Example 46 Example 1 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 1, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 46 was produced in the same process.
  • Example 47 Each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 1, the disk rotation speed during pulverization was set to 150 rpm, and the pulverization time was set to 60 minutes. A sintered body of an ion conductive solid containing an oxide of Example 47 was produced using the same steps as in Example 1 except for the following settings.
  • Example 1 Same as Example 1 except that Lu 2 O 3 in the raw material in Example 1 was changed to Y 2 O 3 and each raw material was weighed in stoichiometric amounts so that d was the value listed in Table 1. In the process, a sintered body of an ion conductive solid containing the oxide of Comparative Example 1 was produced.
  • Example 2 Same as Example 2 except that Lu 2 O 3 in the raw material in Example 2 was changed to Y 2 O 3 and each raw material was weighed in stoichiometric amounts so that c had the value listed in Table 1. In the process, a sintered body of an ion conductive solid containing the oxide of Comparative Example 2 was produced.
  • Example 3 Example 3 except that Lu 2 O 3 in the raw material in Example 3 was changed to Y 2 O 3 and each raw material was weighed in stoichiometric amounts so that c and d had the values listed in Table 1.
  • a sintered body of an ion conductive solid containing an oxide of Comparative Example 3 was produced in the same process as that of Comparative Example 3.
  • Example 101 ⁇ Primary firing process Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Kagaku, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9% by mass) and Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%) as raw materials, each raw material was adjusted to a stoichiometric amount so that d was the value listed in Table 2. and mixed for 30 minutes at a disk rotation speed of 300 rpm in a planetary mill P-7 manufactured by Fritsch.
  • a zirconia ⁇ 5 mm ball and a 45 mL container were used for the planetary mill. After mixing, the mixed powder was cold uniaxially molded at 147 MPa using a 100 kN electric press P3052-10 manufactured by NP Systems, and fired in an air atmosphere. The heating temperature was 650°C and the holding time was 720 minutes. The obtained ion conductive solid containing an oxide was pulverized for 180 minutes using a planetary mill P-7 manufactured by Fritsch at a disk rotation speed of 230 rpm to produce a powder of an ion conductive solid containing an oxide.
  • the powder of the ion conductive solid containing the oxide obtained above was molded and secondary firing to produce a sintered body of the ion conductive solid containing the oxide of Example 101.
  • the powder was cold uniaxially molded at 147 MPa using a 100 kN electric press machine P3052-10 manufactured by NPA System.
  • the secondary firing was carried out in an air atmosphere, with a heating temperature of 650° C. and a holding time of 720 minutes.
  • Example 102 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %) and CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that c was the value listed in Table 2.
  • a sintered body of an ion conductive solid containing an oxide of Example 102 was produced in the same process as Example 101.
  • Example 103 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), ZrO 2 (manufactured by Nippon Denko, purity 99.9%), CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) and Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%).
  • Ion conduction containing the oxide of Example 103 was performed in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so that c and d had the values listed in Table 2. A sintered solid body was prepared.
  • Example 104 The ion conductive solid containing the oxide of Example 104 was prepared using the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts to give the values listed in Table 2. A sintered body was produced.
  • Example 105 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %) and HfO 2 (manufactured by Nu Metals, purity 99.9%) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that c was the value listed in Table 2.
  • a sintered body of an ion conductive solid containing the oxide of Example 105 was produced in the same process as in Example 101.
  • Example 106 Ion conductivity containing the oxide of Example 106 was prepared using the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that c had the value listed in Table 2. A solid sintered body was produced.
  • Example 107 Ions containing the oxide of Example 107 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that c and d had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 108 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), In2O3 (manufactured by Shinko Kagaku Kogyo, purity 99% by mass) and SnO2 (manufactured by Mitsuwa Chemicals, purity 99.9%) were used as raw materials, and b and c were listed in Table 2.
  • An ion conductive solid sintered body containing the oxide of Example 108 was produced in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so as to obtain the following values.
  • Example 109 Ions containing the oxide of Example 109 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 110 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Fe 2 O 3 (manufactured by Wako Pure Chemical Industries, Ltd., purity 95.0% by mass) and TiO 2 (manufactured by Toho Titanium, purity 99%) were used as raw materials, and b and c were the values listed in Table 2.
  • An ion conductive solid sintered body containing the oxide of Example 110 was produced in the same process as Example 101 except that each raw material was weighed in stoichiometric amounts so that
  • Example 111 Ions containing the oxide of Example 111 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 112 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), MgO (manufactured by Ube Materials, purity 99.0% by mass) and CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) were used as raw materials, and a and c were set to the values listed in Table 2.
  • a sintered body of an ion conductive solid containing an oxide of Example 112 was produced in the same process as Example 101 except that each raw material was weighed in stoichiometric amounts so that the following results were obtained.
  • Example 113 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), La 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 99.9% by mass), MgO (manufactured by Ube Materials, purity 99.0% by mass), and CaO (manufactured by Kanto Chemical, purity 97.0% by mass) Ions containing the oxide of Example 113 were prepared in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 114 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Lu 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) and MnO (manufactured by Kanto Kagaku, purity 80.0% by mass) as raw materials, a and b are listed in Table 2.
  • An ion conductive solid sintered body containing the oxide of Example 114 was produced in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so as to obtain the values shown in FIG.
  • Example 115 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Tb 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass) and MnO (manufactured by Kanto Chemical, purity 80.0% by mass) were used as raw materials, and a and b were listed in Table 2.
  • An ion conductive solid sintered body containing the oxide of Example 115 was produced in the same process as Example 101 except that each raw material was weighed in stoichiometric amounts so as to obtain the following values.
  • Example 116 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) and BaO (manufactured by Wako Pure Chemical Industries, purity 90.0% by mass) as raw materials, a and b are shown in Table 2.
  • An ion conductive solid sintered body containing the oxide of Example 116 was produced in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so as to obtain the values described in .
  • Example 117 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), SnO 2 (manufactured by Mitsuwa Chemicals, purity 99.9%) and Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%) were used as raw materials, and c and d were listed in Table 2.
  • An ion conductive solid sintered body containing the oxide of Example 117 was produced in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so as to obtain the same value.
  • Example 118 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), In 2 O 3 (manufactured by Shinko Kagaku Kogyo, purity 99% by mass), Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%), and Ta 2 O 5 (manufactured by Kanto Chemical, purity 99% by mass).
  • Ions containing the oxide of Example 118 were prepared in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so that b and d had the values listed in Table 2.
  • a conductive solid sintered body was fabricated.
  • Example 119 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %) and Pr 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 2. produced a sintered body of an ion conductive solid containing the oxide of Example 119 using the same steps as Example 101.
  • Example 120 Ions containing the oxide of Example 120 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 121 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Sm 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 99.9% by mass), HfO 2 (manufactured by New Metals, purity 99.9%), and Ta 2 O 5 (manufactured by Kanto Chemical, purity 99% by mass)
  • the oxide of Example 121 was prepared in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 2.
  • a sintered body of an ion-conducting solid was fabricated.
  • Example 122 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Nd 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9% by mass), Sm 2 O 3 (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass), and ZnO (manufactured by Wako Pure Chemical Industries, Ltd., purity 99%).
  • Example 122 The oxide of Example 122 was prepared in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 2. An ion-conductive solid sintered body containing the following was fabricated.
  • Example 123 Ions containing the oxide of Example 123 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 124 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %) and Eu 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 2.
  • a sintered body of an ion conductive solid containing the oxide of Example 124 was produced using the same steps as in Example 101.
  • Example 125 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Eu2O3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 95% by mass) and NiO (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0% by mass) were used as raw materials, and a and b were listed in Table 2.
  • a sintered body of an ion conductive solid containing the oxide of Example 125 was produced in the same process as Example 101 except that each raw material was weighed in stoichiometric amounts so as to obtain the following values.
  • Example 126 Ions containing the oxide of Example 126 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 127 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Gd 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass), Dy 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), and CaO (manufactured by Kanto Chemical, purity 99.0% by mass)
  • Ions containing the oxide of Example 127 were prepared in the same process as in Example 101, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 2.
  • a conductive solid sintered body was fabricated.
  • Example 128 Ions containing the oxide of Example 128 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 129 Ions containing the oxide of Example 129 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 130 Ion conductivity containing the oxide of Example 130 was prepared using the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b had the value listed in Table 2. A solid sintered body was produced.
  • Example 131 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Tb 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass), NiO (manufactured by Wako Pure Chemical Industries, purity 99.0% by mass), and BaO (manufactured by Wako Pure Chemical Industries, purity 90.0% by mass) %) as a raw material, and the oxide of Example 131 was prepared in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 2. A sintered body of an ion-conducting solid was fabricated.
  • Example 132 The oxide of Example 132 was prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 2. A sintered body of an ion-conducting solid was fabricated.
  • Example 133 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), Er2O3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Tm2O3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass), and SrO (manufactured by Kojundo Kagaku Kenkyusho, purity 98).
  • Example 133 The oxide of Example 133 was prepared in the same process as Example 101, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 2. An ion-conductive solid sintered body containing the following was fabricated.
  • Example 134 Ions containing the oxide of Example 134 were produced in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 135 The oxide of Example 135 was prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that a, b, and c had the values listed in Table 2. A sintered body of an ion-conducting solid was fabricated.
  • Example 136 Ions containing the oxide of Example 136 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 137 The oxide of Example 137 was prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 2. A sintered body of an ion-conducting solid was fabricated.
  • Example 138 The oxide of Example 138 was prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that a, b, and c had the values listed in Table 2. A sintered body of an ion-conducting solid was fabricated.
  • Example 139 Ions containing the oxide of Example 139 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 140 Ions containing the oxide of Example 140 were prepared in the same process as Example 101, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 2. A conductive solid sintered body was fabricated.
  • Example 141 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %) and Sc 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) as raw materials, each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 2.
  • a sintered body of the ion conductive solid containing the oxide of Example 141 was produced in the same steps as Example 101 except for the following steps.
  • Example 142 Example 101 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 2, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 142 was produced in the same process.
  • Example 143 Example 101 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 2, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 143 was produced in the same process.
  • Example 144 Example 101 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 2, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 144 was produced in the same process.
  • Example 201 ⁇ Primary firing process Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass) %) and Nb 2 O 5 (manufactured by Mitsui Mining and Mining Co., Ltd., purity 99.9%) as raw materials, each raw material was weighed in stoichiometric amounts so that d was the value listed in Table 3, The mixture was mixed for 30 minutes using a planetary mill P-7 manufactured by Fritsch at a disc rotation speed of 300 rpm.
  • a zirconia ⁇ 5 mm ball and a 45 mL container were used for the planetary mill. After mixing, the mixed powder was cold uniaxially molded at 147 MPa using a 100 kN electric press P3052-10 manufactured by NP Systems, and fired in an air atmosphere. The heating temperature was 650°C and the holding time was 720 minutes. The obtained ion conductive solid containing an oxide was pulverized for 180 minutes using a planetary mill P-7 manufactured by Fritsch at a disk rotation speed of 230 rpm to produce a powder of an ion conductive solid containing an oxide.
  • the powder of the ion conductive solid containing the oxide obtained above was molded and secondary firing to produce the sintered body of the ion conductive solid containing the oxide of Example 1.
  • the powder was cold uniaxially molded at 147 MPa using a 100 kN electric press machine P3052-10 manufactured by NPA System.
  • the secondary firing was carried out in an air atmosphere, with a heating temperature of 650° C. and a holding time of 720 minutes.
  • Example 202 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), and Example 201 except that CeO 2 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9%) was used as the raw material, and each raw material was weighed in stoichiometric amounts so that c was the value listed in Table 3.
  • a sintered body of an ion conductive solid containing the oxide of Example 202 was produced in the same process.
  • Example 203 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), ZrO 2 (manufactured by Nippon Denko, purity 99.9%), CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) and Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%) as raw materials.
  • the ion conductive solid containing the oxide of Example 203 was sintered in the same process as Example 201, except that each raw material was weighed in stoichiometric amounts so that , c and d had the values listed in Table 3. A concretion was produced.
  • Example 204 The ion conductive solid containing the oxide of Example 204 was prepared using the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so as to obtain the values listed in Table 3. A sintered body was produced.
  • Example 205 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), and HfO 2 (manufactured by Nu Metals, purity 99.9%) was used as the raw material, and each raw material was weighed in stoichiometric amounts so that c was the value listed in Table 3. Same process as Example 201. A sintered body of an ion conductive solid containing the oxide of Example 205 was prepared.
  • Example 206 Ion conductivity containing the oxide of Example 206 was prepared using the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that c had the value listed in Table 3. A solid sintered body was produced.
  • Example 207 Ions containing the oxide of Example 207 were prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that c and d had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 208 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), In Using 2 O 3 (manufactured by Shinko Kagaku Kogyo, purity 99% by mass) and SnO 2 (manufactured by Mitsuwa Chemical, purity 99.9%) as raw materials, b and c were made to have the values listed in Table 3.
  • An ion conductive solid sintered body containing the oxide of Example 208 was produced in the same process as Example 201 except that each raw material was weighed in stoichiometric amounts.
  • Example 209 Ions containing the oxide of Example 209 were prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 210 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Fe Using 2 O 3 (manufactured by Wako Pure Chemical Industries, Ltd., purity 95.0% by mass) and TiO 2 (manufactured by Toho Titanium, purity 99%) as raw materials, b and c were adjusted to the values listed in Table 3.
  • An ion conductive solid sintered body containing an oxide of Example 210 was produced in the same process as Example 201 except that each raw material was weighed in stoichiometric amounts.
  • Example 211 Ions containing the oxide of Example 211 were prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 212 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), MgO (manufactured by Ube Materials, purity 99.0% by mass) and CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) were used as raw materials, and each An ion conductive solid sintered body containing an oxide of Example 212 was produced in the same process as Example 201 except that the raw materials were weighed in stoichiometric amounts.
  • Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), La 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 99.9% by mass), MgO (manufactured by Ube Materials, purity 99.0% by mass) and CaO (manufactured by Kanto Chemical, purity 97.0% by mass) were used as raw materials.
  • the ion conductive solid containing the oxide of Example 213 was prepared in the same process as Example 201, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 3. A sintered body was produced.
  • Example 214 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Lu Using 2O3 (manufactured by Kojundo Kagaku Institute, purity 99.9% by mass) and MnO (manufactured by Kanto Kagaku, purity 80.0% by mass) as raw materials, a and b were set to the values listed in Table 3.
  • An ion conductive solid sintered body containing the oxide of Example 214 was produced in the same process as Example 201, except that each raw material was weighed in stoichiometric amounts so that the results were as follows.
  • Example 215 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Tb Using 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass) and MnO (manufactured by Kanto Chemical, purity 80.0% by mass) as raw materials, a and b were made to have the values listed in Table 3.
  • An ion conductive solid sintered body containing the oxide of Example 215 was produced in the same process as Example 201 except that each raw material was weighed in stoichiometric amounts.
  • Example 216 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Tm Using 2O3 (manufactured by Kojundo Kagaku Institute, purity 99.9% by mass) and MnO (manufactured by Kanto Kagaku, purity 80.0% by mass) as raw materials, a and b were set to the values listed in Table 3.
  • a sintered body of an ion conductive solid containing the oxide of Example 216 was produced in the same process as in Example 201, except that each raw material was weighed in stoichiometric amounts so that the results were as follows.
  • Example 217 Ions containing the oxide of Example 217 were prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that c and d had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 218 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), In 2 O 3 (manufactured by Shinko Kagaku Kogyo, purity 99% by mass), Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%) and Ta 2 O 5 (manufactured by Kanto Kagaku, purity 99% by mass) were used as raw materials.
  • the ion conductive solid containing the oxide of Example 218 was prepared in the same process as Example 201, except that each raw material was weighed in stoichiometric amounts so that b and d had the values listed in Table 3. A sintered body was produced.
  • Example 219 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), and Pr 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9% by mass) was used as the raw material, and each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 3.
  • a sintered body of an ion conductive solid containing the oxide of Example 219 was produced in the same process as in Example 201.
  • Example 220 Ions containing the oxide of Example 220 were produced in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 221 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Sm 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 99.9% by mass), HfO 2 (manufactured by New Metals, purity 99.9%) and Ta 2 O 5 (manufactured by Kanto Chemical, purity 99% by mass) were used as raw materials.
  • Ion conductivity containing the oxide of Example 221 was prepared using the same process as Example 201, except that each raw material was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 3. A solid sintered body was produced.
  • Example 222 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Nd 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9% by mass), Sm 2 O 3 (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass), and ZnO (manufactured by Wako Pure Chemical Industries, Ltd., purity 99% by mass).
  • Ion conduction containing the oxide of Example 222 was carried out in the same process as Example 201, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 3. A sintered solid body was prepared.
  • Example 223 Ions containing the oxide of Example 223 were prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 224 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), and Eu Example 201 except that 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 95% by mass) was used as the raw material, and each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 3.
  • a sintered body of an ion conductive solid containing the oxide of Example 224 was produced in the same process.
  • Example 225 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Eu Using 2O3 ( manufactured by Shin-Etsu Chemical Co., Ltd., purity 95% by mass) and NiO (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0% by mass) as raw materials, a and b were made to have the values listed in Table 3.
  • An ion conductive solid sintered body containing the oxide of Example 225 was produced in the same process as Example 201 except that each raw material was weighed in stoichiometric amounts.
  • Example 226 Ions containing the oxide of Example 226 were prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Gd 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass), Dy 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass) and CaO (manufactured by Kanto Chemical, purity 99.0% by mass) were used as raw materials.
  • the ion conductive solid containing the oxide of Example 227 was prepared in the same process as Example 201, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 3. A sintered body was produced.
  • Example 228 Ions containing the oxide of Example 228 were prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 229 Ions containing the oxide of Example 229 were prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 230 Ion conductivity containing the oxide of Example 230 was prepared using the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b had the value listed in Table 3. A solid sintered body was produced.
  • Example 231 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Tb 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9% by mass), NiO (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0% by mass), and BaO (manufactured by Wako Pure Chemical Industries, Ltd., purity 90.0% by mass) were used as raw materials.
  • Ion conductivity containing the oxide of Example 231 was prepared using the same process as Example 201, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 3. A solid sintered body was produced.
  • Example 232 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), Ho 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass), Tb 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass), and SrO (manufactured by Kojundo Kagaku Kenkyusho, purity 98% by mass) ) was used as a raw material and each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 3. A sintered body of ion conductive solid was fabricated.
  • Example 233 The oxide of Example 233 was prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 3. A sintered body of an ion-conducting solid was fabricated.
  • Example 234 Ions containing the oxide of Example 234 were prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 235 The oxide of Example 235 was prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 3. A sintered body of an ion-conducting solid was fabricated.
  • Example 236 The oxide of Example 236 was prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that a, b, and c had the values listed in Table 3. A sintered body of an ion-conducting solid was fabricated.
  • Example 237 Ions containing the oxide of Example 237 were prepared in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 238 Ions containing the oxide of Example 238 were produced in the same process as Example 201, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 3. A conductive solid sintered body was fabricated.
  • Example 239 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), and Sc. 2O3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) was used as a raw material, and each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 3.
  • a sintered body of an ion conductive solid containing the oxide of Example 239 was produced using the same steps as in Example 201.
  • Example 240 Example 201 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 3, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 240 was produced in the same process.
  • Example 241 Example 201 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 3, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 241 was produced in the same process.
  • Example 242 Example 201 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 3, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 242 was produced in the same process.
  • Example 301 ⁇ Primary firing process Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Kagaku, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9% by mass) and Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%) as raw materials, each raw material was stoichiometrically adjusted so that d was the value listed in Table 4. and mixed for 30 minutes at a disk rotation speed of 300 rpm in a planetary mill P-7 manufactured by Fritsch.
  • a zirconia ⁇ 5 mm ball and a 45 mL container were used for the planetary mill. After mixing, the mixed powder was cold uniaxially molded at 147 MPa using a 100 kN electric press P3052-10 manufactured by NP Systems, and fired in an air atmosphere. The heating temperature was 650°C and the holding time was 720 minutes. The obtained ion conductive solid containing an oxide was pulverized for 180 minutes using a planetary mill P-7 manufactured by Fritsch at a disk rotation speed of 230 rpm to produce a powder of an ion conductive solid containing an oxide.
  • the powder of the ion conductive solid containing the oxide obtained above was molded and secondary firing to produce a sintered body of the ion conductive solid containing the oxide of Example 301.
  • the powder was cold uniaxially molded at 147 MPa using a 100 kN electric press machine P3052-10 manufactured by NPA System.
  • the secondary firing was carried out in an air atmosphere, with a heating temperature of 650° C. and a holding time of 720 minutes.
  • Example 302 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %) and CeO 2 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9%) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that c was the value listed in Table 4.
  • a sintered body of an ion conductive solid containing an oxide of Example 302 was produced in the same process as Example 301.
  • Example 303 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), ZrO 2 (manufactured by Nippon Denko, purity 99.9%), CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) and Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%). Ion conduction containing the oxide of Example 303 was performed in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so that c and d had the values listed in Table 4. A sintered solid body was prepared.
  • Example 304 The ion conductive solid containing the oxide of Example 304 was prepared using the same process as Example 301 except that each raw material used in the above example was weighed in stoichiometric amounts to give the values listed in Table 4. A sintered body was produced.
  • Example 305 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %) and HfO 2 (manufactured by Nu Metals, purity 99.9%) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that c was the value listed in Table 4.
  • a sintered body of an ion conductive solid containing the oxide of Example 305 was produced in the same process as Example 301.
  • Example 306 Ion conductivity containing the oxide of Example 306 was prepared using the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that c had the value listed in Table 4. A solid sintered body was produced.
  • Example 307 Ions containing the oxide of Example 307 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that c and d had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 308 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9 mass) %), In2O3 (manufactured by Shinko Kagaku Kogyo, purity 99% by mass) and SnO2 (manufactured by Mitsuwa Chemical, purity 99.9%) were used as raw materials, and b and c were listed in Table 4.
  • An ion conductive solid sintered body containing the oxide of Example 308 was produced in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so as to obtain the following values.
  • Example 309 Ions containing the oxide of Example 309 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 310 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), Fe 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 95.0% by mass) and TiO 2 (manufactured by Toho Titanium, purity 99%) were used as raw materials, and b and c were the values listed in Table 4.
  • An ion conductive solid sintered body containing an oxide of Example 310 was produced in the same process as Example 301 except that each raw material was weighed in stoichiometric amounts so that
  • Example 311 Ions containing the oxide of Example 311 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 312 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), MgO (manufactured by Ube Materials, purity 99.0% by mass) and CeO 2 (manufactured by Shin-Etsu Chemical, purity 99.9%) were used as raw materials, and a and c were set to the values listed in Table 4.
  • a sintered body of an ion conductive solid containing an oxide of Example 312 was produced in the same process as Example 301 except that each raw material was weighed in stoichiometric amounts so that the following results were obtained.
  • Example 313 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), La 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 99.9% by mass), MgO (manufactured by Ube Materials, purity 99.0% by mass), and CaO (manufactured by Kanto Chemical, purity 97.0% by mass) Ions containing the oxide of Example 313 were prepared in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 314 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), Lu 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) and MnO (manufactured by Kanto Kagaku, purity 80.0% by mass) as raw materials, a and b are listed in Table 4.
  • a sintered body of an ion conductive solid containing the oxide of Example 314 was produced in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so as to obtain the values shown in FIG.
  • Example 315 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), Tb 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass) and MnO (manufactured by Kanto Chemical, purity 80.0% by mass) were used as raw materials, and a and b were listed in Table 4.
  • An ion conductive solid sintered body containing the oxide of Example 315 was produced in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so as to obtain the following values.
  • Example 316 Ions containing the oxide of Example 316 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that c and d had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 317 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), In 2 O 3 (manufactured by Shinko Kagaku Kogyo, purity 99% by mass), Nb 2 O 5 (manufactured by Mitsui Mining & Co., Ltd., purity 99.9%), and Ta 2 O 5 (manufactured by Kanto Chemical, purity 99% by mass).
  • Ion containing the oxide of Example 317 was prepared in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so that b and d had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 318 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %) and Pr 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 4. produced a sintered body of an ion conductive solid containing the oxide of Example 318 using the same steps as Example 301.
  • Example 319 Ions containing the oxide of Example 319 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 320 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), Sm 2 O 3 (manufactured by Wako Pure Chemical Industries, purity 99.9% by mass), HfO 2 (manufactured by New Metals, purity 99.9%), and Ta 2 O 5 (manufactured by Kanto Chemical, purity 99% by mass)
  • the oxide of Example 320 was prepared in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 4. A sintered body of an ion-conducting solid was fabricated.
  • Example 321 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), Nd 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9% by mass), Sm 2 O 3 (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9% by mass), and ZnO (manufactured by Wako Pure Chemical Industries, Ltd., purity 99%).
  • Example 321 The oxide of Example 321 was prepared in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 4. An ion-conductive solid sintered body containing the following was fabricated.
  • Example 322 Ions containing the oxide of Example 322 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 323 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %) and Eu 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass) were used as raw materials, and each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 4.
  • a sintered body of an ion conductive solid containing an oxide of Example 323 was produced in the same process as in Example 301.
  • Example 324 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), Eu2O3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 95% by mass) and NiO (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0% by mass) were used as raw materials, and a and b were listed in Table 4.
  • a sintered body of an ion conductive solid containing the oxide of Example 324 was produced in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so as to obtain the following values.
  • Example 325 Ions containing the oxide of Example 325 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 326 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), Gd 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass), Dy 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), and CaO (manufactured by Kanto Chemical, purity 99.0% by mass)
  • Ions containing the oxide of Example 326 were prepared in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 4.
  • a conductive solid sintered body was fabricated.
  • Example 327 Ions containing the oxide of Example 327 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 328 Ions containing the oxide of Example 328 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 329 Ion conductivity containing the oxide of Example 329 was prepared using the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b had the value listed in Table 4. A solid sintered body was produced.
  • Example 330 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), Tb 2 O 3 (manufactured by Shin-Etsu Chemical, purity 99.9% by mass), NiO (manufactured by Wako Pure Chemical Industries, purity 99.0% by mass), and BaO (manufactured by Wako Pure Chemical Industries, purity 90.0% by mass) %) as a raw material, and the oxide of Example 330 was prepared in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 4. A sintered body of an ion-conducting solid was fabricated.
  • Example 331 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), Tb 2 O 3 (manufactured by Shin-Etsu Chemical Co., Ltd., purity 99.9% by mass), Ho 2 O 3 (manufactured by Kojundo Chemical Research Institute, purity 99.9% by mass), and BaO (manufactured by Wako Pure Chemical Industries, purity Example 331 was produced using the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 4.
  • Example 332 The oxide of Example 332 was prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b, c, and d had the values listed in Table 4. A sintered body of an ion-conducting solid was fabricated.
  • Example 333 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %), Ho 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass), Er 2 O 3 (manufactured by Shin-Etsu Chemical, purity 95% by mass), and SrO (manufactured by Kojundo Kagaku Kenkyusho, purity 98%).
  • Example 333 The oxide of Example 333 was prepared in the same process as Example 301, except that each raw material was weighed in stoichiometric amounts so that a and b had the values listed in Table 4. An ion-conductive solid sintered body containing the following was fabricated.
  • Example 334 Ions containing the oxide of Example 334 were produced in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and c had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 335 The oxide of Example 335 was prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that a, b, and c had the values listed in Table 4. A sintered body of an ion-conducting solid was fabricated.
  • Example 336 The oxide of Example 336 was prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that a, b, and c had the values listed in Table 4. A sintered body of an ion-conducting solid was fabricated.
  • Example 337 Ions containing the oxide of Example 337 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 338 Ions containing the oxide of Example 338 were prepared in the same process as Example 301, except that each raw material used in the above example was weighed in stoichiometric amounts so that b and d had the values listed in Table 4. A conductive solid sintered body was fabricated.
  • Example 339 Li 2 CO 3 (manufactured by Nacalai Tesque, purity 99.0% by mass), H 3 BO 3 (manufactured by Kanto Chemical, purity 99.5%), Tm 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) %) and Sc 2 O 3 (manufactured by Kojundo Kagaku Kenkyusho, purity 99.9% by mass) as raw materials, each raw material was weighed in stoichiometric amounts so that b was the value listed in Table 4.
  • a sintered body of an ion conductive solid containing an oxide of Example 339 was produced in the same steps as Example 301 except for the following steps.
  • Example 340 Example 301 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 4, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 340 was produced in the same process.
  • Example 341 Example 301 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 4, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 341 was produced in the same process.
  • Example 342 Example 301 except that each raw material used in the above example was weighed in stoichiometric amounts so that a and b had the values listed in Table 4, and the disk rotation speed during pulverization was set at 300 rpm. A sintered body of an ion conductive solid containing the oxide of Example 342 was produced in the same process.
  • Composition analysis was performed on the sintered bodies of ion conductive solids containing oxides of Examples 1 to 47, 101 to 144, 201 to 242, and 301 to 342 by the above method.
  • the volume average particle diameter of the ion conductive solid powder obtained in Examples 1 to 47, 101 to 144, 201 to 242, and 301 to 342, and Comparative Examples 1 to 3 and the sintered body of the ion conductive solid
  • the ionic conductivity of the sample was measured by the following method. The method for measuring ionic conductivity and volume average particle size will be described below.
  • the obtained evaluation results are shown in Table 1, Table 2, Table 3, and Table 4.
  • the sintered body of the ion conductive solid containing the flat plate-shaped oxide obtained by the secondary firing two surfaces facing parallel and having a large area were polished with sandpaper.
  • the dimensions of the sintered body of the ion conductive solid containing the flat plate-shaped oxide may be, for example, 0.9 cm x 0.9 cm x 0.05 cm, but are not limited thereto.
  • polishing first polish with #500 for 15 to 30 minutes, then polish with #1000 for 10 to 20 minutes, and finally polish with #2000 for 5 to 10 minutes, making sure that there are no visually noticeable irregularities or scratches on the polished surface. It was completed.
  • a gold film was formed on the polished surface of the sintered body of an ion conductive solid containing an oxide using a sputtering device SC-701MkII ADVANCE manufactured by Sanyu Denshi.
  • the film forming conditions were such that the process gas was Ar, the degree of vacuum was 2 Pa to 5 Pa, and the film forming time was 5 minutes as a measurement sample.
  • the AC impedance of the measurement sample was measured.
  • an impedance/gain phase analyzer SI1260 and a dielectric interface system 1296 both manufactured by Solartron were used, and the measurement conditions were a temperature of 27° C., an amplitude of 20 mV, and a frequency of 0.1 Hz to 1 MHz.
  • the resistance of the sintered body of the ion conductive solid containing the oxide was calculated using the Nyquist plot obtained by impedance measurement and the AC analysis software ZVIEW manufactured by Scribner. An equivalent circuit corresponding to the measurement sample was set using ZVIEW, and the resistance of the sintered body of the ion conductive solid containing oxide was calculated by fitting and analyzing the equivalent circuit and the Nyquist plot. Using the calculated resistance, the thickness of the sintered body of the ion conductive solid containing the oxide, and the electrode area, the ionic conductivity was calculated from the following formula.
  • Ionic conductivity Thickness of sintered body of ion conductive solid containing oxide (cm) / (Resistance of sintered body of ion conductive solid containing oxide ( ⁇ ) x Electrode area (cm 2 ))
  • the ionic conductivity (S/cm) of the sintered body of the ion-conductive solid is, for example, preferably 8.00 ⁇ 10 ⁇ 9 or more, more preferably 1.00 ⁇ 10 ⁇ 8 or more, and even more preferably is 1.00 ⁇ 10 ⁇ 7 or more, even more preferably 1.00 ⁇ 10 ⁇ 6 or more, particularly preferably 1.00 ⁇ 10 ⁇ 5 or more.
  • the higher the conductivity, the better, and the upper limit is not particularly limited, but is, for example, 1.00 ⁇ 10 ⁇ 2 or less, 1.00 ⁇ 10 ⁇ 3 or less, or 1.00 ⁇ 10 ⁇ 4 or less.
  • Comparative Examples 1 to 3 are oxides represented by the general formula Li 6+ac-2d Y 1-abc-d M1 a M2 b M3 c M4 d B 3 O 9 .
  • Comparative Examples 1 to 3 are oxides represented by the general formula Li 6+ac-2d Y 1-abc-d M1 a M2 b M3 c M4 d B 3 O 9 .
  • Comparative Examples 1 to 3 are oxides represented by the general formula Li 6+ac-2d Y 1-abc-d M1 a M2 b M3 c M4 d B 3 O 9 .
  • Comparative Examples 1 to 3 are oxides represented by the general formula Li 6+ac-2d Y 1-abc-d M1 a M2 b M3 c M4 d B 3 O 9 .
  • Tables 1, 2, 3 and 4 show that the ionic conductivities of the ion conductive solids prepared in Examples 1, 101, 201 and 301 are improved compared to Comparative Example 1. It has been shown that higher ionic conductivity can be obtained by replacing Y with at least one selected from the group consisting of Lu, Ho, Er, and Tm. Higher ionic conductivity can be obtained by replacing Y in the composition disclosed in the prior art with at least one selected from the group consisting of Lu, Ho, Er, and Tm, which are metal elements with a small ionic radius. I know that it will happen.
  • the ion conductivity of the ion conductive solids produced in Examples 1 to 3 was improved compared to Comparative Examples 1 to 3, and by replacing Y with Lu. , it has been shown that higher ionic conductivity can be obtained. It can be seen that higher ionic conductivity can be obtained by replacing Y in the composition disclosed in the prior art with Lu having a small ionic radius. Furthermore, the ion conductivity of the ion conductive solids prepared in Examples 44 to 46 was improved compared to Examples 16, 26, and 32, respectively. Since the composition disclosed in the prior art and the substitution elements are different, the density after firing is affected by the difference in melting point, etc., and the appropriate range of particle size may be different.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表される酸化物を含むイオン伝導性固体。 (式中、Xは、Lu、Ho、Er及びTmからなる群から選択される少なくとも一の金属元素であり、 M1は、Mg、Mn、Zn、Ni、Ca、Sr及びBaからなる群から選択される少なくとも一の金属元素であり、 M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu、In、Fe及びScからなる群から選択される少なくとも一の金属元素であり、 M3は、Zr、Ce、Hf、Sn及びTiからなる群から選択される少なくとも一の金属元素であり、 M4は、Nb及びTaからなる群から選択される少なくとも一の金属元素であり、 a、b、c、dは、所定の実数であり、XとM2が同一の金属元素である場合を除く。)

Description

イオン伝導性固体及び全固体電池
 本開示は、イオン伝導性固体及び全固体電池に関するものである。
 従来、スマートフォンやノートパソコンのようなモバイル機器において、また、電気自動車やハイブリッド電気自動車のような輸送機器において、軽量かつ高容量なリチウムイオン二次電池が搭載されている。
 しかし、従来のリチウムイオン二次電池は可燃性溶媒を含む液体が電解質として用いられるため、可燃性溶媒の液漏れ、電池短絡時の発火が危惧されている。そこで近年、安全性を確保するため、液体の電解質とは異なる、イオン伝導性固体を電解質として用いた二次電池が注目されており、かかる二次電池は全固体電池と呼ばれている。
 全固体電池に用いられる電解質としては、酸化物系固体電解質や硫化物系固体電解質などの固体電解質が広く知られている。その中でも酸化物系固体電解質は、大気中の水分と反応を起こして硫化水素を発生することがなく、硫化物系固体電解質と比較して安全性が高い。
 ところで、全固体電池は、正極活物質を含む正極と、負極活物質を含む負極と、該正極及び該負極の間に配置されたイオン伝導性固体を含む電解質と、必要に応じて集電体と、を有する(正極活物質と負極活物質を総称して「電極活物質」ともいう。)。酸化物系固体電解質を用いて全固体電池を作製する場合、固体電解質に含まれる酸化物系材料の粒子間の接触抵抗を低減するために加熱処理が行われる。しかしながら、従来の酸化物系固体電解質では加熱処理で900℃以上の高温を必要とするため、固体電解質と電極活物質が反応して高抵抗相を形成するおそれがある。該高抵抗相はイオン伝導性固体のイオン伝導率の低下、ひいては全固体電池の出力低下に繋がるおそれがある。
 900℃より低い温度での加熱処理によって作製可能な酸化物系固体電解質として、Li2+x1-xが挙げられる(非特許文献1)。
 また、上記Li2+x1-xに対し、特定元素を特定の比で含有させることで特性向上を図ることが可能であることが開示されている(特許文献1)。
Solid State Ionic 288 (2016) 248-252 Acta Crystallographica Section A 32 (1976) 751
特許第6948676号公報
 本開示は、低温での加熱処理によって作製可能で、かつイオン伝導性の高いイオン伝導性固体、及びこれを有する全固体電池を提供するものである。
 本開示のイオン伝導性固体は、一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表される酸化物を含むことを特徴とするイオン伝導性固体である。
(式中、Xは、Lu、Ho、Er及びTmからなる群から選択される少なくとも一の金属元素であり、
M1は、Mg、Mn、Zn、Ni、Ca、Sr及びBaからなる群から選択される少なくとも一の金属元素であり、
M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu、In、Fe及びScからなる群から選択される少なくとも一の金属元素であり、
M3は、Zr、Ce、Hf、Sn及びTiからなる群から選択される少なくとも一の金属元素であり、
M4は、Nb及びTaからなる群から選択される少なくとも一の金属元素であり、
aは、0.000≦a≦0.800、bは、0.000≦b≦0.900、cは、0.000≦c≦0.800、dは、0.000≦d≦0.800、a、b、c、dは、0.000≦a+b+c+d<1.000を満たす実数である。ただし、XとM2が同一の金属元素である場合を除く。)
 また、本開示の全固体電池は、
 正極と、
 負極と、
 電解質と、
を少なくとも有する全固体電池であって、
 該正極、該負極及び該電解質からなる群から選択される少なくとも一が、本開示のイオン伝導性固体を含むことを特徴とする全固体電池である。
 本開示の一態様によれば、低温での加熱処理によって作製可能で、かつイオン伝導性の高いイオン伝導性固体、及びこれを有する全固体電池を得ることができる。
 本開示において、数値範囲を表す「XX以上YY以下」や「XX~YY」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。数値範囲が段階的に記載されている場合、各数値範囲の上限及び下限は任意に組み合わせることができる。
 また、本開示において「固体」とは、物質の3態のうち一定の形状と体積とを有するものをいい、粉末状態は「固体」に含まれる。
 本開示のイオン伝導性固体は、一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表される酸化物を含むイオン伝導性固体である。
 式中、Xは、Lu、Ho、Er及びTmからなる群から選択される少なくとも一の金属元素であり、
M1は、Mg、Mn、Zn、Ni、Ca、Sr及びBaからなる群から選択される少なくとも一の金属元素であり、
M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu、In、Fe及びScからなる群から選択される少なくとも一の金属元素であり、
M3は、Zr、Ce、Hf、Sn及びTiからなる群から選択される少なくとも一の金属元素であり、
M4は、Nb及びTaからなる群から選択される少なくとも一の金属元素であり、
aは、0.000≦a≦0.800、bは、0.000≦b≦0.900、cは、0.000≦c≦0.800、dは、0.000≦d≦0.800、a、b、c、dは、0.000≦a+b+c+d<1.000を満たす実数である。ただし、XとM2が同一の金属元素である場合を除く。
 XとM2が同一の金属元素である場合を除くとは、
XがLuであるとき、M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、In、Fe及びScからなる群から選択される少なくとも一の金属元素であり、
XがHoであるとき、M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Er、Tm、Lu、In、Fe及びScからなる群から選択される少なくとも一の金属元素であり、
XがErであるとき、M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Tm、Lu、In、Fe及びScからなる群から選択される少なくとも一の金属元素であり、
XがTmであるとき、M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Lu、In、Fe及びScからなる群から選択される少なくとも一の金属元素であることをいう。
 上述の一般式で表される酸化物を含むイオン伝導性固体において、イオン伝導率が向上する理由として、本発明者らは以下のように推察している。
 特許文献1中の比較例1に挙げられるLiYBにおけるYを、Yよりもイオン半径が小さい金属元素であるLu、Ho、Er及びTmからなる群から選択される少なくとも一に置換することで、格子定数及び格子体積が小さくなる。その結果、Liが移動しやすくなるため、イオン伝導率が向上する。
 一方、特許文献1では、3価の金属元素であるYの一部を4~5価の金属元素で置換する、すなわち異なる価数同士の元素置換によって、電荷のバランスを調整し、イオン伝導性を向上させている。
 このように、Yに代えて適切なイオン半径の金属元素を金属元素Xとして用いることで、格子定数及び格子体積が小さくなる。その結果、Liがより移動しやすくなるため、さらにイオン伝導率が向上する。さらに、異なる価数同士の元素置換を併用することも好ましい態様である。
 Xは、イオン半径が0.900~1.017Åであることが好ましく、0.920~1.015Åであることがより好ましく、0.940~1.015Åであることがさらに好ましく、0.975~1.015Åであることが特に好ましい。上記範囲であることにより、格子定数及び格子体積が小さくなる。その結果、Liが移動しやすくなるため、イオン伝導率が向上する。また、イオン半径が0.900Å未満であると、目的の単斜晶構造を得ることができないため、イオン伝導性固体とならない。
 イオン半径の値は、非特許文献2に記載の値を用いることができる。例えば、Y3+のイオン半径は1.019Åであり、Lu3+のイオン半径は0.977Åであり、Ho3+のイオン半径は1.015Åであり、Er3+のイオン半径は1.004Åであり、Tm3+のイオン半径は0.994Åである。
 本開示のイオン伝導性固体は、単斜晶型の結晶構造を備えることが好ましい。
 本開示のイオン伝導性固体は、体積平均粒径が、0.1μm以上28.0μm以下であることが好ましく、0.2μm以上26.0μm以下であることがより好ましく、0.3μm以上20.0μm以下であることがさらに好ましく、0.3μm以上15.0μm以下であることがさらにより好ましく、0.5μm以上10.0μm以下であることがより一層好ましい。上記範囲であることで、イオン伝導性固体内の粒界抵抗が低減し、イオン伝導率がより向上する。
 イオン伝導性固体の体積平均粒径は、粉砕や分級により制御することができる。
 上記一般式中、aは、0.000≦a≦0.800を満たす実数である。
 aは、0.000≦a≦0.800であり、好ましくは0.000≦a≦0.600、より好ましくは0.000≦a≦0.400、さらに好ましくは0.000≦a≦0.100、特に好ましくは0.000≦a≦0.050、極めて好ましくは0.000≦a≦0.030である。
 上記一般式中、bは、0.000≦b≦0.900を満たす実数である。
 bは、0.000≦b≦0.900であり、好ましくは0.000≦b≦0.600、より好ましくは0.000≦b≦0.500、さらに好ましくは0.000≦b≦0.400、さらにより好ましくは0.000≦b≦0.100、特に好ましくは0.000≦b≦0.050、極めて好ましくは0.000≦b≦0.030である。
 上記一般式中、cは、0.000≦c≦0.800を満たす実数である。
 cは、0.000≦c≦0.800であり、好ましくは0.000≦c≦0.600、より好ましくは0.000≦c≦0.400、さらに好ましくは0.000≦c≦0.150、さらにより好ましくは0.000≦c≦0.100、特に好ましくは0.000≦c≦0.050、極めて好ましくは0.000≦c≦0.030である。また、Cは、好ましくは0.050≦c≦0.200、より好ましくは0.080≦c≦0.150であってもよい。
 上記一般式中、dは、0.000≦d≦0.800を満たす実数である。
 dは、0.000≦d≦0.800であり、好ましくは0.000≦d≦0.600、より好ましくは0.000≦d≦0.400、さらに好ましくは0.000≦d≦0.100、特に好ましくは0.000≦d≦0.050、極めて好ましくは0.010≦d≦0.030である。
 上記式中、a+b+c+dは、0.000≦a+b+c+d<1.000を満たす実数である。
 a+b+c+dは、0.000≦a+b+c+d<1.000であり、好ましくは0.000≦a+b+c+d<0.900、より好ましくは0.000≦a+b+c+d<0.800、さらに好ましくは0.000≦a+b+c+d<0.700、さらにより好ましくは0.000≦a+b+c+d≦0.600、殊更好ましくは0.010≦a+b+c+d<0.500、特に好ましくは0.050≦a+b+c+d<0.300、極めて好ましくは0.080≦a+b+c+d<0.250である。
 X1-a-b-c-dにおける1-a-b-c-dは、0.300≦1-a-b-c-dが好ましく、0.500≦1-a-b-c-dがより好ましく、0.700≦1-a-b-c-dがさらに好ましく、0.750≦1-a-b-c-dがさらにより好ましい。上限は特に制限されないが、好ましくは1.000未満、0.950以下、0.900以下である。例えば、好ましくは0.300≦1-a-b-c-d<1.000、0.500≦1-a-b-c-d≦0.950、0.700≦1-a-b-c-d≦0.900の範囲が挙げられる。
 本開示のイオン伝導性固体としては、例えば以下の実施形態とすることができるが、これらの実施形態に限定されない。
(1)
 aは、0.010≦a≦0.100、bは、0.000≦b≦0.200、cは、0.000≦c≦0.200、dは、0.010≦d≦0.100、a、b、c、dは、0.010≦a+b+c+d<0.300を満たすとよい。
(2)
 aは、0.010≦a≦0.030、bは、0.030≦b≦0.100、cは、0.010≦c≦0.030、dは、0.010≦d≦0.030、a、b、c、dは、0.050≦a+b+c+d<0.160を満たすとよい。
(3)
 aは、0.000≦a≦0.010、bは、0.000≦b≦0.100、cは、0.050≦c≦0.150、dは、0.000≦d≦0.030、a、b、c、dは、0.050≦a+b+c+d<0.250を満たすとよい。
 上記一般式中のM1、M2、M3、M4については、式中に含まれていても、含まれていなくてもよい。すなわち、a,b,c,及びdの少なくとも一つが0であってもよい。
 上記一般式中、M1は、Mg、Mn、Zn、Ni、Ca、Sr及びBaからなる群から選択される少なくとも一の金属元素である。
 M1は、Mg、Mn、Zn、Ni、Ca、Sr及びBaからなる群から選択される少なくとも一であり、好ましくはMg、Zn、Ca、Sr及びBaからなる群から選択される少なくとも一であり、より好ましくはMg、Ca及びSrからなる群から選択される少なくとも一である。
 上記一般式中、M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu、In、Fe及びScからなる群から選択される少なくとも一の金属元素である。
 M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu、In、Fe及びScからなる群から選択される少なくとも一であり、好ましくはLa、Eu、Gd、Tb、Dy、Lu、In及びFeからなる群から選択される少なくとも一であり、より好ましくはGd、Dy、Lu、In及びFeからなる群から選択される少なくとも一である。また、M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、In、Fe及びScからなる群から選択される少なくとも一であってもよい。
 上記一般式中、M3は、Zr、Ce、Hf、Sn及びTiからなる群から選択される少なくとも一の金属元素である。
 M3は、Zr、Ce、Hf、Sn及びTiからなる群から選択される少なくとも一であり、好ましくはZr、Ce、Hf及びSnからなる群から選択される少なくとも一であり、より好ましくはZr、Ce及びHfからなる群から選択される少なくとも一である。
 上記一般式中、M4は、Nb及びTaからなる群から選択される少なくとも一の金属元素である。
 M4は、Nb及びTaからなる群から選択される少なくとも一であり、好ましくはNbである。
 さらに3価の金属元素であるXの一部を、特定元素M1、M2、M3、M4を用い特定比率の範囲で置換すると、異なる価数の元素置換によって電荷のバランスが調整される。そのため、結晶格子中のLiが欠損した状態になる。そのLiの欠損を埋めようと周囲のLiが移動するため、イオン伝導率が向上する。
 次に、本開示のイオン伝導性固体の製造方法について説明する。
 本開示のイオン伝導性固体の製造方法は、以下のような態様とすることができるが、これに限定されない。
 一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表される酸化物を含むイオン伝導性固体の製造方法であって、
 該一般式で表される酸化物が得られるように混合した原材料を、該酸化物の融点未満の温度で加熱処理する一次焼成工程を有することができる。
 式中、Xは、Lu、Ho、Er及びTmからなる群から選択される少なくとも一の金属元素であり、
M1は、Mg、Mn、Zn、Ni、Ca、Sr及びBaからなる群から選択される少なくとも一の金属元素であり、
M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu、In、Fe及びScからなる群から選択される少なくとも一の金属元素であり、
M3は、Zr、Ce、Hf、Sn及びTiからなる群から選択される少なくとも一の金属元素であり、
M4は、Nb及びTaからなる群から選択される少なくとも一の金属元素であり、
aは、0.000≦a≦0.800、bは、0.000≦b≦0.900、cは、0.000≦c≦0.800、dは、0.000≦d≦0.800、a、b、c、dは、0.000≦a+b+c+d<1.000を満たす実数である。ただし、XとM2が同一の金属元素である場合を除く。
 本開示のイオン伝導性固体の製造方法は、上記一般式で表される酸化物が得られるように原材料を秤量・混合し、該原材料を該酸化物の融点未満の温度で加熱処理することにより、該酸化物を含むイオン伝導性固体を作製する一次焼成工程を含むことができる。一次焼成工程により、イオン伝導性固体を得ることができる。
 さらに、該製造方法は、必要に応じて、得られた酸化物を含むイオン伝導性固体を、該酸化物の融点未満の温度で加熱処理し、該酸化物を含むイオン伝導性固体の焼結体を作製する二次焼成工程を含んでもよい。
 以下、上記一次焼成工程及び上記二次焼成工程を含む本開示のイオン伝導性固体の製造方法について詳細に説明するが、本開示は下記製造方法に限定されるものではない。
 一次焼成工程
 一次焼成工程では、一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4(ただし、Xは、Lu、Ho、Er及びTmからなる群から選択される少なくとも一の金属元素であり、
M1は、Mg、Mn、Zn、Ni、Ca、Sr及びBaからなる群から選択される少なくとも一の金属元素であり、
M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu、In、Fe及びScからなる群から選択される少なくとも一の金属元素であり、
M3は、Zr、Ce、Hf、Sn及びTiからなる群から選択される少なくとも一の金属元素であり、
M4は、Nb及びTaからなる群から選択される少なくとも一の金属元素であり、
aは、0.000≦a≦0.800、bは、0.000≦b≦0.900、cは、0.000≦c≦0.800、dは、0.000≦d≦0.800、a、b、c、dは、0.000≦a+b+c+d<1.000を満たす実数である。ただし、XとM2が同一の金属元素である場合を除く。)となるように、化学試薬グレードのLiCO、HBO、Ho、ZrO、CeO、HfOなどの原材料を化学量論量で秤量して、混合する。
 混合に用いる装置は特に制限されないが、例えば遊星型ボールミルなどの粉砕型混合機を用いることができる。混合の際に用いる容器の材質及び容量、並びにボールの材質及び直径は特に制限されず、使用する原料の種類及び使用量に応じて適宜選択することができる。一例としては、ジルコニア製の45mL容器と、ジルコニア製の直径5mmボールを使用することができる。また、混合処理の条件は特に制限されないが、例えば回転数50rpm~2000rpm、時間10分~60分とすることができる。
 該混合処理により上記各原材料の混合粉末を得た後、得られた混合粉末を加圧成型してペレットとする。加圧成型法としては、冷間一軸成型法、冷間静水圧加圧成型法など公知の加圧成型法を用いることができる。一次焼成工程での加圧成型の条件としては、特に制限されないが、例えば圧力100MPa~200MPaとすることができる。
 得られたペレットについて、大気焼成装置のような焼成装置を用いて焼成を行う。一次焼成して固相合成を行う温度は、一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表されるイオン伝導性固体の融点未満であれば特に制限されない。一次焼成する際の温度は、例えば700℃未満、680℃以下、670℃以下、660℃以下または650℃以下とすることができ、例えば500℃以上とすることができる。該数値範囲は任意に組み合わせることができる。上記範囲の温度であれば、十分に固相合成を行うことができる。一次焼成工程の時間は特に限定されないが、例えば700分~750分程度とすることができる。
 上記一次焼成工程により、上記一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表される酸化物を含むイオン伝導性固体を作製することができる。該酸化物を含むイオン伝導性固体を、乳鉢・乳棒や遊星ミルを用いて粉砕することで該酸化物を含むイオン伝導性固体の粉末を得ることもできる。
 二次焼成工程
 二次焼成工程では、一次焼成工程で得られた酸化物を含むイオン伝導性固体、及び酸化物を含むイオン伝導性固体の粉末からなる群から選択される少なくとも一を、必要に応じて加圧成型し、焼成して酸化物を含むイオン伝導性固体の焼結体を得る。
 加圧成型と二次焼成は、放電プラズマ焼結(以下、単に「SPS」とも称する。)やホットプレスなどを用いて同時に行ってもよく、冷間一軸成型でペレットを作製してから大気雰囲気、酸化雰囲気又は還元雰囲気などで二次焼成を行ってもよい。上述の条件であれば、加熱処理による溶融を起こすことなく、イオン伝導率が高いイオン伝導性固体を得ることができる。二次焼成工程での加圧成型の条件としては、特に制限されないが、例えば圧力10MPa~100MPaとすることができる。
 二次焼成する温度は、一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表されるイオン伝導性固体の融点未満である。二次焼成する際の温度は、好ましくは700℃未満、より好ましくは680℃以下、さらに好ましくは670℃以下、特に好ましくは660℃以下である。該温度の下限は特に制限されず、低いほど好ましいが、例えば500℃以上である。該数値範囲は任意に組み合わせることができるが、例えば500℃以上700℃未満の範囲とすることができる。上述の範囲であれば、二次焼成工程において本開示の酸化物を含むイオン伝導性固体が溶融したり分解したりすることを抑制でき、十分に焼結した本開示の酸化物を含むイオン伝導性固体の焼結体を得ることができる。
 二次焼成工程の時間は、二次焼成の温度や圧力等に応じて適宜変更することができるが、24時間以下が好ましく、14時間以下としてもよい。二次焼成工程の時間は、例えば5分以上、1時間以上、6時間以上としてもよい。
 二次焼成工程により得られた本開示の酸化物を含むイオン伝導性固体の焼結体を冷却する方法は特に限定されず、自然放冷(炉内放冷)してもよいし、急速に冷却してもよいし、自然放冷よりも徐々に冷却してもよいし、冷却中にある温度で維持してもよい。
 次に、本開示の全固体電池について説明する。
 全固体電池は一般的に、正極と、負極と、該正極及び該負極の間に配置されたイオン伝導性固体を含む電解質と、必要に応じて集電体と、を有する。
 本開示の全固体電池は、
 正極と、
 負極と、
 電解質と、
を少なくとも有する全固体電池であって、
 該正極、該負極及び該電解質からなる群から選択される少なくとも一が、本開示のイオン伝導性固体を含む。
 本開示の全固体電池は、バルク型電池であってもよく、薄膜電池であってもよい。本開示の全固体電池の具体的な形状は特に限定されないが、例えば、コイン型、ボタン型、シート型、積層型などが挙げられる。
 本開示の全固体電池は電解質を有する。また、本開示の全固体電池においては、少なくとも前記電解質が、本開示のイオン伝導性固体を含むことが好ましい。
 本開示の全固体電池における固体電解質は、本開示のイオン伝導性固体からなってもよく、その他のイオン伝導性固体を含んでいてもよく、イオン液体やゲルポリマーを含んでいてもよい。その他のイオン伝導性固体としては、特に制限されず、全固体電池に通常使用されるイオン伝導性固体、例えばLiI、LiPO、LiLaZr12などが含まれていてもよい。本開示の全固体電池における電解質中の、本開示のイオン伝導性固体の含有量は、特に制限されず、好ましくは25質量%以上であり、より好ましくは50質量%以上であり、さらに好ましくは75質量%以上であり、特に好ましくは100質量%である。
 本開示の全固体電池は、正極を有する。該正極は、正極活物質を含んでいてもよく、該正極活物質と本開示のイオン伝導性固体とを含んでいてもよい。正極活物質としては、遷移金属元素を含む硫化物やリチウムと遷移金属元素を含む酸化物などの公知の正極活物質を特に制限なく用いることができる。例えば、LiNiVO、LiCoPO、LiCoVO、LiMn1.6Ni0.4、LiMn、LiCoO、Fe(SO、LiFePO、LiNi1/3Mn1/3Co1/3、LiNi1/2Mn1/2、LiNiO、Li1+x(Fe,Mn,Co)1-x、LiNi0.8Co0.15Al0.05などが挙げられる。
 さらに、正極は結着剤、導電剤などを含んでいてもよい。結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコールなどが挙げられる。導電剤としては、例えば、天然黒鉛、人工黒鉛、アセチレンブラック、エチレンブラックなどが挙げられる。
 本開示の全固体電池は、負極を有する。該負極は、負極活物質を含んでいてもよく、該負極活物質と本開示のイオン伝導性固体とを含んでいてもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸収及び放出可能な炭素質材料、導電性ポリマーなどの公知の負極活物質を特に制限なく用いることができる。例えば、LiTi12などが挙げられる。
 さらに、負極は結着剤、導電剤などを含んでいてもよい。該結着剤及び該導電剤としては、正極で挙げたものと同様のものを使用できる。
 ここで、電極が電極活物質を「含む」とは、電極が電極活物質を成分・要素・性質としてもつことをいう。例えば、電極内に電極活物質を含有する場合も、電極表面に電極活物質が塗布されている場合も、上記「含む」に該当する。
 該正極や該負極は、原料を混合、成型、加熱処理をするなど公知の方法で得ることができる。それによりイオン伝導性固体が電極活物質同士の隙間などに入り込んで、リチウムイオンの伝導経路を確保しやすくなると考えられる。本開示のイオン伝導性固体は、従来技術と比較して低温の加熱処理で作製できるため、イオン伝導性固体と電極活物質が反応して生じる高抵抗相の形成を抑制できると考えられる。
 上記正極及び上記負極は、集電体を有していてもよい。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどの公知の集電体を用いることができる。このほか、接着性、導電性、耐酸化性などの向上を目的として、アルミニウム、銅などの表面をカーボン、ニッケル、チタン、銀などで処理したものを集電体として用いることができる。
 本開示の全固体電池は、例えば、正極と固体電解質と負極を積層し、成型、加熱処理するなど、公知の方法により得ることができる。本開示のイオン伝導性固体は、従来技術と比較して低温の加熱処理で作製できるため、イオン伝導性固体と電極活物質が反応して生じる高抵抗相の形成を抑制できると考えられ、出力特性に優れた全固体電池を得ることができると考えられる。
 次に、本開示にかかる組成及び各物性の測定方法について説明する。
・含有金属の同定方法と分析方法
 イオン伝導性固体の組成分析は、加圧成型法により固型化した試料を用いて、波長分散型蛍光X線分析(以下、XRFともいう)により行う。ただし、粒度効果などにより分析困難な場合は、ガラスビード法によりイオン伝導性固体をガラス化してXRFによる組成分析を行うとよい。また、XRFではイットリウムのピークと含有金属ピークが重なる場合は、誘導結合高周波プラズマ発光分光分析(ICP-AES)で組成分析を行うとよい。
 XRFの場合、分析装置は(株)リガク製ZSX Primus IIを使用する。分析条件は、X線管球のアノードにはRhを用いて、真空雰囲気、分析径は10mm、分析範囲は17deg~81deg、ステップは0.01deg、スキャンスピードは5sec/ステップとする。また、軽元素を測定する場合にはプロポーショナルカウンタ、重元素を測定する場合にはシンチレーションカウンタで検出する。
 XRFで得られたスペクトルのピーク位置をもとに元素を同定し、単位時間あたりのX線光子の数である計数率(単位:cps)からモル濃度比を算出し、a、b、c及びdを求める。
 以下に、本開示のイオン伝導性固体を具体的に作製及び評価した例を実施例として説明する。なお、本開示は、以下の実施例に限定されるものではない。
[実施例1]
・一次焼成工程
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、dが表1に記載された値となるように各原料を化学量論量で秤量し、フリッチュ社製遊星ミルP-7でディスク回転数300rpmにおいて30分間混合した。遊星ミルにはジルコニア製のφ5mmボールと45mL容器を用いた。
 混合後、混合した粉末を、エヌピーエーシステム製100kN電動プレス装置P3052-10を用いて147MPaで冷間一軸成型し、大気雰囲気で焼成した。加熱温度は650℃、保持時間は720分間とした。
 得られた酸化物を含むイオン伝導性固体をフリッチュ社製遊星ミルP-7でディスク回転数230rpmにおいて180分間粉砕して酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
 上記で得られた酸化物を含むイオン伝導性固体の粉末を、成型、二次焼成して実施例1の酸化物を含むイオン伝導性固体の焼結体を作製した。成型は、粉末を、エヌピーエーシステム製100kN電動プレス装置P3052-10を用いて147MPaで冷間一軸成型した。二次焼成は、大気雰囲気で実施し、加熱温度は650℃、保持時間は720分間とした。
[実施例2]
 LiCO(ナカライテスク製、純度99.0質量%)、LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、及びCeO(信越化学工業製、純度99.9%)を原料として用いて、cが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例2の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例3]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、cとdが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例3の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例4]
 表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例4の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例5]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)及びHfO(ニューメタルス製、純度99.9%)を原料として用いて、cが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例5の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例6]
 cが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例6の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例7]
 cとdが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例7の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例8]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、In(新興化学工業製、純度99質量%)、SnO(三津和化学薬品製、純度99.9%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、bとcが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例8の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例9]
 bとcが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例9の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例10]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、Fe(和光純薬工業製、純度95.0質量%)及びTiO(東邦チタニウム製、純度99%)を原料として用いて、bとcが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例10の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例11]
 bとcが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例11の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例12]
 LiCO(ナカライテスク製、純度99.0質量%)、B(和光純薬工業製、純度99.9%)、Ho(高純度化学研究所製、純度99.9質量%)及びLu(高純度化学研究所製、純度99.9質量%)を原料として用いて、bが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例12の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例13]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0質量%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、aとcが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例13の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例14]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、La(和光純薬工業製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0質量%)及びCaO(関東化学製、純度97.0質量%)を原料として用いて、aとbが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例14の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例15]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、La(和光純薬工業製、純度99.9質量%)及びMnO(関東化学製、純度80.0質量%)を原料として用いて、aとbが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例15の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例16]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、Tb(信越化学工業製、純度99.9質量%)及びMnO(関東化学製、純度80.0質量%)を原料として用いて、aとbが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例16の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例17]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、Tm(高純度化学研究所製、純度99.9質量%)及びMnO(関東化学製、純度80.0質量%)を原料として用いて、aとbが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例17の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例18]
 cとdが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例18の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例19]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、In(新興化学工業製、純度99質量%)、Nb(三井金属鉱業製、純度99.9%)及びTa(関東化学製、純度99質量%)を原料として用いて、bとdが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例19の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例20]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)及びPr(信越化学工業製、純度99.9質量%)を原料として用いて、bが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例20の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例21]
 bとdが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例21の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例22]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、Sm(和光純薬工業製、純度99.9質量%)、HfO(ニューメタルス製、純度99.9%)及びTa(関東化学製、純度99質量%)を原料として用いて、bとcとdが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例22の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例23]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、Nd(信越化学工業製、純度99.9質量%)、Sm(和光純薬工業製、純度99.9質量%)及びZnO(和光純薬工業製、純度99質量%)を原料として用いて、aとbが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例23の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例24]
 bとcが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例24の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例25]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)及びEu(信越化学工業製、純度95質量%)を原料として用いて、bが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例25の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例26]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、Eu(信越化学工業製、純度95質量%)及びNiO(和光純薬工業製、純度99.0質量%)を原料として用いて、aとbが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例26の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例27]
 bとcが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例27の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例28]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、Gd(信越化学工業製、純度99.9質量%)、Dy(信越化学工業製、純度95質量%)及びCaO(関東化学製、純度99.0質量%)を原料として用いて、aとbが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例28の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例29]
 bとcが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例29の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例30]
 bとcが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例30の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例31]
 bが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例31の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例32]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、Tb(信越化学工業製、純度99.9質量%)、NiO(和光純薬工業製、純度99.0質量%)及びBaO(和光純薬工業製、純度90.0質量%)を原料として用いて、aとbが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例32の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例33]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、Tb(信越化学工業製、純度99.9質量%)、Ho(高純度化学研究所製、純度99.9質量%)及びBaO(和光純薬工業製、純度90.0質量%)を原料として用いて、aとbが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例33の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例34]
 bとcとdが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例34の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例35]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)、Er(信越化学工業製、純度95質量%)、Tm(高純度化学研究所製、純度99.9質量%)及びSrO(高純度化学研究所製、純度98質量%)を原料として用いて、aとbが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例35の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例36]
 bとcが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例36の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例37]
 aとbとcが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例37の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例38]
 bとdが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例38の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例39]
 bとcとdが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例39の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例40]
 aとbとcが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例40の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例41]
 bとdが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例41の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例42]
 bとdが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例42の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例43]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Lu(高純度化学研究所製、純度99.9質量%)及びSc(高純度化学研究所製、純度99.9質量%)を原料として用いて、bが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例26の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例44]
 aとbが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例1と同じ工程で実施例44の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例45]
 aとbが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例1と同じ工程で実施例45の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例46]
 aとbが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例1と同じ工程で実施例46の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例47]
 aとbが表1に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を150rpmに設定し、粉砕時間を60分に設定した以外は、実施例1と同じ工程で実施例47の酸化物を含むイオン伝導性固体の焼結体を作製した。
[比較例1]
 実施例1における原料のLuをYに変更し、dが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で比較例1の酸化物を含むイオン伝導性固体の焼結体を作製した。
[比較例2]
 実施例2における原料のLuをYに変更し、cが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例2と同じ工程で比較例2の酸化物を含むイオン伝導性固体の焼結体を作製した。
[比較例3]
 実施例3における原料のLuをYに変更し、cとdが表1に記載された値となるように各原料を化学量論量で秤量した以外は、実施例3と同じ工程で比較例3の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例101]
・一次焼成工程
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、dが表2に記載された値となるように各原料を化学量論量で秤量し、フリッチュ社製遊星ミルP-7でディスク回転数300rpmにおいて30分間混合した。遊星ミルにはジルコニア製のφ5mmボールと45mL容器を用いた。
 混合後、混合した粉末を、エヌピーエーシステム製100kN電動プレス装置P3052-10を用いて147MPaで冷間一軸成型し、大気雰囲気で焼成した。加熱温度は650℃、保持時間は720分間とした。
 得られた酸化物を含むイオン伝導性固体をフリッチュ社製遊星ミルP-7でディスク回転数230rpmにおいて180分間粉砕して酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
 上記で得られた酸化物を含むイオン伝導性固体の粉末を、成型、二次焼成して実施例101の酸化物を含むイオン伝導性固体の焼結体を作製した。成型は、粉末を、エヌピーエーシステム製100kN電動プレス装置P3052-10を用いて147MPaで冷間一軸成型した。二次焼成は、大気雰囲気で実施し、加熱温度は650℃、保持時間は720分間とした。
[実施例102]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、及びCeO(信越化学工業製、純度99.9%)を原料として用いて、cが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例102の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例103]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、cとdが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例103の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例104]
 表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例104の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例105]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)及びHfO(ニューメタルス製、純度99.9%)を原料として用いて、cが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例105の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例106]
 cが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例106の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例107]
 cとdが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例107の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例108]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、In(新興化学工業製、純度99質量%)及びSnO(三津和化学薬品製、純度99.9%)を原料として用いて、bとcが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例108の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例109]
 bとcが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例109の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例110]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、Fe(和光純薬工業製、純度95.0質量%)及びTiO(東邦チタニウム製、純度99%)を原料として用いて、bとcが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例110の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例111]
 bとcが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例111の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例112]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0質量%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、aとcが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例112の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例113]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、La(和光純薬工業製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0質量%)及びCaO(関東化学製、純度97.0質量%)を原料として用いて、aとbが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例113の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例114]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、Lu(高純度化学研究所製、純度99.9質量%)及びMnO(関東化学製、純度80.0質量%)を原料として用いて、aとbが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例114の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例115]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、Tb(信越化学工業製、純度99.9質量%)及びMnO(関東化学製、純度80.0質量%)を原料として用いて、aとbが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例115の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例116]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、Tm(高純度化学研究所製、純度99.9質量%)及びBaO(和光純薬工業製、純度90.0質量%)を原料として用いて、aとbが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例116の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例117]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、SnO(三津和化学薬品製、純度99.9%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、cとdが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例117の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例118]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、In(新興化学工業製、純度99質量%)、Nb(三井金属鉱業製、純度99.9%)及びTa(関東化学製、純度99質量%)を原料として用いて、bとdが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例118の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例119]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)及びPr(信越化学工業製、純度99.9質量%)を原料として用いて、bが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例119の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例120]
 bとdが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例120の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例121]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、Sm(和光純薬工業製、純度99.9質量%)、HfO(ニューメタルス製、純度99.9%)及びTa(関東化学製、純度99質量%)を原料として用いて、bとcとdが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例121の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例122]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、Nd(信越化学工業製、純度99.9質量%)、Sm(和光純薬工業製、純度99.9質量%)及びZnO(和光純薬工業製、純度99質量%)を原料として用いて、aとbが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例122の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例123]
 bとcが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例123の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例124]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)及びEu(信越化学工業製、純度95質量%)を原料として用いて、bが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例124の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例125]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、Eu(信越化学工業製、純度95質量%)及びNiO(和光純薬工業製、純度99.0質量%)を原料として用いて、aとbが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例125の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例126]
 bとcが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例126の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例127]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、Gd(信越化学工業製、純度99.9質量%)、Dy(信越化学工業製、純度95質量%)及びCaO(関東化学製、純度99.0質量%)を原料として用いて、aとbが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例127の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例128]
 bとcが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例128の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例129]
 bとcが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例129の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例130]
 bが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例130の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例131]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、Tb(信越化学工業製、純度99.9質量%)、NiO(和光純薬工業製、純度99.0質量%)及びBaO(和光純薬工業製、純度90.0質量%)を原料として用いて、aとbが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例131の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例132]
 bとcとdが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例132の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例133]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)、Er(信越化学工業製、純度95質量%)、Tm(高純度化学研究所製、純度99.9質量%)及びSrO(高純度化学研究所製、純度98質量%)を原料として用いて、aとbが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例133の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例134]
 bとcが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例134の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例135]
 aとbとcが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例135の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例136]
 bとdが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例136の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例137]
 bとcとdが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例137の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例138]
 aとbとcが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例138の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例139]
 bとdが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例139の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例140]
 bとdが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例140の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例141]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Ho(高純度化学研究所製、純度99.9質量%)及びSc(高純度化学研究所製、純度99.9質量%)を原料として用いて、bが表2に記載された値となるように各原料を化学量論量で秤量した以外は、実施例101と同じ工程で実施例141の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例142]
 aとbが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例101と同じ工程で実施例142の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例143]
 aとbが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例101と同じ工程で実施例143の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例144]
 aとbが表2に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例101と同じ工程で実施例144の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例201]
・一次焼成工程
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、dが表3に記載された値となるように各原料を化学量論量で秤量し、フリッチュ社製遊星ミルP-7でディスク回転数300rpmにおいて30分間混合した。遊星ミルにはジルコニア製のφ5mmボールと45mL容器を用いた。
 混合後、混合した粉末を、エヌピーエーシステム製100kN電動プレス装置P3052-10を用いて147MPaで冷間一軸成型し、大気雰囲気で焼成した。加熱温度は650℃、保持時間は720分間とした。
 得られた酸化物を含むイオン伝導性固体をフリッチュ社製遊星ミルP-7でディスク回転数230rpmにおいて180分間粉砕して酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
 上記で得られた酸化物を含むイオン伝導性固体の粉末を、成型、二次焼成して実施例1の酸化物を含むイオン伝導性固体の焼結体を作製した。成型は、粉末を、エヌピーエーシステム製100kN電動プレス装置P3052-10を用いて147MPaで冷間一軸成型した。二次焼成は、大気雰囲気で実施し、加熱温度は650℃、保持時間は720分間とした。
[実施例202]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、及びCeO(信越化学工業製、純度99.9%)を原料として用いて、cが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例202の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例203]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、cとdが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例203の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例204]
 表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例204の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例205]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)及びHfO(ニューメタルス製、純度99.9%)を原料として用いて、cが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例205の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例206]
 cが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例206の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例207]
 cとdが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例207の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例208]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、In(新興化学工業製、純度99質量%)及びSnO(三津和化学薬品製、純度99.9%)を原料として用いて、bとcが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例208の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例209]
 bとcが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例209の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例210]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、Fe(和光純薬工業製、純度95.0質量%)及びTiO(東邦チタニウム製、純度99%)を原料として用いて、bとcが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例210の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例211]
 bとcが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例211の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例212]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、MgO(宇部マテリアルズ製、純度99.0質量%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、aとcが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例212の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例213]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、La(和光純薬工業製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0質量%)及びCaO(関東化学製、純度97.0質量%)を原料として用いて、aとbが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例213の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例214]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、Lu(高純度化学研究所製、純度99.9質量%)及びMnO(関東化学製、純度80.0質量%)を原料として用いて、aとbが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例214の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例215]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、Tb(信越化学工業製、純度99.9質量%)及びMnO(関東化学製、純度80.0質量%)を原料として用いて、aとbが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例215の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例216]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、Tm(高純度化学研究所製、純度99.9質量%)及びMnO(関東化学製、純度80.0質量%)を原料として用いて、aとbが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例216の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例217]
 cとdが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例217の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例218]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、In(新興化学工業製、純度99質量%)、Nb(三井金属鉱業製、純度99.9%)及びTa(関東化学製、純度99質量%)を原料として用いて、bとdが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例218の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例219]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)及びPr(信越化学工業製、純度99.9質量%)を原料として用いて、bが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例219の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例220]
 bとdが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例220の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例221]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、Sm(和光純薬工業製、純度99.9質量%)、HfO(ニューメタルス製、純度99.9%)及びTa(関東化学製、純度99質量%)を原料として用いて、bとcとdが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例221の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例222]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、Nd(信越化学工業製、純度99.9質量%)、Sm(和光純薬工業製、純度99.9質量%)及びZnO(和光純薬工業製、純度99質量%)を原料として用いて、aとbが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例222の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例223]
 bとcが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例223の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例224]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)及びEu(信越化学工業製、純度95質量%)を原料として用いて、bが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例224の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例225]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、Eu(信越化学工業製、純度95質量%)及びNiO(和光純薬工業製、純度99.0質量%)を原料として用いて、aとbが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例225の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例226]
 bとcが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例226の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例227]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、Gd(信越化学工業製、純度99.9質量%)、Dy(信越化学工業製、純度95質量%)及びCaO(関東化学製、純度99.0質量%)を原料として用いて、aとbが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例227の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例228]
 bとcが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例228の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例229]
 bとcが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例229の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例230]
 bが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例230の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例231]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、Tb(信越化学工業製、純度99.9質量%)、NiO(和光純薬工業製、純度99.0質量%)及びBaO(和光純薬工業製、純度90.0質量%)を原料として用いて、aとbが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例231の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例232]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)、Ho(高純度化学研究所製、純度99.9質量%)、Tb(信越化学工業製、純度99.9質量%)及びSrO(高純度化学研究所製、純度98質量%)を原料として用いて、aとbが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例232の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例233]
 bとcとdが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例233の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例234]
 bとdが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例234の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例235]
 bとcとdが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例235の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例236]
 aとbとcが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例236の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例237]
 bとdが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例237の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例238]
 bとdが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例238の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例239]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Er(信越化学工業製、純度95質量%)及びSc(高純度化学研究所製、純度99.9質量%)を原料として用いて、bが表3に記載された値となるように各原料を化学量論量で秤量した以外は、実施例201と同じ工程で実施例239の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例240]
 aとbが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例201と同じ工程で実施例240の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例241]
 aとbが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例201と同じ工程で実施例241の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例242]
 aとbが表3に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例201と同じ工程で実施例242の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例301]
・一次焼成工程
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、dが表4に記載された値となるように各原料を化学量論量で秤量し、フリッチュ社製遊星ミルP-7でディスク回転数300rpmにおいて30分間混合した。遊星ミルにはジルコニア製のφ5mmボールと45mL容器を用いた。
 混合後、混合した粉末を、エヌピーエーシステム製100kN電動プレス装置P3052-10を用いて147MPaで冷間一軸成型し、大気雰囲気で焼成した。加熱温度は650℃、保持時間は720分間とした。
 得られた酸化物を含むイオン伝導性固体をフリッチュ社製遊星ミルP-7でディスク回転数230rpmにおいて180分間粉砕して酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
 上記で得られた酸化物を含むイオン伝導性固体の粉末を、成型、二次焼成して実施例301の酸化物を含むイオン伝導性固体の焼結体を作製した。成型は、粉末を、エヌピーエーシステム製100kN電動プレス装置P3052-10を用いて147MPaで冷間一軸成型した。二次焼成は、大気雰囲気で実施し、加熱温度は650℃、保持時間は720分間とした。
[実施例302]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、及びCeO(信越化学工業製、純度99.9%)を原料として用いて、cが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例302の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例303]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、cとdが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例303の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例304]
 表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例304の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例305]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)及びHfO(ニューメタルス製、純度99.9%)を原料として用いて、cが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例305の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例306]
 cが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例306の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例307]
 cとdが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例307の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例308]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、In(新興化学工業製、純度99質量%)及びSnO(三津和化学薬品製、純度99.9%)を原料として用いて、bとcが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例308の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例309]
 bとcが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例309の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例310]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、Fe(和光純薬工業製、純度95.0質量%)及びTiO(東邦チタニウム製、純度99%)を原料として用いて、bとcが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例310の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例311]
 bとcが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例311の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例312]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0質量%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、aとcが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例312の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例313]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、La(和光純薬工業製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0質量%)及びCaO(関東化学製、純度97.0質量%)を原料として用いて、aとbが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例313の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例314]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、Lu(高純度化学研究所製、純度99.9質量%)及びMnO(関東化学製、純度80.0質量%)を原料として用いて、aとbが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例314の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例315]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、Tb(信越化学工業製、純度99.9質量%)及びMnO(関東化学製、純度80.0質量%)を原料として用いて、aとbが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例315の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例316]
 cとdが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例316の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例317]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、In(新興化学工業製、純度99質量%)、Nb(三井金属鉱業製、純度99.9%)及びTa(関東化学製、純度99質量%)を原料として用いて、bとdが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例317の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例318]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)及びPr(信越化学工業製、純度99.9質量%)を原料として用いて、bが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例318の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例319]
 bとdが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例319の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例320]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、Sm(和光純薬工業製、純度99.9質量%)、HfO(ニューメタルス製、純度99.9%)及びTa(関東化学製、純度99質量%)を原料として用いて、bとcとdが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例320の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例321]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、Nd(信越化学工業製、純度99.9質量%)、Sm(和光純薬工業製、純度99.9質量%)及びZnO(和光純薬工業製、純度99質量%)を原料として用いて、aとbが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例321の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例322]
 bとcが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例322の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例323]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)及びEu(信越化学工業製、純度95質量%)を原料として用いて、bが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例323の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例324]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、Eu(信越化学工業製、純度95質量%)及びNiO(和光純薬工業製、純度99.0質量%)を原料として用いて、aとbが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例324の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例325]
 bとcが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例325の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例326]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、Gd(信越化学工業製、純度99.9質量%)、Dy(信越化学工業製、純度95質量%)及びCaO(関東化学製、純度99.0質量%)を原料として用いて、aとbが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例326の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例327]
 bとcが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例327の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例328]
 bとcが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例328の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例329]
 bが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例329の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例330]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、Tb(信越化学工業製、純度99.9質量%)、NiO(和光純薬工業製、純度99.0質量%)及びBaO(和光純薬工業製、純度90.0質量%)を原料として用いて、aとbが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例330の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例331]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、Tb(信越化学工業製、純度99.9質量%)、Ho(高純度化学研究所製、純度99.9質量%)及びBaO(和光純薬工業製、純度90.0質量%)を原料として用いて、aとbが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例331の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例332]
 bとcとdが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例332の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例333]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)、Ho(高純度化学研究所製、純度99.9質量%)、Er(信越化学工業製、純度95質量%)及びSrO(高純度化学研究所製、純度98質量%)を原料として用いて、aとbが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例333の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例334]
 bとcが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例334の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例335]
 aとbとcが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例335の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例336]
 aとbとcが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例336の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例337]
 bとdが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例337の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例338]
 bとdが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例338の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例339]
 LiCO(ナカライテスク製、純度99.0質量%)、HBO(関東化学製、純度99.5%)、Tm(高純度化学研究所製、純度99.9質量%)及びSc(高純度化学研究所製、純度99.9質量%)を原料として用いて、bが表4に記載された値となるように各原料を化学量論量で秤量した以外は、実施例301と同じ工程で実施例339の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例340]
 aとbが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例301と同じ工程で実施例340の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例341]
 aとbが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例301と同じ工程で実施例341の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例342]
 aとbが表4に記載された値となるように上記実施例で使用した各原料を化学量論量で秤量し、粉砕時のディスク回転数を300rpmに設定した以外は、実施例301と同じ工程で実施例342の酸化物を含むイオン伝導性固体の焼結体を作製した。
[比較例4]
 実施例4における原料のTmをSc(Sc3+のイオン半径:0.87Å)に変更し、実施例4と同じ工程で作製したところ、実施例4と同様の結晶構造を得ることができなかった。後述の方法により、得られた焼結体のインピーダンス測定を行ったが、焼結体の抵抗を測定することはできず、イオン伝導率は数値として得られなかった。
[比較例5]
 実施例4における原料のTmをFe(Fe3+のイオン半径:0.78Å)に変更し、実施例4と同じ工程で作製したところ、実施例4と同様の結晶構造を得ることができなかった。後述の方法により、得られた焼結体のインピーダンス測定を行ったが、焼結体の抵抗を測定することはできず、イオン伝導率は数値として得られなかった。
[比較例6]
 実施例4における原料のTmをLa(La3+のイオン半径:1.16Å)に変更し、実施例4と同じ工程で作製したところ、実施例4と同様の結晶構造を得ることができなかった。後述の方法により、得られた焼結体のインピーダンス測定を行ったが、焼結体の抵抗を測定することはできず、イオン伝導率は数値として得られなかった。
 実施例1~47、101~144、201~242及び301~342の酸化物を含むイオン伝導性固体の焼結体について、上記方法により組成分析を行った。また、実施例1~47、101~144、201~242及び301~342、並びに比較例1~3で得られたイオン伝導性固体の粉末の体積平均粒径、イオン伝導性固体の焼結体のイオン伝導率を、以下の方法により測定した。
 イオン伝導率及び体積平均粒径の測定方法を以下に述べる。また、得られた評価結果を表1、表2、表3及び表4に示す。
・イオン伝導率の測定
 二次焼成で得られた平板形状の酸化物を含むイオン伝導性固体の焼結体において、平行に向かい合い、面積が大きい2面をサンドペーパーで研磨した。該平板形状の酸化物を含むイオン伝導性固体の焼結体の寸法は、例えば0.9cm×0.9cm×0.05cmとすることができるが、これに限定されるものではない。研磨は、始めに#500で15分~30分、次いで#1000で10分~20分、最後に#2000で5分~10分研磨して、目視で目立った凹凸や傷が研磨面になければ完了とした。
 研磨後、サンユー電子製スパッタ装置SC―701MkII ADVANCEを用いて、酸化物を含むイオン伝導性固体の焼結体の研磨面に金を成膜した。成膜条件は、プロセスガスをAr、真空度を2Pa~5Pa、成膜時間を5分間としたものを測定試料とした。成膜後、測定試料の交流インピーダンス測定を行った。
 インピーダンス測定にはインピーダンス/ゲイン相分析器SI1260及び誘電インターフェースシステム1296(いずれもソーラトロン社製)を使用し、測定条件は、温度27℃、振幅20mV、周波数0.1Hz~1MHzとした。
 酸化物を含むイオン伝導性固体の焼結体の抵抗は、インピーダンス測定で得られたナイキストプロットと、Scribner社製交流解析ソフトウエアZVIEWを用いて算出した。ZVIEWで測定試料に相当する等価回路を設定し、等価回路とナイキストプロットをフィッティング、解析することで酸化物を含むイオン伝導性固体の焼結体の抵抗を算出した。算出した抵抗と酸化物を含むイオン伝導性固体の焼結体の厚み、電極面積を用いて、以下の式からイオン伝導率を算出した。
 イオン伝導率(S/cm)=酸化物を含むイオン伝導性固体の焼結体の厚み(cm)/(酸化物を含むイオン伝導性固体の焼結体の抵抗(Ω)×電極面積(cm))
 イオン伝導性固体の焼結体のイオン伝導率(S/cm)は、例えば、好ましくは8.00×10-9以上であり、より好ましくは1.00×10-8以上であり、さらに好ましくは1.00×10-7以上であり、さらにより好ましくは1.00×10-6以上であり、特に好ましくは1.00×10-5以上である。伝導率は高いほど好ましく、上限は特に制限されないが、例えば、1.00×10-2以下、1.00×10-3以下、1.00×10-4以下である。
・体積平均粒径の評価
 一次焼成後のボールミル処理(フリッチュ社製遊星ミルP-7)で得られた酸化物を含むイオン伝導性固体の粉末を、堀場製作所製レーザ回折/散乱式粒子径分布測定装置LA―960V2を用いて粒度分布測定を行った。屈折率は1.8とし、測定溶媒はエタノールを用いた。透過率が90~70%となるように試料の濃度を調整した。得られた頻度分布から体積平均粒径を算出した。
・結果
 表1、表2、表3及び表4に、実施例1~47、101~144、201~242及び301~342、並びに比較例1~3の各酸化物を含むイオン伝導性固体の焼結体を製造する際の原料の化学量論量(一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4中のa、b、c及びdの値)、体積平均粒径及びイオン伝導率をまとめた。
 上記組成分析の結果、実施例1~47、101~144、201~242及び301~342、並びに比較例1~3の酸化物を含むイオン伝導性固体の焼結体はいずれも、表1、表2、表3及び表4に記載された原料の化学量論量の通りの組成を有することが確認された。また、実施例1~47、101~144、201~242及び301~342の酸化物を含むイオン伝導性固体の焼結体は、700℃未満の温度で焼成しても高いイオン伝導率を示すイオン伝導性固体であった。
Figure JPOXMLDOC01-appb-T000001
 表中、比較例1~3は、一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表される酸化物である。
Figure JPOXMLDOC01-appb-T000002
 表中、比較例1~3は、一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表される酸化物である。
Figure JPOXMLDOC01-appb-T000003
 表中、比較例1~3は、一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表される酸化物である。
Figure JPOXMLDOC01-appb-T000004
 表中、比較例1~3は、一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表される酸化物である。
 表1、表2、表3及び表4において、実施例1、101、201及び301にて作製したイオン伝導性固体のイオン伝導率は、比較例1と比べて向上が図られている結果が得られ、YをLu、Ho、Er及びTmからなる群から選択される少なくとも一に置換することで、より高いイオン伝導率が得られることが示されている。先行技術に開示されている組成中のYを、イオン半径が小さい金属元素であるLu、Ho、Er及びTmからなる群から選択される少なくとも一に置換することで、より高いイオン伝導率が得られることが分かる。
 表1において、実施例1~3にて作製したイオン伝導性固体のイオン伝導率は、比較例1~3と比べて向上が図られている結果が得られ、YをLuに置換することで、より高いイオン伝導率が得られることが示されている。先行技術に開示されている組成中のYをイオン半径が小さいLuに置換することで、より高いイオン伝導率が得られることが分かる。
 また、実施例44~46で作製したイオン伝導性固体のイオン伝導率は、それぞれ実施例16、26及び32と比べて向上する結果が得られた。先行技術に開示されている組成と置換元素が異なるため、融点の差などにより焼成後の密度に影響が及ぶことで、粒径の適正範囲が異なっている可能性がある。
 表2において、実施例101~103にて作製したイオン伝導性固体のイオン伝導率は、比較例1~3と比べて向上が図られている結果が得られ、YをHoに置換することで、より高いイオン伝導率が得られることが示されている。先行技術に開示されている組成中のYをイオン半径が小さいHoに置換することで、より高いイオン伝導率が得られることが分かる。
 また、実施例142~144で作製したイオン伝導性固体のイオン伝導率は、それぞれ実施例115、125及び131と比べて向上する結果が得られた。先行技術に開示されている組成と置換元素が異なるため、融点の差などにより焼成後の密度に影響が及ぶことで、粒径の適正範囲が異なっている可能性がある。
 表3において、実施例201~203にて作製したイオン伝導性固体のイオン伝導率は、比較例1~3と比べて向上が図られている結果が得られ、YをErに置換することで、より高いイオン伝導率が得られることが示されている。先行技術に開示されている組成中のYをイオン半径が小さいErに置換することで、より高いイオン伝導率が得られることが分かる。
 また、実施例240~242で作製したイオン伝導性固体のイオン伝導率は、それぞれ実施例215、225及び231と比べて向上する結果が得られた。先行技術に開示されている組成と置換元素が異なるため、融点の差などにより焼成後の密度に影響が及ぶことで、粒径の適正範囲が異なっている可能性がある。
 表4において、実施例301~303にて作製したイオン伝導性固体のイオン伝導率は、比較例1~3と比べて向上が図られている結果が得られ、YをTmに置換することで、より高いイオン伝導率が得られることが示されている。先行技術に開示されている組成中のYをイオン半径が小さいTmに置換することで、より高いイオン伝導率が得られることが分かる。
 また、実施例340~342で作製したイオン伝導性固体のイオン伝導率は、それぞれ実施例315、324及び330と比べて向上する結果が得られた。先行技術に開示されている組成と置換元素が異なるため、融点の差などにより焼成後の密度に影響が及ぶことで、粒径の適正範囲が異なっている可能性がある。

Claims (10)

  1.  一般式Li6+a-c-2d1-a-b-c-dM1M2M3M4で表される酸化物を含むイオン伝導性固体。
    (式中、Xは、Lu、Ho、Er及びTmからなる群から選択される少なくとも一の金属元素であり、
    M1は、Mg、Mn、Zn、Ni、Ca、Sr及びBaからなる群から選択される少なくとも一の金属元素であり、
    M2は、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu、In、Fe及びScからなる群から選択される少なくとも一の金属元素であり、
    M3は、Zr、Ce、Hf、Sn及びTiからなる群から選択される少なくとも一の金属元素であり、
    M4は、Nb及びTaからなる群から選択される少なくとも一の金属元素であり、
    aは、0.000≦a≦0.800、bは、0.000≦b≦0.900、cは、0.000≦c≦0.800、dは、0.000≦d≦0.800、a、b、c、dは、0.000≦a+b+c+d<1.000を満たす実数である。ただし、XとM2が同一の金属元素である場合を除く。)
  2.  前記1-a-b-c-dが、0.300≦1-a-b-c-dである請求項1に記載のイオン伝導性固体。
  3.  前記1-a-b-c-dが、0.500≦1-a-b-c-dである請求項1又は2に記載のイオン伝導性固体。
  4.  前記aが、0.000≦a≦0.400である請求項1~3のいずれかに記載のイオン伝導性固体。
  5.  前記bが、0.000≦b≦0.500である請求項1~4のいずれかに記載のイオン伝導性固体。
  6.  前記cが、0.000≦c≦0.400である請求項1~5のいずれかに記載のイオン伝導性固体。
  7.  前記dが、0.000≦d≦0.400である請求項1~6のいずれかに記載のイオン伝導性固体。
  8.  体積平均粒径が、0.1μm以上28.0μm以下である請求項1~7のいずれかに記載のイオン伝導性固体。
  9.  正極と、
     負極と、
     電解質と、
    を少なくとも有する全固体電池であって、
    該正極、該負極及び該電解質からなる群から選択される少なくとも一が、請求項1~8のいずれかに記載のイオン伝導性固体を含む、全固体電池。
  10.  少なくとも前記電解質が、前記イオン伝導性固体を含む、請求項9に記載の全固体電池。
PCT/JP2023/014777 2022-08-08 2023-04-11 イオン伝導性固体及び全固体電池 WO2024034184A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022126420 2022-08-08
JP2022-126420 2022-08-08

Publications (1)

Publication Number Publication Date
WO2024034184A1 true WO2024034184A1 (ja) 2024-02-15

Family

ID=89851423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014777 WO2024034184A1 (ja) 2022-08-08 2023-04-11 イオン伝導性固体及び全固体電池

Country Status (1)

Country Link
WO (1) WO2024034184A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124812A1 (ja) * 2019-12-20 2021-06-24 キヤノンオプトロン株式会社 イオン伝導性固体及び全固体電池
JP2021163581A (ja) * 2020-03-31 2021-10-11 宇部興産株式会社 固体電解質組成物、それを用いた成形体、及び全固体二次電池
WO2022181653A1 (ja) * 2021-02-25 2022-09-01 キヤノン株式会社 固体電解質、活物質層、電解質層、および、二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124812A1 (ja) * 2019-12-20 2021-06-24 キヤノンオプトロン株式会社 イオン伝導性固体及び全固体電池
JP2021163581A (ja) * 2020-03-31 2021-10-11 宇部興産株式会社 固体電解質組成物、それを用いた成形体、及び全固体二次電池
WO2022181653A1 (ja) * 2021-02-25 2022-09-01 キヤノン株式会社 固体電解質、活物質層、電解質層、および、二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KBALA M, LEVASSEUR A, FOUASSIER C, HAGENMULLER P: "ETUDE DE LA CONDUCTIVITE IONIQUE DE NOUVEAUX BORATES DOUBLES DE TYPE:Li6-XLn1-XTX(BO3)3 (Ln = terre rare, T=element tetravalent).", SOLID STATE IONICS, vol. 6, no. 2, 1 March 1982 (1982-03-01), pages 191 - 194, XP093137266 *

Similar Documents

Publication Publication Date Title
WO2021124812A1 (ja) イオン伝導性固体及び全固体電池
JP7196371B1 (ja) イオン伝導性固体及び全固体電池
CN111033859A (zh) 固体电解质及全固体电池
JP2014096350A (ja) セラミック正極−固体電解質複合体
JP2017091788A (ja) イオン伝導体、リチウム電池、および、イオン伝導体の製造方法
JP2019125547A (ja) 固体電解質粉末、並びにそれを用いてなる電極合材及び全固体ナトリウムイオン二次電池
JP2022130301A (ja) 固体電解質、活物質層、電解質層、および、二次電池
US20230411684A1 (en) Ion-conductive solid and all-solid-state battery
JP2014096352A (ja) セラミック正極−固体電解質複合体
JP6948676B2 (ja) イオン伝導性固体及び全固体電池
WO2022181653A1 (ja) 固体電解質、活物質層、電解質層、および、二次電池
WO2024034184A1 (ja) イオン伝導性固体及び全固体電池
WO2023176235A1 (ja) イオン伝導性固体及び全固体電池
WO2023176251A1 (ja) イオン伝導性固体及び全固体電池
JP2014096351A (ja) セラミック正極−固体電解質複合体
JP7274670B2 (ja) イオン伝導性固体及び全固体電池
JP7196369B1 (ja) イオン伝導性固体及び全固体電池
JP7196368B1 (ja) イオン伝導性固体及び全固体電池
JP7196370B1 (ja) イオン伝導性固体及び全固体電池
JP2023133791A (ja) イオン伝導性固体及び全固体電池
WO2024096113A1 (ja) 電池及び積層体
WO2024096107A1 (ja) 電池
WO2023162669A1 (ja) リチウムイオン伝導性固体電解質
WO2022186087A1 (ja) 固体電池
WO2023223712A1 (ja) 固体電解質セラミックスおよび固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23852170

Country of ref document: EP

Kind code of ref document: A1