JP7274670B2 - イオン伝導性固体及び全固体電池 - Google Patents

イオン伝導性固体及び全固体電池 Download PDF

Info

Publication number
JP7274670B2
JP7274670B2 JP2022548560A JP2022548560A JP7274670B2 JP 7274670 B2 JP7274670 B2 JP 7274670B2 JP 2022548560 A JP2022548560 A JP 2022548560A JP 2022548560 A JP2022548560 A JP 2022548560A JP 7274670 B2 JP7274670 B2 JP 7274670B2
Authority
JP
Japan
Prior art keywords
ion
manufactured
purity
solid
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022548560A
Other languages
English (en)
Other versions
JPWO2022254752A1 (ja
Inventor
恵隆 柴
典子 坂本
健志 小林
紗央莉 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Optron Inc
Original Assignee
Canon Optron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Optron Inc filed Critical Canon Optron Inc
Publication of JPWO2022254752A1 publication Critical patent/JPWO2022254752A1/ja
Application granted granted Critical
Publication of JP7274670B2 publication Critical patent/JP7274670B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Conductive Materials (AREA)

Description

特許法第30条第2項適用 RSC Advances,2021,11,16530-16536,Royal Society of Chemistry 発行日 令和3年5月5日
本開示は、イオン伝導性固体及び全固体電池に関するものである。
従来、スマートフォンやノートパソコンのようなモバイル機器において、また、電気自動車やハイブリッド電気自動車のような輸送機器において、軽量かつ高容量なリチウムイオン二次電池が搭載されている。
しかし、従来のリチウムイオン二次電池は可燃性溶媒を含む液体が電解質として用いられるため、可燃性溶媒の液漏れ、電池短絡時の発火が危惧されている。そこで近年、安全性を確保するため、液体の電解質とは異なる、イオン伝導性固体を電解質として用いた二次電池が注目されており、かかる二次電池は全固体電池と呼ばれている。
全固体電池に用いられる電解質としては、酸化物系固体電解質や硫化物系固体電解質などの固体電解質が広く知られている。その中でも酸化物系固体電解質は、大気中の水分と反応を起こして硫化水素を発生することがなく、硫化物系固体電解質と比較して安全性が高い。
ところで、全固体電池は、正極活物質を含む正極と、負極活物質を含む負極と、該正極及び該負極の間に配置されたイオン伝導性固体を含む電解質と、必要に応じて集電体と、を有する(正極活物質と負極活物質を総称して「電極活物質」ともいう。)。酸化物系固体電解質を用いて全固体電池を作製する場合、固体電解質に含まれる酸化物系材料の粒子間の接触抵抗を低減するために加熱処理が行われる。しかしながら、従来の酸化物系固体電解質では加熱処理で900℃以上の高温を必要とするため、固体電解質と電極活物質が反応して高抵抗相を形成するおそれがある。該高抵抗相はイオン伝導性固体のイオン伝導率の低下、ひいては全固体電池の出力低下に繋がるおそれがある。
900℃より低い温度での加熱処理によって作製可能な酸化物系固体電解質として、Li2+x1-xが挙げられる(非特許文献1)。
Solid State Ionic 288 (2016) 248-252
本開示は、低温での加熱処理によって作製可能で、かつイオン伝導性の高いイオン伝導性固体、及びこれを有する全固体電池を提供するものである。
本開示のイオン伝導性固体は、一般式Liで表される酸化物を含むことを特徴とするイオン伝導性固体である。
式中、Mは、Mg、Al、Zr、Ce、Sn、Hf、C及びNbからなる群から選ばれる少なくとも一の元素であり、a、b、c、dは、5.100≦a≦5.990、0.100≦b≦1.000、0.010≦c≦0.900、2.400≦d≦3.100を満たす。
また、本開示の全固体電池は、
正極と、
負極と、
電解質と、
を少なくとも有する全固体電池であって、
該正極、該負極及び該電解質からなる群から選択される少なくとも一が、本開示のイオン伝導性固体を含むことを特徴とする全固体電池である。
本開示の一態様によれば、低温での加熱処理によって作製可能で、かつイオン伝導性の高いイオン伝導性固体、及びこれを有する全固体電池を得ることができる。
本開示において、数値範囲を表す「XX以上YY以下」や「XX~YY」の記載は、特に断りのない限り、端点である下限及び上限を含む数値範囲を意味する。
数値範囲が段階的に記載されている場合、各数値範囲の上限及び下限は任意に組み合わせることができる。
また、本開示において「固体」とは、物質の3態のうち一定の形状と体積とを有するものをいい、粉末状態は「固体」に含まれる。
本開示のイオン伝導性固体は、一般式Liで表される酸化物を含むイオン伝導性固体である。
式中、Mは、Mg、Al、Zr、Ce、Sn、Hf、C及びNbからなる群から選ばれる少なくとも一の元素である。さらに、式中、a、b、c、dは、5.100≦a≦5.990、0.100≦b≦1.000、0.010≦c≦0.900、2.400≦d≦3.100を満たす。
上述の一般式で表される酸化物を含むイオン伝導性固体において、イオン伝導率が向上する理由として、本発明者らは以下のように推察している。
Li6.0001.0003.000(本開示においてa=6.000、b=1.000、c=0.000、d=3.000)は、結晶格子中でLiが規則的に配列しているため、Liが結晶格子中を移動しにくい。しかし、本開示のMで表される元素で、Li6.0001.0003.000の組成の一部を本開示の範囲で置換すると、異なる価数の元素置換によって電荷のバランスが調整されるため、結晶格子中のLiが欠損した状態(本開示において5.100≦a≦5.990)になる。そのLiの欠損を埋めようと周囲のLiが移動するため、イオン伝導率が向上する。
本開示のイオン伝導性固体は、単斜晶型の結晶構造を備えることが好ましい。イオン伝導性固体が単斜晶型の結晶構造を備えると、本開示のMで表される元素でLi6.0001.0003.000の一部を置換した場合に、本開示のMで表される元素をいずれも含まないLi6.0001.0003.000(つまり、c=0.000の場合)と比べて、格子定数に影響が及ぶことで格子体積にも影響が及び、さらにイオン伝導率にも影響が及び得る。
CuKα線を用いたX線回折分析(以下、単に「XRD」とも称する。)において、2θ=28°付近に発生する回折ピークは、上述のイオン伝導性固体の組成によって変化し得る。
本開示のイオン伝導性固体においては、CuKα線を用いたXRDにおいて、2θ=27.915°以上28.100°以下、27.920°以上28.100°以下、または、27.930°以上28.100°以下の範囲に回折ピークを有することが好ましい。より好ましくは2θ=27.940°以上28.050°以下の範囲に回折ピークを有し、さらに好ましくは2θ=27.980°以上28.020°以下の範囲に回折ピークを有し、特に好ましくは2θ=27.980°以上28.010°以下の範囲に回折ピークを有する。
CuKα線を用いたXRDにおいて2θ=28°付近に発生する回折ピークの位置は、上記一般式中のMが示す元素を変更すること、及び、式中のa、b、c、dの値を調整することにより、制御することができる。
本開示のイオン伝導性固体の格子体積は、752.00Å以上であることが好ましく、より好ましくは752.55Å以上、さらに好ましくは753.00Å以上、特に好ましくは753.40Å以上である。
該格子体積は、好ましくは756.00Å以下、より好ましくは754.50Å以下、さらに好ましくは754.00Å以下、特に好ましくは753.50Å以下である。
該数値範囲は任意に組み合わせることができる。該格子体積は、例えば752.00Å以上756.00Å以下とすることができる。
イオン伝導性固体の格子体積は、上記一般式中のMが示す元素を変更すること、及び、式中のa、b、c、dの値を調整することにより、制御することができる。
上記一般式中のMは、Mg、Al、Zr、Ce、Sn、Hf、C及びNbからなる群から選ばれる少なくとも一の元素である。
また、Mは、Zr、Ce、Sn及びNbからなる群から選ばれる少なくとも一の元素であることが好ましい。さらに、Mは、Zr、Ce、Snを少なくとも含むことがより好ましい。さらにまた、Mが少なくともZrを含むことも、より好ましい態様である。
さらに、Mは、Mg、Al、Zr、Ce、Hf及びCからなる群から選ばれる少なくとも一の元素であることも好ましく、Mg、Al、Hf及びCからなる群から選ばれる少なくとも一の元素であることもより好ましい。
上記一般式中のaは、5.100≦a≦5.990を満たす。また、aは実数である。
aの下限は、好ましくは、5.110以上、5.120以上、5.130以上、5.140以上、5.150以上、5.160以上、5.170以上、5.180以上、5.190以上、5.200以上、5.210以上、5.220以上、5.230以上、5.240以上、5.250以上、5.300以上、5.350以上、5.400以上、5.450以上または5.500以上である。aの上限は、好ましくは、5.980以下、5.970以下、5.960以下、5.950以下、5.940以下、5.930以下、5.920以下、5.910以下、5.900以下、5.890以下、5.880以下、5.870以下、5.860以下、5.850以下、5.800以下、5.750以下、5.700以下、5.650以下または5.600以下である。該数値範囲は、任意に組み合わせることができる。
上記一般式中のbは、0.100≦b≦1.000を満たす。また、bは実数である。
bの下限は、好ましくは、0.110以上、0.120以上、0.130以上、0.140以上、0.150以上、0.160以上、0.170以上、0.180以上、0.190以上、0.200以上、0.210以上、0.220以上、0.230以上、0.240以上、0.250以上、0.300以上、0.350以上、0.400以上、0.450以上または0.500以上である。bの上限は、好ましくは、0.990以下、0.980以下、0.970以下、0.960以下、0.950以下、0.940以下、0.930以下、0.920以下、0.910以下、0.900以下、0.890以下、0.880以下、0.870以下、0.860以下、0.850以下、0.800以下、0.750以下、0.700以下、0.650以下または0.600以下である。該数値範囲は、任意に組み合わせることができる。bは、例えば0.100≦b≦0.990とすることができる。
上記一般式中のcは、0.010≦c≦0.900を満たす。また、cは実数である。
cの下限は、好ましくは、0.020以上、0.030以上、0.040以上、0.050以上、0.060以上、0.070以上、0.080以上、0.090以上、0.100以上、0.110以上、0.120以上、0.130以上、0.140以上、0.150以上、0.160以上、0.170以上、0.180以上、0.190以上、0.200以上、0.250以上、0.300以上、0.350以上、0.400以上、0.450以上または0.500以上である。cの上限は、好ましくは、0.890以下、0.870以下、0.860以下、0.850以下、0.840以下、0.830以下、0.820以下、0.810以下、0.800以下、0.790以下、0.780以下、0.770以下、0.760以下、0.750以下、0.700以下、0.650以下、0.600以下または0.550以下である。該数値範囲は、任意に組み合わせることができる。cは、例えば0.100≦c≦0.200とすることができる。
なお、上記一般式中のMが、上記の群から選ばれる二以上の元素を示す場合、cは、各元素の原子数の合計値とする。例えば、Mが、M1およびM2の二の元素を示す場合のcの値は、M1の原子数c1とM2の原子数c2の合計値である。Mが、上記の群から選ばれる三以上の元素を示す場合も同様とする。
上記一般式中のdは、2.400≦d≦3.100を満たす。また、dは実数である。
dの下限は、好ましくは、2.410以上、2.420以上、2.430以上、2.440以上、2.450以上、2.460以上、2.470以上、2.480以上、2.490以上、2.500以上、2.510以上、2.520以上、2.530以上、2.540以上、2.550以上、2.600以上、2.650以上、2.700以上、2.800以上または2.900以上である。dの上限は、好ましくは、3.090以下、3.080以下、3.070以下、3.060以下、3.050以下、3.040以下、3.030以下、3.020以下、3.010以下、3.000以下、2.990以下、2.980以下、2.970以下、2.960以下、2.950以下、2.940以下、2.930以下、2.920以下、2.910以下、2.900以下、2.890以下、2.880以下、2.870以下、2.860以下、2.850以下、2.800以下、2.750以下または2.700以下である。該数値範囲は、任意に組み合わせることができる。cは、例えば2.900≦d≦3.100とすることができる。
上記一般式中のMが少なくともMgを示す場合、該Mgの原子数(cの値)は、好ましくは0.010~0.150、より好ましくは0.025~0.100である。
上記一般式中のMが少なくともAlを示す場合、該Alの原子数(cの値)は、好ましくは0.005~0.300、より好ましくは0.010~0.200である。
上記一般式中のMが少なくともZrを示す場合、該Zrの原子数(cの値)は、好ましくは0.005~0.800、より好ましくは0.010~0.595である。
上記一般式中のMが少なくともCeを示す場合、該Ceの原子数(cの値)は、好ましくは0.005~0.900、より好ましくは0.010~0.805である。
上記一般式中のMが少なくともSnを示す場合、該Snの原子数(cの値)は、好ましくは0.010~0.300、より好ましくは0.020~0.205である。
上記一般式中のMが少なくともHfを示す場合、該Hfの原子数(cの値)は、好ましくは0.005~0.200、より好ましくは0.010~0.100である。
上記一般式中のMが少なくともCを示す場合、該Cの原子数(cの値)は、好ましくは0.015~0.800、より好ましくは0.025~0.600である。
上記一般式中のMが少なくともNbを示す場合、該Nbの原子数(cの値)は、好ましくは0.010~0.200、より好ましくは0.020~0.105である。
本開示のイオン伝導性固体としては、例えば以下の実施形態とすることができるが、これらの実施形態に限定されない。
(1)
MがZrを示し、cは0.090≦c≦0.200(例えばc=0.105)を満たすとよい。
(2)
MがZrおよびCeを示し、Zrの原子数は0.090~0.180(例えば0.105または0.155)、Ceの原子数は0.010~0.030、cは0.100≦c≦0.200を満たすとよい。
(3)
MがZr,CeおよびHfを示し、Zrの原子数は0.050~0.100(例えば0.075)、Ceの原子数は0.010~0.030(例えば0.025)、Hfの原子数は0.010~0.030(例えば0.025)、cは0.100≦c≦0.150(例えば0.125)を満たすとよい。
(4)
MがZr,CeおよびCを示し、Zrの原子数は0.090~0.120(例えば0.100)、Ceの原子数は0.010~0.030(例えば0.025)、Cの原子数は0.040~0.060(例えば0.050)、cは0.150≦c≦0.200を満たすとよい。
(5)
MがMg,ZrおよびCeを示し、Mgの原子数は0.010~0.35(例えば0.025)、Zrの原子数は0.050~0.150(例えば0.100)、Ceの原子数は0.015~0.040(例えば0.025)、cは0.050≦c≦0.250(例えば0.150)を満たすとよい。
(6)
MがAl,ZrおよびCeを示し、Alの原子数は0.010~0.35(例えば0.025)、Zrの原子数は0.050~0.150(例えば0.100)、Ceの原子数は0.015~0.040(例えば0.025)、cは0.050≦c≦0.250(例えば0.150)を満たすとよい。
次に、本開示のイオン伝導性固体の製造方法について説明する。
本開示のイオン伝導性固体の製造方法は、以下のような態様とすることができるが、これに限定されない。
一般式Liで表される酸化物を含むイオン伝導性固体の製造方法であって、
該一般式で表される酸化物が得られるように混合した原材料を、該酸化物の融点未満の温度で加熱処理する一次焼成工程を有することができる。
式中、Mは、Mg、Al、Zr、Ce、Sn、Hf、C及びNbからなる群から選ばれる少なくとも一の元素であり、a、b、c、dは、5.100≦a≦5.990、0.100≦b≦1.000、0.010≦c≦0.900、2.400≦d≦3.100を満たす。
本開示のイオン伝導性固体の製造方法は、上記一般式で表される酸化物が得られるように原材料を秤量・混合し、該原材料を該酸化物の融点未満の温度で加熱処理することにより、該酸化物を含むイオン伝導性固体を作製する一次焼成工程を含むことができる。また、該製造方法は、得られた酸化物を含むイオン伝導性固体を、該酸化物の融点未満の温度で加熱処理し、該酸化物を含むイオン伝導性固体の焼結体を作製する二次焼成工程を含んでもよい。
以下、上記一次焼成工程および上記二次焼成工程を含む本開示のイオン伝導性固体の製造方法について詳細に説明するが、本開示は下記製造方法に限定されるものではない。
一次焼成工程
一次焼成工程では、一般式Li(ただし、a、b、c、dは、5.100≦a≦5.990、0.100≦b≦1.000、0.010≦c≦0.900、2.400≦d≦3.100を満たす)となるように、化学試薬グレードのLiBO、HBO、Y、MgO、Al、ZrO、CeO、SnO、HfO、LiCO、Nbなどの原材料を化学量論量で秤量して、混合する。
混合に用いる装置は特に制限されないが、例えば遊星型ボールミルなどの粉砕型混合機を用いることができる。混合の際に用いる容器の材質及び容量、並びにボールの材質及び直径は特に制限されず、使用する原料の種類及び使用量に応じて適宜選択することができる。一例としては、ジルコニア製の45mL容器と、ジルコニア製の直径5mmボールを使用することができる。また、混合処理の条件は特に制限されないが、例えば回転数50rpm以上2000rpm以下、時間10分以上60分以下とすることができる。
該混合処理により上記各原材料の混合粉末を得た後、得られた混合粉末を加圧成型してペレットとする。加圧成型法としては、冷間一軸成型法、冷間静水圧加圧成型法など公知の加圧成型法を用いることができる。一次焼成工程での加圧成型の条件としては、特に制限されないが、例えば圧力100MPa以上200MPa以下とすることができる。
得られたペレットについて、大気焼成装置のような焼成装置を用いて焼成を行う。一次焼成して固相合成を行う温度は、一般式Liで表されるイオン伝導性固体の融点未満であれば特に制限されない。一次焼成する際の温度は、例えば700℃未満、680℃以下、670℃以下、660℃以下または650℃以下とすることができ、例えば500℃以上とすることができる。該数値範囲は任意に組み合わせることができる。上記範囲の温度であれば、十分に固相合成を行うことができる。一次焼成工程の時間は特に限定されないが、例えば700分以上750分以下とすることができる。
上記一次焼成工程により、上記一般式Liで表される酸化物を含むイオン伝導性固体を作製することができる。該酸化物を含むイオン伝導性固体を、乳鉢・乳棒や遊星ミルを用いて粉砕することで該酸化物を含むイオン伝導性固体の粉末を得ることもできる。
二次焼成工程
二次焼成工程では、一次焼成工程で得られた酸化物を含むイオン伝導性固体、及び酸化物を含むイオン伝導性固体の粉末からなる群から選択される少なくとも一を加圧成型し、焼成して本開示の酸化物を含むイオン伝導性固体の焼結体を得る。
加圧成型と二次焼成は、放電プラズマ焼結(以下、単に「SPS」とも称する。)やホットプレスなどを用いて同時に行ってもよく、冷間一軸成型でペレットを作製してから大気雰囲気、酸化雰囲気又は還元雰囲気などで二次焼成を行ってもよい。上述の条件であれば、加熱処理による溶融を起こすことなく、イオン伝導率が高いイオン伝導性固体を得ることができる。二次焼成工程での加圧成型の条件としては、特に制限されないが、例えば圧力10MPa以上100MPa以下とすることができる。
二次焼成する温度は、一般式Liで表される酸化物を含むイオン伝導性固体の融点未満である。二次焼成する際の温度は、好ましくは700℃未満、より好ましくは680℃以下、さらに好ましくは670℃以下、特に好ましくは660℃以下である。該温度の下限は特に制限されず、低いほど好ましいが、例えば500℃以上である。該数値範囲は任意に組み合わせることができるが、例えば500℃以上700℃未満の範囲とすることができる。上述の範囲であれば、二次焼成工程において本開示の酸化物を含むイオン伝導性固体が溶融したり分解したりすることを抑制でき、十分に焼結した本開示の酸化物を含むイオン伝導性固体の焼結体を得ることができる。
二次焼成工程の時間は、二次焼成の温度等に応じて適宜変更することができるが、24時間以下が好ましく、1時間以下としてもよい。二次焼成工程の時間は、例えば5分以上としてもよい。
二次焼成工程により得られた本開示の酸化物を含むイオン伝導性固体の焼結体を冷却する方法は特に限定されず、自然放冷(炉内放冷)してもよいし、急速に冷却してもよいし、自然放冷よりも徐々に冷却してもよいし、冷却中にある温度で維持してもよい。
次に、本開示の全固体電池について説明する。
全固体電池は一般的に、正極と、負極と、該正極及び該負極の間に配置されたイオン伝導性固体を含む電解質と、必要に応じて集電体と、を有する。
本開示の全固体電池は、
正極と、
負極と、
電解質と、
を少なくとも有する全固体電池であって、
該正極、該負極及び該電解質からなる群から選択される少なくとも一が、本開示のイオン伝導性固体を含む。
本開示の全固体電池は、バルク型電池であってもよく、薄膜電池であってもよい。本開示の全固体電池の具体的な形状は特に限定されないが、例えば、コイン型、ボタン型、シート型、積層型などが挙げられる。
本開示の全固体電池は電解質を有する。また、本開示の全固体電池においては、少なくとも前記電解質が、本開示のイオン伝導性固体を含むことが好ましい。
本開示の全固体電池における固体電解質は、本開示のイオン伝導性固体からなってもよく、その他のイオン伝導性固体を含んでいてもよく、イオン液体やゲルポリマーを含んでいてもよい。その他のイオン伝導性固体としては、特に制限されず、全固体電池に通常使用されるイオン伝導性固体、例えばLiI、LiPO、LiLaZr12などが含まれていてもよい。本開示の全固体電池における電解質中の、本開示のイオン伝導性固体の含有量は、特に制限されず、好ましくは25質量%以上であり、より好ましくは50質量%以上であり、さらに好ましくは75質量%以上であり、特に好ましくは100質量%である。
本開示の全固体電池は、正極を有する。該正極は、正極活物質を含んでいてもよく、該正極活物質と本開示のイオン伝導性固体とを含んでいてもよい。正極活物質としては、遷移金属元素を含む硫化物やリチウムと遷移金属元素を含む酸化物などの公知の正極活物質を特に制限なく用いることができる。
さらに、正極は結着剤、導電剤などを含んでいてもよい。結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコールなどが挙げられる。導電剤としては、例えば、天然黒鉛、人工黒鉛、アセチレンブラック、エチレンブラックなどが挙げられる。
本開示の全固体電池は、負極を有する。該負極は、負極活物質を含んでいてもよく、該負極活物質と本開示のイオン伝導性固体とを含んでいてもよい。負極活物質としては、リチウム、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸収及び放出可能な炭素質材料、導電性ポリマーなどの公知の負極活物質を特に制限なく用いることができる。
さらに、負極は結着剤、導電剤などを含んでいてもよい。該結着剤及び該導電剤としては、正極で挙げたものと同様のものを使用できる。
ここで、電極が電極活物質を「含む」とは、電極が電極活物質を成分・要素・性質としてもつことをいう。例えば、電極内に電極活物質を含有する場合も、電極表面に電極活物質が塗布されている場合も、上記「含む」に該当する。
該正極や該負極は、原料を混合、成型、加熱処理をするなど公知の方法で得ることができる。それによりイオン伝導性固体が電極活物質同士の隙間などに入り込んで、リチウムイオンの伝導経路を確保しやすくなると考えられる。本開示のイオン伝導性固体は、従来技術と比較して低温の加熱処理で作製できるため、イオン伝導性固体と電極活物質が反応して生じる高抵抗相の形成を抑制できると考えられる。
上記正極及び上記負極は、集電体を有していてもよい。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、鉄、焼成炭素、導電性高分子、導電性ガラスなどの公知の集電体を用いることができる。このほか、接着性、導電性,耐酸化性などの向上を目的として、アルミニウム、銅などの表面をカーボン、ニッケル、チタン、銀などで処理したものを集電体として用いることができる。
本開示の全固体電池は、例えば、正極と固体電解質と負極を積層し、成型、加熱処理するなど、公知の方法により得ることができる。本開示のイオン伝導性固体は、従来技術と比較して低温の加熱処理で作製できるため、イオン伝導性固体と電極活物質が反応して生じる高抵抗相の形成を抑制できると考えられ、出力特性に優れた全固体電池を得ることができると考えられる。
次に、本開示にかかる組成及び各物性の測定方法について説明する。
・本開示のMで表される元素を含むイオン伝導性固体の組成の同定とa、b、c、dの分析方法
イオン伝導性固体の組成分析は、加圧成型法により固型化した試料を用いて、波長分散型蛍光X線分析(以下、XRFともいう)により行う。ただし、粒度効果などにより分析困難な場合は、ガラスビード法によりイオン伝導性固体をガラス化してXRFによる組成分析を行うとよい。また、XRFではイットリウム(Y)のピークとの本開示のMで表される元素のピークが重なる場合は、誘導結合高周波プラズマ発光分光分析(ICP-AES)で組成分析を行うとよい。
XRFの場合、分析装置は(株)リガク製ZSX Primus IIを使用する。分析条件は、X線管球のアノードにはRhを用いて、真空雰囲気、分析径は10mm、分析範囲は17degから81deg、ステップは0.01deg、スキャンスピードは5sec/ステップとする。また、軽元素を測定する場合にはプロポーショナルカウンタ、重元素を測定する場合にはシンチレーションカウンタで検出する。
XRFで得られたスペクトルのピーク位置をもとに元素を同定し、単位時間あたりのX線光子の数である計数率(単位:cps)からモル濃度比Y/M、Y/BおよびY/Oを算出し、b、c、dを求める。
また、aは以下の式より求める。
a=18.000-3b-xc-3d
式中xは、MがMgの場合は+2、MがAlの場合は+3、MがZr、Ce、Sn、HfまたはCの場合は+4、MがNbの場合は+5となる。Mが上記群から選ばれる二以上の元素を示す場合、xcの値は、各元素のxと原子数cの積の合計値とする。
例えば、MがM1=Mgであり原子数がc1、M2=Zrであり原子数がc2の場合、
xc=(+2)×c1+(+4)×c2
となる。Mが、上記の群から選ばれる三以上の元素を示す場合も同様とする。
以下に、本開示のイオン伝導性固体を具体的に作製および評価した例を実施例として説明する。なお、本開示は、以下の実施例に限定されるものではない。
[実施例1]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)及びZrO(新日本電工製、純度99.9%)を原料として用いて、Li5.9900.990Zr0.0103.000となるように各原料を化学量論量で秤量し、フリッチュ社製遊星ミルP-7でディスク回転数300rpmにおいて30分間混合した。遊星ミルにはジルコニア製のφ5mmボールと45mL容器を用いた。
混合後、混合した粉末を、エヌピーエーシステム製100kN電動プレス装置P3052-10を用いて147MPaで冷間一軸成型し、大気雰囲気で焼成した。加熱温度は650℃、保持時間は720分間とした。
得られた酸化物を含むイオン伝導性固体をフリッチュ社製遊星ミルP-7でディスク回転数230rpmにおいて180分間粉砕して酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、富士電波工業製放電プラズマ焼結機SPS-625(以下、単に「SPS」ともいう。)を用いて、成型、二次焼成して実施例1の酸化物を含むイオン伝導性固体の焼結体を作製した。加熱温度は630℃、圧力は30MPa、保持時間は10分間とした。
[実施例2~5]
・一次焼成工程
a、b、c、dが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例2~5の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例1と同じ条件で、放電プラズマ焼結(SPS)で成型、二次焼成して実施例2~5の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例6]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、Li5.9900.990Ce0.0103.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例6の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を大気雰囲気で成型、二次焼成して実施例6の酸化物を含むイオン伝導性固体の焼結体を作製した。加熱条件は650℃、保持時間は720分間とした。
[実施例7~9]
・一次焼成工程
a、b、c、dが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例6と同じ工程で実施例7~9の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例7~9の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例10]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)及びSnO(三津和化学薬品製、純度99.7%)を原料として用いて、Li5.9800.980Sn0.0203.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例10の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例10の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例11~12]
・焼成工程
a、b、c、dが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例10と同じ工程で実施例11~12の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例11~12の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例13]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、ZrO(新日本電工製、純度99.9%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、Li5.9300.930Zr0.045Ce0.0253.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例13の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例13の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例14~16]
・一次焼成工程
a、b、c、dが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例13と同じ工程で実施例14~16の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例14~16の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例17]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)及びSnO(三津和化学薬品製、純度99.7%)を原料として用いて、Li5.8450.845Zr0.105Ce0.025Sn0.0253.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例17の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例17の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例18]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、Li5.7900.895Nb0.1053.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例18の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例18の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例19]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、Li5.6600.765Zr0.105Ce0.025Nb0.1053.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例19の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例19の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例20]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)、SnO(三津和化学薬品製、純度99.7%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、Li5.7950.820Zr0.105Ce0.025Sn0.025Nb0.0253.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例20の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例20の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例21]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)及びLiCO(ナカライテスク製、純度99.0%)を原料として用いて、Li5.9501.0000.0502.950となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例21の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例21の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例22]
・一次焼成工程
a、b、c、dが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例21と同じ工程で実施例22の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例22の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例23]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)及びLiCO(ナカライテスク製、純度99.0%)を原料として用いて、Li5.8250.875Zr0.100Ce0.0250.0502.950となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例23の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例23の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例24~27]
・焼成工程
a、b、c、dが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例23と同じ工程で実施例24~27の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例24~27の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例28]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、HfO(ニューメタルス製、純度99.9%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、Li5.8750.875Hf0.100Ce0.0253.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例28の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例28の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例29]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、HfO(ニューメタルス製、純度99.9%)、ZrO(新日本電工製、純度99.9%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、Li5.8750.875Hf0.025Zr0.075Ce0.0253.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例29の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例29の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例30]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)及びHfO(ニューメタルス製、純度99.9%)を原料として用いて、Li5.9900.990Hf0.0103.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例30の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例30の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例31]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)及びMgO(宇部マテリアルズ製、純度99.0%)を原料として用いて、Li5.9501.000Mg0.0253.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例31の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例31の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例32]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0%)、ZrO(新日本電工製、純度99.9%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、Li5.8250.875Mg0.025Zr0.100Ce0.0253.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例32の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例32の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例33~34]
・一次焼成工程
a、b、c、dが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例32と同じ工程で実施例33~34の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例33~34の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例35]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)、HfO(ニューメタルス製、純度99.9%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、Li5.7450.820Mg0.025Zr0.105Ce0.025Hf0.025Nb0.0253.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例35の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例35の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例36]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)、LiCO(ナカライテスク製、純度99.0%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、Li5.7450.845Mg0.025Zr0.105Ce0.0250.025Nb0.0252.975となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例36の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例36の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例37]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)、HfO(ニューメタルス製、純度99.9%)、LiCO(ナカライテスク製、純度99.0%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、Li5.7350.830Mg0.025Zr0.105Ce0.020Hf0.0250.025Nb0.0202.975となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例37の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例37の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例38]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)、SnO(三津和化学薬品製、純度99.7%)、HfO(ニューメタルス製、純度99.9%)、LiCO(ナカライテスク製、純度99.0%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、Li5.7750.870Mg0.025Zr0.045Ce0.020Sn0.020Hf0.0250.025Nb0.0202.975となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例38の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例38の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例39]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)及びAl(バイコウスキージャパン製、純度99.99%)を原料として用いて、Li5.9701.000Al0.0103.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例39の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例39の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例40]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、Al(バイコウスキージャパン製、純度99.99%)、ZrO(新日本電工製、純度99.9%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、Li5.8000.875Al0.025Zr0.100Ce0.0253.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例40の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例40の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例41~43]
・焼成工程
a、b、c、dが表1に記載された値となるように上記各原料を化学量論量で秤量した以外は、実施例40と同じ工程で実施例41~43の酸化物を含むイオン伝導性固体及び酸化物を含むイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例41~43の酸化物を含むイオン伝導性固体の焼結体を作製した。
[実施例44]
・焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、Y(信越化学工業製、純度99.9質量%)、MgO(宇部マテリアルズ製、純度99.0%)、Al(バイコウスキージャパン製、純度99.99%)、ZrO(新日本電工製、純度99.9%)、CeO(信越化学工業製、純度99.9%)、SnO(三津和化学薬品製、純度99.7%)、HfO(ニューメタルス製、純度99.9%)、LiCO(ナカライテスク製、純度99.0%)及びNb(三井金属鉱業製、純度99.9%)を原料として用いて、Li5.7000.870Mg0.025Al0.025Zr0.045Ce0.020Sn0.020Hf0.0250.025Nb0.0202.975となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で実施例44の酸化物を含むイオン伝導性固体の焼結体を作製した。
・二次焼成工程
上記で得られた酸化物を含むイオン伝導性固体の粉末を、実施例6と同じ工程で、大気雰囲気で成型、二次焼成して実施例44の酸化物を含むイオン伝導性固体の焼結体を作製した。
[比較例1]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)及びY(信越化学工業製、純度99.9質量%)を原料として用いて、Li6.0001.0003.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程でイオン伝導性固体及びイオン伝導性固体の粉末を作製した。
・二次焼成工程
上記で得られたイオン伝導性固体の粉末を放電プラズマ焼結(SPS)で成型、二次焼成して比較例1のイオン伝導性固体の焼結体を作製した。加熱温度は700℃、圧力は30MPa、保持時間は10分間とした。
[比較例2]
・一次焼成工程
LiBO(豊島製作所製、純度99.9質量%)、HBO(関東化学製、純度99.5%)、ZrO(新日本電工製、純度99.9%)及びCeO(信越化学工業製、純度99.9%)を原料として用いて、Li5.000Zr0.800Ce0.2003.000となるように各原料を化学量論量で秤量した以外は、実施例1と同じ工程で固体及び固体の粉末を作製した。
・二次焼成工程
上記で得られた固体の粉末を成型、二次焼成して比較例2の焼結体を作製した。二次焼成は大気雰囲気で実施し、加熱温度は550℃、保持時間は720分間とした。
実施例1~44の酸化物を含むイオン伝導性固体の焼結体について、上記方法により組成分析を行った。また、実施例1~44、および比較例1~2の焼結体について、以下の方法によりイオン伝導率の測定を行った。
イオン伝導率の測定方法を以下に述べる。また、得られた評価結果を表1に示す。
・イオン伝導率の測定
二次焼成で得られた平板形状の酸化物を含むイオン伝導性固体の焼結体において、平行に向かい合い、面積が大きい2面をサンドペーパーで研磨した。該平板形状の酸化物を含むイオン伝導性固体の焼結体の寸法は、例えば0.9cm×0.9cm×0.05cmとすることができるが、これに限定されるものではない。研磨は、始めに#500で15分~30分、次いで#1000で10分~20分、最後に#2000で5分~10分研磨して、目視で目立った凹凸や傷が研磨面になければ完了とした。
研磨後、サンユー電子製スパッタ装置SC―701MkII ADVANCEを用いて、酸化物を含むイオン伝導性固体の焼結体の研磨面に金を成膜した。成膜条件は、プロセスガスをAr、真空度を2Pa~5Pa、成膜時間を5分間としたものを測定試料とした。成膜後、測定試料の交流インピーダンス測定を行った。
インピーダンス測定にはインピーダンス/ゲイン相分析器SI1260及び誘電インターフェースシステム1296(いずれもソーラトロン社製)を使用し、測定条件は、温度27℃、振幅20mV、周波数0.1Hz~1MHzとした。
酸化物を含むイオン伝導性固体の焼結体の抵抗は、インピーダンス測定で得られたナイキストプロットと、Scribner社製交流解析ソフトウエアZVIEWを用いて算出した。ZVIEWで測定試料に相当する等価回路を設定し、等価回路とナイキストプロットをフィッティング、解析することで酸化物を含むイオン伝導性固体の焼結体の抵抗を算出した。算出した抵抗と酸化物を含むイオン伝導性固体の焼結体の厚み、電極面積を用いて、以下の式からイオン伝導率を算出した。
イオン伝導率(S/cm)=酸化物を含むイオン伝導性固体の焼結体の厚み(cm)/(酸化物を含むイオン伝導性固体の焼結体の抵抗(Ω)×電極面積(cm))
・結果
表1に、実施例1~44及び比較例1~2の各酸化物を含むイオン伝導性固体の焼結体を製造する際の原料の化学量論量(一般式Li中のMが示す元素、並びに、a、b、c及びdの値)及びイオン伝導率をまとめた。
上記組成分析の結果、実施例1~44及び比較例1の酸化物を含むイオン伝導性固体の焼結体はいずれも、表1に記載された原料の化学量論量の通りの組成を有することが確認された。また、実施例1~44の酸化物を含むイオン伝導性固体の焼結体は、700℃未満の温度で焼成しても高いイオン伝導率を示すイオン伝導性固体であった。一方、比較例2の酸化物を含むイオン伝導性固体の焼結体の主たる結晶構造は、原料として用いたZrO及びCeOが混在したものであった。
Figure 0007274670000001

表中のイオン伝導率の列における「※」は、高抵抗であってイオン伝導率の測定が不可能であったことを示す。

Claims (7)

  1. 一般式αLi 6-(x-3)c1 (Y 1-c1 M1 c1 )B ・βLi 6-c2 Y(M2 c2 3-c2 )O ・γ(Li 6-xc3 M3 c3 )YB で表される酸化物を含み、
    該酸化物が、Li6.0001.0003.000の組成の一部を該M1で表される元素、該M2で表される元素及び該M3で表される元素からなる群から選択される少なくとも一の元素で置換された酸化物である、イオン伝導性固体。
    (式中、M1が、Zr、Ce、Sn、Hf及びNbからなる群から選ばれる少なくとも一の元素であり、
    M2が、Cであり、
    M3が、Mg及びAlからなる群から選ばれる少なくとも一の元素であり、
    xが、MがMgの場合は+2、MがAlの場合は+3、MがZr、Ce、Sn、HfまたはCの場合は+4、MがNbの場合は+5であり、
    c1は、
    M1が少なくともZrを示す場合、0.005~0.800、
    M1が少なくともCeを示す場合、0.005~0.900、
    M1が少なくともSnを示す場合、0.010~0.300、
    M1が少なくともHfを示す場合、0.005~0.200、
    M1が少なくともNbを示す場合、0.010~0.200、
    をそれぞれ満たし、
    c2は、
    0.015~0.800、
    を満たし、
    c3は、
    M3が少なくともMgを示す場合、0.010~0.150、
    M3が少なくともAlを示す場合、0.005~0.300、
    をそれぞれ満たし、
    α、β及びγは、0以上の実数であり、α+β+γ=1を満たす。
  2. 前記c1が、
    M1が少なくともZrを示す場合、0.010~0.595、
    M1が少なくともCeを示す場合、0.010~0.805、
    M1が少なくともSnを示す場合、0.020~0.205、
    M1が少なくともHfを示す場合、0.010~0.100、
    M1が少なくともNbを示す場合、0.020~0.105、
    をそれぞれ満たし、
    前記c2は、
    0.025~0.600、
    を満たし、
    前記c3は、
    M3が少なくともMgを示す場合、0.025~0.100、
    M3が少なくともAlを示す場合、0.010~0.200、
    をそれぞれ満たす、請求項1に記載のイオン伝導性固体。
  3. 前記Mが、Zr、Ce、Sn及びNbからなる群から選ばれる少なくとも一の元素であり、前記αが1であり、前記β及び前記γが0であり、
    前記cは、
    前記Mが少なくともZrを示す場合、0.010~0.595、
    前記Mが少なくともCeを示す場合、0.010~0.805、
    前記Mが少なくともSnを示す場合、0.020~0.205、
    前記Mが少なくともNbを示す場合、0.020~0.105、
    をそれぞれ満たす、請求項2に記載のイオン伝導性固体。
  4. 前記Mが、Zr、Ce及びSnを少なくとも含み、前記c1は、0.155≦c≦0.205を満たす、請求項2または3に記載のイオン伝導性固体。
  5. 前記M1が、Hfであり、
    前記M2が、Cであり、
    前記M3が、Mg及びAlからなる群から選ばれる少なくとも一の元素であり、
    前記c1は、
    0.010~0.100、
    を満たし、
    前記c2は、
    0.025~0.600、
    を満たし、
    前記c3は、
    M3が少なくともMgを示す場合、0.025~0.100、
    M3が少なくともAlを示す場合、0.010~0.200、
    をそれぞれ満たす、請求項2に記載のイオン伝導性固体。
  6. 正極と、
    負極と、
    電解質と、
    を少なくとも有する全固体電池であって、
    該正極、該負極及び該電解質からなる群から選択される少なくとも一が、請求項1~5のいずれか一項に記載のイオン伝導性固体を含む、全固体電池。
  7. 少なくとも前記電解質が、前記イオン伝導性固体を含む、請求項6に記載の全固体電池。
JP2022548560A 2021-05-31 2021-12-09 イオン伝導性固体及び全固体電池 Active JP7274670B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021091165 2021-05-31
JP2021091165 2021-05-31
PCT/JP2021/045267 WO2022254752A1 (ja) 2021-05-31 2021-12-09 イオン伝導性固体及び全固体電池

Publications (2)

Publication Number Publication Date
JPWO2022254752A1 JPWO2022254752A1 (ja) 2022-12-08
JP7274670B2 true JP7274670B2 (ja) 2023-05-16

Family

ID=84324060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022548560A Active JP7274670B2 (ja) 2021-05-31 2021-12-09 イオン伝導性固体及び全固体電池

Country Status (2)

Country Link
JP (1) JP7274670B2 (ja)
WO (1) WO2022254752A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506706A (ja) 2015-12-31 2019-03-07 アイ テン 固体電解質およびイオン伝導性材料層を含む全固体電池
JP6948676B2 (ja) 2019-12-20 2021-10-13 キヤノンオプトロン株式会社 イオン伝導性固体及び全固体電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124812A1 (ja) * 2019-12-20 2021-06-24 キヤノンオプトロン株式会社 イオン伝導性固体及び全固体電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019506706A (ja) 2015-12-31 2019-03-07 アイ テン 固体電解質およびイオン伝導性材料層を含む全固体電池
JP6948676B2 (ja) 2019-12-20 2021-10-13 キヤノンオプトロン株式会社 イオン伝導性固体及び全固体電池

Also Published As

Publication number Publication date
WO2022254752A1 (ja) 2022-12-08
JPWO2022254752A1 (ja) 2022-12-08

Similar Documents

Publication Publication Date Title
JP6672848B2 (ja) ガーネット型又はガーネット型類似の結晶構造を有するリチウムイオン伝導性酸化物セラミックス材料
WO2021124812A1 (ja) イオン伝導性固体及び全固体電池
JP7196371B1 (ja) イオン伝導性固体及び全固体電池
JP6109672B2 (ja) セラミック正極−固体電解質複合体
JP2013149493A (ja) リチウムイオン伝導性材料
JP2016040767A (ja) リチウムイオン伝導性セラミックス材料及びリチウム電池
WO2019212026A1 (ja) イオン伝導性粉末、イオン伝導性成形体および蓄電デバイス
JP2017091788A (ja) イオン伝導体、リチウム電池、および、イオン伝導体の製造方法
JP2021038099A (ja) リチウムイオン伝導性酸化物
JP2014096352A (ja) セラミック正極−固体電解質複合体
JP7199674B2 (ja) イオン伝導性固体及び全固体電池
JP2011079707A (ja) セラミックス材料及びその製造方法
JP6948676B2 (ja) イオン伝導性固体及び全固体電池
JP2014096351A (ja) セラミック正極−固体電解質複合体
JP7274670B2 (ja) イオン伝導性固体及び全固体電池
JP6672485B2 (ja) イオン伝導体、リチウム電池、および、イオン伝導体の製造方法
JP7196368B1 (ja) イオン伝導性固体及び全固体電池
JP7196369B1 (ja) イオン伝導性固体及び全固体電池
JP7196370B1 (ja) イオン伝導性固体及び全固体電池
KR20230013089A (ko) 고체 전해질 재료, 고체 전해질, 이것들의 제조 방법 및 전고체 전지
JP7516680B2 (ja) イオン伝導性固体電解質及び全固体電池
WO2023176251A1 (ja) イオン伝導性固体及び全固体電池
WO2024034184A1 (ja) イオン伝導性固体及び全固体電池
WO2023162669A1 (ja) リチウムイオン伝導性固体電解質
JP2023133791A (ja) イオン伝導性固体及び全固体電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220826

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220826

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R150 Certificate of patent or registration of utility model

Ref document number: 7274670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150