WO2022253089A1 - 复合结构、柔性屏组件和可折叠终端 - Google Patents

复合结构、柔性屏组件和可折叠终端 Download PDF

Info

Publication number
WO2022253089A1
WO2022253089A1 PCT/CN2022/095153 CN2022095153W WO2022253089A1 WO 2022253089 A1 WO2022253089 A1 WO 2022253089A1 CN 2022095153 W CN2022095153 W CN 2022095153W WO 2022253089 A1 WO2022253089 A1 WO 2022253089A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fiber
flexible screen
composite structure
bendable
Prior art date
Application number
PCT/CN2022/095153
Other languages
English (en)
French (fr)
Inventor
秦圆
李洋洋
邹纯
姚威威
孙难见
陈泰萌
苏兆梁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023573666A priority Critical patent/JP2024520578A/ja
Priority to EP22815135.3A priority patent/EP4322137A1/en
Priority to BR112023024000A priority patent/BR112023024000A2/pt
Publication of WO2022253089A1 publication Critical patent/WO2022253089A1/zh
Priority to US18/518,020 priority patent/US20240083137A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/095Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/14Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a face layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/047Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material made of fibres or filaments
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0292Polyurethane fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the embodiments of the present application relate to the technical field of flexible screens, and in particular, to a composite structure, a flexible screen assembly, and a foldable terminal.
  • a metal layer is usually set under the screen as a support structure under the screen.
  • the material of the metal layer mainly includes stainless steel and titanium alloy.
  • stainless steel is a widely used material, but stainless steel is heavy, which is not conducive to the overall weight reduction of foldable terminals; while titanium alloy is relatively light, but the cost of titanium alloy is much higher than that of stainless steel, and the rigidity and strength of titanium alloy are lower than stainless steel , so the risk of bending reliability is higher than that of stainless steel, and it has not been widely used yet.
  • the embodiment of the present application provides a composite structure, including a base material layer and a functional layer.
  • the base material layer is made of hard rubber fiber composite material, which not only has high strength, but also has light weight and low cost compared with metal materials such as stainless steel. It can endow the composite structure with functions such as electrical conductivity, thermal conductivity, and impact resistance.
  • the composite structure is used to support the flexible screen, which can provide good rigid support for the flexible screen, and is light in weight and low in cost. At the same time, it can effectively realize functions such as electric conduction, heat conduction, and impact resistance, and improve the product competitiveness of foldable terminals.
  • the first aspect of the embodiment of the present application provides a composite structure
  • the composite structure includes a base material layer and a functional layer arranged on at least one side surface of the base material layer
  • the base material layer includes a second layer arranged side by side A support piece, a second support piece, and a bendable connecting piece arranged between the first support piece and the second support piece and connected to the first support piece and the second support piece
  • the material of the first support member and the second support member includes hard rubber fiber composite material
  • the functional layer includes one or more of a conductive layer, a thermal conductive layer and an impact layer.
  • the first support and the second support are made of hard rubber fiber composite material, that is, fiber-reinforced hard rubber material, which is not only light in weight, but also high in strength. It can provide good rigid support for the flexible screen at the same time. Heavy income, and low cost of materials, is conducive to improving the product competitiveness of foldable terminals.
  • the setting of the functional layer can endow the composite structure with electrical conductivity, thermal conductivity, and impact resistance, and realize the functions of electrical connection, heat dissipation, and drop resistance of the entire flexible display screen and terminal products, and meet the market's multifunctional demand for flexible screen support structures. Market competitiveness of foldable terminal products.
  • the conductive layer includes conductive metal; the conductive layer is a single-layer or multi-layer structure.
  • the arrangement of the conductive layer can realize effective electrical connection between the composite structure and other components.
  • the conductive layer can be formed on the substrate layer by means of adhesive, electroless plating, electroless plating combined with electroplating or pressing metal sheets.
  • the conductive metal includes one or more of copper, silver, gold, nickel, and tin.
  • the conductive layer can be formed by one conductive metal, such as a single-layer copper layer, a single-layer nickel layer, etc.; it can also be formed by two or more conductive metals, for example, the conductive layer is made of nickel and Gold is formed, specifically, a partial area of the conductive layer may be a gold layer, and other areas other than the gold layer may be a nickel layer.
  • the materials of different layers may be the same or different, and each layer may be formed of one conductive metal or two or more different conductive metals.
  • the conductive layer includes an inner layer and an outer layer, the inner layer is disposed on the substrate layer, and the outer layer is disposed on a side of the inner layer away from the substrate layer.
  • the inner layer may include at least one of gold, silver, and copper
  • the outer layer may include at least one of nickel, and tin
  • the outer layer may form protection for the inner layer.
  • the inner layer is a nickel layer, and a gold layer is partially plated on the nickel layer.
  • the heat conduction layer includes one or more of heat conduction silica gel sheets, heat conduction silicone grease, heat conduction double-sided tapes, heat conduction graphite sheets, graphene sheets, and graphene oxide sheets.
  • the arrangement of the heat conduction layer can make the composite structure have a better heat conduction function, thereby providing an effective channel for the heat dissipation of the flexible screen and the entire terminal product.
  • the heat conduction layer can be formed on the base material layer by adhesive or heat fusion.
  • the impact-resistant layer includes one or more of silicone rubber, thermoplastic elastomer (TPE), polyurethane acrylate (PUA), polyvinyl chloride (PVC) soft rubber, and polyurethane (PU).
  • TPE thermoplastic elastomer
  • PVA polyurethane acrylate
  • PVC polyvinyl chloride
  • PU polyurethane
  • the setting of the impact layer can improve the ability of the composite structure and the flexible screen to resist external impacts, which is conducive to maintaining the stability of the composite structure and improving the drop resistance of the end product.
  • the anti-impact layer can be formed on the base material layer by adhesive or heat fusion.
  • the functional layer may be arranged on one side of the substrate layer or on both sides of the substrate layer.
  • the functional layer may completely cover the substrate layer or partially cover the substrate layer.
  • Partially covering the substrate layer may be, for example, that the functional layer only covers the surfaces of the first support member and the second support member of the substrate layer, and does not cover the bendable connecting member.
  • the material, number of layers, thickness, etc. of the functional layers on both sides may be the same or different.
  • the conductive layer, thermal conductive layer and impact layer can be stacked on the base material layer in any order.
  • the hard glue fiber composite material includes at least one fiber layer, and the hard glue material cured on the fiber layer.
  • the fiber layer includes fiber unidirectional cloth and/or fiber woven cloth. That is, the fiber weaving mode of each fiber layer may be unidirectional weaving or multidirectional weaving.
  • the hard rubber material includes hard resin and/or hard rubber.
  • the hard resin and/or hard rubber As a support for supporting the main body of the flexible screen, it needs to have high rigidity, and choosing hard resin and/or hard rubber can meet the rigidity requirement.
  • the hard rubber material includes epoxy resin, phenolic resin, amino resin, unsaturated polyester, silicon ether resin, polyolefin, polyamide, polyoxymethylene, polycarbonate, polyphenylene ether, polysulfone one or more of.
  • the fiber layer includes one or more of glass fibers, carbon fibers, aramid fibers, aluminum oxide fibers, ultra-high molecular weight polyethylene fibers, and polyparaphenylene benzobisoxazole fibers .
  • the mass content of fibers in the hard rubber fiber composite material is 10%-80%.
  • the increase of fiber content can improve the strength of hard rubber fiber composites.
  • the hard rubber fiber composite material includes multiple layers of the fiber layer, and the multiple layers of the fiber layer and the hard rubber material form a composite laminate in which fibers and hard rubber are alternately laminated; or multiple layers of the The fiber layers are laminated to form a fiber composite, and the hard glue material is solidified on the fiber composite.
  • the material of the bendable connector includes one or more of organic flexible material, soft rubber fiber composite material, bendable hard rubber fiber composite material and bendable metal material. All the above four materials can realize the bending performance of the bendable connector to cooperate with the folding and unfolding of the flexible screen. Among them, soft rubber fiber composite materials and organic flexible materials can further obtain weight reduction benefits.
  • the organic flexible material includes fluorine rubber, silicone rubber, thermoplastic elastomer, polyvinyl chloride, polyimide, polyethylene terephthalate, cycloolefin polymer, liquid crystal polymer, poly One or more of dimethylsiloxane.
  • the soft rubber fiber composite material includes at least one layer of the fiber layer, and a soft rubber material cured on the fiber layer; the soft rubber material includes fluororubber, silicone rubber, thermoplastic elastomer one or more of.
  • the mass content of fibers in the soft rubber fiber composite material is 10%-80%.
  • the soft rubber fiber composite material includes multiple layers of the fiber layer, and the multiple layers of the fiber layer and the soft rubber material form a composite laminate in which fibers and soft rubber are alternately laminated; or multiple layers of the The fiber layers are laminated to form a fiber composite body, and the soft glue material is cured on the fiber composite body.
  • the bendable metal material includes one or more of stainless steel, titanium alloy and aluminum alloy. Specifically, in order to better realize the bendability, it may be porous stainless steel, porous titanium alloy, or porous aluminum alloy.
  • the composite structure when the bendable connector is a soft rubber fiber composite material, the composite structure includes the first support member, the second support member and the bendable connection An integrally woven fiber layer in a piece.
  • Composite structures may be comprised of one or more integrally woven fiber layers.
  • the bendable hard rubber fiber composite material has a porous structure.
  • the bendable hard rubber fiber composite material can form a porous structure by laser cutting the hard rubber fiber composite material, so as to realize the bendable performance.
  • the bendable connector when the bendable connector is a bendable hard rubber fiber composite material, the bendable connector may be an integrally formed structure with the first support member and/or the second support member .
  • the base material layer When the base material layer is formed as a whole, the base material layer includes an integrally woven fiber layer and a hard glue layer continuously present in the first support member, the second support member and the bendable connector .
  • the one-piece structure of the substrate layer is conducive to obtaining high structural stability of the substrate layer as a whole.
  • the thickness of the composite structure is 0.1mm-5mm.
  • the thickness of the composite structure can be specifically designed according to the performance of the material and the actual application requirements of the product.
  • the overall composite structure is in the shape of a flat plate or a sheet.
  • the first support member, the bendable connecting member, and the second support member are bonded together by thermocompression, gluing, welding or fitting, or the
  • the bendable connecting part is integrally formed with the first supporting part and/or the second supporting part.
  • the composite structure provided by the first aspect of the embodiment of the present application has the characteristics of high strength, high rigidity, light weight, low cost, and functionalization, and has bendable performance, which can be applied to foldable terminal products. While satisfying requirements such as rigidity and rigidity, the product is lightweight and functional, and the competitiveness of foldable terminal products is enhanced.
  • the second aspect of the embodiments of the present application provides a terminal, including the composite structure described in the first aspect of the embodiments of the present application.
  • the composite structure can be used as an under-display support structure of a flexible display screen, or as other functional components.
  • the terminal includes a flexible display and a composite structure disposed under the flexible display.
  • the third aspect of the embodiment of the present application provides a flexible screen assembly, including a flexible screen and a flexible screen support structure for supporting the flexible screen, and the flexible screen support structure adopts the composite structure described in the first aspect of the embodiment of the present application production.
  • the flexible screen support structure adopts the composite structure described in the first aspect of the embodiment of the present application production.
  • An embodiment of the present application further provides a foldable terminal, including the flexible screen assembly described in the third aspect of the embodiment of the present application.
  • the flexible screen includes a bending area, and non-bending areas located on both sides of the bending area
  • the flexible screen supporting structure is arranged on the outer surface of the flexible screen
  • the first flexible screen supporting structure The first support member and the second support member respectively correspond to the non-bending regions on both sides of the flexible screen
  • the bendable connecting member corresponds to the bending region of the flexible screen.
  • the foldable terminal provided by the embodiment of the present application has a flexible screen support structure with high strength, which can provide sufficient rigid support for the flexible screen, and is light in weight and low in cost.
  • the flexible screen support structure can also realize the flexible screen and the foldable terminal. Functions such as electrical connection, heat dissipation, and drop resistance enhance product competitiveness and user experience.
  • FIG. 1 is a schematic structural diagram of a foldable terminal 10 provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a flexible screen support structure 30 in an embodiment of the present application.
  • FIG. 3 is a schematic structural view of the substrate layer 100 in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a foldable terminal 10 provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a sectional structure of the flexible screen supporting structure 30 in Fig. 1 along the direction A-A' in an embodiment
  • Fig. 6A and Fig. 6B are schematic cross-sectional structural diagrams of the flexible screen support structure 30 in Fig. 1 along the A-A' direction in an embodiment
  • Fig. 7 is a schematic diagram of a sectional structure of the flexible screen support structure 30 in Fig. 1 along the direction A-A' in an embodiment
  • Fig. 8A and Fig. 8B are schematic cross-section structural diagrams of the flexible screen support structure 30 in Fig. 1 along the A-A' direction in an embodiment
  • Fig. 9 is a schematic diagram of a sectional structure of the flexible screen support structure 30 in Fig. 1 along the direction A-A' in an embodiment
  • Fig. 10 is a schematic diagram of a sectional structure of the flexible screen support structure 30 in Fig. 1 along the direction A-A' in an embodiment
  • Fig. 11A, Fig. 11B and Fig. 11C are schematic cross-sectional structural diagrams of the flexible screen support structure 30 in Fig. 1 along the A-A' direction;
  • Fig. 12 is a schematic diagram of a sectional structure of the flexible screen support structure 30 in Fig. 1 along the direction A-A' in an embodiment
  • Fig. 13 is a schematic diagram of a sectional structure of the flexible screen support structure 30 in Fig. 1 along the direction A-A' in an embodiment
  • Fig. 14 is a schematic structural view of a hard rubber fiber composite material in an embodiment of the present application.
  • Fig. 15 is a schematic structural diagram of multidirectional weaving of fibers in the embodiment of the present application.
  • Fig. 16 is a schematic structural view of a hard rubber fiber composite material in another embodiment of the present application.
  • Fig. 17 is a schematic structural view of a hard rubber fiber composite material in another embodiment of the present application.
  • Figure 18 is a schematic diagram of multi-angle superposition of fiber layers in the embodiment of the present application by multi-layer fiber braided layers;
  • Fig. 19 is a structural schematic diagram of a flexible screen support structure including an integrally woven fiber layer according to an embodiment of the present application
  • Figure 20 is a flow chart of the preparation process of the hard rubber fiber composite material provided by the embodiment of the present application.
  • Fig. 21 is a flow chart of the preparation process of the hard rubber fiber composite material provided by another embodiment of the present application.
  • 22A-22E are schematic diagrams of the connection method between the first support made of hard rubber fiber composite material and the bendable connector according to the embodiment of the present application.
  • an embodiment of the present application provides a foldable terminal 10, which may be terminal products such as mobile phones, tablet computers, notebook computers, game books, e-books, vehicle-mounted computers, displays, and wearable devices.
  • the foldable terminal 10 includes a flexible screen 20 and a flexible screen support structure 30 attached to the side of the flexible screen 20 away from the display surface.
  • the flexible screen 20 includes a bending area 21 , and non-bending areas 22 located on both sides of the bending area 21 , and the opposite sides of the non-bending area 22 are planar.
  • the flexible screen 20 has the property of being bendable, and can be bent in the bending area 21 to realize folding and unfolding of the flexible screen 20 .
  • the flexible screen 20 can be, for example, an active matrix organic light emitting diode (AMOLED) display screen based on flexible resin materials such as polyethylene terephthalate (polyethylene terephthalate, PET), or are other kinds or forms of display screens.
  • AMOLED active matrix organic light emitting diode
  • the flexible screen support structure 30 provided by the embodiment of the present application is made of a composite structure, the composite structure includes a base material layer 100 and a functional layer 200 arranged on the base material layer 100, the base material layer 100 includes side by side
  • the first support 101, the bendable connector 103 and the second support 102 are provided, the bendable connector 103 is arranged between the first support 101 and the second support 102, and the bendable connector 103
  • the opposite sides are respectively connected with the first support 101 and the second support 102 .
  • the first supporting member 101 , the bendable connecting member 103 and the second supporting member 102 are arranged side by side along a first direction (direction X in FIG. 2 ).
  • the material of the first support member 101 and the second support member 102 includes hard glue fiber composite material.
  • the first support member 101 and the second support member 102 are flat hard glue fiber composite boards.
  • the functional layer 200 includes one or more of a conductive layer, a thermal conductive layer and an impact layer.
  • the functional layer 200 can be arranged on one side or both sides of the substrate layer 100. When the functional layer 200 is only arranged on one side of the substrate layer 100, the functional layer 200 can be located on the substrate layer 100 close to the flexible screen 20. The side of the substrate layer may also be the side away from the flexible screen 20 .
  • the functional layer 200 may be formed on the substrate layer 100 by means of electroplating, electroless plating, bonding or pressing.
  • the flexible screen supporting structure 30 may be bonded to the surface of the flexible screen 20 facing away from the display surface by an adhesive, so as to support the flexible screen 20 . That is, the substrate layer 100 or the functional layer 200 can be bonded to the flexible screen 20 through an adhesive, and different regions of the flexible screen support structure 30 can be realized between the flexible screen 20 and the same adhesive or different adhesives. Tight and secure fit.
  • the length and width dimensions of the flexible screen support structure 30 (that is, the dimensions in the X direction and the Y direction in FIG. 2 ) are identical or substantially identical to the length and width dimensions of the flexible screen 20 .
  • the flexible screen support structure 30 is attached to the side of the flexible screen 20 facing away from the display surface, and is used to support the flexible screen 20 of the foldable terminal, wherein the first support member 101 of the substrate layer 100, The second supporting part 102 corresponds to the non-bending area 22 of the flexible screen 20 , and the bendable connecting part 103 corresponds to the bending area 21 of the flexible screen 20 .
  • the foldable terminal 10 When the foldable terminal 10 is folded, the bending area 21 of the flexible screen 20 and the bendable connecting member 103 supporting the bending area 21 are bent together.
  • the foldable terminal 10 is unfolded, the bending area 21 of the flexible screen 20 is unfolded together with the bendable connector 103 supporting the bending area 21 and the functional layer 200 .
  • the flexible screen support structure 30 can support the flexible screen 20 during the folding or unfolding process of the flexible screen 20 , ensuring the flatness of the flexible screen 20 and protecting the non-display surface of the flexible screen 20 .
  • the first support member 101 and the second support member 102 in the base material layer 100 are made of hard rubber fiber composite material.
  • the light material can provide good rigid support for the flexible screen, and at the same time, it has a high weight reduction benefit, which is conducive to improving the product competitiveness of foldable terminals.
  • the setting of the functional layer 200 can endow the flexible screen support structure 30 with properties such as electric conduction, heat conduction, and impact resistance, so as to meet the product functional requirements of the flexible screen support structure 30 .
  • the functional layer 200 may include one or more of a conductive layer, a thermal conductive layer, and an impact layer, and may also include functional layers with other functions as required. That is, the functional layer 200 includes at least one of a conductive layer, a thermal conductive layer and an impact layer.
  • the functional layer 200 may include one or more conductive layers.
  • the functional layer 200 may include one or more heat conducting layers.
  • the functional layer 200 may include one or more impact layers.
  • the thickness of the functional layer 200 may be 5 ⁇ m-500 ⁇ m.
  • the thickness of the functional layer 200 is 5 ⁇ m-500 ⁇ m, which refers to the total thickness of the functional layer on one side of the substrate layer 100 .
  • the thickness of the functional layer 200 may be 10 ⁇ m-200 ⁇ m; in some embodiments, the thickness of the functional layer 200 may be 6 ⁇ m-100 ⁇ m.
  • the functional layer 200 can be arranged on one side of the substrate layer 100 or on both sides of the substrate layer 100 .
  • the functional layer 200 can completely cover the substrate layer 100 or partially cover the substrate layer 100 .
  • the material, number of layers, and thickness of the functional layers 200 on both sides may be the same or different.
  • the conductive layer, thermal conductive layer and impact layer can be selectively arranged on one side or both sides of the substrate layer 100 according to actual needs.
  • the functional layer 200 may include a conductive layer, may also include a thermally conductive layer, may also include an impact layer, may also include a conductive layer and a thermally conductive layer, or may include a conductive layer and an impact layer, or may include a thermally conductive layer and an impact layer. layer, or simultaneously include conductive layer, thermally conductive layer and impact layer.
  • the functional layer 200 may also include functional layers with other functions.
  • the conductive layer, thermal conductive layer, and impact-resistant layer can be stacked and disposed on the base material layer 100 in any order.
  • the impact-resistant layer is located on the outermost side, and the impact-resistant layer located on the outer side can be closer to the flexible screen to better protect the flexible screen.
  • the functional layer 200 includes a conductive layer, a thermal conductive layer, and an impact layer disposed on the base material layer 100 in sequence. Such a stacking sequence is convenient for fabrication and is conducive to the performance of each functional layer.
  • the functional layer 200 is a single functional layer, that is, the functional layer 200 includes a conductive layer or a thermally conductive layer or an impact-resistant layer disposed on one or both sides of the substrate layer 100.
  • the functional layer 200 includes a conductive layer.
  • the functional layer 200 includes a heat conducting layer.
  • the functional layer 200 includes an impact-resistant layer.
  • the functional layers 200 on both sides can be functional layers with the same function, such as conductive layers on both sides; they can also be functional layers with different functions, such as a One side is a conductive layer, and the other side is a thermally conductive layer.
  • the functional layer 200 can completely cover the surface of the substrate layer 100 as shown in FIG. 6A , or partially cover the surface of the substrate layer 100 as shown in FIG. 6B . Specifically, the functional layer 200 only covers the support members 101 and 102 on both sides. The surface does not cover the surface of the bendable connector 103 .
  • the functional layer 200 is a dual-functional layer, including a first functional layer 201 and a second functional layer 202, and the first functional layer 201 and the second functional layer 202 Any two of the conductive layer, thermal conductive layer and impact layer, that is, the functional layer 200 includes two material layers with different functions.
  • the functional layer 200 includes a conductive layer and an anti-shock layer.
  • the functional layer 200 includes a conductive layer and a thermal conductive layer.
  • the functional layer 200 includes a heat conducting layer and an impact resistant layer. The arrangement sequence of the two functional layers may be unlimited.
  • the first functional layer 201 and the second functional layer 202 may completely cover or partially cover the surface of the substrate layer 100 .
  • both the first functional layer 201 and the second functional layer 202 completely cover the surface of the substrate layer 100 .
  • the first functional layer 201 only covers the surfaces of the supports on both sides, and does not cover the surfaces of the bendable connectors; the second functional layer 202 completely covers the substrate layer 100 .
  • the functional layer 200 is a multifunctional layer, including a first functional layer 201, a second functional layer 202 and a third functional layer 203, the first functional layer 201, the second functional layer
  • the functional layer 202 and the third functional layer 203 are three functional layers: conductive layer, thermal conductive layer and impact layer, and the arrangement order of the three functional layers is not limited.
  • one side of the substrate layer 100 is a single functional layer, and the other side side is a double-functional layer; it can also be as shown in Figure 12, one side of the substrate layer 100 is a single-functional layer, and the other side is a multi-functional layer; it can also be as shown in Figure 13, one side of the substrate layer 100 is Dual functional layer with a multifunctional layer on the other side.
  • the conductive layer includes conductive metal; the conductive layer may be a single-layer or multi-layer structure.
  • the arrangement of the conductive layer can enable the flexible screen support structure 30 to have a conductive function, thereby achieving effective electrical connection with other components of the terminal 10, so as to make up for the inability to achieve electrical connection with other components of the terminal 10 when the base material layer 100 is made of a non-conductive material as a whole. question.
  • the conductive metal may include one or more of copper, silver, gold, nickel, and tin.
  • the conductive layer can be formed by one conductive metal, such as a single-layer copper layer, a single-layer nickel layer, etc.; it can also be formed by two or more conductive metals, for example, the conductive layer is made of nickel and Formed from gold, the partial area of the conductive layer is a gold layer, and other areas other than the gold layer are nickel layers, and for example, the conductive layer is formed of nickel and copper, the partial area of the conductive layer is a copper layer, and other areas other than the copper layer are nickel layers; or Each area of the conductive layer is copper and nickel.
  • the materials of different layers may be the same or different, and each layer may be formed of one conductive metal or two or more conductive metals.
  • the conductive layer includes an inner layer and an outer layer, the inner layer is disposed on the substrate layer, and the outer layer is disposed on a side of the inner layer away from the substrate layer.
  • the inner layer may include at least one of gold, silver, and copper
  • the outer layer may include at least one of nickel, and tin
  • the outer layer may form protection for the inner layer.
  • the inner layer is a nickel layer, and a gold layer is partially plated on the nickel layer.
  • the flexible screen support structure 30 has a conductive function and can meet the requirements of electrical connection.
  • the conductive layer can be formed on the substrate layer 100 by adhesive, electroless plating, or electroless plating combined with electroplating, or pressing metal sheets.
  • a conductive layer is formed on the substrate layer 100 by electroless plating, and the specific process may include:
  • the catalyst may specifically be a palladium-containing catalyst
  • the substrate layer 100 is immersed in a plating solution for electroless plating to form a metal conductive layer, washed with water, and dried to obtain a composite structure with a conductive layer.
  • the conductive layer only covers the surfaces of the supports on both sides, not the surface of the bendable connector; when the bendable connector is not shielded, the conductive layer covers the entire surface of the substrate layer , that is to cover the surfaces of the bendable connector and the supports on both sides at the same time.
  • the shielding of the bendable connectors comprising non-metals can protect the bendable connectors from corrosion damage.
  • the heat conduction layer may include one or more of heat conduction silica gel sheets, heat conduction silicone grease, heat conduction double-sided tapes, heat conduction graphite sheets, graphene sheets, and graphene oxide sheets.
  • the thermally conductive layer can be a single-layer or multi-layer structure.
  • the arrangement of the heat conduction layer can make the flexible screen support structure 30 have a better heat conduction function, thereby playing a favorable role in the heat dissipation of the flexible screen and the entire terminal product.
  • the flexible screen support structure 30 has a heat conduction function, which can transfer the heat generated by the internal battery of the terminal to the side of the display screen, and finally dissipate it to the outside of the terminal.
  • the heat conduction layer may be formed on the base material layer 100 by means of adhesive or heat fusion (hot pressing).
  • the impact layer may include one or more of silicone rubber, thermoplastic elastomer (TPE), polyurethane acrylate (PUA), polyvinyl chloride (PVC) soft rubber, and polyurethane (PU).
  • TPE thermoplastic elastomer
  • PVA polyurethane acrylate
  • PVC polyvinyl chloride
  • PU polyurethane
  • the anti-shock layer has a certain buffering effect, and the anti-shock layer can be a single-layer or multi-layer structure.
  • thermoplastic elastomer can include but not limited to thermoplastic polyurethane (TPU), thermoplastic polyester elastomer (TPEE), styrene thermoplastic elastomer, polyolefin thermoplastic elastomer (POE), polyether ester thermoplastic One or more of elastomers and polyamide thermoplastic elastomers.
  • TPU thermoplastic polyurethane
  • TPEE thermoplastic polyester elastomer
  • POE polyolefin thermoplastic elastomer
  • polyether ester thermoplastic polyamide thermoplastic elastomers.
  • the setting of the anti-shock layer can make the flexible screen support structure 30 have the ability to resist external impact, which is beneficial to protect the display screen and improve the anti-drop performance of the terminal product.
  • the anti-shock layer is only disposed on one side of the base layer 100, the anti-shock layer located on the side of the base layer facing the display screen can better protect the display screen from falling impact.
  • the anti-impact layer can be formed
  • the hard glue fiber composite material 110 of the present application includes at least one fiber layer 111 , and a hard glue material 112 cured on the fiber layer 111 .
  • the hard rubber material 112 includes hard resin and/or hard rubber.
  • the specific types of hard resin and hard rubber are not particularly limited, and they can meet the application requirements of electronic devices, as long as they cooperate with fibers to provide sufficient rigid support for the flexible screen.
  • the hard rubber material 112 includes but is not limited to epoxy resin, phenolic resin, amino resin, unsaturated polyester, silicon ether resin, polyolefin, polyamide, polyoxymethylene, polycarbonate, polyphenylene ether, polysulfone one or more of.
  • a relatively small hard rubber material can be selected on the premise of satisfying the mechanical support.
  • the hard glue material 112 can be impregnated and solidified on the fiber layer 111 by a solution impregnation method or a hot melt method, combined with a heat pressing process.
  • the fibers in the fiber layer 111 are continuous fibers, which specifically include but are not limited to glass fibers, carbon fibers, aramid fibers, aluminum oxide fibers, ultra-high molecular weight polyethylene fibers, and polyparaphenylene fibers.
  • the ultra-high molecular weight polyethylene fiber refers to a fiber spun from polyethylene with a molecular weight > 1 million.
  • the fiber layer 111 can be braided by one kind of fiber, or mixed by two or more kinds of fibers. Among them, mixed weaving can combine the performance advantages of various fibers.
  • the mass content of fibers in the hard rubber fiber composite material may be 10%-80%.
  • the mass content of fibers in the hard rubber fiber composite material may be, for example, 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80%.
  • the fiber content in the hard rubber fiber composite can be adjusted according to the specific rigid support requirements, combined with the mechanical properties of the selected hard resin or hard rubber. Generally, the more fibers there are, the lighter the overall weight of the hard rubber fiber composite material is, which is more conducive to weight reduction. In some embodiments, considering the rigid support performance and weight reduction requirements, the mass content of fibers in the hard rubber fiber composite material is 30%-70%.
  • the fiber weaving manner of each fiber layer 111 may be unidirectional weaving or multidirectional weaving. That is, the fiber layer 111 may be a fiber unidirectional cloth or a fiber woven cloth.
  • Fiber unidirectional fabric that is, fiber uniaxial weaving, means that there are a large number of textile yarns in one direction (usually warp direction, but also weft direction unidirectional fabric), and only a small amount of and usually fine yarn in the other direction.
  • the fiber woven fabric refers to the textile fabric in which the fibers are woven in multiple axes, and there are a large number of textile yarns in multiple directions, and the strength of the final cloth is distributed in multiple axes.
  • warp and weft biaxial weaving that is, 0°/90° weaving means that the fiber distribution of the fiber cloth is biaxial, the angles of the two axes are 0° and 90° respectively, and the angle between the fibers on the two axes is 90°.
  • 45° weaving ie +45°/-45° means that the fiber distribution of the fiber cloth is biaxial, the angles of the two axes are +45° and -45° respectively, and the fibers on the two axes are The included angle is 90 degrees.
  • the specific weaving form of the multidirectional weaving of fibers is not limited.
  • the multidirectional weaving form can be a plain weave as shown in (a) in Figure 15, or a twill weave as shown in (b) in Figure 15, or it can also be as shown in (c) in Figure 15 satin weave etc. (a), (b), and (c) in Figure 15 show biaxial braiding at 0°/90°.
  • the hard rubber fiber composite material may include only one fiber layer 111 , or may include multiple (two or more than two) fiber layers 111 .
  • the fiber layer 111 in the hard rubber fiber composite material of FIG. 14 is one layer
  • the fiber layer 111 in the hard rubber fiber composite material of FIG. 16 and FIG. 17 is three layers.
  • the fiber layer 111 is one layer
  • the one layer of fiber layer 111 is a multi-directional woven fiber layer.
  • the fiber layer 111 is multi-layered, in order to better enhance the mechanical strength of the hard rubber fiber composite material, the strength in all directions of the hard rubber fiber composite material is increased.
  • the multiple fiber layers 111 can be laminated at different angles (multiple angles), and each fiber layer 111 can be unidirectionally woven or multi-directionally woven.
  • the multi-layer fiber layer 111 may be a multi-layer fiber unidirectional fabric stacked at different angles, that is, each fiber layer 111 is a fiber unidirectional fabric.
  • the stacking direction of the multi-layer fiber layers 111 may be any angle within the range of 0°-90°.
  • multi-layer fiber layers are laminated at different angles, which is conducive to the formation of multi-directional distribution of fibers and the formation of fiber networks, thereby meeting the mechanical strength requirements of hard rubber fiber composite materials in different directions, and better providing rigid support for flexible screens. .
  • Figure 18 is a schematic diagram of stacking four layers of fiber unidirectional fabrics at different angles, and the four layers of fiber unidirectional fabrics are stacked at 0°, +45°, 90°, and -45° respectively.
  • the fibers can be continuously distributed in multiple directions, the strength of the hard rubber fiber composite material in all directions can be improved, and the overall mechanical properties of the hard rubber fiber composite material can be improved.
  • the 0° direction is the X direction in FIG. 2 , that is, the direction in which the first support 101 , the bendable connector 103 , and the second support 103 are arranged side by side.
  • the stacking angles of the multiple fiber layers may be symmetrical from the middle to both sides according to the stacking direction. For example, +45°/0°/0°/-45°, 0°/90°/0°/0°/90°/0°, 0°/+45°/-45°/-45°/+ 45°/0°, 0°/90°/0°/90°/90°/0°/90°/0°, etc.
  • the multi-layer fiber layer 111 and the hard glue material form a composite laminate in which fibers and hard glue are alternately laminated.
  • the fiber materials of each fiber layer 111 may be the same or different.
  • the material of each hard glue layer can be the same or different. Among them, due to the difference in the preparation process, for example, the two sides of each fiber layer 111 will be impregnated with hard rubber materials by the solution impregnation method.
  • the hard glue layer may comprise two layers of different hard glue materials. Among them, different fiber layers are impregnated with the same hard rubber material, which is more conducive to the formation of strong bonding force.
  • the multi-layer fiber layers 111 can also be laminated together in contact with each other, and then impregnated with hard rubber materials, that is, the hard rubber fiber composite material includes multi-layer fiber layers laminated.
  • the material of the bendable connector 103 may include one or more of soft rubber fiber composite material, bendable metal material, bendable hard rubber fiber composite material and organic flexible material.
  • the bendable connecting member 103 adopts the above materials to have good bendability, so that the first supporting member 101 and the second supporting member 102 can be folded or unfolded relative to each other.
  • the bendable connector 103 is a soft rubber fiber composite material, specifically a soft rubber fiber composite board, and the two sides of the soft rubber fiber composite board are respectively connected with the first support member 101 composed of a hard rubber fiber composite board. It is connected with the second supporting member 102.
  • the substrate layer 100 is a composite plate structure of hard rubber fiber composite material-soft rubber fiber composite material-hard rubber fiber composite material, the middle area uses soft rubber fiber composite material to achieve flexible and bendable functions, and the two sides use hard rubber fiber composite material Composite materials provide under-screen support for flexible screens.
  • the soft rubber fiber composite material includes at least one fiber layer, and the soft rubber material impregnated and cured on the fiber layer.
  • the fiber selection in the soft rubber fiber composite material, the specific structure of the fiber layer, the structure of the soft rubber fiber composite material, and the preparation method can refer to the relevant description of the above hard rubber fiber composite material, which is not mentioned here. Let me repeat.
  • the difference between the soft rubber fiber composite material and the hard rubber fiber composite material in this application is that the soft rubber fiber composite material chooses soft rubber material and fiber composite, the hard rubber fiber composite material chooses hard rubber material and fiber composite, and the soft rubber fiber composite material is soft. It is bendable and can be used as a bendable connector to match the bending of the bending area of the flexible screen.
  • the hard rubber fiber composite material has strong rigidity and can strongly support the non-bending area of the flexible screen.
  • the soft rubber material may include but not limited to one or more of fluorine rubber, silicone rubber, and thermoplastic elastomer.
  • Thermoplastic elastomers are artificial rubber or synthetic rubber, which specifically include but are not limited to thermoplastic polyurethane (TPU), thermoplastic polyester elastomer (TPEE), styrene thermoplastic elastomer, polyolefin thermoplastic elastomer (POE), polyester One or more of ether ester thermoplastic elastomers and polyamide thermoplastic elastomers.
  • the mass content of fibers in the soft rubber fiber composite material is 10% to 80%.
  • the mass content of fibers in the soft rubber fiber composite material may be, for example, 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80%.
  • the fiber content in the soft rubber fiber composite material can be adjusted according to the specific bending performance requirements, rigid support requirements, and combined with the performance of the selected soft rubber material. Generally, the more the fiber content, the overall strength of the soft rubber fiber composite material will increase, the bendability will decrease, and the weight will be relatively reduced. In some embodiments, considering the bendability, rigid support performance and weight reduction requirements, the mass content of fibers in the soft rubber fiber composite material can be 10%-50%.
  • the fiber layers in the first support member 101 and the second support member 102 and the fiber layer in the bendable connector 103 can be designed to be independent of each other, or can be integrally woven Structure.
  • the material of the fiber layer can be the same or different; the number of layers of the fiber layer can be the same or different; the fiber layer stacking method can be the same or different; the fiber content can be the same or different same.
  • the fiber content of the hard rubber fiber composite material and the soft rubber fiber composite material can be selected according to specific conditions. Generally, the fiber content of the soft rubber fiber composite material is lower than that of the hard rubber fiber composite material.
  • the base material layer 100 may include the first support 101 , the second support 102 and The integrally woven fiber layer 111 in the bendable connector 103 .
  • the flexible screen support structure 30 may comprise one or more integrally woven fiber layers. As shown in Figure 19, it includes two integrally woven fiber layers. The integrally woven fiber layer can simplify the preparation process and ensure the reliable connection of the first support member 101 , the second support member 102 and the bendable connector 103 .
  • the soft rubber fiber composite material when the soft rubber fiber composite material includes multiple fiber layers, it can be a composite laminate in which multiple fiber layers and soft rubber materials are alternately laminated to form fibers and soft rubber; it can also be a multi-layer fiber layer laminated to form fibers Laminate, the soft rubber material is impregnated and cured on the fiber laminate.
  • the bendable connector 103 may be formed by using a single layer of fiber woven fabric, or may be formed by stacking multiple layers of fiber unidirectional fabric at multiple angles.
  • the specific preparation method is not limited, for example, it can be prepared in the following two ways:
  • Step 101 taking multiple fiber layers, and stacking the multiple fiber layers at multiple angles to form a fiber laminate
  • the multi-layer fiber layer is usually a multi-layer fiber unidirectional cloth, and the stacking direction of the multi-layer fiber layer can be any angle within the range of 0°-90°.
  • Step 102 using solvent impregnation method or hot-melt method, impregnating hard rubber material on both sides of the fiber laminate, impregnating soft rubber material in the middle, and obtaining the base material layer 100 after thermal pressing.
  • the substrate layer 100 prepared in this way includes an integrally woven fiber layer continuously existing in the first support member 101 , the second support member 102 and the bendable connector 103 .
  • Step 201 Take the fiber layer, and impregnate the hard rubber material on both sides of the fiber layer by solvent impregnation or hot melt method to form a single-layer prepreg of hard rubber fiber; Layers are laminated to obtain a hard rubber fiber laminated prepreg;
  • Step 202 Take the fiber layer, impregnate the soft rubber material on both sides of the fiber layer by solvent impregnation method or hot melt method to form a single-layer prepreg of soft rubber fiber; Layer lamination, followed by thermal compression to obtain a soft rubber fiber composite board; in this step, the single-layer fiber layer of the target thickness can also be directly selected without multi-layer lamination.
  • the fiber layer for multi-layer lamination is usually a fiber unidirectional cloth, and when a single-layer fiber layer is directly selected, it is usually a fiber woven cloth.
  • Step 203 arrange the hard rubber fiber laminated prepreg, the soft rubber fiber composite board, and the hard rubber fiber laminated prepreg side by side, and then carry out thermal pressing to obtain the base material layer 100 .
  • the substrate layer 100 is a composite plate of hard rubber fiber composite material-soft rubber fiber composite material-hard rubber fiber composite material.
  • the substrate layer 100 as a whole is a flat plate-like or sheet-like structure.
  • the hard rubber fiber laminated prepreg on both sides is combined with the middle soft rubber fiber Sheets may be partially cross-connected.
  • the width of the single-layer prepreg in the middle layers of the hard rubber fiber laminated prepreg can be narrowed, that is, indented to a certain width to reserve a fitting space, and the soft rubber fiber composite sheet in the middle The parts are fitted in the fitting space, and after pressing, the preparation of the hard rubber fiber composite material-soft rubber fiber composite material-hard rubber fiber composite material composite plate without step difference is realized.
  • the hard rubber fiber laminated prepreg is formed into a hard rubber fiber composite board after thermal compression, that is, a hard rubber fiber composite material.
  • the soft rubber fiber single-layer prepreg at multiple angles to obtain a soft rubber fiber laminated prepreg, and then laminate the hard rubber fiber prepreg, soft rubber
  • the fiber laminated prepreg and the hard glue fiber laminated prepreg are arranged side by side, and then heat-pressed to obtain a flexible screen support structure.
  • Fig. 20 is a process flow chart of preparing hard rubber fiber composite material by solvent impregnation method
  • Fig. 21 is a process flow chart of preparing hard rubber fiber composite material by hot melting method.
  • the hard rubber fiber composite material and the soft rubber fiber composite material can be spliced and bonded by the above-mentioned thermocompression method, or can be bonded, melted, or laser welded and other methods that can achieve good bonding. Perform splicing.
  • the bendable connector 103 is a bendable metal connector.
  • piece 102 is connected.
  • the bendable metal connector can be made of metal materials such as stainless steel, titanium alloy, aluminum alloy, and the like.
  • the bendable metal connecting piece 103 can be combined with the first supporting piece 101 and the second supporting piece 102 by thermocompression bonding, gluing, welding, fitting, etc., or can be connected by a connecting mechanism.
  • the specific preparation method is not limited, for example, it can be prepared in the following way:
  • Step 301 Take the fiber layer, and impregnate the hard rubber material on both sides of the fiber layer by solvent impregnation or hot melt method to form a single-layer prepreg of hard rubber fiber; Layers are laminated to obtain a hard rubber fiber laminated prepreg;
  • Step 302 Take a metal sheet with a target thickness, arrange the hard rubber fiber laminated prepreg, the metal sheet, and the hard rubber fiber laminated prepreg side by side, and then carry out thermal pressing to obtain the base material layer 100 .
  • the substrate layer 100 is a composite plate of hard rubber fiber composite material-metal material-hard rubber fiber composite material.
  • the substrate layer 100 as a whole is a flat plate-like or sheet-like structure.
  • the hard rubber fiber laminated prepreg on both sides and the middle metal sheet can be partially cross-connected .
  • the width of the single-layer prepreg located in the middle layers of the hard rubber fiber laminated prepreg can be narrowed, that is, indented to a certain width to reserve a fitting space, and the two ends of the metal sheet in the middle are lowered.
  • a certain thickness forms a fitting part that matches the fitting space (a stepped surface is formed due to the descending surface), and the fitting part is fitted into the fitting space of the hard rubber fiber laminated prepreg, and no step difference is realized after thermocompression Preparation of Hard Glue Fiber Composite-Metal Material-Hard Glue Fiber Composite Composite Sheets.
  • the fitting parts at both ends of the metal sheet can be etched to form openings to enhance the combination of the hard rubber fiber composite material and the metal sheet. Before the thermocompression, the surface of the metal sheet can also be treated with plasma to improve the surface roughness and strengthen the combination of the hard rubber fiber composite material and the metal sheet.
  • the metal sheet used as the bendable connector is required to have good bendability, and is usually a porous metal sheet, and the porous holes extend longitudinally (ie, in the Y direction).
  • the hard rubber fiber composite material and the metal material can be spliced and combined by the above-mentioned thermocompression bonding method, or can be spliced by other methods that can achieve good bonding such as glue bonding, fusion bonding, or laser welding. combined.
  • the bendable connector 103 is an organic flexible material membrane, and the two sides of the organic flexible material membrane are respectively connected with the first support 101 and the second support 102 made of hard glue fiber composite board.
  • the connection may specifically be combined by means of thermocompression bonding, glue bonding, welding, or fitting, or may be connected by a connecting mechanism.
  • the organic flexible material diaphragm can realize flexible and bendable functions.
  • Organic flexible materials can include fluororubber, silicone rubber, thermoplastic elastomer, polyvinyl chloride (PVC), polyimide (PI), polyethylene terephthalate (PET), cycloolefin polymer (COP), One or more of liquid crystal polymer (LCP), polydimethylsiloxane (PDMS).
  • Thermoplastic elastomers are artificial rubber or synthetic rubber.
  • Thermoplastic elastomers can specifically include thermoplastic polyurethane (TPU), thermoplastic polyester elastomer (TPEE), styrene thermoplastic elastomer, polyolefin thermoplastic elastomer (POE), polyether One or more of ester thermoplastic elastomers and polyamide thermoplastic elastomers.
  • the specific preparation method is not limited, for example, it can be prepared in the following way:
  • Step 301 Take the fiber layer, and impregnate the hard rubber material on both sides of the fiber layer by solvent impregnation or hot melt method to form a single-layer prepreg of hard rubber fiber; Layers are laminated to obtain a hard rubber fiber laminated prepreg;
  • Step 302 Take an organic flexible material membrane with a target thickness, arrange the hard rubber fiber laminated prepreg, organic flexible material membrane, and hard rubber fiber laminated prepreg side by side, and then perform heat pressing to obtain the substrate Layer 100.
  • the substrate layer 100 is a composite plate of hard rubber fiber composite material-organic flexible material-hard rubber fiber composite material.
  • the substrate layer 100 as a whole is a flat plate-like or sheet-like structure.
  • the joint structure of the hard glue fiber composite board 101 and the organic flexible material membrane 103 is not limited. It can be a wire combination as shown in Figure 22A, or a tooth combination as shown in Figure 22B, Figure 22C, and Figure 22D, that is, fitting, or it can be as shown in Figure 22E, using a connecting mechanism 104 to realize the connection between the two. connection, such as a snap fit.
  • a connecting mechanism 104 to realize the connection between the two. connection, such as a snap fit.
  • the specific tooth shape of the tooth combination is not limited, and the teeth may be formed on the hard rubber fiber composite board 101 , or formed on the organic flexible material membrane 103 .
  • the bendable connector 103 is a bendable hard rubber fiber composite material.
  • the hard rubber fiber composite material in the area of the bending connector 103 is formed into a porous structure by means of laser cutting holes or the like, that is, the bendable hard rubber fiber composite material is a hard rubber fiber composite material with a porous structure.
  • the porous structure may be arranged in a longitudinal direction (ie, the Y direction in FIG. 3 ).
  • the bendable connecting part 103 may be integrally formed with the first supporting part 101 and/or the second supporting part 102 .
  • the entire base material layer 100 is composed of a whole piece of hard glue fiber composite board formed integrally
  • the bendable connector 103 is made of the same material as the first support member 101 and the second support member 102
  • the base material layer 100 It includes an integrally woven fiber layer and a hard rubber layer that exist continuously (that is, without a connection interface) in the first support member 101 , the second support member 102 and the bendable connection member 103 .
  • the bendable connector 103 is a bendable hard rubber fiber composite material
  • the integrated structure of the base material layer 100 is beneficial to obtain high structural stability of the base material layer as a whole.
  • the specific preparation method is not limited, for example, it can be prepared in the following way get:
  • Step 401 Take the fiber layer, and impregnate the hard rubber material on both sides of the fiber layer by solvent impregnation or hot melt method to form a single-layer prepreg of hard rubber fiber; After the layers are stacked, the hard glue fiberboard is obtained by hot pressing;
  • Step 402 Laser cutting is used to form a porous structure in the preset bendable connector region of the hard glue fiberboard, so that the bendable connector region has a bendable property, and the base material layer 100 is obtained.
  • the substrate layer 100 is a composite plate of hard rubber fiber composite material-bendable hard rubber fiber composite material-hard rubber fiber composite material, and the substrate layer 100 is an integrally formed plate or sheet structure.
  • the thickness of the substrate layer 100 may be about 0.1 mm-5 mm. Specifically, it can be designed according to the actual requirements of the foldable terminal, the greater the thickness, the greater the support strength. In some embodiments, the thickness of the substrate layer 100 may be 0.15mm-0.2mm. In other embodiments, the thickness of the substrate layer 100 may be 0.25mm-0.8mm. In other embodiments, the thickness of the substrate layer 100 may be 1mm-2mm, or 2mm-4mm. The smaller thickness of the base material layer 100 is beneficial to weight reduction, and is also conducive to reducing the overall thickness of the foldable terminal, which can improve user experience.
  • the thickness of the flexible screen support structure 30 may be 0.1mm-5mm. In some embodiments, the thickness of the flexible screen supporting structure 30 may be 0.15mm-0.22mm. In other embodiments, the thickness of the flexible screen supporting structure 30 may be 0.25mm-0.8mm. In other embodiments, the thickness of the flexible screen supporting structure 30 may be 1mm-2mm, or 2.5mm-4mm. The total thickness of the flexible screen support structure 30 mainly depends on the sum of the thicknesses of the substrate layer 100 and the functional layer 200 .
  • the thickness of the functional layer 200 is 5 ⁇ m-500 ⁇ m, which means that the thickness of the functional layer 200 is between 5 ⁇ m and 500 ⁇ m, and includes the endpoint values of 5 ⁇ m and 500 ⁇ m.
  • the flexible screen supporting structure 30 of this embodiment includes a base material layer 100 and conductive layers 200 disposed on both sides of the base material layer 100 , and the conductive layer 200 covers the first support member and the second support member of the base material layer 100 Surface, not covered with bendable connectors.
  • the substrate layer 100 adopts epoxy resin continuous carbon fiber-polyurethane (TPU) continuous carbon fiber-epoxy resin continuous carbon fiber composite board.
  • the design scheme of the flexible screen support structure in this embodiment is as follows: flexible screen support
  • the overall size of the structure is 161mm*146mm
  • the thickness of the substrate layer is 0.15mm
  • the width of the flexible and bendable area, that is, the bendable connector is 20mm
  • the width of the support members on both sides is 63mm.
  • the epoxy resin continuous carbon fiber composite board, the polyurethane continuous carbon fiber composite board, and the epoxy resin continuous carbon fiber composite board are arranged side by side and combined together to form the substrate layer.
  • the conductive layer 200 is a nickel layer.
  • step (3) Trimming the composite plate obtained in step (3), cutting into required external dimensions to obtain the substrate layer;
  • the flexible screen support structure prepared in this embodiment is more than 75% lighter than the flexible screen support structure of the same size made entirely of stainless steel. At the same time, 200,000 times of bending tests were performed on the flexible screen support structure prepared in this embodiment, and no cracking problem occurred. Moreover, during the bending process, the carbon fiber in the bending area can be stretched and deformed. This is because the bending area is 45° woven carbon fiber, so deformation can occur during the bending process to absorb the displacement difference between the folded and unfolded states.
  • the flexible screen support structure prepared in this embodiment has a conductive function and can meet the electrical connection requirements.
  • the flexible screen supporting structure 30 of this embodiment includes a base material layer 100 and conductive layers 200 disposed on both sides of the base material layer 100 , and the conductive layer 200 covers the first support member and the second support member of the base material layer 100 Surface, not covered with bendable connectors.
  • the substrate layer 100 is made of epoxy resin continuous carbon fiber-TPU continuous carbon fiber-epoxy resin continuous carbon fiber composite board.
  • the design scheme of the flexible screen support structure in this embodiment is as follows:
  • the external dimensions of the flexible screen support structure It is 161mm*146mm, the thickness of the substrate layer is 0.15mm, the width of the flexible and bendable area that can be bent is 20mm, and the width of the support members on both sides is 63mm.
  • the epoxy resin continuous carbon fiber composite board, the TPU continuous carbon fiber composite board, and the epoxy resin continuous carbon fiber composite board are arranged side by side and combined together to form the substrate layer.
  • the conductive layer 200 includes a copper layer and a nickel layer sequentially disposed on the substrate layer 100 .
  • step (3) Trimming the composite plate obtained in step (3), cutting into required external dimensions to obtain the substrate layer;
  • the flexible screen support structure prepared in this embodiment is more than 75% lighter than the flexible screen support structure of the same size made entirely of stainless steel.
  • the flexible screen support structure prepared in this embodiment was tested for 200,000 times of bending, and no cracking problem occurred, and the flatness was still maintained after the test.
  • the conductive layer of this embodiment has a copper layer added, and the conductivity of copper is better than that of nickel, so the conductivity of the flexible screen support structure of this embodiment is better than that of Embodiment 1.
  • the flexible screen supporting structure 30 of the present embodiment includes a base material layer 100 and an impact layer 200 arranged on one side of the base material layer 100, and the base material layer 100 adopts epoxy resin continuous carbon fiber-polyimide (PI )-epoxy resin continuous carbon fiber composite board, taking a certain type of folding mobile phone as an example
  • the design scheme of the flexible screen support structure in this embodiment is as follows: the outer dimension of the flexible screen support structure is 161mm*146mm, and the thickness of the substrate layer is 0.15mm , the flexible and bendable area, that is, the width of the bendable connecting piece is 20mm, and the width of the supporting pieces on both sides is 63mm.
  • the epoxy resin continuous carbon fiber composite board, the PI film, and the epoxy resin continuous carbon fiber composite board are arranged side by side and combined together to form a flexible screen support structure.
  • the anti-impact layer 200 is a TPU film.
  • step (4) Trimming the composite plate obtained in step (4), cutting it into required external dimensions, and obtaining the substrate layer;
  • the flexible screen support structure prepared in this embodiment is more than 75% lighter than the flexible screen support structure of the same size made entirely of stainless steel. At the same time, the flexible screen support structure prepared in this embodiment was tested for 200,000 times of bending, and no cracking problem occurred, and the flatness was still maintained after the test.
  • the flexible screen support structure of this embodiment because the bending area is made of pure PI material without fibers, has better bendability than the soft rubber fiber composite material, but lacks fiber network and weaker support strength.
  • the flexible screen support structure prepared in this embodiment has an anti-shock function, and can effectively protect the flexible screen from falling impact.
  • the flexible screen support structure 30 of this embodiment includes a base material layer 100 and thermally conductive layers 200 arranged on both sides of the base material layer 100.
  • the base material layer 100 is made of phenolic resin continuous glass fiber-TPU continuous glass fiber-phenolic resin Continuous glass fiber composite board, taking a certain type of folding mobile phone as an example, the design scheme of the flexible screen support structure in this embodiment is as follows: the outer dimension of the flexible screen support structure is 161mm*146mm, the thickness of the base material layer is 0.2mm, flexible and bendable In the bending area, the width of the connecting piece is 20mm, and the width of the supporting pieces on both sides is 63mm.
  • the three plates of phenolic resin continuous glass fiber composite board, TPU continuous glass fiber and phenolic resin continuous glass fiber composite board are arranged side by side and combined together to form the substrate layer.
  • the heat conduction layer 200 is made of heat conduction graphite sheet.
  • step (3) (4) carry out edge trimming to step (3) gained composite plate, cut into the required external dimension size; Obtain base material layer;
  • the flexible screen support structure prepared in this embodiment is more than 75% lighter than the flexible screen support structure of the same size made entirely of stainless steel. At the same time, the flexible screen support structure prepared in this embodiment was tested for 200,000 times of bending, and no cracking problem occurred, and the flatness was still maintained after the test.
  • the flexible screen support structure prepared in this embodiment has a heat conduction function, which is conducive to transferring the heat generated by the internal battery of the terminal to the side of the flexible screen.
  • the flexible screen support structure 30 of this embodiment includes a substrate layer 100 and a conductive layer 201 and an impact layer 202 arranged on both sides of the substrate layer 100.
  • the substrate layer 100 is made of epoxy resin continuous glass fiber-silicon Rubber continuous glass fiber-epoxy resin continuous glass fiber composite board, taking a certain type of folding mobile phone as an example, the design scheme of the flexible screen support structure in this embodiment is as follows: the outer dimension of the flexible screen support structure is 161mm*146mm, and the The thickness is 0.2mm, the width of the flexible and bendable connecting piece is 20mm, and the width of the supporting pieces on both sides is 63mm.
  • the epoxy resin continuous glass fiber composite board, the silicone rubber continuous glass fiber, and the epoxy resin continuous glass fiber composite board are arranged side by side and combined together to form the substrate layer.
  • the material of the conductive layer 201 includes nickel and gold.
  • the material of the anti-impact layer 202 includes TPU film.
  • step (3) Trimming the composite plate obtained in step (3), cutting into required external dimensions to obtain the substrate layer;
  • the flexible screen support structure prepared in this embodiment is more than 75% lighter than the flexible screen support structure of the same size made entirely of stainless steel. At the same time, the flexible screen support structure prepared in this embodiment was tested for 200,000 times of bending, and no cracking problem occurred, and the flatness was still maintained after the test.
  • the flexible screen support structure prepared in this example has both electrical conductivity and impact resistance.
  • the flexible screen support structure 30 of this embodiment includes a base material layer 100 and a conductive layer 201 and a heat conduction layer 202 arranged on both sides of the base material layer 100.
  • the base material layer 100 is made of phenolic resin continuous glass fiber-silicone rubber continuous Glass fiber-phenolic resin continuous glass fiber composite board, taking a certain type of folding mobile phone as an example, the design scheme of the flexible screen support structure in this embodiment is as follows: the overall size of the flexible screen support structure is 161mm*146mm, and the thickness of the substrate layer is 0.2mm , the flexible and bendable area, that is, the width of the bendable connecting piece is 20mm, and the width of the supporting pieces on both sides is 63mm.
  • the phenolic resin continuous glass fiber composite board, the silicone rubber continuous glass fiber, and the phenolic resin continuous glass fiber composite board are arranged side by side and bonded together to form the substrate layer.
  • the material of the conductive layer 201 includes nickel and gold.
  • the material of the heat conduction layer 202 is a heat conduction silica gel sheet.
  • step (3) Trimming the composite plate obtained in step (3), cutting into required external dimensions to obtain the substrate layer;
  • the flexible screen support structure prepared in this embodiment is more than 75% lighter than the flexible screen support structure of the same size made entirely of stainless steel. At the same time, the flexible screen support structure prepared in this embodiment was tested for 200,000 times of bending, and no cracking problem occurred, and the flatness was still maintained after the test.
  • the flexible screen support structure prepared in this embodiment has both electrical and thermal conduction functions.
  • the flexible screen support structure 30 of this embodiment includes a base material layer 100 and a thermally conductive layer 201 and an impact layer 202 arranged on both sides of the base material layer 100.
  • the base material layer 100 is made of epoxy resin continuous aramid fiber- Polyurethane (TPU) continuous aramid fiber-epoxy resin continuous aramid fiber composite board, taking a certain type of folding mobile phone as an example, the design scheme of the flexible screen support structure in this embodiment is as follows: the external dimensions of the flexible screen support structure are 161mm*146mm , the thickness of the substrate layer is 0.15mm, the width of the flexible and bendable area, that is, the bendable connector, is 20mm, and the width of the support members on both sides is 63mm.
  • the epoxy resin continuous aramid fiber composite board, the polyurethane continuous aramid fiber composite board, and the epoxy resin continuous aramid fiber composite board are arranged side by side and combined together to form the substrate layer.
  • the heat conduction layer 201 is made of heat conduction silica gel.
  • the anti-impact layer 202 is made of TPU film.
  • step (3) Trimming the composite plate obtained in step (3), cutting into required external dimensions to obtain the substrate layer;
  • the flexible screen support structure prepared in this embodiment is more than 75% lighter than the flexible screen support structure of the same size made entirely of stainless steel. At the same time, the flexible screen support structure prepared in this embodiment was tested for 200,000 times of bending, and no cracking problem occurred, and the flatness was still maintained after the test.
  • the flexible screen support structure prepared in this embodiment has both heat conduction and impact resistance functions.
  • the flexible screen support structure 30 of this embodiment includes a base material layer 100 and functional layers 200 arranged on both sides of the base material layer 100, wherein one side of the functional layer 200 includes a conductive layer 201 and an impact layer 202, and the other side
  • the side functional layer 200 includes a conductive layer.
  • the base material layer 100 adopts the flexible screen supporting structure of this embodiment as an epoxy resin continuous carbon fiber-stainless steel-epoxy resin continuous carbon fiber composite plate.
  • the design scheme of the flexible screen support structure in this embodiment is as follows: the external dimensions of the flexible screen support structure are 161mm*146mm, the thickness is 0.15mm, and the flexible and bendable area can bend the width of the connecting piece is 20mm, and the width of the supports on both sides is 63mm.
  • the epoxy resin continuous carbon fiber composite board, the stainless steel sheet, and the epoxy resin continuous carbon fiber composite board are arranged side by side and combined together. material layer.
  • the conductive layer is a nickel layer, and the impact-resistant layer is made of TPU film.
  • step (3) Trimming the composite plate obtained in step (3), cutting into required external dimensions to obtain the substrate layer;
  • the flexible screen support structure prepared in this embodiment is more than 62% lighter than the flexible screen support structure of the same size made of stainless steel. At the same time, the flexible screen support structure prepared in this embodiment was tested for 200,000 times of bending, and no cracking problem occurred, and the flatness was still maintained after the test.
  • the flexible screen support structure prepared in this example has both electrical conductivity and impact resistance.
  • the flexible screen support structure 30 of this embodiment includes a base material layer 100 and a conductive layer 201, a heat conduction layer 202, and an impact layer 203 arranged on both sides of the base material layer 100, and the base material layer 100 is continuously formed by epoxy resin. Glass fiber-titanium alloy-epoxy resin continuous glass fiber composite panel.
  • the design scheme of the flexible screen support structure in this embodiment is as follows: the outer dimensions of the flexible screen support structure are 161mm*146mm, the thickness of the substrate layer is 0.15mm, and the flexible and bendable area can be bent and connected The width of the piece is 20mm, and the width of the support pieces on both sides is 63mm.
  • the three plates of epoxy resin continuous carbon fiber composite board, titanium alloy sheet and epoxy resin continuous carbon fiber composite board are arranged side by side in sequence, and the two sides of the titanium alloy sheet are respectively embedded in the epoxy resin continuous carbon fiber composite board structure on both sides. constitute the substrate layer.
  • the conductive layer is a nickel layer
  • the thermally conductive layer includes thermally conductive double-sided adhesive
  • the anti-impact layer is made of TPEE film.
  • step (3) Trimming the composite plate obtained in step (3), cutting into required external dimensions to obtain the substrate layer;
  • the flexible screen support structure prepared in this embodiment is more than 70% lighter than the flexible screen support structure of the same size made of stainless steel. At the same time, the flexible screen support structure prepared in this embodiment was tested for 200,000 times of bending, and no cracking problem occurred, and the flatness was still maintained after the test.
  • the flexible screen support structure prepared in this example has the functions of electric conduction, heat conduction and impact resistance.
  • the flexible screen support structure 30 of this embodiment includes a base material layer 100 and functional layers 200 arranged on both sides of the base material layer 100, wherein one side of the functional layer 200 includes a conductive layer 201 and an impact layer 202, and the other The side functional layer 200 includes a thermally conductive layer.
  • the base material layer 100 is the same as that of Embodiment 1, and the dimension design is the same as that of Embodiment 1.
  • the conductive layer is a nickel layer, and the impact-resistant layer is made of TPU film.
  • the heat conduction layer is made of heat conduction graphite sheet.
  • a layer of thermally conductive graphite sheet with a thickness of 30 ⁇ m-100 ⁇ m is bonded to obtain a flexible screen support structure.
  • the flexible screen support structure prepared in this example has the functions of electric conduction, heat conduction and impact resistance.
  • the flexible screen supporting structure 30 of this embodiment includes a base material layer 100 and functional layers 200 arranged on both sides of the base material layer 100, wherein one side of the functional layer 200 includes a conductive layer 201 and an impact layer 202, and the other The side functional layer 200 includes a conductive layer 201 and a thermally conductive layer 202 .
  • the base material layer 100 is the same as that of Embodiment 1, and the dimension design is the same as that of Embodiment 1.
  • the conductive layer is a nickel layer, and the anti-shock layer is made of TPEE film.
  • the heat conduction layer is made of heat conduction double-sided adhesive.
  • a layer of TPEE film with a thickness of 50 ⁇ m-150 ⁇ m is covered on the conductive layer on one side of the substrate layer, and then put into a hot press after being stacked, with a pressing temperature of 220°C and a time of 30 minutes to form a thermally conductive layer;
  • a layer of 30 ⁇ m-100 ⁇ m thick thermally conductive double-sided adhesive tape is bonded to the conductive layer on the other side of the substrate layer to obtain a flexible screen support structure.
  • the flexible screen support structure prepared in this example has the functions of electric conduction, heat conduction and impact resistance.
  • the flexible screen supporting structure of the embodiment of the present application adopts the composite material of organic material and fiber as the main material, and compared with the existing flexible screen supporting structure made of all metal materials such as stainless steel, the weight is greatly reduced, and it can provide good support for the flexible screen.
  • Rigid support at the same time, the bending area can be made of metal materials, organic flexible materials, and soft rubber fiber composite materials, so as to ensure the bending reliability and further reduce the total weight of the support structure, which is conducive to the weight reduction of folding terminal products , improve product competitiveness, and improve user experience; in addition, the flexible screen support structure of the embodiment of the present application has low manufacturing cost.
  • the flexible screen support structure of the embodiment of the present application also has functions such as electrical conduction, heat conduction, and impact resistance by setting a functional layer, which can meet the functional requirements of the support structure and improve the performance of end products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Telephone Set Structure (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请实施例提供一种复合结构,包括基材层和设置在基材层至少一侧表面的功能层,基材层包括并排设置的第一支撑件、第二支撑件,以及设置在第一支撑件与第二支撑件之间,并与第一支撑件和第二支撑件连接的可弯折连接件,第一支撑件和第二支撑件的材质包括硬胶纤维复合材料,功能层包括导电层、导热层和抗冲层中的一种或多种。该复合结构可用于支撑柔性屏,其中第一支撑件和第二支撑件采用硬胶纤维复合材料,不仅具有高强度且质量轻,可以在为柔性屏提供良好刚性支撑的同时,实现产品轻量化,有利于提高终端产品竞争力,同时功能层可赋予复合结构导电、导热、抗冲击等功能,提升终端产品性能。本申请实施例还提供了包含该复合结构的可折叠终端。

Description

复合结构、柔性屏组件和可折叠终端
本申请要求于2021年5月31日提交中国专利局、申请号为202110606183.1、申请名称为“复合结构、柔性屏组件和可折叠终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及柔性屏技术领域,特别是涉及一种复合结构、柔性屏组件和可折叠终端。
背景技术
随着柔性显示技术的发展,柔性屏越来越多地应用于终端设备中,为保持可折叠终端柔性屏屏幕的平整度和刚度,通常在屏下设置金属层作为屏下支撑结构件。金属层的材质主要有不锈钢、钛合金。其中,不锈钢为广泛使用的材质,但不锈钢重量重,不利于可折叠终端整体减重;而钛合金相对较轻,但钛合金的成本远高于不锈钢,且钛合金的刚度和强度低于不锈钢,因而弯折可靠性风险比不锈钢材质的高,目前尚未广泛应用。为解决不锈钢或钛合金材质的屏下支撑结构件的不足,有必要提供一种能够同时实现高结构强度、轻量化和低成本化的柔性屏支撑结构。
发明内容
鉴于此,本申请实施例提供一种复合结构,包括基材层和功能层,基材层采用硬胶纤维复合材料,不仅具有高强度,且相对不锈钢等金属材料质量轻、成本低,功能层可赋予复合结构导电、导热、抗冲击等功能。将该复合结构用于支撑柔性屏,可为柔性屏提供良好刚性支撑,且质量轻,成本低,同时可有效实现导电、导热、抗冲击等功能,提高可折叠终端的产品竞争力。
具体地,本申请实施例第一方面提供一种复合结构,所述复合结构包括基材层和设置在所述基材层至少一侧表面的功能层,所述基材层包括并排设置的第一支撑件、第二支撑件,以及设置在所述第一支撑件与所述第二支撑件之间,并与所述第一支撑件和所述第二支撑件连接的可弯折连接件,所述第一支撑件和所述第二支撑件的材质包括硬胶纤维复合材料,所述功能层包括导电层、导热层和抗冲层中的一种或多种。第一支撑件和第二支撑件采用硬胶纤维复合材料,即纤维增强的硬胶材料,不仅质量轻,而且强度高,可以在为柔性屏提供良好的刚性支撑的同时,具有较高的减重收益,而且材料成本低廉,有利于提高可折叠终端的产品竞争力。功能层的设置可赋予复合结构导电、导热、抗冲击等性能,实现整个柔性显示屏和终端产品的电连接、散热、抗跌等功能,满足市场对柔性屏支撑结构的多功能化需求,进一步提升可折叠终端产品的市场竞争力。
本申请实施方式中,所述导电层包括导电金属;所述导电层为单层或多层结构。导电层的设置可以使复合结构与其他部件实现有效电连接。导电层可以是通过胶黏、化学镀、化学镀结合电镀或压合金属薄片的方式形成在基材层上。
本申请实施方式中,所述导电金属包括铜、银、金、镍、锡中的一种或多种。导电层为单层结构时,可以是由一种导电金属形成,例如单层铜层、单层镍层等;也可以是由两种或 两种以上的导电金属形成,例如导电层由镍和金形成,具体可以是导电层局部区域为金层,金层以外的其他区域为镍层。导电层为多层结构时,不同层的材质可以是相同,也可以是不相同,每一层可以是由一种导电金属形成,也可以是由两种或两种以上不同的导电金属形成。例如导电层包括内层和外层,内层设置于基材层上,外层设置于内层远离基材层的一侧。具体地,可以是内层包括金、银、铜中的至少一种,外层包括镍、锡中的至少一种,外层可以对内层形成保护。也可以是内层为镍层,镍层上局部镀金层。
本申请实施方式中,所述导热层包括导热硅胶片、导热硅脂、导热双面胶带、导热石墨片、石墨烯片、氧化石墨烯片中的一种或多种。导热层的设置可以使复合结构具有较好的导热功能,从而为柔性屏及整个终端产品的散热提供有效通道。导热层可以是通过胶黏或者热熔合的方式形成在基材层上。
本申请实施方式中,所述抗冲层包括硅橡胶、热塑性弹性体(TPE)、聚氨酯丙烯酸酯(PUA)、聚氯乙烯(PVC)软胶、聚氨酯(PU)中的一种或多种。抗冲层的设置可以提升复合结构和柔性屏抵抗外部冲击的能力,有利于保持复合结构的稳定性,提高终端产品的抗跌性能。抗冲层可以是通过胶黏或者热熔合的方式形成在基材层上。
本申请实施方式中,所述功能层可以是设置在基材层一侧,也可以是设置在基材层两侧。功能层可以是完全覆盖基材层,也可以是部分覆盖基材层。其中部分覆盖基材层例如可以是功能层仅覆盖基材层的第一支撑件和第二支撑件表面,未覆盖可弯折连接件。当设置在基材层两侧时,两侧的功能层的材质、层数、厚度等可以是相同,也可以是不相同。导电层、导热层、抗冲层可以是以任意顺序层叠设置在基材层上。
本申请实施方式中,所述硬胶纤维复合材料包括至少一层纤维层,和固化在所述纤维层上的硬胶材料。
本申请实施方式中,所述纤维层包括纤维单向布和/或纤维编织布。即每一纤维层的纤维编织方式可以是单向编织,也可以是多向编织。
本申请实施方式中,所述硬胶材料包括硬质树脂和/或硬质橡胶。作为支撑柔性屏主体的支撑件需要具有较高的刚度,选择硬质树脂和/或硬质橡胶可以满足刚度需求。
本申请实施方式中,所述硬胶材料包括环氧树脂、酚醛树脂、氨基树脂、不饱和聚酯、硅醚树脂、聚烯烃、聚酰胺、聚甲醛、聚碳酸酯、聚苯醚、聚砜中的一种或多种。
本申请实施方式中,所述纤维层包括玻璃纤维、碳纤维、芳纶纤维、三氧化二铝纤维、超高分子量聚乙烯纤维、聚对苯撑苯并二噁唑纤维中的一种或多种。
本申请实施方式中,所述硬胶纤维复合材料中纤维的质量含量为10%-80%。纤维含量的增加可以提高硬胶纤维复合材料的强度。
本申请实施方式中,所述硬胶纤维复合材料包括多层所述纤维层,多层所述纤维层与所述硬胶材料形成纤维和硬胶交替层叠的复合层叠体;或者多层所述纤维层层叠形成纤维叠合体,所述硬胶材料固化在所述纤维叠合体上。
本申请实施方式中,所述可弯折连接件的材质包括有机柔性材料、软胶纤维复合材料、可弯折的硬胶纤维复合材料和可弯折的金属材料中的一种或多种。上述四种材料都可以实现可弯折连接件的弯折性能,以配合柔性屏的折叠和展开,其中,软胶纤维复合材料和有机柔性材料可以更进一步获得减重收益。
本申请实施方式中,所述有机柔性材料包括氟橡胶、硅橡胶、热塑性弹性体、聚氯乙烯、聚酰亚胺、聚对苯二甲酸乙二酯、环烯烃聚合体、液晶聚合物、聚二甲基硅氧烷中的一种或多种。
本申请实施方式中,所述软胶纤维复合材料包括至少一层所述纤维层,和固化在所述纤维层上的软胶材料;所述软胶材料包括氟橡胶、硅橡胶、热塑性弹性体中的一种或多种。
本申请实施方式中,所述软胶纤维复合材料中纤维的质量含量为10%-80%。
本申请实施方式中,所述软胶纤维复合材料包括多层所述纤维层,多层所述纤维层与所述软胶材料形成纤维和软胶交替层叠的复合层叠体;或者多层所述纤维层层叠形成纤维叠合体,所述软胶材料固化在所述纤维叠合体上。
本申请实施方式中,所述可弯折的金属材料包括不锈钢、钛合金和铝合金中的一种或多种。具体地,为了较好地实现可弯折性能,可以是多孔不锈钢、多孔钛合金、多孔铝合金。
本申请实施方式中,当所述可弯折连接件为软胶纤维复合材料时,所述复合结构包括连续存在于所述第一支撑件、所述第二支撑件和所述可弯折连接件中的一体编织的纤维层。复合结构可以是包括一层或多层一体编织的纤维层。
本申请实施方式中,所述可弯折硬胶纤维复合材料具有多孔结构。可弯折的硬胶纤维复合材料可以是通过将硬胶纤维复合材料进行激光切孔等方式形成多孔结构,从而实现可弯折性能。
本申请实施方式中,当所述可弯折连接件为可弯折硬胶纤维复合材料时,所述可弯折连接件可以是与第一支撑件和/或第二支撑件为一体成型结构。当基材层整体为一体成型结构时,基材层包括连续存在于所述第一支撑件、所述第二支撑件和所述可弯折连接件中的一体编织的纤维层和硬胶层。基材层为一体成型结构有利于使基材层整体获得高结构稳定性。
本申请实施方式中,所述复合结构的厚度为0.1mm-5mm。复合结构的厚度具体可以是根据材料的性能以及产品实际应用需求进行设计。复合结构整体呈平板状或片状。
本申请实施方式中,所述第一支撑件、所述可弯折连接件、所述第二支撑件之间通过热压合、胶粘、熔接或嵌合的方式结合在一起,或者所述可弯折连接件与所述第一支撑件和/或所述第二支撑件为一体成型结构。
本申请实施例第一方面提供的复合结构,兼具高强度、高刚性、轻质量、低成本、功能化的特点,同时具有可弯折性能,可应用于可折叠终端产品中,在满足强度、刚性等需求的同时,实现产品轻量化及功能化,提升可折叠终端产品的竞争力。
本申请实施例第二方面提供一种终端,包括本申请实施例第一方面所述的复合结构。该复合结构可以是作为柔性显示屏的屏下支撑结构,也可以是作为其他功能部件。终端包括柔性显示屏和设置在柔性显示屏下方的复合结构。
本申请实施例第三方面提供一种柔性屏组件,包括柔性屏和用于支撑所述柔性屏的柔性屏支撑结构,所述柔性屏支撑结构采用本申请实施例第一方面所述的复合结构制成。通过采用上述复合结构作为柔性屏支撑结构,可在满足柔性屏支撑结构的强度、刚性以及可弯折性能的同时,实现产品轻量化及功能化,减重较不锈钢柔性屏支撑结构超60%,而且成本低。
本申请实施例还提供了一种可折叠终端,包括本申请实施例第三方面所述的柔性屏组件。其中,所述柔性屏包括弯折区,以及位于所述弯折区两侧的非弯折区,所述柔性屏支撑结构设置在所述柔性屏的外表面,所述柔性屏支撑结构的第一支撑件、第二支撑件分别与所述柔性屏两侧的非弯折区相对应,所述可弯折连接件与所述柔性屏的弯折区相对应。本申请实施例提供的可折叠终端,柔性屏支撑结构强度高,能够为柔性屏提供足够的刚性支撑,而且质量轻,成本低,另外,柔性屏支撑结构还可以实现柔性屏及可折叠终端的电连接、散热、抗跌等功能,提升产品竞争力,提升用户体验。
附图说明
图1为本申请实施例提供的可折叠终端10的结构示意图;
图2为本申请一实施例中柔性屏支撑结构30的结构示意图;
图3为本申请实施例中基材层100的结构示意图;
图4为本申请实施例提供的可折叠终端10的结构示意图;
图5为一实施例中图1的柔性屏支撑结构30沿A-A’方向的切面结构示意图;
图6A和图6B为一实施例中图1的柔性屏支撑结构30沿A-A’方向的切面结构示意图;
图7为一实施例中图1的柔性屏支撑结构30沿A-A’方向的切面结构示意图;
图8A和图8B为一实施例中图1的柔性屏支撑结构30沿A-A’方向的切面结构示意图;
图9为一实施例中图1的柔性屏支撑结构30沿A-A’方向的切面结构示意图;
图10为一实施例中图1的柔性屏支撑结构30沿A-A’方向的切面结构示意图;
图11A、图11B和图11C为图1的柔性屏支撑结构30沿A-A’方向的切面结构示意图;
图12为一实施例中图1的柔性屏支撑结构30沿A-A’方向的切面结构示意图;
图13为一实施例中图1的柔性屏支撑结构30沿A-A’方向的切面结构示意图;
图14为本申请一实施例中硬胶纤维复合材料的结构示意图;
图15为本申请实施例纤维多向编织的结构示意图;
图16为本申请另一实施例中硬胶纤维复合材料的结构示意图;
图17为本申请另一实施例中硬胶纤维复合材料的结构示意图;
图18为本申请实施例纤维层由多层纤维编织层多角度叠合的示意图;
图19为本申请实施例柔性屏支撑结构包含一体编织的纤维层的结构示意图;
图20为本申请实施例提供的硬胶纤维复合材料的制备工艺流程图;
图21为本申请另一实施例提供的硬胶纤维复合材料的制备工艺流程图;
图22A-图22E为本申请实施例由硬胶纤维复合材料构成的第一支撑件与可弯折连接件的连接方式示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例进行说明。
参见图1,本申请实施例提供一种可折叠终端10,该可折叠终端10可以是手机、平板电脑、笔记本电脑、游戏本、电子书、车载电脑、显示器、可穿戴设备等终端产品。可折叠终端10包括柔性屏20和贴合在柔性屏20背离显示面一侧的柔性屏支撑结构30。柔性屏20包括弯折区21,以及位于弯折区21两侧的非弯折区22,非弯折区22相对两侧表面为平面状。柔性屏20具有可弯折的特性,可以在弯折区21进行弯折,实现柔性屏20的折叠和展开。柔性屏20例如可以是以聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET)等柔性树脂材料作为基底的有源矩阵有机发光二极管(active matrix organic light emitting diode,AMOLED)显示屏,也可以是其他种类或形式的显示屏。
参见图2和图3,本申请实施例提供的柔性屏支撑结构30采用复合结构制成,复合结构包括基材层100和设置在基材层100上的功能层200,基材层100包括并排设置的第一支撑件101、可弯折连接件103和第二支撑件102,可弯折连接件103设置在第一支撑件101与第二支撑件102之间,可弯折连接件103的相对两侧分别与第一支撑件101和第二支撑件102连接。第一支撑件101、可弯折连接件103、第二支撑件102沿第一方向(图2中X方向)并排设置。第一支撑件101和第二支撑件102的材质包括硬胶纤维复合材料。具体地,第一 支撑件101和第二支撑件102为平板状的硬胶纤维复合板。功能层200包括导电层、导热层和抗冲层中的一种或多种。功能层200可以是设置在基材层100的一侧或者是两侧表面,当功能层200仅设置在基材层100一侧表面时,功能层200可以是位于基材层100靠近柔性屏20的一侧,也可以是位于基材层远离柔性屏20的一侧。功能层200可以是通过电镀、化学镀、粘接或压合等方式形成在基材层100上。
本申请实施方式中,柔性屏支撑结构30可以是通过胶黏剂粘接在柔性屏20背离显示面的一侧表面上,用于支撑柔性屏20。即基材层100或功能层200可以是通过胶黏剂粘接在柔性屏20上,柔性屏支撑结构30的不同区域可以是采用相同胶黏剂或不同胶黏剂与柔性屏20之间实现紧密牢固贴合。本申请实施方式中,柔性屏支撑结构30的长宽尺寸(即图2中X方向和Y方向尺寸)与柔性屏20的长宽尺寸一致或基本一致。
参见图1和图4,柔性屏支撑结构30贴合在柔性屏20背离显示面的一侧,用于承载支撑可折叠终端的柔性屏20,其中,基材层100的第一支撑件101、第二支撑件102与柔性屏20的非弯折区22相对应,可弯折连接件103与柔性屏20的弯折区21相对应。在可折叠终端10折叠时,柔性屏20的弯折区21和支撑弯折区21的可弯折连接件103一起弯折。在可折叠终端10展开时,柔性屏20的弯折区21和支撑弯折区21的可弯折连接件103及功能层200一起展开。当第一支撑件101与第二支撑件102之间的夹角小于180°时,柔性屏20处于弯折状态,当第一支撑件101与第二支撑件102之间的夹角等于180°时,柔性屏20处于展开状态。柔性屏支撑结构30可以在柔性屏20折叠或展开过程中支撑柔性屏20,保证柔性屏20的平整性,同时可以对柔性屏20的非显示面进行保护。本申请实施例提供的柔性屏支撑结构30,基材层100中第一支撑件101和第二支撑件102采用硬胶纤维复合材料,硬胶纤维复合材料具有高强度,而且质量相对不锈钢等金属材料轻,可以在为柔性屏提供良好的刚性支撑的同时,具有较高的减重收益,有利于提高可折叠终端的产品竞争力。功能层200的设置则可以赋予柔性屏支撑结构30导电、导热、抗冲击等性能,满足柔性屏支撑结构30产品功能化需求。
本申请实施方式中,功能层200可包括导电层、导热层和抗冲层中的一种或多种,还可以根据需要包括具有其他功能的功能层。即功能层200包括导电层、导热层和抗冲层中的至少一层。功能层200可以是包括一层或多层导电层。功能层200可以是包括一层或多层导热层。功能层200可以是包括一层或多层抗冲层。功能层200的厚度可以是5μm-500μm。功能层200的厚度为5μm-500μm,是指基材层100单侧的功能层总厚度。一些实施例中,功能层200的厚度可以是10μm-200μm;一些实施例中,功能层200的厚度可以是6μm-100μm。功能层200可以是设置在基材层100一侧,也可以是设置在基材层100两侧。功能层200可以是完全覆盖基材层100,也可以是部分覆盖基材层100。当设置在基材层100两侧时,两侧的功能层200的材质、层数、厚度等可以是相同,也可以是不相同。导电层、导热层、抗冲层可以是根据实际需要选择性地设置在基材层100的一侧或两侧。功能层200可以是包括导电层,也可以是包括导热层,也可以是包括抗冲层,也可以是包括导电层和导热层,或者包括导电层和抗冲层,或者包括导热层和抗冲层,或者同时包括导电层、导热层和抗冲层。可选地,功能层200还可以包括具有其他功能的功能层。导电层、导热层、抗冲层可以是以任意顺序层叠设置在基材层100上。可选地,抗冲层位于最外侧,抗冲层位于外侧可以与柔性屏更靠近,更好地保护柔性屏。一实施例中,功能层200包括依次设置在基材层100上的导电层、导热层和抗冲层,这样的层叠顺序便于工艺制备,而且有利于各功能层的功能发挥。
参见图5、图6A和图6B,本申请一实施方式中,功能层200为单功能层,即功能层200 包括设置在基材层100一侧或两侧的导电层或导热层或抗冲层。例如,一实施例中,功能层200包括导电层。另一实施例中,功能层200包括导热层。另一实施例中,功能层200包括抗冲层。当基材层100两侧都设有功能层200时,两侧的功能层200可以是具有相同功能的功能层,例如两侧均为导电层;也可以是具有不同功能的功能层,例如一侧为导电层,另一侧为导热层。功能层200可以是如图6A所示完全覆盖基材层100表面,也可以是如图6B所示部分覆盖基材层100表面,具体地,功能层200仅覆盖两侧支撑件101和102的表面,未覆盖可弯折连接件103表面。
参见图7、图8A和图8B,本申请另一实施方式中,功能层200为双功能层,包括第一功能层201和第二功能层202,第一功能层201和第二功能层202为导电层、导热层和抗冲层中的任意两种,即功能层200包括两种具有不同功能的材料层。例如,一实施例中,功能层200包括导电层和抗冲层。一实施例中,功能层200包括导电层和导热层。一实施例中,功能层200包括导热层和抗冲层。两种功能层的设置顺序可以是不限。第一功能层201和第二功能层202可以是完全覆盖或部分覆盖基材层100表面。一些实施例中,如图8A所示,第一功能层201和第二功能层202均完全覆盖基材层100表面。一些实施例中,如图8B所示,第一功能层201仅覆盖两侧支撑件的表面,未覆盖可弯折连接件表面;第二功能层202完全覆盖基材层100。
参见图9和图10,本申请另一实施方式中,功能层200为多功能层,包括第一功能层201、第二功能层202和第三功能层203,第一功能层201、第二功能层202、第三功能层203为导电层、导热层和抗冲层三种功能层,三种功能层的设置顺序可以是不限。
本申请其他一些实施方式中,当基材层100两侧都设有功能层200时,可以是如图11A、图11B和图11C所示,基材层100一侧为单功能层,另一侧为双功能层;也可以是如图12所示,基材层100一侧为单功能层,另一侧为多功能层;还可以是如图13所示,基材层100一侧为双功能层,另一侧为多功能层。
本申请实施方式中,导电层包括导电金属;导电层可以是单层或多层结构。导电层的设置可以使柔性屏支撑结构30具备导电功能,从而与终端10的其他部件实现有效电连接,以弥补基材层100整体为非导电材质时,无法实现与终端10其他部件电连接的问题。
本申请实施方式中,导电金属可以是包括铜、银、金、镍、锡中的一种或多种。导电层为单层结构时,可以是由一种导电金属形成,例如单层铜层、单层镍层等;也可以是由两种或两种以上的导电金属形成,例如导电层由镍和金形成,导电层局部区域为金层,金层以外的其他区域为镍层,又例如导电层由镍和铜形成,导电层局部区域为铜层,铜层以外的其他区域为镍层;或者导电层各区域均为铜和镍。导电层为多层结构时,不同层的材质可以是相同,也可以是不相同,每一层可以是由一种导电金属形成,也可以是由两种或两种以上的导电金属形成。例如导电层包括内层和外层,内层设置于基材层上,外层设置于内层远离基材层的一侧。具体地,可以是内层包括金、银、铜中的至少一种,外层包括镍、锡中的至少一种,外层可以对内层形成保护。也可以是内层为镍层,镍层上局部镀金层。柔性屏支撑结构30具备导电功能,可满足电连接需求。
导电层可以是通过胶黏、化学镀、或化学镀结合电镀、或压合金属薄片的方式形成在基材层100上。一实施方式中,采用化学镀的方式在基材层100上形成导电层,具体过程可包括:
(1)将基材层100两侧进行酸洗或碱洗,以去除表面油污;当可弯折连接件区域包括非金属时,需要在酸洗或碱洗过程中遮蔽基材层的可弯折连接件区域;当可弯折连接件区域为 金属材质时,可以不用遮蔽可弯折连接件区域;
(2)随后进行催化,以在基材层100表面沉积一层催化剂;催化剂具体可以是含钯的催化剂;
(3)将基材层100浸入镀液中进行化学镀,形成金属导电层,水洗,烘干后得到具有导电层的复合结构。当可弯折连接件区域被遮蔽,则导电层仅覆盖两侧支撑件的表面,未覆盖可弯折连接件表面;当可弯折连接件未被遮蔽,则导电层覆盖整个基材层表面,即同时覆盖可弯折连接件及两侧支撑件的表面。在进行导电层镀制的过程中,将包含非金属的可弯折连接件遮蔽能够保护可弯折连接件不被腐蚀损坏。
本申请实施方式中,导热层可以是包括导热硅胶片、导热硅脂、导热双面胶带、导热石墨片、石墨烯片、氧化石墨烯片中的一种或多种。导热层可以为是单层或多层结构。导热层的设置可以使柔性屏支撑结构30具有较好的导热功能,从而为柔性屏及整个终端产品的散热起到有利作用。具体地,柔性屏支撑结构30具备导热功能,可将终端内部电池等产生的热量向显示屏一侧传递,最终散至终端外部。导热层可以是通过胶黏或者热熔合(热压)的方式形成在基材层100上。
本申请实施方式中,抗冲层可以是包括硅橡胶、热塑性弹性体(TPE)、聚氨酯丙烯酸酯(PUA)、聚氯乙烯(PVC)软胶、聚氨酯(PU)中的一种或多种。抗冲层具有一定的缓冲作用,抗冲层可以是为单层或多层结构。其中热塑性弹性体(TPE)可以包括但不限于是热塑性聚氨酯(TPU)、热塑性聚酯弹性体(TPEE)、苯乙烯类热塑性弹性体、聚烯烃类热塑性弹性体(POE)、聚醚酯类热塑性弹性体、聚酰胺类热塑性弹性体中的一种或多种。抗冲层的设置可以使柔性屏支撑结构30具备抵抗外部冲击的能力,有利于保护显示屏,提高终端产品的抗跌性能。当抗冲层仅设置在基材层100一侧时,抗冲层位于基材层面向显示屏的一侧能够更好地对显示屏的跌落冲击起到保护作用。抗冲层可以是通过胶黏或者热熔合的方式形成在基材层100上。
参见图14,本申请的硬胶纤维复合材料110包括至少一层纤维层111,和固化在纤维层111上的硬胶材料112。本申请实施方式中,硬胶材料112包括硬质树脂和/或硬质橡胶。本申请中,硬质树脂和硬质橡胶的具体种类没有特殊限定,能够满足电子设备的应用要求,与纤维配合为柔性屏提供足够的刚性支撑即可。具体地,硬胶材料112包括但不限于是环氧树脂、酚醛树脂、氨基树脂、不饱和聚酯、硅醚树脂、聚烯烃、聚酰胺、聚甲醛、聚碳酸酯、聚苯醚、聚砜中的一种或多种。可以理解地,为了尽量减轻柔性屏支撑结构的整体重量,可以在满足机械支撑的前提下,选择质量相对较小的硬胶材料。硬胶材料112可以是通过溶液浸渍法或热熔法,并结合热压合工艺浸渍固化在纤维层111上。
本申请实施方式中,纤维层111中的纤维为连续纤维,具体可包括但不限于是玻璃纤维、碳纤维、芳纶纤维、三氧化二铝纤维、超高分子量聚乙烯纤维、聚对苯撑苯并二噁唑纤维中的一种或多种。其中,超高分子量聚乙烯纤维是指采用分子量>100万的聚乙烯所纺的纤维。纤维层111可以是由一种纤维编织而成,也可以是由两种或两种以上的纤维混编而成。其中混编可以综合多种纤维的性能优势。
本申请实施方式中,硬胶纤维复合材料中纤维的质量含量可以是10%-80%。具体地,硬胶纤维复合材料中纤维的质量含量例如可以是10%、20%、30%、40%、50%、60%、70%、80%。硬胶纤维复合材料中的纤维含量可以根据具体刚性支撑需求,并结合选择的硬质树脂或硬质橡胶的力学性能等进行调整。一般地,纤维的含量越多,硬胶纤维复合材料整体的重量相对会越轻,更有利于减重。一些实施方式中,综合刚性支撑性能和减重需求,硬胶纤维 复合材料中纤维的质量含量为30%-70%。
本申请实施方式中,每一纤维层111的纤维编织方式可以是单向编织,也可以是多向编织。即纤维层111可以是纤维单向布,也可以是纤维编织布。纤维单向布即纤维单轴向编织,是指在一个方向(通常是经向,也有纬向单向织物)具有大量的纺织纱,在另一方向只有少量并且通常是细的纱,结果实际上布的全部强度都在一个方向上的一种纺织物。而纤维编织布是指纤维多轴向编织,多个方向具有大量纺织纱,最终布的强度分布在多个轴向上的纺织物。例如经纬双轴向编织,即0°/90°编织是指纤维布的纤维分布为双轴向,两个轴向的角度分别为0°和90°,两个轴向上纤维的夹角为90°。又例如,45°编织(即+45°/-45°)是指纤维布的纤维分布为双轴向,两个轴向的角度分别为+45°和-45°,两个轴向上纤维的夹角为90度。
本申请实施方式中,纤维多向编织的具体编织形式不限。具体地,多向编织形态可以是如图15中(a)所示的平纹编织,也可以是如图15中(b)所示的斜纹编织,还可以是如图15中(c)所示的缎纹编织等。图15中(a)、(b)、(c)所示均为0°/90°的双轴向编织。
本申请实施方式中,硬胶纤维复合材料中可以是仅包括一层纤维层111,也可以是包括多层(两层或两层以上)纤维层111。例如,图14的硬胶纤维复合材料中纤维层111为一层,图16和图17的硬胶纤维复合材料中纤维层111为三层。当纤维层111为一层时,为满足强度需求,通常该一层纤维层111为多向编织的纤维层。而当纤维层111为多层时,为更好地增强硬胶纤维复合材料的机械强度,提高硬胶纤维复合材料各方向上的强度。多层纤维层111可以是按不同角度(多角度)叠合,每一纤维层111可以是单向编织,也可以是多向编织。一些实施例中,多层纤维层111可以是按不同角度叠合的多层纤维单向布,即每一纤维层111为一纤维单向布。本申请实施方式中,多层纤维层111的叠合方向可以是在0°-90°范围内的任意角度。其中,多层纤维层采用不同角度进行叠合有利于使纤维形成多方向分布,形成纤维网络,从而满足硬胶纤维复合材料在不同方向上的机械强度要求,更好地为柔性屏提供刚性支撑。如图18所示,图18是将四层纤维单向布进行不同角度叠合的示意图,四层纤维单向布分别按0°、+45°、90°、-45°叠合。这样能够使得纤维在多个方向上连续分布,提高硬胶纤维复合材料各方向上的强度,提高硬胶纤维复合材料的整体机械性能。本申请中,0°方向即为图2中的X方向,也即第一支撑件101、可弯折连接件103、第二支撑件103并排排列的方向。在一些实施例中,多层纤维层进行叠合时,为了防止起翘,可以是将多层纤维层按叠合方向由中间向两侧叠合角度呈对称形式。例如,+45°/0°/0°/-45°,0°/90°/0°/0°/90°/0°,0°/+45°/-45°/-45°/+45°/0°,0°/90°/0°/90°/90°/0°/90°/0°等。
本申请一些实施方式中,如图16所示,多层纤维层111与硬胶材料形成纤维和硬胶交替层叠的复合层叠体。每一纤维层111的纤维材料可以是相同,也可以是不相同。每一硬胶层的材料可以是相同,也可以是不相同。其中,由于制备工艺的不同,例如采用溶液浸渍法通常每一纤维层111的两侧都会浸渍硬胶材料,当多层纤维堆叠时,如果不同纤维层浸渍不同硬胶材料,位于层叠体中间的硬胶层可能包括两层不同的硬胶材料。其中,不同纤维层选择浸渍相同硬胶材料更有利于形成强结合力。本申请其他一些实施方式中,如图17所示,多层纤维层111也可以是相接触的叠合在一起,再浸渍硬胶材料,即硬胶纤维复合材料包括多层纤维层层叠形成的纤维叠合体11,以及浸渍固化在纤维叠合体11上的硬胶材料。
本申请实施方式中,可弯折连接件103的材质可包括软胶纤维复合材料、可弯折的金属材料、可弯折的硬胶纤维复合材料和有机柔性材料中的一种或多种。可弯折连接件103采用上述材质可以具有良好的可弯折性能,从而使第一支撑件101与第二支撑件102能够相对折叠或展开。
一实施方式中,可弯折连接件103为软胶纤维复合材料,具体为一软胶纤维复合板,软胶纤维复合板的两侧分别与由硬胶纤维复合板构成的第一支撑件101和第二支撑件102连接。此时,基材层100为硬胶纤维复合材料-软胶纤维复合材料-硬胶纤维复合材料的复合板材结构,中间区域采用软胶纤维复合材料实现柔性可弯折功能,两边采用硬胶纤维复合材料为柔性屏提供屏下支撑。本申请实施方式中,软胶纤维复合材料包括至少一层纤维层,和浸渍固化在纤维层上的软胶材料。本申请实施方式中,软胶纤维复合材料中的纤维选择、纤维层的具体结构、软胶纤维复合材料的结构、及制备方式等都可以参考上述硬胶纤维复合材料的相关描述,此处不再赘述。本申请的软胶纤维复合材料与硬胶纤维复合材料的区别在于,软胶纤维复合材料选择软胶材料与纤维复合,硬胶纤维复合材料选择硬胶材料与纤维复合,软胶纤维复合材料柔软可弯折,作为可弯折连接件可配合柔性屏的弯折区的弯折,硬胶纤维复合材料刚性强,可有力支撑柔性屏的非弯折区。其中,软胶材料可包括但不限于是氟橡胶、硅橡胶、热塑性弹性体中的一种或多种。热塑性弹性体即人造橡胶或合成橡胶,具体可以包括但不限于是热塑性聚氨酯(TPU)、热塑性聚酯弹性体(TPEE)、苯乙烯类热塑性弹性体、聚烯烃类热塑性弹性体(POE)、聚醚酯类热塑性弹性体、聚酰胺类热塑性弹性体中的一种或多种。
本申请实施方式中,软胶纤维复合材料中纤维的质量含量为10%到80%。具体地,软胶纤维复合材料中纤维的质量含量例如可以是10%、20%、30%、40%、50%、60%、70%、80%。软胶纤维复合材料中的纤维含量可以根据具体弯折性能需求、刚性支撑需求,并结合选择的软胶材料的性能进行调整。一般地,纤维的含量越多,软胶纤维复合材料整体的强度会增加,可弯折性会降低,重量会相对减轻。一些实施方式中,综合可弯折性能、刚性支撑性能和减重需求,软胶纤维复合材料中纤维的质量含量可以是10%-50%。
本申请实施方式中,基材层100中,第一支撑件101和第二支撑件102中的纤维层与可弯折连接件103中的纤维层设计上可以是相互独立,也可以是一体编织的结构。纤维层的材料可以是相同,也可以是不相同;纤维层的层数可以是相同,也可以是不相同;纤维层叠合方式可以是相同,可以是不相同;纤维含量可以相同,也可以不相同。硬胶纤维复合材料和软胶纤维复合材料中的纤维含量可以根据具体的条件进行选择,一般情况下软胶纤维复合材料中的纤维含量要低于硬胶纤维复合材料中的纤维含量。
本申请一些实施方式中,如图19所示,当可弯折连接件103为软胶纤维复合材料时,基材层100可以是包括连续存在于第一支撑件101、第二支撑件102和可弯折连接件103中的一体编织的纤维层111。柔性屏支撑结构30可以是包括一层或多层一体编织的纤维层。如图19所示包括两层一体编织的纤维层。一体编织的纤维层可以简化制备工艺,以及保证第一支撑件101、第二支撑件102和可弯折连接件103三者的可靠连接。
本申请实施方式中,软胶纤维复合材料包括多层纤维层时,可以是多层纤维层与软胶材料形成纤维和软胶交替层叠的复合层叠体;也可以是多层纤维层层叠形成纤维叠合体,软胶材料浸渍固化在纤维叠合体上。
本申请实施方式中,可弯折连接件103可以是采用单层的纤维编织布形成,也可以是采用多层纤维单向布多角度叠合形成。
本申请实施方式中,对于结构组成为硬胶纤维复合材料-软胶纤维复合材料-硬胶纤维复合材料的基材层100,具体制备方式不限,例如可以是通过如下两种方式制备获得:
方式一:
步骤101:取多层纤维层,将多层纤维层进行多角度叠合,形成纤维叠合体;
其中,多层纤维层通常为多层纤维单向布,多层纤维层的叠合方向可以是在0°-90°范围内的任意角度。
步骤102:采用溶剂浸渍法或者热熔法,在纤维叠合体的两边浸渍硬胶材料,中间浸渍软胶材料,热压合之后得到基材层100。该方式制备的基材层100包括连续存在于第一支撑件101、第二支撑件102和可弯折连接件103中的一体编织的纤维层。
方式二:
步骤201:取纤维层,采用溶剂浸渍法或者热熔法,在纤维层的两侧面浸渍硬胶材料,形成硬胶纤维单层预浸料;将硬胶纤维单层预浸料进行多角度多层叠合,得到硬胶纤维叠层预浸料;
步骤202:取纤维层,采用溶剂浸渍法或者热熔法,在纤维层的两侧面浸渍软胶材料,形成软胶纤维单层预浸料;将软胶纤维单层预浸料进行多角度多层叠合,之后进行热压合,得到软胶纤维复合板;该步骤中也可直接选择目标厚度的单层纤维层,不采用多层叠合。其中,进行多层叠合的纤维层通常为纤维单向布,直接选择单层纤维层时通常为纤维编织布。
步骤203:将硬胶纤维叠层预浸料、软胶纤维复合板、硬胶纤维叠层预浸料并排排列好,之后进行热压合,得到基材层100。
该实施方式中,基材层100为硬胶纤维复合材料-软胶纤维复合材料-硬胶纤维复合材料的复合板材。基材层100整体为一平整的板状或片状结构。
其中,为了使硬胶纤维复合材料与软胶纤维复合材料在拼接处形成更好的结合,在将两种材料并排排列时,两侧的硬胶纤维叠层预浸料与中间软胶纤维复合板材可以是部分相交叉连接。具体地,可以是将硬胶纤维叠层预浸料中位于中间几层的单层预浸料的宽度变窄,即缩进一定宽度,预留出嵌合空间,中间的软胶纤维复合板材部分嵌合在该嵌合空间中,压合后实现无段差的硬胶纤维复合材料-软胶纤维复合材料-硬胶纤维复合材料复合板材的制备。硬胶纤维叠层预浸料在经热压合后形成硬胶纤维复合板,即硬胶纤维复合材料。
本申请另一些实施方式中,也可以是将软胶纤维单层预浸料进行多角度多层叠合,得到软胶纤维叠层预浸料,然后将硬胶纤维叠层预浸料、软胶纤维叠层预浸料、硬胶纤维叠层预浸料并排排列好,之后进行热压合,得到柔性屏支撑结构。本申请其他一些实施方式中,也可以是将硬胶纤维单层预浸料进行多角度多层叠合,得到硬胶纤维叠层预浸料,然后进行热压合得到硬胶纤维复合板,再将硬胶纤维复合板、软胶纤维复合板、硬胶纤维复合板并排排列好,之后进行热压合,得到柔性屏支撑结构。
图20为采用溶剂浸渍法制备硬胶纤维复合材料的工艺流程图;图21为采用热熔法制备硬胶纤维复合材料的工艺流程图。
本申请实施方式中,硬胶纤维复合材料与软胶纤维复合材料可以是采用上述热压合方式进行拼接结合,也可以是采用胶接、熔融结合、或者激光焊接等其他可实现良好结合的方式进行拼接结合。
本申请另一实施方式中,可弯折连接件103为可弯折金属连接件,可弯折金属连接件的两侧分别与由硬胶纤维复合板构成的第一支撑件101和第二支撑件102连接。可弯折金属连接件具体可以是不锈钢、钛合金、铝合金等金属材质。可弯折金属连接件103与第一支撑件101和第二支撑件102之间可以是通过热压合、胶粘、熔接、嵌合等方式结合在一起,也可以是通过连接机构连接。
本申请实施方式中,对于结构组成为硬胶纤维复合材料-金属材料-硬胶纤维复合材料的基材层100,具体制备方式不限,例如可以是通过如下方式制备获得:
步骤301:取纤维层,采用溶剂浸渍法或者热熔法,在纤维层的两侧面浸渍硬胶材料,形成硬胶纤维单层预浸料;将硬胶纤维单层预浸料进行多角度多层叠合,得到硬胶纤维叠层预浸料;
步骤302:取目标厚度的金属片,将硬胶纤维叠层预浸料、金属片、硬胶纤维叠层预浸料并排排列好,之后进行热压合,得到基材层100。
该实施方式中,基材层100为硬胶纤维复合材料-金属材料-硬胶纤维复合材料的复合板材。基材层100整体为一平整的板状或片状结构。
其中,为了使硬胶纤维复合材料与金属片在拼接处形成良好的结合,在将两种材料并排排列时,两侧的硬胶纤维叠层预浸料与中间金属片可以是部分相交叉连接。具体地,可以是将硬胶纤维叠层预浸料中位于中间几层的单层预浸料的宽度变窄,即缩进一定宽度,预留出嵌合空间,中间的金属片两端降低一定厚度,形成与嵌合空间相配合的嵌合部(由于降面形成台阶面),嵌合部嵌合在硬胶纤维叠层预浸料的嵌合空间中,热压合后实现无段差的硬胶纤维复合材料-金属材料-硬胶纤维复合材料复合板材的制备。金属片两端的嵌合部可以通过刻蚀形成开孔,增强硬胶纤维复合材料与金属片的结合。在进行热压合之前,也可以对金属片表面进行等离子体等处理,提高表面粗糙度,增强硬胶纤维复合材料与金属片的结合。
本申请实施方式中,作为可弯折连接件的金属片要求具有良好的可弯折性能,通常为多孔金属片,多孔孔洞纵向(即Y方向)延伸。
本申请实施例方式中,硬胶纤维复合材料与金属材料可以是采用上述热压合方式进行拼接结合,也可以是采用胶接、熔融结合、或者激光焊接等其他可实现良好结合的方式进行拼接结合。
本申请另一实施方式中,可弯折连接件103为有机柔性材料膜片,有机柔性材料膜片的两侧分别与由硬胶纤维复合板构成的第一支撑件101和第二支撑件102连接,具体可以是通过热压合、胶接、熔接、嵌合的方式结合在一起,也可以是通过连接机构连接。有机柔性材料膜片可实现柔性可弯折功能。有机柔性材料可包括氟橡胶、硅橡胶、热塑性弹性体、聚氯乙烯(PVC)、聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)、环烯烃聚合体(COP)、液晶聚合物(LCP)、聚二甲基硅氧烷(PDMS)中的一种或多种。热塑性弹性体即人造橡胶或合成橡胶,热塑性弹性体具体可以包括热塑性聚氨酯(TPU)、热塑性聚酯弹性体(TPEE)、苯乙烯类热塑性弹性体、聚烯烃类热塑性弹性体(POE)、聚醚酯类热塑性弹性体、聚酰胺类热塑性弹性体中的一种或多种。
本申请实施方式中,对于结构组成为硬胶纤维复合材料-有机柔性材料-硬胶纤维复合材料的基材层100,具体制备方式不限,例如可以是通过如下方式制备获得:
步骤301:取纤维层,采用溶剂浸渍法或者热熔法,在纤维层的两侧面浸渍硬胶材料,形成硬胶纤维单层预浸料;将硬胶纤维单层预浸料进行多角度多层叠合,得到硬胶纤维叠层预浸料;
步骤302:取目标厚度的有机柔性材料膜片,将硬胶纤维叠层预浸料、有机柔性材料膜片、硬胶纤维叠层预浸料并排排列好,之后进行热压合,得到基材层100。
该实施方式中,基材层100为硬胶纤维复合材料-有机柔性材料-硬胶纤维复合材料的复合板材。基材层100整体为一平整的板状或片状结构。
该实施方式中,硬胶纤维复合板101与有机柔性材料膜片103两者结合处的结构,结合方式不限。可以是如图22A所示的线结合,也可以是如图22B、图22C、图22D所示的齿结合,即嵌合,也可以是如图22E所示,采用连接机构104实现两者的连接,例如卡扣结合。 其中,齿结合的具体齿形状不限,齿可以是形成在硬胶纤维复合板101上,也可以形成在有机柔性材料膜片103上。
本申请另一实施方式中,可弯折连接件103为可弯折的硬胶纤维复合材料,为实现可弯折连接件103区域的硬胶纤维复合材料的可弯折性能,可以是将可弯折连接件103区域的硬胶纤维复合材料通过激光切孔等方式形成多孔结构,即可弯折的硬胶纤维复合材料为具有多孔结构的硬胶纤维复合材料。为更好地获得弯折性能,多孔结构可以是纵向(即图3中Y方向)延伸排布。可弯折连接件103可以是与第一支撑件101和/或第二支撑件102为一体成型结构。一些实施例中,整个基材层100由一体成型的一整块硬胶纤维复合板构成,可弯折连接件103与第一支撑件101和第二支撑件102为相同材质,基材层100包括连续存在(即不间断,无连接界面)于第一支撑件101、第二支撑件102和可弯折连接件103中的一体编织的纤维层和硬胶层。当可弯折连接件103为可弯折的硬胶纤维复合材料时,基材层100为一体成型结构有利于使基材层整体获得高结构稳定性。
本申请实施方式中,对于结构组成为硬胶纤维复合材料-可弯折的硬胶纤维复合材料-硬胶纤维复合材料的基材层100,具体制备方式不限,例如可以是通过如下方式制备获得:
步骤401:取纤维层,采用溶剂浸渍法或者热熔法,在纤维层的两侧面浸渍硬胶材料,形成硬胶纤维单层预浸料;将硬胶纤维单层预浸料进行多角度多层叠合后经热压,得到硬胶纤维板;
步骤402:采用激光切孔的方式在硬胶纤维板的预设可弯折连接件区域形成多孔结构,使可弯折连接件区域具备可弯折性能,得到基材层100。
该实施方式中,基材层100为硬胶纤维复合材料-可弯折的硬胶纤维复合材料-硬胶纤维复合材料的复合板材,基材层100为一体成型的板状或片状结构。
本申请实施方式中,基材层100的厚度可以是约为0.1mm-5mm。具体地,可以根据可折叠终端的实际需求进行设计,厚度越大,支撑强度越大。一些实施方式中,基材层100的厚度可以是0.15mm-0.2mm。另一些实施方式中,基材层100的厚度可以是0.25mm-0.8mm。其他一些实施方式中,基材层100的厚度可以是1mm-2mm,也可以是2mm-4mm。基材层100具有较小的厚度有利于减重,也有利于可折叠终端总厚度的减薄,可提升用户体验。
本申请实施方式中,柔性屏支撑结构30的厚度可以是0.1mm-5mm。一些实施方式中,柔性屏支撑结构30的厚度可以是0.15mm-0.22mm。另一些实施方式中,柔性屏支撑结构30的厚度可以是0.25mm-0.8mm。其他一些实施方式中,柔性屏支撑结构30的厚度可以是1mm-2mm,也可以是2.5mm-4mm。柔性屏支撑结构30的总厚度主要取决于基材层100和功能层200的厚度之和。
本申请中“多种”表示两种或两种以上。本申请中“-”表示范围值,包括两端的端点值,例如,功能层200的厚度为5μm-500μm,表示功能层200的厚度在5μm至500μm之间,且包括端点值5μm和500μm。
下面分多个实施例对本申请实施例进行进一步的说明。
实施例1
参见图6B,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100两侧的导电层200,导电层200覆盖基材层100的第一支撑件和第二支撑件表面,未覆盖可弯折连接件。基材层100采用环氧树脂连续碳纤维-聚氨酯(TPU)连续碳纤维-环氧树脂连续碳纤维复合板,以某一型号折叠手机为例,本实施例柔性屏支撑结构的设计方案如下:柔性屏支撑 结构的外形尺寸为161mm*146mm,基材层厚度为0.15mm,柔性可弯折区域即可弯折连接件的宽度为20mm,两侧支撑件的宽度为63mm。环氧树脂连续碳纤维复合板、聚氨酯连续碳纤维复合板、环氧树脂连续碳纤维复合板三个板材依次并排排列结合在一起,构成基材层。导电层200为镍层。
本实施例柔性屏支撑结构的制备过程如下:
(1)选取0.02mm厚度的碳纤维单向布,两侧表面浸润环氧树脂后得到0.025mm厚度的单层预浸料,然后按照0°/90°/0°/0°/90°/0°的叠合角度进行层叠,形成厚度为0.15mm的环氧树脂碳纤维叠层预浸料;
(2)采用45°编织的碳纤维布,厚度为0.1mm,宽度30mm,浸润TPU后形成0.15mm厚度的TPU连续碳纤维复合板。
(3)将环氧树脂连续碳纤维叠层预浸料、聚氨酯连续碳纤维复合板、环氧树脂连续碳纤维叠层预浸料三个材料依次并排排列好,聚氨酯连续碳纤维复合板与两侧环氧树脂连续碳纤维叠层预浸料部分相交叉连接;将热压机升温到150℃,模具间隙为0.15mm,在150℃下压合30min,得到厚度0.15mm的环氧树脂连续碳纤维-聚氨酯(TPU)连续碳纤维-环氧树脂连续碳纤维复合板。
(4)对步骤(3)所得复合板材进行切边,分切成所需的外形尺寸大小,得到基材层;
(5)遮蔽基材层的可弯折区,对可弯折区两侧的支撑件板材进行酸洗,去除表面油污;
(6)对支撑件两侧表面进行催化,在支撑件表面沉积一层含钯的催化剂;
(7)将基材层浸入镀液中进行化学镀镍,时间为4h-12h,在支撑件表面沉积5μm-10μm的镍层,水洗,烘干后得到柔性屏支撑结构。
本实施例制备的柔性屏支撑结构相对同样尺寸的全采用不锈钢材料的柔性屏支撑结构,减重大于75%。同时,对本实施例制备的柔性屏支撑结构进行20万次弯折测试,未出现开裂问题。而且弯折过程中,弯折区域的碳纤维可拉伸变形,这是由于弯折区为45°编织碳纤维,因此弯折过程中可发生变形,吸收折叠与展开状态的位移差。本实施例制备的柔性屏支撑结构具备导电功能,可满足电连接需求。
实施例2
参见图6B,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100两侧的导电层200,导电层200覆盖基材层100的第一支撑件和第二支撑件表面,未覆盖可弯折连接件。基材层100采用环氧树脂连续碳纤维-TPU连续碳纤维-环氧树脂连续碳纤维复合板,以某型号折叠手机为例,本实施例柔性屏支撑结构的设计方案如下:柔性屏支撑结构的外形尺寸为161mm*146mm,基材层的厚度为0.15mm,柔性可弯折区域即可弯折连接件的宽度为20mm,两侧支撑件的宽度为63mm。环氧树脂连续碳纤维复合板、TPU连续碳纤维复合板、环氧树脂连续碳纤维复合板三个板材依次并排排列结合在一起,构成基材层。导电层200包括依次设置在基材层100上的铜层和镍层。
本实施例柔性屏支撑结构的制备过程如下:
(1)选取0.02mm厚度的碳纤维单向布,两侧表面浸润环氧树脂后得到0.025mm厚度的单层预浸料,然后按照0°/90°/0°/0°/90°/0°的叠合角度进行层叠,形成厚度为0.15mm的环氧树脂碳纤维叠层预浸料;
(2)采用0°/90°编织的碳纤维布,厚度为0.1mm,宽度30mm,浸润TPU后形成0.15mm厚度的TPU连续碳纤维复合板。
(3)将环氧树脂连续碳纤维叠层预浸料、TPU连续碳纤维复合板、环氧树脂连续碳纤维叠层预浸料三个板材依次并排排列好,聚氨酯连续碳纤维复合板与两侧环氧树脂连续碳纤维叠层预浸料部分相交叉连接;将热压机升温到150℃,模具间隙为0.15mm,在150℃下压合30min,得到厚度0.15mm的环氧树脂连续碳纤维-TPU连续碳纤维-环氧树脂连续碳纤维复合板。
(4)对步骤(3)所得复合板材进行切边,分切成所需的外形尺寸大小,得到基材层;
(5)遮蔽基材层的可弯折区,对可弯折区两侧的支撑件板材进行酸洗,去除表面油污;
(6)对支撑件两侧表面进行催化,在支撑件表面沉积一层含钯的催化剂;
(7)将基材层浸入第一镀液中进行化学镀铜,时间为4h-12h,在支撑件表面沉积5μm-10μm的铜层,水洗后,再将基材层浸入第二镀液中进行化学镀镍,时间为4h-12h,沉积2μm-10μm的镍层,水洗,烘干后得到柔性屏支撑结构。
本实施例制备的柔性屏支撑结构相对同样尺寸的全采用不锈钢材料的柔性屏支撑结构,减重大于75%。同时,对本实施例制备的柔性屏支撑结构进行20万次弯折测试,未出现开裂问题,且测试后仍能保持较好的平整度。与实施例一相比,本实施例的柔性屏支撑结构的弯折区域由于具有0°方向上的连续碳纤维,因此相对较难吸收展平和弯折的位移差。与实施例1相比,本实施例导电层增加了铜层,铜的导电性优于镍,因此该实施例柔性屏支撑结构导电性优于实施例1。
实施例3
参见图5,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100一侧的抗冲层200,基材层100采用环氧树脂连续碳纤维-聚酰亚胺(PI)-环氧树脂连续碳纤维复合板,以某型号折叠手机为例,本实施例柔性屏支撑结构的设计方案如下:柔性屏支撑结构的外形尺寸为161mm*146mm,基材层的厚度为0.15mm,柔性可弯折区域即可弯折连接件的宽度为20mm,两侧支撑件的宽度为63mm。环氧树脂连续碳纤维复合板、PI膜、环氧树脂连续碳纤维复合板三个板材依次并排排列结合在一起,构成柔性屏支撑结构。抗冲层200为TPU薄膜。
本实施例柔性屏支撑结构的制备过程如下:
(1)选取0.03mm厚度的碳纤维单向布,两侧表面浸润环氧树脂后得到0.05mm厚度的单层预浸料,然后按照0°/90°/0°的叠合角度进行叠层,形成厚度为0.15mm的环氧树脂碳纤维叠层预浸料;
(2)准备一片宽25mm,厚度为0.15mm的PI膜;
(3)将环氧树脂碳纤维叠层预浸料、PI膜、环氧树脂碳纤维叠层预浸料并列排好,PI膜与环氧树脂碳纤维叠层预浸料有2mm-5mm交错;
(4)将热压机升温到200℃,模具间隙为0.15mm,在200℃下压合20min,得到厚度0.15mm的环氧树脂连续碳纤维-PI膜-环氧树脂连续碳纤维复合板;
(5)对步骤(4)所得复合板材进行切边,分切成所需的外形尺寸大小,得到基材层;
(6)在基材层的一侧覆一层50μm-150μm厚的TPU薄膜;
(7)将基材层与TPU薄膜叠好后放入热压机,压合温度150℃,时间30min,冷却后得到柔性屏支撑结构。
本实施例制备的柔性屏支撑结构相对同样尺寸的全采用不锈钢材料的柔性屏支撑结构,减重大于75%。同时,对本实施例制备的柔性屏支撑结构进行20万次弯折测试,未出现开裂问题,且测试后仍能保持较好的平整度。本实施例的柔性屏支撑结构,由于弯折区为纯PI材 料,无纤维存在,相比软胶纤维复合材料可弯折性更好,但缺少纤维网络,支撑强度稍弱。本实施例制备的柔性屏支撑结构具备抗冲功能,可以对柔性屏的跌落冲击起到有效保护作用。
实施例4
参见图6A,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100两侧的导热层200,基材层100采用酚醛树脂连续玻璃纤维-TPU连续玻璃纤维-酚醛树脂连续玻璃纤维复合板,以某型号折叠手机为例,本实施例柔性屏支撑结构的设计方案如下:柔性屏支撑结构的外形尺寸为161mm*146mm,基材层的厚度为0.2mm,柔性可弯折区域即可弯折连接件的宽度为20mm,两侧支撑件的宽度为63mm。酚醛树脂连续玻璃纤维复合板、TPU连续玻璃纤维、酚醛树脂连续玻璃纤维复合板三个板材依次并排排列结合在一起,构成基材层。导热层200的材质为导热石墨片。
本实施例柔性屏支撑结构的制备过程如下:
(1)选取0.02mm厚度的玻璃纤维单向布,两侧表面浸润酚醛树脂后得到0.025mm厚度的单层预浸料,然后按照0°/90°/0°/90°/90°/0°/90°/0°的叠合角度进行层叠,形成厚度为0.2mm的酚醛树脂玻璃纤维叠层预浸料;
(2)采用45°编织的玻璃纤维布,厚度为0.15mm,宽度30mm,浸润TPU后形成0.2mm厚度的TPU连续玻璃纤维复合板。
(3)将酚醛树脂连续玻璃纤维叠层预浸料、聚氨酯连续玻璃纤维复合板、酚醛树脂连续玻璃纤维叠层预浸料三个板材依次并排排列好,聚氨酯连续玻璃纤维复合板与两侧酚醛树脂连续玻璃纤维叠层预浸料部分相交叉连接;将热压机升温到150℃,模具间隙为0.2mm,在150℃下压合30min,得到厚度0.2mm的酚醛树脂连续玻璃纤维-TPU连续玻璃纤维-酚醛树脂连续玻璃纤维复合板。
(4)对步骤(3)所得复合板材进行切边,分切成所需的外形尺寸大小;得到基材层;
(5)采用10μm-20μm厚的双面胶带,将两片厚度为30μm-100μm的石墨片粘接在基材层两侧,制得柔性屏支撑结构。
本实施例制备的柔性屏支撑结构相对同样尺寸的全采用不锈钢材料的柔性屏支撑结构,减重大于75%。同时,对本实施例制备的柔性屏支撑结构进行20万次弯折测试,未出现开裂问题,且测试后仍能保持较好的平整度。本实施例制备的柔性屏支撑结构具备导热功能,有利于将终端内部电池产生的热量向柔性屏一侧传递。
实施例5
参见图8B,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100两侧的导电层201和抗冲层202,基材层100采用环氧树脂连续玻璃纤维-硅橡胶连续玻璃纤维-环氧树脂连续玻璃纤维复合板,以某型号折叠手机为例,本实施例柔性屏支撑结构的设计方案如下:柔性屏支撑结构的外形尺寸为161mm*146mm,基材层的厚度为0.2mm,柔性可弯折区域即可弯折连接件的宽度为20mm,两侧支撑件的宽度为63mm。环氧树脂连续玻璃纤维复合板、硅橡胶连续玻璃纤维、环氧树脂连续玻璃纤维复合板三个板材依次并排排列结合在一起,构成基材层。导电层201的材质包括镍和金。抗冲层202的材质包括TPU薄膜。
本实施例柔性屏支撑结构的制备过程如下:
(1)选取0.02mm厚度的玻璃纤维单向布,两侧表面浸润环氧树脂后得到0.025mm厚度的单层预浸料,然后按照0°/90°/0°/90°/90°/0°/90°/0°的叠合角度进行层叠,形成厚度为0.2mm 的环氧树脂玻璃纤维叠层预浸料;
(2)采用45°编织的玻璃纤维布,厚度为0.15mm,宽度30mm,浸润硅橡胶后形成0.2mm厚度的硅橡胶连续玻璃纤维复合板。
(3)将环氧树脂连续玻璃纤维叠层预浸料、硅橡胶连续玻璃纤维复合板、环氧树脂连续玻璃纤维叠层预浸料三个板材依次并排排列好,硅橡胶连续玻璃纤维复合板与两侧环氧树脂连续玻璃纤维叠层预浸料部分相交叉连接;将热压机升温到150℃,模具间隙为0.2mm,在150℃下压合30min,得到厚度0.2mm的环氧树脂连续玻璃纤维-硅橡胶连续玻璃纤维-环氧树脂连续玻璃纤维复合板。
(4)对步骤(3)所得复合板材进行切边,分切成所需的外形尺寸大小,得到基材层;
(5)遮蔽基材层的可弯折区,对可弯折区两侧的支撑件板材进行酸洗,去除表面油污;
(6)对支撑件两侧表面进行催化,在支撑件表面沉积一层含钯的催化剂;
(7)将基材层浸入镀液中进行化学镀镍,时间为4h-12h,在支撑件表面沉积5μm-10μm的镍层,水洗,烘干;
(8)再将预镀金区域之外的镍层遮蔽后浸入镀液中进行化学镀金,时间为2-4h,使预镀金区域沉积1-2um的金层,水洗,烘干,形成导电层;
(9)在两侧导电层上分别覆一层50μm-150μm厚的TPU薄膜,叠好后放入热压机,压合温度150℃,时间30min,冷却后得到柔性屏支撑结构。
本实施例制备的柔性屏支撑结构相对同样尺寸的全采用不锈钢材料的柔性屏支撑结构,减重大于75%。同时,对本实施例制备的柔性屏支撑结构进行20万次弯折测试,未出现开裂问题,且测试后仍能保持较好的平整度。本实施例制备的柔性屏支撑结构同时具有导电和抗冲功能。
实施例6
参见图8B,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100两侧的导电层201和导热层202,基材层100采用酚醛树脂连续玻璃纤维-硅橡胶连续玻璃纤维-酚醛树脂连续玻璃纤维复合板,以某型号折叠手机为例,本实施例柔性屏支撑结构的设计方案如下:柔性屏支撑结构的外形尺寸为161mm*146mm,基材层厚度为0.2mm,柔性可弯折区域即可弯折连接件的宽度为20mm,两侧支撑件的宽度为63mm。酚醛树脂连续玻璃纤维复合板、硅橡胶连续玻璃纤维、酚醛树脂连续玻璃纤维复合板三个板材依次并排排列结合在一起,构成基材层。导电层201的材质包括镍和金。导热层202的材质为导热硅胶片。
本实施例柔性屏支撑结构的制备过程如下:
(1)选取0.02mm厚度的玻璃纤维单向布,两侧表面浸润酚醛树脂后得到0.025mm厚度的单层预浸料,然后按照0°/-45°/+45°/0°/0°/+45°/-45°/0°的叠合角度进行层叠,形成厚度为0.2mm的酚醛树脂玻璃纤维叠层预浸料;
(2)采用45°编织的玻璃纤维布,厚度为0.15mm,宽度30mm,浸润硅橡胶后形成0.2mm厚度的TPU连续玻璃纤维复合板。
(3)将酚醛树脂连续玻璃纤维叠层预浸料、硅橡胶连续玻璃纤维复合板、酚醛树脂连续玻璃纤维叠层预浸料三个板材依次并排排列好,硅橡胶连续玻璃纤维复合板与两侧酚醛树脂连续玻璃纤维叠层预浸料部分相交叉连接;将热压机升温到150℃,模具间隙为0.2mm,在150℃下压合30min,得到厚度0.2mm的酚醛树脂连续玻璃纤维-硅橡胶连续玻璃纤维-酚醛树脂连续玻璃纤维复合板。
(4)对步骤(3)所得复合板材进行切边,分切成所需的外形尺寸大小,得到基材层;
(5)遮蔽基材层的可弯折区,对可弯折区两侧的支撑件板材进行酸洗,去除表面油污;
(6)对支撑件两侧表面进行催化,在支撑件表面沉积一层含钯的催化剂;
(7)将基材层浸入镀液中进行化学镀镍,时间为4h-12h,在支撑件表面沉积5μm-10μm的镍层,水洗,烘干;
(8)再将预镀金区域之外的镍层遮蔽后浸入镀液中进行化学镀金,时间为2-4h,使预镀金区域沉积1-2um的金层,水洗,烘干,形成导电层;
(9)在两侧导电层上分别覆一层30μm-100μm厚的导热硅胶片,叠好后放入热压机,压合温度100℃,时间30min,冷却后得到柔性屏支撑结构。
本实施例制备的柔性屏支撑结构相对同样尺寸的全采用不锈钢材料的柔性屏支撑结构,减重大于75%。同时,对本实施例制备的柔性屏支撑结构进行20万次弯折测试,未出现开裂问题,且测试后仍能保持较好的平整度。本实施例制备的柔性屏支撑结构同时具有导电和导热功能。
实施例7
参见图8A,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100两侧的导热层201和抗冲层202,基材层100采用环氧树脂连续芳纶纤维-聚氨酯(TPU)连续芳纶纤维-环氧树脂连续芳纶纤维复合板,以某型号折叠手机为例,本实施例柔性屏支撑结构的设计方案如下:柔性屏支撑结构的外形尺寸为161mm*146mm,基材层厚度为0.15mm,柔性可弯折区域即可弯折连接件的宽度为20mm,两侧支撑件的宽度为63mm。环氧树脂连续芳纶纤维复合板、聚氨酯连续芳纶纤维复合板、环氧树脂连续芳纶纤维复合板三个板材依次并排排列结合在一起,构成基材层。导热层201的材质为导热硅胶。抗冲层202的材质为TPU薄膜。
本实施例柔性屏支撑结构的制备过程如下:
(1)选取0.02mm厚度的芳纶纤维单向布,两侧表面浸润环氧树脂后得到0.025mm厚度的单层预浸料,然后按照0°/+45°/-45°/-45°/+45°/0°的叠合角度进行层叠,形成厚度为0.15mm的环氧树脂芳纶纤维叠层预浸料;
(2)采用45°编织的芳纶纤维布,厚度为0.1mm,宽度30mm,浸润TPU后形成0.15mm厚度的TPU连续芳纶纤维复合板。
(3)将环氧树脂连续芳纶纤维叠层预浸料、聚氨酯连续芳纶纤维复合板、环氧树脂连续芳纶纤维叠层预浸料三个板材依次并排排列好,聚氨酯连续芳纶纤维复合板与两侧环氧树脂连续芳纶纤维叠层预浸料部分相交叉连接;将热压机升温到150℃,模具间隙为0.15mm,在150℃下压合30min,得到厚度0.15mm的环氧树脂连续芳纶纤维-聚氨酯(TPU)连续芳纶纤维-环氧树脂连续芳纶纤维复合板。
(4)对步骤(3)所得复合板材进行切边,分切成所需的外形尺寸大小,得到基材层;
(5)在基材层上下两侧分别覆一层30μm-100μm厚的导热硅胶片,叠好后放入热压机,压合温度100℃,时间30min,形成导热层;
(6)在两侧导热层上分别覆一层厚度为50μm-150μm的TPU薄膜,叠好后放入热压机,压合温度150℃,时间30min,冷却后得到柔性屏支撑结构。
本实施例制备的柔性屏支撑结构相对同样尺寸的全采用不锈钢材料的柔性屏支撑结构,减重大于75%。同时,对本实施例制备的柔性屏支撑结构进行20万次弯折测试,未出现开裂问题,且测试后仍能保持较好的平整度。本实施例制备的柔性屏支撑结构同时具有导热和抗 冲功能。
实施例8
参见图11A,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100两侧的功能层200,其中一侧功能层200包括导电层201和抗冲层202,另一侧功能层200包括导电层。基材层100采用本实施例的柔性屏支撑结构为环氧树脂连续碳纤维-不锈钢-环氧树脂连续碳纤维复合板。以某型号折叠手机为例,本实施例柔性屏支撑结构的设计方案如下:柔性屏支撑结构的外形尺寸为161mm*146mm,厚度为0.15mm,柔性可弯折区域即可弯折连接件的宽度为20mm,两侧支撑件的宽度为63mm。环氧树脂连续碳纤维复合板、不锈钢片、环氧树脂连续碳纤维复合板三个板材依次并排排列结合在一起,不锈钢片两侧分别嵌入在两侧的环氧树脂连续碳纤维复合板结构中,构成基材层。导电层为镍层,抗冲层的材质为TPU薄膜。
本实施例柔性屏支撑结构的制备过程如下:
(1)选取0.02mm厚度的碳纤维单向布,两侧表面浸润环氧树脂后得到0.025mm厚度的单层预浸料,然后将单层预浸料按照0°/90°/0°/0°/90°/0°的叠合角度进行层叠,形成厚度为0.15mm的环氧树脂碳纤维叠层预浸料;
(2)准备一片宽30mm,厚度为0.15mm的多孔不锈钢片,中间多孔区(作为柔性可弯折区域)为20mm,左右两侧降面,形成厚度为0.05mm,宽度5mm的台阶结构作为嵌合部(可在嵌合部上打孔);
(3)将环氧树脂碳纤维叠层预浸料、多孔不锈钢片、环氧树脂碳纤维叠层预浸料,依次并排排列好,多孔不锈钢片两侧与环氧树脂碳纤维叠层预浸料各有5mm宽度的结合区;将热压机升温到150℃,模具间隙为0.15mm,在150℃下压合30min,得到厚度0.15mm的环氧树脂连续碳纤维-不锈钢-环氧树脂连续碳纤维复合板;
(4)对步骤(3)所得复合板材进行切边,分切成所需的外形尺寸大小,得到基材层;
(5)对基材层进行酸洗,去除表面油污;
(6)对基材层两侧表面进行催化,在基材层表面沉积一层含钯的催化剂;
(7)将基材层浸入镀液中进行化学镀镍,时间为4h-12h,沉积5μm-10μm的镍层,水洗,烘干,形成导电层;
(8)在一侧导电层上覆一层厚度为50μm-150μm的TPU薄膜,叠好后放入热压机,压合温度150℃,时间30min,冷却后得到柔性屏支撑结构。
本实施例制备的柔性屏支撑结构相对同样尺寸的全采用不锈钢材料的柔性屏支撑结构,减重大于62%。同时,对本实施例制备的柔性屏支撑结构进行20万次弯折测试,未出现开裂问题,且测试后仍能保持较好的平整度。本实施例制备的柔性屏支撑结构同时具有导电和抗冲功能。
实施例9
参见图10,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100两侧的导电层201、导热层202和抗冲层203,基材层100采用环氧树脂连续玻璃纤维-钛合金-环氧树脂连续玻璃纤维复合板。以某型号折叠手机为例,本实施例柔性屏支撑结构的设计方案如下:柔性屏支撑结构的外形尺寸为161mm*146mm,基材层厚度为0.15mm,柔性可弯折区域即可弯折连接件的宽度为20mm,两侧支撑件的宽度为63mm。环氧树脂连续碳纤维复合板、钛合金片、环氧树脂连续碳纤维复合板三个板材依次并排排列结合在一起,钛合金片两侧分 别嵌入在两侧的环氧树脂连续碳纤维复合板结构中,构成基材层。导电层为镍层,导热层包括导热双面胶,抗冲层材质为TPEE薄膜。
本实施例柔性屏支撑结构的制备过程如下:
(1)选取0.02mm厚度的碳纤维单向布,两侧表面浸润环氧树脂后得到0.025mm厚度的单层预浸料,然后将单层预浸料按照0°/90°/0°/0°/90°/0°的叠合角度进行层叠,形成厚度为0.15mm的环氧树脂碳纤维叠层预浸料;
(2)准备一片宽30mm,厚度为0.15mm的多孔钛合金片,中间多孔区(作为柔性可弯折区域)为20mm,左右两侧降面,形成厚度为0.05mm,宽度5mm的台阶结构作为嵌合部(可在嵌合部上打孔);
(3)将环氧树脂碳纤维叠层预浸料、多孔钛合金片、环氧树脂碳纤维叠层预浸料,依次并排排列好,多孔钛合金片两侧与环氧树脂碳纤维叠层预浸料各有5mm宽度的结合区;将热压机升温到150℃,模具间隙为0.15mm,在150℃下压合30min,得到厚度0.15mm的环氧树脂连续碳纤维-钛合金-环氧树脂连续碳纤维复合板;
(4)对步骤(3)所得复合板材进行切边,分切成所需的外形尺寸大小,得到基材层;
(5)对基材层进行酸洗,去除表面油污;
(6)对基材层两侧表面进行催化,在基材层表面沉积一层含钯的催化剂;
(7)将基材层浸入镀液中进行化学镀镍,时间为4h-12h,沉积5μm-10μm的镍层,水洗,烘干,形成导电层;
(8)在两侧导电层上粘接一层厚度为30μm-100μm导电双面胶带,再在胶带的另一侧粘接一层厚度为50μm-150μm的TPEE薄膜,得到柔性屏支撑结构。
本实施例制备的柔性屏支撑结构相对同样尺寸的全采用不锈钢材料的柔性屏支撑结构,减重大于70%。同时,对本实施例制备的柔性屏支撑结构进行20万次弯折测试,未出现开裂问题,且测试后仍能保持较好的平整度。本实施例制备的柔性屏支撑结构同时具有导电、导热和抗冲功能。
实施例10
参见图11B,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100两侧的功能层200,其中一侧功能层200包括导电层201和抗冲层202,另一侧功能层200包括导热层。基材层100与实施例1相同,尺寸设计与实施例1相同。导电层为镍层,抗冲层的材质为TPU薄膜。导热层的材质为导热石墨片。
本实施例柔性屏支撑结构的制备过程如下:
(1)采用与实施例1相同方法制备基材层;
(2)遮蔽基材层的可弯折区,对可弯折区两侧的支撑件板材进行酸洗,去除表面油污;
(3)对支撑件两侧表面进行催化,在支撑件表面沉积一层含钯的催化剂;
(4)将基材层浸入镀液中进行化学镀镍,时间为4h-12h,在基材层一侧表面沉积5μm-10μm的镍层,水洗,烘干,形成导电层;
(5)在导电层上覆一层厚度为50μm-150μm的TPU薄膜,叠好后放入热压机,压合温度150℃,时间30min,形成抗冲层;
(6)在基材层另一侧上采用胶粘接一层30μm-100μm厚的导热石墨片,得到柔性屏支撑结构。
本实施例制备的柔性屏支撑结构同时具有导电、导热和抗冲功能。
实施例11
参见图8B,本实施例的柔性屏支撑结构30包括基材层100和设置在基材层100两侧的功能层200,其中一侧功能层200包括导电层201和抗冲层202,另一侧功能层200包括导电层201和导热层202。基材层100与实施例1相同,尺寸设计与实施例1相同。导电层为镍层,抗冲层的材质为TPEE薄膜。导热层的材质为导热双面胶。
本实施例柔性屏支撑结构的制备过程如下:
(1)采用与实施例1相同方法制备基材层;
(2)遮蔽基材层的可弯折区,对可弯折区两侧的支撑件板材进行酸洗,去除表面油污;
(3)对支撑件两侧表面进行催化,在支撑件表面沉积一层含钯的催化剂;
(4)将基材层浸入镀液中进行化学镀镍,时间为4h-12h,在基材层两侧表面沉积5μm-10μm的镍层,水洗,烘干,形成导电层;
(5)在基材层一侧的导电层上覆一层厚度为50μm-150μm的TPEE薄膜,叠好后放入热压机,压合温度220℃,时间30min,形成导热层;
(6)在基材层另一侧的导电层上采用胶粘接一层30μm-100μm厚的导热双面胶带,得到柔性屏支撑结构。
本实施例制备的柔性屏支撑结构同时具有导电、导热和抗冲功能。
本申请实施例的柔性屏支撑结构,通过采用有机材料与纤维的复合材料作为主体材料,相对于现有不锈钢等全金属材质的柔性屏支撑结构,重量大大减轻,而且能够为柔性屏提供良好的刚性支撑;同时弯折区可以使用金属材质,也可以使用有机柔性材料、软胶纤维复合材料,从而在保证弯折可靠性的同时,进一步减轻支撑结构的总重量,有利于折叠终端产品减重,提高产品竞争力,提升用户体验;另外本申请实施例的柔性屏支撑结构制备成本低。同时,本申请实施例的柔性屏支撑结构通过设置功能层还具有导电、导热和抗冲等功能,可以满足支撑结构的功能化需求,提升终端产品性能。

Claims (26)

  1. 一种复合结构,其特征在于,包括基材层和设置在所述基材层至少一侧表面的功能层,所述基材层包括并排设置的第一支撑件、第二支撑件,以及设置在所述第一支撑件与所述第二支撑件之间,并与所述第一支撑件和所述第二支撑件连接的可弯折连接件,所述第一支撑件和所述第二支撑件的材质包括硬胶纤维复合材料,所述功能层包括导电层、导热层和抗冲层中的一种或多种。
  2. 如权利要求1所述的复合结构,其特征在于,所述导电层包括导电金属;所述导电层为单层或多层结构。
  3. 如权利要求2所述的复合结构,其特征在于,所述导电金属包括铜、银、金、镍、锡中的一种或多种。
  4. 如权利要求1-3任一项所述的复合结构,其特征在于,所述导热层包括导热硅胶片、导热硅脂、导热双面胶带、导热石墨片、石墨烯片、氧化石墨烯片中的一种或多种。
  5. 如权利要求1-4任一项所述的复合结构,其特征在于,所述抗冲层包括硅橡胶、热塑性弹性体、聚氨酯丙烯酸酯、聚氯乙烯软胶、聚氨酯中的一种或多种。
  6. 如权利要求1-5任一项所述的复合结构,其特征在于,所述硬胶纤维复合材料包括至少一层纤维层,和固化在所述纤维层上的硬胶材料。
  7. 如权利要求6所述的复合结构,其特征在于,所述纤维层包括纤维单向布和/或纤维编织布。
  8. 如权利要求6或7所述的复合结构,其特征在于,所述硬胶材料包括硬质树脂和/或硬质橡胶。
  9. 如权利要求6-8任一项所述的复合结构,其特征在于,所述硬胶材料包括环氧树脂、酚醛树脂、氨基树脂、不饱和聚酯、硅醚树脂、聚烯烃、聚酰胺、聚甲醛、聚碳酸酯、聚苯醚、聚砜中的一种或多种。
  10. 如权利要求6-9任一项所述的复合结构,其特征在于,所述纤维层包括玻璃纤维、碳纤维、芳纶纤维、三氧化二铝纤维、超高分子量聚乙烯纤维、聚对苯撑苯并二噁唑纤维中的一种或多种。
  11. 如权利要求1-10任一项所述的复合结构,其特征在于,所述硬胶纤维复合材料中纤维的质量含量为10%-80%。
  12. 如权利要求6-11任一项所述的复合结构,其特征在于,所述硬胶纤维复合材料包括多层所述纤维层,多层所述纤维层与所述硬胶材料形成纤维和硬胶交替层叠的复合层叠体;或者多层所述纤维层层叠形成纤维叠合体,所述硬胶材料固化在所述纤维叠合体上。
  13. 如权利要求1-12任一项所述的复合结构,其特征在于,所述可弯折连接件的材质包括有机柔性材料、软胶纤维复合材料、可弯折的硬胶纤维复合材料和可弯折的金属材料中的一种或多种。
  14. 如权利要求13所述的复合结构,其特征在于,所述有机柔性材料包括氟橡胶、硅橡胶、热塑性弹性体、聚氯乙烯、聚酰亚胺、聚对苯二甲酸乙二酯、环烯烃聚合体、液晶聚合物、聚二甲基硅氧烷中的一种或多种。
  15. 如权利要求13所述的复合结构,其特征在于,所述软胶纤维复合材料包括至少一层所述纤维层,和固化在所述纤维层上的软胶材料;所述软胶材料包括氟橡胶、硅橡胶、热塑性弹性体中的一种或多种。
  16. 如权利要求13或15所述的复合结构,其特征在于,所述软胶纤维复合材料中纤维的质量含量为10%-80%。
  17. 如权利要求15或16所述的复合结构,其特征在于,所述软胶纤维复合材料包括多层所述纤维层,多层所述纤维层与所述软胶材料形成纤维和软胶交替层叠的复合层叠体;或者多层所述纤维层层叠形成纤维叠合体,所述软胶材料固化在所述纤维叠合体上。
  18. 如权利要求13所述的复合结构,其特征在于,所述可弯折的金属材料包括不锈钢、钛合金和铝合金中的一种或多种。
  19. 如权利要求13所述的复合结构,其特征在于,当所述可弯折连接件为软胶纤维复合材料时,所述复合结构包括连续存在于所述第一支撑件、所述第二支撑件和所述可弯折连接件中的一体编织的纤维层。
  20. 如权利要求13所述的复合结构,其特征在于,所述可弯折硬胶纤维复合材料具有多孔结构。
  21. 如权利要求13或20所述的复合结构,其特征在于,当所述可弯折连接件为可弯折硬胶纤维复合材料时,所述可弯折连接件与所述第一支撑件和/或所述第二支撑件为一体成型结构。
  22. 如权利要求1-21任一项所述的复合结构,其特征在于,所述复合结构的厚度为0.1mm-5mm。
  23. 一种终端,其特征在于,所述终端包括权利要求1-22任一项所述的复合结构。
  24. 一种柔性屏组件,其特征在于,所述柔性屏组件包括柔性屏和用于支撑所述柔性屏的柔性屏支撑结构,所述柔性屏支撑结构采用权利要求1-22任一项所述的复合结构制成。
  25. 一种可折叠终端,其特征在于,所述可折叠终端包括如权利要求24所述的柔性屏组件。
  26. 如权利要求25所述的可折叠终端,其特征在于,所述柔性屏包括弯折区,以及位于所述弯折区两侧的非弯折区,所述柔性屏支撑结构设置在所述柔性屏的外表面,其中,所述第一支撑件和所述第二支撑件分别与所述柔性屏两侧的非弯折区相对应,所述可弯折连接件与所述柔性屏的弯折区相对应。
PCT/CN2022/095153 2021-05-31 2022-05-26 复合结构、柔性屏组件和可折叠终端 WO2022253089A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023573666A JP2024520578A (ja) 2021-05-31 2022-05-26 複合構造体、フレキシブルディスプレイアセンブリ、及び折り畳み式端末
EP22815135.3A EP4322137A1 (en) 2021-05-31 2022-05-26 Composite structure, flexible screen assembly, and foldable terminal
BR112023024000A BR112023024000A2 (pt) 2021-05-31 2022-05-26 Estrutura compósita, montagem de display flexível, e terminal dobrável
US18/518,020 US20240083137A1 (en) 2021-05-31 2023-11-22 Composite structure, flexible display assembly, and foldable terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110606183.1A CN115416388A (zh) 2021-05-31 2021-05-31 复合结构、柔性屏组件和可折叠终端
CN202110606183.1 2021-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/518,020 Continuation US20240083137A1 (en) 2021-05-31 2023-11-22 Composite structure, flexible display assembly, and foldable terminal

Publications (1)

Publication Number Publication Date
WO2022253089A1 true WO2022253089A1 (zh) 2022-12-08

Family

ID=84195510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095153 WO2022253089A1 (zh) 2021-05-31 2022-05-26 复合结构、柔性屏组件和可折叠终端

Country Status (6)

Country Link
US (1) US20240083137A1 (zh)
EP (1) EP4322137A1 (zh)
JP (1) JP2024520578A (zh)
CN (1) CN115416388A (zh)
BR (1) BR112023024000A2 (zh)
WO (1) WO2022253089A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117153042A (zh) * 2023-01-13 2023-12-01 荣耀终端有限公司 折叠屏设备以及纤维复合板的制造方法
CN117119843B (zh) * 2023-04-14 2024-05-17 荣耀终端有限公司 电子设备及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018198A (ja) * 2014-07-11 2016-02-01 株式会社ジャパンディスプレイ 表示装置
CN107195795A (zh) * 2017-06-07 2017-09-22 武汉天马微电子有限公司 可折叠显示面板和可折叠显示装置
CN207115888U (zh) * 2017-08-03 2018-03-16 深圳市柔宇科技有限公司 折叠机构及终端
CN207381404U (zh) * 2017-08-31 2018-05-18 昆山国显光电有限公司 一种柔性显示器件
CN110166607A (zh) * 2019-06-19 2019-08-23 Oppo(重庆)智能科技有限公司 移动终端、折叠屏及其基板
WO2021007811A1 (zh) * 2019-07-17 2021-01-21 深圳市柔宇科技有限公司 柔性显示装置、电子设备及柔性显示装置的制造方法
WO2021013160A1 (zh) * 2019-07-25 2021-01-28 华为技术有限公司 一种复合结构、柔性屏组件及折叠显示终端
WO2021042998A1 (zh) * 2019-09-06 2021-03-11 华为技术有限公司 可折叠电子设备以及折叠屏安装结构
CN216353073U (zh) * 2021-05-18 2022-04-19 华为技术有限公司 柔性屏支撑件、柔性屏模组及电子设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018198A (ja) * 2014-07-11 2016-02-01 株式会社ジャパンディスプレイ 表示装置
CN107195795A (zh) * 2017-06-07 2017-09-22 武汉天马微电子有限公司 可折叠显示面板和可折叠显示装置
CN207115888U (zh) * 2017-08-03 2018-03-16 深圳市柔宇科技有限公司 折叠机构及终端
CN207381404U (zh) * 2017-08-31 2018-05-18 昆山国显光电有限公司 一种柔性显示器件
CN110166607A (zh) * 2019-06-19 2019-08-23 Oppo(重庆)智能科技有限公司 移动终端、折叠屏及其基板
WO2021007811A1 (zh) * 2019-07-17 2021-01-21 深圳市柔宇科技有限公司 柔性显示装置、电子设备及柔性显示装置的制造方法
WO2021013160A1 (zh) * 2019-07-25 2021-01-28 华为技术有限公司 一种复合结构、柔性屏组件及折叠显示终端
WO2021042998A1 (zh) * 2019-09-06 2021-03-11 华为技术有限公司 可折叠电子设备以及折叠屏安装结构
CN216353073U (zh) * 2021-05-18 2022-04-19 华为技术有限公司 柔性屏支撑件、柔性屏模组及电子设备

Also Published As

Publication number Publication date
BR112023024000A2 (pt) 2024-01-30
JP2024520578A (ja) 2024-05-24
EP4322137A1 (en) 2024-02-14
CN115416388A (zh) 2022-12-02
US20240083137A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2022253089A1 (zh) 复合结构、柔性屏组件和可折叠终端
KR102140924B1 (ko) 도전성 시트
EP2685797B1 (en) Composite material and electron device
KR102087163B1 (ko) 그래파이트 적층체, 그래파이트 적층체의 제조 방법, 열 수송용 구조물 및 로드상의 열 수송체
ES2746161T3 (es) Lámina compleja para la absorción/extinción y el blindaje contra las ondas electromagnéticas, y para la elevada disipación de calor de un dispositivo electrónico y procedimiento de fabricación de la misma
TWI304321B (en) Layered products, electromagnetic wave shielding molded articles and method for production thereof
CN107452970A (zh) 冷却装置及过程
JP6571000B2 (ja) 熱伝導性複合材及びその製造方法
JP6167537B2 (ja) 繊維強化プラスチック成形品の製造方法および一体成形品の製造方法
KR20150128874A (ko) 가요성 전자용 섬유-강화된 복합체 재료
CN114664180A (zh) 复合结构、柔性屏组件和可折叠终端
KR101238667B1 (ko) 그래핀 탄소섬유발열지를 이용한 양면 함침형 면상발열체의 제조방법
JP2005317942A (ja) 電気・電子機器
KR101256397B1 (ko) 그라파이트 밀폐형 전기/열 전도성 탄성가스켓
CN109411520A (zh) 柔性显示面板和显示装置
JP2009220478A (ja) 繊維強化サンドイッチ構造複合体、複合成形体
CN107046766A (zh) 柔性印制薄膜电路及系统
WO2024046338A1 (zh) 屏幕支撑结构及其制作方法、显示组件和电子设备
KR100751493B1 (ko) 전자기파 차단용 가스켓 시트
JP2014189921A (ja) 導電性織物およびその製造方法ならびにそれを用いた燃料電池用セパレータ
KR101596668B1 (ko) 접합 테이프 및 그 제조 방법
JPS63290735A (ja) フレキシブル積層板
JP3142091U (ja) 電気・電子機器
CN218453262U (zh) 一种用于显示模组的复合辅料膜材、显示模组、显示装置及电子设备
CN216873414U (zh) 一种柔性加热布

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815135

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022815135

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022815135

Country of ref document: EP

Effective date: 20231109

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023024000

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2023573666

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023024000

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231116