WO2022252956A1 - 一种高取向度海藻酸纤维及其制备方法 - Google Patents

一种高取向度海藻酸纤维及其制备方法 Download PDF

Info

Publication number
WO2022252956A1
WO2022252956A1 PCT/CN2022/092532 CN2022092532W WO2022252956A1 WO 2022252956 A1 WO2022252956 A1 WO 2022252956A1 CN 2022092532 W CN2022092532 W CN 2022092532W WO 2022252956 A1 WO2022252956 A1 WO 2022252956A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretching
alginic acid
coagulation bath
orientation
polyvinyl alcohol
Prior art date
Application number
PCT/CN2022/092532
Other languages
English (en)
French (fr)
Inventor
时留新
孙海燕
Original Assignee
南京林业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京林业大学 filed Critical 南京林业大学
Publication of WO2022252956A1 publication Critical patent/WO2022252956A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/10Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one other macromolecular compound obtained by reactions only involving carbon-to-carbon unsaturated bonds as constituent

Definitions

  • the invention belongs to the technical field of polymer materials, and in particular relates to an alginic acid fiber with a high degree of orientation and a preparation method thereof.
  • Alginic acid is a natural polymer composed of polymannuronic acid chain segments, polyguluronic acid chain segments and random copolymerized chain segments of the two.
  • Alginate fiber is a new regenerated fiber in the past ten years. With good hygroscopicity and comfort, it is expected to be applied in large quantities in the textile field.
  • Chinese Patent Publication No. CN101033564 introduces a preparation method of common and functional calcium alginate fibers: solidify a sodium alginate solution with a mass percentage of 3% to 8% in a sufficient amount of 2% to 5% calcium chloride Calcium alginate fibers were prepared by wet spinning in a bath.
  • CN1978718 discloses a preparation method of high-strength alginic acid/gelatin blended fibers: mixing a sodium alginate solution with a mass fraction of 3% to 6% and a 6% to 12% gelatin aqueous solution in a certain proportion , Under the condition of about 33 °C, the blended fiber can be prepared by wet spinning through a metal coagulation bath and an acid coagulation bath.
  • alginic acid and alginic acid/polymer fibers are made by ion exchange, and divalent metal cations are used as a coagulation bath, and the fracture strength and elongation of the obtained alginate fibers are relatively poor, resulting in relatively poor fiber brittleness. Large, which seriously affects the application of alginate fiber.
  • alginate fiber is affected by the molecular weight range.
  • the molecular weight of sodium alginate is generally between 400 and 10,000, and the performance of low molecular weight sodium alginate is poor.
  • Stretching orientation can affect the physical properties of fibers. Unstretched or less-stretched polymer fibers generally exhibit low crystallinity and orientation, and unstable molecular structures. Therefore, the polymer fiber exhibits a small modulus. Stretching the primary fiber to 100% to 1000% of its original length can stabilize the fiber structure and obtain one, several or dozens of times the physical properties of the original long fiber.
  • alginic acid fiber During the stretching process of alginic acid fiber, the orientation of the fiber along the axial direction is improved, accompanied by crystallization changes, forming inter-molecular and intra-molecular hydrogen bonds, and improving the physical properties of the fiber.
  • factors such as the movement resistance of alginic acid macromolecules, it often cannot be stretched or less stretched in actual production, and highly oriented alginic acid fibers cannot be formed.
  • Polyvinyl alcohol is a versatile and functional polymer material with excellent performance and wide application. It is a thermoplastic resin with a polyhydric strong hydrogen molecular structure and a single -CC- main chain. Its structural formula is: CH 2 CHOH n , PVA is one of the few water-soluble polymers that can be artificially synthesized.
  • the water solubility of PVA is largely governed by the degree of polymerization, especially the degree of alcoholysis. Strong hydrogen bonds are easily formed between intermolecular and intramolecular hydroxyl groups, which hinders the dissolution of PVA in water. Therefore, the higher the degree of alcoholysis, the higher the temperature and the longer the time required for PVA dissolution.
  • the residual acetate groups of partially alcoholysed PVA are hydrophobic, which can weaken the hydrogen bonds between adjacent molecules and intramolecules, and can improve the water solubility of PVA.
  • a technical problem to be solved by the present invention is to provide a method for preparing alginic acid fibers with high orientation degree.
  • Another technical problem to be solved by the present invention is to provide an alginic acid fiber with a high degree of orientation.
  • a method for preparing alginic acid fibers with a high degree of orientation using sodium alginate with a molecular weight of 400-10000 Daltons and polyvinyl alcohol with a degree of alcoholysis of 70%-100% and a degree of polymerization of 500-4000 as raw materials, dissolving Finally, the spinning stock solution is obtained, which is defoamed and spun, then stretched after being treated in the first coagulation bath and the second coagulation bath, and the high orientation degree alginic acid fiber is obtained after washing to remove polyvinyl alcohol.
  • the preparation method of the high degree of orientation alginic acid fiber includes adding polyvinyl alcohol into water, heating and fully dissolving, and after the PVA aqueous solution drops below 60°C, adding sodium alginate and fully dissolving to form a spinning stock solution; the polyethylene
  • the mass ratio of alcohol to water is 1:5-1:16; the mass ratio of polyvinyl alcohol to sodium alginate is 1:10-10:1.
  • the spinning dope is placed under the condition of 45-60° C. for static defoaming.
  • the preparation method of the highly oriented alginic acid fiber is to spin through a spinneret hole of 0.05 to 0.08 mm at a speed of 9.5 m/s to the first coagulation bath under a pressure of 0.10 to 1.0 MPa.
  • the preparation method of the high degree of orientation alginate fiber is an aqueous sodium sulfate solution with a mass fraction of 25% to 40%; the second coagulation bath is a chlorinated sodium chloride solution with a mass fraction of 2% to 30%. calcium solution.
  • the preparation method of the high degree of orientation alginic acid fiber after the coagulation bath treatment, successively undergoes wet stretching, air stretching and dry heat stretching, wherein the stretching ratio is 1 to 4 times during wet stretching; The stretching ratio is 1 to 4 times; the stretching ratio is 1 to 6 times during dry heat stretching, and the godet roller temperature is 180 to 320°C.
  • the preparation method of the high degree of orientation alginate fiber comprises the following steps:
  • the first coagulation bath and the second coagulation bath are coagulated through 0.05 ⁇ 0.08mm spinneret holes with a speed of 9.5m/s;
  • the first coagulation bath is a mass fraction of 25% to 40% sodium sulfate aqueous solution;
  • the second coagulation bath is a calcium chloride aqueous solution with a mass fraction of 2% to 30%;
  • the advantages of the present invention include:
  • the present invention rationally selects the molecular weight of sodium alginate, polyvinyl alcohol hydrolysis degree and polymerization degree; optimizes spinning and stretching conditions to obtain high orientation degree alginic acid/polyvinyl alcohol composite fiber, and reveals intermolecular or intramolecular hydrogen The bond hinders the super-stretching of the fiber and ultimately affects the nature of the fiber strength. By changing the conditions, the purpose of weakening the hydrogen bond, increasing the fiber stretching ratio, and finally increasing the fiber strength is achieved.
  • a preparation method of alginic acid fiber with high degree of orientation comprising the following steps:
  • the first step 140kg of polyvinyl alcohol with a degree of alcoholysis of 99% and a degree of polymerization of 1700 is added to 830kg of water, heated at 100°C to fully dissolve, and after the PVA aqueous solution drops below 60°C, add 30kg of 1.2 ⁇ 10 ⁇ 5 Daltons Sodium alginate, fully dissolved to form spinning stock solution;
  • the spinning stock solution is placed under the condition of 45-60°C for static defoaming
  • the first coagulation bath and the second coagulation bath are coagulated by spinning at a speed of 9.5 meters per second through a 0.07mm spinneret hole;
  • the first coagulation bath is sodium sulfate with a mass fraction of 34% Aqueous solution;
  • the second coagulation bath is a calcium chloride aqueous solution with a mass fraction of 3%;
  • the stretching ratio is 1.2 times for wet stretching; 1.5 times for air stretching; dry heat stretching
  • the drawing ratio during stretching is 4 times, and the godet temperature is 300°C.
  • the fifth step is water washing.
  • the fibers obtained in the fourth step are washed with water to obtain alginic acid fibers with high orientation degree after washing away the polyvinyl alcohol.
  • a preparation method of alginic acid fiber with high degree of orientation comprising the following steps:
  • the first step 140kg of polyvinyl alcohol with a degree of alcoholysis of 99% and a degree of polymerization of 1700 is added to 830kg of water, heated at 100°C to fully dissolve, and after the PVA aqueous solution drops below 60°C, add 30kg of 1.2 ⁇ 10 ⁇ 5 Daltons Sodium alginate, fully dissolved to form spinning stock solution;
  • the spinning stock solution is placed under the condition of 45-60°C for static defoaming
  • the first coagulation bath and the second coagulation bath are coagulated by spinning at a speed of 9.5 meters per second through a 0.07mm spinneret hole;
  • the first coagulation bath is sodium sulfate with a mass fraction of 34% Aqueous solution;
  • the second coagulation bath is a calcium chloride aqueous solution with a mass fraction of 3%;
  • the stretching ratio is 1.2 times for wet stretching; 1.5 times for air stretching; dry heat stretching
  • the drawing ratio during stretching is 5 times, and the godet temperature is 300°C.
  • the fifth step is water washing.
  • the fibers obtained in the fourth step are washed with water to obtain alginic acid fibers with high orientation degree after washing away the polyvinyl alcohol.
  • a preparation method of alginic acid fiber with high degree of orientation comprising the following steps:
  • the first step 140kg of polyvinyl alcohol with a degree of alcoholysis of 99% and a degree of polymerization of 2400 is added to 830kg of water, heated at 100°C to fully dissolve, and after the PVA aqueous solution drops below 60°C, add 30kg of 1.2 ⁇ 10 ⁇ 5 Daltons Sodium alginate, fully dissolved to form spinning stock solution;
  • the spinning stock solution is placed under the condition of 45-60°C for static defoaming
  • the first coagulation bath and the second coagulation bath are coagulated by spinning at a speed of 9.5 meters per second through a 0.07mm spinneret hole;
  • the first coagulation bath is sodium sulfate with a mass fraction of 34% Aqueous solution;
  • the second coagulation bath is a calcium chloride aqueous solution with a mass fraction of 3%;
  • the stretching ratio is 1.2 times for wet stretching; 1.5 times for air stretching; dry heat stretching
  • the drawing ratio during stretching is 5 times, and the godet temperature is 300°C.
  • the fifth step is water washing.
  • the fibers obtained in the fourth step are washed with water to obtain alginic acid fibers with high orientation degree after washing away the polyvinyl alcohol.
  • a preparation method of alginic acid fiber with high degree of orientation comprising the following steps:
  • the first step 110kg of polyvinyl alcohol with a degree of alcoholysis of 99% and a degree of polymerization of 2400 is added to 830kg of water, heated at 100°C to fully dissolve, and after the PVA aqueous solution drops below 60°C, add 60kg of 1.2 ⁇ 10 ⁇ 5 Daltons Sodium alginate, fully dissolved to form spinning stock solution;
  • the spinning stock solution is placed under the condition of 45-60°C for static defoaming
  • the first coagulation bath and the second coagulation bath are coagulated by spinning at a speed of 9.5 meters per second through a 0.07mm spinneret hole;
  • the first coagulation bath is sodium sulfate with a mass fraction of 34% Aqueous solution;
  • the second coagulation bath is a calcium chloride aqueous solution with a mass fraction of 3%;
  • the stretching ratio is 1.2 times for wet stretching; 1.5 times for air stretching; dry heat stretching
  • the drawing ratio during stretching is 4 times, and the godet temperature is 300°C.
  • the fifth step is water washing.
  • the fibers obtained in the fourth step are washed with water to obtain alginic acid fibers with high orientation degree after washing away the polyvinyl alcohol.
  • a preparation method of alginic acid fiber with high degree of orientation comprising the following steps:
  • the first step 140kg of polyvinyl alcohol with a degree of alcoholysis of 99% and a degree of polymerization of 2400 is added to 830kg of water, heated at 100°C to fully dissolve, and after the PVA aqueous solution drops below 60°C, add 30kg of 1.02 ⁇ 10 ⁇ 5 Daltons Sodium alginate, fully dissolved to form spinning stock solution;
  • the spinning stock solution is placed under the condition of 45-60°C for static defoaming
  • the first coagulation bath and the second coagulation bath are coagulated by spinning at a speed of 9.5 meters per second through a 0.07mm spinneret hole;
  • the first coagulation bath is sodium sulfate with a mass fraction of 34% Aqueous solution;
  • the second coagulation bath is a calcium chloride aqueous solution with a mass fraction of 3%;
  • the stretching ratio is 1.2 times for wet stretching; 1.5 times for air stretching; dry heat stretching
  • the drawing ratio during stretching is 4 times, and the godet temperature is 300°C.
  • the fifth step is water washing.
  • the fibers obtained in the fourth step are washed with water to obtain alginic acid fibers with high orientation degree after washing away the polyvinyl alcohol.
  • Example 1-5 The high orientation degree alginic acid fibers prepared in Examples 1-5 were tested for properties such as dry breaking strength, wet breaking strength and initial modulus, and the results are shown in Table 1. It can be seen from Table 1 that compared with Example 1, Example 2 increases the dry heat stretching ratio, and the physical properties are better than Example 1; Example 3 adjusts the degree of polymerization of polyvinyl alcohol from 1700 on the basis of Example 2 2400, the obtained fiber mechanical energy is better; Example 4 increases the ratio of sodium alginate to polyvinyl alcohol, and the strength decreases; Example 5 reduces the molecular weight of sodium alginate, and the strength decreases.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Dry breaking strength (cN/dtex) 6.5 7.1 7.7 6.0 6.4
  • Initial modulus (cN/dtex) 82 86 91 78 81

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Artificial Filaments (AREA)

Abstract

一种高取向度海藻酸纤维及其制备方法,属于高分子材料技术领域。该方法以分子量为400~10000道尔顿的海藻酸钠和醇解度为70~100、聚合度为500~4000的聚乙烯醇为原料,溶解后得到纺丝原液,经静置脱泡、纺丝,再经第一凝固浴和第二凝固浴处理后拉伸,水洗去除聚乙烯醇后最终得到高取向度海藻酸纤维。所述制备方法合理选择海藻酸钠分子量、聚乙烯醇醇解度与聚合度;优化纺丝和拉伸条件得到高取向度海藻酸/聚乙烯醇复合纤维,并揭示了分子间或分子内氢键阻碍纤维超拉伸、最终影响纤维强度的本质,通过条件改变,达到弱化氢键、提高纤维拉伸倍数、最终提高纤维强度的目的。

Description

一种高取向度海藻酸纤维及其制备方法 技术领域
本发明属于高分子材料技术领域,具体涉及一种高取向度海藻酸纤维及其制备方法。
背景技术
海藻酸是一种由聚甘露糖醛酸链段,聚古洛糖醛酸链段和两者无规共聚的链段所组成的天然高分子,海藻酸纤维是近十年来新兴的再生纤维,具有良好的吸湿性和舒适性,有望实现在纺织品领域的大批量应用。
中国专利公开号CN101033564介绍了一种普通及功能性海藻酸钙纤维的制备方法:将质量百分比为3%~8%的海藻酸钠溶液,在足量的2%~5%的氯化钙凝固浴中以湿法纺丝制取海藻酸钙纤维。中国专利公开号CN1978718公开了一种高强度海藻酸/明胶共混纤维的制备方法:将质量分数为3%~6%的海藻酸钠溶液与6%~12%的明胶水溶液按一定的比例混合,在33℃左右的条件下,采用湿法纺丝经过金属凝固浴和酸凝固浴便可制得共混纤维。上述制备方法,通过离子交换的方法制成海藻酸、海藻酸/高聚物纤维,使用二价金属阳离子为凝固浴,而获得的海藻酸盐纤维断裂强力和伸长率较差,导致纤维脆性较大,严重影响了海藻酸纤维的应用。
另外,海藻酸纤维受分子量范围的影响,海藻酸钠的分子量一般在400~10000之间,低分子量海藻酸钠性能较差。拉伸取向可以影响纤维的物理性能,未经拉伸或少拉伸的高聚物纤维一般表现结晶度和取向度较低,分子结构不稳定。因此,该高聚物纤维呈较小的模量。将初生纤维拉伸至原长的100%~1000%,能起到稳定纤维结构的作用,并获得原长纤维一倍、几倍或几十倍的物理性能。海藻酸纤维在拉伸的过程中,纤维沿轴向取向提高,并伴有结晶的变化,形成分子间、分子内氢键,改善纤维的物理性能。但是,由于海藻酸大分子运动阻力等因素的影响,实际生产中往往不能被拉伸或者少拉伸,形成不了高取向的海藻酸纤维。
聚乙烯醇是一种性能优良、用途广泛的通用性及功能性高分子材料,是一种热塑性树脂,具有多羟基强氢分子结构和单一的-C-C-主链,其结构式为:CH 2CHOH n,PVA是为数不多的可人工合成的水溶性高分子。PVA的水溶性在很大程度上受聚合度,特别是醇解度所支配。分子间和分子内的羟基间易形成强氢键,阻碍PVA在水中的溶解,因此,醇解度越高,PVA溶解所需温度越高,时间越长。而部分醇解PVA的残存醋酸根具疏水性,可减弱邻近分子间和分子内的氢键,可以改善PVA的水溶性。
发明内容
针对现有技术中存在的问题,本发明要解决的一个技术问题在于提供一种高取向度海藻酸纤维的制备方法。本发明要解决的另一个技术问题在于提供一种高取向度海藻酸纤维。
为了解决上述问题,本发明所采用的技术方案如下:
一种高取向度海藻酸纤维的制备方法,以分子量为400~10000道尔顿的海藻酸钠和醇解度为70%~100%、聚合度为500~4000的聚乙烯醇为原料,溶解后得到纺丝原液,经静置脱泡、纺丝,再经第一凝固浴和第二凝固浴处理后拉伸,水洗去除聚乙烯醇后得到高取向度海藻酸纤维。
所述高取向度海藻酸纤维的制备方法,将聚乙烯醇加入到水中,加热充分溶解,PVA水溶液降至60℃以下后,加入海藻酸钠,充分溶解后形成纺丝原液;所述聚乙烯醇与水的质量比为1:5~1:16;所述聚乙烯醇与海藻酸钠的质量比为1:10~10:1。
所述高取向度海藻酸纤维的制备方法,纺丝原液置于45~60℃条件下静置消泡。
所述高取向度海藻酸纤维的制备方法,在0.10~1.0Mpa压力下经0.05~0.08mm喷丝孔以9.5m/s的速度喷丝至第一凝固浴。
所述高取向度海藻酸纤维的制备方法,所述第一凝固浴为质量分数为25%~40%的硫酸钠水溶液;所述第二凝固浴为质量分数为2%~30%的氯化钙水溶液。
所述高取向度海藻酸纤维的制备方法,凝固浴处理结束后依次经过湿拉伸、空气拉伸和干热拉伸,其中湿拉伸时拉伸比例为1~4倍;空气拉伸时拉伸比例为1~4倍;干热拉伸时拉伸比例为1~6倍,导丝辊温度为180~320℃。
所述高取向度海藻酸纤维的制备方法,包括以下步骤:
(1)将聚乙烯醇加入到水中,加热充分溶解,PVA水溶液降至60℃以下后,加入海藻酸钠,充分溶解后形成纺丝原液;
(2)纺丝原液置于45~60℃条件下静置消泡;
(3)在0.10~1.0Mpa压力下经0.05~0.08mm喷丝孔以9.5m/s的速度喷丝至第一凝固浴和第二凝固浴进行凝固;所述第一凝固浴为质量分数为25%~40%的硫酸钠水溶液;所述第二凝固浴为质量分数为2%~30%的氯化钙水溶液;
(4)凝固浴处理结束后依次经过湿拉伸、空气拉伸和干热拉伸,其中湿拉伸时拉伸比例为1~4倍;空气拉伸时拉伸比例为1~4倍;干热拉伸时拉伸比例为1~6倍,导丝辊温度为180~320℃。
(5)将所述步骤(4)得到纤维进行水洗,洗去聚乙烯醇后,得到高取向度海藻酸纤维。
上述方法制备得到的高取向度海藻酸纤维。
有益效果:与现有的技术相比,本发明的优点包括:
(1)本发明合理选择海藻酸钠分子量、聚乙烯醇醇解度与聚合度;优化纺丝和拉伸条件得到高取向度海藻酸/聚乙烯醇复合纤维,并揭示了分子间或分子内氢键阻碍纤维超拉伸、最终影响纤维强度的本质,通过条件改变,达到弱化氢键、提高纤维拉伸倍数、最终提高纤维强度的目的。
(2)本发明做成高取向度海藻酸/聚乙烯醇复合纤维后,利用聚乙烯醇的水溶性,将聚乙烯醇用水洗掉,最终做成物理性能优异的高取向度海藻酸纤维。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合具体实施例对本发明的具体实施方式做详细的说明。
实施例1
一种高取向度海藻酸纤维的制备方法,包括以下步骤:
第一步,将醇解度99%、聚合度1700的聚乙烯醇140kg加入到830kg水中,加热100℃充分溶解,待PVA水溶液降至60℃以下后,加入30kg 1.2×10^5道尔顿的海藻酸钠,充分溶解后形成纺丝原液;
第二步,纺丝原液置于45~60℃条件下静置消泡;
第三步,在0.6Mpa压力下经0.07mm喷丝孔以每秒9.5米的速度喷丝至第一凝固浴和第二凝固浴进行凝固;第一凝固浴为质量分数为34%的硫酸钠水溶液;第二凝固浴为质量分数为3%的氯化钙水溶液;
第四步,凝固浴处理结束后依次经过湿拉伸、空气拉伸和干热拉伸,其中湿拉伸时拉伸比例为1.2倍;空气拉伸时拉伸比例为1.5倍;干热拉伸时拉伸比例为4倍,导丝辊温度为300℃。
第五步,水洗,将第四步得到纤维进行水洗,洗去聚乙烯醇后,得到高取向度海藻酸纤维。
实施例2
一种高取向度海藻酸纤维的制备方法,包括以下步骤:
第一步,将醇解度99%、聚合度1700的聚乙烯醇140kg加入到830kg水中,加热100℃充分溶解,待PVA水溶液降至60℃以下后,加入30kg 1.2×10^5道尔顿的海藻酸钠,充分溶解后形成纺丝原液;
第二步,纺丝原液置于45~60℃条件下静置消泡;
第三步,在0.6Mpa压力下经0.07mm喷丝孔以每秒9.5米的速度喷丝至第一凝固浴和第二凝固浴进行凝固;第一凝固浴为质量分数为34%的硫酸钠水溶液;第二凝固浴为质量分数 为3%的氯化钙水溶液;
第四步,凝固浴处理结束后依次经过湿拉伸、空气拉伸和干热拉伸,其中湿拉伸时拉伸比例为1.2倍;空气拉伸时拉伸比例为1.5倍;干热拉伸时拉伸比例为5倍,导丝辊温度为300℃。
第五步,水洗,将第四步得到纤维进行水洗,洗去聚乙烯醇后,得到高取向度海藻酸纤维。
实施例3
一种高取向度海藻酸纤维的制备方法,包括以下步骤:
第一步,将醇解度99%、聚合度2400的聚乙烯醇140kg加入到830kg水中,加热100℃充分溶解,待PVA水溶液降至60℃以下后,加入30kg 1.2×10^5道尔顿的海藻酸钠,充分溶解后形成纺丝原液;
第二步,纺丝原液置于45~60℃条件下静置消泡;
第三步,在0.6Mpa压力下经0.07mm喷丝孔以每秒9.5米的速度喷丝至第一凝固浴和第二凝固浴进行凝固;第一凝固浴为质量分数为34%的硫酸钠水溶液;第二凝固浴为质量分数为3%的氯化钙水溶液;
第四步,凝固浴处理结束后依次经过湿拉伸、空气拉伸和干热拉伸,其中湿拉伸时拉伸比例为1.2倍;空气拉伸时拉伸比例为1.5倍;干热拉伸时拉伸比例为5倍,导丝辊温度为300℃。
第五步,水洗,将第四步得到纤维进行水洗,洗去聚乙烯醇后,得到高取向度海藻酸纤维。
实施例4
一种高取向度海藻酸纤维的制备方法,包括以下步骤:
第一步,将醇解度99%、聚合度2400的聚乙烯醇110kg加入到830kg水中,加热100℃充分溶解,待PVA水溶液降至60℃以下后,加入60kg 1.2×10^5道尔顿的海藻酸钠,充分溶解后形成纺丝原液;
第二步,纺丝原液置于45~60℃条件下静置消泡;
第三步,在0.6Mpa压力下经0.07mm喷丝孔以每秒9.5米的速度喷丝至第一凝固浴和第二凝固浴进行凝固;第一凝固浴为质量分数为34%的硫酸钠水溶液;第二凝固浴为质量分数为3%的氯化钙水溶液;
第四步,凝固浴处理结束后依次经过湿拉伸、空气拉伸和干热拉伸,其中湿拉伸时拉伸比例为1.2倍;空气拉伸时拉伸比例为1.5倍;干热拉伸时拉伸比例为4倍,导丝辊温度为 300℃。
第五步,水洗,将第四步得到纤维进行水洗,洗去聚乙烯醇后,得到高取向度海藻酸纤维。
实施例5
一种高取向度海藻酸纤维的制备方法,包括以下步骤:
第一步,将醇解度99%、聚合度2400的聚乙烯醇140kg加入到830kg水中,加热100℃充分溶解,待PVA水溶液降至60℃以下后,加入30kg 1.02×10^5道尔顿的海藻酸钠,充分溶解后形成纺丝原液;
第二步,纺丝原液置于45~60℃条件下静置消泡;
第三步,在0.6Mpa压力下经0.07mm喷丝孔以每秒9.5米的速度喷丝至第一凝固浴和第二凝固浴进行凝固;第一凝固浴为质量分数为34%的硫酸钠水溶液;第二凝固浴为质量分数为3%的氯化钙水溶液;
第四步,凝固浴处理结束后依次经过湿拉伸、空气拉伸和干热拉伸,其中湿拉伸时拉伸比例为1.2倍;空气拉伸时拉伸比例为1.5倍;干热拉伸时拉伸比例为4倍,导丝辊温度为300℃。
第五步,水洗,将第四步得到纤维进行水洗,洗去聚乙烯醇后,得到高取向度海藻酸纤维。
对实施例1~5制备得到的高取向度海藻酸纤维进行干态断裂强度、湿态断裂强度和初始模量等性能的测定,结果如表1所示。由表1可知,实施例2相比实施例1,增加了干热拉伸倍数,物理性能比实施例1好;实施例3在实施例2基础上,将聚乙烯醇的聚合度从1700调整为2400,所获纤维机械能能更好;实施例4增加了海藻酸钠与聚乙烯醇的比例,强度下降;实施例5降低了海藻酸钠的分子量,强度下降。
表1 实施例1~5高取向度海藻酸纤维的性能测试结果
  实施例1 实施例2 实施例3 实施例4 实施例5
干态断裂强度(cN/dtex) 6.5 7.1 7.7 6.0 6.4
湿态断裂强度(cN/dtex) 4.6 5.5 6.0 4.5 4.7
初始模量(cN/dtex) 82 86 91 78 81

Claims (8)

  1. 一种高取向度海藻酸纤维的制备方法,其特征在于,以分子量为400~10000道尔顿的海藻酸钠和醇解度为70%~100%、聚合度为500~4000的聚乙烯醇为原料,溶解后得到纺丝原液,经静置脱泡、纺丝,再经第一凝固浴和第二凝固浴处理后拉伸,水洗去除聚乙烯醇后得到高取向度海藻酸纤维。
  2. 根据权利要求1所述高取向度海藻酸纤维的制备方法,其特征在于,将聚乙烯醇加入到水中,加热充分溶解,PVA水溶液降至60℃以下后,加入海藻酸钠,充分溶解后形成纺丝原液;所述聚乙烯醇与水的质量比为1:5~1:16;所述聚乙烯醇与海藻酸钠的质量比为1:10~10:1。
  3. 根据权利要求1所述高取向度海藻酸纤维的制备方法,其特征在于,纺丝原液置于45~60℃条件下静置消泡。
  4. 根据权利要求1所述高取向度海藻酸纤维的制备方法,其特征在于,在0.10~1.0Mpa压力下经0.05~0.08mm喷丝孔以9.5m/s的速度喷丝至第一凝固浴。
  5. 根据权利要求1所述高取向度海藻酸纤维的制备方法,其特征在于,所述第一凝固浴为质量分数为25%~40%的硫酸钠水溶液;所述第二凝固浴为质量分数为2%~30%的氯化钙水溶液。
  6. 根据权利要求1所述高取向度海藻酸纤维的制备方法,其特征在于,凝固浴处理结束后依次经过湿拉伸、空气拉伸和干热拉伸,其中湿拉伸时拉伸比例为1~4倍;空气拉伸时拉伸比例为1~4倍;干热拉伸时拉伸比例为1~6倍,导丝辊温度为180~320℃。
  7. 根据权利要求1所述高取向度海藻酸纤维的制备方法,其特征在于,包括以下步骤:
    (1)将聚乙烯醇加入到水中,加热充分溶解,PVA水溶液降至60℃以下后,加入海藻酸钠,充分溶解后形成纺丝原液;
    (2)纺丝原液置于45~60℃条件下静置消泡;
    (3)在0.10~1.0Mpa压力下经0.05~0.08mm喷丝孔以9.5m/s的速度喷丝至第一凝固浴和第二凝固浴进行凝固;所述第一凝固浴为质量分数为25%~40%的硫酸钠水溶液;所述第二凝固浴为质量分数为2%~30%的氯化钙水溶液;
    (4)凝固浴处理结束后依次经过湿拉伸、空气拉伸和干热拉伸,其中湿拉伸时拉伸比例为1~4倍;空气拉伸时拉伸比例为1~4倍;干热拉伸时拉伸比例为1~6倍,导丝辊温度为180~320℃。
    (5)将所述步骤(4)得到纤维进行水洗,洗去聚乙烯醇后,得到高取向度海藻酸纤维。
  8. 权利要求1~7任一所述方法制备得到的高取向度海藻酸纤维。
PCT/CN2022/092532 2021-05-31 2022-05-12 一种高取向度海藻酸纤维及其制备方法 WO2022252956A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110602211.2A CN113463222B (zh) 2021-05-31 2021-05-31 一种高取向度海藻酸纤维及其制备方法
CN202110602211.2 2021-05-31

Publications (1)

Publication Number Publication Date
WO2022252956A1 true WO2022252956A1 (zh) 2022-12-08

Family

ID=77871801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/092532 WO2022252956A1 (zh) 2021-05-31 2022-05-12 一种高取向度海藻酸纤维及其制备方法

Country Status (2)

Country Link
CN (1) CN113463222B (zh)
WO (1) WO2022252956A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113463222B (zh) * 2021-05-31 2022-03-04 南京林业大学 一种高取向度海藻酸纤维及其制备方法
CN115094539B (zh) * 2022-07-13 2023-08-22 大连工业大学 一种隔热阻燃海藻酸钠/聚乙烯醇气凝胶纤维及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327696A2 (en) * 1988-02-10 1989-08-16 Toray Industries, Inc. High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
CN1986920A (zh) * 2005-12-21 2007-06-27 青岛大学 一种海藻酸盐/聚乙烯醇复合纤维及其制备方法
CN101509152A (zh) * 2009-03-20 2009-08-19 青岛大学 一种卡拉胶纤维及其复合纤维的制备方法
CN106149099A (zh) * 2016-06-30 2016-11-23 吉岡诚 一种高强度海藻纤维的制备方法
WO2017062429A1 (en) * 2015-10-05 2017-04-13 The Brigham And Women's Hospital, Inc Multicomponent and multifunctional living fiber
CN113463222A (zh) * 2021-05-31 2021-10-01 南京林业大学 一种高取向度海藻酸纤维及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187092A (zh) * 2007-12-26 2008-05-28 青岛大学 多离子海藻酸盐海洋纤维及其制备方法
CN105457094A (zh) * 2014-08-07 2016-04-06 天津开发区金衫包装制品有限公司 一种氯化钙交联的海藻酸钠纳米纤维支架材料及其制备方法
CN109735960A (zh) * 2019-01-29 2019-05-10 江苏中石纤维股份有限公司 一种海藻酸盐纤维的制备方法
CN109868525A (zh) * 2019-02-19 2019-06-11 青岛海赛尔新材料科技有限公司 一种高强度海藻与聚乙烯醇共混纤维的制备方法
CN111254517A (zh) * 2020-03-17 2020-06-09 余姚市龙翔水刺热轧无纺有限公司 一种pva和海藻酸钠混纺的海藻纤维及其制备方法
CN112226840B (zh) * 2020-08-04 2021-07-23 东华大学 一种高强高模pva纤维及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327696A2 (en) * 1988-02-10 1989-08-16 Toray Industries, Inc. High-tenacity water-soluble polyvinyl alcohol fiber and process for producing the same
CN1986920A (zh) * 2005-12-21 2007-06-27 青岛大学 一种海藻酸盐/聚乙烯醇复合纤维及其制备方法
CN101509152A (zh) * 2009-03-20 2009-08-19 青岛大学 一种卡拉胶纤维及其复合纤维的制备方法
WO2017062429A1 (en) * 2015-10-05 2017-04-13 The Brigham And Women's Hospital, Inc Multicomponent and multifunctional living fiber
CN106149099A (zh) * 2016-06-30 2016-11-23 吉岡诚 一种高强度海藻纤维的制备方法
CN113463222A (zh) * 2021-05-31 2021-10-01 南京林业大学 一种高取向度海藻酸纤维及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI XIAO: "Preparation and Properties Research for Blended Products of Sodium Alginate and Water-Soluble Polymers", MASTER THESIS, TIANJIN POLYTECHNIC UNIVERSITY, CN, no. 11, 15 January 2019 (2019-01-15), CN , XP093010398, ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN113463222B (zh) 2022-03-04
CN113463222A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2022252956A1 (zh) 一种高取向度海藻酸纤维及其制备方法
CN101195933B (zh) 轮胎帘子线用莱赛尔纤维的制备方法
CN105002592B (zh) 一种醋腈纤维及其制备方法
CN101161880A (zh) 一种聚丙烯腈基碳纤维原丝的制备方法
CN106591992B (zh) 一种改性明胶纤维
CN113355769B (zh) 一种羟基化海藻酸纤维及其制备方法
CN1710160A (zh) 一种制备间位芳香族聚酰胺纤维的方法
WO1986007393A1 (en) Tire cord made of polyvinyl alcohol
CN109402774B (zh) 一种抗原纤化纤维素纤维及其制备方法
CN110678515B (zh) 用于纤维强化的添加剂
US20140106167A1 (en) Method for hybrid dry-jet gel spinning and fiber produced by that method
Yang et al. Preparation and characterization of novel super-artificial hair fiber based on biomass materials
CN106591993A (zh) 一种明胶纤维纺丝方法
CN113215669A (zh) 热塑性聚氨酯纤维及其制作方法
CN116770444A (zh) 一种制备高强度间位芳纶纤维的冷冻纺丝工艺
KR101551418B1 (ko) 폴리케톤 섬유의 제조 방법
CN111394828A (zh) 一种聚丙烯腈纤维的纺丝方法
WO2022237722A1 (zh) 海藻纤维及其制备方法
CN103820877A (zh) 一种新型改性聚乙烯醇及其纺丝方法
CN107641841B (zh) 聚苯乙烯诱导介观结构增强的再生蚕丝纤维及其制备方法
CN114134597B (zh) 一种乳胶-莱赛尔复合纤维及其制备方法
KR101342270B1 (ko) 파라계 아라미드 섬유
JPH04240207A (ja) ポリビニルアルコール系繊維及びその製造法
CN108385197B (zh) 一种增韧聚乳酸多孔纳米纤维及其制备方法
JPS6071240A (ja) タイヤ補強用コ−ドの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22815003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE