WO2022252365A1 - 一种无鞣剂制革的方法 - Google Patents

一种无鞣剂制革的方法 Download PDF

Info

Publication number
WO2022252365A1
WO2022252365A1 PCT/CN2021/107531 CN2021107531W WO2022252365A1 WO 2022252365 A1 WO2022252365 A1 WO 2022252365A1 CN 2021107531 W CN2021107531 W CN 2021107531W WO 2022252365 A1 WO2022252365 A1 WO 2022252365A1
Authority
WO
WIPO (PCT)
Prior art keywords
hide
leather
bare
skin
weight
Prior art date
Application number
PCT/CN2021/107531
Other languages
English (en)
French (fr)
Inventor
黄鑫
黄亚文
石碧
Original Assignee
四川大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学 filed Critical 四川大学
Priority to EP21927061.8A priority Critical patent/EP4124664A4/en
Priority to US17/899,644 priority patent/US11739390B2/en
Publication of WO2022252365A1 publication Critical patent/WO2022252365A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14BMECHANICAL TREATMENT OR PROCESSING OF SKINS, HIDES OR LEATHER IN GENERAL; PELT-SHEARING MACHINES; INTESTINE-SPLITTING MACHINES
    • C14B1/00Manufacture of leather; Machines or devices therefor
    • C14B1/58Drying
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C1/00Chemical treatment prior to tanning
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C11/00Surface finishing of leather
    • C14C11/003Surface finishing of leather using macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C13/00Manufacture of special kinds or leather, e.g. vellum
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C9/00Impregnating leather for preserving, waterproofing, making resistant to heat or similar purposes
    • CCHEMISTRY; METALLURGY
    • C14SKINS; HIDES; PELTS; LEATHER
    • C14CCHEMICAL TREATMENT OF HIDES, SKINS OR LEATHER, e.g. TANNING, IMPREGNATING, FINISHING; APPARATUS THEREFOR; COMPOSITIONS FOR TANNING
    • C14C9/00Impregnating leather for preserving, waterproofing, making resistant to heat or similar purposes
    • C14C9/02Impregnating leather for preserving, waterproofing, making resistant to heat or similar purposes using fatty or oily materials, e.g. fat liquoring

Definitions

  • the invention relates to the technical field of leather making, in particular to a method for making leather without tanning agents.
  • Chrome tanning has been dominant in the tanning industry (Yao Q, Chen H, Jiao Q, et al. Hydroxyl ⁇ Terminated Dendrimer Acting as a High Exhaustion Agent for Chrome Tanning[J]. 2018, 3(4): 1032-1039. Ding W, Cheng Y, Wang Y, et al. Chrome-reduced combination tanning for cleaner dyed sheep fur processing[J]. Journal of the American Leather Chemists Association, 2015, 110(11): 363-371.). However, chrome tanning requires the use of large amounts of chromium salts, sulfates, and chlorides.
  • trivalent chromium Cr (III) has the risk of being oxidized to hexavalent chromium Cr (VI) during neutralization, fatliquoring, dyeing and other post-tanning processes and storage (Tang Y, Zhou J, Zeng Y, et al. Effect of leather chemicals on Cr (III) removal from post tanning wastewater[J]. Journal of the American Leather Chemists Association, 2018, 113(3). Hedberg Y S, Lidén C. Chromium (III) and chromium (VI) release from leather during 8 months of simulated use[J]. Contact Dermatitis, 2016, 75(2): 82-88.), and hexavalent chromium Cr (VI) is extremely harmful to the environment and human health. For this reason, it is necessary to develop an environmentally friendly chrome-free tanning technology, so as to eliminate the environmental risks of chrome tanning technology from the source.
  • chrome-free tanning agents have been developed for the leather process, mainly including chrome-free metal tanning agents (titanium, zirconium, aluminum and other tanning agents) and chrome-free non-metallic tanning agents (vegetable tanning agents, aldehyde tanning agents, Syntans, etc.) (Liu B, Wei Z, Wang Y, et al. Preparation of Oxidized Poly (2-hydroxyethyl acrylate) with Multiple Aldehyde Groups by TEMPO-mediated Oxidation for Gelatin Crosslinking[J]. Journal of the American Leather Chemists Association, 2019, 114(5): 163-170.).
  • chrome-free tanned leather prepared by the above-mentioned tanning agent still has a significant gap with that of chrome-tanned leather.
  • zirconium tanned leather has stiff hand feeling and poor softness
  • aluminum tanned leather is not resistant to washing
  • aldehyde tanned leather is not durable to storage, and is prone to yellowing (Li Kailin, Liao Xuepin, Zhou Jianfei, etc. Carboxyl-containing aromatic syntans combined with aluminum sulfate Experimental research on tanned yellow cowhide[J].
  • the existing tanning agent-free tanning technology uses in-situ hydrolysis to enhance the surface roughness of dehydrated hides to achieve hydrophobic treatment. This technology requires accurate control of the degree of in-situ hydrolysis, which is not conducive to industrialization. At present, there is an urgent need to solve the bottleneck problem of the above-mentioned non-tanned leather.
  • the invention provides a method for making leather without tanning agents.
  • a method for tanning-free leather comprising using molecular sieves - Polar organic solvent composite dehydration medium is used to controlly dehydrate bare hide.
  • the polar organic solvent includes but is not limited to any one or a mixture of absolute ethanol and acetone.
  • the bare leather includes but not limited to cowhide and sheepskin.
  • the consumption of described polar organic solvent is bare skin weight 2.0-8.0 times
  • the amount of molecular sieve is the weight of bare hide 2.0-8.0 times.
  • the order of adding the molecular sieve and the polar organic solvent is that they are added together to dehydrate the bare hide, or the polar organic solvent is added first to dehydrate the bare hide and then the molecular sieve is added to act together.
  • the described method also includes the following steps after the controlled dehydration of the bare hide:
  • the method of the hydrophobic treatment is:
  • the oxide is any one of silicon dioxide, calcium oxide, aluminum oxide, zinc oxide, titanium dioxide and magnesium oxide.
  • the weight of the oxide is the weight of the skin 8.0-20% ;
  • the weight of the solvent is the weight of the leather base 10-16 times;
  • the weight of the polydimethylsiloxane is the weight of the skin 5.0-12 times.
  • the described method also includes the following steps after the controlled dehydration of the bare hide:
  • the molecular sieve activated by heat treatment is recombined with the polar organic solvent obtained from the aforementioned separation, and then reused in the step of controllingly dehydrating the bare hide.
  • the molecular sieve used in the invention is a porous material with good water absorption capacity, stable properties and easy recovery.
  • Molecular sieves can be used in the dehydration process of bare hides to selectively remove the dehydrated water in polar organic solvents, thereby breaking the balance of water in the hides and dehydration solvents, and promoting the continuous removal of moisture in the hides into polarity Organic solvents, and then realize the one-step controllable removal of moisture in the bare skin without changing the liquid, and solve the problem that the dehydration of pure polar organic solvents requires multiple liquid changes for dehydration.
  • molecular sieves are easy to separate and recover from dehydrated polar organic solvents, and the recovered molecular sieves can be reused for dehydration of bare skins together with separated and recovered polar organic solvents after being activated by heat treatment, thereby realizing polar organic Solvent and molecular sieve circulation for controlled dehydration of pelts.
  • the method of increasing the roughness of the dehydrated skin by filtering the oxide onto the surface has the advantages of convenience, high efficiency, and easy industrial scale-up.
  • the present invention has the following advantages:
  • the method provided by the invention does not use any metal or non-metal tanning agent, and has the advantage of being environmentally friendly.
  • the controllable dehydration tanning method provided by the present invention breaks the distribution balance of moisture between bare hide and dehydrated polar organic solvent, and realizes "from raw hide to polar organic solvent, and then from polar organic solvent to molecular sieve" for the moisture in raw hide.
  • "Multi-media self-driven directional controllable dehydration promotes continuous and controllable removal of moisture in raw hides, effectively solving the problem of low dehydration efficiency when pure polar organic solvents dehydrate raw hides, requiring multiple bath changes for dehydration, organic waste liquid Difficult to use and other issues.
  • the solvent does not need to be purified, and the molecular sieve can be reused for tanning without tanning agent after being activated by heat treatment.
  • This feature not only significantly reduces the cost of tanning, but also greatly improves the cleanliness of the tanning process. degree and the ecology of tanning products.
  • the leather-making method provided by the invention does not need traditional leather-making processes such as tanning, retanning, etc., has simple operation, short leather-making time, and significantly improves the leather-making efficiency .
  • Fig. 1 is the physical figure of the non-tanning agent leather prepared by the embodiment of the present invention 1;
  • Fig. 2 is the physical figure of the non-tanning agent leather prepared by the embodiment of the present invention 2;
  • Fig. 3 is the physical figure of the non-tanning agent leather prepared by the embodiment of the present invention 8;
  • Fig. 4 is the physical figure of the control sample prepared by comparative example 2 of the present invention.
  • Fig. 5 is the physical picture of the control sample prepared by comparative example 3 of the present invention.
  • Fig. 6 is the non-tanning agent leather kind and grain surface and meat surface water contact angle prepared by the embodiment of the present invention 1;
  • Fig. 7 is the water contact angle of grain surface and meat surface of non-tanning agent leather prepared in Example 3 of the present invention.
  • Fig. 8 is the water contact angle of grain surface and meat surface of non-tanning agent leather prepared in Example 4 of the present invention.
  • Fig. 9 is the water contact angle of grain surface and meat surface of non-tanning agent leather prepared in Example 5 of the present invention.
  • Fig. 10 is the pore size distribution of the non-tanning agent leather prepared in Example 1 of the present invention.
  • Fig. 11 is the pore size distribution of the control sample prepared in comparative example 1 of the present invention.
  • Fig. 12 is the pore size distribution of the control sample prepared in comparative example 2 of the present invention.
  • Fig. 13 is a technical roadmap of the present invention.
  • Tanning-free tanning
  • Tanning agent-free leather is obtained after drying the above-mentioned skin base that has completed the hydrophobic treatment.
  • the physical picture of the tanning agent-free leather prepared in this example is shown in FIG. 1 .
  • the upper liquid is ethanol with a low water content, and its water content is 0.97%, which can be directly reused for the tanning agent-free tanning of the patent of this application;
  • the lower liquid The solid is 3A molecular sieve activated powder, which can be reused in the application patent for tanning without tanning agent after activation at 300°C.
  • the real grain surface and water contact angle of the non-tanning agent leather obtained in this example are shown in Figure 6(a), and the physical flesh surface and water contact angle are shown in Figure 6(b), both of which have reached the superhydrophobic effect; the pores
  • the structural parameters are shown in Table 1; the mechanical performance parameters are shown in Table 2. According to Table 1, it can be seen that the porosity of the tanning agent-free leather prepared in this example is 45.82 ⁇ 4.75%, the average pore diameter is 590.97 ⁇ 174.12 nm, and the total pore area is 4.28 ⁇ 1.11 m 2 /g.
  • the pore size of the non-tanning agent leather obtained in this embodiment is mainly distributed at 6000-15000 nm;
  • the tensile strength is 28.50 N/mm 2
  • the specified load elongation is 36.10% 10 N/mm 2 , all of the above indicators have met the requirements of QB/T 1873-2010.
  • Example 1 The molecular sieve recovered in Example 1 and ethanol are used to form a molecular sieve-polar organic solvent composite dehydration medium for reuse in the tanning agent-free tanning of this embodiment:
  • Tanning agent-free leather is obtained after drying the above-mentioned skin base that has completed the hydrophobic treatment.
  • the physical picture of the tanning agent-free leather prepared in this embodiment is shown in FIG. 2 .
  • the mechanical performance parameters of the tanning agent-free leather prepared in this example are shown in Table 2, the tear force is 156.12 N, the tensile strength is 31.80 N/mm 2 , and the specified load elongation is 25.70% 10 N/mm 2 , the above indicators have met the requirements of QB/T 1873-2010.
  • Example 1 Compared with Example 1: In this example, the recovered ethanol and molecular sieve are used repeatedly for dehydration of bare hide, and the mechanical properties of the obtained non-tanning agent leather also reach QB/T
  • the requirements of 1873-2010 indicate that the molecular sieve-polar organic solvent composite dehydration medium can be recycled and reused for the preparation of non-tanning agent leather, and the prepared non-tanning agent leather also has leather performance.
  • Fig. 7(a) The contact angle between the grain surface and water of the non-tanning agent leather prepared in this example is shown in Fig. 7(a), and the contact angle between the flesh surface and water is shown in Fig. 7(b), both of which have reached the superhydrophobic effect.
  • Tanning agent-free leather is obtained after the hydrophobized skin is dried.
  • Comparative Example 3 only uses the molecular sieve activation powder (3A) which is 5.0 times the weight of the bare hide to make the physical picture of the control sample as shown in Figure 5. With leather performance.
  • Tanning agent-free leather is obtained after the hydrophobized skin is dried.
  • the contact angle between the grain surface and water of the non-tanning agent leather prepared in this example is shown in Figure 9(a), and the contact angle between the flesh surface and water is shown in Figure 9(b), both of which have reached the superhydrophobic effect;
  • the mechanical performance parameters of the tanning agent-free leather obtained in this example are shown in Table 2.
  • the tear force is 160.62 N
  • the tensile strength is 24.21 N/mm 2
  • the specified load elongation is 32.40% 10 N/mm 2 .
  • the above indicators have met the requirements of QB/T 1873-2010.
  • Comparative Example 4 first uses molecular sieves and then uses dehydrated ethanol to dehydrate the dehydrated skin with a moisture content of 4.80%, which is similar to the moisture content of the dehydrated skin prepared in this example, but the dehydrated skin obtained in Comparative Example 4 has a moisture content of 4.80%. It is still curled into a ball, and it is stiff and cannot be opened, and it does not have the performance of leather.
  • Tanning agent-free leather is obtained after the hydrophobized skin is dried.
  • Tanning agent-free leather is obtained after the hydrophobized skin is dried.
  • the tanning agent-free leather is obtained after the hydrophobically treated skin is dried.
  • the physical picture of the tanning agent-free leather prepared in this example is shown in FIG. 3 .
  • Tanning agent-free leather is obtained after the hydrophobized skin is dried.
  • Tanning agent-free leather is obtained after the hydrophobized skin is dried.
  • Tanning agent-free leather is obtained after the hydrophobized skin is dried.
  • Tanning agent-free leather is obtained after the hydrophobized skin is dried.
  • Tanning agent-free leather was obtained after drying the above-mentioned hydrophobized hide skin.
  • the mechanical performance parameters of the tanning agent-free leather prepared in this example are shown in Table 2, the tearing force was 162.69 N, and the tensile strength was 27.69 N. N/mm 2 , the specified load elongation is 17.44% 10 N/mm 2 .
  • Example 3 uses 2.0 times the absolute ethanol of the weight of the bare hide to dehydrate the bare hide, and the mechanical properties of the obtained non-tanning agent leather are similar to those of the non-tanning agent leather obtained in Example 3.
  • the indicators have reached QB/T 1873-2010 requirements.
  • Tanning agent-free leather is obtained after the hydrophobized skin is dried.
  • control sample was obtained after drying the above-mentioned skin base that had completed the hydrophobic treatment; the pore size distribution of the control sample is shown in FIG. 11 .
  • the porosity of the control sample prepared in this comparative example is 28.67 ⁇ 1.54%
  • the average pore diameter is 599.91 ⁇ 161.05 nm
  • the total pore area is 2.45 ⁇ 0.86 m 2 /g.
  • the porosity of the control sample is low, and the pore size distribution is mainly at 5.0-6000 nm, which is caused by the adhesion of collagen fibers due to the high water content of the control sample.
  • control samples were prepared after the bare hide (cowhide) was stretch dried.
  • the pore size distribution of the control sample is shown in FIG. 12 .
  • Figure 4 is the physical picture of the control sample, the surface of the control sample is yellow-brown; the pore structure parameters are shown in Table 1; the softness is shown in Table 3; according to Table 1 and Table 3, it can be seen that the porosity of the control sample is 17.10 ⁇ 1.06% , the average pore diameter is 202.49 ⁇ 33.23 m 2 /g, the softness is 3.23 mm, and the control sample is stiff and does not have the performance of leather.
  • Fig. 5 is the physical picture of the control sample, the control sample is curled into a ball, and it is stiff and cannot be unfolded, and does not have leather performance.
  • the control sample was obtained after drying the dehydrated leather.
  • the control sample was curled into a ball, stiff and unable to be unfolded, and did not have the performance of leather.
  • the tanning agent-free tanning technology does not use any metal or non-metal tanning agent, and uses molecular sieve-polar organic solvent composite dehydration medium to carry out multi-media self-driving on bare leather
  • the directional controllable dehydration realizes the one-step controllable removal of moisture in the bare hide, and solves the problem that the pure polar solvent dehydration requires multiple bath changes and the organic solvent is difficult to reuse after dehydration.
  • the molecular sieve-polar organic solvent composite dehydration medium invented by the patent application can be separated and recovered and reused for dehydration of bare hides, without generating organic waste liquid, which significantly reduces the cost of tanning and ensures the cleanliness and cleanliness of the tanning process. product ecology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treatment And Processing Of Natural Fur Or Leather (AREA)

Abstract

本发明属于制革技术领域,公开了一种无鞣剂制革的方法。首先,利用分子筛-极性有机溶剂复合脱水介质对裸皮进行可控脱水。随后,通过增大皮坯的表面粗糙度并降低其表面能进而制得无鞣剂皮革。本发明未使用任何金属或非金属鞣剂,具有环境友好的优点;本发明打破了水分在裸皮与极性有机溶剂间的分配平衡,对裸皮中水分实现了"从生皮到极性有机溶剂,再从极性有机溶剂到分子筛"的多介质自驱动定向可控脱水,促使生皮中水分持续可控脱除,有效解决了纯极性有机溶剂对裸皮脱水时存在的脱水效率低,需多次换浴脱水,有机废液难回用等问题,且分子筛-极性有机溶剂脱水体系易回收并可多次循环用于裸皮的可控脱水,提供了一种全新的清洁化制革技术。

Description

一种无鞣剂制革的方法 技术领域
本发明涉及制革技术领域,具体涉及一种无鞣剂制革的方法。
背景技术
铬鞣法在制革行业中一直占据主导地位(Yao Q, Chen H, Jiao Q, et al. Hydroxyl‐Terminated Dendrimer Acting as a High Exhaustion Agent for Chrome Tanning[J]. ChemistrySelect, 2018, 3(4): 1032-1039. Ding W, Cheng Y, Wang Y, et al. Chrome-reduced combination tanning for cleaner dyed sheep fur processing[J]. Journal of the American Leather Chemists Association, 2015, 110(11): 363-371.)。然而,采用铬鞣工艺制革,需要使用大量的铬盐、硫酸盐以及氯化物。同时三价铬Cr (Ⅲ) 在中和、加脂、染色等制革后工段以及储存过程中有氧化成六价铬Cr (Ⅵ) 的风险(Tang Y, Zhou J, Zeng Y, et al. Effect of leather chemicals on Cr (III) removal from post tanning wastewater[J]. Journal of the American Leather Chemists Association, 2018, 113(3). Hedberg Y S, Lidén C. Chromium (III) and chromium (VI) release from leather during 8 months of simulated use[J]. Contact Dermatitis, 2016, 75(2): 82-88.),而六价铬Cr (Ⅵ) 对环境和人体健康的危害极大。为此,需开发环境友好的无铬鞣技术,从而在源头上杜绝铬鞣技术存在的环境风险问题。
目前,已开发了多种无铬鞣剂用于制革工艺,主要包括无铬金属鞣剂(钛、锆、铝等鞣剂)和无铬非金属鞣剂(植物鞣剂、醛鞣剂、合成鞣剂等)(Liu B, Wei Z, Wang Y, et al. Preparation of Oxidized Poly (2-hydroxyethyl acrylate) with Multiple Aldehyde Groups by TEMPO-mediated Oxidation for Gelatin Crosslinking[J]. Journal of the American Leather Chemists Association, 2019, 114(5): 163-170.)。然而,上述鞣剂制备得到的无铬鞣皮革,其性能与铬鞣革还存在显著差距。例如,锆鞣革存在手感僵硬、柔软性差,铝鞣革不耐水洗,醛鞣革不耐储存、易发生黄变(李凯林, 廖学品, 周建飞, 等. 含羧基芳香族合成鞣剂与硫酸铝结合鞣制黄牛皮试验研究[J]. 皮革科学与工程, 2017, 27(3): 5-11. 石碧, 狄莹, 宋立江, 等. 栲胶的化学改性及其产物在无铬少铬鞣法中的应用[J]. 中国皮革, 2001, 30(9): 3-8.)。综上所述,目前所开发的基于交联理论的无铬鞣方法仍然不能替代传统的铬鞣法。而且,上述鞣制技术同样存在大量鞣制废水排放和污染的问题。
皮革与裸皮相比其含水率显著降低且皮胶原纤维分散程度显著提高。因此,不使用任何鞣剂,仅通过对裸皮脱水以降低含水率并分散胶原纤维的无鞣剂制革方法,成为了无铬制革的新发展方向。极性有机溶剂具有脱水作用,因此采用极性有机溶剂直接对裸皮脱水,随后再通过提升皮坯表面粗糙度并降低其表面能进行疏水处理是无鞣剂制革的一个重要途径。(黄鑫, 何秀, 石碧. 一种具有疏水高分散皮纤维结构的无铬鞣革制备方法[P]. 四川省:CN109234476A;石碧, 何秀, 周建飞, 王亚楠, 曾运航. 一种脱水皮的制备方法[P]. 四川省:CN109385493A)。然而,采用极性有机溶剂对裸皮脱水时,裸皮中的水分逐渐脱除进入极性有机溶剂后,极性有机溶剂的脱水性能显著降低。随着脱水的进行,当裸皮中的水分在裸皮与极性有机溶剂中的分配达到平衡时,就必须换液使用新的极性有机溶剂才能进一步脱除裸皮中的水分,由此采用极性有机溶剂对裸皮脱水必须多次更换极性有机溶剂才能达到良好的脱水效果。此外,脱水后的极性有机溶剂含水量高,不能回用于裸皮脱水,因此导致溶剂利用率低和溶剂排放的问题。另一方面,现有无鞣剂制革技术是采用原位水解法增强脱水皮的表面粗糙度进而实现疏水处理,该技术要求对原位水解的程度进行准确控制,不利于工业化。目前,亟需解决上述无鞣制革存在的瓶颈问题。
技术问题
为了解决背景技术中的问题,本发明提供了一种无鞣剂制革的方法。
一种无鞣剂制革的方法,该方法包含用分子筛 - 极性有机溶剂复合脱水介质对裸皮进行可控脱水的步骤。
进一步地,所述极性有机溶剂包含但不限于无水乙醇和丙酮中的任一种或混合物。
进一步地,所述裸皮包含但不限于牛皮和羊皮。
进一步地,所述极性有机溶剂的用量为裸皮重量的 2.0-8.0 倍,分子筛的用量为裸皮重量的 2.0-8.0 倍。
进一步地,所述分子筛和极性有机溶剂添加顺序为,一起加入对裸皮脱水,或先加入极性有机溶剂对裸皮脱水再加入分子筛共同作用。
进一步地,所述对裸皮进行可控脱水后还包含以下步骤:
将经过可控脱水后的裸皮进行干燥,得到皮坯;
对皮坯进行疏水处理;以及
对上述经疏水处理后的皮坯进行干燥。
进一步地,所述疏水处理的方法为:
将氧化物分散于溶剂中,得到悬浊液;将上述悬浊液抽滤至皮坯表面,干燥后再将皮坯浸没于聚二甲基硅氧烷( PDMS )溶液中;所述氧化物为二氧化硅、氧化钙、三氧化二铝、氧化锌、二氧化钛及氧化镁中任一种。
进一步地,所述氧化物的重量为所述皮坯重量的 8.0-20% ;所述溶剂的重量为所述皮坯重量的 10-16 倍;所述聚二甲基硅氧烷的重量为所述皮坯重量的 5.0-12 倍。
进一步地,所述对裸皮进行可控脱水后还包含以下步骤:
对经过可控脱水后的分子筛和极性有机溶剂进行分离;
将上述分离所得的分子筛进行热处理活化;以及
将经过热处理活化的分子筛与前述分离所得的极性有机溶剂进行复合。
进一步地,所述将经过热处理活化的分子筛与前述分离所得的极性有机溶剂进行复合后回用于所述对裸皮进行可控脱水的步骤。
本发明使用的分子筛是一种多孔材料,具有良好的吸水能力,并且性质稳定易回收。在对裸皮的脱水过程中使用分子筛,可选择性去除极性有机溶剂中的脱出水,从而可打破水分在裸皮与脱水溶剂中的平衡,促进裸皮中的水分持续脱除进入极性有机溶剂,进而实现不换液一步可控脱除裸皮中水分,解决纯极性有机溶剂脱水需要多次换液脱水的问题。并且,分子筛易于从脱水后的极性有机溶剂中分离回收,且回收后的分子筛经热处理活化后即可再与分离回收后的极性有机溶剂一起重复用于裸皮脱水,从而实现极性有机溶剂和分子筛循环用于裸皮的可控脱水。此外,通过将氧化物抽滤至脱水皮表面以提高其粗糙度的方法具有便捷、高效,易于工业放大的优点。
本发明与现有技术相比,具有以下优点:
本发明提供的方法中未使用任何金属或非金属鞣剂,具有环境友好的优点。
本发明提供的可控脱水制革方法打破了水分在裸皮与脱水极性有机溶剂间的分配平衡,对生皮中水分实现了“从生皮到极性有机溶剂,再从极性有机溶剂到分子筛”的多介质自驱动定向可控脱水,促使生皮中水分的持续可控脱除,有效解决了纯极性有机溶剂对生皮脱水时存在的脱水效率低,需多次换浴脱水,有机废液难回用等问题。
本发明提供的方法中溶剂无需进行提纯处理,分子筛进行热处理活化后,即可重复用于无鞣剂制革,这一特性不仅显著降低了制革成本而且极大提升了制革过程的清洁化程度以及制革产品的生态性。
本发明提供的制革方法无需鞣制、复鞣等传统制革工艺,且操作简便,制革时间短,显著提高了制革效率
附图说明
图1为本发明实施例1制备的无鞣剂皮革实物图;
图2为本发明实施例2制备的无鞣剂皮革实物图;
图3为本发明实施例8制备的无鞣剂皮革实物图;
图4为本发明对比例2制备的对照样实物图;
图5为本发明对比例3制备的对照样实物图;
图6为本发明实施例1制备的无鞣剂皮革实物以及粒面和肉面水接触角;
图7为本发明实施例3制备的无鞣剂皮革粒面和肉面水接触角;
图8为本发明实施例4制备的无鞣剂皮革粒面和肉面水接触角;
图9为本发明实施例5制备的无鞣剂皮革粒面和肉面水接触角;
图10为本发明实施例1制备的无鞣剂皮革孔径分布;
图11为本发明对比例1制备的对照样的孔径分布;
图12为本发明对比例2制备的对照样的孔径分布;
图13为本发明的技术路线图。
下面通过附图和实施例对本发明进行具体的描述,且本发明技术方案不局限于以下所列举的具体实施方式。有必要在此指出的是,本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术工程师根据上述发明的内容对本发明作出的一些非本质的改进和调整,也视为落在本发明的保护范围内。
本申请所采用的技术路线图如图13所示。
本发明的实施方式
实施例1
无鞣剂制革:
将裸皮(牛皮)放入无水乙醇(裸皮重量的6.0倍)中脱水90 min 后,加入分子筛活化粉(3A)(裸皮重量的3.5倍)脱水120 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为2.95%;
对脱水皮进行干燥得到皮坯,根据GB/T 39371-2020测定皮坯柔软度为4.69 mm,如表3所示;
称取二氧化硅(皮坯重量的10%),并分散于无水乙醇(皮坯重量的10倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的8.0倍)中浸泡5.0 min,完成疏水处理;
将上述完成疏水处理的皮坯干燥后即制得无鞣剂皮革,本实施例所制备的无鞣剂皮革实物图如图1所示。
回收使用后的分子筛和极性有机溶剂:
对本实施例制备脱水皮使用后的乙醇以及分子筛活化粉(3A)进行分离,上层液体为低含水率乙醇,其含水率为0.97%,可直接回用于本申请专利无鞣剂制革;下层固体为3A分子筛活化粉,于300°C下活化后即可回用于本申请专利无鞣剂制革。
本实施例所制得无鞣剂皮革实物粒面和水接触角如图6(a)所示,实物肉面和水接触角如图6(b)所示,均已达到超疏水效果;孔结构参数如表1所示;机械性能参数如表2所示。根据表1可知本实施例所制得无鞣剂皮革孔隙率为45.82 ± 4.75%,平均孔径为590.97 ± 174.12 nm,总孔隙面积为4.28 ± 1.11 m 2/g。根据图10孔径分布可知,本实施例所制得无鞣剂皮革孔径主要分布在6000-15000 nm 处;并且根据表2可知本实施例所制得无鞣剂皮革撕裂力为179.77 N,抗张强度为28.50 N/mm 2,规定负荷伸长率为36.10% 10 N/mm 2,上述指标均已达到QB/T 1873-2010的要求。
(7)与对比例1相比:对比例1未加入分子筛脱水的脱水皮含水率为9.56%,根据表3可知对比例1所制得对照样的柔软度为3.61 mm,对照样僵硬,不具备皮革使用潜力。
表1
Figure 266400dest_path_image001
表2
Figure 714698dest_path_image002
表3
Figure 494436dest_path_image003
实施例2
将实施例1中回收的分子筛和乙醇构成分子筛-极性有机溶剂复合脱水介质回用于本实施例无鞣剂制革:
将裸皮(牛皮)放入回收的乙醇(裸皮重量的6.0倍)中脱水90 min 后,加入回收的分子筛活化粉(3A)(裸皮重量的3.5倍)脱水120 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为3.24%;
对脱水皮进行干燥得到皮坯,测定皮坯柔软度为4.52 mm,如表3所示;
称取二氧化硅(皮坯重量的10%),并分散于无水乙醇(皮坯重量的10倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的8.0倍)中浸泡5.0 min,完成疏水处理;
将上述完成疏水处理的皮坯干燥后即制得无鞣剂皮革,本实施例所制备的无鞣剂皮革实物图如图2所示。
本实施例所制得无鞣剂皮革的机械性能参数如表2所示,撕裂力为156.12 N,抗张强度为31.80 N/mm 2,规定负荷伸长率为25.70% 10 N/mm 2,上述指标均已达到QB/T 1873-2010的要求。
与实施例1相比:本实例通过回收的乙醇和分子筛重复用于裸皮脱水,制得的无鞣剂皮革的机械性能同样达到QB/T 1873-2010的要求,表明分子筛-极性有机溶剂复合脱水介质可回收并重复用于制备的无鞣剂皮革,且所制备的无鞣剂皮革同样具备皮革使用性能。
实施例3
将裸皮(牛皮)放入无水乙醇(裸皮重量的4.0倍)中脱水60 min 后,加入分子筛活化粉(3A)(裸皮重量的2.0倍)脱水60 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为3.48%;
对脱水皮进行干燥得到皮坯;
称取二氧化钛(皮坯重量的8.0%),并分散于无水乙醇(皮坯重量的12倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的5.0倍)中浸泡30 min,完成疏水处理;将完成疏水处理的皮坯干燥后即制得无鞣剂皮革,本实施例所制得无鞣剂皮革的机械性能参数如表2所示,撕裂力为152.16 N,抗张强度为30.44 N/mm 2,规定负荷伸长率为16.60% 10 N/mm 2,上述指标均已达到QB/T 1873-2010的要求。
本实施例所示制备的无鞣剂皮革粒面和水的接触角如图7(a)所示,肉面和水的接触角如图7(b)所示,均已达到超疏水效果。
实施例4
将裸皮(牛皮)放入无水乙醇(裸皮重量的7.0倍)中脱水180 min 后,加入分子筛活化粉(3A)(裸皮重量的5.0倍)脱水180 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为2.78%;
对脱水皮进行干燥得到皮坯,测定皮坯柔软度为4.53 mm,如表3所示;
称取氧化铝(皮坯重量的20%),并分散于无水乙醇(皮坯重量的15倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的10倍)中浸泡60 min,完成疏水处理;
将完成疏水处理的皮坯干燥后即制得无鞣剂皮革。
本实施例所示制备的无鞣剂皮革粒面和水的接触角如图8(a)所示,肉面和水的接触角如图8(b)所示,均已达到超疏水效果。
与对比例3相比:对比例3仅使用裸皮重量5.0倍的分子筛活化粉(3A)所制得对照样的实物图如图5所示,对照样卷曲成团,且僵硬无法展开,不具备皮革使用性能。
实施例5
将裸皮(牛皮)放入分子筛颗粒(3A)(裸皮重量的4.0倍)和无水乙醇(裸皮重量的8.0倍)脱水180 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为3.45%;
对脱水皮进行干燥得到皮坯,测定皮坯柔软度为4.57 mm,如表3所示;
称取氧化钙(皮坯重量的15%),并分散于无水乙醇(皮坯重量的16倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的6.0倍)中浸泡5.0 min,完成疏水处理;
将完成疏水处理的皮坯干燥后即制得无鞣剂皮革。
本实施例所示制备的无鞣剂皮革粒面和水的接触角如图9(a)所示,肉面和水的接触角如图9(b)所示,均已达到超疏水效果;本实施例所制得无鞣剂皮革的机械性能参数如表2所示,撕裂力160.62 N,抗张强度为24.21 N/mm 2,规定负荷伸长率为32.40% 10 N/mm 2,上述指标均已达到QB/T 1873-2010的要求。
与对比例4相比:对比例4先使用分子筛后使用无水乙醇脱水的脱水皮含水率为4.80%,与本实施例所制得脱水皮含水率相近,但对比例4所制得的对照样卷曲成团,且僵硬无法打开,不具备皮革使用性能。
实施例6
将裸皮(羊皮)放入无水乙醇(裸皮重量的6.0倍)中脱水90 min 后,加入分子筛活化粉(3A)(裸皮重量的3.0倍)脱水80 min 后取出,即得到脱水皮,采用卡尔费休法测定其含水率为3.34%;
对脱水皮进行干燥得到皮坯;
称取氧化镁(皮坯重量的13%),并分散于无水乙醇(皮坯重量的12倍)中,并将上述混悬液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的10倍)中浸泡35 min,完成疏水处理;
将完成疏水处理的皮坯干燥后即制得无鞣剂皮革。
实施例7
将裸皮(牛皮)放入分子筛颗粒(3A)(裸皮重量的3.0倍)和无水乙醇(裸皮重量的7.0倍)中脱水200 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为3.52%;
对脱水皮进行干燥得到皮坯;
称取氧化锌(皮坯重量的16%),并分散于无水乙醇(皮坯重量的15倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的6.0倍)中浸泡20 min,完成疏水处理;
将完成疏水处理的皮坯干燥后即制得无鞣剂皮革。
实施例8
将裸皮(牛皮)放入丙酮(裸皮重量的6.0倍)中脱水90 min 后,加入分子筛活化粉(3A)(裸皮重量的3.5倍)脱水120 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为2.57%;
对脱水皮进行干燥得到皮坯;
称取氧化锌(皮坯重量的10%),并分散于丙酮(皮坯重量的13倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的6.0倍)中浸泡25 min,完成疏水处理;
将完成疏水处理的皮坯干燥后即制得无鞣剂皮革,本实施例所制备的无鞣剂皮革实物图如图3所示。
实施例9
将裸皮(羊皮)放入丙酮(裸皮重量的7.0倍)和分子筛颗粒(3A)(裸皮重量的3.0倍)中脱水180 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为8.27%;
对脱水皮进行干燥得到皮坯;
称取二氧化硅(皮坯重量的8.0%),并分散于无水乙醇(皮坯重量的10倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的7.0倍)中浸泡25 min,完成疏水处理;
将完成疏水处理的皮坯干燥后即制得无鞣剂皮革。
实施例10
将裸皮(羊皮)放入丙酮(裸皮重量的2.0倍)中脱水20 min 后,加入无水乙醇(裸皮重量的4.0倍)脱水40 min,再加入分子筛颗粒(3A)(裸皮重量的3.0倍)脱水100 min,即得到脱水皮,采用卡尔费休法测定其含水率为7.33%;
对脱水皮进行干燥得到皮坯;
称取氧化钙(皮坯重量的13%),并分散于无水乙醇(皮坯重量的15倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的10倍)中浸泡50 min,完成疏水处理;
将完成疏水处理的皮坯干燥后即制得无鞣剂皮革。
实施例11
将裸皮(牛皮)放入无水乙醇(裸皮重量的3.0倍)和丙酮(裸皮重量的3.0倍)中脱水30 min 后,加入分子筛活化粉(3A)(裸皮重量的3.0倍)脱水120 min,即得到脱水皮,采用卡尔费休法测定其含水率为3.24%;
对脱水皮进行干燥得到皮坯;
称取氧化钙(皮坯重量的15%),并分散于无水乙醇(皮坯重量的16倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的12倍)中浸泡60 min,完成疏水处理;
将完成疏水处理的皮坯干燥后即制得无鞣剂皮革。
实施例12
将裸皮(牛皮)放入无水乙醇(裸皮重量的3.0倍)中脱水30 min 后,加入丙酮(裸皮重量的3.0倍)和分子筛活化粉(3A)(裸皮重量的3.0倍)脱水120 min,即得到脱水皮,采用卡尔费休法测定其含水率为3.76%;
对脱水皮进行干燥得到皮坯;
称取氧化钙(皮坯重量的15%),并分散于无水乙醇(皮坯重量的16倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的12倍)中浸泡60 min,完成疏水处理;
将完成疏水处理的皮坯干燥后即制得无鞣剂皮革。
实施例13
将裸皮(牛皮)放入无水乙醇(裸皮重量的2.0倍)中脱水60 min 后,加入分子筛活化粉(3A)(裸皮重量的2.0倍)脱水60 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为4.84%;
对脱水皮进行干燥得到皮坯;
称取二氧化钛(皮坯重量的8.0%),并分散于无水乙醇(皮坯重量的12倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的5.0倍)中浸泡30 min,完成疏水处理;
将上述完成疏水处理的皮坯干燥后即制得无鞣剂皮革,本实施例所制得无鞣剂皮革的机械性能参数如表2所示,撕裂力为162.69 N,抗张强度为27.69 N/mm 2,规定负荷伸长率为17.44% 10 N/mm 2
与实施例3相比:本实施例使用裸皮重量的2.0倍的无水乙醇对裸皮进行脱水,制得的无鞣剂皮革机械性能与实施例3所制得无鞣剂皮革相近,上述指标均已达到QB/T 1873-2010的要求。
实施例14
将裸皮(牛皮)放入无水乙醇(裸皮重量的4.0倍)中脱水60 min 后,加入分子筛活化粉(3A)(裸皮重量的8.0倍)脱水40 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为4.16%;
对脱水皮进行干燥得到皮坯;
称取氧化锌(皮坯重量的10%),并分散于无水乙醇(皮坯重量的13倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的6.0倍)中浸泡25 min完成疏水处理;
将完成疏水处理的皮坯干燥后即制得无鞣剂皮革。
对比例1
将裸皮(牛皮)放入无水乙醇(裸皮重量的6.0倍)中脱水210 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为9.56%;
对脱水皮进行干燥得到皮坯,测定其柔软度为3.61 mm,如表3所示;
称取氧化镁(皮坯重量的5.0%),并分散于无水乙醇(皮坯重量的20倍)中形成悬浊液,随后将上述悬浊液抽滤至皮坯表面,干燥后置于10 wt%的PDMS溶液(皮坯重量的20倍)中浸泡5.0 min,完成疏水处理;
将上述完成疏水处理的皮坯干燥后即制得对照样;该对照样的孔径分布如图11所示。
根据表1可知本对比例所制得的对照样孔隙率为28.67 ± 1.54%,平均孔径为599.91 ± 161.05 nm,总孔隙面积为2.45 ± 0.86 m 2/g。与实施例1相比,该对照样孔隙率低,并且孔径分布主要在5.0-6000 nm 处,这是由于对照样含水率高导致胶原纤维粘连所致。
对比例2
将裸皮(牛皮)进行绷板干燥后,即制得对照样。该对照样的孔径分布如图12所示。
图4为该对照样实物图,对照样表面呈黄褐色;孔结构参数如表1所示;柔软度如表3所示;根据表1和表3可知该对照样孔隙率为17.10 ± 1.06%,平均孔径为202.49 ± 33.23 m 2/g,柔软度为3.23 mm,对照样僵硬,不具备皮革使用性能。
对比例3
将裸皮(牛皮)放入分子筛活化粉(3A)(裸皮重量的5.0倍)中脱水60 min 后,即制得对照样。
图5为该对照样实物图,对照样卷曲成团,且僵硬无法展开,不具备皮革使用性能。
对比例4
将裸皮(牛皮)放入分子筛颗粒(3A)(裸皮重量的4.0倍)中脱水90 min 后,加入无水乙醇(裸皮重量的8.0倍)脱水90 min 后,即得到脱水皮,采用卡尔费休法测定其含水率为4.80%;
对脱水皮进行干燥后即制得对照样,对照样卷曲成团,且僵硬无法展开,不具备皮革使用性能。
根据上述实施例和对比例结果可知,本申请专利所提供的无鞣剂制革技术不使用任何金属或非金属鞣剂,采用分子筛-极性有机溶剂复合脱水介质对裸皮进行多介质自驱动定向可控脱水,实现了对裸皮中水分的一步可控脱除,解决了纯极性溶剂脱水需多次换浴脱水且脱水后有机溶剂难回用的问题。该申请专利所发明的分子筛-极性有机溶剂复合脱水介质可分离回收并重复用于裸皮脱水,不产生有机废液,显著降低了制革成本而且保证了制革过程的清洁化以及制革产品的生态性。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,但本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种无鞣剂制革的方法,其特征在于,该方法包含用分子筛-极性有机溶剂复合脱水介质对裸皮进行可控脱水的步骤。
  2. 如权利要求1所述的方法,其特征在于,所述极性有机溶剂包含但不限于无水乙醇和丙酮中的任一种或混合物。
  3. 如权利要求1所述的方法,其特征在于,所述裸皮包含但不限于牛皮和羊皮。
  4. 如权利要求1-3任一所述的方法,其特征在于,所述极性有机溶剂的用量为裸皮重量的2.0-8.0倍,分子筛的用量为裸皮重量的2.0-8.0倍。
  5. 如权利要求1所述的方法,其特征在于,所述分子筛和极性有机溶剂添加顺序为,一起加入对裸皮脱水,或先加入极性有机溶剂对裸皮脱水再加入分子筛共同作用。
  6. 如权利要求1所述的方法,其特征在于,所述对裸皮进行可控脱水后还包含以下步骤:将经过可控脱水后的裸皮进行干燥,得到皮坯;对皮坯进行疏水处理;以及对上述经疏水处理后的皮坯进行干燥。
  7. 如权利要求6所述的方法,其特征在于,所述疏水处理的方法为:将氧化物分散于溶剂中,得到悬浊液;将上述悬浊液抽滤至皮坯表面,干燥后再将皮坯浸没于聚二甲基硅氧烷溶液中;所述氧化物为二氧化硅、氧化钙、三氧化二铝、氧化锌、二氧化钛及氧化镁中任一种。
  8. 如权利要求7所述的方法,其特征在于,所述氧化物的重量为所述皮坯重量的8.0-20%;所述溶剂的重量为所述皮坯重量的10-16倍;所述聚二甲基硅氧烷的重量为所述皮坯重量的5.0-12倍。
  9. 如权利要求1所述的方法,其特征在于,所述对裸皮进行可控脱水后还包含以下步骤:对经过可控脱水后的分子筛和极性有机溶剂进行分离;将上述分离所得的分子筛进行热处理活化;以及将经过热处理活化的分子筛与前述分离所得的极性有机溶剂进行复合。
  10. 如权利要求9所述的方法,其特征在于,所述将经过热处理活化的分子筛与前述分离所得的极性有机溶剂进行复合后回用于所述对裸皮进行可控脱水的步骤。
PCT/CN2021/107531 2021-06-04 2021-07-21 一种无鞣剂制革的方法 WO2022252365A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21927061.8A EP4124664A4 (en) 2021-06-04 2021-07-21 PROCESS FOR MANUFACTURING LEATHER WITHOUT TANNING AGENT
US17/899,644 US11739390B2 (en) 2021-06-04 2022-08-31 Tanning agent-free leather making method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110624586.9 2021-06-04
CN202110624586.9A CN113265493B (zh) 2021-06-04 2021-06-04 一种无鞣剂制革的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/899,644 Continuation US11739390B2 (en) 2021-06-04 2022-08-31 Tanning agent-free leather making method

Publications (1)

Publication Number Publication Date
WO2022252365A1 true WO2022252365A1 (zh) 2022-12-08

Family

ID=77234215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107531 WO2022252365A1 (zh) 2021-06-04 2021-07-21 一种无鞣剂制革的方法

Country Status (4)

Country Link
US (1) US11739390B2 (zh)
EP (1) EP4124664A4 (zh)
CN (1) CN113265493B (zh)
WO (1) WO2022252365A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115747388B (zh) * 2022-11-24 2024-05-03 四川大学 一种通过疏水改性制造无金属皮革的方法及制得的革制品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1093889A (en) * 1964-05-13 1967-12-06 Kara Kozesnicke Zd Y Improvements in or relating to solvent tanning and chamoising fur skins and hides
JP2009286993A (ja) * 2008-05-26 2009-12-10 Koichiro Yoshida クロム等重金属又はアルデヒド系鞣し剤を一切使用しない動物皮の鞣し方法
CN104818354A (zh) * 2015-03-10 2015-08-05 海宁富邦汽车内饰有限公司 一种无铬鞣皮革的加工工艺
CN108014654A (zh) * 2017-12-15 2018-05-11 南京工业大学 一种用于强极性溶剂脱水分离的分子筛膜改性方法
CN108842010A (zh) * 2018-07-05 2018-11-20 西安理工大学 制备白色排球皮革的方法
CN109234477A (zh) * 2018-11-26 2019-01-18 四川大学 一种无铬皮革的制备方法
CN109234476A (zh) 2018-11-26 2019-01-18 四川大学 一种具有疏水高分散皮纤维结构的无铬鞣革制备方法
CN109385493A (zh) 2018-11-26 2019-02-26 四川大学 一种白湿皮的制备方法
CN110218821A (zh) * 2019-06-10 2019-09-10 福建农林大学 无水鞣制皮革的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3048929A (en) * 1959-12-15 1962-08-14 Leather Res Corp Method of dehydrating hides
US3116965A (en) * 1963-08-27 1964-01-07 Union Carbide Corp Silatrioxane tanned leather and the production thereof
DE2728812A1 (de) * 1977-06-27 1979-01-18 Henkel Kgaa Verwendung feinteiliger wasserunloeslicher alkalialuminiumsilikate zum waschen und reinigen von rohhaeuten und pelzfellen
DE69823244T2 (de) * 1997-01-08 2005-04-28 Dow Corning Corp., Midland Konservierung von organischen und anorganischen Materialien
EP1932592A1 (en) * 2006-12-13 2008-06-18 Casale Chemicals S.A. Process and catalyst for the production of dimethylether
CN101342467B (zh) * 2008-08-25 2011-11-16 陕西师范大学 除水用分子筛膜的制备方法
WO2014162059A1 (en) * 2013-04-02 2014-10-09 Taminco Finland Oy An environmentally friendly tanning method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1093889A (en) * 1964-05-13 1967-12-06 Kara Kozesnicke Zd Y Improvements in or relating to solvent tanning and chamoising fur skins and hides
JP2009286993A (ja) * 2008-05-26 2009-12-10 Koichiro Yoshida クロム等重金属又はアルデヒド系鞣し剤を一切使用しない動物皮の鞣し方法
CN104818354A (zh) * 2015-03-10 2015-08-05 海宁富邦汽车内饰有限公司 一种无铬鞣皮革的加工工艺
CN108014654A (zh) * 2017-12-15 2018-05-11 南京工业大学 一种用于强极性溶剂脱水分离的分子筛膜改性方法
CN108842010A (zh) * 2018-07-05 2018-11-20 西安理工大学 制备白色排球皮革的方法
CN109234477A (zh) * 2018-11-26 2019-01-18 四川大学 一种无铬皮革的制备方法
CN109234476A (zh) 2018-11-26 2019-01-18 四川大学 一种具有疏水高分散皮纤维结构的无铬鞣革制备方法
CN109385493A (zh) 2018-11-26 2019-02-26 四川大学 一种白湿皮的制备方法
CN110218821A (zh) * 2019-06-10 2019-09-10 福建农林大学 无水鞣制皮革的方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
DING WCHENG YWANG Y ET AL.: "Chrome-reduced Combination Tanning for Cleaner Dyed Sheep Fur Processing[J", JOURNAL OF THE AMERICAN LEATHER CHEMISTS ASSOCIATION, vol. 110, no. 11, 2015, pages 363 - 371
HEDBERG Y SLIDEN C: "Chromium (III) and Chromium (VI) Release From Leather During 8 Months of Simulated Use[J", CONTACT DERMATITIS, vol. 75, no. 2, 2016, pages 82 - 88, XP071453043, DOI: 10.1111/cod.12581
HUANG XHE XSHI B: "Preparation Method of Chrome-free Leather with Hydrophobic and Highly-dispersed Hide Fiber Structures [P", SICHUAN PROVINCE
LI KLIAO XZHOU J ET AL.: "Experimental Study on Tanning of Yellow Cowhide with Combination of Carboxyl-containing Aromatic Synthetic Tanning agent and Aluminum Sulfate [J", JOURNAL OF LEATHER SCIENCE AND ENGINEERING, vol. 27, no. 3, 2017, pages 5 - 11
LIU BWEI ZWANG Y ET AL.: "Preparation of Oxidized Poly (2-hydroxyethyl acrylate) with Multiple Aldehyde Groups by TEMPO-mediated Oxidation for Gelatin Crosslinking[J", JOURNAL OF THE AMERICAN LEATHER CHEMISTS ASSOCIATION, vol. 114, no. 5, 2019, pages 163 - 170
SHI BDI YSONG L ET AL.: "Chemical Modification of Tanning Extract and Use of Product Thereof in Chrome-free or Chrome-less Tanning [J", CHINA LEATHER, vol. 30, no. 9, 2001, pages 3 - 8
SHI BHE XZHOU JWANG YZENG Y: "Preparation Method of Dehydrated Hide [P", SICHUAN PROVINCE
TANG YZHOU JZENG Y ET AL.: "Effect of Leather Chemicals on Cr (III) Removal From Post Tanning Wastewater[J", JOURNAL OF THE AMERICAN LEATHER CHEMISTS ASSOCIATION, vol. 113, no. 3, 2018, XP055811308
YAO QCHEN HJIAO Q ET AL.: "Hydroxyl-Terminated Dendrimer Acting as a High Exhaustion Agent for Chrome Tanning[J", CHEMISTRYSELECT, vol. 3, no. 4, 2018, pages 1032 - 1039

Also Published As

Publication number Publication date
US20220411887A1 (en) 2022-12-29
EP4124664A4 (en) 2023-10-11
EP4124664A1 (en) 2023-02-01
US11739390B2 (en) 2023-08-29
CN113265493B (zh) 2022-03-01
CN113265493A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
Ma et al. Nanocomposite-based green tanning process of suede leather to enhance chromium uptake
EP3337923B2 (en) Fiber reinforced tissue composites
CN109234476B (zh) 一种具有疏水高分散皮纤维结构的无铬鞣革制备方法
Dai et al. Conversion of skin collagen fibrous material waste to an oil sorbent with pH-responsive switchable wettability for high-efficiency separation of oil/water emulsions
CN104831546A (zh) 一种湿法制备水性聚氨酯太空革的方法
WO2022252365A1 (zh) 一种无鞣剂制革的方法
CN102443184B (zh) 一种表面反应型胶原纤维/聚酯复合材料的制备方法
CN109234477B (zh) 一种无铬皮革的制备方法
Danylkovych et al. Plasticification of leather semifinished chrome tanning using biocatalitic modifier
Ashokkumar et al. Preparation and characterization of composite sheets from collagenous and chromium–collagen complex wastes using polyvinylpyrrolidone: two problems, one solution
CN109206643A (zh) 一种胶原纤维基水性聚氨酯复合材料的制备方法
CN102978300A (zh) 无盐不浸酸鞣制生态汽车革的方法
CN109385493B (zh) 一种白湿皮的制备方法
CN113061670A (zh) 含皮胶原纤维的物质的超疏水改性方法及无鞣剂制革的方法和革制品
CN104357593A (zh) 皮革鞣制用水溶性磺化间苯二酚杯芳烃鞣剂及其制备方法
CN110669877A (zh) 一种绵羊皮革加工工艺及绵羊皮革
Liu et al. Novel bio-based filler: hyperbranched polymer modified leather buffing dust and its influence on the porous structure and mechanical properties of polyurethane film
CN102827967A (zh) 一种增大皮革面积得率的方法
CN105567887B (zh) 一种纳米硅酸盐‑少铬结合鞣法
WO2010070571A2 (en) Procedure for the tanning of skins, material obtained during said procedure and device
CN108838191A (zh) 一种成品革废料纤维化的处理方法
JP5410532B2 (ja) 獣皮の保存方法
CN103555866A (zh) 一种采用新型酶法脱毛的生态汽车革制造方法
CN113502355B (zh) 一种基于动物生皮的超薄多功能微滤膜及制备方法和应用
Mokrousova et al. Hide and skin of mammals

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021927061

Country of ref document: EP

Effective date: 20220901

NENP Non-entry into the national phase

Ref country code: DE