WO2022249396A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2022249396A1
WO2022249396A1 PCT/JP2021/020208 JP2021020208W WO2022249396A1 WO 2022249396 A1 WO2022249396 A1 WO 2022249396A1 JP 2021020208 W JP2021020208 W JP 2021020208W WO 2022249396 A1 WO2022249396 A1 WO 2022249396A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
ceiling
indoor unit
space
Prior art date
Application number
PCT/JP2021/020208
Other languages
English (en)
French (fr)
Inventor
亮宗 石村
幸志 東
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023523864A priority Critical patent/JPWO2022249396A1/ja
Priority to PCT/JP2021/020208 priority patent/WO2022249396A1/ja
Publication of WO2022249396A1 publication Critical patent/WO2022249396A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid

Definitions

  • the present disclosure relates to an air conditioner that suppresses refrigerant from leaking indoors.
  • the air conditioner described in Patent Document 1 reduces the amount of refrigerant leakage when refrigerant leakage occurs in the indoor unit by providing a shutoff valve that shuts off the flow of refrigerant in the inlet/outlet pipe of the indoor unit.
  • a shutoff valve that shuts off the flow of refrigerant in the inlet/outlet pipe of the indoor unit.
  • Additional isolation valves may be added. In such a case, additional operations such as selection of the shutoff valve and designing the installation position of the shutoff valve are required.
  • additional work and costs are required to install the shut-off valve in the air conditioner. Therefore, compared to conventional air conditioners that use nonflammable refrigerants, air conditioners that use refrigerants with a low global warming potential have the problem of increased work and costs for providing safety measures.
  • An object of the present invention is to provide an air conditioner capable of suppressing outflow.
  • the air conditioner according to the present disclosure includes an outdoor unit that generates cold or hot heat, an indoor unit that air-conditions the air-conditioned space with the cold or hot heat generated by the outdoor unit, and is provided between the outdoor unit and the indoor unit, A refrigerant pipe that forms a refrigerant circuit in which refrigerant circulates, a refrigerant leakage detection device that detects refrigerant leakage from the indoor unit, and when the refrigerant leakage detection device detects refrigerant leakage, the leaked refrigerant is discharged into the air-conditioned space. and a leaked refrigerant guiding means for guiding to a space different from.
  • the leaked refrigerant guide means guides the leaked refrigerant to a space different from the air-conditioned space. Therefore, it is possible to prevent a large amount of leaked refrigerant from flowing into the air-conditioned space.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an air conditioner according to Embodiment 1.
  • FIG. 2 is a circuit diagram showing an example of a refrigerant circuit configuration of the air conditioner according to Embodiment 1.
  • FIG. 2 is a perspective view showing the appearance of the indoor unit of the air conditioner according to Embodiment 1.
  • FIG. 2 is a functional block diagram of the control device for the air conditioner according to Embodiment 1.
  • FIG. 4 is a circuit diagram showing the flow of refrigerant in the air-conditioning apparatus according to Embodiment 1 in cooling only operation;
  • FIG. 4 is a circuit diagram showing the flow of refrigerant in the heating only operation of the air conditioner according to Embodiment 1.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an air conditioner according to Embodiment 1.
  • FIG. 2 is a circuit diagram showing an example of a refrigerant circuit configuration of the air conditioner according to Embodiment 1.
  • FIG. 2 is a perspective view showing
  • FIG. 4 is a flow chart showing the operation of the leakage reduction control function at the time of refrigerant leakage in the air conditioner according to Embodiment 1.
  • FIG. FIG. 7 is a perspective view showing the appearance of an indoor unit of an air conditioner according to Embodiment 2; 9 is a flow chart showing the operation of a leakage reduction control function at the time of refrigerant leakage of the air conditioner according to Embodiment 2.
  • FIG. 10 is a schematic diagram showing an example of the configuration of an air conditioner according to Embodiment 3;
  • FIG. 11 is a schematic diagram showing an example of the structure of an indoor unit of an air conditioner according to Embodiment 3;
  • FIG. 11 is a flow chart showing operation of a leakage reduction control function at the time of refrigerant leakage in the air conditioners according to Embodiments 3 and 6.
  • FIG. 10 is a schematic diagram showing an example of the configuration of an air conditioner according to Embodiment 4
  • FIG. 11 is a schematic diagram showing an example of the structure of an indoor unit of an air conditioner according to Embodiment 4
  • 14 is a flow chart showing the operation of a leakage reduction control function when refrigerant leaks from the air conditioner according to Embodiment 4.
  • FIG. FIG. 10 is a schematic diagram showing an example of the configuration of an air conditioner according to Embodiment 4
  • FIG. 11 is a schematic diagram showing an example of the structure of an indoor unit of an air conditioner according to Embodiment 4
  • 14 is a flow chart showing the operation of a leakage reduction control function when refrigerant leaks from the air conditioner according to Embodiment 4.
  • FIG. 11 is a schematic diagram showing an example of the configuration of an air conditioner according to Embodiment 5; 14 is a flow chart showing the operation of a leakage reduction control function when refrigerant leaks in the air conditioner according to Embodiment 5.
  • FIG. FIG. 11 is a schematic diagram showing an example of the configuration of an air conditioner according to Embodiment 6;
  • FIG. 11 is a schematic diagram showing an example of the configuration of an air conditioner according to Embodiment 7;
  • an air conditioner according to the present disclosure will be described below with reference to the drawings.
  • the present disclosure is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present disclosure.
  • the present disclosure includes all combinations of configurations that can be combined among the configurations shown in the following embodiments.
  • the air conditioner shown in the drawings is an example of the air conditioner of the present disclosure, and the applicable equipment of the present disclosure is not limited by the air conditioner shown in the drawings.
  • terms indicating directions eg, “up”, “down”, etc.
  • the same reference numerals denote the same or corresponding parts, which are common throughout the specification. In each drawing, the relative dimensional relationship, shape, etc. of each component may differ from the actual one.
  • FIG. 1 is a schematic diagram showing an example of the configuration of an air conditioner 100 according to Embodiment 1.
  • the air conditioner 100 according to Embodiment 1 includes an outdoor unit 1, indoor units 2a and 2b, refrigerant leakage detection devices 63a and 63b, and a control device 30.
  • the outdoor unit 1 and the indoor units 2a and 2b are connected by refrigerant pipes 3, and a refrigerant circuit is formed in which refrigerant circulates through the refrigerant pipes 3.
  • air conditioning using a refrigeration cycle is performed by circulating the refrigerant in the refrigerant circuit.
  • the air conditioner 100 not only mildly flammable refrigerants such as R32 refrigerants, but also nonflammable refrigerants and refrigerants having higher combustibility than R32 refrigerants can be used as refrigerants. Moreover, not only non-toxic refrigerants such as R32 refrigerant, but also toxic refrigerants can be used.
  • the air conditioner 100 is, for example, a multi-air conditioner for buildings, and can select a cooling-only operation in which all the operating indoor units perform cooling, or a heating-only operation in which all the operating indoor units perform heating.
  • the air conditioner 100 has a control device 30 .
  • the control device 30 is composed of, for example, a microcomputer, software executed on an arithmetic device such as a CPU (Central Processing Unit), hardware such as a circuit device that realizes various functions, and the like, and controls the overall operation of the air conditioner 100. to control.
  • the control device 30 is provided independently of the outdoor unit 1 and the indoor units 2a and 2b, but the control device 30 may be provided in the outdoor unit 1, the indoor unit 2a or the indoor unit 2b may be provided. Also, the controller 30 may be provided in both the outdoor unit 1 and the indoor units 2a and 2b.
  • the indoor unit 2a is a ceiling-embedded cassette type indoor unit installed in the ceiling of the air-conditioned space 60a
  • the indoor unit 2b is a ceiling-embedded cassette type indoor unit installed in the ceiling of the air-conditioned space 60b.
  • the air-conditioned space 60a and the air-conditioned space 60b are provided as two independent spaces under one ceiling space 61 with a corridor 62 interposed therebetween.
  • the air-conditioned space 60a and the air-conditioned space 60b are provided with a refrigerant leakage detection device 63a and a refrigerant leakage detection device 63b, respectively, for detecting refrigerant leakage.
  • a refrigerant leakage detection device 63a and a refrigerant leakage detection device 63b
  • an air conditioner 100 having one outdoor unit 1 and two ceiling-embedded cassette type indoor units 2a and 2b is shown as an example. may be Also, the number of indoor units may be one instead of two, or may be three or more. Also, the indoor unit 2 may be of a ceiling-suspended type instead of a ceiling-embedded cassette type.
  • a coolant leakage detection device 63a provided in the air-conditioned space 60a is connected to the control device 30 via a transmission line 64a.
  • a coolant leakage detection device 63b provided in the air-conditioned space 60b is connected to the control device 30 via a transmission line 64b.
  • the refrigerant leakage detection device 63a includes a gas sensor that detects the refrigerant, and when the refrigerant is leaking into the air-conditioned space 60a, the refrigerant leakage detection device 63a detects the refrigerant leakage and notifies the control device 30 via the transmission line 64a. Notifies you of a refrigerant leak.
  • the refrigerant leakage detection device 63b includes a gas sensor that detects the refrigerant, and when the refrigerant is leaking into the air-conditioned space 60b, the refrigerant leakage detection device 63b detects the refrigerant leakage, and via the transmission line 64b, the control device 30 is notified that the refrigerant is leaking.
  • the transmission lines 64a and 64b are not limited to wired connections, and wireless connections are also included.
  • indoor units 2a and 2b when there is no particular need to distinguish between the indoor units 2a and 2b, they are simply referred to as "indoor units 2".
  • indoor unit 2 when the term “indoor unit 2” is used, both singular and plural units are included.
  • air-conditioned space 60 when there is no particular need to distinguish between the air-conditioned space 60a and the air-conditioned space 60b, they are simply referred to as the "air-conditioned space 60".
  • air-conditioned space 60 it includes both singular and plural.
  • refrigerant leakage detection device 63a and the refrigerant leakage detection device 63b they are simply referred to as the "refrigerant leakage detection device 63".
  • refrigerant leakage detection device 63 when the term “refrigerant leakage detection device 63" is used, both singular and plural are included.
  • FIG. 2 is a circuit diagram showing an example of a refrigerant circuit configuration of the air conditioner 100 according to Embodiment 1.
  • FIG. 3 is a perspective view showing the appearance of the indoor unit 2 of the air conditioner 100 according to Embodiment 1.
  • FIG. 4 is a functional block diagram of the control device 30 of the air conditioner 100 according to Embodiment 1. As shown in FIG.
  • the air conditioner 100 includes a compressor 10, a refrigerant flow switching device 11, a heat source side heat exchanger 12, expansion devices 41a and 41b, load side heat exchangers 40a and 40b, and an accumulator 13.
  • a refrigerant circuit 101 is provided, which is sequentially connected by the pipes 3 and in which the refrigerant circulates.
  • the diaphragm device 41a and the diaphragm device 41b when there is no particular need to distinguish between the diaphragm device 41a and the diaphragm device 41b, they are simply referred to as “the diaphragm device 41". Also, when the term “diaphragm device 41" is used, both singular and plural are included. Moreover, when there is no particular need to distinguish between the load-side heat exchanger 40a and the load-side heat exchanger 40b, they are simply referred to as the "load-side heat exchanger 40". Also, when the term “load-side heat exchanger 40" is used, both singular and plural are included.
  • the outdoor unit 1 generates cold heat or hot heat as a heat source, and includes a compressor 10 , a refrigerant flow switching device 11 , a heat source side heat exchanger 12 and an accumulator 13 .
  • An outdoor fan 14 is provided near the heat source side heat exchanger 12 . The outdoor fan 14 blows air to the heat source side heat exchanger 12 .
  • the compressor 10 draws in a low-temperature, low-pressure refrigerant and compresses the refrigerant to a high-temperature, high-pressure state, and is composed of, for example, a capacity-controllable inverter compressor or the like.
  • the refrigerant flow switching device 11 switches between the refrigerant flow in the cooling operation and the refrigerant flow in the heating operation.
  • a four-way valve is used for the refrigerant flow switching device 11 .
  • the refrigerant flow switching device 11 may be configured by combining a two-way valve, a three-way valve, or the like.
  • the heat source side heat exchanger 12 functions as a condenser during cooling operation and as an evaporator during heating operation.
  • the refrigerant that has flowed into the heat source side heat exchanger 12 exchanges heat with air supplied from an outdoor blower 14 such as a fan.
  • the outdoor unit 1 is provided with a first pressure detection device 20 and a second pressure detection device 21 that detect pressure.
  • the first pressure detection device 20 is provided in the refrigerant pipe 3 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11 .
  • the first pressure detection device 20 detects the pressure of the high-temperature, high-pressure refrigerant compressed and discharged by the compressor 10 .
  • the second pressure detection device 21 is provided in the refrigerant pipe 3 that connects the refrigerant flow switching device 11 and the suction side of the compressor 10 .
  • the second pressure detection device 21 detects the pressure of the low-temperature, low-pressure refrigerant sucked into the compressor 10 .
  • the outdoor unit 1 is provided with a first temperature detection device 22 that detects temperature.
  • the first temperature detection device 22 is provided in the refrigerant pipe 3 that connects the discharge side of the compressor 10 and the refrigerant flow switching device 11 .
  • the first temperature detection device 22 detects the temperature of the high-temperature, high-pressure refrigerant compressed and discharged by the compressor 10, and is composed of a temperature sensor such as a thermistor.
  • the indoor unit 2a air-conditions the air-conditioned space 60a
  • the indoor unit 2b air-conditions the air-conditioned space 60b.
  • the indoor unit 2a has an indoor fan 42a, a load-side heat exchanger 40a, and an expansion device 41a.
  • the indoor unit 2b has an indoor fan 42b, a load-side heat exchanger 40b, and an expansion device 41b.
  • the indoor unit 2 is connected to the outdoor unit 1 via refrigerant pipes 3 . Refrigerant circulates through the outdoor unit 1 and the indoor unit 2 through the refrigerant pipe 3 . Fans, for example, are used as the indoor fans 42a and 42b.
  • the load-side heat exchanger 40 functions as an evaporator during cooling operation and as a condenser during heating operation.
  • the refrigerant that has flowed into the load-side heat exchanger 40 exchanges heat with the air supplied from the indoor fan 42 to generate heating air or cooling air to be supplied to the air-conditioned space 60 .
  • the expansion device 41 functions as a pressure reducing valve and an expansion valve, and reduces the pressure of the refrigerant to expand it.
  • the throttling device 41 is configured by a device whose opening degree can be variably controlled, such as an electronic expansion valve.
  • the indoor unit 2a is provided with a second temperature detection device 50a, a third temperature detection device 51a, and a fourth temperature detection device 52a for detecting temperature.
  • the second temperature detection device 50a is provided in the refrigerant pipe 3 that connects the expansion device 41a and the load-side heat exchanger 40a.
  • the third temperature detection device 51a is provided in the refrigerant pipe 3 on the side opposite to the expansion device 41a with respect to the load side heat exchanger 40a.
  • the fourth temperature detection device 52a is provided at the air intake portion of the load side heat exchanger 40a.
  • the indoor unit 2b is provided with a second temperature detection device 50b, a third temperature detection device 51b, and a fourth temperature detection device 52b for detecting temperature.
  • the second temperature detection device 50b is provided in the refrigerant pipe 3 that connects the expansion device 41b and the load side heat exchanger 40b.
  • the third temperature detection device 51b is provided in the refrigerant pipe 3 on the side opposite to the expansion device 41b with respect to the load side heat exchanger 40b.
  • the fourth temperature detection device 52b is provided at the air intake portion of the load side heat exchanger 40b.
  • second temperature detection device 50 when there is no particular need to distinguish between the second temperature detection device 50a and the second temperature detection device 50b, they are simply referred to as the "second temperature detection device 50". In addition, when the term “second temperature detection device 50" is used, both singularity and plurality are included. Further, when there is no particular need to distinguish between the third temperature detection device 51a and the third temperature detection device 51b, they are simply referred to as the "third temperature detection device 51". In addition, when the term “third temperature detection device 51” is used, both singularity and plurality are included. Further, when there is no particular need to distinguish between the fourth temperature detection device 52a and the fourth temperature detection device 52b, they are simply referred to as the "fourth temperature detection device 52". Also, when the term “fourth temperature detection device 52" is used, it includes both singular and plural.
  • the second temperature detection device 50 detects the temperature of the refrigerant flowing into the load-side heat exchanger 40 during cooling operation. Also, the third temperature detection device 51 detects the temperature of the refrigerant flowing out of the load-side heat exchanger 40 during cooling operation. Furthermore, the fourth temperature detection device 52 detects the air temperature of the air-conditioned space 60 .
  • the second temperature detection device 50, the third temperature detection device 51, and the fourth temperature detection device 52 are composed of temperature sensors such as thermistors.
  • the indoor unit 2 is a ceiling cassette type installed on the ceiling.
  • the indoor unit 2 includes a housing 70 forming an outer shell.
  • a load-side heat exchanger 40, an expansion device 41, an indoor fan 42, a second temperature detection device 50, a third temperature detection device 51, and a fourth temperature detection device 52 are installed inside the housing 70. be accommodated.
  • the housing 70 has a panel 71 .
  • the indoor unit 2 is of a two-way cassette type, and the panel 71 is provided with two inlets 72 for sucking the air in the conditioned space 60 and two outlets 73 for blowing out the conditioned air.
  • the blower outlet 73 is provided with a blower outlet opening/closing device 73a for switching between an open state and a closed state.
  • the outlet 73 is opened by opening the outlet opening/closing device 73a.
  • the blower outlet 73 will be in a closed state because the blower outlet opening-and-closing apparatus 73a will be in a closed state.
  • a movable louver having a plate surface covering the outlet 73 is used as the outlet opening/closing device 73a.
  • the indoor unit 2 is installed at the boundary between the air-conditioned space 60 and the ceiling space 61 so that the panel 71 forms part of the ceiling surface of the air-conditioned space 60 (see FIG. 1). Therefore, the panel 71 is exposed in the air-conditioned space 60, and the load-side heat exchanger 40, the expansion device 41, the indoor fan 42, the second temperature detection device 50, and the third The temperature detection device 51 and the fourth temperature detection device 52 are arranged in the ceiling space 61 .
  • the form of the indoor unit 2 is not limited to the form shown in FIG.
  • the indoor unit 2 may be installed on the ceiling surface of the air-conditioned space 60, and may be of a ceiling-suspended type. Further, the indoor unit 2 is not limited to a two-way cassette type, and may be a four-way cassette type or a one-way cassette type. Further, the indoor unit 2 only needs to have an air inlet 72 for sucking air from the air-conditioned space 60, and an air outlet 73 provided with an air outlet opening/closing device 73a for blowing air-conditioned air into the air-conditioned space 60.
  • the numbers of 72 and the number of outlets 73 are not limited to two each.
  • control device 30 controls the frequency of the compressor 10 and the rotation speeds of the indoor fan 42 and the outdoor fan 14 based on values detected by various detection devices, detection results by the various detection devices, and instructions from a remote controller (not shown). (including ON/OFF), switching of the refrigerant flow switching device 11, the opening degree of the expansion device 41, and the state of the outlet opening/closing device 73a.
  • Various detection devices include a first pressure detection device 20, a second pressure detection device 21, a first temperature detection device 22, a second temperature detection device 50, a third temperature detection device 51, a fourth temperature detection device 52, and a refrigerant A leak detection device 63 is included.
  • a cooling only operation and a heating only operation are executed under the control of the control device 30 . Further, when notified of refrigerant leakage from the refrigerant leakage detection device 63, the control device 30 executes a leakage reduction control function 80, which will be described later.
  • FIG. 5 is a circuit diagram showing the flow of refrigerant in the air-conditioning apparatus according to Embodiment 1 in cooling only operation.
  • the direction in which the coolant flows is indicated by solid arrows.
  • the refrigerant flow switching device 11 is switched so that the discharge side of the compressor 10 and the heat source side heat exchanger 12 are connected.
  • the low-temperature, low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature, high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the refrigerant flow switching device 11 .
  • the high-temperature and high-pressure gas refrigerant that has flowed into the heat source side heat exchanger 12 is condensed while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the refrigerant pipe 3 and flows from the outdoor unit 1 to the indoor unit 2 .
  • the high-pressure liquid refrigerant that has flowed into the indoor unit 2 is decompressed by the expansion device 41 into a low-temperature, low-pressure two-phase refrigerant, and then flows into the load-side heat exchanger 40 that acts as an evaporator.
  • the refrigerant flowing into the load-side heat exchanger 40 absorbs heat from the air in the air-conditioned space 60 to cool the air in the air-conditioned space 60 and becomes a low-temperature, low-pressure gas refrigerant.
  • the low-temperature, low-pressure gas refrigerant that has flowed out of the load-side heat exchanger 40 passes through the refrigerant pipe 3 and flows from the indoor unit 2 to the outdoor unit 1 .
  • the refrigerant that has flowed into the outdoor unit 1 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10 .
  • the control device 30 adjusts the expansion device 41 so that the superheat (degree of superheat) obtained as the difference between the temperature detected by the second temperature detection device 50 and the temperature detected by the third temperature detection device 51 is constant. Control the degree of opening. By controlling the opening degree of the throttle device 41 in this manner, the air conditioning apparatus 100 operates according to the heat load of the air-conditioned space 60 . Therefore, efficient operation of the air conditioner 100 becomes possible.
  • FIG. 6 is a circuit diagram showing the flow of the refrigerant in the heating only operation of the air conditioner according to Embodiment 1.
  • FIG. 6 the direction in which the coolant flows is indicated by solid arrows. Further, the refrigerant flow switching device 11 is switched so that the discharge side of the compressor 10 and the indoor unit 2 are connected.
  • the low-temperature, low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature, high-pressure gas refrigerant.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 10 passes through the refrigerant pipe 3 via the refrigerant flow switching device 11 and flows from the outdoor unit 1 to the indoor unit 2 .
  • the high-temperature, high-pressure gas refrigerant that has flowed into the indoor unit 2 radiates heat to the air in the air-conditioned space 60 in the load-side heat exchanger 40 , becomes high-pressure liquid refrigerant, and flows into the expansion device 41 .
  • the refrigerant flows from the indoor unit 2 to the outdoor unit 1 through the refrigerant pipe 3 .
  • the low-temperature, low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12 and absorbs heat from the outdoor air to become a low-temperature, low-pressure gas refrigerant.
  • the low-temperature, low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 12 passes through the refrigerant flow switching device 11 and the accumulator 13 and is sucked into the compressor 10 .
  • the control device 30 maintains a constant subcooling (degree of supercooling) obtained as the difference between the saturated liquid temperature of the refrigerant calculated from the pressure detected by the first pressure detection device 20 and the temperature detected by the second temperature detection device 50.
  • the opening degree of the expansion device 41 is controlled so that By controlling the opening degree of the throttle device 41 in this manner, the air conditioning apparatus 100 operates according to the heat load of the air-conditioned space 60 . Therefore, efficient operation of the air conditioner 100 becomes possible.
  • FIG. 7 is a flowchart showing the operation of the leakage reduction control function 80 at the time of refrigerant leakage of the air conditioner 100 according to Embodiment 1.
  • the leakage reduction control function 80 is a function that the control device 30 has.
  • the refrigerant leakage detection device 63 is installed in the air-conditioned space 60 in which the indoor unit 2 is installed, and is connected to the control device 30 via the transmission line 64 .
  • the refrigerant leakage detection device 63 outputs a signal to the transmission line 64 when it detects that the refrigerant is leaking into the air-conditioned space 60 .
  • Controller 30 implements leakage reduction control function 80 upon receipt of the signal from transmission line 64 .
  • FIG. 7 shows the operation of the leakage reduction control function 80 after the refrigerant leakage detection device 63 detects refrigerant leakage in the air-conditioned space 60 and the control device 30 is notified of the occurrence of refrigerant leakage.
  • the compressor 10 is stopped (step ST1). Since high-pressure refrigerant flows through the indoor units 2 that are performing heating operation, the refrigerant is likely to leak into the air-conditioned space 60 . Stopping the compressor 10 prevents further leakage of the refrigerant into the air-conditioned space 60 . In addition, since the low-pressure refrigerant flows through the indoor units 2 that are performing the cooling operation, the refrigerant is less likely to leak into the air-conditioned space 60 .
  • step ST2 the outlet opening/closing device 73a provided at the outlet 73 of the indoor unit 2 is closed (step ST2).
  • the air outlet opening/closing device 73 a By closing the air outlet opening/closing device 73 a , the air outlet 73 is closed and no conditioned air is blown out into the conditioned space 60 . That is, the route through which the refrigerant leaking from the indoor unit 2 flows into the air-conditioned space 60 is cut off.
  • the indoor fan 42 is put into operation (step ST3).
  • an air current is generated from the suction port 72 into the housing 70 of the indoor unit 2 .
  • the higher the rotation speed of the indoor blower 42 the stronger the flow toward the inside of the indoor unit 2 , so the effect of suppressing the leakage of the refrigerant from the suction port 72 into the air-conditioned space 60 is large. Therefore, it is preferable to operate the indoor fan 42 at the maximum rotation speed.
  • step ST4 the expansion device 41 is fully closed. Depending on the location where the refrigerant leaks, the expansion device 41 may be fully closed to reduce the leakage speed of the refrigerant or reduce the amount of leaked refrigerant. Therefore, the expansion device 41 should be fully closed.
  • step ST4 the leakage reduction control function 80 ends.
  • the outlet opening/closing device 73a is closed in step ST2, and the indoor blower 42 is in operation in step ST3. is suppressed, and flows out to the ceiling space 61 through the gaps of the housing 70 or the like. That is, as shown in FIG. 4, the outlet opening/closing device 73a and the indoor fan 42 operate as leakage refrigerant induction means 81 that guides the leaked refrigerant to a space different from the air-conditioned space 60 in the leakage reduction control function 80. .
  • the leaked refrigerant induction means 81 of the present embodiment has the outlet opening/closing device 73 a and the indoor fan 42 .
  • the refrigerant that has flowed out to the ceiling space 61 due to the leakage refrigerant induction means 81 diffuses and dilutes in the ceiling space 61, and then gradually spreads to the space immediately below.
  • the refrigerant that has flowed out to the ceiling space 61 gradually spreads to the air-conditioned space 60 a , the air-conditioned space 60 b , and the corridor 62 , which are the spaces directly below the ceiling space 61 . That is, since the space volume through which the refrigerant flows out increases, it is possible to suppress the generation of a flammable region due to refrigerant leakage. In addition, it is possible to suppress an increase in refrigerant concentration in a specific space.
  • the refrigerant leaked from the indoor unit 2a flows only into the air-conditioned space 60a, so the refrigerant concentration in the air-conditioned space 60a increases.
  • the leaked refrigerant induction means 81 can suppress the increase in refrigerant concentration in the air-conditioned space 60a, thereby improving the safety of the air-conditioned space 60a. .
  • the operation of the leakage reduction control function 80 shown in FIG. 7 is an example.
  • the order of operation of each step is not limited to that in FIG. 7, and the same effect can be obtained even if the order of each step is changed.
  • the air conditioner 100 of Embodiment 1 includes the outdoor unit 1 that generates cold or hot heat, the indoor unit 2 that air-conditions the air-conditioned space 60 with the cold or hot heat generated by the outdoor unit 1, A refrigerant pipe 3 that is provided between the outdoor unit 1 and the indoor unit 2 and forms a refrigerant circuit 101 in which the refrigerant circulates, a refrigerant leakage detection device 63 that detects that the refrigerant has leaked from the indoor unit 2, and a refrigerant leakage.
  • Leakage refrigerant guide means 81 for guiding the leaked refrigerant to a space different from the air-conditioned space when the detection device 63 detects leakage of the refrigerant.
  • the refrigerant leaking from the indoor unit 2 is guided to a space different from the air-conditioned space 60 by the leaked refrigerant guide means 81, so that a large amount of refrigerant can be prevented from flowing into the air-conditioned space 60. . Therefore, the safety of the air conditioner 100 is improved.
  • the leakage reduction control function 80 can prevent the refrigerant concentration in the specific air-conditioned space 60 from increasing. Therefore, if conditions such as the amount of refrigerant in the air conditioner 100 and the area of the air-conditioned space 60 are satisfied, there is no need to provide an additional safety device. Therefore, it is possible to provide an air conditioner that uses a refrigerant that has a low global warming potential and is combustible at a reduced cost.
  • the leakage reduction control function 80 can prevent the refrigerant concentration in the specific air-conditioned space 60 from increasing. Therefore, if conditions such as the amount of refrigerant in the air conditioner 100 and the area of the air-conditioned space 60 are satisfied, there is no need to provide an additional safety device, so the air conditioning system can be updated with minimal update work.
  • the existing indoor unit is changed to the indoor unit 2 installed on the ceiling surface as in Embodiment 1, and the refrigerant leakage detection device 63 is added to the position where the refrigerant is detected such as the air-conditioned space 60. to install.
  • the refrigerant leakage detection device 63 and the control device 30 may be connected by a transmission line 64 .
  • the refrigerant leakage detection device 63 may be provided inside the indoor unit 2 .
  • the indoor unit 2 has the outlet 73 for blowing air into the air-conditioned space 60, and the leaked refrigerant induction means 81 is provided at the outlet 73, and can be switched between the open state and the closed state. It has an outlet opening/closing device 73a that can be switched, and the outlet opening/closing device 73a is closed when the refrigerant leakage detection device 63 detects refrigerant leakage.
  • the outlet opening/closing device 73a which is the leaked refrigerant induction means 81, is closed, so that the outlet 73 is closed. Therefore, it is possible to suppress the refrigerant leaking from the indoor unit 2 from flowing out from the outlet 73 into the air-conditioned space 60 . Therefore, even if the refrigerant leaks from the indoor unit 2, an increase in refrigerant concentration in the air-conditioned space 60 is suppressed, and the safety of the air conditioner 100 is improved.
  • the leaked refrigerant induction means 81 has the indoor blower 42 provided in the indoor unit 2, and the indoor blower 42 operates when the refrigerant leakage detection device 63 detects refrigerant leakage. be in driving condition.
  • the indoor blower 42 which is the leaked refrigerant induction means 81 and housed in the housing 70 of the indoor unit 2, is put into operation.
  • the refrigerant leaked from the indoor unit 2 is prevented from flowing out from the suction port 72 into the air-conditioned space 60 by the flow of the air current generated by the indoor blower 42 . Therefore, even if the refrigerant leaks from the indoor unit 2, an increase in refrigerant concentration in the air-conditioned space 60 is suppressed, and the safety of the air conditioner 100 is improved.
  • the indoor unit 2 is a cassette type installed on the ceiling surface of the air-conditioned space 60 .
  • the leaked refrigerant guide means 81 is provided in the housing 70 of the indoor unit 2 and arranged in the ceiling space 61 . Therefore, when the refrigerant leaks from the indoor unit 2, the leaked refrigerant induction means 81 can easily flow the leaked refrigerant to the ceiling space 61 while suppressing the refrigerant from flowing out to the air-conditioned space 60. can.
  • the refrigerant may have at least one characteristic of mildly flammable, highly flammable, and toxic. Even if the refrigerant has such characteristics, the leakage refrigerant induction means 81 suppresses the refrigerant from flowing out into the air-conditioned space 60, and the concentration of the refrigerant in the air-conditioned space 60 can be maintained at the permissible concentration. According to this configuration, the air conditioner 100 using a refrigerant with a low global warming potential but having either combustibility or toxicity, or a refrigerant with a low global warming potential but having combustibility or toxicity. can provide.
  • the threshold value for detecting refrigerant leakage by the refrigerant leakage detection device 63 is a value equal to or lower than the concentration of the lower limit of combustion when the refrigerant has a slightly flammable property or a highly flammable property. , if the refrigerant is toxic, the concentration is below the acute toxicity exposure limit, and if the refrigerant is non-flammable, the concentration is below the oxygen deficiency limit.
  • the refrigerant leakage detection device 63 detects refrigerant leakage before the refrigerant concentration in the air-conditioned space 60 reaches a dangerous concentration.
  • the leakage refrigerant induction means 81 suppresses the refrigerant from flowing out from the indoor unit 2 to the air-conditioned space 60, so that the concentration of the refrigerant in the air-conditioned space 60 can be maintained at an allowable concentration. . Therefore, the safety of the air-conditioned space 60 is improved. Even if the refrigerant is nonflammable, if a large amount of refrigerant leaks into the air-conditioned space 60, it may cause oxygen deficiency or the like. However, such a possibility can be suppressed by the said structure, and the safety of the air-conditioned space 60 improves.
  • the refrigerant leakage detection device 63 detects the refrigerant at thresholds below the concentration of the lower combustion limit, below the concentration of the acute toxicity exposure limit, and below the concentration of the oxygen deficiency limit, for which international standards such as ISO and IEC require the installation of safety devices. leak detection. Therefore, the air conditioner 100 does not need to be additionally provided with safety devices such as an alarm device, a ventilator, and a shutoff valve.
  • the air conditioner 100 may be configured so that the indoor unit 2b performs the heating operation while the indoor unit 2a performs the cooling operation.
  • the air conditioner 100 may include a repeater so that the indoor units 2a and 2b each simultaneously perform the refrigerant operation and the heating operation. The repeater is provided between the indoor units 2a, 2b and the outdoor unit 1, and distributes the refrigerant supplied from the outdoor unit 1 to the indoor units 2a, 2b.
  • the indoor unit 2b can perform the heating operation while the indoor unit 2a performs the cooling operation. That is, the air conditioner 100 can perform an operation different from the cooling only operation and the heating only operation. Also, the air conditioner 100 may perform an operation different from the cooling only operation and the heating only operation by a configuration different from that of the repeater.
  • Embodiment 2. 8 is a perspective view showing the appearance of the indoor unit 2 of the air conditioner 100 according to Embodiment 2.
  • FIG. Compared to the air conditioner 100 of Embodiment 1, the air conditioner 100 of Embodiment 2 described here has a ceiling opening 74 in the housing 70 of the indoor unit 2, and the ceiling opening 74 is different in that a ceiling opening opening/closing device 74a is provided.
  • the configuration other than the ceiling opening 74 and the ceiling opening opening/closing device 74a is the same as that of the above-described first embodiment, so the description is omitted.
  • the ceiling opening 74 and the ceiling opening opening/closing device 74a which are the differences between the first embodiment and the second embodiment, will be described with reference to FIG.
  • the ceiling opening 74 is provided in the housing 70 of the indoor unit 2 .
  • the housing 70 and the ceiling space 61 communicate with each other through the ceiling ceiling opening 74 .
  • the ceiling opening 74 is provided with a ceiling opening opening/closing device 74a that can be switched between an open state and a closed state.
  • the ceiling opening 74 is opened by opening the ceiling opening opening/closing device 74a. Further, the ceiling opening 74 is closed by closing the ceiling opening opening/closing device 74a.
  • the housing 70 and the ceiling space 61 communicate with each other when the ceiling opening opening/closing device 74a is opened, and are blocked when the ceiling opening opening/closing device 74a is closed.
  • a movable louver or shutter having a plate surface covering the ceiling opening 74 is used as the ceiling opening opening/closing device 74a.
  • the ceiling opening opening/closing device 74a is not limited to a movable louver or shutter, and may be any mechanism capable of switching the ceiling opening 74 between an open state and a closed state.
  • the ceiling opening opening/closing device 74a is in a closed state when the indoor unit 2 is performing heating operation and cooling operation. Therefore, between the heating operation and the cooling operation, the housing 70 and the ceiling space 61 are cut off.
  • the ceiling opening opening/closing device 74 a is opened by the leakage reduction control function 80 of the control device 30 when the refrigerant leakage detection device 63 detects refrigerant leakage.
  • FIG. 9 is a flow chart showing the operation of the leakage reduction control function 80 at the time of refrigerant leakage of the air conditioner 100 according to Embodiment 2.
  • the refrigerant leakage detection device 63 detects refrigerant leakage in the air-conditioned space 60, and when the control device 30 is notified that the refrigerant leakage has occurred, the control device 30 performs the leakage reduction control function. 80 is carried out.
  • step ST11 the compressor 10 is stopped (step ST11).
  • step ST12 the outlet opening/closing device 73a provided at the outlet 73 of the indoor unit 2 is closed (step ST12).
  • the ceiling opening opening/closing device 74a provided in the ceiling opening 74 is opened (step ST13).
  • the housing 70 of the indoor unit 2 and the ceiling space 61 communicate with each other. Therefore, the refrigerant leaked from the indoor unit 2 flows out into the ceiling space 61 . Therefore, the amount of refrigerant flowing out into the air-conditioned space 60 is reduced, and an increase in refrigerant concentration in the air-conditioned space 60 can be suppressed.
  • the ceiling opening opening/closing device 74 a operates as a leaked refrigerant guide means 81 that guides the leaked refrigerant to a space different from the air-conditioned space 60 .
  • the ceiling opening opening/closing device 74a is one of the components of the leaked refrigerant induction means 81 in this embodiment.
  • step ST14 the indoor blower 42 is put into operation (step ST14).
  • step ST13 since the indoor unit 2 and the ceiling space 61 are in communication with each other, the indoor fan 42 is put into an operating state, so that air is blown into the ceiling space 61 from the suction port 72 via the housing 70 of the indoor unit 2. There is an air current that flows toward Therefore, the refrigerant leaking from the indoor unit 2 does not flow into the air-conditioned space 60 but flows into the space 61 above the ceiling.
  • step ST15 This completes the implementation of the leakage reduction control function 80 .
  • the operation of the leakage reduction control function 80 shown in FIG. 9 is an example. The order of operation of each step is not limited to that in FIG. 9, and the same effect can be obtained even if the order of each step is changed.
  • the air-conditioning apparatus 100 includes the ceiling opening 74 that allows the casing 70 of the indoor unit 2 to communicate with the ceiling space 61 of the air-conditioned space 60.
  • the leaked refrigerant guide means 81 has a ceiling opening opening/closing device 74a which is provided in the ceiling opening 74 and can be switched between an open state and a closed state.
  • the ceiling opening opening/closing device 74a is opened when the refrigerant leakage detection device 63 detects refrigerant leakage.
  • the ceiling opening opening/closing device 74a which is the leaked refrigerant induction means 81, is opened, thereby opening the ceiling opening 74. Therefore, the housing 70 of the indoor unit 2 and the ceiling space 61 communicate with each other, and the refrigerant leaking from the indoor unit 2 flows out to the ceiling space 61 . In addition, since the operation of the indoor blower 42 generates an airflow from the air-conditioned space 60 to the ceiling space 61, the refrigerant leaking from the indoor unit 2 easily flows into the ceiling space 61 instead of the air-conditioned space 60. .
  • the safety of the air conditioner 100 is further improved.
  • the housing of the existing indoor unit is installed in the ceiling in which the ceiling opening opening and closing device 74a is provided in the renewal work in Embodiment 1.
  • the housing 70 having the opening 74 may be replaced.
  • FIG. 10 is a schematic diagram showing an example of the configuration of the air conditioner 100 according to Embodiment 3.
  • the air conditioner 100 of Embodiment 3 described here is different from the air conditioners 100 of Embodiments 1 and 2 in that the indoor unit 2 is installed in the ceiling space 61 of the air-conditioned space 60. It differs in that it is a duct type. Descriptions of the same parts as those in the first and second embodiments are omitted, and differences from the first and second embodiments are mainly described.
  • the indoor unit 2 included in the air conditioner 100 according to Embodiment 3 is a duct type indoor unit installed in the space 61 above the ceiling.
  • a bifurcated blowout duct 75 is connected to the indoor unit 2, the first blowout duct blowout opening 75a1 is exposed to the ceiling surface of the air-conditioned space 60a, and the second blowout duct blowout opening 75a2 is exposed to the ceiling surface of the air-conditioned space 60b.
  • the conditioned air generated by the indoor unit 2 passes through the blowout duct 75 and is supplied from the first blowout duct outlet 75a1 to the conditioned space 60a.
  • FIG. 10 shows an example in which one indoor unit 2 connected to the bifurcated blowout duct 75 corresponds to the air-conditioned space 60a and the air-conditioned space 60b. It doesn't have to be.
  • Two indoor units 2a and 2b may be installed in the ceiling space 61 to correspond to the air-conditioned space 60a and the air-conditioned space 60b.
  • the outlet 75a when there is no particular need to distinguish between the first duct outlet 75a1 and the second duct outlet 75a2, they are simply referred to as "the outlet 75a".
  • the term "blowing duct outlet 75a" includes both singular and plural.
  • FIG. 11 is a schematic diagram showing an example of the structure of the indoor unit 2 of the air conditioner 100 according to Embodiment 3. As shown in FIG. In FIG. 11, the details of the inside of the housing 70 of the indoor unit 2 are omitted, and only the load-side heat exchanger 40 and the indoor fan 42 accommodated in the housing 70 are shown.
  • the housing 70 of the indoor unit 2 is provided with an inlet 72 and an outlet 73 .
  • a blowout duct 75 is connected to the blowout port 73 .
  • the indoor unit 2 takes air into the housing 70 from the suction port 72 by operating the indoor fan 42 .
  • the indoor unit 2 performs heat exchange between the refrigerant and the taken air in the load-side heat exchanger 40 to generate conditioned air.
  • the generated conditioned air passes through the blowout port 73 and the blowout duct 75 and is supplied to the conditioned space 60 from the blowout duct blowout port 75a.
  • the indoor blower 42 is, like a propeller fan, a blower that can switch the direction of the generated airflow according to the rotation direction of the blades. That is, by reversing the rotation direction of the blades of the indoor fan 42, the direction of the airflow generated by the indoor fan 42 can be reversed.
  • FIG. 12 is a flow chart showing the operation of the leakage reduction control function 80 at the time of refrigerant leakage of the air-conditioning apparatus 100 according to Embodiments 3 and 6.
  • the refrigerant leakage detection device 63 detects refrigerant leakage in the air-conditioned space 60, and when the control device 30 is notified that the refrigerant leakage has occurred, the control device 30 performs the leakage reduction control function. 80 is carried out.
  • step ST21 the compressor 10 is stopped (step ST21).
  • step ST22 the indoor fan 42 is reversely rotated (step ST22).
  • the indoor fan 42 rotates the blades so that the airflow is directed to the outlet 73 .
  • the rotation direction of the blades of the indoor fan 42 is reversed from the rotation direction of the blades when the indoor unit 2 is in cooling operation or heating operation. Therefore, the indoor fan 42 generates an air current directed toward the suction port 72 instead of an air current directed toward the blower port 73 . Therefore, the refrigerant leaking from the indoor unit 2 can be suppressed from flowing out from the outlet 73 into the air-conditioned space 60 .
  • the indoor blower 42 generates an airflow toward the suction port 72, so that the air in the air-conditioned space 60 is sucked into the blowout duct 75 via the blowout duct blowout port 75a.
  • the air sucked into the blowout duct 75 flows out from the suction port 72 into the ceiling space 61 . Therefore, the refrigerant leaked to the air-conditioned space 60 can be discharged to the ceiling space 61 .
  • the refrigerant leaked from the indoor unit 2 also flows out from the suction port 72 into the ceiling space 61 . Therefore, the amount of refrigerant flowing out into the air-conditioned space 60 is reduced, and an increase in refrigerant concentration in the air-conditioned space 60 can be suppressed.
  • the indoor fan 42 is one of the components of the leakage refrigerant induction means 81, like the indoor fan 42 in the first embodiment.
  • step ST23 This completes the implementation of the leakage reduction control function 80 .
  • the operation of the leakage reduction control function 80 shown in FIG. 12 is an example.
  • the order of operation of each step is not limited to that shown in FIG. 12, and the same effect can be obtained even if the order of each step is changed.
  • the air conditioner 100 includes the blowout duct 75 connecting between the indoor unit 2 and the air-conditioned space 60, and the indoor unit 2 is connected to the ceiling space 61 of the air-conditioned space 60. It is a duct type to be installed.
  • the leaked refrigerant induction means 81 is provided in the indoor unit 2 and has an indoor fan 42 that switches the direction of the generated airflow according to the rotation direction of the blades. In this case, the rotation direction of the blades is switched so that the airflow is directed to the space 61 above the ceiling.
  • the indoor fan 42 which is the leaked refrigerant induction means 81, rotates in the reverse direction, thereby generating an airflow from the outlet 73 to the suction port 72.
  • the air in the air-conditioned space 60 leaking the refrigerant is sucked into the air outlet 73 via the air outlet 75a and the air outlet duct 75, and flows into the ceiling space 61 from the air inlet 72. That is, the operation of the indoor blower 42 causes the refrigerant leaked into the air-conditioned space 60 and the refrigerant leaked from the indoor unit 2 to flow out into the ceiling space 61 . Therefore, an increase in the refrigerant concentration in the air-conditioned space 60 is suppressed, and the safety of the air conditioner 100 is further improved.
  • the air conditioning system when updating the air conditioning system to the air conditioner 100 with the configuration, in addition to the update work in Embodiment 1, it is replaced with the duct type indoor unit 2, and the indoor unit 2 and the air conditioned space 60 are blown out.
  • a duct 75 may be used for connection.
  • the existing indoor fan may be replaced with the indoor fan 42 that can switch the direction of the airflow to be generated depending on the rotating direction of the blades.
  • FIG. 13 is a schematic diagram showing an example of the configuration of the air conditioner 100 according to Embodiment 4.
  • the air conditioner 100 according to Embodiment 4 described here differs from the air conditioner 100 according to Embodiment 3 in that a blowout duct 75 is provided with a duct air volume adjustment device 76 .
  • Descriptions of the same parts as in the first to third embodiments will be omitted, and the description will focus on the differences from the first to third embodiments.
  • the blow-out duct 75 is provided with a duct air volume adjustment device 76 . More specifically, a duct air volume adjustment device 76 for controlling the flow rate of the conditioned air blown out from the indoor unit 2 is provided on the indoor unit 2 side of the bifurcated branch of the blowout duct 75 . The duct air volume adjustment device 76 adjusts the flow rate of the airflow generated by the indoor fan 42 and flowing through the blowout duct 75 .
  • the duct air volume adjustment device 76 has a mechanism for changing the flow passage cross-sectional area of the blow-out duct 75 . Further, the duct air volume adjusting device 76 has a function of closing the blowout duct 75 .
  • a mechanism for changing the cross-sectional area of the blowout duct 75 of the duct air volume adjustment device 76 is not particularly limited.
  • a mechanism for switching the flow path between two states, that is, an open state and a closed state, or a mechanism for gradually changing the flow path cross-sectional area of the blowout duct 75 may be used.
  • a damper is used as the duct air volume adjustment device 76 . When the duct air volume adjustment device 76 is closed, the airflow flowing through the blowout duct 75 from the indoor unit 2 toward the air-conditioned space 60 is cut off.
  • FIG. 14 is a schematic diagram showing an example of the structure of the indoor unit 2 of the air conditioner 100 according to Embodiment 4. As shown in FIG. In FIG. 14, details of the inside of the housing 70 of the indoor unit 2 are omitted, and only the load-side heat exchanger 40 and the indoor fan 42 accommodated in the housing 70 are shown. Moreover, since the configuration other than the indoor fan 42 is the same as that of the third embodiment, the description thereof is omitted.
  • FIG. 14 shows a sirocco fan as the indoor blower 42 .
  • the indoor blower 42 is not limited to a sirocco fan, and may be a propeller fan.
  • FIG. 15 is a flow chart showing the operation of the leakage reduction control function 80 at the time of refrigerant leakage of the air conditioner 100 according to Embodiment 4.
  • the refrigerant leakage detection device 63 detects refrigerant leakage in the air-conditioned space 60, and when the control device 30 is notified that the refrigerant leakage has occurred, the control device 30 performs the leakage reduction control function. 80 is carried out.
  • the compressor 10 is stopped (step ST31).
  • the duct air volume adjusting device 76 is closed (step ST32).
  • the duct air volume adjustment device 76 operates as leakage refrigerant guide means 81 that guides the leaked refrigerant to a space different from the air-conditioned space 60 .
  • the duct air volume adjustment device 76 is one of the components of the leaked refrigerant induction means 81 of this embodiment.
  • step ST33 This completes the implementation of the leakage reduction control function 80 .
  • the operation of the leakage reduction control function 80 shown in FIG. 15 is an example.
  • the order of operation of each step is not limited to that shown in FIG. 15, and the same effect can be obtained even if the order of each step is changed.
  • the leakage refrigerant induction means 81 is provided in the blowout duct 75, and has the duct air volume adjustment device 76 that adjusts the flow rate of the airflow flowing through the blowout duct 75. .
  • the airflow flowing through the blowout duct 75 from the indoor unit 2 toward the air-conditioned space 60 is cut off when the duct air volume adjustment device 76 is closed.
  • the duct air volume adjustment device 76 is closed when the refrigerant leakage detection device 63 detects refrigerant leakage.
  • the duct air volume adjustment device 76 which is the leakage refrigerant induction means 81, is closed, so that the airflow does not flow through the blowout duct 75. Therefore, the refrigerant leaked from the indoor unit 2 is suppressed from flowing out to the air-conditioned space 60 through the blowout duct 75 and flows out to the ceiling space 61 through a gap in the housing 70 or the like.
  • the refrigerant that has flowed out to the ceiling space 61 diffuses and dilutes in the ceiling space 61, and then flows into the air-conditioned space 60a, the air-conditioned space 60b, and the space immediately below the ceiling space 61.
  • a duct 75 may be used for connection, and a duct air volume adjustment device 76 may be provided in the middle of the blowout duct 75 .
  • FIG. 16 is a schematic diagram showing an example of the configuration of the air conditioner 100 according to Embodiment 5.
  • the air conditioner 100 of Embodiment 5 described here has a ceiling air outlet 78 having a ceiling air outlet opening/closing device 78 a in the duct air volume adjustment device 76 . is provided.
  • the description of the same parts as in the first to fourth embodiments will be omitted, and the differences from the first to fourth embodiments will be mainly described.
  • the duct air volume adjustment device 76 of the present embodiment has a member such as a damper for changing the flow passage cross-sectional area of the blowout duct 75, and a housing that accommodates the member. This housing may be part of the blowout duct 75 .
  • the ceiling vent 78 is an opening provided in the housing of the duct air volume adjustment device 76 .
  • the ceiling air outlet 78 is provided downstream of the damper or the like of the duct air volume adjustment device 76 or at a position straddling the downstream and upstream of the damper or the like.
  • the blowout duct 75 and the ceiling space 61 communicate with each other via an ceiling vent 78 .
  • the ceiling air outlet 78 is provided with a ceiling air outlet opening/closing device 78a that can be switched between an open state and a closed state.
  • the ceiling air outlet 78 is opened by opening the ceiling air outlet opening/closing device 78a.
  • the ceiling air outlet 78 is closed by closing the ceiling air outlet opening/closing device 78a. Therefore, the blow-out duct 75 and the ceiling space 61 are communicated with each other when the ceiling air outlet opening/closing device 78a is opened, and are blocked when the ceiling ceiling air outlet opening/closing device 78a is closed.
  • a movable louver or shutter having a plate surface covering the ceiling air outlet 78 is used as the ceiling air outlet opening/closing device 78a.
  • the ceiling air outlet opening/closing device 78a is not limited to a movable louver or shutter, and may be any mechanism that can switch the ceiling air outlet 78 between an open state and a closed state.
  • the ceiling vent opening/closing device 78a is in a closed state when the indoor unit 2 is performing heating operation and cooling operation. Therefore, the blowout duct 75 and the ceiling space 61 are shut off during the heating operation and the cooling operation.
  • the coolant leakage detection device 63 detects coolant leakage
  • the ceiling vent opening/closing device 78 a is opened by the leakage reduction control function 80 of the control device 30 .
  • FIG. 17 is a flow chart showing the operation of the leakage reduction control function 80 at the time of refrigerant leakage of the air conditioner 100 according to Embodiment 5.
  • the refrigerant leakage detection device 63 detects refrigerant leakage in the air-conditioned space 60, and when the control device 30 is notified that the refrigerant leakage has occurred, the control device 30 performs the leakage reduction control function. 80 is carried out.
  • step ST41 the compressor 10 is stopped (step ST41).
  • step ST42 the duct air volume adjusting device 76 is closed (step ST42).
  • the ceiling air outlet opening/closing device 78a provided in the ceiling air outlet 78 is opened (step ST43).
  • the blowout duct 75 and the ceiling space 61 are communicated with each other. Therefore, the refrigerant that leaks from the indoor unit 2 and remains in the blowout duct 75 flows out to the ceiling space 61 instead of the air-conditioned space 60 . Therefore, an increase in refrigerant concentration in the air-conditioned space 60 can be suppressed.
  • the above-ceiling air outlet opening/closing device 78 a operates as a leaked refrigerant guide means 81 that guides the leaked refrigerant to a space different from the air-conditioned space 60 .
  • the ceiling space exhaust port opening/closing device 78a is one of the constituent elements of the leaked refrigerant induction means 81 of the present embodiment.
  • step ST44 the indoor blower 42 is put into operation
  • step ST45 the expansion device 41 is fully closed.
  • step ST45 the operation of the leakage reduction control function 80 shown in FIG. 17 is an example.
  • the order of operation of each step is not limited to that in FIG. 17, and the same effect can be obtained even if the order of each step is changed.
  • the duct air volume adjustment device 76 has the ceiling exhaust port 78 that allows the blowout duct 75 and the ceiling space 61 to communicate with each other.
  • the leaked refrigerant induction means 81 is provided in the ceiling air outlet 78 and has a ceiling air outlet opening/closing device 78a that can be switched between an open state and a closed state. It becomes an open state when leakage of the refrigerant is detected.
  • the ceiling air outlet opening/closing device 78a which is the leakage refrigerant induction means 81, is opened, thereby opening the ceiling air outlet 78. Therefore, the blowout duct 75 and the ceiling space 61 communicate with each other, and the leaked refrigerant remaining in the blowout duct 75 flows out to the ceiling space 61 instead of the air-conditioned space 60 . Therefore, an increase in the refrigerant concentration in the air-conditioned space 60 is suppressed, and the safety of the air conditioner 100 is further improved.
  • the duct air volume adjustment device having the ceiling air outlet 78 provided with the ceiling air outlet opening and closing device 78 a in the renewal work in Embodiment 4 76 may be provided.
  • FIG. 18 is a schematic diagram showing an example of the configuration of the air conditioner 100 according to Embodiment 6.
  • the air conditioner 100 according to Embodiment 6 described here differs from the air conditioner 100 according to Embodiment 5 in that a suction duct 77 is connected to the suction port 72 of the indoor unit 2 .
  • the description of the same parts as in the first to fifth embodiments will be omitted, and the differences from the first to fifth embodiments will be mainly described.
  • a suction duct 77 is connected to the suction port 72 of the indoor unit 2 , and a suction duct suction port 77 a of the suction duct 77 is exposed on the ceiling surface of the corridor 62 .
  • the indoor unit 2 sucks the air in the corridor 62 from the suction duct inlet 77a.
  • the sucked air flows into the indoor unit 2 through the suction duct 77 .
  • the space where the indoor unit 2 sucks air through the suction duct 77 may not be the corridor 62 . It is sufficient to draw in a large volume of air so that even if the refrigerant leaks, the concentration of the refrigerant will not reach a dangerous concentration.
  • the air may be sucked from a ventilated space such as a machine room.
  • air in a space where no ignition source exists or where no person exists may be sucked.
  • a space for sucking air may be selected according to the building in which the air conditioner 100 is installed.
  • the leakage reduction control function 80 according to the sixth embodiment is the same as the leakage reduction control function 80 according to the third embodiment. Also, the flowchart showing the operation of the leakage reduction control function 80 is shown in FIG. 12, which is the same as in the third embodiment. Since FIG. 12 has been described in Embodiment 3, description thereof will be omitted here.
  • the indoor fan 42 of the air conditioner 100 according to Embodiment 6 is a fan capable of switching the direction of the generated airflow according to the rotation direction of the blades, similarly to the indoor fan 42 of the air conditioner 100 according to Embodiment 3. is. Therefore, for example, a propeller fan is used as the indoor fan 42 of the air conditioner 100 according to Embodiment 6.
  • Embodiment 6 when the refrigerant leakage detection device 63 detects refrigerant leakage, the indoor fan 42 rotates in the reverse direction to generate an airflow toward the suction port 72 . Since a suction duct 77 is connected to the suction port 72, refrigerant leaking from the indoor unit 2 is discharged to the corridor 62 via the suction duct 77 and the suction duct suction port 77a. Therefore, the refrigerant leaking from the indoor unit 2 is suppressed from flowing out into the air-conditioned space 60 .
  • the suction duct 77 functions as leakage refrigerant guide means 81 that guides the leaked refrigerant to a space different from the air-conditioned space 60 .
  • the suction duct 77 is one of the components of the leaked refrigerant guide means 81 of this embodiment.
  • the air conditioner 100 includes the suction duct 77 provided between the indoor unit 2 and a space different from the air-conditioned space 60 and the ceiling space 61 .
  • the indoor fan 42 which is the leaked refrigerant induction means 81, rotates in the reverse direction, thereby generating an airflow from the outlet 73 to the suction port 72.
  • the air flows from the air-conditioned space 60 to a space different from the air-conditioned space 60 and the ceiling space 61, the refrigerant leaked into the air-conditioned space 60 and the refrigerant leaked from the indoor unit 2 are released into the air-conditioned space 60 and It flows out to a space different from the ceiling space 61 .
  • the refrigerant is suppressed from flowing out into the ceiling space 61, the amount of refrigerant flowing out from the ceiling space 61 to the air-conditioned space 60 immediately below is also reduced. Therefore, an increase in the refrigerant concentration in the air-conditioned space 60 is further suppressed, and the safety of the air conditioner 100 is further improved.
  • the suction duct 77 is connected to the suction port 72 of the indoor unit 2, and the suction duct suction port 77a is air-conditioned. It may be exposed to a space different from the space 60 and the ceiling space 61 .
  • FIG. 19 is a schematic diagram showing an example of the configuration of an air conditioner 100 according to Embodiment 7.
  • the air conditioner 100 of Embodiment 7 described here is different from the air conditioner 100 of Embodiment 1 in that the air conditioner 100 includes alarm devices 6a and 6b, shutoff valves 7a and 7b, and a ventilation device. It differs in that it includes 8a and 8b.
  • the description of the same parts as in the first embodiment will be omitted, and the differences from the first embodiment will be mainly described.
  • This embodiment is used in combination with the first to sixth embodiments.
  • the air conditioner 100 includes an alarm device 6a and a ventilation device 8a in an air-conditioned space 60a. Also, the air-conditioned space 60b is equipped with an alarm device 6b and a ventilation device 8b.
  • the air conditioner 100 also includes a shutoff valve 7a in the refrigerant pipe 3 connected to the indoor unit 2a, and a shutoff valve 7b in the refrigerant pipe 3 connected to the indoor unit 2b.
  • alarm device 6 when there is no particular need to distinguish between the alarm device 6a and the alarm device 6b, they are simply referred to as “alarm device 6". In addition, when the term “alarm device 6" is used, both singular and plural are included. Moreover, when there is no particular need to distinguish between the shutoff valve 7a and the shutoff valve 7b, they are simply referred to as the “shutoff valve 7". In addition, the term “shutoff valve 7" includes both singular and plural. Moreover, when there is no particular need to distinguish between the ventilator 8a and the ventilator 8b, they are simply referred to as the "ventilator 8". In addition, the term “ventilator 8" includes both singular and plural.
  • the alarm device 6 When the refrigerant leakage detection device 63 detects refrigerant leakage in the air-conditioned space 60, the alarm device 6 notifies that the refrigerant is leaking.
  • the alarm device 6 for example, any one or more of a lamp or screen for visual notification, or a buzzer or speaker for auditory notification can be employed.
  • the cutoff valve 7 is closed to block the flow of refrigerant to the indoor unit 2 .
  • the ventilation device 8 exhausts the air in the air-conditioned space 60 when the refrigerant leakage detection device 63 detects refrigerant leakage in the air-conditioned space 60 .
  • the air conditioner 100 does not need to include all three types of the alarm device 6, the shutoff valve 7, and the ventilation device 8. Only one type of the alarm device 6, the shutoff valve 7, and the ventilator 8 may be provided, or two types of the alarm device 6, the shutoff valve 7, and the ventilator 8 may be provided.
  • the air-conditioning apparatus 100 includes the alarm device 6 that notifies that the refrigerant has leaked, the shutoff valve 7 that cuts off the flow of the leaked refrigerant, and the ventilation device that exhausts the leaked refrigerant. 8, and when the refrigerant leakage detection device 63 detects that the refrigerant has leaked, at least one of the alarm device 6, the shutoff valve 7, and the ventilation device 8 is activated. .
  • the cutoff valve 7 blocks the flow of the refrigerant to the indoor unit 2, thereby reducing the leakage amount of the refrigerant from the indoor unit 2 itself.
  • the refrigerant in the air-conditioned space 60 can be discharged by the ventilation device 8 . Therefore, the safety of the air-conditioned space 60 can be further improved.
  • the air conditioner 100 is provided with safety devices such as the alarm device 6, the shutoff valve 7, and the ventilation device 8 required by international standards such as ISO5149 or IEC60335-2-40. Become. Therefore, the reliability of the air conditioner 100 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和装置は、冷熱又は温熱を生成する室外機と、室外機で生成された冷熱又は温熱で空調空間を空気調和する室内機と、室外機と室内機の間に設けられ、冷媒が循環する冷媒回路を形成する冷媒配管と、冷媒が、室内機から漏洩したことを検知する冷媒漏洩検知装置(63)と、冷媒漏洩検知装置が冷媒の漏洩を検知した場合、漏洩した冷媒を空調空間とは異なる空間へ誘導する漏洩冷媒誘導手段(81)とを備える。

Description

空気調和装置
 本開示は、冷媒が室内に漏洩することを抑制する空気調和装置に関する。
 従来のビル用マルチエアコン等の空気調和装置では、室外機と複数台の室内機とを接続する冷媒配管の全長が数百mになることがある。このため、従来のビル用マルチエアコンでは、使用する冷媒量が非常に多い。このような空気調和装置では、冷媒漏洩が発生した場合に一つの部屋に大量の冷媒が漏れてしまう可能性がある。
 また、近年では地球温暖化の観点から地球温暖化係数が低い冷媒への転換が求められている。しかし、地球温暖化係数が低い冷媒は可燃性を有しているものが多い。今後、地球温暖化係数が低い冷媒に転換が進んだ場合、安全性への配慮が更に必要になる。このような状況を背景として、冷媒回路中に冷媒の流れを閉止させるための遮断弁を設け、冷媒が漏れた際の冷媒の漏洩量を少なくする技術が提案されている(たとえば、特許文献1参照)。
特許第6081033号公報
 特許文献1に記載の空気調和装置は、室内機の出入口配管に冷媒の流れを遮断する遮断弁を設けることで、室内機で冷媒漏洩が発生した場合の冷媒漏洩量を低減する。しかし、地球温暖化係数が低く可燃性を有する冷媒を使用する場合、室内機で冷媒が漏洩した場合の安全対策として、不燃性冷媒を使用する従来の空気調和装置が有する遮断弁に加えて、別の遮断弁を追加することがある。こうした場合、遮断弁の選定及び遮断弁の設置位置の設計等の作業が追加で発生する。また、遮断弁を空気調和装置に設置するための作業及び費用も追加で発生する。したがって、不燃性冷媒を使用する従来の空気調和装置と比較すると、地球温暖化係数が低い冷媒を使用する空気調和装置は、安全対策を設けるための作業及び費用が増加するという課題があった。
 本開示は、上記のような課題を背景としてなされたものであり、地球温暖化係数が低く可燃性を有する冷媒を使用する場合でも、遮断弁を追加することなく、漏洩した冷媒が空調空間に流出することを抑制できる空気調和装置を提供することを目的とする。
 本開示に係る空気調和装置は、冷熱又は温熱を生成する室外機と、室外機で生成された冷熱又は温熱で空調空間を空気調和する室内機と、室外機と室内機の間に設けられ、冷媒が循環する冷媒回路を形成する冷媒配管と、冷媒が、室内機から漏洩したことを検知する冷媒漏洩検知装置と、冷媒漏洩検知装置が冷媒の漏洩を検知した場合、漏洩した冷媒を空調空間とは異なる空間へ誘導する漏洩冷媒誘導手段とを備える。
 本開示に係る空気調和装置によれば、室内機から冷媒が漏洩した場合、漏洩冷媒誘導手段が、漏洩した冷媒を空調空間とは異なる空間へ誘導する。このため、漏洩した冷媒が空調空間に大量に流れ込むことを抑制することができる。
実施の形態1に係る空気調和装置の構成の一例を示す概略図である。 実施の形態1に係る空気調和装置の冷媒回路構成の一例を示す回路図である。 実施の形態1に係る空気調和装置の室内機の外観を示す斜視図である。 実施の形態1に係る空気調和装置の制御装置の機能ブロック図である。 実施の形態1に係る空気調和装置の全冷房運転での冷媒の流れを示す回路図である。 実施の形態1に係る空気調和装置の全暖房運転での冷媒の流れを示す回路図である。 実施の形態1に係る空気調和装置の冷媒漏洩時の漏洩低減制御機能の動作を示すフローチャートである。 実施の形態2に係る空気調和装置の室内機の外観を示す斜視図である。 実施の形態2に係る空気調和装置の冷媒漏洩時の漏洩低減制御機能の動作を示すフローチャートである。 実施の形態3に係る空気調和装置の構成の一例を示す概略図である。 実施の形態3に係る空気調和装置の室内機の構造の一例を示す概略図である。 実施の形態3及び実施の形態6に係る空気調和装置の冷媒漏洩時の漏洩低減制御機能の動作を示すフローチャートである。 実施の形態4に係る空気調和装置の構成の一例を示す概略図である。 実施の形態4に係る空気調和装置の室内機の構造の一例を示す概略図である。 実施の形態4に係る空気調和装置の冷媒漏洩時の漏洩低減制御機能の動作を示すフローチャートである。 実施の形態5に係る空気調和装置の構成の一例を示す概略図である。 実施の形態5に係る空気調和装置の冷媒漏洩時の漏洩低減制御機能の動作を示すフローチャートである。 実施の形態6に係る空気調和装置の構成の一例を示す概略図である。 実施の形態7に係る空気調和装置の構成の一例を示す概略図である。
 以下、本開示に係る空気調和装置の実施の形態を、図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、図面に示す空気調和装置は、本開示の空気調和装置の一例を示すものであり、図面に示された空気調和装置によって本開示の適用機器が限定されるものではない。また、以下の説明において、理解を容易にするために方向を表す用語(例えば「上」、「下」など)を適宜用いるが、これらは説明のためのものであって、本開示を限定するものではない。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係又は形状等が実際のものとは異なる場合がある。
実施の形態1.
[空気調和装置100の構成]
 図1は、実施の形態1に係る空気調和装置100の構成の一例を示す概略図である。図1に示すように、実施の形態1に係る空気調和装置100は、室外機1と、室内機2a、2bと、冷媒漏洩検知装置63a、63bと、制御装置30とを備える。室外機1と室内機2a、2bとは、冷媒配管3で接続されており、冷媒配管3を冷媒が循環する冷媒回路が形成されている。空気調和装置100では、冷媒回路を冷媒が循環することで、冷凍サイクルを利用した空気調和が行われる。空気調和装置100では、使用する冷媒として、R32冷媒等の微燃性の冷媒だけでなく、不燃性冷媒及びR32冷媒よりも高い燃焼性を有する冷媒を使用することができる。また、R32冷媒のように毒性を有しない冷媒だけでなく、毒性を有する冷媒を使用することもできる。また、空気調和装置100は、例えばビル用マルチエアコン等であり、運転する全室内機が冷房を行う全冷房運転、及び運転する全室内機が暖房を行う全暖房運転を選択できる。
 空気調和装置100は、制御装置30を有する。制御装置30は、例えばマイクロコンピュータ、CPU(Central Processing Unit)などの演算装置上で実行されるソフトウェア、各種機能を実現する回路デバイスなどのハードウェアなどで構成され、空気調和装置100の全体の運転を制御する。図1では、制御装置30が、室外機1及び室内機2a、2bとは独立して設けられているが、制御装置30は、室外機1に設けてもよいし、室内機2a又は室内機2bのいずれかに設けてもよい。また、制御装置30は、室外機1及び室内機2a、2bの両方に設けてもよい。
 室内機2aは空調空間60aの天井に設けられる天井埋め込みカセット型の室内機であり、室内機2bは空調空間60bの天井に設けられる天井埋め込みカセット型の室内機である。空調空間60a及び空調空間60bは、1つの天井裏空間61の下に、廊下62を挟んだ独立した2つの空間として設けられている。空調空間60a及び空調空間60bには、冷媒の漏洩を検知する冷媒漏洩検知装置63a及び冷媒漏洩検知装置63bがそれぞれ設けられている。なお、図1では、1台の室外機1及び2台の天井埋め込みカセット型の室内機2a、2bを有する空気調和装置100を例として示しているが、室外機は1台でなく複数台設けられてもよい。また、室内機は2台でなく、1台であってもよいし、3台以上設けられてもよい。また、室内機2は、天井埋め込みカセット型ではなく、天井吊り型であってもよい。
 空調空間60aに設けられた冷媒漏洩検知装置63aは、伝送線64aを介して制御装置30と接続している。空調空間60bに設けられた冷媒漏洩検知装置63bは、伝送線64bを介して制御装置30と接続している。冷媒漏洩検知装置63aは、冷媒を検知するガスセンサを含み、空調空間60aに冷媒が漏洩している場合、冷媒漏洩検知装置63aが冷媒漏洩を検知し、伝送線64aを介して、制御装置30に冷媒が漏洩していることを通知する。また、冷媒漏洩検知装置63bは、冷媒を検知するガスセンサを含み、空調空間60bに冷媒が漏洩している場合、冷媒漏洩検知装置63bが冷媒漏洩を検知し、伝送線64bを介して、制御装置30に冷媒が漏洩していることを通知する。伝送線64a、64bは有線での接続に限定されず、無線での接続も含まれる。
 以下の説明において、室内機2aと室内機2bを特に区別する必要がない場合には、単に「室内機2」と適宜称する。また、「室内機2」と称した場合には、単数又は複数の両方を含むものとする。また、空調空間60aと空調空間60bを特に区別する必要がない場合には、単に「空調空間60」と適宜称する。また、「空調空間60」と称した場合には、単数又は複数の両方を含むものとする。また、冷媒漏洩検知装置63aと冷媒漏洩検知装置63bを特に区別する必要がない場合には、単に「冷媒漏洩検知装置63」と適宜称する。また、「冷媒漏洩検知装置63」と称した場合には、単数又は複数の両方を含むものとする。
 次に、図2~図4を参照しながら、空気調和装置100について説明する。図2は、実施の形態1に係る空気調和装置100の冷媒回路構成の一例を示す回路図である。図3は、実施の形態1に係る空気調和装置100の室内機2の外観を示す斜視図である。図4は、実施の形態1に係る空気調和装置100の制御装置30の機能ブロック図である。
 図2に示すように、空気調和装置100は、圧縮機10、冷媒流路切替装置11、熱源側熱交換器12、絞り装置41a、41b、負荷側熱交換器40a、40b、アキュムレータ13が冷媒配管3で順次接続され、冷媒が循環する冷媒回路101を備えている。
 以下の説明において、絞り装置41aと絞り装置41bを特に区別する必要がない場合には、単に「絞り装置41」と適宜称する。また、「絞り装置41」と称した場合には、単数又は複数の両方を含むものとする。また、負荷側熱交換器40aと負荷側熱交換器40bを特に区別する必要がない場合には、単に「負荷側熱交換器40」と適宜称する。また、「負荷側熱交換器40」と称した場合には、単数又は複数の両方を含むものとする。
(室外機1)
 図2を参照しながら、室外機1の構成について説明する。室外機1は、熱源として冷熱又は温熱を生成するものであり、圧縮機10と、冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレータ13とを備えている。また、熱源側熱交換器12の付近には、室外送風機14が設けられる。室外送風機14は、熱源側熱交換器12に空気を送風する。
 圧縮機10は、低温低圧の冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成されている。冷媒流路切替装置11は、冷房運転における冷媒の流れと暖房運転における冷媒の流れとを切り替える。冷媒流路切替装置11は、四方弁が用いられる。また、冷媒流路切替装置11は、二方弁または三方弁等を組み合わせることによって構成されてもよい。
 熱源側熱交換器12は、冷房運転では凝縮器として機能し、暖房運転では蒸発器として機能する。熱源側熱交換器12に流入した冷媒は、ファン等の室外送風機14から供給される空気と熱交換を行なう。
 室外機1には、圧力を検知する第一圧力検知装置20及び第二圧力検知装置21が設けられている。第一圧力検知装置20は、圧縮機10の吐出側と冷媒流路切替装置11とを繋ぐ冷媒配管3に設けられる。第一圧力検知装置20は、圧縮機10により圧縮され吐出した高温高圧の冷媒の圧力を検知する。また、第二圧力検知装置21は、冷媒流路切替装置11と圧縮機10の吸入側とを繋ぐ冷媒配管3に設けられる。第二圧力検知装置21は、圧縮機10に吸入される低温低圧の冷媒の圧力を検知する。
 また、室外機1には、温度を検知する第一温度検知装置22が設けられている。第一温度検知装置22は、圧縮機10の吐出側と冷媒流路切替装置11を繋ぐ冷媒配管3に設けられている。第一温度検知装置22は、圧縮機10により圧縮され吐出した高温高圧の冷媒の温度を検知するものであり、サーミスタ等の温度センサで構成される。
(室内機2a、2b)
 次に図2を参照しながら、室内機2の構成について説明する。室内機2aは空調空間60aを空気調和し、室内機2bは空調空間60bを空気調和する。室内機2aは、室内送風機42aと、負荷側熱交換器40aと、絞り装置41aとを有する。また、室内機2bは、室内送風機42bと、負荷側熱交換器40bと、絞り装置41bとを有する。室内機2は、冷媒配管3を介して室外機1と接続される。冷媒は、冷媒配管3を通って室外機1と室内機2を循環する。また、室内送風機42a、42bは、例えば、ファンが用いられる。
 以下の説明において、室内送風機42aと室内送風機42bを特に区別する必要がない場合には、単に「室内送風機42」と適宜称する。また、「室内送風機42」と称した場合には、単数又は複数の両方を含むものとする。
 負荷側熱交換器40は、冷房運転では蒸発器として機能し、暖房運転では凝縮器として機能する。負荷側熱交換器40に流入した冷媒が、室内送風機42から供給される空気と熱交換を行なうことで、空調空間60に供給するための暖房用空気又は冷房用空気が生成される。
 絞り装置41は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。絞り装置41は、開度が可変に制御可能なもの、例えば電子式膨張弁等で構成される。
 室内機2aには、温度を検知する第二温度検知装置50a、第三温度検知装置51a、及び第四温度検知装置52aが設けられている。第二温度検知装置50aは、絞り装置41aと負荷側熱交換器40aとを繋ぐ冷媒配管3に設けられている。第三温度検知装置51aは、負荷側熱交換器40aに対して絞り装置41aとは反対側の冷媒配管3に設けられている。第四温度検知装置52aは、負荷側熱交換器40aの空気吸込部に設けられている。また、室内機2bには、温度を検知する第二温度検知装置50b、第三温度検知装置51b、及び第四温度検知装置52bが設けられている。第二温度検知装置50bは、絞り装置41bと負荷側熱交換器40bとを繋ぐ冷媒配管3に設けられている。第三温度検知装置51bは、負荷側熱交換器40bに対して絞り装置41bとは反対側の冷媒配管3に設けられている。第四温度検知装置52bは、負荷側熱交換器40bの空気吸込部に設けられている。
 以下の説明において、第二温度検知装置50aと第二温度検知装置50bを特に区別する必要がない場合には、単に「第二温度検知装置50」と適宜称する。また、「第二温度検知装置50」と称した場合には、単数又は複数の両方を含むものとする。また、第三温度検知装置51aと第三温度検知装置51bを特に区別する必要がない場合には、単に「第三温度検知装置51」と適宜称する。また、「第三温度検知装置51」と称した場合には、単数又は複数の両方を含むものとする。さらに、第四温度検知装置52aと第四温度検知装置52bを特に区別する必要がない場合には、単に「第四温度検知装置52」と適宜称する。また、「第四温度検知装置52」と称した場合には、単数又は複数の両方を含むものとする。
 第二温度検知装置50は、冷房運転時に負荷側熱交換器40に流入する冷媒の温度を検知する。また、第三温度検知装置51は、冷房運転時に負荷側熱交換器40から流出する冷媒の温度を検知する。さらに、第四温度検知装置52は、空調空間60の空気温度を検知する。第二温度検知装置50、第三温度検知装置51、及び第四温度検知装置52は、サーミスタ等の温度センサで構成される。
 次に図3を参照しながら、室内機2の形態について説明する。室内機2は天井に設置する天井カセット型である。室内機2は、外郭を構成する筐体70を備える。筐体70の内部には、負荷側熱交換器40と、絞り装置41と、室内送風機42と、第二温度検知装置50と、第三温度検知装置51と、第四温度検知装置52とが収容される。筐体70は、パネル71を有する。室内機2は二方向カセット型であり、パネル71には、空調空間60の空気を吸い込む2つの吸込口72と、空調空気を吹出す2つの吹出口73とが設けられる。また、吹出口73には、開放状態と閉止状態とに切り替えられる吹出口開閉装置73aが設けられる。吹出口73は、吹出口開閉装置73aが開放状態となることで、開状態となる。また、吹出口73は、吹出口開閉装置73aが閉止状態となることで、閉状態となる。吹出口開閉装置73aとしては、吹出口73を覆う板面を有する可動式のルーバーが用いられる。可動式のルーバーを吹出口開閉装置73aとして用いて吹出口73の開口面積を調整することで、室内機2から空調空間60に供給する空調空気の風向きを調整することができる。
 室内機2は、パネル71が空調空間60の天井面の一部を構成するように、空調空間60と天井裏空間61の境界に設置される(図1参照)。したがって、空調空間60にはパネル71が露出し、筐体70の内部に収容された負荷側熱交換器40と、絞り装置41と、室内送風機42と、第二温度検知装置50と、第三温度検知装置51と、第四温度検知装置52とは、天井裏空間61に配置される。
 室内機2の形態は、図3に示す形態に限定されない。室内機2は、空調空間60の天上面に設置できればよく、天吊り型であってもよい。また、室内機2は、二方向カセット型に限らず、四方向カセット型及び一方向カセット型であってもよい。また、室内機2は、空調空間60から空気を吸い込む吸込口72、及び空調空間60に空調空気を吹き出す、吹出口開閉装置73aが設けられた吹出口73を有していればよく、吸込口72及び吹出口73の数は各2つに限らない。
(制御装置30)
 次に図4を参照しながら、制御装置30について説明する。制御装置30は、各種検知装置で検知した値、各種検知装置による検知結果、及びリモコン(図示せず)からの指示に基づいて、圧縮機10の周波数、室内送風機42及び室外送風機14の回転数(ON/OFF含む)、冷媒流路切替装置11の切り替え、絞り装置41の開度、及び吹出口開閉装置73aの状態を制御する。各種検知装置には、第一圧力検知装置20、第二圧力検知装置21、第一温度検知装置22、第二温度検知装置50、第三温度検知装置51、第四温度検知装置52、及び冷媒漏洩検知装置63が含まれる。後述する全冷房運転及び全暖房運転は、制御装置30の制御により実行される。また、制御装置30は、冷媒漏洩検知装置63から、冷媒漏洩が通知されると、後述する漏洩低減制御機能80を実行する。
(全冷房運転)
 次に図5を参照しながら、負荷側熱交換器40a、40bで冷熱負荷が発生している場合を例として、空気調和装置100の全冷房運転について説明する。図5は、実施の形態1に係る空気調和装置の全冷房運転での冷媒の流れを示す回路図である。図5では、冷媒が流れる方向が、実線の矢印で示されている。また、冷媒流路切替装置11が、圧縮機10の吐出側と熱源側熱交換器12とが接続されるように切り替えられている。
 全冷房運転の場合、低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して熱源側熱交換器12に流入する。熱源側熱交換器12に流入した高温高圧のガス冷媒は、室外空気に放熱しながら凝縮し高圧の液冷媒となる。そして、熱源側熱交換器12から流出した高圧の液冷媒は、冷媒配管3を通って、室外機1から室内機2に流入する。
 室内機2に流入した高圧の液冷媒は、絞り装置41によって低温低圧の二相冷媒に減圧された後、蒸発器として作用する負荷側熱交換器40に流入する。負荷側熱交換器40に流入した冷媒は、空調空間60の空気から吸熱することで空調空間60の空気を冷却し、低温低圧のガス冷媒となる。負荷側熱交換器40から流出した低温低圧のガス冷媒は、冷媒配管3を通って、室内機2から室外機1へ流入する。室外機1に流入した冷媒は、冷媒流路切替装置11及びアキュムレータ13を通り、圧縮機10へ吸入される。
 制御装置30は、第二温度検知装置50が検知した温度と、第三温度検知装置51が検知した温度との差として得られるスーパーヒート(過熱度)が一定になるように、絞り装置41の開度を制御する。このように絞り装置41の開度が制御されることで、空調空間60の熱負荷に応じた運転を空気調和装置100が実施することになる。よって、空気調和装置100の効率のよい運転が可能となる。
(全暖房運転)
 次に図6を参照しながら、負荷側熱交換器40a、40bで温熱負荷が発生している場合を例として、空気調和装置100の全暖房運転について説明する。図6は、実施の形態1に係る空気調和装置の全暖房運転での冷媒の流れを示す回路図である。図6では、冷媒が流れる方向が、実線の矢印で示されている。また、冷媒流路切替装置11が、圧縮機10の吐出側と室内機2とが接続されるように切り替えられている。
 全暖房運転の場合、低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、冷媒流路切替装置11を介して冷媒配管3を通って、室外機1から室内機2に流入する。室内機2に流入した高温高圧のガス冷媒は、負荷側熱交換器40で空調空間60の空気に放熱し、高圧の液冷媒となり、絞り装置41へ流入する。そして、冷媒は、絞り装置41によって低温低圧の二相冷媒に減圧された後、冷媒配管3を通って、室内機2から室外機1に流入する。
 室外機1へ流入した低温低圧の二相冷媒は、熱源側熱交換器12に流入し、室外空気から吸熱することで低温低圧のガス冷媒となる。熱源側熱交換器12を流出した低温低圧のガス冷媒は、冷媒流路切替装置11とアキュムレータ13を通り、圧縮機10へ吸入される。
 制御装置30は、第一圧力検知装置20が検知した圧力から算出された冷媒の飽和液温度と、第二温度検知装置50が検知した温度との差として得られるサブクール(過冷却度)が一定になるように、絞り装置41の開度を制御する。このように絞り装置41の開度が制御されることで、空調空間60の熱負荷に応じた運転を空気調和装置100が実施することになる。よって、空気調和装置100の効率のよい運転が可能となる。
(漏洩低減制御機能80)
 次に、漏洩低減制御機能80について、図1及び図7を参照しながら説明する。図7は、実施の形態1に係る空気調和装置100の冷媒漏洩時の漏洩低減制御機能80の動作を示すフローチャートである。漏洩低減制御機能80は、制御装置30が有する機能である。図1に示すように、冷媒漏洩検知装置63は、室内機2が設けられている空調空間60に設置され、伝送線64を介して制御装置30と接続している。冷媒漏洩検知装置63は、空調空間60に冷媒が漏れていることを検知すると、伝送線64に信号を出力する。制御装置30は、伝送線64からの信号を受信すると、漏洩低減制御機能80を実施する。
 図7は、冷媒漏洩検知装置63が空調空間60での冷媒漏洩を検知し、制御装置30に冷媒漏洩が発生したことが伝達された時点からの、漏洩低減制御機能80の動作を示す。まず、圧縮機10を停止する(ステップST1)。暖房運転を実施している室内機2には高圧の冷媒が流れるため、冷媒が空調空間60へ漏れやすい状態である。圧縮機10を停止することで、空調空間60に冷媒がさらに漏洩することを防止する。また、冷房運転を実施している室内機2には低圧の冷媒が流れるため、冷媒が空調空間60へ漏れにくい状態である。よって、圧縮機10を必ずしも停止させる必要はないといえる。しかし、冷媒漏洩という異常状態が発生しているので、圧縮機10を停止するのが望ましい。また、空気調和装置100が停止中は、圧縮機10も停止していると考えられる。よって、空気調和装置100が停止中に冷媒漏洩が発生した場合は、圧縮機10は停止したままとする。
 次に、室内機2の吹出口73に設けられている吹出口開閉装置73aを閉止状態にする(ステップST2)。吹出口開閉装置73aを閉止状態にすることで、吹出口73が閉状態となり、空調空間60へ空調空気が吹き出されなくなる。つまり、室内機2から漏洩した冷媒が空調空間60に流入する経路が遮断される。
 次に、室内送風機42を運転状態にする(ステップST3)。室内送風機42が運転することで、吸込口72から室内機2の筐体70内に向かう気流が発生するため、室内機2の吸込口72から空調空間60へ冷媒が漏れることが抑制される。また、室内送風機42の回転数が大きい方が、室内機2の内部に向かう流れが強くなるため、吸込口72から空調空間60へ冷媒が漏れることを抑制する効果が大きい。よって、室内送風機42を最大回転数で運転するとよい。
 次に、絞り装置41を全閉状態にする(ステップST4)。冷媒の漏洩箇所によっては、絞り装置41を全閉状態とすることで、冷媒の漏洩速度を遅くできる場合、及び漏洩冷媒量を減らすことができる場合がある。よって、絞り装置41は全閉状態にするとよい。ステップST4を実施後、漏洩低減制御機能80が終了する。
 漏洩低減制御機能80では、ステップST2で吹出口開閉装置73aが閉止状態になり、ステップST3での室内送風機42が運転状態になることで、室内機2から漏洩した冷媒は、空調空間60に流出することが抑制され、筐体70の隙間などから天井裏空間61へ流出する。つまり、図4で示すように、吹出口開閉装置73a及び室内送風機42は、漏洩低減制御機能80において、漏洩した冷媒を空調空間60とは異なる空間に誘導する、漏洩冷媒誘導手段81として動作する。言い換えると、本実施の形態の漏洩冷媒誘導手段81は、吹出口開閉装置73aと、室内送風機42とを有している。
 漏洩冷媒誘導手段81により、天井裏空間61へ流出した冷媒は、天井裏空間61で拡散及び希釈した後、直下の空間へ徐々に広がっていく。例えば、図1の室内機2aから冷媒が漏洩した場合、漏洩冷媒誘導手段81である吹出口開閉装置73a及び室内送風機42によって、冷媒は天井裏空間61に流出する。天井裏空間61に流出した冷媒は、天井裏空間61の直下の空間である空調空間60a、空調空間60b、及び廊下62に徐々に広がっていく。つまり、冷媒が流出する空間容積が大きくなるため、冷媒漏洩によって可燃域が生成されることを抑制できる。また、特定の空間の冷媒濃度が上昇することを抑制できる。
 漏洩冷媒誘導手段81を有しない空気調和装置では、室内機2aから漏洩した冷媒は、空調空間60aのみに流出することになるため、空調空間60aの冷媒濃度が上昇する。一方、空気調和装置100では、室内機2aから冷媒が漏洩した場合、漏洩冷媒誘導手段81によって、空調空間60aの冷媒濃度の上昇を抑制できるため、空調空間60aの安全性を向上させることができる。
 なお、図7に示す漏洩低減制御機能80の動作は一例である。各ステップの動作の順番は図7に限定されるものではなく、各ステップの順番を入れ替えても同様の効果を得ることができる。
 以上のように、実施の形態1の空気調和装置100は、冷熱又は温熱を生成する室外機1と、室外機1で生成された冷熱又は温熱で空調空間60を空気調和する室内機2と、室外機1と室内機2の間に設けられ、冷媒が循環する冷媒回路101を形成する冷媒配管3と、冷媒が、室内機2から漏洩したことを検知する冷媒漏洩検知装置63と、冷媒漏洩検知装置63が前記冷媒の漏洩を検知した場合、前記漏洩した冷媒を前記空調空間とは異なる空間へ誘導する漏洩冷媒誘導手段81とを備える。
 当該構成によれば、室内機2から漏洩した冷媒が、漏洩冷媒誘導手段81により空調空間60とは異なる空間に誘導されるため、冷媒が空調空間60に大量に流れ込むことを抑制することができる。よって、空気調和装置100の安全性が向上する。
 また、近年では地球温暖化の観点から、従来のR410A等の燃焼性を有さない冷媒から、地球温暖化係数が低いR32のような冷媒への転換が求められている。しかし、地球温暖化係数が低い冷媒は燃焼性を有しているものが多い。したがって、冷媒漏洩時の安全対策として、警報装置、換気装置、及び遮断弁等の安全装置が求められる。そのため、これらの安全装置を選定するための設計負荷、安全装置の購入費用、及び安全装置の据付費用が発生する。また、ビル用マルチエアコンのように多数の室内機が接続されるシステムでは、安全装置の総数が多くなるため費用も増加する。しかし、当該構成によれば、漏洩低減制御機能80によって、特定の空調空間60の冷媒濃度が高くなることを防ぐことができる。よって、空気調和装置100の冷媒量及び空調空間60の面積などの条件を満たせば、追加の安全装置を設ける必要がない。したがって、地球温暖化係数が低くて燃焼性を有する冷媒を使用する空気調和装置を、費用を抑制して提供することができる。
 さらに、近年では地球温暖化の観点から、既存のR410A冷媒等の不燃性冷媒を使用する空調システムを、R32冷媒のような燃焼性を有する冷媒を使用する空調システムに転換することが求められている。しかし、既存の空調システムが設置されている建物では構造上、追加の安全装置である換気装置や遮断弁を設けるための十分なスペースを確保できないなどの問題が生じることがある。このため、安全装置が必要となる、地球温暖化係数が低いが燃焼性を有する空調システムに更新することが困難である場合がある。
 しかし、当該構成の空気調和装置100であれば、漏洩低減制御機能80によって特定の空調空間60の冷媒濃度が高くなることを防ぐことができる。よって、空気調和装置100の冷媒量及び空調空間60の面積などの条件を満たせば、追加の安全装置を設ける必要がないため、最小限の更新工事で空調システムの更新が可能となる。
 空調システムの更新工事としては、既存の室内機を実施の形態1のような天井面に設置する室内機2に変更し、冷媒漏洩検知装置63を空調空間60などの冷媒を検知する位置に追加で設置する。そして、冷媒漏洩検知装置63が出力する信号を制御装置30に伝えるために、冷媒漏洩検知装置63と制御装置30を伝送線64で接続すればよい。なお、冷媒漏洩検知装置63は室内機2の内部に設けてもよい。
 また、実施の形態1の構成では、室内機2は、空調空間60に空気を吹き出す吹出口73を有し、漏洩冷媒誘導手段81は、吹出口73に設けられ、開放状態と閉止状態とに切り替えられる吹出口開閉装置73aを有し、吹出口開閉装置73aは、冷媒漏洩検知装置63が冷媒の漏洩を検知した場合に閉止状態になる。
 当該構成によれば、冷媒が漏洩した際に、漏洩冷媒誘導手段81である吹出口開閉装置73aが閉止状態となることで、吹出口73が塞がれる。よって、室内機2から漏洩した冷媒が、吹出口73から空調空間60に流出することを抑制できる。したがって、室内機2から冷媒が漏洩した場合でも、空調空間60の冷媒濃度が上昇することが抑制され、空気調和装置100の安全性が向上する。
 また、実施の形態1の構成では、漏洩冷媒誘導手段81は、室内機2に設けられた室内送風機42を有し、室内送風機42は、冷媒漏洩検知装置63が冷媒の漏洩を検知した場合に運転状態になる。
 当該構成によれば、冷媒が漏洩した際に、室内機2の筐体70に収容された、漏洩冷媒誘導手段81である室内送風機42が運転状態となる。室内機2から漏洩した冷媒は、室内送風機42が生成する気流の流れにより、吸込口72から空調空間60に冷媒が流出することが抑制される。したがって、室内機2から冷媒が漏洩した場合でも、空調空間60の冷媒濃度が上昇することが抑制され、空気調和装置100の安全性が向上する。
 また、実施の形態1の構成では、室内機2は、空調空間60の天井面に設置されるカセット型である。当該構成によれば、漏洩冷媒誘導手段81は、室内機2の筐体70に設けられ、天井裏空間61に配置される。このため、室内機2から冷媒が漏洩した場合に、漏洩冷媒誘導手段81により、空調空間60に冷媒が流出することを抑制しながら、漏洩した冷媒を天井裏空間61に容易に流出させることができる。
 また、実施の形態1の構成では、冷媒が、微燃性、強燃性、及び毒性のうち、少なくとも一つの特性を有していてもよい。冷媒がこのような特性を有していても、漏洩冷媒誘導手段81により、空調空間60に冷媒が流出することが抑制され、空調空間60の冷媒の濃度を許容濃度に維持することができる。当該構成によれば、地球温暖化係数が低いが燃焼性及び毒性のどちらか一方の特性を有する冷媒、若しくは地球温暖化係数が低いが燃焼性又は毒性を有する冷媒を利用した空気調和装置100を提供することができる。
 また、実施の形態1の構成では、冷媒漏洩検知装置63が、冷媒が漏洩したことを検知する閾値は、冷媒が微燃性又は強燃性を有する場合は、燃焼下限界の濃度以下の値、冷媒が毒性を有する場合は、急性毒性曝露限界の濃度以下の値、冷媒が不燃性を有する場合は、酸素欠乏限界の濃度以下の値である。
 当該構成により、冷媒漏洩検知装置63が、空調空間60の冷媒濃度が危険な濃度になる前に冷媒の漏洩を検知する。冷媒漏洩検知装置63が冷媒漏洩を検知すると、漏洩冷媒誘導手段81により、室内機2から空調空間60への冷媒の流出が抑制されるため、空調空間60の冷媒の濃度を許容濃度に維持できる。よって、空調空間60の安全性が向上する。また、冷媒が不燃性の場合であっても、空調空間60に大量の冷媒が漏れた場合には酸欠等を引き起こす可能性がある。しかし、当該構成によりそのような可能性を抑制でき、空調空間60の安全性が向上する。
 なお、ISO5149及びIEC60335-2-40等の国際規格では、燃焼下限界の濃度、急性毒性曝露限界の濃度、及び酸素欠乏限界の濃度に対して2倍から4倍の安全率を考慮して、警報装置、換気装置、及び遮断弁等の安全装置の設置が規定されている。冷媒漏洩検知装置63は、ISOやIEC等の国際規格で安全装置の設置が要求される燃焼下限界の濃度以下、急性毒性曝露限界の濃度以下、及び酸素欠乏限界の濃度以下の閾値で、冷媒の漏洩を検知する。よって、警報装置、換気装置、及び遮断弁等の安全装置を空気調和装置100に追加で設けなくてもよい。
 なお、上記では、複数の室内機2a、2bの全てが冷房運転を行う全冷房運転、及び複数の室内機2a、2bの全てが暖房運転を行う全暖房運転について説明した。しかし、これに限らず、室内機2aが冷房運転を行いながら室内機2bが暖房運転を行えるように、空気調和装置100を構成してもよい。例えば、空気調和装置100は、室内機2a、2bがそれぞれ冷媒運転と暖房運転を同時に実行するために、中継機を備えていてもよい。中継機は、室内機2a、2bと室外機1との間に設けられ、室外機1から供給される冷媒を室内機2a、2bに分配する。この構成により、室内機2aが冷房運転を行いながら、室内機2bが暖房運転を行える。つまり、空気調和装置100は、全冷房運転及び全暖房運転とは異なる運転を実施できる。また、空気調和装置100は、中継機とは異なる構成により、全冷房運転及び全暖房運転とは異なる運転を実施してもよい。
実施の形態2.
 図8は、実施の形態2に係る空気調和装置100の室内機2の外観を示す斜視図である。ここで説明する実施の形態2の空気調和装置100は、実施の形態1の空気調和装置100と比較して、室内機2の筐体70が天井裏開口74を有し、天井裏開口74には天井裏開口開閉装置74aが設けられている点で異なる。天井裏開口74及び天井裏開口開閉装置74a以外の構成については、上述の実施の形態1と同一であるため、説明を省略する。
 図8を参照しながら、実施の形態1と実施の形態2の相違点である天井裏開口74及び天井裏開口開閉装置74aについて説明する。天井裏開口74は、室内機2の筐体70に設けられる。筐体70と天井裏空間61は天井裏開口74を介して連通する。天井裏開口74には、開放状態と閉止状態とに切り替えられる天井裏開口開閉装置74aが設けられる。天井裏開口74は、天井裏開口開閉装置74aが開放状態となることで、開状態となる。また、天井裏開口74は、天井裏開口開閉装置74aが閉止状態となることで、閉状態となる。したがって、筐体70と天井裏空間61は、天井裏開口開閉装置74aが開放状態となることで連通し、天井裏開口開閉装置74aが閉止状態となることで遮断される。天井裏開口開閉装置74aとしては、天井裏開口74を覆う板面を有する可動式のルーバー又はシャッターが用いられる。しかし、天井裏開口開閉装置74aは、可動式のルーバー又はシャッターに限らず、天井裏開口74の開放状態と閉止状態とを切り替え可能な機構であればよい。
 天井裏開口開閉装置74aは、室内機2が暖房運転及び冷房運転を実施している場合は、閉止状態である。よって、暖房運転及び冷房運転の間は、筐体70と天井裏空間61は遮断されている。天井裏開口開閉装置74aは、冷媒漏洩検知装置63が冷媒の漏洩を検知した場合、制御装置30の漏洩低減制御機能80により開放状態にされる。
(実施の形態2に係る漏洩低減制御機能80)
 次に、実施の形態2に係る空気調和装置100の漏洩低減制御機能80について、図9を参照しながら説明する。なお、実施の形態1と重複する点については記載を省略する。図9は、実施の形態2に係る空気調和装置100の冷媒漏洩時の漏洩低減制御機能80の動作を示すフローチャートである。実施の形態1と同様に、冷媒漏洩検知装置63が空調空間60での冷媒漏洩を検知し、制御装置30に冷媒漏洩が発生したことが伝達された時点で、制御装置30が漏洩低減制御機能80を実施する。
 図9に示すように、まず、圧縮機10を停止する(ステップST11)。次に、室内機2の吹出口73に設けられている吹出口開閉装置73aを閉止状態にする(ステップST12)。
 次に、天井裏開口74に設けられた天井裏開口開閉装置74aを開放状態にする(ステップST13)。天井裏開口開閉装置74aを開放状態とすることで、室内機2の筐体70と天井裏空間61とが連通する。よって、室内機2から漏洩した冷媒が、天井裏空間61に流出する。このため、空調空間60に流出する冷媒の量が少なくなり、空調空間60の冷媒濃度の上昇を抑制できる。ここで、天井裏開口開閉装置74aは、漏洩低減制御機能80において、漏洩した冷媒を空調空間60とは異なる空間に誘導する、漏洩冷媒誘導手段81として動作する。言い換えると、天井裏開口開閉装置74aは、本実施の形態では、漏洩冷媒誘導手段81の構成要素の1つである。
 次に、室内送風機42を運転状態にする(ステップST14)。ステップST13において、室内機2と天井裏空間61とが連通しているため、室内送風機42が運転状態になることで、吸込口72から室内機2の筐体70を経由して天井裏空間61へ向かう気流が発生する。したがって、室内機2から漏洩した冷媒は、空調空間60に流出せずに、天井裏空間61に流出する。
 最後に、絞り装置41を全閉状態にする(ステップST15)。これにより、漏洩低減制御機能80の実施が終了する。なお、図9に示す漏洩低減制御機能80の動作は一例である。各ステップの動作の順番は図9に限定されるものではなく、各ステップの順番を入れ替えても同様の効果を得ることができる。
 以上のように、実施の形態2に係る空気調和装置100は、室内機2の筐体70に、室内機2の筐体70と空調空間60の天井裏空間61とを連通させる天井裏開口74を有し、漏洩冷媒誘導手段81は、天井裏開口74に設けられ、開放状態と閉止状態とに切り替えられる天井裏開口開閉装置74aを有する。天井裏開口開閉装置74aは、冷媒漏洩検知装置63が冷媒の漏洩を検知した場合に開放状態になる。
 当該構成によれば、冷媒が漏洩した際に、漏洩冷媒誘導手段81である天井裏開口開閉装置74aが開放状態となることで、天井裏開口74が開口する。よって、室内機2の筐体70と天井裏空間61が連通し、室内機2から漏洩した冷媒が天井裏空間61に流出する。また、室内送風機42が運転することで、空調空間60から天井裏空間61へ向かう気流が発生するため、室内機2から漏洩した冷媒は、空調空間60ではなく天井裏空間61に流出しやすくなる。したがって、室内機2から冷媒が漏洩した場合でも、空調空間60に流出する冷媒の量が少なくなり、空調空間60の冷媒濃度が上昇することが抑制される。つまり、空気調和装置100の安全性がより向上する。
 また、当該構成の空気調和装置100に空調システムを更新する場合は、実施の形態1での更新工事にて、既存の室内機の筐体を、天井裏開口開閉装置74aが設けられた天井裏開口74を有する筐体70と交換すればよい。
実施の形態3.
 図10は、実施の形態3に係る空気調和装置100の構成の一例を示す概略図である。ここで説明する実施の形態3の空気調和装置100は、実施の形態1及び実施の形態2の空気調和装置100と比較して、室内機2が空調空間60の天井裏空間61に設置されるダクト型である点で異なる。実施の形態1及び実施の形態2と同一の部分は説明を省略し、実施の形態1及び実施の形態2との相違点を中心に説明する。
 図10に示すように、実施の形態3に係る空気調和装置100が備える室内機2は、天井裏空間61に設置するダクト型の室内機である。室内機2には二股の吹出ダクト75が接続され、第1吹出ダクト吹出口75a1が空調空間60aの天井面に露出し、第2吹出ダクト吹出口75a2が空調空間60bの天井面に露出する。室内機2で生成される空調空気は、吹出ダクト75を通って、第1吹出ダクト吹出口75a1から空調空間60aに供給される。また、室内機2で生成される空調空気は、吹出ダクト75を通って、第2吹出ダクト吹出口75a2から空調空間60bに供給される。なお、図10では、空調空間60a及び空調空間60bに対して、二股の吹出ダクト75が接続された1台の室内機2が対応する例が示されているが、室内機2は1台でなくてもよい。天井裏空間61に2台の室内機2a及び室内機2bを設置し、空調空間60a及び空調空間60bに対応させてもよい。
 以下の説明において、第1吹出ダクト吹出口75a1と第2吹出ダクト吹出口75a2を特に区別する必要がない場合には、単に「吹出ダクト吹出口75a」と適宜称する。また、「吹出ダクト吹出口75a」と称した場合には、単数又は複数の両方を含むものとする。
 次に、図11を参照して、室内機2及び室内送風機42について説明する。図11は、実施の形態3に係る空気調和装置100の室内機2の構造の一例を示す概略図である。なお、図11では、室内機2の筐体70の内部の詳細については表示を省略し、筐体70に収容される負荷側熱交換器40及び室内送風機42のみを表示している。
 図11に示すように、室内機2の筐体70には、吸込口72及び吹出口73が設けられる。吹出口73には吹出ダクト75が接続される。室内機2は、室内送風機42の運転により、吸込口72から筐体70の内部に空気を取り込む。室内機2は、負荷側熱交換器40で冷媒と取り込んだ空気との熱交換を行い空調空気を生成する。生成された空調空気は、吹出口73及び吹出ダクト75を通って、吹出ダクト吹出口75aから空調空間60に供給される。
 室内送風機42は、プロペラファンのように、生成する気流の向きを羽根の回転方向により切り替えることができる送風機である。つまり、室内送風機42の羽根の回転方向を逆にすることで、室内送風機42が生成する気流の向きを逆にすることができる。
(実施の形態3に係る漏洩低減制御機能80)
 次に、実施の形態3に係る空気調和装置100の漏洩低減制御機能80について、図12を参照しながら説明する。なお、実施の形態1~2と重複する点については記載を省略する。図12は、実施の形態3及び実施の形態6に係る空気調和装置100の冷媒漏洩時の漏洩低減制御機能80の動作を示すフローチャートである。実施の形態1と同様に、冷媒漏洩検知装置63が空調空間60での冷媒漏洩を検知し、制御装置30に冷媒漏洩が発生したことが伝達された時点で、制御装置30が漏洩低減制御機能80を実施する。
 図12に示すように、まず、圧縮機10を停止する(ステップST21)。次に、室内送風機42を逆回転させる(ステップST22)。ここで、室内機2が冷房運転又は暖房運転している場合は、室内送風機42は、吹出口73に気流が向かうように羽根を回転させる。他方、ステップST22では、室内送風機42の羽根の回転方向を、室内機2が冷房運転又は暖房運転している場合の羽根の回転方向の向きとは逆にする。よって、室内送風機42により、吹出口73に向かう気流ではなく、吸込口72に向かう気流が生成される。このため、室内機2から漏洩する冷媒が、吹出口73から空調空間60に流出することを抑制できる。
 また、室内送風機42が、吸込口72に向かう気流を生成することで、空調空間60の空気が、吹出ダクト吹出口75aを介して吹出ダクト75に吸込まれる。吹出ダクト75に吸い込まれた空気は、吸込口72から天井裏空間61に流出する。よって、空調空間60に漏洩した冷媒を、天井裏空間61に排出することができる。また、室内機2から漏洩した冷媒も、吸込口72から天井裏空間61に流出する。このため、空調空間60に流出する冷媒の量が少なくなり、空調空間60の冷媒濃度の上昇を抑制できる。ここで、本実施の形態において、室内送風機42は、実施の形態1における室内送風機42と同様に、漏洩冷媒誘導手段81の構成要素の1つである。
 次に、絞り装置41を全閉状態にする(ステップST23)。これにより、漏洩低減制御機能80の実施が終了する。なお、図12に示す漏洩低減制御機能80の動作は一例である。各ステップの動作の順番は図12に限定されるものではなく、各ステップの順番を入れ替えても同様の効果を得ることができる。
 以上のように、実施の形態3に係る空気調和装置100は、室内機2と空調空間60との間を接続する吹出ダクト75を備え、室内機2は、空調空間60の天井裏空間61に設置されるダクト型である。漏洩冷媒誘導手段81は、室内機2に設けられ、生成する気流の向きを羽根の回転方向により切り替える室内送風機42を有し、室内送風機42は、冷媒漏洩検知装置63が冷媒の漏洩を検知した場合に、気流が天井裏空間61に向かうように、羽根の回転方向を切り替える。
 当該構成によれば、冷媒が漏洩した際に、漏洩冷媒誘導手段81である室内送風機42が逆回転することにより、吹出口73から吸込口72へ向かう気流が生成される。このとき、冷媒が漏洩している空調空間60の空気が、吹出ダクト吹出口75a及び吹出ダクト75を介して吹出口73に吸い込まれ、吸込口72から天井裏空間61に流れることになる。つまり、室内送風機42の運転により、空調空間60に漏洩した冷媒及び室内機2から漏洩した冷媒が、天井裏空間61に流出する。したがって、空調空間60の冷媒濃度が上昇することが抑制され、空気調和装置100の安全性がより向上する。
 また、当該構成の空気調和装置100に空調システムを更新する場合は、実施の形態1での更新工事に加えて、ダクト型の室内機2に置き換えるとともに、この室内機2と空調空間60を吹出ダクト75で接続すればよい。また、既存の室内送風機を、生成する気流の向きを羽根の回転方向により切り替えることができる室内送風機42に交換すればよい。
実施の形態4.
 図13は、実施の形態4に係る空気調和装置100の構成の一例を示す概略図である。ここで説明する実施の形態4の空気調和装置100は、実施の形態3の空気調和装置100と比較して、吹出ダクト75にダクト風量調整装置76が設けられている点で異なる。実施の形態1~3と同一の部分は説明を省略し、実施の形態1~3との相違点を中心に説明する。
 図13に示すように、吹出ダクト75には、ダクト風量調整装置76が設けられている。より具体的に説明すると、吹出ダクト75の二股に分かれる分岐部分よりも室内機2側に、室内機2から吹出される空調空気の流量を制御するダクト風量調整装置76が設けられている。ダクト風量調整装置76は、室内送風機42によって生成され吹出ダクト75を流れる気流の流量を調整する。ダクト風量調整装置76は、吹出ダクト75の流路断面積を変える機構を有している。また、ダクト風量調整装置76は、吹出ダクト75を閉止状態にできる機能を有している。ダクト風量調整装置76の吹出ダクト75の流路断面積を変える機構は特に限定されない。流路を開放状態又は閉止状態の2つの状態で切り替える機構であってもよいし、吹出ダクト75の流路断面積を徐々に変更する機構であってもよい。ダクト風量調整装置76として、例えば、ダンパーが用いられる。ダクト風量調整装置76が閉止状態となることで、室内機2から空調空間60に向かって吹出ダクト75を流れる気流が遮断される。
 次に、図14を参照して、室内送風機42について説明する。図14は、実施の形態4に係る空気調和装置100の室内機2の構造の一例を示す概略図である。なお、図14では、室内機2の筐体70の内部の詳細については表示を省略し、筐体70に収容される負荷側熱交換器40及び室内送風機42のみを表示している。また、室内送風機42以外の構成は、実施の形態3と同様であるため説明を省略する。
 実施の形態4に係る空気調和装置100の室内送風機42は、生成する気流の向きを羽根の回転方向により切り替える必要がない。よって、図14では、室内送風機42としてシロッコファンが示されている。また、室内送風機42は、シロッコファンに限定されず、プロペラファンであってもよい。
(実施の形態4に係る漏洩低減制御機能80)
 次に、実施の形態4に係る漏洩低減制御機能80について、図15を参照しながら説明する。なお、実施の形態1~3と重複する点については記載を省略する。図15は、実施の形態4に係る空気調和装置100の冷媒漏洩時の漏洩低減制御機能80の動作を示すフローチャートである。実施の形態1と同様に、冷媒漏洩検知装置63が空調空間60での冷媒漏洩を検知し、制御装置30に冷媒漏洩が発生したことが伝達された時点で、制御装置30が漏洩低減制御機能80を実施する。
 図15に示すように、まず、圧縮機10を停止する(ステップST31)。次に、ダクト風量調整装置76を閉止状態にする(ステップST32)。ダクト風量調整装置76が閉止状態となることで、室内機2から空調空間60に向かって吹出ダクト75を流れる気流が遮断される。よって、室内機2から漏洩する冷媒が空調空間60に流出することが抑制され、漏洩した冷媒が筐体70の隙間などから天井裏空間61に流出する。ここで、ダクト風量調整装置76は、漏洩低減制御機能80において、漏洩した冷媒を空調空間60とは異なる空間に誘導する、漏洩冷媒誘導手段81として動作する。言い換えると、ダクト風量調整装置76は、本実施の形態の漏洩冷媒誘導手段81の構成要素の1つである。
 次に、絞り装置41を全閉状態にする(ステップST33)。これにより、漏洩低減制御機能80の実施が終了する。なお、図15に示す漏洩低減制御機能80の動作は一例である。各ステップの動作の順番は図15に限定されるものではなく、各ステップの順番を入れ替えても同様の効果を得ることができる。
 以上のように、実施の形態4に係る空気調和装置100は、漏洩冷媒誘導手段81が、吹出ダクト75に設けられ、吹出ダクト75を流れる前記気流の流量を調整するダクト風量調整装置76を有する。室内機2から空調空間60に向かって吹出ダクト75を流れる気流は、ダクト風量調整装置76が閉止状態で遮断される。ダクト風量調整装置76は、冷媒漏洩検知装置63が冷媒の漏洩を検知した場合に閉止状態になる。
 当該構成によれば、冷媒が漏洩した際に、漏洩冷媒誘導手段81であるダクト風量調整装置76が閉止状態となることで、吹出ダクト75を気流が流れなくなる。よって、室内機2から漏洩した冷媒が、吹出ダクト75を通って空調空間60に流出することが抑制され、筐体70の隙間などから天井裏空間61に流出する。実施の形態1で説明したように、天井裏空間61に流出した冷媒は、天井裏空間61で拡散及び希釈した後、天井裏空間61の直下の空間である空調空間60a、空調空間60b、及び廊下62に徐々に広がっていく。したがって、室内機2から冷媒が漏洩した場合でも、空調空間60に流出する冷媒の量が少なくなり、空調空間60の冷媒濃度が上昇することが抑制される。つまり、空気調和装置100の安全性がより向上する。
 また、当該構成の空気調和装置100に空調システムを更新する場合は、実施の形態1での更新工事に加えて、ダクト型の室内機2に置き換えるとともに、この室内機2と空調空間60を吹出ダクト75で接続し、吹出ダクト75の途中にダクト風量調整装置76を設ければよい。
実施の形態5.
 図16は、実施の形態5に係る空気調和装置100の構成の一例を示す概略図である。ここで説明する実施の形態5の空気調和装置100は、実施の形態4の空気調和装置100と比較して、ダクト風量調整装置76に、天井裏排気口開閉装置78aを有する天井裏排気口78が設けられている点で異なる。実施の形態1~4と同一の部分は説明を省略し、実施の形態1~4との相違点を中心に説明する。
 本実施の形態のダクト風量調整装置76は、吹出ダクト75の流路断面積を変えるダンパー等の部材と、これを収容する筐体とを有している。この筐体は、吹出ダクト75の一部であってもよい。図16に示すように、天井裏排気口78は、ダクト風量調整装置76の筐体に設けられた開口である。室内機2から吹出ダクト吹出口75aに向かう気流において、ダクト風量調整装置76のダンパー等よりも下流側又はダンパー等の下流と上流とに跨がる位置に、天井裏排気口78が設けられているとよい。吹出ダクト75と天井裏空間61は、天井裏排気口78を介して連通する。天井裏排気口78には、開放状態と閉止状態とに切り替えられる天井裏排気口開閉装置78aが設けられる。天井裏排気口78は、天井裏排気口開閉装置78aが開放状態となることで、開状態となる。また、天井裏排気口78は、天井裏排気口開閉装置78aが閉止状態となることで、閉状態となる。したがって、吹出ダクト75と天井裏空間61は、天井裏排気口開閉装置78aが開放状態となることで連通し、天井裏排気口開閉装置78aが閉止状態となることで遮断される。天井裏排気口開閉装置78aとしては、天井裏排気口78を覆う板面を有する可動式のルーバー又はシャッターが用いられる。しかし、天井裏排気口開閉装置78aは、可動式のルーバー又はシャッターに限らず、天井裏排気口78の開放状態と閉止状態とを切り替え可能な機構であればよい。
 天井裏排気口開閉装置78aは、室内機2が暖房運転及び冷房運転を実施している場合は、閉止状態である。よって、暖房運転及び冷房運転の間は、吹出ダクト75と天井裏空間61は遮断されている。天井裏排気口開閉装置78aは、冷媒漏洩検知装置63が冷媒の漏洩を検知した場合、制御装置30の漏洩低減制御機能80により開放状態にされる。
(実施の形態5に係る漏洩低減制御機能80)
 次に、実施の形態5に係る空気調和装置100の漏洩低減制御機能80について、図17を参照しながら説明する。なお、実施の形態1~4と重複する点については記載を省略する。図17は、実施の形態5に係る空気調和装置100の冷媒漏洩時の漏洩低減制御機能80の動作を示すフローチャートである。実施の形態1と同様に、冷媒漏洩検知装置63が空調空間60での冷媒漏洩を検知し、制御装置30に冷媒漏洩が発生したことが伝達された時点で、制御装置30が漏洩低減制御機能80を実施する。
 図17に示すように、まず、圧縮機10を停止する(ステップST41)。次に、ダクト風量調整装置76を閉止状態にする(ステップST42)。
 次に、天井裏排気口78に設けられている天井裏排気口開閉装置78aを開放状態にする(ステップST43)。天井裏排気口開閉装置78aを開放状態とすることで、吹出ダクト75と天井裏空間61とが連通する。このため、室内機2から漏洩し吹出ダクト75に残っている冷媒が、空調空間60ではなく、天井裏空間61に流出する。よって、空調空間60の冷媒濃度の上昇を抑制できる。ここで、天井裏排気口開閉装置78aは、漏洩低減制御機能80において、漏洩した冷媒を空調空間60とは異なる空間に誘導する、漏洩冷媒誘導手段81として動作する。言い換えると、天井裏排気口開閉装置78aは、本実施の形態の漏洩冷媒誘導手段81の構成要素の1つである。
 次に、室内送風機42を運転状態にする(ステップST44)。次に、絞り装置41を全閉状態にする(ステップST45)。これにより、漏洩低減制御機能80の実施が終了する。なお、図17に示す漏洩低減制御機能80の動作は一例である。各ステップの動作の順番は図17に限定されるものではなく、各ステップの順番を入れ替えても同様の効果を得ることができる。
 以上のように、実施の形態5に係る空気調和装置100は、ダクト風量調整装置76が、吹出ダクト75と天井裏空間61を連通させる天井裏排気口78を有する。漏洩冷媒誘導手段81は、天井裏排気口78に設けられ、開放状態と閉止状態に切り替えられる天井裏排気口開閉装置78aを有し、天井裏排気口開閉装置78aは、冷媒漏洩検知装置63が冷媒の漏洩を検知した場合に開放状態になる。
 当該構成によれば、冷媒が漏洩した際に、漏洩冷媒誘導手段81である天井裏排気口開閉装置78aが開放状態となることで、天井裏排気口78が開口する。よって、吹出ダクト75と天井裏空間61が連通し、吹出ダクト75に残っている漏洩した冷媒が、空調空間60ではなく天井裏空間61に流出する。したがって、空調空間60の冷媒濃度が上昇することが抑制され、空気調和装置100の安全性がより向上する。
 また、当該構成の空気調和装置100に空調システムを更新する場合は、実施の形態4での更新工事で、天井裏排気口開閉装置78aが設けられた天井裏排気口78を有するダクト風量調整装置76を設けるようにすればよい。
実施の形態6.
 図18は、実施の形態6に係る空気調和装置100の構成の一例を示す概略図である。ここで説明する実施の形態6の空気調和装置100は、実施の形態5の空気調和装置100と比較して、室内機2の吸込口72に吸込ダクト77が接続される点で異なる。実施の形態1~5と同一の部分は説明を省略し、実施の形態1~5との相違点を中心に説明する。
 図18に示すように、室内機2の吸込口72に吸込ダクト77が接続され、吸込ダクト77の吸込ダクト吸込口77aが廊下62の天井面に露出する。室内機2は、廊下62の空気を、吸込ダクト吸込口77aから吸い込む。吸い込まれた空気は、吸込ダクト77を通って室内機2に流入する。室内機2が、吸込ダクト77を介して空気を吸い込む空間は、廊下62でなくてもよい。冷媒が漏洩しても冷媒濃度が危険な濃度にならないような、大きな容積の空間の空気を吸い込むようにすればよい。また、機械室のような換気が行われている空間の空気を吸い込むようにしてもよい。また、着火源が存在しない、又は人が存在しない空間の空気を吸い込むようにしてもよい。空気調和装置100が設置される建物に応じて、空気を吸い込む空間を選択すればよい。室内機2に吸込ダクト77を介して空気を吸い込む場合、吸込ダクト吸込口77aを、空気を吸い込む空間に露出させればよい。
(実施の形態6に係る漏洩低減制御機能80)
 実施の形態6に係る漏洩低減制御機能80は、実施の形態3に係る漏洩低減制御機能80と同じである。また、漏洩低減制御機能80の動作を示すフローチャートは、実施の形態3と同じ図12に示されている。図12については実施の形態3にて説明したため、ここでの記載は省略する。
 実施の形態6に係る空気調和装置100の室内送風機42は、実施の形態3に係る空気調和装置100の室内送風機42と同様に、生成する気流の向きを羽根の回転方向により切り替えることができる送風機である。よって、実施の形態6に係る空気調和装置100の室内送風機42は、例えばプロペラファンが用いられる。
 実施の形態6では、冷媒漏洩検知装置63が冷媒の漏洩を検知した場合、室内送風機42が逆回転し、吸込口72に向かう気流が生成される。吸込口72には、吸込ダクト77が接続されているため、室内機2から漏洩した冷媒は、廊下62に吸込ダクト77及び吸込ダクト吸込口77aを介して排出される。よって、室内機2から漏洩する冷媒が空調空間60に流出することが抑制される。ここで、吸込ダクト77は、漏洩低減制御機能80において、漏洩した冷媒を空調空間60とは異なる空間に誘導する、漏洩冷媒誘導手段81として機能する。言い換えると、吸込ダクト77は、本実施の形態の漏洩冷媒誘導手段81の構成要素の1つである。
 以上のように、実施の形態6に係る空気調和装置100は、空調空間60及び天井裏空間61とは異なる空間と室内機2との間に設けられた吸込ダクト77を備える。
 当該構成によれば、冷媒が漏洩した際に、漏洩冷媒誘導手段81である室内送風機42が逆回転することにより、吹出口73から吸込口72へ向かう気流が生成される。このとき、空気が空調空間60から、空調空間60及び天井裏空間61とは異なる空間へ流れることになるため、空調空間60に漏洩した冷媒及び室内機2から漏洩した冷媒が、空調空間60及び天井裏空間61とは異なる空間に流出する。冷媒が天井裏空間61へ流出することが抑制されるため、天井裏空間61から直下の空調空間60に流出する冷媒の量も少なくなる。よって、空調空間60の冷媒濃度が上昇することがさらに抑制され、空気調和装置100の安全性がより向上する。
 また、当該構成の空気調和装置100に空調システムを更新する場合は、実施の形態3での更新工事において、室内機2の吸込口72に吸込ダクト77を接続し、吸込ダクト吸込口77aを空調空間60及び天井裏空間61とは異なる空間に露出させればよい。
実施の形態7.
 図19は、実施の形態7に係る空気調和装置100の構成の一例を示す概略図である。ここで説明する実施の形態7の空気調和装置100は、実施の形態1の空気調和装置100と比較して、空気調和装置100が警報装置6a、6bと、遮断弁7a、7bと、換気装置8a、8bを備える点で異なる。実施の形態1と同一の部分は説明を省略し、実施の形態1との相違点を中心に説明する。なお、本実施の形態は、実施の形態1~6と組み合わせて用いられる。
 図19に示すように、空気調和装置100は、空調空間60aに警報装置6a及び換気装置8aを備える。また、空調空間60bに警報装置6b及び換気装置8bを備える。また、空気調和装置100は、室内機2aに接続される冷媒配管3に遮断弁7aを備え、室内機2bに接続される冷媒配管3に遮断弁7bを備える。
 以下の説明において、警報装置6aと警報装置6bを特に区別する必要がない場合には、単に「警報装置6」と適宜称する。また、「警報装置6」と称した場合には、単数又は複数の両方を含むものとする。また、遮断弁7aと遮断弁7bを特に区別する必要がない場合には、単に「遮断弁7」と適宜称する。また、「遮断弁7」と称した場合には、単数又は複数の両方を含むものとする。また、換気装置8aと換気装置8bを特に区別する必要がない場合には、単に「換気装置8」と適宜称する。また、「換気装置8」と称した場合には、単数又は複数の両方を含むものとする。
 警報装置6は、冷媒漏洩検知装置63が空調空間60の冷媒漏洩を検知した場合、冷媒が漏洩していることを報知する。警報装置6としては、例えば、視覚的な報知を行うランプ又は画面、若しくは聴覚的な報知を行うブザー又はスピーカ等のいずれか一つ以上を採用することができる。遮断弁7は、冷媒漏洩検知装置63が空調空間60の冷媒漏洩を検知した場合、閉状態となり、室内機2への冷媒の流れを遮断する。換気装置8は、冷媒漏洩検知装置63が空調空間60の冷媒漏洩を検知した場合、空調空間60の空気を排出する。空気調和装置100は、警報装置6、遮断弁7、及び換気装置8の3種類を全て備える必要はない。警報装置6、遮断弁7、及び換気装置8のいずれか1種類を備えるだけでもよいし、警報装置6、遮断弁7、及び換気装置8のうちの2種類を備えてもよい。
 以上のように、実施の形態7に係る空気調和装置100は、冷媒が漏洩したことを報知する警報装置6、漏洩した冷媒の流れを遮断する遮断弁7、及び漏洩した冷媒を排気する換気装置8のうちの少なくとも一つを有し、冷媒漏洩検知装置63が冷媒が漏洩したことを検知した場合に、警報装置6、遮断弁7、及び換気装置8のうちの少なくとも一つが動作状態になる。
 当該構成によれば、冷媒が漏洩した際に、漏洩冷媒誘導手段81により空調空間60への冷媒の流出を抑制するだけでなく、警報装置6により、空調空間60に居合わせる人に注意喚起を行うことができる。また、遮断弁7により、室内機2に冷媒が流れることを遮断し、室内機2からの冷媒漏洩量そのものを減らすことができる。また、換気装置8により、空調空間60の冷媒を排出することができる。したがって、空調空間60の安全性をより向上させることができる。
 また、当該構成によれば、空気調和装置100に、ISO5149又はIEC60335-2-40等の国際規格で求められる、警報装置6、遮断弁7、及び換気装置8等の安全装置が設けられることになる。よって、空気調和装置100の信頼性を向上することができる。
 1 室外機、2 室内機、2a 室内機、2b 室内機、3 冷媒配管、6 警報装置、6a 警報装置、6b 警報装置、7 遮断弁、7a 遮断弁、7b 遮断弁、8 換気装置、8a 換気装置、8b 換気装置、10 圧縮機、11 冷媒流路切替装置、12 熱源側熱交換器、13 アキュムレータ、14 室外送風機、20 第一圧力検知装置、21 第二圧力検知装置、22 第一温度検知装置、30 制御装置、40 負荷側熱交換器、40a 負荷側熱交換器、40b 負荷側熱交換器、41 絞り装置、41a 絞り装置、41b 絞り装置、42 室内送風機、42a 室内送風機、42b 室内送風機、50 第二温度検知装置、50a 第二温度検知装置、50b 第二温度検知装置、51 第三温度検知装置、51a 第三温度検知装置、51b 第三温度検知装置、52 第四温度検知装置、52a 第四温度検知装置、52b 第四温度検知装置、60 空調空間、60a 空調空間、60b 空調空間、61 天井裏空間、62 廊下、63 冷媒漏洩検知装置、63a 冷媒漏洩検知装置、63b 冷媒漏洩検知装置、64 伝送線、64a 伝送線、64b 伝送線、70 筐体、71 パネル、72 吸込口、73 吹出口、73a 吹出口開閉装置、74 天井裏開口、74a 天井裏開口開閉装置、75 吹出ダクト、75a 吹出ダクト吹出口、75a1 第1吹出ダクト吹出口、75a2 第2吹出ダクト吹出口、76 ダクト風量調整装置、77 吸込ダクト、77a 吸込ダクト吸込口、78 天井裏排気口、78a 天井裏排気口開閉装置、80 漏洩低減制御機能、81 漏洩冷媒誘導手段、100 空気調和装置、101 冷媒回路。

Claims (12)

  1.  冷熱又は温熱を生成する室外機と、
     前記室外機で生成された前記冷熱又は前記温熱で空調空間を空気調和する室内機と、
     前記室外機と前記室内機の間に設けられ、冷媒が循環する冷媒回路を形成する冷媒配管と、
     前記冷媒が、前記室内機から漏洩したことを検知する冷媒漏洩検知装置と、
     前記冷媒漏洩検知装置が前記冷媒の漏洩を検知した場合、前記漏洩した冷媒を前記空調空間とは異なる空間へ誘導する漏洩冷媒誘導手段と
     を備える
     空気調和装置。
  2.  前記室内機は、前記空調空間に空気を吹き出す吹出口を有し、
     前記漏洩冷媒誘導手段は、
     前記吹出口に設けられ、開放状態と閉止状態とに切り替えられる吹出口開閉装置を有し、
     前記吹出口開閉装置は、前記冷媒漏洩検知装置が前記冷媒の漏洩を検知した場合に前記閉止状態になる
     請求項1に記載の空気調和装置。
  3.  前記漏洩冷媒誘導手段は、前記室内機に設けられた室内送風機を有し、
     前記室内送風機は、前記冷媒漏洩検知装置が前記冷媒の漏洩を検知した場合に運転状態になる
     請求項1又は2に記載の空気調和装置。
  4.  前記室内機は、前記空調空間の天井面に設置されるカセット型である
     請求項1~3のいずれか一項に記載の空気調和装置。
  5.  前記室内機の筐体は、前記室内機の前記筐体と前記空調空間の天井裏空間とを連通させる天井裏開口を有し、
     前記漏洩冷媒誘導手段は、前記天井裏開口に設けられ、開放状態と閉止状態とに切り替えられる天井裏開口開閉装置を有し、
     前記天井裏開口開閉装置は、前記冷媒漏洩検知装置が前記冷媒の漏洩を検知した場合に前記開放状態になる
     請求項1~4のいずれか一項に記載の空気調和装置。
  6.  前記室内機と前記空調空間との間を接続する吹出ダクトを備え、
     前記室内機は、前記空調空間の天井裏空間に設置されるダクト型であり、
     前記漏洩冷媒誘導手段は、前記室内機に設けられ、生成する気流の向きを羽根の回転方向により切り替える室内送風機を有し、
     前記室内送風機は、前記冷媒漏洩検知装置が前記冷媒の漏洩を検知した場合に、前記気流が前記天井裏空間に向かうように、前記羽根の前記回転方向を切り替える
     請求項1に記載の空気調和装置。
  7.  前記漏洩冷媒誘導手段は、前記吹出ダクトに設けられ、前記吹出ダクトを流れる前記気流の流量を調整するダクト風量調整装置を有し、
     前記室内機から前記空調空間に向かって前記吹出ダクトを流れる前記気流は、前記ダクト風量調整装置が閉止状態で遮断され、
     前記ダクト風量調整装置は、前記冷媒漏洩検知装置が前記冷媒の漏洩を検知した場合に前記閉止状態になる
     請求項6に記載の空気調和装置。
  8.  前記ダクト風量調整装置は、前記吹出ダクトと前記天井裏空間を連通させる天井裏排気口を有し、
     前記漏洩冷媒誘導手段は、前記天井裏排気口に設けられ、開放状態と閉止状態とに切り替えられる天井裏排気口開閉装置を有し、
     前記天井裏排気口開閉装置は、前記冷媒漏洩検知装置が前記冷媒の漏洩を検知した場合に前記開放状態になる
     請求項7に記載の空気調和装置。
  9.  前記空調空間及び前記天井裏空間とは異なる空間と前記室内機との間に設けられた吸込ダクトを備える
     請求項6~8のいずれか一項に記載の空気調和装置。
  10.  前記冷媒が、微燃性、強燃性、及び毒性のうち、少なくとも一つの特性を有する
     請求項1~9のいずれか一項に記載の空気調和装置。
  11.  前記冷媒漏洩検知装置が、前記冷媒が漏洩したことを検知する閾値は、
     前記冷媒が微燃性又は強燃性を有する場合は、燃焼下限界の濃度以下の値、
     前記冷媒が毒性を有する場合は、急性毒性曝露限界の濃度以下の値、
     前記冷媒が不燃性を有する場合は、酸素欠乏限界の濃度以下の値である
     請求項1~10のいずれか一項に記載の空気調和装置。
  12.  前記冷媒が漏洩したことを報知する警報装置、前記漏洩した冷媒の流れを遮断する遮断弁、及び前記漏洩した冷媒を排気する換気装置のうちの少なくとも一つを有し、
     前記冷媒漏洩検知装置が前記冷媒が漏洩したことを検知した場合に、
     前記警報装置、前記遮断弁、及び前記換気装置のうちの少なくとも一つが動作状態になる
     請求項1~11のいずれか一項に記載の空気調和装置。
PCT/JP2021/020208 2021-05-27 2021-05-27 空気調和装置 WO2022249396A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023523864A JPWO2022249396A1 (ja) 2021-05-27 2021-05-27
PCT/JP2021/020208 WO2022249396A1 (ja) 2021-05-27 2021-05-27 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/020208 WO2022249396A1 (ja) 2021-05-27 2021-05-27 空気調和装置

Publications (1)

Publication Number Publication Date
WO2022249396A1 true WO2022249396A1 (ja) 2022-12-01

Family

ID=84229617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020208 WO2022249396A1 (ja) 2021-05-27 2021-05-27 空気調和装置

Country Status (2)

Country Link
JP (1) JPWO2022249396A1 (ja)
WO (1) WO2022249396A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688638A (ja) * 1992-04-13 1994-03-29 Hitachi Ltd 空気調和装置
JPH08178397A (ja) * 1994-12-26 1996-07-12 Sanyo Electric Co Ltd 空気調和機
JP2013088086A (ja) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp 天井埋込型空気調和機
JP2016196996A (ja) * 2015-04-06 2016-11-24 ダイキン工業株式会社 利用側空調装置及びそれを備えた空調装置
WO2018131085A1 (ja) * 2017-01-11 2018-07-19 三菱電機株式会社 冷却倉庫
JP2020034251A (ja) * 2018-08-31 2020-03-05 日立ジョンソンコントロールズ空調株式会社 空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688638A (ja) * 1992-04-13 1994-03-29 Hitachi Ltd 空気調和装置
JPH08178397A (ja) * 1994-12-26 1996-07-12 Sanyo Electric Co Ltd 空気調和機
JP2013088086A (ja) * 2011-10-20 2013-05-13 Mitsubishi Electric Corp 天井埋込型空気調和機
JP2016196996A (ja) * 2015-04-06 2016-11-24 ダイキン工業株式会社 利用側空調装置及びそれを備えた空調装置
WO2018131085A1 (ja) * 2017-01-11 2018-07-19 三菱電機株式会社 冷却倉庫
JP2020034251A (ja) * 2018-08-31 2020-03-05 日立ジョンソンコントロールズ空調株式会社 空気調和機

Also Published As

Publication number Publication date
JPWO2022249396A1 (ja) 2022-12-01

Similar Documents

Publication Publication Date Title
JP6636173B2 (ja) 空気調和装置及び空気調和システム
JP6135705B2 (ja) 利用側空調装置
JP6849021B2 (ja) 冷凍サイクルシステム
JP6300954B2 (ja) 空気調和装置
US20130192283A1 (en) Air-conditioning apparatus
JP2002228281A (ja) 空気調和機
JP7258143B2 (ja) 空調装置
JP6701444B2 (ja) 空気調和システム及びその冷媒量設定方法
CN113994151A (zh) 制冷剂循环装置
JP6819706B2 (ja) 冷媒サイクル装置
WO2019038797A1 (ja) 空気調和装置および膨張弁ユニット
WO2021157161A1 (ja) 空気調和システム
JP6851500B2 (ja) ダクト式空気調和機
JP2020183829A (ja) 空調システム及び補助ファン
JP7415017B2 (ja) 空気調和装置
WO2022249396A1 (ja) 空気調和装置
WO2023276535A1 (ja) 空気調和システム
JP2001012763A (ja) 空調換気システム
WO2021157395A1 (ja) 空気調和システム
WO2021157328A1 (ja) 空気調和システム
JP6778888B1 (ja) 中継器及び空気調和装置
WO2022230324A1 (ja) 空調システム、その運転制御方法、及び空調システムの運転制御装置
WO2022264399A1 (ja) 空気調和装置
JPWO2022249396A5 (ja)
JP2023521925A (ja) バルブユニットおよびその組立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023523864

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21943043

Country of ref document: EP

Kind code of ref document: A1