WO2022247273A1 - 扁线电机定子及扁线电机 - Google Patents

扁线电机定子及扁线电机 Download PDF

Info

Publication number
WO2022247273A1
WO2022247273A1 PCT/CN2021/143048 CN2021143048W WO2022247273A1 WO 2022247273 A1 WO2022247273 A1 WO 2022247273A1 CN 2021143048 W CN2021143048 W CN 2021143048W WO 2022247273 A1 WO2022247273 A1 WO 2022247273A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
pitch
layer
slot
star
Prior art date
Application number
PCT/CN2021/143048
Other languages
English (en)
French (fr)
Inventor
孙明冲
赵慧超
郭守仑
贺红伟
韩丹
李全
王金昊
林展汐
于爽
尹相睿
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2022247273A1 publication Critical patent/WO2022247273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/50Fastening of winding heads, equalising connectors, or connections thereto
    • H02K3/505Fastening of winding heads, equalising connectors, or connections thereto for large machine windings, e.g. bar windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the embodiments of the present application relate to motor technology, for example, to a stator of a flat wire motor and a flat wire motor.
  • Drive motors for new energy vehicles are mainly permanent magnet synchronous motors.
  • the motor stator can be divided into round wires and flat copper wires according to the cross-sectional shape of the stator windings. Motors using flat copper wires are called flat wires. motor. Most of the permanent magnet synchronous motors are flat wire motors. Flat wire motors can effectively increase the slot fill rate of the drive motor, reduce the copper consumption of the drive motor and improve the efficiency of the drive motor. At the same time, it can reduce the end height of the motor stator winding, which can effectively Reduce the installation space of the motor. With the continuous development of flat wire motors in the direction of high speed, the number of conductors in the stator slots gradually increases. After the number of conductors in the stator slots increases, the number of parallel branches of the winding needs to be increased to multi-parallel branches.
  • the flat-wire motor windings with multi-parallel branches used in the related art have many types of wires, complex arrangements, and unconcentrated lead wires.
  • a large number of bus bars and bus bars are needed to connect the branches of the multi-phase winding and the intermediate
  • the manufacturing process is complicated, the production cost is high, and the processing efficiency is low.
  • the application provides a flat-wire motor stator and a flat-wire motor, which can realize the electrical connection between the branches of the multi-phase winding and the neutral point by using a small number of bus bars and bus bars, which simplifies the connection mode and reduces the winding capacity.
  • the welding production difficulty and production cost of the coil are conducive to batch production and improve processing efficiency.
  • the embodiment of the present application provides a flat wire motor stator, the flat wire motor stator includes: a stator core and a stator winding; the stator core includes an insertion side and a connection side; along the circumferential direction of the stator core A plurality of winding slots are evenly spaced; each winding slot extends along the axial direction of the stator core, and each winding slot includes 2N conductor layers; wherein, N is an even number greater than or equal to 2; the The stator winding is arranged on the stator core; the stator winding is inserted from the conductor layer of the plurality of winding slots on the insertion side, and is inserted from the conductor layer of the plurality of winding slots on the connection side connected after being drawn out; the stator windings include U, V, and W three-phase windings; the U, V, and W three-phase windings are star-connected; each phase winding includes N parallel branches; each parallel branch includes Power outlets and star point connection ends; the star point connection ends of multiple parallel
  • the stator core includes 48 winding slots; each parallel branch starts from the power lead-out end of each parallel branch at a pitch of one or more of 5, 6, and 7 All kinds of winding are carried out to the star-point connection end of each parallel branch and terminated.
  • each phase winding structure includes N U-shaped M-strand wires; the N U-shaped M-strand wires belong to different parallel branches; each U-shaped M-strand wire includes M first ends and M first ends Two ends; the difference between the M first ends and the M second ends of the same U-shaped M strand is 5, 6 or 7 winding slots, and the same U-shaped M strand is connected from the insertion side Different conductor layers inserted into the plurality of winding slots are drawn out at the connection side, and all U-shaped M-strand wires are connected at the connection side to form the U, V, W three-phase winding.
  • each winding groove includes 8 conductor layers; from the second layer conductor layer, the fourth layer conductor side, the fifth layer conductor layer and the seventh layer conductor layer of the plurality of winding grooves on the connection side The plurality of first ends and the plurality of second ends drawn out from the conductor layer are twisted in the same twisting direction; the first conductor layer, the third conductor layer, and the sixth conductor layer of the plurality of winding slots on the connection side The plurality of first ends and the plurality of second ends led out from the conductor layer and the eighth conductor layer are twisted along the same twisting direction.
  • each phase winding includes two first parallel branches and two second parallel branches; the star-point connection ends of the two first parallel branches are connected from adjacent The conductor layers of the first layer of the two winding slots are drawn out, and the star point connection ends of the two second parallel branches are respectively connected from the fourth layer of the two adjacent winding slots of the plurality of winding slots.
  • Leading out of the conductor layer; the twisting direction of the first end or the second end as the star-point connection end of all the first parallel branches is opposite to the twisting direction of the first end and the second end drawn out from the first conductor layer of other winding slots.
  • the power leads of the two first parallel branches of each phase winding are respectively drawn from the fourth conductor layer of two adjacent winding slots; the two second parallel branches of each phase winding The power lead-out ends of the branches are drawn from the first conductor layer of the two adjacent winding slots; The twist directions of the first end and the second end led out from the first conductor layer are opposite.
  • the winding slot leading to the power outlet of a first parallel branch and the winding slot leading to the power outlet of a second parallel branch are the same winding slot.
  • star-point connection terminals electrically connected to the first star-point connecting line are drawn from the first conductor layers of different winding slots; all star-point connecting ends electrically connected to the second star-point connecting line The ends are led out from the Nth conductor layer of different winding slots.
  • the flat wires in multiple conductor layers in the same winding slot belong to the same phase winding.
  • the embodiment of the present application also provides a flat wire motor, which includes the above flat wire motor stator.
  • Figure 1 is a schematic diagram of the overall structure of the flat wire motor stator provided by the embodiment of the present application.
  • Fig. 2 is a structural schematic diagram of the power supply lead-out line, the first star point connection line and the second star point connection line of the connection side of the flat wire motor stator provided by the embodiment of the present application;
  • Fig. 3 is a schematic diagram of the insertion side winding structure of the flat wire motor stator provided by the embodiment of the present application;
  • Fig. 4 is a schematic diagram of the connection principle of the three-phase winding of the stator of the flat wire motor provided by the embodiment of the present application;
  • Fig. 5 is a schematic diagram of the three-phase winding principle of the stator of the flat wire motor provided by the embodiment of the present application;
  • Fig. 6-9 is a flat wire motor stator U-phase winding four parallel branch winding connection method provided by the embodiment of the present application;
  • Fig. 10-13 is a flat wire motor stator U-phase winding four parallel branch winding connection methods provided by the embodiment of the present application;
  • Figures 14-17 are the four parallel branch winding connection methods of the flat wire motor stator U-phase winding provided by the embodiment of the present application;
  • Fig. 18 is a schematic diagram of a U-shaped flat wire conductor layer with a pitch of 6 on the insertion side provided by the embodiment of the present application;
  • Fig. 19 is a schematic diagram of conductor layers of U-shaped flat wires with insertion side pitches of 5 and 7 provided by the embodiment of the present application.
  • Fig. 1 is a schematic diagram of the overall structure of a flat wire motor stator provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of the power lead-out line, the first star point connection line and the second star point connection line at the connection side of the stator of the flat wire motor provided by the embodiment of the present application.
  • Fig. 3 is a schematic diagram of the winding structure at the insertion side of the stator of the flat wire motor provided by the embodiment of the present application.
  • the flat wire motor includes: a stator core 10 and a stator winding 20; the stator core 10 includes an insertion side 1 and a connection side 2; Wire slot; a plurality of winding slots extend along the axial direction of the stator core 10, and each winding slot includes 2N conductor layers; wherein, N is an even number greater than or equal to 2; the stator winding 20 is arranged on the stator core 10 Above; the stator winding 20 is inserted from the conductor layers of the multiple winding slots on the insertion side 1, and drawn out from the conductor layers of the multiple winding slots on the connection side 2 for connection; the stator winding 20 includes three phases of U, V, and W Winding; U, V, W three-phase winding adopts star connection.
  • each winding slot includes 8 conductor layers; increasing the number of conductor layers in the winding slot can further reduce the conductor size per unit area in the winding slot, so as to reduce the stator High-speed skin effect of windings.
  • Fig. 4 is a schematic diagram of the principle connection of the three-phase windings of the stator of the flat wire motor provided by the embodiment of the present application.
  • each phase winding includes N parallel branches; each parallel branch includes a power outlet and a star point connection end;
  • the U-phase winding includes 4 parallel branches, each Parallel branches include power supply terminals U1, U2, U3, U4 and star point connection terminals X1, X2, X3, X4;
  • V-phase windings include 4 parallel branches, and each parallel branch includes power supply terminals V1, V2, V3, V4 and star point connection terminals Y1, Y2, Y3, Y4;
  • W-phase winding includes 4 parallel branches, each parallel branch circuit includes power supply leads W1, W2, W3, W4 and star point connection terminals Z1, Z2 , Z3, Z4; multiple star point connection ends of different parallel branches of each phase winding are respectively connected through the first star point connection line 6 and the second star point connection line 7; exemplary, the star point connection ends X1, X2, Y1, Y2, Z1, Z2 are connected to the first star point connection line 6; star point connection terminals X3, X4, Y
  • the conductor layer is drawn out, V2 and V4 are drawn out from different conductor layers of the same winding slot, and the winding slots of V1 and V3 are adjacent to the V2 and V4 winding slots, and the power lead-out end of the V-phase winding can be connected V1, V2, V3, and V4 are connected together; W1 and W3 of the power supply terminals of the W-phase winding are drawn from different conductor layers of the same winding slot, W2 and W4 are drawn from different conductor layers of the same winding slot, and W1 and W3
  • the winding slots of the winding slots are adjacent to the W2 and W4 winding slots, and the power supply terminals W1, W2, W3, and W4 of the W-phase winding can be connected together by using the power supply lead-out wire 5.
  • winding slots of multiple star-point connection ends electrically connected to the first star-point connecting line 6 and lead out multiple star-points electrically connected to the second star-point connecting line 7
  • the winding slots at the connection end are symmetrically distributed on opposite sides of the winding slots leading out the power supply terminals 3, 4, and 5, and the winding slots leading out multiple star-point connection ends are the same as the winding slots leading out the power supply terminals 3, 4, and 5.
  • the slots are adjacent; in this way, the winding structures of multiple parallel branches are symmetrically distributed, which is beneficial to reduce or even eliminate the circulating current between multiple branches.
  • FIG. 5 is a schematic diagram showing the principles of the three-phase winding of the stator of the flat wire motor provided in the embodiment of the present application.
  • the stator core includes 48 winding slots; each parallel branch starts from the power supply lead-out and winds at one or more of the pitches 5, 6, and 7 to the star-point connection end Finish.
  • Figs. 6-9 are a connection mode of four parallel branch windings of the stator U-phase winding of a flat wire motor provided by the embodiment of the present application.
  • each winding slot includes 8 conductor layers;
  • the U-phase winding of the three-phase winding includes 4 parallel branches, and each parallel branch includes power supply terminals U1, U2, U3, U4 and star Point connection terminals X1, X2, X3, X4.
  • the winding wires in the U-phase winding that are electrically connected to the power supply terminal U1 of the first parallel branch are wound to the star point connection terminal X1 with a pitch of 5 and 6; when the stator core 48
  • the winding wire connected to the power outlet U1 first enters from the first layer of the seventh winding slot, and then enters the fifth layer of the 13th winding slot with a pitch of 6, and then Enter the 6th layer of the 19th winding slot at a pitch of 6, then enter the 2nd layer of the 13th winding slot at a pitch of 6, then enter the 19th layer of the 19th winding slot at a pitch of 6 1 layer, then enter the 5th layer of the 25th winding slot at a pitch of 6, then enter the 6th layer of the 31st winding slot at a pitch of 6, then enter the 25th winding slot at a pitch of 6 tier 2 of wire slots, then pitch 6 into tier 1 of 31st slot, then pitch 6 into
  • the winding wires in the U-phase winding that are electrically connected to the power supply terminal U2 of the second parallel branch are wound to the star point connection terminal X2 with a pitch of 6 and 7, for example: with the power supply terminal
  • the winding of U2 enters from the first layer of the 8th winding slot, enters the 5th layer of the 14th winding slot with a pitch of 6, and then enters the 6th layer of the 20th winding slot with a pitch of 6 layer, then into layer 2 of the 14th winding slot at a pitch of 6, then into layer 1 of the 20th winding slot at a pitch of 6, then into the 26th winding slot at a pitch of 6 tier 5 of slots, then into tier 6 of the 32nd winding slot at pitch 6, then into tier 2 of the 26th winding slot at pitch 6, then into tier 2 of the 26th slot at pitch 6
  • Layer 1 of 32 winding slots then enters layer 5 of 38 winding slots at pitch 6, then enters layer 6 of 44 winding slots at pitch 6, then
  • the winding wires in the U-phase winding that are electrically connected to the power supply terminal U3 of the third parallel branch are wound to the star point connection terminal X3 with pitches of 5, 6 and 7, for example: with the power supply
  • the winding wire electrically connected to the lead-out U3 enters from the 4th layer of the 7th winding slot, then enters the 8th layer of the 13th winding slot with a pitch of 6, and then enters the 7th winding at a pitch of 6.
  • Layer 7 of wire slots then enters layer 3 of 2nd wire slot at pitch 5, then enters layer 4 of 44th wire slot at pitch 6, then enters at pitch 6
  • Layer 8 of the 2nd winding slot then enters the 7th layer of the 44th winding slot at a pitch of 6, then enters the 3rd layer of the 38th winding slot at a pitch of 6, and then enters the Enter the 4th layer of the 32nd winding slot with a pitch of 6, then enter the 8th layer of the 38th winding slot with a pitch of 6, then enter the 7th layer of the 32nd winding slot with a pitch of 6 , then enter the 3rd layer of the 26th winding slot at a pitch of 6, then enter the 4th layer of the 20th winding slot at a pitch of 6, then enter the 26th winding slot at a pitch of 6 Then enter the 7th layer of the 20th winding slot with a pitch of 6, and then enter the 3rd layer of the 14th winding slot with a pitch of 7, go around in series and reach the 8
  • the winding wires in the U-phase winding that are electrically connected to the power supply terminal U4 of the fourth parallel branch are wound to the star point connection terminal X4 at pitches of 5, 6 and 7, for example: power supply terminal
  • the winding connected to terminal U4 enters from the 4th layer of the 8th winding slot, enters the 8th layer of the 14th winding slot with a pitch of 6, and then enters the 8th winding slot with a pitch of 6.
  • Figs. 10-13 show a connection mode of four parallel branch windings of a stator V-phase winding of a flat-wire motor provided in an embodiment of the present application.
  • the V-phase winding of the three-phase winding includes 4 parallel branches, and each parallel branch includes power supply terminals V1, V2, V3, V4 and star point connection terminals Y1, Y2, Y3, Y4.
  • the winding wires in the V-phase winding that are electrically connected to the power supply terminal V1 of the first parallel branch are wound to the star point connection terminal Y1 at a pitch of 5 and 6; connected to the power supply terminal V1
  • the winding enters from the 1st layer of the 9th winding slot, then enters the 5th layer of the 15th winding slot with a pitch of 6, and then enters the 6th layer of the 21st winding slot with a pitch of 6 layer, then into layer 2 of the 15th winding slot at a pitch of 6, then into layer 1 of the 21st winding slot at a pitch of 6, then into the 27th winding slot at a pitch of 6 tier 5 of slots, then into tier 6 of slot 33 at pitch 6, then tier 2 of slot 27 at pitch 6, then tier 2 of slot 6 at pitch Layer 1 of 33 winding slots, then enters layer 5 of 39 winding slots at pitch 6, then enters layer 6 of 45 winding slots at pitch 6, then enters layer 6 of winding slot 45 at
  • the winding wires in the V-phase winding that are electrically connected to the power supply terminal V2 of the second parallel branch are wound to the star point connection terminal Y2 with a pitch of 6 and 7, for example: with the power supply terminal
  • the winding of V2 connection first enters the first layer of the 10th winding slot, then enters the 5th layer of the 16th winding slot with a pitch of 6, and then enters the 22nd winding slot with a pitch of 6 tier 6, then into tier 2 of the 16th slot at pitch 6, then into tier 1 of the 22nd slot at pitch 6, then into tier 28 at pitch 6
  • Layer 5 of the first winding slot then enters layer 6 of the 34th winding slot at a pitch of 6, then enters layer 2 of the 28th winding slot at a pitch of 6, then enters the second layer of the 28th winding slot at a pitch of 6 6 into layer 1 of the 34th winding slot, then into layer 5 of the 40th winding slot at a pitch of 6, then into layer 6 of the 46
  • the winding wires in the V-phase winding that are electrically connected to the power supply terminal V3 of the third parallel branch are wound to the star point connection terminal Y3 at pitches of 5, 6 and 7, for example: with the power supply
  • the winding connected to the terminal V3 enters the 4th layer of the 9th winding slot, then enters the 8th layer of the 15th winding slot with a pitch of 6, and then enters the 9th winding with a pitch of 6 tier 7 of slots, then into tier 3 of the 4th winding trough at pitch 5, then into tier 4 of the 46th winding slot at pitch 6, then into tier 4 of the 46th winding slot at pitch 6 tier 8 of 4 slots, then tier 7 of 46 slots at pitch 6, then tier 3 of slot 40 at pitch 6, then tier 3 of slot 40 at pitch Enter the 4th layer of the 34th winding slot for 6, then enter the 8th layer of the 40th winding slot with a pitch of 6, and then enter the 7th layer of the 34th winding slot with
  • the winding wires in the V-phase winding that are electrically connected to the power supply terminal V4 of the fourth parallel branch are wound to the star point connection terminal Y4 with pitches of 5, 6 and 7, for example: with the power supply
  • the winding connected to the terminal V4 enters the 4th layer of the 10th winding slot, then enters the 8th layer of the 16th winding slot with a pitch of 6, and then enters the 10th winding with a pitch of 6 tier 7 of slots, then into tier 3 of the 3rd winding trough at a pitch of 7, then into tier 4 of the 45th trough of winding at a pitch of 6, then into the tier 4 of a pitch 6 tier 8 of 3 winding slots, then tier 7 of 45th trough at pitch 6, then tier 3 of 39th trough at pitch 6, then tier 3 of pitch 6 Enter the 4th layer of the 33rd winding slot for 6, then enter the 8th layer of the 39th winding slot with a pitch of 6, and then enter
  • FIGs 14-17 are the four parallel branch winding connection modes of the W-phase winding of the flat wire motor stator provided by the embodiment of the present application.
  • the W-phase winding in the three-phase winding includes 4 parallel branches, and each parallel branch includes power supply terminals W1, W2, W3, W4 and star point connection terminals Z1, Z2, Z3, Z4.
  • the winding wires in the W-phase winding that are electrically connected to the power supply terminal W1 of the first parallel branch are wound to the star point connection terminal Z1 at a pitch of 5 and 6, and connected to the power supply terminal W1
  • the winding enters from the 1st layer of the 11th winding slot, then enters the 5th layer of the 17th winding slot with a pitch of 6, and then enters the 6th layer of the 23rd winding slot with a pitch of 6 layer, then into layer 2 of the 17th winding slot at a pitch of 6, then into layer 1 of the 23rd winding slot at a pitch of 6, then into the 29th winding slot at a pitch of 6 tier 5 of slots, then pitch 6 into tier 6 of 35th winding trough, then pitch 6 into tier 2 of 29th trough, then pitch 6 into tier 6 tier 1 of 35 slots, then tier 5 of 41 slots at pitch 6, then tier 6 of slot 47 at pitch 6, then tier 6 of slot 47 at pitch Enter the 2
  • the winding wire electrically connected to the power supply terminal W2 of the second parallel branch in the W-phase winding is wound to the star point connection terminal Z2 at a pitch of 6 and 7, for example: with the power supply terminal
  • the winding wire connected by W2 enters from the first layer of the 12th winding slot, then enters the 5th layer of the 18th winding slot with a pitch of 6, and then enters the 24th winding slot with a pitch of 6 tier 6, then tier 2 at pitch 6 into slot 18, then tier 1 at pitch 6 into slot 24, then tier 30 at pitch 6
  • Layer 5 of winding slots then enters layer 6 of winding slot 36 at pitch 6, then enters layer 2 of winding slot 30 at pitch 6, then enters layer 2 of winding slot 30 at pitch 6 Go to layer 1 of the 36th winding slot, then enter the 5th layer of the 42nd winding slot at a pitch of 6, then enter the 6th layer of the 48th winding slot at a pitch of 6, and then enter the Pitch 6 into layer 2 of slot 42,
  • the winding wires in the W-phase winding that are electrically connected to the power supply terminal W3 of the third parallel branch are wound to the star point connection terminal Z3 at a pitch of 5, 6 and 7, for example: with the power supply
  • the winding connected to the terminal W3 enters from the 4th layer of the 11th winding slot, then enters the 8th layer of the 17th winding slot with a pitch of 6, and then enters the 11th winding with a pitch of 6 tier 7 of slots, then tier 3 of 6th winding trough at pitch 5, then tier 4 of 48th trough of pitch 6, then tier 4 of pitch 6
  • Layer 8 of 6 winding slots then enters layer 7 of 48 winding slots at pitch 6, then enters layer 3 of 42 winding slots at pitch 6, then enters layer 3 of 42 winding slots at pitch Enter the 4th layer of the 36th winding slot for 6, then enter the 8th layer of the 42nd winding slot with a pitch of 6, and then enter the 7th layer of the 36th winding slot with a
  • the winding wires in the W-phase winding that are electrically connected to the power supply terminal W4 of the fourth parallel branch are wound to the star point connection terminal Z4 at pitches of 5, 6 and 7, for example: with the power supply
  • the winding connected to the terminal W4 enters from the 4th layer of the 12th winding slot, then enters the 8th layer of the 18th winding slot with a pitch of 6, and then enters the 12th winding with a pitch of 6 tier 7 of slots, then into tier 3 of the 5th winding trough at a pitch of 7, then into tier 4 of the 47th winding trough at a pitch of 6, then into the tier 4 of a pitch 6
  • Fig. 18 is a schematic diagram of the U-shaped flat wire conductor layer with an insertion side pitch of 6 provided by the embodiment of the present application
  • Fig. 19 is a U-shaped flat wire with an insertion side pitch of 5 and 7 provided by the embodiment of the present application Schematic diagram of the conductor layer.
  • Each phase winding structure includes N U-shaped M-strand wires; N U-shaped M-strand wires belong to different parallel branches; referring to Figure 18-19, each U-shaped M-strand wire includes M first ends and M second ends end (the two branches of the U-shaped in the figure are the first end and the second end respectively); the M first ends of the same U-shaped M-strand wire and the M second ends differ by 5, 6 or 7 winding slots, And the same U-shaped M-strand wire is inserted into different conductor layers of multiple winding slots from the insertion side 1, and is drawn out at the connection side, and all U-shaped M-strand wires are connected at the connection side to form U, V, W three-phase windings , and the flat wires in multiple conductor layers of the same winding slot drawn from the connection side 2 belong to the same phase winding.
  • a plurality of first ends and a plurality of second terminals drawn from the second conductor layer, the fourth conductor layer, the fifth conductor layer and the seventh conductor layer of the plurality of winding slots on the connection side 2 The ends are twisted in the same twisting direction; multiple first ends and multiple terminals drawn from the first conductor layer, the third conductor layer, the sixth conductor layer and the eighth conductor layer of the multiple winding slots on the connection side 2
  • the second ends are twisted in the same twist direction.
  • each phase winding includes two first parallel branches and two second parallel branches;
  • the first conductor layer of each winding slot is drawn out, and the star point connection ends of the two second parallel branches are respectively drawn out from the fourth conductor layer of two adjacent winding slots.
  • the star-point connection terminals X1 and X2 of the two first parallel branches of the U-phase winding are drawn from the first layer of semiconductor (conductor layer) of the two adjacent winding slots;
  • the star-point connection terminals X3 and X4 of the two parallel branches are drawn out from the fourth-layer semiconductors of the two adjacent winding slots.
  • the star-point connection terminals Y1 and Y2 of the two first parallel branches of the V-phase winding are drawn from the first-layer semiconductors of the two adjacent winding slots; the star-point connection of the two second parallel branches of the V-phase winding Terminals Y3 and Y4 are drawn out from the fourth-layer semiconductors of two adjacent winding grooves.
  • the star-point connection terminals Z1 and Z2 of the two first parallel branches of the W-phase winding are drawn from the first-layer semiconductors of the two adjacent winding slots; the star-point connection of the two second parallel branches of the W-phase winding Terminals Z3 and Z4 are led out from the fourth layer semiconductors of two adjacent winding slots; multiple star point connection ends are drawn out from the first layer semiconductor layer and the fourth semiconductor layer in different winding slots respectively.
  • a plurality of star-point connection terminals electrically connected to the first star-point connection line 6 are drawn from the first conductor layers of different winding slots; a plurality of star-point connection ends electrically connected to the second star-point connection line 7
  • the point connection ends are drawn from the fourth conductor layer of different winding slots.
  • a plurality of star-point connection terminals are concentratedly distributed on the first conductor layer and the fourth conductor layer, and the winding structure on the connection side is simple and compact, which can realize mass production.
  • the power leads of the two first parallel branches of each phase winding are respectively drawn from the fourth conductor layer of two adjacent winding slots;
  • the power leads of the second parallel branch are led out from the first conductor layers of the two adjacent winding slots respectively.
  • the winding slot leading to the power outlet of a first parallel branch and the winding slot leading to the power outlet of a second parallel branch are the same winding slot.
  • the power leads U3 and U4 of the two first parallel branches of the U-phase winding are drawn from the fourth-layer semiconductors of the two adjacent winding slots; the two first parallel branches of the U-phase winding
  • the power leads U1 and U2 are led out from the first layer of semiconductors in the two adjacent winding slots; the winding slots leading to the power lead-out U3 of the first parallel branch and the power lead-out of the second parallel branch
  • the winding groove of U1 is the same winding groove;
  • the winding groove of the power supply terminal U4 leading to a first parallel branch is the same winding groove as the winding groove of the power supply terminal U2 leading to a second parallel branch;
  • the multiple power leads of the U-phase winding connected to the power lead-out line 3 are concentratedly distributed; the power lead-outs V3 and V4 of the two first parallel branches of the V-phase winding are drawn from the fourth layer of the two adjacent winding slots Leading out of the semiconductor; the power supply terminals V1 and V2 of the two first parallel
  • the twisting direction of the first end or the second end as the star-point connection end of the first parallel branch is different from that of the first end and the second end drawn from the first conductor layer of other winding slots. Twist in the opposite direction.
  • the twisting direction of the first end or the second end of the power lead-out end of the second parallel branch is opposite to the twisting direction of the first end and the second end drawn from the first conductor layer of other winding slots.
  • the first or second ends of multiple U-shaped 4-strand wires are convenient for welding to realize multiple parallel branches in a multi-winding structure. Winding starts from the power lead-out end, and then winds along the welding point to the star point connection in turn. ends at the end.
  • the embodiment of the present application also provides a flat wire motor, which includes the stator of the flat wire motor described in the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

本申请公开了一种扁线电机定子及扁线电机。定子包括定子铁芯和定子绕组;每相定子绕组包括N条并联支路;全部并联支路的星点连接端分别从连接侧的不同绕线槽引出,且三相绕组中与第一星点连接线连接的全部星点连接端从连接侧相邻的绕线槽引出,三相绕组中与第二星点连接线连接的全部星点连接端从连接侧相邻的绕线槽引出;同一相绕组的N个电源引出端从连接侧的相同的绕线槽引出并通过电源引出线电连接,或者同一相绕组的N个电源引出端从连接侧的相邻的N个绕线槽引出并通过电源引出线电连接,或者同一相绕组的N个电源引出端中部分电源引出端从连接侧的相同的绕线槽引出,其余电源引出端从连接侧的与所述相同的绕线相邻的绕线槽引出,且同一相绕组的N个电源引出端通过电源引出线电连接。

Description

扁线电机定子及扁线电机
本申请要求在2021年05月27日提交中国专利局、申请号为202110585924.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电机技术,例如涉及一种扁线电机定子及扁线电机。
背景技术
随着新能源汽车技术的快速发展,对于车用驱动电机的性能要求越来越高,性能的增加必然会导致驱动电机体积的增加,但是新能源汽车的轴向空间尺寸十分有限,导致驱动电机的性能和体积的矛盾日益突出。
新能源汽车驱动电机主要以永磁同步电机为主,在永磁同步电机中,电机定子按照定子绕组的截面形状可以分为圆形线和扁铜线,采用扁铜线的电机称为扁线电机。永磁同步电机大多为扁线电机,扁线电机可以有效的提高驱动电机的槽满率,降低驱动电机的铜耗从而提高驱动电机的效率,同时可以降低电机定子绕组的端部高度,能够有效减小电机的安装空间。随着扁线电机不断向高速化方向发展,定子槽内的导体数量逐渐增多,定子槽内的导体数量增多后,绕组的并联支路数需要增加为多并联支路。
相关技术中使用的多并联支路的扁线电机绕组,线型种类较多,排布方式复杂,引出线不集中,需要使用大量的汇流条和汇流排以连接多相绕组的支路及中性点,制作工艺复杂,生产成本高,加工效率低。
发明内容
本申请提供了一种扁线电机定子和扁线电机,以采用少量的汇流条和汇流排,即可实现多相绕组的支路和中性点的电连接,简化了连接方式,降低了绕组线圈的焊接生产难度和生产成本,有利于批量化生产,提高加工效率。
本申请实施例提供了一种扁线电机定子,该扁线电机定子包括:定子铁芯和定子绕组;所述定子铁芯包括插入侧和连接侧;在沿所述定子铁芯的圆周方向上均匀间隔设置有多个绕线槽;每个绕线槽沿所述定子铁心的轴向延伸,且每个绕线槽包括2N个导体层;其中,N为大于或等于2的偶数;所述定子绕组设置于所述定子铁芯上;所述定子绕组从所述插入侧的所述多个绕线槽的导体层插入,并从所述连接侧的所述多个绕线槽的导体层引出后进行连接;所述定子 绕组包括U、V、W三相绕组;所述U、V、W三相绕组采用星型接线;每相绕组包括N条并联支路;每条并联支路包括电源引出端和星点连接端;所述N条并联支路中的多个并联支路的星点连接端通过第一星点连接线连接,所述N条并联支路中的其余并联支路的星点连接端通过第二星点连接线连接;所述全部并联支路的星点连接端分别从所述连接侧的不同绕线槽引出,且所述U、V、W三相绕组中与所述第一星点连接线电连接的全部星点连接端从所述连接侧的相邻的绕线槽引出,以及所述U、V、W三相绕组中与所述第二星点连接线电连接的全部星点连接端从所述连接侧的相邻的绕线槽引出;且同一相绕组的N个电源引出端从所述连接侧的相同的绕线槽引出并通过电源引出线电连接,或者同一相绕组的N个电源引出端从所述连接侧的相邻的N个绕线槽引出并通过电源引出线电连接,或者同一相绕组的N个电源引出端中部分电源引出端从所述连接侧的相同的绕线槽引出,其余电源引出端从所述连接侧的与所述相同的绕线相邻的绕线槽引出,且所述同一相绕组的N个电源引出端通过电源引出线电连接;其中,引出与所述第一星点连接线电连接的全部星点连接端的绕线槽和引出与所述第二星点连接线电连接的全部星点连接端的所述绕线槽对称分布于引出全部电源引出端的绕线槽的相对的两侧,且引出全部星点连接端的绕线槽与引出全部电源引出端的绕线槽相邻。
可选的,所述定子铁芯包括48个绕线槽;每条并联支路从所述每条并联支路的电源引出端开始以节距为5、6、和7中的一种或多种种进行绕线至所述每条并联支路的星点连接端处结束。
可选的,每相绕组结构包括N个U型M股线;所述N个U型M股线属于不同的并联支路;每个U型M股线包括M个第一端和M个第二端;同一U型M股线的所述M个第一端与所述M个第二端相差5、6或7个绕线槽,且所述同一U型M股线从所述插入侧插入所述多个绕线槽的不同导体层,并在所述连接侧引出,全部U型M股线在所述连接侧进行连接形成所述U、V、W三相绕组。
可选的,每个绕线槽包括8个导体层;从所述连接侧的所述多多个绕线槽的第2层导体层、第4层导体侧、第5层导体层和第7层导体层引出的多个第一端和多个第二端沿同一扭转方向扭转;从所述连接侧的所述多个绕线槽的第1层导体层、第3层导体层、第6层导体层和第8层导体层引出的多个第一端和多个第二端沿同一扭转方向扭转。
可选的,每相绕组包括两个第一并联支路和两个第二并联支路;所述两个第一并联支路的星点连接端分别从所述多个绕线槽的相邻的两个绕线槽的第1层导体层引出,所述两个第二并联支路的星点连接端分别从所述多个绕线槽的 相邻的两个绕线槽的第4层导体层引出;作为全部第一并联支路的星点连接端的第一端或第二端的扭转方向与从其它绕线槽的第1层导体层引出的第一端和第二端的扭转方向相反。
可选的,每相绕组的所述两个第一并联支路的电源引出端分别从相邻的两个绕线槽的第4层导体层引出;每相绕组的所述两个第二并联支路的电源引出端分别从相邻的两个绕线槽的第1层导体层引出;作为全部第二并联支路的电源引出端的第一端或第二端的扭转方向与从其它绕线槽的第1层导体层引出的第一端和第二端的扭转方向相反。
可选的,同一相绕组中,引出一第一并联支路的电源引出端的绕线槽与引出一第二并联支路的电源引出端的绕线槽为同一绕线槽。
可选的,与所述第一星点连接线电连接的全部星点连接端从不同绕线槽的第1层导体层引出;与所述第二星点连接线电连接的全部星点连接端从不同绕线槽的第N导体层引出。
可选的,同一绕线槽的多个所述导体层内的扁线属于同一相绕组。
本申请实施例还提供了一种扁线电机,该扁线电机包括上述的扁线电机定子。
附图说明
图1为本申请实施例提供的扁线电机定子的整体结构示意图;
图2是本申请实施例提供的扁线电机定子的连接侧电源引出线、第一星点连接线和第二星点连接线结构示意图;
图3是本申请实施例提供的扁线电机定子的插入侧绕组结构示意图;
图4是本申请实施例提供的扁线电机定子的三相绕组原理连接示意图;
图5是本申请实施例提供的扁线电机定子的三相绕组原理展开示意图;
图6-9是本申请实施例提供的一种扁线电机定子U相绕组四个并联支路绕组连接方式;
图10-13是本申请实施例提供的一种扁线电机定子U相绕组四个并联支路绕组连接方式;
图14-17是本申请实施例提供的一种扁线电机定子U相绕组四个并联支路绕组连接方式;
图18是本申请实施例提供的插入侧节距为6的U型扁线导体层示意图;
图19是本申请实施例提供的插入侧节距为5和7的U型扁线导体层示意图。
具体实施方式
下面结合附图和实施例对本申请进行说明。可以理解的是,此处所描述的实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
图1为本申请实施例提供的扁线电机定子的整体结构示意图。图2是本申请实施例提供的扁线电机定子的连接侧电源引出线、第一星点连接线和第二星点连接线结构示意图。图3是本申请实施例提供的扁线电机定子的插入侧绕组结构示意图。参照图1-3,扁线电机包括:定子铁芯10和定子绕组20;定子铁芯10包括插入侧1和连接侧2;在沿定子铁芯10的圆周方向上均匀间隔设置有多个绕线槽;多个绕线槽沿定子铁芯10的轴向延伸,且每个绕线槽包括2N个导体层;其中,N为大于或等于2的偶数;定子绕组20设置于定子铁芯10上;定子绕组20从插入侧1的多个绕线槽的导体层插入,并从连接侧2的多个绕线槽的导体层引出后进行连接;定子绕组20包括U、V、W三相绕组;U、V、W三相绕组采用星型接线。
示例性的,这里以N=4为例,每个绕线槽包括8个导体层;这样增加绕线槽内导体层数,可进一步减少绕线槽内单位面积内的导体尺寸,以降低定子绕组的高速趋肤效应的影响。图4是本申请实施例提供的扁线电机定子的三相绕组原理连接示意图。结合参照图1、2和4,每相绕组包括N条并联支路;每条并联支路包括电源引出端和星点连接端;示例性的,U相绕组包括4条并联支路,每条并联支路包括电源引出端U1、U2、U3、U4及星点连接端X1、X2、X3、X4;V相绕组包括4条并联支路,每条并联支路包括电源引出端V1、V2、V3、V4及星点连接端Y1、Y2、Y3、Y4;W相绕组包括4条并联支路,每条并联支路包括电源引出端W1、W2、W3、W4及星点连接端Z1、Z2、Z3、Z4;每相绕组不同并联支路的多个星点连接端分别通过第一星点连接线6和第二星点连接线7连接;示例性的,星点连接端X1、X2、Y1、Y2、Z1、Z2与第一星点连接线6连接;星点连接端X3、X4、Y3、Y4、Z3、Z4与第二星点连接线7连接;多条并联支路的星点连接端分别从连接侧的不同绕线槽引出,且U、V、W三相绕组中与第一星点连接线6电连接的多个星点连接端X1、X2、Y1、Y2、Z1、Z2从连接侧2的相邻的绕线槽引出,以及U、V、W三相绕组中与第二星点连接线7电连接的多个星点连接端X3、X4、Y3、Y4、Z3、Z4从连接侧2的相邻的绕线槽引出;同一相绕组的多个电源引出端从连接侧相同和/或相邻的绕线槽引出并通过电源引出线电连接;示例性的,U相绕组的电源引出端U1与U3从同一绕线槽的不同导体层引出,U2与U4从同一绕线槽的不同导体层引出, 且U1和U3的绕线槽与U2和U4绕线槽相邻,此时采用电源引出线3可将U相绕组的电源引出端U1、U2、U3、U4连接在一起;同样的,V相绕组的电源引出端V1与V3从同一绕线槽的不同导体层引出,V2与V4从同一绕线槽的不同导体层引出,且V1和V3的绕线槽与V2和V4绕线槽相邻,采用电源引出线4可将V相绕组的电源引出端V1、V2、V3、V4连接在一起;W相绕组的电源引出端W1与W3从同一绕线槽的不同导体层引出,W2与W4从同一绕线槽的不同导体层引出,且W1和W3的绕线槽与W2和W4绕线槽相邻,采用电源引出线5可将W相绕组的电源引出端W1、W2、W3、W4连接在一起。如此,通过将与第一星点连接线6连接的多个星点连接端从相邻的线槽引出、与第二星点连接线7连接的多个星点连接端从相邻的线槽引出、以及与同一电源引出线(3、4或5)相连的多个电源引出端从相邻和或相同的线槽引出,使得与同一连接线电连接的多个端子集中分布,以采用少量的汇流条和汇流排,即可实现多相绕组的电源引出端和星点连接端的电连接,从而简化连接方式,降低连接线与绕组端子的焊接难度以及降低生产成本,有利于批量化生产,能够提高生产效率。
可选的,参照图1-2、4,引出与第一星点连接线6电连接的多个星点连接端的绕线槽和引出与第二星点连接线7电连接的多个星点连接端的绕线槽对称分布于引出电源引出端3、4、5的绕线槽的相对的两侧,且引出多个星点连接端的绕线槽与引出电源引出端3、4、5的绕线槽相邻;如此,多个并联支路绕组结构对称分布,有利于减小、甚至消除多个支路之间的环流电流。
可选的,图5是本申请实施例提供的扁线电机定子的三相绕组原理展开示意图。参照图5,定子铁芯包括48个绕线槽;每条并联支路从电源引出端开始以节距为5、6、和7中的一种或多种进行绕线至星点连接端处结束。
示例性的,图6-9是本申请实施例提供的一种扁线电机定子U相绕组四个并联支路绕组连接方式。以N=4为例,每个绕线槽包括8个导体层;三相绕组的U相绕组包括4条并联支路,每条并联支路包括电源引出端U1、U2、U3、U4及星点连接端X1、X2、X3、X4。
如图6所示,U相绕组中与其第一条并联支路的电源引出端U1电连接的绕线以节距为5和6进行绕线至星点连接端X1;当定子铁芯的48个绕线槽依次编号时,与电源引出端U1连接的绕线先从第7个绕线槽的第1层进入,然后以节距为6进入第13个绕线槽的第5层,然后以节距为6进入第19个绕线槽的第6层,然后以节距为6进入第13个绕线槽的第2层,然后以节距为6进入第19个绕线槽的第1层,然后以节距为6进入第25个绕线槽的第5层,然后以节距为6进入第31个绕线槽的第6层,然后以节距为6进入第25个绕线槽的第2 层,然后以节距为6进入第31个绕线槽的第1层,然后以节距为6进入第37个绕线槽的第5层,然后以节距为6进入第43个绕线槽的第6层,然后以节距为6进入第37个绕线槽的第2层,然后以节距为6进入第43个绕线槽的第1层,然后以节距为6进入第1个绕线槽的第5层,然后以节距为6进入第7个绕线槽的第6层,然后以节距为5进入第2个绕线槽的第2层,串联绕行一周后到达第8个绕线槽的第3层;然后以节距为6进入第14个绕线槽的第7层,然后以节距为6进入第20个绕线槽的第8层,然后以节距为6进入第14个绕线槽的第4层,然后以节距为6进入第20个绕线槽的第3层,然后以节距为6进入第26个绕线槽的第7层,然后以节距为6进入第32个绕线槽的第8层,然后以节距为6进入第26个绕线槽的第4层,然后以节距为6进入第32个绕线槽的第3层,然后以节距为6进入第38个绕线槽的第7层,然后以节距为6进入第44个绕线槽的第8层,然后以节距为6进入第38个绕线槽的第4层,然后以节距为6进入第44个绕线槽的第3层,然后以节距为6进入第2个绕线槽的第7层,然后以节距为6进入第8个绕线槽的第8层,串联绕行一周后到达位于第1个绕线槽的第4层处的星点连接端X1;星点连接端X1与第一星点连接线6连接。
如图7所示,U相绕组中与其第二条并联支路的电源引出端U2电连接的绕线以节距为6和7进行绕线至星点连接端X2,例如:与电源引出端U2的绕线从第8个绕线槽的第1层进入,以节距为6进入第14个绕线槽的第5层,然后以节距为6进入第20个绕线槽的第6层,然后以节距为6进入第14个绕线槽的第2层,然后以节距为6进入第20个绕线槽的第1层,然后以节距为6进入第26个绕线槽的第5层,然后以节距为6进入第32个绕线槽的第6层,然后以节距为6进入第26个绕线槽的第2层,然后以节距为6进入第32个绕线槽的第1层,然后以节距为6进入第38个绕线槽的第5层,然后以节距为6进入第44个绕线槽的第6层,然后以节距为6进入第38个绕线槽的第2层,然后以节距为6进入第44个绕线槽的第1层,然后以节距为6进入第2个绕线槽的第5层,然后以节距为6进入第8个绕线槽的第6层,然后以节距为7进入第1个绕线槽的第2层,串联绕行一周后到达第7个绕线槽的第3层;然后以节距为6进入第13个绕线槽的第7层,然后以节距为6进入第19个绕线槽的第8层,然后以节距为6进入第13个绕线槽的第4层,然后以节距为6进入第19个绕线槽的第3层,然后以节距为6进入第25个绕线槽的第7层,然后以节距为6进入第31个绕线槽的第8层,然后以节距为6进入第25个绕线槽的第4层,然后以节距为6进入第31个绕线槽的第3层,然后以节距为6进入第37个绕线槽的第7层,然后以节距为6进入第43个绕线槽的第8层,然后以节距为6进入第37个绕线槽的第4层,然后以节距为6进入第43个绕线槽的第3 层,然后以节距为6进入第1个绕线槽的第7层,然后以节距为6进入第7个绕线槽的第8层,串联绕行一周后到达位于第2个绕线槽的第4层处的星点连接端X2;该星点连接端X2与第一星点连接线6连接。
如图8所示,U相绕组中与其第三条并联支路的电源引出端U3电连接的绕线以节距为5、6和7进行绕线至星点连接端X3,例如:与电源引出端U3电连接的绕线从第7个绕线槽的第4层进入,然后以节距为6进入第13个绕线槽的第8层,然后以节距为6进入第7个绕线槽的第7层,然后以节距为5进入第2个绕线槽的第3层,然后以节距为6进入第44个绕线槽的第4层,然后以节距为6进入第2个绕线槽的第8层,然后以节距为6进入第44个绕线槽的第7层,然后以节距为6进入第38个绕线槽的第3层,然后以节距为6进入第32个绕线槽的第4层,然后以节距为6进入第38个绕线槽的第8层,然后以节距为6进入第32个绕线槽的第7层,然后以节距为6进入第26个绕线槽的第3层,然后以节距为6进入第20个绕线槽的第4层,然后以节距为6进入第26个绕线槽的第8层,然后以节距为6进入第20个绕线槽的第7层,然后以节距为7进入第14个绕线槽的第3层,串联绕行一周后到达第8个绕线槽的第2层;然后以节距为6进入第14个绕线槽的第6层,然后以节距为6进入第8个绕线槽的第5层,然后以节距为7进入第1个绕线槽的第1层,然后以节距为6进入第43个绕线槽的第2层,然后以节距为6进入第1个绕线槽的第6层,然后以节距为6进入第43个绕线槽的第5层,然后以节距为6进入第37个绕线槽的第1层,然后以节距为6进入第31个绕线槽的第2层,然后以节距为6进入第37个绕线槽的第6层,然后以节距为6进入第31个绕线槽的第2层,然后以节距为6进入第25个绕线槽的第1层,然后以节距为6进入第19个绕线槽的第2层,然后以节距为6进入第25个绕线槽的第6层,然后以节距为6进入第19个绕线槽的第5层,串联绕行一周后到达位于第13个绕线槽的第1层的星点连接端X3;星点连接端X3与第二星点连接线7连接。
如图9所示,U相绕组中与其第四条并联支路的电源引出端U4电连接的绕线以节距为5、6和7进行绕线至星点连接端X4,例如:电源引出端U4连接的绕线从第8个绕线槽的第4层进入,以节距为6进入第14个绕线槽的第8层,然后以节距为6进入第8个绕线槽的第7层,然后以节距为7进入第1个绕线槽的第3层,然后以节距为6进入第43个绕线槽的第4层,然后以节距为6进入第1个绕线槽的第8层,然后以节距为6进入第43个绕线槽的第7层,然后以节距为6进入第37个绕线槽的第3层,然后以节距为6进入第31个绕线槽的第4层,然后以节距为6进入第37个绕线槽的第8层,然后以节距为6进入第31个绕线槽的第7层,然后以节距为6进入第25个绕线槽的第3层,然后以节距为6进入第19个绕线槽的第4层,然后以节距为6进入第25个绕线槽 的第8层,然后以节距为6进入第19个绕线槽的第7层,然后以节距为7进入第13个绕线槽的第3层,串联绕行一周后到达第7个绕线槽的第2层;然后以节距为6进入第13个绕线槽的第6层,然后以节距为6进入第7个绕线槽的第5层,然后以节距为5进入第2个绕线槽的第1层,然后以节距为6进入第44个绕线槽的第2层,然后以节距为6进入第2个绕线槽的第6层,然后以节距为6进入第44个绕线槽的第5层,然后以节距为6进入第38个绕线槽的第1层,然后以节距为6进入第32个绕线槽的第2层,然后以节距为6进入第38个绕线槽的第6层,然后以节距为6进入第32个绕线槽的第5层,然后以节距为6进入第26个绕线槽的第1层,然后以节距为6进入第20个绕线槽的第2层,然后以节距为6进入第26个绕线槽的第6层,然后以节距为6进入第20个绕线槽的第5层,串联绕行一周后到达位于第14个绕线槽的第1层的星点连接端X4;该星点连接端X4与第二星点连接线7连接。
同样的,图10-13是本申请实施例提供的一种扁线电机定子V相绕组四个并联支路绕组连接方式。三相绕组的V相绕组包括4条并联支路,每条并联支路包括电源引出端V1、V2、V3、V4及星点连接端Y1、Y2、Y3、Y4。
如图10所示,V相绕组中与其第一条并联支路的电源引出端V1电连接的绕线以节距为5和6进行绕线至星点连接端Y1;与电源引出端V1连接的绕线从第9个绕线槽的第1层进入,然后以节距为6进入第15个绕线槽的第5层,然后以节距为6进入第21个绕线槽的第6层,然后以节距为6进入第15个绕线槽的第2层,然后以节距为6进入第21个绕线槽的第1层,然后以节距为6进入第27个绕线槽的第5层,然后以节距为6进入第33个绕线槽的第6层,然后以节距为6进入第27个绕线槽的第2层,然后以节距为6进入第33个绕线槽的第1层,然后以节距为6进入第39个绕线槽的第5层,然后以节距为6进入第45个绕线槽的第6层,然后以节距为6进入第39个绕线槽的第2层,然后以节距为6进入第45个绕线槽的第1层,然后以节距为6进入第3个绕线槽的第5层,然后以节距为6进入第9个绕线槽的第6层,然后以节距为5进入第4个绕线槽的第2层,串联绕行一周后到达第10个绕线槽的第3层;然后以节距为6进入第16个绕线槽的第7层,然后以节距为6进入第22个绕线槽的第8层,然后以节距为6进入第16个绕线槽的第4层,然后以节距为6进入第22个绕线槽的第3层,然后以节距为6进入第28个绕线槽的第7层,然后以节距为6进入第34个绕线槽的第8层,然后以节距为6进入第28个绕线槽的第4层,然后以节距为6进入第34个绕线槽的第3层,然后以节距为6进入第40个绕线槽的第7层,然后以节距为6进入第46个绕线槽的第8层,然后以节距为6进入第40个绕线槽的第4层,然后以节距为6进入第46个绕线槽的第3层,然后以节距为6进入第4个绕线槽的第7层,然后以节距为6进入 第10个绕线槽的第8层,串联绕行一周后到达位于第3个绕线槽的第4层星点连接端Y1;星点连接端Y1与第一星点连接线6连接。
如图11所示,V相绕组中与其第二条并联支路的电源引出端V2电连接的绕线以节距为6和7进行绕线至星点连接端Y2,例如:与电源引出端V2连接的绕线先从第10个绕线槽的第1层进入,然后以节距为6进入第16个绕线槽的第5层,然后以节距为6进入第22个绕线槽的第6层,然后以节距为6进入第16个绕线槽的第2层,然后以节距为6进入第22个绕线槽的第1层,然后以节距为6进入第28个绕线槽的第5层,然后以节距为6进入第34个绕线槽的第6层,然后以节距为6进入第28个绕线槽的第2层,然后以节距为6进入第34个绕线槽的第1层,然后以节距为6进入第40个绕线槽的第5层,然后以节距为6进入第46个绕线槽的第6层,然后以节距为6进入第40个绕线槽的第2层,然后以节距为6进入第46个绕线槽的第1层,然后以节距为6进入第4个绕线槽的第5层,然后以节距为6进入第10个绕线槽的第6层,然后以节距为7进入第3个绕线槽的第2层,串联绕行一周后到达第9个绕线槽的第3层;然后以节距为6进入第15个绕线槽的第7层,然后以节距为6进入第21个绕线槽的第8层,然后以节距为6进入第15个绕线槽的第4层,然后以节距为6进入第21个绕线槽的第3层,然后以节距为6进入第27个绕线槽的第7层,然后以节距为6进入第33个绕线槽的第8层,然后以节距为6进入第27个绕线槽的第4层,然后以节距为6进入第33个绕线槽的第3层,然后以节距为6进入第39个绕线槽的第7层,然后以节距为6进入第45个绕线槽的第8层,然后以节距为6进入第39个绕线槽的第4层,然后以节距为6进入第45个绕线槽的第3层,然后以节距为6进入第3个绕线槽的第7层,然后以节距为6进入第9个绕线槽的第8层,串联绕行一周后到达位于第4个绕线槽的第4层星点连接端Y2;星点连接端Y2与第一星点连接线6连接。
如图12所示,V相绕组中与其第三条并联支路的电源引出端V3电连接的绕线以节距为5、6和7进行绕线至星点连接端Y3,例如:与电源引出端V3连接的绕线从第9个绕线槽的第4层进入,然后以节距为6进入第15个绕线槽的第8层,然后以节距为6进入第9个绕线槽的第7层,然后以节距为5进入第4个绕线槽的第3层,然后以节距为6进入第46个绕线槽的第4层,然后以节距为6进入第4个绕线槽的第8层,然后以节距为6进入第46个绕线槽的第7层,然后以节距为6进入第40个绕线槽的第3层,然后以节距为6进入第34个绕线槽的第4层,然后以节距为6进入第40个绕线槽的第8层,然后以节距为6进入第34个绕线槽的第7层,然后以节距为6进入第28个绕线槽的第3层,然后以节距为6进入第22个绕线槽的第4层,然后以节距为6进入第28个绕线槽的第8层,然后以节距为6进入第22个绕线槽的第7层,然后以节距为7 进入第16个绕线槽的第3层,串联绕行一周后到达第10个绕线槽的第2层;然后以节距为6进入第16个绕线槽的第6层,然后以节距为6进入第10个绕线槽的第5层,然后以节距为7进入第3个绕线槽的第1层,然后以节距为6进入第45个绕线槽的第2层,然后以节距为6进入第3个绕线槽的第6层,然后以节距为6进入第45个绕线槽的第5层,然后以节距为6进入第39个绕线槽的第1层,然后以节距为6进入第33个绕线槽的第2层,然后以节距为6进入第39个绕线槽的第6层,然后以节距为6进入第33个绕线槽的第2层,然后以节距为6进入第27个绕线槽的第1层,然后以节距为6进入第21个绕线槽的第2层,然后以节距为6进入第27个绕线槽的第6层,然后以节距为6进入第21个绕线槽的第5层,串联绕行一周后到达位于第15个绕线槽第1层处的星点连接端Y3;星点连接端Y3与第二星点连接线7连接。
如图13所示,V相绕组中与其第四条并联支路的电源引出端V4电连接的绕线以节距为5、6和7进行绕线至星点连接端Y4,例如:与电源引出端V4连接的绕线从第10个绕线槽的第4层进入,然后以节距为6进入第16个绕线槽的第8层,然后以节距为6进入第10个绕线槽的第7层,然后以节距为7进入第3个绕线槽的第3层,然后以节距为6进入第45个绕线槽的第4层,然后以节距为6进入第3个绕线槽的第8层,然后以节距为6进入第45个绕线槽的第7层,然后以节距为6进入第39个绕线槽的第3层,然后以节距为6进入第33个绕线槽的第4层,然后以节距为6进入第39个绕线槽的第8层,然后以节距为6进入第33个绕线槽的第7层,然后以节距为6进入第27个绕线槽的第3层,然后以节距为6进入第21个绕线槽的第4层,然后以节距为6进入第27个绕线槽的第8层,然后以节距为6进入第21个绕线槽的第7层,然后以节距为7进入第15个绕线槽的第3层,串联绕行一周后到达第9个绕线槽的第2层;然后以节距为6进入第15个绕线槽的第6层,然后以节距为6进入第9个绕线槽的第5层,然后以节距为5进入第4个绕线槽的第1层,然后以节距为6进入第46个绕线槽的第2层,然后以节距为6进入第4个绕线槽的第6层,然后以节距为6进入第46个绕线槽的第5层,然后以节距为6进入第40个绕线槽的第1层,然后以节距为6进入第34个绕线槽的第2层,然后以节距为6进入第40个绕线槽的第6层,然后以节距为6进入第34个绕线槽的第5层,然后以节距为6进入第28个绕线槽的第1层,然后以节距为6进入第22个绕线槽的第2层,然后以节距为6进入第28个绕线槽的第6层,然后以节距为6进入第22个绕线槽的第5层,串联绕行一周后到达位于第16个绕线槽的第1层处的星点连接端Y4;星点连接端Y4与第二星点连接线7连接。
图14-17是本申请实施例提供的一种扁线电机定子W相绕组四个并联支路绕组连接方式。三相绕组中W相绕组包括4条并联支路,每条并联支路包括电 源引出端W1、W2、W3、W4及星点连接端Z1、Z2、Z3、Z4。
如图14所示,W相绕组中与其第一条并联支路的电源引出端W1电连接的绕线以节距为5和6进行绕线至星点连接端Z1,与电源引出端W1连接的绕线从第11个绕线槽的第1层进入,然后以节距为6进入第17个绕线槽的第5层,然后以节距为6进入第23个绕线槽的第6层,然后以节距为6进入第17个绕线槽的第2层,然后以节距为6进入第23个绕线槽的第1层,然后以节距为6进入第29个绕线槽的第5层,然后以节距为6进入第35个绕线槽的第6层,然后以节距为6进入第29个绕线槽的第2层,然后以节距为6进入第35个绕线槽的第1层,然后以节距为6进入第41个绕线槽的第5层,然后以节距为6进入第47个绕线槽的第6层,然后以节距为6进入第41个绕线槽的第2层,然后以节距为6进入第47个绕线槽的第1层,然后以节距为6进入第5个绕线槽的第5层,然后以节距为6进入第11个绕线槽的第6层,然后以节距为5进入第6个绕线槽的第2层,串联绕行一周后到达第12个绕线槽的第3层;然后以节距为6进入第18个绕线槽的第7层,然后以节距为6进入第24个绕线槽的第8层,然后以节距为6进入第18个绕线槽的第4层,然后以节距为6进入第24个绕线槽的第3层,然后以节距为6进入第30个绕线槽的第7层,然后以节距为6进入第36个绕线槽的第8层,然后以节距为6进入第30个绕线槽的第4层,然后以节距为6进入第36个绕线槽的第3层,然后以节距为6进入第42个绕线槽的第7层,然后以节距为6进入第48个绕线槽的第8层,然后以节距为6进入第42个绕线槽的第4层,然后以节距为6进入第48个绕线槽的第3层,然后以节距为6进入第6个绕线槽的第7层,然后以节距为6进入第12个绕线槽的第8层,串联绕行一周后到达位于第5个绕线槽的第4层处的星点连接端Z1;星点连接端Z1与第一星点连接线6连接。
如图15所示,W相绕组中与其第二条并联支路的电源引出端W2电连接的绕线以节距为6和7进行绕线至星点连接端Z2,例如:与电源引出端W2连接的绕线从第12个绕线槽的第1层进入,然后以节距为6进入第18个绕线槽的第5层,然后以节距为6进入第24个绕线槽的第6层,然后以节距为6进入第18个绕线槽的第2层,然后以节距为6进入第24个绕线槽的第1层,然后以节距为6进入第30个绕线槽的第5层,然后以节距为6进入第36个绕线槽的第6层,然后以节距为6进入第30个绕线槽的第2层,然后以节距为6进入第36个绕线槽的第1层,然后以节距为6进入第42个绕线槽的第5层,然后以节距为6进入第48个绕线槽的第6层,然后以节距为6进入第42个绕线槽的第2层,然后以节距为6进入第48个绕线槽的第1层,然后以节距为6进入第6个绕线槽的第5层,然后以节距为6进入第12个绕线槽的第6层,然后以节距为7进入第5个绕线槽的第2层,串联绕行一周后到达第11个绕线槽的第3层; 然后以节距为6进入第17个绕线槽的第7层,然后以节距为6进入第23个绕线槽的第8层,然后以节距为6进入第17个绕线槽的第4层,然后以节距为6进入第23个绕线槽的第3层,然后以节距为6进入第29个绕线槽的第7层,然后以节距为6进入第35个绕线槽的第8层,然后以节距为6进入第29个绕线槽的第4层,然后以节距为6进入第35个绕线槽的第3层,然后以节距为6进入第41个绕线槽的第7层,然后以节距为6进入第47个绕线槽的第8层,然后以节距为6进入第41个绕线槽的第4层,然后以节距为6进入第47个绕线槽的第3层,然后以节距为6进入第5个绕线槽的第7层,然后以节距为6进入第11个绕线槽的第8层,串联绕行一周后到达位于第6个绕线槽的第4层处的星点连接端Z2;星点连接端Z2与第一星点连接线1连接。
如图16所示,W相绕组中与其第三条并联支路的电源引出端W3电连接的绕线以节距为5、6和7进行绕线至星点连接端Z3,例如:与电源引出端W3连接的绕线从第11个绕线槽的第4层进入,然后以节距为6进入第17个绕线槽的第8层,然后以节距为6进入第11个绕线槽的第7层,然后以节距为5进入第6个绕线槽的第3层,然后以节距为6进入第48个绕线槽的第4层,然后以节距为6进入第6个绕线槽的第8层,然后以节距为6进入第48个绕线槽的第7层,然后以节距为6进入第42个绕线槽的第3层,然后以节距为6进入第36个绕线槽的第4层,然后以节距为6进入第42个绕线槽的第8层,然后以节距为6进入第36个绕线槽的第7层,然后以节距为6进入第30个绕线槽的第3层,然后以节距为6进入第24个绕线槽的第4层,然后以节距为6进入第30个绕线槽的第8层,然后以节距为6进入第24个绕线槽的第7层,然后以节距为7进入第18个绕线槽的第3层,串联绕行一周后到达第12个绕线槽的第2层;然后以节距为6进入第18个绕线槽的第6层,然后以节距为6进入第12个绕线槽的第5层,然后以节距为7进入第5个绕线槽的第1层,然后以节距为6进入第47个绕线槽的第2层,然后以节距为6进入第5个绕线槽的第6层,然后以节距为6进入第47个绕线槽的第5层,然后以节距为6进入第41个绕线槽的第1层,然后以节距为6进入第35个绕线槽的第2层,然后以节距为6进入第41个绕线槽的第6层,然后以节距为6进入第35个绕线槽的第2层,然后以节距为6进入第29个绕线槽的第1层,然后以节距为6进入第23个绕线槽的第2层,然后以节距为6进入第29个绕线槽的第6层,然后以节距为6进入第23个绕线槽的第5层,串联绕行一周后到达位于第17个绕线槽的第1层处的星点连接端Z3;星点连接端Z3与第二星点连接线7连接。
如图17所示,W相绕组中与其第四条并联支路的电源引出端W4电连接的绕线以节距为5、6和7进行绕线至星点连接端Z4,例如:与电源引出端W4连接的绕线从第12个绕线槽的第4层进入,然后以节距为6进入第18个绕线 槽的第8层,然后以节距为6进入第12个绕线槽的第7层,然后以节距为7进入第5个绕线槽的第3层,然后以节距为6进入第47个绕线槽的第4层,然后以节距为6进入第5个绕线槽的第8层,然后以节距为6进入第47个绕线槽的第7层,然后以节距为6进入第41个绕线槽的第3层,然后以节距为6进入第35个绕线槽的第4层,然后以节距为6进入第41个绕线槽的第8层,然后以节距为6进入第35个绕线槽的第7层,然后以节距为6进入第29个绕线槽的第3层,然后以节距为6进入第23个绕线槽的第4层,然后以节距为6进入第29个绕线槽的第8层,然后以节距为6进入第23个绕线槽的第7层,然后以节距为7进入第17个绕线槽的第3层,串联绕行一周后到达第11个绕线槽的第2层;然后以节距为6进入第17个绕线槽的第6层,然后以节距为6进入第11个绕线槽的第5层,然后以节距为5进入第6个绕线槽的第1层,然后以节距为6进入第48个绕线槽的第2层,然后以节距为6进入第6个绕线槽的第6层,然后以节距为6进入第48个绕线槽的第5层,然后以节距为6进入第42个绕线槽的第1层,然后以节距为6进入第36个绕线槽的第2层,然后以节距为6进入第42个绕线槽的第6层,然后以节距为6进入第36个绕线槽的第5层,然后以节距为6进入第30个绕线槽的第1层,然后以节距为6进入第24个绕线槽的第2层,然后以节距为6进入第30个绕线槽的第6层,然后以节距为6进入第24个绕线槽的第5层,串联绕行一周后到达位于第18个绕线槽的第1层处的星点连接端Z4;星点连接端Z4与第二星点连接线7连接。
可选的,图18是本申请实施例提供的插入侧节距为6的U型扁线导体层示意图;图19是本申请实施例提供的插入侧节距为5和7的U型扁线导体层示意图。每相绕组结构包括N个U型M股线;N个U型M股线属于不同并联支路;参照图18-19,每个U型M股线包括M个第一端和M个第二端(图中U型的两支路分别为第一端和第二端);同一U型M股线的M个第一端与M个第二端相差5、6或7个绕线槽,且同一U型M股线从插入侧1插入多个绕线槽的不同导体层,并在连接侧引出,全部U型M股线在所述连接侧进行连接形成U、V、W三相绕组,且连接侧2引出的同一绕线槽的多个导体层内的扁线属于同一相绕组。
可选的,从连接侧2的多个绕线槽的第2层导体层、第4层导体层、第5层导体层和第7层导体层引出的多个第一端和多个第二端沿同一扭转方向扭转;从连接侧2的多个绕线槽的第1层导体层、第3层导体层、第6层导体层和第8层导体层引出的多个第一端和多个第二端沿同一扭转方向扭转。这样多个U型4股线较易焊接以实现多绕组结构中多个并联支路从电源引出端开始进行绕线,然后依次沿着焊接点绕线至星点连接端处结束。
可选的,继续参照图2及图4,每相绕组包括两个第一并联支路和两个第二 并联支路;两个第一并联支路的星点连接端分别从相邻的两个绕线槽的第1层导体层引出,两个第二并联支路的星点连接端分别从相邻的两个绕线槽的第4层导体层引出。示例性的,U相绕组的两个第一并联支路的星点连接端X1及X2从相邻的两个绕线槽的第一层半导体(导体层)引出;U相绕组的两个第二并联支路的星点连接端X3及X4从相邻的两个绕线槽的第4层半导体引出。V相绕组的两个第一并联支路的星点连接端Y1及Y2从相邻的两个绕线槽的第一层半导体引出;V相绕组的两个第二并联支路的星点连接端Y3及Y4从相邻的两个绕线槽的第4层半导体引出。W相绕组的两个第一并联支路的星点连接端Z1及Z2从相邻的两个绕线槽的第一层半导体引出;W相绕组的两个第二并联支路的星点连接端Z3及Z4从相邻的两个绕线槽的第4层半导体引出;多个星点连接端分别从不同绕线槽内的第一层半导体层和第四半导体层引出。可选的,与第一星点连接线6电连接的多个星点连接端从不同所述绕线槽的第一层导体层引出;与第二星点连接线7电连接的多个星点连接端从不同绕线槽的第4层导体层引出。多个星点连接端集中分布在第一层导体层及第4层导体层,连接侧绕组结构简单紧凑,可实现批量化生产制造。
可选的,继续参照图2及图4,每相绕组的两个第一并联支路的电源引出端分别从相邻两个绕线槽的第4层导体层引出;每相绕组的两个第二并联支路的电源引出端分别从相邻两个绕线槽的第1层导体层引出。可选的,同一相绕组中,引出一第一并联支路的电源引出端的绕线槽与引出一第二并联支路的电源引出端的绕线槽为同一绕线槽。
示例性的,U相绕组的两个第一并联支路的电源引出端U3及U4从相邻的两个绕线槽的第4层半导体引出;U相绕组的两个第一并联支路的电源引出端U1及U2从相邻的两个绕线槽的第1层半导体引出;引出一第一并联支路的电源引出端U3的绕线槽与引出一第二并联支路的电源引出端U1的绕线槽为同一绕线槽;引出一第一并联支路的电源引出端U4的绕线槽与引出一第二并联支路的电源引出端U2的绕线槽为同一绕线槽;与电源引出线3连接的U相绕组的多个电源引出端集中分布;V相绕组的两个第一并联支路的电源引出端V3及V4从相邻的两个绕线槽的第4层半导体引出;V相绕组的两个第一并联支路的电源引出端V1及V2从相邻的两个绕线槽的第1层半导体引出;引出一第一并联支路的电源引出端V3的绕线槽与引出一第二并联支路的电源引出端V1的绕线槽为同一绕线槽;引出一第一并联支路的电源引出端V4的绕线槽与引出一第二并联支路的电源引出端V2的绕线槽为同一绕线槽;与电源引出线4连接的U相绕组的多个电源引出端集中分布;W相绕组的两个第一并联支路的电源引出端W3及W4从相邻的两个绕线槽的第4层半导体引出;V相绕组的两个第一并联支路的电源引出端W1及W2从相邻的两个绕线槽的第1层半导体引出;引出 一第一并联支路的电源引出端W3的绕线槽与引出一第二并联支路的电源引出端W1的绕线槽为同一绕线槽;引出一第一并联支路的电源引出端W4的绕线槽与引出一第二并联支路的电源引出端W2的绕线槽为同一绕线槽;与电源引出线5连接的U相绕组的多个电源引出端集中分布,这样与电源引出线3、电源引出线4及电源引出线5相连的电源引出端集中分布,实现了连接侧绕组结构简单紧凑,有利于批量化生产。
需说明的是,参照图1,作为第一并联支路的星点连接端的第一端或第二端的扭转方向与从其它绕线槽的第1层导体层引出的第一端和第二端的扭转方向相反。作为第二并联支路的电源引出端的第一端或第二端的扭转方向与从其它绕线槽的第1层导体层引出的第一端和第二端的扭转方向相反。这样多个U型4股线的第一端或者第二端方便焊接以实现多绕组结构中多个并联支路从电源引出端开始进行绕线,然后依次沿着焊接点绕线至星点连接端处结束。
本申请实施例还提供了一种扁线电机,该扁线电机包括上述实施例所述的扁线电机定子。

Claims (10)

  1. 一种扁线电机定子,包括:定子铁芯和定子绕组;
    所述定子铁芯包括插入侧和连接侧;在沿所述定子铁芯的圆周方向上均匀间隔设置有多个绕线槽;每个绕线槽沿所述定子铁芯的轴向延伸,且每个绕线槽包括2N个导体层;其中,N为大于或等于2的偶数;
    所述定子绕组设置于所述定子铁芯上;所述定子绕组从所述插入侧的所述多个绕线槽的-导体层插入,并从所述连接侧的所述多个绕线槽的导体层引出后进行连接;所述定子绕组包括U、V、W三相绕组;所述U、V、W三相绕组采用星型接线;
    每相绕组包括N条并联支路;每条并联支路包括电源引出端和星点连接端;所述N条并联支路中的多个并联支路的星点连接端通过第一星点连接线连接,所述N条并联支路中的其余并联支路的星点连接端通过第二星点连接线连接;全部并联支路的星点连接端分别从所述连接侧的不同绕线槽引出,且所述U、V、W三相绕组中与所述第一星点连接线电连接的全部星点连接端从所述连接侧相邻的绕线槽引出,以及所述U、V、W三相绕组中与所述第二星点连接线电连接的全部星点连接端从所述连接侧的相邻的绕线槽引出;且同一相绕组的N个电源引出端从所述连接侧的相同的绕线槽引出并通过电源引出线电连接,或者同一相绕组的N个电源引出端从所述连接侧的相邻的N个绕线槽引出并通过电源引出线电连接,或者同一相绕组的N个电源引出端中部分电源引出端从所述连接侧的相同的绕线槽引出,其余电源引出端从所述连接侧的与所述相同的绕线相邻的绕线槽引出,且所述同一相绕组的N个电源引出端通过电源引出线电连接;
    其中,引出与所述第一星点连接线电连接的全部星点连接端的所述绕线槽和引出与所述第二星点连接线电连接的全部星点连接端的所述绕线槽对称分布于引出全部电源引出端的绕线槽的相对的两侧,且引出全部星点连接端的绕线槽与引出全部电源引出端的绕线槽相邻。
  2. 根据权利要求1所述的扁线电机定子,其中,所述定子铁芯包括48个绕线槽;每条并联支路从所述每条并联支路的电源引出端开始以节距为5、6、和7中的一种或多种进行绕线至所述每条并联支路的星点连接端处结束。
  3. 根据权利要求2所述的扁线电机定子,其中,每相绕组包括N个U型M股线;所述N个U型M股线属于不同的并联支路;
    每个U型M股线包括M个第一端和M个第二端;同一U型M股线的所述M个第一端与所述M个第二端相差5、6或7个绕线槽,且所述同一U型M股线从所述插入侧插入所述多个绕线槽的不同导体层,并在所述连接侧引出, 全部U型M股线在所述连接侧进行连接形成所述U、V、W三相绕组。
  4. 根据权利要求3所述的扁线电机定子,其中,每个绕线槽包括8个导体层;
    从所述连接侧的所述多个绕线槽的第2层导体层、第4层导体层、第5层导体层和第7层导体层引出的多个第一端和多个第二端沿同一扭转方向扭转;
    从所述连接侧的所述多个绕线槽的第1层导体层、第3层导体层、第6层导体层和第8层导体层引出的多个第一端和多个第二端沿同一扭转方向扭转。
  5. 根据权利要求4所述的扁线电机定子,其中,每相绕组包括两个第一并联支路和两个第二并联支路;所述两个第一并联支路的星点连接端分别从所述多个绕线槽的相邻的两个绕线槽的第1层导体层引出,所述两个第二并联支路的星点连接端分别从所述多个绕线槽的相邻的两个绕线槽的第4层导体层引出;
    作为全部第一并联支路的星点连接端的第一端或第二端的扭转方向与从其它绕线槽的第1层导体层引出的第一端和第二端的扭转方向相反。
  6. 根据权利要求5所述的扁线电机定子,其中,每相绕组的所述两个第一并联支路的电源引出端分别从相邻的两个绕线槽的第4层导体层引出;每相绕组的所述两个第二并联支路的电源引出端分别从相邻的两个绕线槽的第1层导体层引出;
    作为全部第二并联支路的电源引出端的第一端或第二端的扭转方向与从其它绕线槽的第1层导体层引出的第一端和第二端的扭转方向相反。
  7. 根据权利要求6所述的扁线电机定子,其中,同一相绕组中,引出一第一并联支路的电源引出端的绕线槽与引出一第二并联支路的电源引出端的绕线槽为同一绕线槽。
  8. 根据权利要求1~7任一项所述的扁线电机定子,其中,与所述第一星点连接线电连接的全部星点连接端从不同绕线槽的第1层导体层引出;
    与所述第二星点连接线电连接的所述多个星点连接端从不同绕线槽的第N导体层引出。
  9. 根据权利要求1~7任一项所述的扁线电机定子,其中,同一绕线槽的多个导体层内的扁线属于同一相绕组。
  10. 一种扁线电机,包括:权利要求1~9任一项所述的扁线电机定子。
PCT/CN2021/143048 2021-05-27 2021-12-30 扁线电机定子及扁线电机 WO2022247273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110585924.2 2021-05-27
CN202110585924.2A CN113241869B (zh) 2021-05-27 2021-05-27 一种扁线电机定子及扁线电机

Publications (1)

Publication Number Publication Date
WO2022247273A1 true WO2022247273A1 (zh) 2022-12-01

Family

ID=77139153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143048 WO2022247273A1 (zh) 2021-05-27 2021-12-30 扁线电机定子及扁线电机

Country Status (2)

Country Link
CN (1) CN113241869B (zh)
WO (1) WO2022247273A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113241869B (zh) * 2021-05-27 2022-05-17 中国第一汽车股份有限公司 一种扁线电机定子及扁线电机
CN113472115A (zh) * 2021-08-16 2021-10-01 蔚然(南京)动力科技有限公司 一种并联支路数可变的扁线波绕组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267523A (ja) * 2006-03-29 2007-10-11 Jtekt Corp ステータコイルの結線構造
CN109586465A (zh) * 2017-09-29 2019-04-05 比亚迪股份有限公司 定子组件和具有其的电机和车辆
CN209881519U (zh) * 2019-04-16 2019-12-31 中国第一汽车股份有限公司 一种三相扁线电机定子绕组
CN110768410A (zh) * 2019-10-10 2020-02-07 吉利汽车研究院(宁波)有限公司 一种车用永磁同步电机扁线定子
CN210985774U (zh) * 2020-01-10 2020-07-10 华域汽车电动系统有限公司 用于旋转电机的定子
CN211981593U (zh) * 2020-06-02 2020-11-20 浙江龙芯电驱动科技有限公司 一种外引出式3支路叠绕定子组件及电机
CN113241869A (zh) * 2021-05-27 2021-08-10 中国第一汽车股份有限公司 一种扁线电机定子及扁线电机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001309625A (ja) * 2000-04-20 2001-11-02 Mitsubishi Electric Corp 永久磁石型電動機
JP4292877B2 (ja) * 2003-06-09 2009-07-08 株式会社日立製作所 車両用交流発電機
JP2013223379A (ja) * 2012-04-18 2013-10-28 Toyota Industries Corp 回転電機の固定子
CN204030773U (zh) * 2014-07-17 2014-12-17 华域汽车电动系统有限公司 用于三相电机的扁铜线波绕电枢绕组
JP6113247B1 (ja) * 2015-10-22 2017-04-12 三菱電機株式会社 回転電機の固定子
CN105762952B (zh) * 2016-04-11 2018-01-12 天津大学 采用四层短距分布绕组的低转动惯量永磁同步伺服电动机
JP2018137836A (ja) * 2017-02-20 2018-08-30 本田技研工業株式会社 ステータおよび回転電機
CN107565720A (zh) * 2017-09-20 2018-01-09 中国第汽车股份有限公司 一种交流发电机的定子绕组
CN107919757A (zh) * 2017-12-06 2018-04-17 华域汽车电动系统有限公司 一种扁铜线波绕组电枢绕组
CN109510356B (zh) * 2018-11-22 2024-06-04 中国第一汽车股份有限公司 一种三相扁线电机定子绕组
CN209282964U (zh) * 2018-12-26 2019-08-20 中国第一汽车股份有限公司 一种扁线电机定子绕组
CN109546779B (zh) * 2019-01-17 2024-04-02 博格华纳动力驱动系统(天津)有限公司 一种电机绕组及电机定子
CN209913599U (zh) * 2019-07-19 2020-01-07 上海汽车变速器有限公司 分数槽扁铜线电机绕组结构
CN211981595U (zh) * 2020-06-02 2020-11-20 浙江龙芯电驱动科技有限公司 一种内引出式3支路叠绕定子组件及电机
CN111884387A (zh) * 2020-08-06 2020-11-03 天津市松正电动汽车技术股份有限公司 一种电机定子及电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267523A (ja) * 2006-03-29 2007-10-11 Jtekt Corp ステータコイルの結線構造
CN109586465A (zh) * 2017-09-29 2019-04-05 比亚迪股份有限公司 定子组件和具有其的电机和车辆
CN209881519U (zh) * 2019-04-16 2019-12-31 中国第一汽车股份有限公司 一种三相扁线电机定子绕组
CN110768410A (zh) * 2019-10-10 2020-02-07 吉利汽车研究院(宁波)有限公司 一种车用永磁同步电机扁线定子
CN210985774U (zh) * 2020-01-10 2020-07-10 华域汽车电动系统有限公司 用于旋转电机的定子
CN211981593U (zh) * 2020-06-02 2020-11-20 浙江龙芯电驱动科技有限公司 一种外引出式3支路叠绕定子组件及电机
CN113241869A (zh) * 2021-05-27 2021-08-10 中国第一汽车股份有限公司 一种扁线电机定子及扁线电机

Also Published As

Publication number Publication date
CN113241869B (zh) 2022-05-17
CN113241869A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022247273A1 (zh) 扁线电机定子及扁线电机
WO2023071456A1 (zh) 定子、扁线电机、动力总成和车辆
CN109510356B (zh) 一种三相扁线电机定子绕组
CN209282964U (zh) 一种扁线电机定子绕组
CN209282963U (zh) 一种三相扁线电机定子绕组
CN218920099U (zh) 定子、扁线电机、动力总成和车辆
WO2024041226A1 (zh) 六极五十四槽扁铜线电机三支路平衡绕组及其使用方法
WO2022156815A1 (zh) 插针绕组式定子及电机
CN209881519U (zh) 一种三相扁线电机定子绕组
CN213990307U (zh) 一种电机定子及电机
CN212278005U (zh) 一种每极每相槽数为3的扁铜线绕组结构及电机
EP4380013A1 (en) 6-pole, 54-slot flat copper wire motor winding structure having two balanced branches
CN218868002U (zh) 一种定子绕组、定子及电机
WO2024026824A1 (zh) 扁线电机及其定子
CN114552810B (zh) 定子组件、具有其的电机及车辆
CN212435462U (zh) 一种整节距电机定子
CN215835217U (zh) 一种扁线电机定子及扁线电机
CN113922552A (zh) 一种扁线发卡式定子结构及电机
CN111541330A (zh) 一种每极每相槽数为3的扁铜线绕组结构及电机
CN211183583U (zh) 一种多层等距的扁铜线驱动电机电枢绕组结构
CN111478476A (zh) 一种电机定子及电机
CN113241870A (zh) 一种扁线电机定子及扁线电机
CN215419772U (zh) 一种定子结构及电机
CN221597535U (zh) 定子、扁线电机及动力总成
CN219893045U (zh) 一种扁线电机定子及绕组结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21942836

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21942836

Country of ref document: EP

Kind code of ref document: A1