WO2023071456A1 - 定子、扁线电机、动力总成和车辆 - Google Patents

定子、扁线电机、动力总成和车辆 Download PDF

Info

Publication number
WO2023071456A1
WO2023071456A1 PCT/CN2022/113682 CN2022113682W WO2023071456A1 WO 2023071456 A1 WO2023071456 A1 WO 2023071456A1 CN 2022113682 W CN2022113682 W CN 2022113682W WO 2023071456 A1 WO2023071456 A1 WO 2023071456A1
Authority
WO
WIPO (PCT)
Prior art keywords
slot
winding
floor
flat wire
layer
Prior art date
Application number
PCT/CN2022/113682
Other languages
English (en)
French (fr)
Inventor
郭琪琦
汪昱
周朝
郑阳
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023071456A1 publication Critical patent/WO2023071456A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the application relates to the field of power devices, in particular to a stator, a flat wire motor, a power assembly and a vehicle.
  • the flat wire motor has the advantages of high copper full ratio, which can facilitate the heat dissipation of the motor winding, improve the withstand voltage capacity of the winding, and reduce the length of the end of the winding, which in turn can increase the torque density and power density of the motor. Therefore, the flat wire motor has become an important measure to promote the lightweight of vehicles, increase the cruising range of electric vehicles, improve the space utilization of vehicles and reduce the cost of powertrains.
  • Existing motors mainly adopt the winding structure of wave winding or stacked winding, and the AC resistance of the motor can be effectively reduced by designing the flat wire conductor in the winding structure to be multi-layered.
  • the wiring methods of the winding structure are also different.
  • the three-phase winding of the current winding structure usually has multiple parallel branches, and the inlet and outlet terminals of the multiple parallel branches are either set at the welding end of the stator winding or at the insertion end of the stator winding, due to the limitation of its design structure , it cannot realize the flexible conversion of the incoming and outgoing wires between the welding end and the plug-in end. Therefore, the design method of the stator winding of the existing motor is not flexible enough, and the adaptability is poor, and the incoming and outgoing wires of the parallel branch cannot be adjusted arbitrarily according to the needs. .
  • the application provides a stator, a flat wire motor, a power assembly and a vehicle, so as to improve the flexibility of the design structure of the stator winding in the stator, and flexibly change the incoming and outgoing terminals of the parallel branch according to the needs.
  • the present application provides a stator of a flat wire motor, the stator includes a stator core and a stator winding; wherein, the inner wall of the stator core is provided with M winding slots, and the M winding slots are arranged along the stator core.
  • the circumference of the inner wall is evenly arranged, and any winding slot extends along the axial direction of the stator core; M is a natural number that is a multiple of 3; the stator winding includes a flat wire conductor inserted in the winding slot, and any winding slot There are N layers of flat wire conductors inside, and the flat wire conductors are grouped and connected with connecting wires to form the first phase winding, the second phase winding and the third phase winding respectively, and any phase winding includes multiple phase units respectively.
  • phase units of the phase winding, the phase units of the second phase winding and the phase units of the third phase winding are arranged periodically along the inner wall of the stator core; each phase winding includes P parallel branches; N is a multiple of 2 And it is a natural number greater than 2, P is a natural number greater than or equal to 1; any parallel branch is connected to M ⁇ N/3P layer flat wire conductors, and any flat wire conductor in any parallel branch is connected to the adjacent span The adjacent layer or the same layer in the winding slot is connected with the same-phase flat wire conductor.
  • the stator of the embodiment of the present application includes a stator core and a stator winding.
  • the stator core is provided with M winding slots for inserting flat wire conductors in the stator winding, and N layers of flat wires can be arranged in any winding slot. conductor.
  • any phase winding includes P parallel branches, any parallel branch is connected to M ⁇ N/3P layer flat wire conductors, and any flat wire conductor in any parallel branch is connected to the same phase
  • the flat wire conductors of the adjacent layers or the same layer in the adjacent span winding slots are connected.
  • the parallel branch when setting up the parallel branch, since any flat wire conductor in the parallel branch is connected to the adjacent layer or the same-phase flat wire conductor in the adjacent span winding slot, the parallel branch Starting from any flat wire conductor, after traversing the flat wire conductors from the first layer to the Nth layer, the connected flat wire conductors can be wound around the circumference of the stator core, and so on.
  • a parallel branch can be formed, thus, when one of the flat wire conductors is set as the incoming wire end and the other adjacent span
  • the flat wire conductor is set as the outlet end, it is only necessary to disconnect the connection between the two flat wire conductors; Conductor connection and re-disconnection need to set the flat wire conductors of the incoming wire end and the outgoing wire end. Therefore, the positions of the incoming wire end and the outgoing wire end can be flexibly switched between the insertion wire end and the welding end.
  • the stator provided by this application has a flexible and changeable stator winding structure.
  • stator of the present application has wider applicability, and can be adjusted and changed according to the packaging structure of the motor.
  • each phase winding includes two parallel branches.
  • This wiring can make each parallel branch of each phase have a completely balanced potential, that is, in the two parallel branches of each phase winding, there are flat wire conductors in the first layer to the Nth layer, and the potential of each parallel branch is completely Balanced to avoid circulation between branches.
  • the number of winding slots may be 54.
  • the number of layers of the flat wire conductor is 6 layers or 10 layers.
  • the span of any parallel branch on the first floor is 9, and the span combination on the N floor is 10, 10, 7 or 8, 8, 11.
  • the span combination of any parallel branch on the first floor is 10, 10, 7 or 8, 8, 11, and the span on the N floor is 9.
  • the span of any parallel branch from the second floor to the N-1th floor is 9.
  • the outlet end of any parallel branch is led out from the first layer of flat wire conductors or the Nth layer of flat wire conductors.
  • the incoming line end and outgoing line end of the parallel branch can be easily drawn out.
  • each phase winding includes a first parallel branch and a second parallel branch; the incoming end of the first parallel branch is connected to the n1th flat wire of the m1th winding slot Conductor, the outlet end of the first parallel branch is connected to the n2th layer flat wire conductor of the m2th winding slot; wherein, the difference between m1 and m2 is one span, and the absolute value of the difference between n1 and n2 is less than or equal to 1; the second parallel The lead-in section of the branch is connected to the n1+2th layer flat wire conductor of the m1th winding slot, and the outlet end of the second parallel branch is connected to the n2+2th layer flat wire conductor of the m2th winding slot; where m1 , m2 are natural numbers from 1 to M in the same phase winding, and n1 and n2 are natural numbers from 2 to N-2 in the same parallel branch.
  • the stator core is provided with an insertion end and an insertion end, and the twisting direction of the stator winding at the insertion end is the same.
  • flat wire conductors of different layers in the same winding slot are windings of the same phase.
  • interphase insulating paper is not required between flat wire conductors of different layers in the same winding groove, which can reduce the insulation cost of the motor.
  • the present application provides a flat wire motor, which includes a rotor and a stator according to the first aspect of the application, and the rotor is arranged in a space surrounded by an inner wall of the stator core.
  • the present application provides a power assembly, the power assembly includes a reducer and the flat wire motor according to the second aspect of the application, and the flat wire motor is connected in transmission with the reducer.
  • the present application provides a vehicle, which includes the powertrain according to the third aspect of the present application.
  • Fig. 1 is a schematic diagram of a three-dimensional structure of a stator of a flat wire motor according to an embodiment of the present application
  • Fig. 2 is a side view structural schematic diagram of a stator of a flat wire motor according to an embodiment of the present application
  • Fig. 3 is a schematic top view structure diagram of a stator core according to an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a card-issuing coil according to an embodiment of the present application.
  • Fig. 5 is a top view structural schematic diagram of a flat wire conductor inserted in a winding slot according to an embodiment of the present application
  • Fig. 6 is a phase belt distribution diagram of a stator winding according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a connection method of a parallel branch in an embodiment of the present application.
  • Fig. 8 is a schematic diagram of connection of a three-phase winding circuit according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the connection of the first parallel branch of the U-phase winding in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the connection of the second parallel branch of the U-phase winding in an embodiment of the present application.
  • 11 is a schematic diagram of the connection of the first parallel branch of the U-phase winding in another embodiment of the present application.
  • FIG. 12 is a schematic diagram of the connection of the second parallel branch of the U-phase winding in another embodiment of the present application.
  • FIG. 13 is a schematic diagram of the connection of the first parallel branch of the U-phase winding in another embodiment of the present application.
  • 15 is a schematic diagram of the connection of two parallel branches of the U-phase winding in another embodiment of the present application.
  • Fig. 16 is a schematic diagram of connection of UVW three-phase windings in another embodiment of the present application.
  • 17 is a schematic diagram of the connection of the first parallel branch of the U-phase winding in another embodiment of the present application.
  • FIG. 18 is a schematic diagram of the connection of the second parallel branch of the U-phase winding in another embodiment of the present application.
  • Fig. 19 is a phase belt distribution diagram of a stator winding according to another embodiment of the present application.
  • FIG. 20 is a schematic diagram of the connection of the first parallel branch of the U-phase winding according to another embodiment of the present application.
  • FIG. 21 is a schematic diagram of the connection of the second parallel branch of the U-phase winding in another embodiment of the present application.
  • references to "one embodiment” or “some embodiments” or the like in this specification means that a particular feature, structure, or characteristic described in connection with the embodiment is included in one or more embodiments of the present application.
  • appearances of the phrases “in one embodiment,” “in some embodiments,” “in other embodiments,” “in other embodiments,” etc. in various places in this specification are not necessarily All refer to the same embodiment, but mean “one or more but not all embodiments” unless specifically stated otherwise.
  • the terms “including”, “comprising”, “having” and variations thereof mean “including but not limited to”, unless expressly stated otherwise.
  • the driving motors of new energy vehicles are mainly permanent magnet synchronous motors.
  • the motor stator can be divided into round wire conductors and flat copper wire conductors according to the cross-sectional shape of the stator windings.
  • Flat copper wire conductors are used.
  • the motor is called a flat wire motor.
  • the flat wire motor can effectively increase the slot fill rate, improve the power density and torque density.
  • the number of flat wire conductors in the winding groove gradually increases, the number of parallel circuits will increase in some designs, and the complexity of the lead-out lines of the parallel circuits may also be increased.
  • an embodiment of the present application provides a flat wire motor stator.
  • Stator refers to the stationary part of the motor, whose function is to generate a rotating magnetic field.
  • Rotor refers to the rotating part in the motor, which is used to realize the conversion of electrical energy and mechanical energy.
  • Span also known as the first pitch, it refers to the distance spanned by two sides of the same component in the motor winding on the surface of the armature, usually expressed by the number of winding slots opened on the stator core.
  • Fig. 1 is a three-dimensional structural schematic diagram of a stator of a flat wire motor according to an embodiment of the present application
  • Fig. 2 is a side view structural schematic diagram of a stator of a flat wire motor according to an embodiment of the present application, as shown in Fig. 1 and Fig. 2 , in this application
  • the stator includes a stator core 10 and a stator winding 20 .
  • Fig. 3 is a top view structural diagram of a stator core according to an embodiment of the present application.
  • the inner wall of the stator core 10 is provided with a plurality of winding slots 11, and the number of winding slots 11 can be represented by M, M can be a natural number that is a multiple of 3, specifically 54 can be selected.
  • M winding slots 11 are arranged on the inner wall of the stator core 10, and are evenly arranged along the circumference of the inner wall of the stator core 10, and any winding slot 11 is located on the inner wall of the stator core 10.
  • the axial direction (Z direction shown in FIG. 1 and FIG.
  • stator core 10 extends and penetrates the inner wall of the stator core 10 along the axial direction of the stator core 10 .
  • the stator core 10 is divided into an insertion end 10a and an insertion end 10b along its axial direction, and any winding slot 11 can extend from the insertion end 10a to the insertion end 10b.
  • the stator winding 20 includes a flat wire conductor 21 inserted in the winding slot 11 , and the cross section of the flat wire conductor 21 may be rectangular.
  • the flat wire conductor 21 can be formed by a hairpin coil.
  • Fig. 4 is a schematic structural diagram of a hairpin coil according to an embodiment of the present application.
  • the hairpin coil 22 includes a leg portion 221 provided in the winding slot 11, a connecting portion 222 and a bending portion 223 arranged outside the winding slot 11, and connected The formation of the portion 222 may be U-shaped or V-shaped.
  • the clip sending coil 22 can be inserted into the winding slot 11, and then the clip sending coil 22 can be bent to form a bending portion 223, and then the clip sending coil 22 can be inserted.
  • the hairpin coil 22 is inserted into the leg portion 221 in the winding slot 11 to form the flat wire conductor 21 .
  • the twisting direction of the bent portion 223 of the hairpin coil 22 remains consistent.
  • FIG. 5 is a schematic top view of a flat wire conductor inserted in a winding slot according to an embodiment of the present application.
  • N layers of flat wire conductors 21 can be arranged in any winding slot 11 , and N can be 6 or 10.
  • N is 6, that is, 6 layers of flat wire conductors are arranged in each winding slot 11 . It can be understood that the number of layers of the flat wire conductors 21 shown in FIG. 5 is only for illustration, and besides 6 layers of flat wire conductors 21 , 10 layers of flat wire conductors 21 can also be arranged.
  • the flat wire conductors 21 inserted in the winding groove 11 can form three-phase windings through group connection, which are respectively the first phase winding and the second phase winding and the third phase winding, corresponding to U-phase winding, V-phase winding and W-phase winding respectively.
  • any phase winding can include multiple phase units.
  • the phase units of the first phase winding, the phase units of the second phase winding and the phase units of the third phase winding are along the inner wall of the stator core.
  • the settings are arranged in a periodic order.
  • FIG. 6 is a phase belt distribution diagram of the stator winding of an embodiment of the present application, and referring to Fig. 5 and Fig. 6 together, in one embodiment of the present application, three adjacently arranged winding slots 11 can be regarded as one Phase unit, in one phase unit, all the flat wire conductors 21 are in the same phase. U-phase, V-phase and W-phase are arranged alternately in phase units. Referring to Fig. 5 and Fig. 6, in one embodiment of the present application, the flat wire conductors 21 in the same winding slot 11 are in the same phase, so that there is no need for interphase between different layers of flat wire conductors 21 in the same winding slot 11 Insulating paper, which can reduce the insulation cost of the motor.
  • FIG. 7 is a schematic diagram of a connection method of flat wire conductors used to form a parallel branch according to an embodiment of the present application.
  • each phase winding may include two parallel branches. Any parallel branch can be connected to M ⁇ N/3P layer flat wire conductor 21, and any flat wire conductor 21 in any parallel branch is connected to the adjacent layer or the same layer of 11 in the adjacent span winding groove.
  • the in-phase flat wire conductor 21 is connected.
  • Fig. 8 is a schematic diagram of connection of a three-phase winding circuit according to an embodiment of the present application. As shown in FIG. 8 , in an embodiment of the present application, the three-phase windings of the stator windings are respectively composed of two parallel circuits.
  • the span of any parallel branch on the first floor is 9, and the span combination on the N floor is 10, 10, 7 or 8, 8, 11.
  • the span combinations of any of the parallel branches on the first floor are 10, 10, 7 or 8, 8, 11, and the spans on the N floor are 9.
  • the span of any parallel branch from the second floor to the N-1th floor is 9.
  • the outlet end of any one of the parallel branches is led out from the first layer of flat wire conductors or the Nth layer of flat wire conductors. In this structure, it is convenient to lead out the incoming line end and the outgoing line end of the parallel branch.
  • each phase winding includes a first parallel branch and a second parallel branch; the incoming wire end of the first parallel branch is connected to the n1th winding slot of the m1th winding slot A layer of flat wire conductors, the outlet end of the first parallel branch is connected to the n2th layer of flat wire conductors in the m2th winding slot; wherein, the difference between the m1 and the m2 is one span, and the n1 and the The absolute value of the difference between n2 is less than or equal to 1; the lead-in section of the second parallel branch is connected to the n1+2th layer flat wire conductor of the m1th winding slot, and the outgoing line of the second parallel branch The end is connected to the n2+2th layer flat wire conductor of the m2th winding slot; wherein, m1 and m2 are natural numbers from 1 to M in the same phase winding, and n1 and n2 are 2 to N- in the same parallel
  • the embodiment of the present application also provides a flat wire motor, which includes a rotor and the stator according to the embodiment of the present application, and the rotor is arranged in a space surrounded by the inner wall of the stator core.
  • the embodiment of the present application also provides a power assembly, the power assembly includes a speed reducer and the above-mentioned flat wire motor.
  • the flat wire motor is connected with the reducer.
  • the drive shaft of the flat wire motor and the input shaft of the reducer can be connected through a transmission member such as a coupling, so as to output the driving force from the flat wire motor to the reducer.
  • the vehicle provided by the embodiment of the present application includes the above-mentioned powertrain, which is arranged in the vehicle and provides running power for the vehicle.
  • the vehicle may specifically be a new energy vehicle driven by electric energy, for example.
  • the new energy vehicle can specifically be a hybrid electric vehicle, a pure electric vehicle or a fuel cell electric vehicle, etc., or a vehicle using high-efficiency energy storage such as a supercapacitor, a flywheel battery or a flywheel energy storage as a source of electric energy.
  • This embodiment is a stator of a flat-wire motor, which includes a stator core and a stator winding, wherein the stator core has 54 winding slots, and the number of conductor layers in the winding slots is 6.
  • the stator winding is divided into U phase, V phase and W phase, and the number of parallel branches set for each phase winding is 2.
  • FIG. 6 for the phase belt distribution diagram of the stator winding in this embodiment.
  • Fig. 9 is a schematic diagram of the connection of the first parallel branch of the U-phase winding in this embodiment
  • Fig. 10 is a schematic connection diagram of the second parallel branch of the U-phase winding in this embodiment.
  • the incoming wire end and the outgoing wire end of the first parallel branch circuit and the second parallel branch circuit of each phase winding are connected to the flat wire conductor of the first layer.
  • each winding slot contains 6 layers of flat wire conductors, the first layer is marked as L1, the second layer is marked as L2, the third layer is marked as L3, the fourth layer is marked as L4, and the fifth layer Denote as L5 and layer 6 as L6.
  • the first layer is the bottom layer of the winding slot, and the sixth layer is the notch layer. "+" indicates that current flows into the conductor, and "-" indicates that current flows out of the conductor.
  • phase band distribution in Figure 6 is only an exemplary illustration, and the "+” and “-” symbols in Figure 6 are swapped, for example, “U + “ in Figure 6 is changed to “U - " at the same time, and Change "U - “ to "U + ", and V-phase and W-phase are modified accordingly, all of which are within the protection scope of this application.
  • connection mode of the first parallel branch of the U-phase in this embodiment will be described in detail below with reference to FIG. 9 .
  • connection method of the stator winding at the welding end is described according to the dotted line connection method in FIG.
  • the first parallel branch of the U-phase winding uses the first layer of the 48th slot as the incoming terminal U 1in , enters from the first layer of the 48th slot, leads out from the second layer of the third slot, and then from 12 Enter from the first floor of slot, lead out from the second floor of slot 21, then enter from the third floor of slot 30, exit from the fourth floor of slot 39, then enter from the fifth floor of slot 48, and enter from the first floor of slot 3 6 layers, then enter from the 5th layer of the 12th slot, and exit from the 6th layer of the 21st slot; so far, after the flat wire conductor is connected, it can traverse from the 1st layer to the 6th layer, and can be along the stator core. Make a circle around the circumference.
  • connection method for example, "enter from the first layer of the 48th slot, and lead out from the second layer of the third slot", the flat wire conductor of the first layer of the 48th slot and the first layer of the 48th slot are connected at the welding end.
  • the flat wire conductors on the second layer of the 3 slots are connected.
  • connection mode of the second parallel branch of the U-phase in this embodiment will be described in detail below with reference to FIG. 10 .
  • connection method of the stator winding at the welding end is described according to the dotted line connection method in FIG.
  • the second parallel branch of the U-phase winding takes the first layer of the 30th slot as the incoming terminal U 2in , enters from the first layer of the 30th slot, exits from the second layer of the 39th slot, and then enters from the 48th slot Enter on the 3rd floor, exit from the 3rd slot on the 4th floor, enter from the 12th slot on the 3rd floor, exit from the 21st slot on the 4th floor, enter from the 30th slot on the 5th floor, and enter from the 39th slot on the 6th floor Out, so far the first traversal is completed; then enter from the 6th floor of the 29th slot, exit from the 5th floor of the 20th slot, then enter from the 6th floor of the 11th slot, exit from the 2nd slot on the 5th floor, and then from the 20th slot Enter from the fourth floor of slot 47, exit from the third floor of slot 38, enter from the second floor of slot 29, exit from the first floor of slot 20, enter from the second floor of slot 11, and exit from the second floor
  • the span combinations of the first layer of the first parallel branch are 9, 9, and the span combinations of the sixth layer are 10, 10, 7,
  • the spans from the 2nd to the 5th floors are all 9.
  • U1in, U1out, U2in, and U2out are all drawn out from the plug-in end of the stator winding, that is, from the side of the connecting part of the hairpin coil.
  • connection mode of the first parallel branch of the V-phase and the first parallel branch of the W-phase can be obtained by translation on the basis of FIG. 9 .
  • the wiring modes of the second parallel branch of the V-phase and the second parallel branch of the W-phase can be obtained by translation on the basis of FIG. 10 .
  • the inlet and outlet ends of the first parallel branch and the second parallel branch of each phase winding are located on the first layer, and the three-phase windings can be directly connected in parallel or connected together using busbars.
  • the neutral point ends can be directly welded, or they can be connected together by bus bars.
  • each parallel branch traverses the position of the phase belt and flat wire conductor layer that can be arranged, so each parallel branch can maintain potential balance and no circulating current will be generated. It can be seen from Figure 6 and Figure 9-10 that the conductors in the same slot belong to the same phase, so there is no need to install insulating paper between the flat wire conductors, reducing the insulation cost.
  • FIG. 11 is a schematic diagram of the connection of the first parallel branch of the U-phase winding in this embodiment
  • FIG. 12 is a schematic connection diagram of the second parallel branch of the U-phase winding in this embodiment.
  • the incoming terminal U1in of the first parallel branch is the first floor of the 28th slot
  • the outgoing terminal U1out is the second floor of the 19th slot.
  • the original The flat wire conductors of the first layer of the 48th slot and the first layer of the third slot are connected at the insertion end of the stator winding, and the connection between the first layer of the 28th slot and the second layer of the 19th slot
  • the inserting ends of the stator windings are disconnected and lead out with lead wires respectively, and the connection mode of the flat wire conductors in other positions does not need to be changed.
  • the span combination of the first layer is 9, 9, 9, and the span combination of the sixth layer is 10, 10, 7.
  • the incoming terminal U2in of the second parallel branch is the third floor of the 28th slot
  • the outgoing terminal U2out is the fourth floor of the 19th slot.
  • the original The flat wire conductors on the first layer of the 30th slot and the first layer of the 21st slot are connected at the insertion end of the stator winding, and the connection between the third layer of the 28th slot and the fourth layer of the 19th slot The inserting ends of the stator windings are disconnected and lead out with lead wires respectively, and the connection mode of the flat wire conductors in other positions does not need to be changed.
  • Embodiment 1 Through the comparison of Embodiment 1 and Embodiment 2, it can be seen that when the incoming and outgoing ends of each parallel branch are not all set on the first layer, the incoming and outgoing ends of the two parallel branches in the same phase can be set on the same winding In the slot, at the same time, the outlet ends of the two parallel branches of the same phase are set in the same winding slot of the other adjacent span, which can effectively reduce the lead wire distance between the parallel branches and facilitate the entry of each parallel branch of the three-phase winding.
  • the wire end and the outlet end are drawn out in parallel or connected by a bus bar, and the lead-out distance is small.
  • FIG. 13 is a schematic diagram of the connection of the first parallel branch of the U-phase winding in this embodiment
  • FIG. 14 is a schematic connection diagram of the second parallel branch of the U-phase winding in this embodiment.
  • each parallel branch The incoming and outgoing ends of the circuit are set at the welding end of the stator winding.
  • the incoming line terminal U1in of the first parallel branch is the second floor of the second slot
  • the outgoing line U1out is the first floor of the 47th slot.
  • the incoming line terminal U2in of the second parallel branch is the fourth floor of the second slot
  • the outgoing line U2out is the third floor of the forty-seventh slot. 10
  • the inlet and outlet ends of each parallel branch in Embodiment 3 are converted from the insertion end of the stator winding to the welding end.
  • the conversion form is simple and easy, and the positions of the inlet and outlet ends You can choose flexibly.
  • the incoming wire ends of the two parallel branches are located in the same winding groove, and the outgoing wire ends are located in the same winding groove, so the connection distance can be smaller.
  • Fig. 15 is a schematic diagram of the connection of two parallel branches of the U-phase winding in this embodiment
  • Fig. 16 is a schematic diagram of the connection of the UVW three-phase winding in this embodiment.
  • the incoming and outgoing wires of the six parallel branches of the three-phase winding are adjacent to each other, and can be directly connected in parallel or connected together using busbars. The distance is relatively small, and both can be realized Welded end leads out.
  • FIG. 17 is a schematic connection diagram of the first parallel branch of the U-phase winding in this embodiment
  • FIG. 18 is a schematic connection diagram of the second parallel branch of the U-phase winding in this embodiment.
  • the positions of the incoming and outgoing wires of the first parallel branch and the second parallel branch of each phase are the same as those of Embodiment 1, the difference is that for each parallel branch
  • the spans of the first and sixth layers have been changed.
  • the span combinations of the first layer are 9, 9, and the span combinations of the sixth layer are 10, 10, 7, and this implementation
  • the span combination of the first floor is 9, 9, and the span combination of the sixth floor is 8, 8, 11.
  • FIG. 17 only shows the connection mode of the first parallel branch on the first layer and the sixth layer, and the connection mode of the other intermediate layers from the second layer to the fifth layer refers to FIG. 9 of the first embodiment.
  • FIG. 18 only shows the connection mode of the second parallel branch on the first layer and the sixth layer, and the connection mode of the other middle layers from the second layer to the fifth layer refers to FIG. 10 of the first embodiment.
  • This embodiment is a stator.
  • the stator In the stator, there are 54 winding slots for the stator core, and 10 conductor layers in the winding slots.
  • the stator winding is divided into U phase, V phase and W phase, and the number of parallel branches set for each phase winding is 2.
  • Figure 19 is a phase belt distribution diagram of a stator winding in an embodiment
  • Figure 20 is a schematic diagram of the connection of the first parallel branch of the U-phase winding in an embodiment
  • Figure 21 is a diagram of the U-phase winding in this embodiment Schematic diagram of the connection of the second parallel branch.
  • each winding slot contains 10 layers of flat wire conductors
  • the first layer is marked as L1
  • the second layer is marked as L2
  • the third layer is marked as L3
  • the fourth layer is marked as L4
  • the fifth layer It is denoted as L5, the 6th layer as L6, the 7th layer as L7, the 8th layer as L8, the 9th layer as L9, and the 10th layer as L10.
  • the first layer is the bottom layer of the winding slot
  • the tenth layer is the notch layer. "+" indicates that current flows into the conductor, and "-" indicates that current flows out of the conductor.
  • phase band distribution in Figure 19 is only an exemplary illustration, and the "+” and “-” symbols in Figure 19 are swapped, for example, “U + “ in Figure 19 is changed to “U - " at the same time, and Change "U - “ to "U + ", and V-phase and W-phase are modified accordingly, all of which are within the protection scope of this application.
  • connection mode of the first parallel branch of the U-phase in this embodiment will be described in detail below with reference to FIG. 20 .
  • connection method of the stator winding at the welding end will be described according to the connection method of the dotted line in FIG.
  • the first parallel branch of the U-phase winding uses the second layer of the first slot as the incoming wire end U 1in , and the second layer of the first slot is used as the incoming wire end at the welding end of the stator winding and is no longer flat with other layers.
  • connection mode of the second parallel branch of the U-phase in this embodiment will be described in detail below with reference to FIG. 21 .
  • connection method of the stator winding at the welding end will be described according to the dotted line connection method in FIG.
  • the second parallel branch of the U-phase winding uses the fourth layer of the first slot as the incoming wire terminal U 2in , and the fourth layer of the first slot is used as the incoming wire end, and the terminal of the stator winding is no longer flat with other layers.
  • Line conductor connection then enter from the 5th floor of slot 10, exit from the 6th floor of slot 19, then enter from the 7th floor of slot 28, exit from the 8th floor of slot 37, and then exit from the 7th floor of slot 46 Enter, exit from the 1st slot on the 8th floor, then enter from the 10th slot on the 9th floor, exit from the 19th slot on the 10th floor, then enter from the 28th slot on the 9th floor, exit from the 37th slot on the 10th floor, and so on Complete the first traversal;
  • the span combination of the first layer of the first parallel branch is 9, 9, 9, the span combination of the 10th layer is 10, 7, 10, and the second The span from the first floor to the ninth floor is 9.
  • U1in, U1out, U2in, and U2out are all drawn out from the welding end of the stator winding, that is, from the side of the bent portion of the hairpin coil.
  • U1in and U1out are led out with wires respectively
  • U2in and U2out are led out with wires respectively.
  • connection mode of the first parallel branch of the V-phase and the first parallel branch of the W-phase can be obtained by translation on the basis of FIG. 20 .
  • the wiring modes of the second parallel branch of the V-phase and the second parallel branch of the W-phase can be obtained by translation on the basis of FIG. 21 .
  • stator of the embodiment of the present application has the following advantages:
  • the flat wire conductors in the same winding groove are in the same phase, and interphase insulating paper is not required between the flat wire conductors in the same winding groove, which reduces the insulation cost of the motor and the difficulty of wire insertion, and improves the efficiency of the motor. copper full rate;
  • stator winding of this application can realize the flexible conversion of the incoming and outgoing wires of the plug-in end and the incoming and outgoing wires of the welding end;
  • the flat wire conductors located on the first layer can be bent in a direction away from the axis of the stator core during wiring, and the flat wire conductors located on the sixth layer can be bent toward the direction of the stator core during wiring. Bending in the direction close to the axis of the stator core can reduce the difficulty of wiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

本申请提供了一种定子、扁线电机、动力总成和车辆,以提高定子绕组设计结构的灵活性,可根据需要变化并联支路的进线端和出线端。该定子包括定子铁芯和定子绕组;其中,定子铁芯的内壁开设有M个绕线槽,M个绕线槽沿定子铁芯的内壁的周向均匀设置,且任一绕线槽沿定子铁芯的轴线方向延伸;定子绕组包括插设于绕线槽内的扁线导体,任一绕线槽内均设有N层扁线导体,第一相绕组的相单元、第二相绕组的相单元和第三相绕组的相单元沿定子铁芯的内壁依次呈周期排列设置;每一相绕组均包括P条并联支路;任一并联支路连接M·N/3P层扁线导体,且任一并联支路中的任一扁线导体均与相邻跨距绕线槽内的相邻层或同层的同相扁线导体连接。

Description

定子、扁线电机、动力总成和车辆
相关申请的交叉引用
本申请要求在2021年10月30日提交中国专利局、申请号为202111277405.6、申请名称为“定子、扁线电机、动力总成和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及动力装置领域,具体涉及一种定子、扁线电机、动力总成和车辆。
背景技术
扁线电机因具有高铜满率,可利于电机绕组散热、能够提高绕组的耐压能力以及降低绕组端部长度等方面的优势,进而可以提升电机转矩密度和功率密度。因此,扁线电机成为了促进汽车轻量化、提升电动汽车的续航里程、提升汽车的空间利用率和降低动力总成成本的一个重要举措。
现有电机主要采用波绕组或叠绕组的绕组结构,通过将绕组结构中的扁线导体设计为多层,可有效降低电机的交流电阻。但是随着扁线导体层数的增加,绕组结构的布线方式也不尽相同。目前绕组结构的三相绕组通常设有多个并联支路,且多个并联支路的进出线端或者设置于定子绕组的焊接端或者设置于定子绕组的插线端,由于其设计结构的限制,其无法实现进出线端在焊接端和插线端的灵活转换,由此,现有电机的定子绕组的设计方式不够灵活,适应性差,不能根据需要随意调整并联支路的进线端和出线端。
发明内容
本申请提供了一种定子、扁线电机、动力总成和车辆,以提高定子中定子绕组设计结构的灵活性,可根据需要灵活变化并联支路的进线端和出线端。
第一方面,本申请提供一种扁线电机的定子,该定子包括定子铁芯和定子绕组;其中,定子铁芯的内壁开设有M个绕线槽,M个绕线槽沿定子铁芯的内壁的周向均匀设置,且任一绕线槽沿定子铁芯的轴线方向延伸;M为3的倍数的自然数;定子绕组包括插设于绕线槽内的扁线导体,任一绕线槽内均设有N层扁线导体,各扁线导体分组后用连接线连接分别形成第一相绕组、第二相绕组和第三相绕组,任一相绕组分别包括多个相单元,第一相绕组的相单元、第二相绕组的相单元和第三相绕组的相单元沿定子铁芯的内壁依次呈周期排列设置;每一相绕组均包括P条并联支路;N为2的倍数且为大于2的自然数,P为大于等于1的自然数;任一并联支路连接M·N/3P层扁线导体,且任一并联支路中的任一扁线导体均与相邻跨距绕线槽内的相邻层或同层的同相扁线导体连接。
本申请实施例的定子包括定子铁芯和定子绕组,定子铁芯设有M个绕线槽用于插设定子绕组中的扁线导体,且任一绕线槽内可设置N层扁线导体。在设置定子绕组时,任一相绕组的包括P条并联支路,任一并联支路连接M·N/3P层扁线导体,且任一并联支路中的任一扁线导体均与同相相邻跨距绕线槽内的相邻层或同层的扁线导体连接。由此,在设置 并联支路时,由于并联支路中的任一个扁线导体均与相邻跨距绕线槽内的相邻层或同层的同相扁线导体连接,因此,并联支路中自任一扁线导体开始,遍历第1层至第N层扁线导体后,可使连接的扁线导体围绕定子铁芯的周向绕设一周,依次类推,以类似连接方式连续遍历不同绕线槽的不同层的M·N/3P个扁线导体后,可形成一个并列支路,由此,当将其中的一个扁线导体设为进线端、与其相邻跨距的另一扁线导体设为出线端时,只需要断开其中该两个扁线导体之间的连接即可;当需要更改进线端和出线端时,可将原来的进线端和出线端的扁线导体连接,重新断开需要设置进线端和出线端的扁线导体即可,因此,进线端和出线端的位置可在插线端和焊接端灵活转换。本申请提供的定子,其定子绕组结构灵活多变,当需要改变并联支路的进线端和出线端时,可根据原有的连接结构进行简单的终端连接即可,无需改变其他位置的扁线导体的连接结构。因此,本申请的定子具有更广的适用性,可根据电机的封装结构进行调整变化。
在本申请一种可能的实现方式中,每一相绕组均包括两条并联支路。该布线可使每相每个并联支路均具有完全平衡的电势,即每相绕组的2个并联支路中,第1层至第N层中均存在扁线导体,各并联支路电势完全平衡,避免支路间产生环流。
在本申请一种可能的实现方式中,绕线槽的个数可为54个。在本申请一种可能的实现方式中,扁线导体的层数为6层或10层。
在本申请一种可能的实现方式中,任一并联支路在第1层的跨距为9,在第N层的跨距组合为10、10、7或8、8、11。在本申请一种可能的实现方式中,任一并联支路在第1层的跨距组合为10、10、7或8、8、11,在第N层的跨距为9。在本申请一种可能的实现方式中,任一并联支路在第2层至第N-1层的跨距为9。
在本申请一种可能的实现方式中,任一并联支路的出线端自第1层扁线导体或第N层扁线导体引出。该结构中,并联支路的进线端和出线端可便于引出。
在本申请一种可能的实现方式中,每一相绕组包括第一并联支路和第二并联支路;第一并联支路的进线端连接第m1个绕线槽的第n1层扁线导体,第一并联支路的出线端连接第m2个绕线槽的第n2层扁线导体;其中,m1与m2相差一个跨距,n1与n2之差的绝对值小于等于1;第二并联支路的引入段连接第m1个绕线槽的第n1+2层扁线导体,第二并联支路的出线端连接第m2个绕线槽的第n2+2层扁线导体;其中,m1、m2为同相绕组中1至M中的自然数,n1、n2为同一并联支路中2至N-2中的自然数。该结构中,同一相绕组的不同并联支路的进线端和出线端的位置相互靠近,可实现在相同的绕线槽内的不同层扁线导体中引出,方便连接。
在本申请一种可能的实现方式中,定子铁芯设有插入端和插出端,定子绕组在插出端的扭头方向一致。
在本申请一种可能的实现方式中,同一绕线槽内的不同层扁线导体为同一相绕组。该结构中相同绕线槽内的不同层扁线导体之间不需要相间绝缘纸,可降低电机的绝缘成本。
第二方面,本申请提供一种扁线电机,该扁线电机包括转子和本申请第一方面的定子,转子设于定子铁芯的内壁所围设形成的空间内。
第三方面,本申请提供一种动力总成,该动力总成包括减速器和本申请第二方面的扁线电机,扁线电机与减速器传动连接。
第四方面,本申请提供一种车辆,该车辆包括如本申请第三方面的动力总成。
上述第二方面和第四方面可以达到的技术效果,可以参照上述第一方面中的相应效果 描述,这里不再重复赘述。
附图说明
图1本申请一种实施例扁线电机的定子的三维结构示意图;
图2为本申请一种实施例扁线电机的定子的侧视结构示意图;
图3为本申请一种实施例的定子铁芯的俯视结构示意图;
图4为本申请一种实施例的发卡线圈的结构示意图;
图5为本申请一种实施例的扁线导体插设于绕线槽内的俯视结构示意图;
图6为本申请一种实施例的定子绕组的相带分布图;
图7为本申请一种实施例的一个并列支路的连接方式示意图;
图8为本申请一种实施例的三相绕组电路连接示意图;
图9为本申请一种实施例U相绕组的第一并联支路的连接示意图;
图10为本申请一种实施例U相绕组的第二并联支路的连接示意图;
图11为本申请另一种实施例U相绕组的第一并联支路的连接示意图;
图12为本申请另一种实施例U相绕组的第二并联支路的连接示意图;
图13为本申请又一种实施例U相绕组的第一并联支路的连接示意图;
图14为本申请又一种实施例U相绕组的第二并联支路的连接示意图;
图15为本申请又一种实施例中的U相绕组的两并联支路的连接示意图;
图16为本申请又一种实施例中UVW三相绕组的连接示意图;
图17为本申请再一种实施例U相绕组的第一并联支路的连接示意图;
图18为本申请再一种实施例U相绕组的第二并联支路的连接示意图;
图19为本申请另一种实施例的一种定子绕组的相带分布图;
图20为本申请另一种实施例U相绕组的第一并联支路的连接示意图;
图21为本申请另一种本实施例U相绕组的第二并联支路的连接示意图。
附图标记:10-定子铁芯;10a-插入端;10b-插出端;11-绕线槽;20-定子绕组;20a-插线端;20b-焊接端;21-扁线导体;22-发卡线圈;221-腿部;222-连接部;223-弯折部。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意 味着“包括但不限于”,除非是以其他方式另外特别强调。
目前,新能源汽车的驱动电机主要以永磁同步电机为主,在永磁同步电机中,电机定子按照定子绕组的截面形状可分为圆形线导体和扁铜线导体,采用扁铜线导体的电机称为扁线电机。扁线电机可有效提高槽满率,提高功率密度和转矩密度。但随着绕线槽内的扁线导体的数量逐渐增多,在一些设计中会增加并联电路的数量,同时也可能会增加并联电路的引出线的复杂度。目前的定子绕组中,由于其自身并联支路的电路设计,很难根据需要将多个并联电路的进出线端的设置位置在定子绕组的插线端和焊接端之间进行转换,因此,目前的定子绕组还存在连接结构不够灵活,适应性较差的问题。为解决上述问题,本申请实施例提供一种扁线电机定子。
为方便理解,以下先对本申请中出现的专业名词作如下解释说明。
定子:是指电机中静止不动的部分,其作用在于产生旋转磁场。
转子:是指电机中的旋转部件,作用在于实现电能与机械能的转换。
跨距:又称第一节距,是指电机绕组中同一元件的两个元件边在电枢表面所跨的距离,通常用定子铁芯上开设的绕线槽的数量来表示。
图1本申请一种实施例扁线电机的定子的三维结构示意图,图2为本申请一种实施例扁线电机的定子的侧视结构示意图,如图1和图2所示,在本申请一种实施例中,该定子包括定子铁芯10和定子绕组20。
图3为本申请一种实施例的定子铁芯的俯视结构示意图,如图3所示,该定子铁芯10的内壁设有多个绕线槽11,绕线槽11的数量可用M表示,M可为3的倍数的自然数,具体可选54个。一并参照图1-图3,M个绕线槽11设于定子铁芯10的内壁,且沿定子铁芯10的内壁的周向均匀设置,任一绕线槽11在定子铁芯10的轴线方向(如图1和图2中所示Z向)延伸,并沿定子铁芯10的轴线方向贯通定子铁芯10的内壁。定子铁芯10沿其轴线方向分为插入端10a和插出端10b,任一绕线槽11可自插入端10a延伸至插出端10b。
参照图1和图2,在本申请一种实施例中,定子绕组20包括插设于绕线槽11内的扁线导体21,扁线导体21的横截面可为矩形。其中,扁线导体21可由发卡线圈形成。图4为本申请一种实施例的发卡线圈的结构示意图。如图4所示,在本申请一种实施例中,该发卡线圈22包括设有绕线槽11内的腿部221和设于绕线槽11外的连接部222和弯折部223,连接部222的形成可为U型或V型。其中,一并参照图1和图4,在本申请一种实施例中,可将发卡线圈22插设于绕线槽11后再对发卡线圈22进行折弯以形成弯折部223,插设完成后,发卡线圈22插设于绕线槽11内的腿部221形成扁线导体21。折弯后,发卡线圈22的弯折部223的扭头方向保持一致。其中,发卡线圈22插设于绕线槽11后,其连接部222形成定子绕组20的插线端20a,弯折部223形成定子绕组20的焊接端20b。
图5为本申请一种实施例的扁线导体插设于绕线槽内的俯视结构示意图。如图5所示,在本申请一种实施例中,任一绕线槽11内可设置N层扁线导体21,N可为6或10。如图5所示,在本申请一种实施例中,N为6,即,每个绕线槽11内设有6层扁线导体。可理解的是,图5所示扁线导体21的层数仅为示例性说明,除可设置6层扁线导体21外,还可设置10层扁线导体21。
继续参照图1和图5,在本申请一种实施例中,插设于绕线槽11内的扁线导体21通过分组连接可形成三相绕组,分别为第一相绕组、第二相绕组和第三相绕组,分别对应U相绕组、V相绕组和W相绕组。三相绕组中,任一相绕组均可包括多个相单元,在连接时, 第一相绕组的相单元、第二相绕组的相单元和第三相绕组的相单元沿定子铁芯的内壁依次呈周期排列设置。图6为本申请一种实施例的定子绕组的相带分布图,一并参照图5和图6,在本申请一种实施例中,可按3个相邻设置的绕线槽11为一个相单元,在一个相单元中,所有的扁线导体21均为同相。U相、V相和W相按相单元依次交替设置。参照图5和图6,在本申请一种实施例中,同一绕线槽11内的扁线导体21为同相,这样,相同绕线槽11内的不同层扁线导体21之间不需要相间绝缘纸,可降低电机的绝缘成本。
图7为本申请一种实施例的用于形成一个并列支路的扁线导体的连接方式示意图。一并参照图5和图7,在本申请一种实施例中,每一相绕组可包括两条并联支路。任一并联支路可连接M·N/3P层扁线导体21,且任一并联支路中的任一扁线导体21均与相邻跨距绕线槽内11的相邻层或同层的同相扁线导体21连接。图8为本申请一种实施例的三相绕组电路连接示意图。如图8所示,在本申请一种实施例中,定子绕组的三相绕组分别由两条并联电路组成。
继续参照图7,在本申请一种实施例中,任一并联支路在第1层的跨距为9,在第N层的跨距组合为10、10、7或8、8、11。在本申请一种可能的实现方式中,任一所述并联支路在第1层的跨距组合为10、10、7或8、8、11,在第N层的跨距为9。在本申请一种可能的实现方式中,任一并联支路在第2层至第N-1层的跨距为9。
在本申请一种可能的实现方式中,任一所述并联支路的出线端自第1层扁线导体或第N层扁线导体引出。该结构中,可方便并联支路的进线端和出线端引出。
在本申请另一种可能的实现方式中,每一相绕组包括第一并联支路和第二并联支路;所述第一并联支路的进线端连接第m1个绕线槽的第n1层扁线导体,所述第一并联支路的出线端连接第m2个绕线槽的第n2层扁线导体;其中,所述m1与所述m2相差一个跨距,所述n1与所述n2之差的绝对值小于等于1;所述第二并联支路的引入段连接所述第m1个所述绕线槽的第n1+2层扁线导体,所述第二并联支路的出线端连接所述第m2个绕线槽的第n2+2层扁线导体;其中,m1、m2为同一相绕组中1至M中的自然数,n1、n2为同一并联支路中2至N-2中的自然数。该结构中,同一相绕组的不同并联支路的进线端和出线端的位置相互靠近,可实现在相同的绕线槽内的不同层扁线导体中引出,方便连接。
本申请实施例还提供一种扁线电机,该扁线电机包括转子和本申请实施例的定子,所述转子设于所述定子铁芯的内壁所围设形成的空间内。
本申请实施例还提供一种动力总成,该动力总成包括减速器和上述的扁线电机。其中,扁线电机和减速器传动连接。具体地,扁线电机的驱动轴与减速器的输入轴可通过联轴器等传动件实现传动连接,以将驱动力自扁线电机输出至减速器。
本申请实施例提供的车辆,包括上述的动力总成,上述的动力总成设置于车辆内,并为车辆提供运行动力。具体地,本实施例中,车辆可具体为以电能进行驱动的新能源车辆,比如。其中,新能源车辆具体可以是混合动力电动车辆、纯电动车辆或燃料电池电动车辆等,也可以是采用超级电容器、飞轮电池或飞轮储能器等高效储能器作为电能来源的车辆。
以下将结合具体的实施例对本申请实施例的具体并联支路的连接方式做详细说明。
实施例一
本实施例为一种扁线电机的定子,该定子包括定子铁芯和定子绕组,其中,定子铁芯的绕线槽为54个,绕线槽内导体层的层数为6。定子绕组分为U相、V相和W相,每一相绕组设置的并联支路的数量均为2个。该实施例定子绕组的相带分布图可参照图6。图 9为本实施例U相绕组的第一并联支路的连接示意图,图10为本实施例U相绕组的第二并联支路的连接示意图。该实施例中,各相绕组的第一并联支路和第二并联支路的进线端和出线端均与第1层扁线导体连接。
如图6所示,每个绕线槽内含有6层扁线导体,第1层记为L1、第2层记为L2、第3层记为L3、第4层记为L4、第5层记为L5和第6层记为L6。其中第1层为绕线槽的槽底层,第6层为槽口层。“+”代表电流流入导体,“-”代表电流流出导体。需要说明的是,图6中的相带分布仅为示例性说明,对调图6中的“+”“-”符号,例如同时将图6中的“U +”改为“U -”,并将“U -”改为“U +”,V相和W相的也做相应修改后,均在本申请的保护范围内。
图9和图10中,实线代表插线端的接线方式,虚线代表焊接端的接线方式。
下面结合图9,对本该实施例中的U相的第一并联支路的接线方式做详细说明。以下仅根据图9中的虚线连线方式说明定子绕组在焊接端的接线方式,定子绕组插线端的接线可直接由发卡线圈的连接部连接,具体可参照图9中的实线的连线方式。
参照图9,U相绕组的第一并联支路以第48槽第1层作为进线端U 1in,从第48槽的第1层进入,从第3槽的第2层引出,然后从12槽的第1层进入,从21槽的第2层引出,然后从30槽的第3层进,从39槽的第4层出,然后从48槽的第5层进,从3槽的第6层出,然后从第12槽的第5层进,从21槽的第6层出;至此,扁线导体连接后可从第1层到第6层遍历后,且可沿定子铁芯的周向绕设一周。依照上述方式进行下一次遍历。具体为:从28槽第6层进,从第19槽第5层出,然后从10槽第4层进,从第1槽第3层出,然后从46槽第4层进,从第37槽第3层出,然后从28槽第2层进,从第19槽第1层出,至此完成第二次遍历;然后从10槽第1层进,从第19槽第2层出,然后从28槽第1层进,从第37槽第2层出,然后从46槽第3层进,从第1槽第4层出,然后从10槽第5层进,从第19槽第6层出,然后从28槽第5层进,从第37槽第6层出,至此完成第三次遍历;然后从47槽第6层进,从第38槽第5层出,然后从29槽第4层进,从第20槽第3层出,然后从11槽第4层进,从第2槽第3层出,然后从47槽第2层进,从第38槽第1层出,至此完成第四次遍历;然后从29槽第1层进,从第38槽第2层出,然后从47槽第1层进,从第2槽第2层出,然后从11槽第3层进,从第20槽第4层出,然后从29槽第5层进,从第38槽第6层出,然后从47槽第5层进,从第2槽第6层出,至此完成第五次遍历;然后从12槽第6层进,从第3槽第5层出,然后从第48槽第4层进,从第39槽第3层出,然后从30槽第4层进,从第21槽第3层出,然后从第12槽第2层进,从第3槽第1层出,至此从第3槽1层引出,形成U相绕组第一并联支路的出线端U 1out
需要说明的是,以上连接方式中,例如“从第48槽的第1层进入,从第3槽的第2层引出”,是在焊接端将第48槽第1层的扁线导体和第3槽的第2层的扁线导体进行连接。
下面结合图10,对本该实施例中的U相的第二并联支路的接线方式做详细说明。以下仅根据图10中的虚线连线方式说明定子绕组在焊接端的接线方式,定子绕组插线端的接线可直接由发卡线圈的连接部连接,具体可参照图10中的实线的连线方式。
参照图10,U相绕组的第二并联支路以第30槽第1层作为进线端U 2in,从30槽的第1层进入,从第39槽第2层出,然后从第48槽第3层进,从第3槽第4层出,然后从第12槽第3层进,从第21槽第4层出,然后从第30槽第5层进,从第39槽第6层出,至此完成第一次遍历;然后从第29槽第6层进,从第20槽第5层出,然后从第11槽第6 层进,从第2槽第5层出,然后从第47槽第4层进,从第38槽第3层出,然后从第29槽第2层进,从第20槽第1层出,然后从第11槽第2层进,从第2槽第1层出,至此完成第二次遍历;然后从第11槽第1层进,从第20槽第2层出,然后从第29槽第3层进,从第38槽第4层出,然后从第47槽第3层进,从第2槽第4层出,然后从第11槽第5层进,从第20槽第6层出,至此完成第三次遍历;然后从第10槽第6层进,从第1槽第5层出,然后从第46槽第6层进,从第37槽第5层出,然后从第28槽第4层进,从第19槽第3层出,然后从第10槽第2层进,从第1槽第1层出,然后从第46槽第2层进,从第37槽第1层出,至此完成第四次遍历;然后从第46槽第1层进,从第1槽第2层出,然后从第10槽第3层进,从第19槽第4层出,然后从第28槽第3层进,从第37槽第4层出,然后从第46槽第5层进,从第1槽第6层出,至此完成第五次遍历;然后从第47槽第6层进,从第39槽第5层出,然后从第30槽第6层进,从第21槽第5层出,然后从第12槽第4层进,从第3槽第3层出,然后从第48槽第2层进,从第39槽第1层出,然后从第30槽第2层进,从第21槽第1层出,至此从第21槽第1层引出,形成U相绕组第二并联支路的出线端U 2out
以上接线方式中,例如“从30槽的第1层进入,从第39槽第2层出”的理解,可参照图9接线方式中的相关解释,在此不再重复赘述。
如图6、以及图9和图10所示,该实施例中,第一并联支路的第1层的跨距组合为9、9,第6层的跨距组合为10、10、7,第2层至第5层的跨距均为9。其中,U1in、U1out、U2in、U2out均从定子绕组的插线端引出,即从发卡线圈的连接部一侧引出。引出时,U1in和U1out之间的连接部断开,分别用导线引出,U2in和U2out之间的连接部断开,分别用导线引出。该结构中,大部分扁线导体的跨距相同,因此在绕制定子绕组时可采用相同型号的发卡线圈,减少发卡线圈的型号数量,且方便自动化插设。同时,在焊接端,各并联支路的跨距也相同,方便连接。
其中,V相的第一并联支路和W相的第一并联支路的接线方式在图9的基础上进行平移即可得到。V相的第二并联支路和W相的第二并联支路的接线方式在图10的基础上进行平移即可得到。
以上,各相绕组的第一并联支路和第二并联支路的进线端和出线端均位于第1层,三相绕组可直接并联引出,也可使用汇流排连接在一起引出。中性点端可直接焊接,也可采用汇流排连接在一起。
另外,以上接线方式中,每个并联支路数均将所能布置的相带和扁线导体层位置进行遍历,因此各并联支路数均能保持电势平衡,不会产生环流。从图6以及图9-图10中可以看出,同一槽内的导体属于同一相,因此扁线导体间无需设置绝缘纸,降低绝缘成本。
实施例二
本实施例为一种定子,图11为本实施例U相绕组的第一并联支路的连接示意图,图12为本实施例U相绕组的第二并联支路的连接示意图。
参照图11和图12,与实施例一相比,各相第一并联支路和第二并联支路的进线端和出线端的位置与实施例一不同。
如图11所示,该实施例中,第一并联支路的进线端U1in为第28槽第1层,出线端U1out为第19槽第2层,在实施例一的基础上,将原来第48槽第1层与第3槽第1层的扁线导体在定子绕组的插线端连接,并将第28槽第1层和第19槽第2层扁线导体之间的 连接部在定子绕组的插线端断开,分别用引线引出,其他位置的扁线导体的接线方式可不做改变。该连接方式中,第1层的跨距组合为9、9、9,第6层的跨距组合为10、10、7。
如图12所示,该实施例中,第二并联支路的进线端U2in为第28槽第3层,出线端U2out为第19槽第4层,在实施例一的基础上,将原来第30槽第1层与第21槽第1层的扁线导体在定子绕组的插线端连接,并将第28槽第3层和第19槽第4层扁线导体之间的连接部在定子绕组的插线端断开,分别用引线引出,其他位置的扁线导体的接线方式可不做改变。
通过实施例一与实施例二的对比可知,当将各个并联支路的进线端和出线端不全部设置在第1层时,可将同相两并联支路的进线端设置在同一绕线槽内,同时将同相两并联支路的出线端设置在另外相邻跨距的同一绕线槽内,可有效减少并联支路间的引线距离,可方便三相绕组的各并联支路的进线端和出线端并联引出或使用汇流排联结引出,引出距离较小。
实施例三
本实施例为一种定子,图13为本实施例U相绕组的第一并联支路的连接示意图,图14为本实施例U相绕组的第二并联支路的连接示意图。
参照图13和图14,与实施例一相比,各相第一并联支路和第二并联支路的进线端和出线端的位置与实施例一不同,且该实施例中,各并联支路的进线端和出线端均设于定子绕组的焊接端。
如图13所示,该实施例中,第一并联支路的进线端U1in为第2槽第2层,出线端U1out为第47槽第1层,在实施例一的基础上(参照图9所示接线方式),将原来第48槽第1层与第3槽第1层的扁线导体在定子绕组的插线端连接,并将第2槽第2层和第47槽第1层扁线导体之间的折弯部在定子绕组的焊接端断开,分别用引线引出,其他位置的扁线导体的接线方式可不做改变。
如图14所示,该实施例中,第二并联支路的进线端U2in为第2槽第4层,出线端U2out为第47槽第3层,在实施例一的基础上(参照图10所示接线方式),将原来第30槽第1层与第21槽第1层的扁线导体在定子绕组的插线端连接,并将第2槽第4层和第47槽第3层扁线导体之间的连接部在定子绕组的插线端断开,分别用引线引出,其他位置的扁线导体的接线方式可不做改变。
与实施例一相比,实施例三中的各并联支路的进线端和出线端,由定子绕组的插线端转换为焊接端,转换形式简单易行,且进线端和出线端的位置可灵活选择。实施例三中,通过该接线方式,两并联支路的进线端位于同一绕线槽内,出线端位于同一绕线槽内,连接距离可更小。
图15为该实施例中的U相绕组的两并联支路的连接示意图,图16为该实施例中UVW三相绕组的连接示意图。一并结合图13-图16,三相绕组的六个并联支路的进线端和出线端均邻近设置,可直接并联引出或使用汇流排联结在一起引出,距离较小,且均可实现焊接端出线。
实施例四
本实施例为一种定子,图17为本实施例U相绕组的第一并联支路的连接示意图,图18为本实施例U相绕组的第二并联支路的连接示意图。
参照图17和图18,与实施例一相比,各相第一并联支路和第二并联支路的进线端和 出线端的位置与实施例一相同,不同之处在于对各并联支路在第1层和第6层的跨距了做了改变,实施例一中,第1层的跨距组合为9、9,第6层的跨距组合为10、10、7,而该实施例四中,第1层的跨距组合为9、9,第6层的跨距组合为8、8、11。
图17仅示出了第一并联支路在第1层和第6层的接线方式,其余中间层第2层至第5层的接线方式参照实施例一种的图9。图18仅示出了第二并联支路在第1层和第6层的接线方式,其余中间层第2层至第5层的接线方式参照实施例一种的图10。
实施例五
本实施例为一种定子,该定子中,定子铁芯的绕线槽为54个,绕线槽内导体层的层数为10。定子绕组分为U相、V相和W相,每一相绕组设置的并联支路的数量均为2个。图19为一种实施例的一种定子绕组的相带分布图,图20为一种实施例U相绕组的第一并联支路的连接示意图,图21为一种本实施例U相绕组的第二并联支路的连接示意图。
如图19所示,每个绕线槽内含有10层扁线导体,第1层记为L1、第2层记为L2、第3层记为L3、第4层记为L4、第5层记为L5、第6层记为L6、第7层记为L7、第8层记为L8、第9层记为L9、第10层记为L10。其中第1层为绕线槽的槽底层,第10层为槽口层。“+”代表电流流入导体,“-”代表电流流出导体。需要说明的是,图19中的相带分布仅为示例性说明,对调图19中的“+”“-”符号,例如同时将图19中的“U +”改为“U -”,并将“U -”改为“U +”,V相和W相的也做相应修改后,均在本申请的保护范围内。
图20和图21中,实线代表插线端的接线方式,虚线代表焊接端的接线方式。
下面结合图20,对本该实施例中的U相的第一并联支路的接线方式做详细说明。以下仅根据图20中的虚线连线方式说明定子绕组在焊接端的接线方式,定子绕组插线端的接线可直接由发卡线圈的连接部连接,具体可参照图20中的实线的连线方式。
参照图20,U相绕组的第一并联支路以第1槽第2层作为进线端U 1in,该第1槽第2层作为进线端在定子绕组的焊接端不再与其他层扁线导体连接,然后从10槽第3层进入,从第19槽的第4层引出,然后从28槽的第5层进入,从37槽的第6层引出,然后从46槽的第5层进,从1槽的第6层出,然后从10槽的第7层进,从19槽的第8层出,然后从第28槽的第9层进,从37槽的第10层出;至此,扁线导体连接后可从第1层到第6层遍历后,且可沿定子铁芯的周向至少绕设一周。
依照上述方式进行下一次遍历。具体为:从47槽第10层进,从第38槽第9层出,然后从29槽第10层进,从第20槽第8层出,然后从11槽第8层进,从第2槽第7层出,然后从47槽第8层进,从第38槽第7层出,然后从29槽第6层进,从第20槽第5层出,然后从11槽第4层进,从第2槽第3层出,然后从47槽第4层进,从第38槽第3层出,然后从29槽第2层进,从第20槽第1层出,至此完成第二次遍历;
然后从11槽第1层进,从第20槽第2层出,然后从29槽第1层进,从第38槽第2层出,然后从47槽第3层进,从第2槽第4层出,然后从11槽第5层进,从第20槽第6层出,然后从29槽第5层进,从第38槽第6层出,然后从47槽第7层进,从第2槽第8层出,然后从11槽第9层进,从第20槽第10层出,至此完成第三次遍历;
然后从30槽第10层进,从第21槽第9层出,然后从12槽第10层进,从第3槽第9层出,然后从48槽第8层进,从第39槽第7层出,然后从30槽第8层进,从第21槽第7层出,然后从12槽第6层进,从第3槽第5层出,然后从48槽第4层进,从第39槽第3层出,然后从30槽第4层进,从第21槽第3层出,然后从12槽第2层进,从第3槽第 1层出,至此完成第四次遍历;
然后从48槽第1层进,从第3槽第2层出,然后从12槽第1层进,从第21槽第2层出,然后从30槽第3层进,从第39槽第4层出,然后从48槽第5层进,从第3槽第6层出,然后从12槽第5层进,从第21槽第6层出,然后从30槽第7层进,从第39槽第8层出,然后从48槽第9层进,从第3槽第10层出,至此完成第五次遍历;
然后从10槽第10层进,从第1槽第9层出,然后从第46槽第10层进,从第37槽第9层出,然后从28槽第8层进,从第19槽第7层出,然后从第10槽第8层进,从第1槽第7层出,然后从第46槽第6层进,从第37槽第5层出,然后从第28槽第4层进,从第19槽第3层出,然后从第10槽第4层进,从第1槽第3层出,然后从第46槽第2层进,从第37槽第1层出,然后从第28槽第1层进,从第37槽第2层出,然后从第46槽第1层引出,形成U相绕组第一并联支路的出线端U 1out
下面结合图21,对本该实施例中的U相的第二并联支路的接线方式做详细说明。以下仅根据图21中的虚线连线方式说明定子绕组在焊接端的接线方式,定子绕组插线端的接线可直接由发卡线圈的连接部连接,具体可参照图21中的实线的连线方式。
参照图21,U相绕组的第二并联支路以第1槽第4层作为进线端U 2in,该第1槽第4层作为进线端在定子绕组的接线端不再与其他层扁线导体连接,然后从10槽的第5层进入,从第19槽第6层出,然后从第28槽第7层进,从第37槽第8层出,然后从第46槽第7层进,从第1槽第8层出,然后从第10槽第9层进,从第19槽第10层出,然后从第28槽第9层进,从第37槽第10层出,至此完成第一次遍历;
然后从第30槽第10层进,从第21槽第9层出,然后从第12槽第8层进,从第3槽第7层出,然后从第48槽第6层进,从第39槽第5层出,然后从第30槽第6层进,从第21槽第5层出,然后从第12槽第4层进,从第3槽第3层出,然后从第48槽第2层进,从第39槽第1层出,然后从第30槽第2层进,从第21槽第1层出,至此完成第二次遍历;
然后从第30槽第1层进,从第39槽第2层出,然后从第48槽第3层进,从第3槽第4层出,然后从第12槽第3层进,从第21槽第4层出,然后从第30槽第5层进,从第39槽第6层出,然后从第48槽第7层进,从第3槽第8层出,然后从第12槽第7层进,从第21槽第8层出,然后从第30槽第9层进,从第39槽第10层出,然后从第48槽第9层进,从第3槽第10层出,至此完成第三次遍历;
然后从第47槽第10层进,从第38槽第9层出,然后从第29槽第8层进,从第20槽第7层出,然后从第11槽第6层进,从第2槽第5层出,然后从第47槽第6层进,从第38槽第5层出,然后从第29槽第4层进,从第20槽第3层出,然后从第11槽第2层进,从第2槽第1层出,然后从第47槽第2层进,从第38槽第1层出,至此完成第四次遍历;
然后从第47槽第1层进,从第2槽第2层出,然后从第11槽第3层进,从第20槽第4层出,然后从第29槽第3层进,从第38槽第4层出,然后从第47槽第5层进,从第2槽第6层出,然后从第11槽第7层进,从第20槽第8层出,然后从第29槽第7层进,从第38槽第8层出,然后从第47槽第9层进,从第2槽第10层出,然后从第11槽第9层进,从第20槽第10层出,至此完成第五次遍历;
然后从第10槽第10层进,从第1槽第9层出,然后从第46槽第8层进,从第37槽 第7层出,然后从第28槽第6层进,从第19槽第5层出,然后从第10槽第6层进,从第1槽第5层出,然后从第46槽第4层进,从第37槽第3层出,然后从第28槽第2层进,从第19槽第1层出,然后从第10槽第2层进,从第1槽第1层出,然后从第10槽第1层进,从第19槽第2层出,然后从第28槽第3层进,从第37槽第4层出,然后从第46槽第3层引出,形成U相绕组第二并联支路的出线端U 2out
如图19-图21所示,该实施例中,第一并联支路的第1层的跨距组合为9、9、9,第10层的跨距组合为10、7、10,第2层至第9层的跨距均为9。其中,U1in、U1out、U2in、U2out均从定子绕组的焊接端引出,即从发卡线圈的折弯部一侧引出。引出时,U1in和U1out分别用导线引出,U2in和U2out分别用导线引出。该结构中,大部分扁线导体的跨距相同,因此在绕制定子绕组时可采用相同型号的发卡线圈,减少发卡线圈的型号数量,且方便自动化插设。同时,在焊接端,各并联支路的跨距也相同,方便连接。
其中,V相的第一并联支路和W相的第一并联支路的接线方式在图20的基础上进行平移即可得到。V相的第二并联支路和W相的第二并联支路的接线方式在图21的基础上进行平移即可得到。
可以理解的是,以上各具体实施例中,仅为示例性说明,其中第1层和第6层的跨距可互换,也可达到相同的连接效果。
综上,本申请实施例的定子,具有如下优点:
1)、每相的各并联支路间具有平衡的电路连接方式,能有效减少定子绕组交流损耗的产生,并且避免了并联支路间的环流,提升了电机的效率和降低电机的温升,给电机方案设计提供了更多的可能性。同时,该定子绕组的进线端和出线端可根据需要进行改变,灵活方便。
2)、采用本申请的绕组结构的电机发卡线圈等种类较少,定子绕组焊接端的发卡线圈跨距和扭头角度相同,各个焊接点圆周对称分布,每相绕组进线端和出线端分布比较规律,绕组生产制造难度较低;
3)、本申请的定子中,同一绕线槽的扁线导体为同一相,同一绕线槽的扁线导体间不需要相间绝缘纸,降低了电机的绝缘成本和插线难度,提升了电机的铜满率;
4)、本申请的定子绕组可实现插线端进出线和焊接端进出线的灵活转换;
5)、三相绕组的全部并联支路的进出线可直接并联引出或使用汇流排联结在一起引出,距离较小;
6)、本申请的各层扁线导体中,位于第1层的扁线导体在接线时可向远离定子铁芯的轴线的方向弯折,位于第6层的扁线导体在接线时可向靠近定子铁芯轴线的方向弯折,可降低接线难度。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种扁线电机的定子,其特征在于,包括定子铁芯和定子绕组;其中,
    所述定子铁芯的内壁开设有M个绕线槽,所述M个绕线槽沿所述定子铁芯的内壁的周向均匀设置,且任一所述绕线槽沿所述定子铁芯的轴线方向延伸;M为3的倍数的自然数;
    所述定子绕组包括插设于所述绕线槽内的扁线导体,任一所述绕线槽内均设有N层所述扁线导体,各所述扁线导体分别用连接线连接以形成第一相绕组、第二相绕组和第三相绕组,任一相绕组分别包括多个相单元,所述第一相绕组的相单元、所述第二相绕组的相单元和所述第三相绕组的相单元沿所述定子铁芯的内壁依次呈周期排列设置;每一相绕组均包括P条并联支路;N为2的倍数且为大于2的自然数,P为大于等于1的自然数;
    任一所述并联支路连接M·N/3P层扁线导体,且任一所述并联支路中的任一所述扁线导体均与相邻跨距所述绕线槽内的相邻层或同层的同相所述扁线导体连接。
  2. 根据权利要求1所述的定子,其特征在于,每一相绕组均包括两条所述并联支路。
  3. 根据权利要求1或2所述的定子,其特征在于,所述绕线槽的个数为54个。
  4. 根据权利要求3所述的定子,其特征在于,所述扁线导体的层数为6层或10层。
  5. 根据权利要求3或4所述的定子,其特征在于,任一所述并联支路在第1层的跨距为9,在第N层的跨距组合为10、10、7或8、8、11。
  6. 根据权利要求3或4所述的定子,其特征在于,任一所述并联支路在第1层的跨距组合为10、10、7或8、8、11,在第N层的跨距为9。
  7. 根据权利要求3-6任一项所述的定子,其特征在于,任一并联支路在第2层至第N-1层的跨距为9。
  8. 根据权利要求1-7任一项所述的定子,其特征在于,任一所述并联支路的出线端自第1层扁线导体或第N层扁线导体引出。
  9. 根据权利要求2-7任一项所述的定子,其特征在于,每一相绕组包括第一并联支路和第二并联支路;
    所述第一并联支路的进线端连接第m1个绕线槽的第n1层扁线导体,所述第一并联支路的出线端连接第m2个绕线槽的第n2层扁线导体;其中,所述m1与所述m2相差一个跨距,所述n1与所述n2之差的绝对值小于等于1;
    所述第二并联支路的引入段连接所述第m1个所述绕线槽的第n1+2层扁线导体,所述第二并联支路的出线端连接所述第m2个绕线槽的第n2+2层扁线导体;
    其中,m1、m2为同一相绕组中1至M中的自然数,n1、n2为同一并联支路中2至N-2中的自然数。
  10. 根据权利要求1-9任一项所述的定子,其特征在于,所述定子铁芯设有插入端和插出端,所述定子绕组在所述插出端的扭头方向一致。
  11. 一种扁线电机,其特征在于,包括转子和如权利要求1-10任一项所述的定子,所述转子设于所述定子铁芯的内壁所围设形成的空间内。
  12. 一种动力总成,其特征在于,包括减速器和如权利要求11所述的扁线电机,所述扁线电机与所述减速器传动连接。
  13. 一种车辆,其特征在于,包括如权利要求12所述的动力总成。
PCT/CN2022/113682 2021-10-30 2022-08-19 定子、扁线电机、动力总成和车辆 WO2023071456A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111277405.6 2021-10-30
CN202111277405.6A CN114204708B (zh) 2021-10-30 2021-10-30 定子、扁线电机、动力总成和车辆

Publications (1)

Publication Number Publication Date
WO2023071456A1 true WO2023071456A1 (zh) 2023-05-04

Family

ID=80646540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113682 WO2023071456A1 (zh) 2021-10-30 2022-08-19 定子、扁线电机、动力总成和车辆

Country Status (5)

Country Link
US (1) US20230009407A1 (zh)
EP (1) EP4175125A1 (zh)
CN (1) CN114204708B (zh)
TW (1) TWI815630B (zh)
WO (1) WO2023071456A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114204708B (zh) * 2021-10-30 2023-04-07 华为数字能源技术有限公司 定子、扁线电机、动力总成和车辆
CN115189498B (zh) * 2022-07-07 2024-05-03 一汽解放汽车有限公司 一种扁线电机的定子、扁线电机及车辆
WO2024021885A1 (zh) * 2022-07-26 2024-02-01 安徽威灵汽车部件有限公司 定子组件、电机和车辆
CN117916980A (zh) * 2022-09-23 2024-04-19 宁德时代(上海)智能科技有限公司 用电装置、电机及其定子
CN118381223A (zh) * 2023-01-20 2024-07-23 华为数字能源技术有限公司 电机、动力总成和车辆
CN115940466B (zh) * 2023-02-09 2023-06-27 天蔚蓝电驱动科技(江苏)有限公司 扁线电机的定子
CN115940471B (zh) * 2023-03-10 2023-05-26 博格华纳汽车零部件(武汉)有限公司 一种连续波绕电枢绕组及电机
CN116054456B (zh) * 2023-04-01 2023-06-02 博格华纳汽车零部件(武汉)有限公司 一种72槽8极连续波绕绕组及电机
CN116404788B (zh) * 2023-06-08 2023-08-11 博格华纳汽车零部件(武汉)有限公司 一种72槽6极发夹式扁线电枢绕组及电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222874A (ja) * 2011-04-05 2012-11-12 Denso Corp 回転電機の固定子
CN109586456A (zh) * 2017-09-29 2019-04-05 比亚迪股份有限公司 电机、定子组件及其线圈绕线方法
CN113422453A (zh) * 2021-05-14 2021-09-21 华为技术有限公司 一种六相扁线波绕组结构、六相电机、动力总成和车辆
CN114204708A (zh) * 2021-10-30 2022-03-18 华为数字能源技术有限公司 定子、扁线电机、动力总成和车辆

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10326095A1 (de) * 2002-06-12 2004-04-15 Denso Corp., Kariya Spule aus sequentiell verbundenen Segmenten für eine rotierende elektrische Maschine
JP3791471B2 (ja) * 2002-07-12 2006-06-28 株式会社デンソー セグメント順次接合ステータコイル型回転電機
WO2019231002A1 (ko) * 2018-05-29 2019-12-05 엘지전자 주식회사 3상 전동기의 권선 패턴 구조
CN110556954B (zh) * 2018-05-31 2021-10-22 比亚迪股份有限公司 定子组件以及电机
CN110011450B (zh) * 2019-03-27 2024-08-02 汇川新能源汽车技术(常州)有限公司 定子组件及驱动电机
CN110829641B (zh) * 2019-10-29 2022-04-01 合肥巨一动力系统有限公司 发卡扁线电机定子及发卡扁线电机
CN111355317B (zh) * 2020-04-09 2021-08-27 合肥巨一动力系统有限公司 一种扁线定子及扁线电机
CN212850004U (zh) * 2020-07-15 2021-03-30 华为技术有限公司 定子组件、电机及电动汽车
WO2022077498A1 (zh) * 2020-10-16 2022-04-21 华为数字能源技术有限公司 扁线电机、动力总成及车辆
CN112531933A (zh) * 2020-12-16 2021-03-19 天津市松正电动汽车技术股份有限公司 一种电机定子及电机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012222874A (ja) * 2011-04-05 2012-11-12 Denso Corp 回転電機の固定子
CN109586456A (zh) * 2017-09-29 2019-04-05 比亚迪股份有限公司 电机、定子组件及其线圈绕线方法
CN113422453A (zh) * 2021-05-14 2021-09-21 华为技术有限公司 一种六相扁线波绕组结构、六相电机、动力总成和车辆
CN114204708A (zh) * 2021-10-30 2022-03-18 华为数字能源技术有限公司 定子、扁线电机、动力总成和车辆

Also Published As

Publication number Publication date
CN114204708B (zh) 2023-04-07
TWI815630B (zh) 2023-09-11
US20230009407A1 (en) 2023-01-12
CN114204708A (zh) 2022-03-18
EP4175125A1 (en) 2023-05-03
TW202312628A (zh) 2023-03-16

Similar Documents

Publication Publication Date Title
WO2023071456A1 (zh) 定子、扁线电机、动力总成和车辆
WO2023124509A1 (zh) 定子、扁线电机、动力总成和车辆
CN212462918U (zh) 一种多层电枢绕组结构
US20220329125A1 (en) Six-phase flat wire wave winding structure, six-phase motor, powertrain, and vehicle
WO2024032001A1 (zh) 定子、扁线电机、动力总成和车辆
WO2023045599A1 (zh) 一种电机及车辆
CN218920099U (zh) 定子、扁线电机、动力总成和车辆
CN115765254A (zh) 定子、扁线电机、动力总成和车辆
WO2023185367A1 (zh) 一种电机定子及其应用的电机
CN221842388U (zh) 车辆、动力总成、扁线电机及其定子
US20240322629A1 (en) Motor, and stator and electric device thereof
CN115498794A (zh) 电机定子、扁线电机、动力总成和动力装置
WO2022156815A1 (zh) 插针绕组式定子及电机
CN221597534U (zh) 定子组件、扁线电机、动力总成及车辆
WO2022247273A1 (zh) 扁线电机定子及扁线电机
CN212278005U (zh) 一种每极每相槽数为3的扁铜线绕组结构及电机
CN113348607B (zh) 扁线电机、动力总成及车辆
WO2024026824A1 (zh) 扁线电机及其定子
CN218920102U (zh) 定子、扁线电机、动力总成和车辆
CN111541330A (zh) 一种每极每相槽数为3的扁铜线绕组结构及电机
WO2024021885A1 (zh) 定子组件、电机和车辆
WO2024007713A1 (zh) 定子、扁线电机、动力总成和车辆
WO2024060257A1 (zh) 用电装置、电机及其定子
WO2024007709A1 (zh) 定子、扁线电机、动力总成及车辆
CN221597535U (zh) 定子、扁线电机及动力总成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE